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On-line infrared absorbance spectroscopy enables rapid measurement of
solution-phase molecular species. Many spectra-to-concentration models exist
for spectral data, with somemodels able to handle overlapping spectral bands and
nonlinearities. However, model accuracy is limited by the quality of training data
used in model fitting. The process spectra of nuclear waste simulants at the
Savannah River Site display incongruity between training and process spectra; the
glycolate spectral signature in the training data does not match the glycolate
signature in Savannah River National Laboratory process data. A novel blind source
separation algorithm is proposed that preprocesses spectral data so that process
spectra more closely resemble training spectra, thereby improving model
quantification accuracy when unexpected sources of variation appear in
process spectra. The novel blind source separation preprocessing algorithm is
shown to improve nitrate quantification from an R2 of 0.934 to 0.988 and from
0.267 to 0.978 in two instances analyzing nuclear waste simulants from the Slurry
Receipt Adjustment Tank and Slurry Mix Evaporator cycle at the Savannah
River Site.
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1 Introduction

The Savannah River Site, located in Aiken, South Carolina, has been immobilizing
nuclear waste since 1996. The site operates the Defense Waste Processing Facility (DWPF),
which processes and vitrifies high-level radioactive waste into borosilicate glass (Lambert
et al., 2016; 2021; Ray et al., 2018; Lambert and Howe, 2021; Woodham et al., 2021).
Approximately 35 million gallons of high-level waste containing insoluble solids of long-
lived radionuclides remain to be stabilized. As part of the DWPF, sludge waste from the tank
farm and effluent from the Salt Waste Processing Facility undergo feed preparation in the
Sludge Receipt and Adjustment Tank (SRAT). From the SRAT, the waste is added to the
Slurry Mix Evaporator (SME). The SME represents the primary control point for DWPF
processing for a variety of processing factors; it is the last processing point where chemical
additions occur to alter batch composition and where batches can be evaluated without
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disrupting melter operation (Ray et al., 2018). Because of the feed
preparation at the SRAT and the qualifying and regulatory
measurements made at the SME, implementation of real-time
sensors at these vessels could improve decision-making for waste
processing.

During SRAT processing, nitric acid and glycolic acid are fed to
the current waste batch in accordance with the nitric-glycolic acid
flowsheet (Lambert et al., 2016; Woodham et al., 2021) to neutralize
the alkaline sludge waste and reduce mercury (HgO → Hg0) for
recovery. The system begins with a caustic solution phase (pH 13),
which becomes acidic (pH 4) as nitric acid and glycolic acid are
introduced. The next batch process occurs in the Slurry Mix
Evaporator (SME), where water is evaporated to concentrate the
waste, and frit (glass formers) is added to create the feed supplied to
the melter. The species’ concentrations change during the process
due to ongoing reactions, such as mercury reduction and nitrite
conversion to nitrate (Woodham et al., 2021). The waste also has
high solids content, which reaches 25 wt% in the SRAT and 50 wt%
in the SME (reported as total solids at 110°C) (Woodham et al.,
2021). Furthermore, during batch processing, the heels from
previous batches are incorporated into successive batches, which
results in deviations of batch compositions from feed streams.

In this work, chemical constituents are classified by whether they
are quantified by the spectra-to-concentration model. Targets are
quantified species, while non-targets are not quantified despite
possibly existing in solution. Species may be labeled non-targets
because they are: at insignificant concentrations, not relevant for
processing, or difficult to quantify because of model and data
mismatch. The presence of non-target species can disrupt the
quantification of target species, particularly if non-target species
are not considered during model fitting. To deal with overlapping
non-target species, a blind source separation (BSS) algorithm is
proposed. The first and second steps of the BSS algorithm use
classical least squares (CLS) followed by principal component
analysis (PCA) to identify spectral estimates from mixture
spectra. The third and final step of the algorithm uses
multivariate curve resolution—alternating least squares (MCR-
ALS) to iterate the estimates from the first two steps and any
available reference spectra into a bilinear mixture model that
matches available process spectra. The proposed BSS algorithm
improves the estimation of target species by removing non-target
contributions from mixture spectra. In this work, the BSS algorithm
removes non-targets given only reference spectra of the target
species, nitrate and nitrite, and a poor reference spectrum (a
reference spectrum that does not match the shape of the
component’s spectrum at process conditions) of the most
abundant non-target species, glycolate.

The proposed BSS algorithm improves upon similar algorithms
by introducing the CLS and PCA steps to identify spectral estimates
that are input into MCR-ALS. In the context of process monitoring,
the proposed BSS algorithm may reduce the number and frequency
of calibration experiments required for spectroscopic monitoring
without compromising accuracy, since non-targets may be omitted
from training data. In addition, BSS-preprocessing could facilitate
real-time results in scenarios where decision-making is time-
sensitive, but process spectra deviate from training data due to
unforeseen process conditions, ordinarily requiring additional
calibration experiments and corresponding process down-time.

In this paper, Attenuated total reflectance - Fourier transform
infrared spectroscopy (ATR-FTIR) is used to analyze anions in the
SRAT and SME processes. A novel BSS algorithm is developed to
preprocess spectral data by removing the influence of non-target
species. To test the proposed algorithm, partial least squares
regression (PLSR) prediction accuracy is compared for BSS-
preprocessed spectra and spectra with no BSS-preprocessing
applied. Lastly, the utility of ATR-FTIR measurements for real-
time monitoring is demonstrated in the context of nuclear waste
slurries at the Savannah River Site by quantifying a continuous 65-h
run of scaled-down SRAT and SME processes.

2 Materials and methods

2.1 Overview of the waste

A simplified process flowsheet for the DWPF is shown in
Figure 1. The physical and chemical composition of a
representative sludge simulant (i.e., the SRAT feed) is shown in
Table 1, while the composition of the final processing points (i.e., the
SRAT and SME product slurries) are shown in Table 2. The SRAT
feed undergoes chemical preparation (acid addition) in the SRAT
before receiving glass frit additions and dewatering at the SME.
Nitrate (NO−

3 ) and nitrite (NO−
2 ) were chosen as target species for

estimation because of their process relevance (see Tables 1, 2) and
potential for in-line monitoring. Other infrared-active species that
may be present during waste processing and labeled as non-targets

FIGURE 1
Simplified flowsheet for Defense Waste Processing Facility
(DWPF) (Ray et al., 2018).
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are: glycolate (C2H3O−
3 ), carbonate (CO2−

3 ), oxalate (C2O2−
4 ),

formate (CHO−
2 ), phosphate (PO3−

4 ), and sulfate (SO2−
4 ).

Glycolate is a non-target because its observed process spectra
show deviations from available reference and training spectra,
complicating its quantification. Species other than glycolate are
labeled as non-targets because of their small expected process
concentrations. Known anion reactions that may occur during
the SRAT and SME processes include: nitrite destruction, nitrite-
to-nitrate conversion, glycolate destruction, glycolate-to-formate
conversion, and glycolate-to-oxalate conversion. Detailed
information on the expected anion conversions is provided by
Woodham and coworkers (Woodham et al., 2021). Typically,
anion concentrations at the Savannah River Site are quantified

with ion chromatography (IC), which is associated with
approximately 10% uncertainty and waiting times on the order of
days (White et al., 2015). In addition to ionic species, the simulant
also contains the following solids as detected by inductively coupled
plasma - atomic emission spectroscopy: Ag, Al, Ba, Ca, Cr, Cu, Fe,
Hg, K, Mg, Mn, Na, Ni, Pd, Rh, Ru, S, Si, Zn, and Zr (Woodham
et al., 2021).

2.2 Design of experiments

Nonradioactive experiments mimicking the DWPF SRAT and
SME cycles were performed in a 2-L Mettler Toledo Reaction
Calorimeter (RC1) vessel equipped with temperature, pH, and
ATR-FTIR probes. Due to the high solids content, the sludge
waste was probed with in-situ ATR-FTIR spectroscopy, which
was able to measure infrared-active molecules in the solution
phase without interference from solid particles because of a
shallow laser penetration depth of 2–3 μm (Cornel et al., 2008).
ATR-FTIR measured concentrations were compared to IC
measured concentrations collected by the Savannah River
National Laboratory Process Science Analytical Laboratory.
Before IC measurement, samples were caustic quenched by
addition of 50% NaOH, which has been reported to increase the
accuracy of ion measurements via IC (White et al., 2015). Samples
were taken from the SRAT/SME cycles at different processing points
in two separate experiments, referred to as Run 1 and Run 2. Run
1 process data correspond to five IC measurements from a SRAT/
SME experiment (Supplementary Table S1) with corresponding
ATR-FTIR spectra. Run 2 process data correspond to three IC
measurements from a SRAT/SME experiment (Supplementary
Table S2), also with corresponding ATR-FTIR data. Run 2 has
an additional 3899 spectra (collected every minute over the course of
65 h) that do not have associated IC measurements; the spectra will
be used to show real-time changes in the SRAT and SME processes.
The RC1 vessel was used to collect spectral data for model training
(eight experiments shown in Supplementary Table S3), which were
designed to match reported anion concentrations in the SRAT/SME

TABLE 1 Simulant SRAT feed composition (i.e., expected process input),
corresponding to nonradioactive simulated Tank 40–8measured byWoodham
et al. (2021). The wt% total solids (TS) represents the solids that do not dissolve
after heating to 110°C, while the wt% insoluble solids (IS) represents the
difference between the measured total solids and dissolved solids.

Parameter Supernatant target [mM]

Na+ 1010

Cl− <2.82

NO−
2 194

NO−
3 119

SO2−
4 13.7

C2O2−
4 7.00

PO3−
4 <1.05

OH− 219

CO2−
3 36.1

Parameter Slurry Target [wt%]

Insoluble Solids 8.39

Total Solids 13.90

TABLE 2 Simulant SRAT product and SME product concentrations (i.e., expected midpoint and process output, respectively) corresponding to nonradiaoctive
simulated Tank 40–8 SRAT/SME product slurries reported by Woodham et al. (2021).

Parameter SRAT product slurry [mM] SME product slurry [mM]

HCO−
2 17.1 21.4

Cl− 3.70 <3.78

NO−
2 <2.48 <2.92

NO−
3 1070 953

PO3−
4 <1.20 <1.41

SO2−
4 17.5 16.8

C2O2−
4 25.3 30.6

C2H3O−
3 906 863

CO2−
3 <6.66 25.1

NH+
4 <2.77 <2.77
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sludge simulant (Table 1) and SRAT/SME product (Table 2) for the
most abundant anions: nitrate, nitrite, and glycolate. Training data
were collected using sodium salts without controlling pH, so training
data pHs are basic.

2.3 Blind source separation

Blind source separation refers to techniques that infer original or
source signals solely from measurements of signal mixtures (Naik
and Wang, 2014). In the context of spectroscopy and this work,
blind source separation can be used to estimate and remove the pure
sources that make up a signal mixture, even when those sources are
unknown. Blind source separation has been shown by Maggioni
et al., 2019; Kocevska et al., 2021. to be effective in preprocessing
spectra to remove non-target species from Raman and ATR-FTIR
spectra in nuclear waste simulants. Kocevska’s BSS algorithm
incorporated available process information by augmenting
mixture data to include known reference spectra, thereby guiding
the identification of sources by independent component analysis
(ICA) and MCR-ALS. The proposed algorithm of this work, in
contrast, does not require algorithmic identification of known
sources; known species are constrained to match user-supplied
references, while unknown species are found in a “blind” manner
similar to Maggioni’s and Kocevska’s BSS algorithms. The new
preprocessing structure allows for available reference spectra to
be directly incorporated into a BSS algorithm without estimating
them algorithmically. In Kocevska’s and Maggioni’s works, sources
identified with ICA and MCR-ALS, even well-known species, are
limited in quality by the accuracy of the BSS algorithm; found
sources may not always match user-supplied references. A
quantitative comparison of BSS methods can be found in
Supplementary Figures S1, S2, and in Supplementary Table S4.
The proposed algorithm gives the user control over which
components are modified and subtracted by the blind source
separation algorithm, while still identifying and subtracting
unknown species that may arise in real-time due to changing
process conditions. In the context of nuclear waste monitoring,
such an algorithm could facilitate real-time spectral preprocessing
that utilizes available references for target species, while allowing for
continual removal of non-target species that may appear or change
throughout processing.

The proposed algorithm uses a combined CLS and principal
component analysis (PCA) step, rather than ICA as reported
previously (Maggioni et al., 2019; Kocevska et al., 2021), to
provide initial guesses for MCR-ALS with a nonnegativity
constraint. Deviation from a linear combination of known
sources (the error matrix from CLS fitting) is used to identify
sources in the mixture spectra that do not correspond to known
species. Applying PCA to the CLS error matrix to identify unknown
sources from mixture spectra has been reported by Haaland and
Melgaard, who referred to this technique as spectral residual
augmented classical least squares (SRACLS) (Haaland and
Melgaard, 2000; Haaland and Melgaard, 2002). Their method
improved the prediction accuracy and robustness of CLS by
identifying sources of variation not present in their training data.
In this work, the residuals of the CLS model fit are analyzed by PCA
and then supplied to MCR-ALS to provide a bilinear model for

source subtraction. The methodological pipeline is shown in
Figure 2.

As shown in Figure 2A, the first step of the BSS algorithm is the
well-established CLS relationship (Eq. 1), which is used to model
mixture spectra with all known reference spectra (targets and non-
targets) so that any additional species present can be identified from
CLS model error. Model error, in general, accounts for both
measurement noise and model mis-match. In the application of
spectroscopy, one cause of model mis-match is the presence of
unknown species. Minimizing error, ECLS, in the least squares sense
and solving for concentrations, C, is shown in Eq. 2 (Melgaard et al.,
2002). The least-squares solution can be found by setting ECLS = 0
and solving for the concentration matrix,C. Model error can then be
solved for in terms of target references, K, and process spectra, A, by
rearranging Eq. 1 and inserting Eq. 2, yielding Eq. 3:

A � CK + ECLS (1)
C � AKT KKT( )−1 (2)

ECLS � CK − A � AKT KKT( )−1K − A (3)
where A is an n × q matrix of mixture spectra, C is an n × p
concentration matrix of pure components, K is an p × q matrix of
pure component reference spectra of the target species, and ECLS is
an n × q matrix representing noise and error that is not modeled
with linear combinations of the known reference spectra. In this
work, there are n experimental observations, q is the dimension of
the spectra (reported wavenumbers), and p is the number of sources
for which references exist.

The second step of the proposed BSS algorithm, shown in
Figure 2B, applies PCA to the residuals from the error matrix of
CLS fitting, ECLS. PCA reduces the dimensionality of data by
projecting the data onto a space of reduced dimension while
maximizing the variance in the projected data (Bishop, 2006;
Brunton and Kutz, 2022). PCA assumes that the data have been
mean-centered, meaning that the data have been mean-centered by
subtracting the mean row, �ECLS, from each row of the original
matrix. The principal components of a matrix can be found as the
eigenvectors of the matrix’s covariance matrix, Φ. Calculating the
covariance matrix, shown in Eq. 4, and finding the associated
eigenvectors, shown in Eq. 5, yield the principal components
of PCA:

Φ � 1
n − 1

ECLS − �ECLS( )T ECLS − �ECLS( ) (4)
Φvi � λivi (5)

where vi is the ith eigenvector (ith principal component)
corresponding to λi, the ith eigenvalue. In the context of the
present BSS algorithm, the largest r eigenvalues are retained in
addition to the corresponding eigenvectors/principal components,
where r is the number of expected sources beyond to the p known
references. The principal components from PCA, rather than
loadings as used by Haaland and Melgaard, are used in this work
(Haaland and Melgaard, 2002). Principal components have unit
scaling, whereas loadings do not, and so principal components were
chosen as “standardized” initial guesses for the subsequent MCR-
ALS algorithm. The principal components, once computed, are
squared so that the spectra are nonnegative for MCR-ALS (step
three). This process is shown in Eq. 6, where the elements of each
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principal component are squared (◦2 represents the elementwise
square or Hadamard power of a matrix). This follows the
methodology of Maggioni’s two-step BSS algorithm that squares
independent components from ICA (which may also have negative
components) before inputting into MCR-ALS, which has a
nonnegativity constraint applied (Maggioni et al., 2019).

U � V◦2 �
| | |
v◦21 v◦22 . . . v◦2r
| | |

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

The third step of the BSS algorithm, shown in Figure 2C, uses the
known references and estimated unknown sources from PCA as
source estimates for MCR-ALS. MCR-ALS is a bilinear model that
decomposes mixture spectra into a concentration matrix, C, and a
reference spectra matrix, ST, as is shown in Eq. 7 (Tauler et al., 1993;
Tauler, 1995; Jaumot et al., 2015). In Figure 2C, the reference spectra
are divided into known references (K) and estimated references (U)
that are the squared principal components from the PCA step.

D � CST + EMCR−ALS (7)
ForMCR-ALS, initial guesses can be supplied for eitherC or ST. In

this work, reference spectra (ST) are suppliedwhichMCR-ALS iterates
to match the process spectra. MCR-ALS is calculated with a
nonnegativity constraint in this work to eliminate negative or
physically unrealistic spectra. The initial guess for spectra, STGuess is
given by a vector of concatenated columns of p known reference
spectra and r spectral estimates provided by PCA. The number of
spectral estimates, r, is determined by theMCR-ALS algorithm, which
is described in Section S3. Eq. 8 shows the initial guess provided for ST.
In this work, the MCR-ALS algorithm applies a constraint that the
target species remain identical to the user-supplied references; this is a

default functionality of the MCR-ALS algorithm and denoted by the
bar ( ) over species held constant in Eq. 8 (Camp, 2019). The
constraint on target species may be advantageous for a real-time
monitoring scenario since the constraint gives the blind source
separation algorithm predictable behavior for the target species,
improving model interpretability and reliability. In this paper,
references are provided for NO−

3 , NO
−
2 , C2H3O−

2 , and H2O. The
MCR-ALS algorithm constrains the calculated spectra to match the
user-supplied reference spectra for NO−

3 , NO
−
2 , and H2O.

STGuess �
| | | | | | |

�k
T
NO−

3

�k
T
NO−

2
kT
C2H3O−

2

�k
T
H2O

uT
Guess 1 uT

Guess 2 . . . uT
Guess r

| | | | | | |
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

(8)
The MCR-ALS algorithm produces a model that is capable of

decomposing the process spectra into estimated source spectra.
Subsequently, the sources corresponding to non-targets are
subtracted. In this work, glycolate is a non-target species and
is subtracted, along with any other detected sources. Water, while
not a target, is the solvent and not subtracted in this work since it
does not contribute significant spectral variation between
measurements. Eq. 9 shows the subtraction of non-target
sources using the model produced by MCR-ALS.

APreprocessed � A −
−−−−−− CC2H3O−

2
−−−−−−

−−−−−− CGuess 1 −−−−−−
..
.

−−−−−− CGuess r −−−−−−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

| | |
STC2H3O−

2
STGuess 1 . . . STGuess r

| | |
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦

(9)

After source subtraction, the resulting preprocessed data can be
robust to infrared-active species outside of the training dataset and

FIGURE 2
Methodological pipeline for the proposed BSS algorithm in three steps: (A) calculate residuals of classical least squares wheremixture spectra (A) and
reference spectra (K) are used to find the concentrationmatrix (C) that minimizes (in the least-squares sense) the residual matrix (ECLS), which provides an
estimate of species that do not have known reference spectra, (B) perform principal component analysis on the residual matrix (ECLS) and extract the
(elementwise) squared principal components (U), and (C) perform multivariate curve resolution - alternating least squares using known reference
spectra (K) and estimates of unknown sources from principal component analysis (U) to identify a physically realistic mixture model that matches the
mixture spectra. After the mixture model is identified, source subtraction can be done as is shown in Eq. 9.
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spectral changes that occur in complex mixtures. Process
implementation of BSS preprocessing can enable more accurate
quantification of target analytes. However, concurrently operating
fault detection algorithms should, in general, utilize unaltered
spectra, since the BSS preprocessing discussed in this work may
mask equipment failures or significant spectral changes that may be
valuable for detecting sensor or process faults.

2.4 Partial least squares regression

PLSR with four latent variables is used to quantify all of the
spectra in this work, and is performed after BSS-preprocessing
described in Section 2.3. PLSR has been well-reported in its
ability to quantify complex mixture spectra with overlapping
spectral bands, particularly when monitoring nuclear waste
solutions with vibrational spectroscopy. Recent work in the
nuclear field has applied PLSR to: locally linear regimes using
piecewise PLSR with absorbance spectroscopy (Lascola et al.,
2017), multiple species in real Hanford waste using Raman
spectroscopy (Tse et al., 2021), and sodium salt solutions with a
limited training set using ATR-FTIR and Raman spectroscopy
(Kocevska et al., 2021). Since concentration is restricted to
nonnegative values, a nonnegativity constraint is applied to all
PLSR results for physical accuracy. Prior to being input into
PLSR models but following BSS-preprocessing from Section 2.3,
all spectra are filtered with the Savitzky-Golay method utilizing
seven filter points, a second order polynomial, and a first order
derivative. Spectra and concentrations are standard scaled by mean-
subtraction and scaling to unit variance immediately prior to PLSR
quantification.

2.5 Computation

Python 3.9 was used for all computation and data analysis in this
work, with the code and experimental dataset from this work
published on GitHub. The scikit-learn implementations of PLSR,
PCA, and FastICA were used, while SciPy was used for Savitzky-

Golay Filtering. The NIST package, pyMCR, was used to perform
MCR-ALS (Camp, 2019).

3 Results and discussion

ATR-FTIR reference spectra of measurable solution analytes are
shown in Section 3.1. The ATR-FTIR spectrum of glycolate
(C2H3O−

3 ) is observed to display nonlinear peak-shifting as a
result of variable process parameters in Section 3.2. In Section
3.3, the developed BSS algorithm is used to remove a glycolate
source from spectra of Run 1 and is used to identify and remove two
glycolate sources from Run 2. Lastly five spectra from Run 1 are
quantified in Section 3.4 and 3902 spectra from Run 2 are quantified
in Section 3.5.

3.1 Reference spectra

ATR-FTIR reference spectra were collected to determine
spectral signatures of possible analytes in the SRAT and SME
vessels. While nitrate and nitrite represent the target species for
the slurry, the slurry may include additional anions at low
concentrations (see Tables 1, 2). Reference data for all known IR-
active species at approximate SRAT/SME concentrations are shown
in Figure 3 with reference spectra concentrations listed in Table 3.
The target species are highly IR-active, while some of the non-target
species (such as oxalate and formate) have weak IR signals at
process-relevant concentrations. Since the non-target species,
excluding glycolate, are not present at high concentrations in the
waste, it is possible that they do not significantly interfere with the
signals of the targets. The peaks of non-target species (shown in
Figure 3B) other than glycolate were not included as references in
the BSS algorithm. Carbonate and sulfate are 2.58 and 2.70 times
more concentrated in the references of Figure 3B than in the typical
feed to the SRAT (Table 1). Carbonate, sulfate, and other non-
targets were not reliably observed in the mixture spectra, and so the
BSS algorithm is tasked with identifying these species if they are
significantly present in the solution.

FIGURE 3
Reference spectra of aqueous (A) target anions (including water) and (B) non-target anions found in the DWPF waste during the SRAT and SME
processes collected at 25°C. Corresponding concentrations are listed in Table 3.
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3.2 Processing variables: temperature
and pH

Processing variables can affect ATR-FTIR signals, which affects
both interpretation and reliability of signal-to-composition models.
Processing variables of interest for the SRAT/SME process include
temperature and pH. Temperature starts at room temperature
(approximately 25°C) but is near-boiling (approximately 93°C)
for much of the process. Likewise, pH begins at 13 and drops to
4 through acid addition. In this section, variations in spectra with
processing parameters will be discussed to determine what
nonlinearities, if any, are present in the ATR-FTIR spectra of the
SRAT and SME processes.

Low-temperature (25°C) and high-temperature (80°C–93°C)
1 M reference spectra of nitrate (NO−

3 ), nitrite (NO−
2 ), glycolate

(C2H3O−
3 ), and glycolic acid (C2H4O3) are shown in Figure 4.

Nitrate, shown in Figure 4A, has a temperature-dependent peak
shift that can be seen on the lower-wavenumber side of the 25°C
nitrate peak. The nitrate anion (NO−

3 ) has previously been shown to
display peak-shifting in the Raman spectrum resulting from ion
association (Kocevska et al., 2022). In addition, temperature-
dependent ion association has been demonstrated by Yu et al.
(2012). At elevated temperatures (40°C → 80°C) and high

concentrations of sodium nitrate, Yu et al. attribute shift in the
Raman spectrum to complex aggregated contact ions, indicating that
sodium (Na+) and nitrate (NO−

3 ) tend to aggregate at higher
temperatures. There is a decrease in the total peak area and a
shift in location of the nitrate peak, indicating possible shifting
between sub-peaks for the nitrate anion. The peak location for
nitrite, glycolate, and glycolic acid all display subtle temperature
variations with our instrument, shown in Figures 4B–D. However,
pH has a greater impact than temperature on FTIR spectra at the
Savannah River Site.

The feed stream to the SRAT typically has a pH of 13, which
decreases to a pH around 4 after the addition of both nitric acid and
glycolic acid. This pH shift affects the speciation of weak acids, such
as glycolic acid, in the solution phase. Glycolate begins SRAT
processing in a deprotonated form, due to the high solution pH,
and shifts to a protonated form as the solution pH decreases.
Glycolate speciation, shown in Figures 5A, is calculated by using
the pKa of glycolic acid and Eq. 10. Based on values available in the
literature, a pKa value of 3.83 for glycolic acid at 25°C is used
(Serjeant and Dempsey, 1979).

mole fraction of protonated acid � 10−pH

10−pH + 10−pKa
(10)

The ATR-FTIR spectra of glycolate, after the spectra of water have
been subtracted, are shown as a function of pH in Figure 5B. As can
be seen from the magnified region in Figure 5B, the glycolate peak
matches the peak seen in the training data at high pH. As pH is
lowered, another peak appears on the higher-wavenumber side of
the high pH glycolate peak while the original peak decreases. The
result is a 15 cm−1 shift in the 1078 cm−1 glycolate peak to 1093 cm−1.
The acidic form of nitrite (NO−

2 ), nitrous acid (HNO2), is a weak acid
with a pKa of 2.3 (das Graças Gomes et al., 1993). However, nitrite-
destruction reactions decrease nitrite below the limit of detection for
ATR-FTIR before nitrous acid is expected to be detectable in
solution.

Since the key measurements during DWPF processing occur
at a constant temperature of 93°C, the training data for the system
were collected at 93°C and are shown in Figure 6A. Approximate
pH data are shown in Supplementary Tables S1–S3 in the
Supplementary Information. The process data, shown in
Figure 6B (Run 1) and 6c (Run 2), were sampled during runs

TABLE 3 Concentrations of reference spectra shown in Figure 3, representative
of expected process concentrations from Tables 1, 2. Collected at 25°C and pH-
calibrated at 22°C.

Reference Formula pH Concentration [M]

Water H2O 5.93 55.494

Nitrate NO−
3 6.53 0.946

Nitrite NO−
2 7.49 0.281

Glycolate C2H3O−
3 7.86 0.795

Carbonate CO2−
3 11.34 0.093

Sulfate SO2−
4 5.79 0.037

Formate CHO−
2 6.97 0.076

Oxalate C2O2−
4 7.42 0.024

Phosphate PO3−
4 7.86 0.021

FIGURE 4
Comparison of 1 M ATR-FTIR absorbance spectra at low and high temperatures for (A) nitrate (NO−

3), (B) nitrite (NO−
2), (C) glycolate (C2H3O

−
3), and

(D) glycolic acid (C2H4O3).
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of the SRAT/SME cycle. The spectra baseline and the shape of the
glycolate (C2H3O−

3 ) peak differ between the training and process
spectra shown in Figure 6. The effect of the variable baseline is
minimized by taking the first derivative of the spectra using the
Savitzky-Golay Filter (not shown). The glycolate peaks in both
process runs deviate from that of the training data, as is shown by
the magnified sections in Figure 6. Specifically, the glycolate peak

from Run 1 (Figure 6B) has a shoulder on the higher-
wavenumber side that is not present in the training data
(Figure 6A). Run 2 (Figure 6C) has, by comparison to Run 1,
a sharper glycolate peak that has a smaller shoulder on the
higher-wavenumber side and shoulder on the lower-
wavenumber side as well. The peak-shifting from Figure 5
may account for much of the difference observed between

FIGURE 5
(A) Protonation of glycolic acid calculated as a function of pH using a pKa of 3.83 (Serjeant and Dempsey, 1979) and (B) reference spectra (water
subtracted) for glycolate at 25°C as a function of pH.

FIGURE 6
(A) PLSR model training data, (B) process data from Run 1 collected from five different conditions in the SRAT/SME process, and (C) process data
from Run 2 from three different conditions in the SRAT/SME process. The magnified region (1000–1150 cm−1) highlights the glycolate (C2H3O

−
3) peak.
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training data and process data in Figure 6. These changes in the
glycolate peak location and shape may affect a spectra-to-
concentration model fit using the training data from
Figure 6A, where the glycolate peak is in a single location.

3.3 Blind source separation source matching

In this work, nitrate and nitrite are target species to be
quantified. Therefore, it is the objective of the BSS algorithm
to remove non-target species: known sources that deviate from
training conditions (glycolate) and unknown sources with
unknown spectra (potentially oxalate, carbonate, formate,
phosphate, and sulfate). While the presence and approximate
concentration ranges of non-target components may be known,
much of their chemistry has not been fully elucidated in the
complex mixtures present in the DWPF.

The BSS algorithm proposed in Section 2.3 was run separately
on the process spectra from Run 1 (Figure 6B) and Run 2
(Figure 6C). The BSS algorithm was provided the target reference
spectra (including water) from Figure 3A and an initial guess for
glycolate from the high-pH reference in Figure 3B. The MCR-ALS
step determined the number of additional sources, beyond glycolate,
to be zero for Run 1 and one for Run 2.

Run 1 BSS source matching is shown in Figure 7A, where the
BSS-determined glycolate source (pink) is compared to the high-
pH glycolate reference (dashed black) and the mixture spectra
(blue) of Run 1. BSS, particularly the MCR-ALS step, estimates
the glycolate contribution to be broader than the supplied
reference, as can be seen by the pink curve having greater
peak width at the 1078 cm−1 peak than the dashed black curve.
The MCR-ALS algorithm produces this “widened” glycolate
source by altering the provided reference spectra of non-
targets to match the calculated bilinear model (Eq. 7) with the
experimental mixture spectra from Figure 7A (shown in blue).
From Figure 7A, the BSS-determined source (pink) better
matches the qualitative shape of the measured (blue) peak at
1078 cm−1 than the supplied high-pH glycolate reference (dashed
black).

Run 2 BSS source matching is shown in Figure 7B, where
continuous run data (3902 spectra) of the SRAT and SME
processes are analyzed. A source (brown) is identified in
Figure 7B that does not match any user-input reference
sources. The proposed source resembles a baseline shift, in
addition to model mismatch in the region of glycolate
(1078 cm−1) and nitrate, carbonate, and glycolate (1410 cm−1).
The discovered peak centered on 1410 cm−1 may correspond to
glycolate or carbonate, both of which have associated peaks in

FIGURE 7
Comparisons between measured spectra (93°C), high-pH glycolate reference (25°C), BSS-estimated glycolate reference, and a calculated source
from the BSS algorithm for (A) Run 1 and (B) Run 2.

FIGURE 8
(A)Overlay of Run 1 spectra before and after BSS-preprocessing; (B) parity plot comparing Run 1 concentration predictions for a PLSR model (blue)
and PLSR model with BSS-preprocessing applied (red).
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that location. The combined baseline and model mismatch may
demonstrate a limitation of using PCA (or other latent variable
methods) to identify sources; principal components may not be
have a single physical interpretation and may instead be a
combination of sources. During Run 2 (Figure 7B), the
glycolate peak (pink) is again “widened” to match the
appearance of glycolate in the mixture spectra (blue).

3.4 Quantification of anions in SRAT/SME
samples (Run 1)

Figure 8A shows BSS-preprocessing and its removal of estimated
glycolate contributions from process spectra of Run 1. Peaks are
subtracted in the vicinity of 1078 cm−1 and 1450 cm−1. The parity
plots comparing the concentration predictions for PLSR models
using either original spectra or BSS preprocessed spectra are shown
in Figure 8B. Quantifiable improvements are achieved with BSS
preprocessing applied and are shown in Table 4. Nitrate
quantification is improved from an R2 value of 0.934 to an R2 value
of 0.988 with BSS preprocessing applied to the spectra. Nitrite
quantification is also improved, but the quantification at process
concentrations is limited for both original and preprocessed spectra.

This error is likely due to low concentration of the nitrite anion in
solution and corresponding low intensity of the nitrite peak in the FTIR
spectrum. In Table 4, mean percent error is not quantified for nitrite
since it has IC-measured concentrations of zero, which causes a
division-by-zero error.

Applying blind source separation to the process data improves the
quantification of nitrate and possibly nitrite while also providing
visually interpretable results through peak subtraction. The peak that
is removed at 1078 cm−1 corresponds to glycolate based on process
knowledge and peak location. However, this glycolate peak has a
different shape than the supplied glycolate reference and the spectra
appearing in the training dataset. The BSS algorithm is able to improve
the initial guess of the glycolate spectrum to better match the
components observed in the mixture spectra, resulting in an
accurate bilinear mixture model that allows glycolate contributions
to be removed for improved model quantification.

3.5 Quantification of anions in continuous
SRAT/SME samples (Run 2)

Figure 9A shows BSS-preprocessing and its removal of estimated
glycolate contributions from 3902 process spectra. The parity plots
comparing the concentration predictions for PLSR models using both
original spectra and BSS preprocessing are shown in Figure 9B.
Quantifiable improvements are achieved with BSS preprocessing for
nitrate quantification. The model error is shown in Table 5. Nitrate
quantification is improved from an R2 value of 0.267 to an R2 value of
0.978 with BSS preprocessing applied to the spectra. Nitrite
quantification is less accurate with an initial R2 of 0.722 which
decreases to 0.703 with BSS-preprocessing. A limitation of nitrite
quantification results for Run 2 are that only three timepoints have
corresponding IC-reported concentration values, and two of the three
timepoints report the nitrite IC concentration at zero (measured below
100 ppm). Therefore, there is a single measurement containing nitrite
for quantification for Run 2. Nitrate, however, is present in significant
amounts in all three timepoints in Figure 9B. Supplementary Table S5,
Supplementary Figures S3, S4 in the Supplementary Information show
a comparative study where the BSS algorithm is provided different
combinations of low- and high-pH glycolate sources.

FIGURE 9
(A)Overlay of 3902 process spectra from Run 2 before and after BSS-preprocessing; (B) parity plot comparing Run 2 concentration predictions for a
PLSR model (blue) and a PLSR model with BSS-preprocesssing applied (red).

TABLE 4 Table of error metrics corresponding to Figure 8B.

Original Nitrate Nitrite

Coefficient of Determination (R2) 0.934 0.605

Root Mean Squared Error (mol/L) 0.0130 0.0023

95% Confidence Interval (mol/L) 0.183 0.081

Mean Percent Error (%) 11.7 −

Preprocessed Nitrate Nitrite

Coefficient of Determination (R2) 0.988 0.661

Root Mean Squared Error (mol/L) 0.0025 0.0020

95% Confidence Interval (mol/L) 0.081 0.076

Mean Percent Error (%) 9.91 −
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ATR-FTIR has the capability for real-time measurements,
whereas IC measurements often incur measurement delays.
Figure 10, which reports concentrations at every timepoint for
Run 2 along with the three timepoints with IC data, highlights
the distinction between time resolution provided by ATR-FTIR and
IC for a typical SRAT/SME cycle. Glycolate contributions have been
removed using BSS preprocessing in Figure 10A, whereas no BSS
preprocessing is applied in Figure 10B. In Figure 10A, only two
species are quantified: nitrate and nitrite. However, these two species
match the reported IC concentrations (denoted by the circles and
triangles) more closely throughout processing than the equivalent
quantification with no preprocessing in Figure 10B. Most notable is
the difference in nitrate quantification, which is much improved
when BSS-preprocessing is applied. The better agreement of BSS-
preprocessed ATR-FTIR prediction with IC measurements in
Figure 10A has the drawback of not quantifying glycolate, even if
Figure 10B suggests that glycolate is quantified poorly given the
available training data. In the case where it is desirable to improve
quantification of nitrate and nitrite via BSS and additionally quantify
glycolate, two separate models could be constructed for providing
original glycolate estimates (still including any errors of the original

spectra) while improving nitrate and nitrite estimates through
source subtraction.

Based on the results for quantifying nitrate and nitrite, ATR-
FTIR is able to measure the concentration of target anions as they
undergo additions and reactions in the SRAT/SME processes.
Nitrate concentration, monitored via ATR-FTIR in Figure 10,
sharply increases 8 h into Run 2. The measured nitrate increase
corresponds to the addition of nitric acid in the SRAT, which
indicates ATR-FTIR can verify nitric acid addition. Additionally
the saw-tooth pattern appearing in Figure 10 around 40 h into the
process corresponds to the repeated addition of water followed by a
dewatering step. Dewatering is observed as an increase in
concentration as the solvent evaporates, concentrating the
remaining solution. In SRAT/SME processing, solution-phase
concentration information during the dewatering step can be
used to verify that the expected mass is evaporated. By
measuring nitrate concentration, unexpected changes in heating
efficiency, changes in specific heat of the feed stream, or clogs in the
vapor outlet could be detected and undergo further troubleshooting.
Similarly, the nitrite anion can be monitored to ensure that all nitrite
is destroyed through acid addition, at least to the limit that is
detectable with ATR-FTIR. In Figure 10B, qualitative information
is provided for the glycolate anion despite quantitative inaccuracy.
The glycolate concentration can be seen to sharply increase shortly
after the nitrate concentration increases. This is from the glycolic
acid addition, which follows the nitric acid addition and introduces
glycolate to the SRAT. The acid additions also lower the solution
pH to about 4, which will cause some glycolate to exist in its
protonated form for the remaining duration of SRAT/SME
processing.

The presence of nitrate, an abundant analyte that is active in the
infrared spectrum, may allow for other nonvolatile and nonreactive
solution species to be estimated with a mass-balance during the
chemical additions, dewatering process, and up until the slurry is
transported to the melter. As the final control point before the slurry
is melted, close monitoring of the solution-phase in the SRAT and
SME could accelerate and support decisions made by the DWPF
Analytical Laboratory regarding waste batch approval (Ray et al.,
2018).

TABLE 5 Table of error metrics corresponding to Figure 9B.

Original Nitrate Nitrite

Coefficient of Determination (R2) 0.267 0.772

Root Mean Squared Error (mol/L) 0.2959 0.0022

95% Confidence Interval (mol/L) 0.831 0.074

Mean Percent Error (%) 59.4 −

Preprocessed Nitrate Nitrite

Coefficient of Determination (R2) 0.978 0.703

Root Mean Squared Error (mol/L) 0.0087 0.0029

95% Confidence Interval (mol/L) 0.139 0.084

Mean Percent Error (%) 20.2 −

FIGURE 10
Continuous SRAT and SME data (Run 2) quantified using (A) BSS to remove glycolate contributions and a PLSR quantification model and (B) only a
PLSR quantification model where glycolate is quantified and not removed.
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4 Conclusion

This work serves as both a proof of concept on the use of ATR-FTIR
spectroscopy formonitoring slurry samples at the SavannahRiver Site and
an example of a novel blind source separation algorithm for improving
quantification of complex mixture spectra. ATR-FTIR spectroscopy
performs rapid process measurements compared to typical IC sample
analysis, enabling real-time monitoring and decision-making. However,
the complex chemistry and variable process parameters in vessels at the
SavannahRiver Site necessitateATR-FTIR spectra-to-compositionmodels
that are robust to changing chemical and process conditions. In this work,
measured ATR-FTIR spectra were combined with a blind source
separation algorithm to overcome limited training spectra that do not
match process spectra. Specifically, the glycolate anion (C2H3O−

3 ) is
observed to change spectroscopic behavior in slurries typical of the
Savannah River Site, which is attributed to shifting pH from nitric and
glycolic acid additions during processing. To address the behavior of the
glycolate anion in future Savannah River Site monitoring tasks, a
spectroscopic training set may be constructed that probes the full
range of process-relevant pH’s so that acidic and basic forms of
glycolate are included in spectroscopic training data.

The concentrations of target species, nitrate (NO−
3 ) and nitrite

(NO−
2 ), were predicted by PLSR using both raw and BSS-preprocessed

spectra. For two different runs of the SRAT/SME processes, nitrate
quantification improved from an R2 of 0.934 to 0.988 and from 0.267 to
0.978 when subtracting overlapping BSS-estimated glycolate peaks from
measured spectra. BSS preprocessingmay be useful even when reference
spectra are available, since process conditions can stray from well-
controlled bounds where quantification models are typically designed,
impacting the spectral signatures of key species. Beyond nuclear waste
processing, applications of the presently discussed blind source
separation technique may be found in instances where spectral
quantification of complex mixture spectra is necessary, but process
information is limited a priori or process conditions vary.
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