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Lei Hao4, Rui Yang1* and Congjun Yuan2,3*

1College of Forestry, Guizhou University, Guiyang, China, 2Guizhou Academy of Forestry,
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Enzyme stoichiometry can reflect the resource limitation of soil microbial

metabolism, and research on the relationships between plants and resource

limitation in Karst Microhabitats is scarcely investigated. To clarify the

extracellular enzyme stoichiometry characteristics in soil across different karst

microhabitats and how the Rhododendron pudingense adapts to nutrient

restrictions, plot investigation experiments were set up in Zhenning County,

Qinglong County, and Wangmo County of Guizhou Province which included

total three karst microhabitats, i.e., soil surface (SS), rock gully (RG), and rock

surface (RS), by analyzing he rhizosphere soil nutrient, extracellular enzyme

activity, and nutrient content of R. pudingense. The findings indicated that all

karst microenvironments experienced varying levels of nitrogen (N) limitation,

with the order of N limitation being as follows: SS > RG > RS. Notably, there were

significant discrepancies in N content among different plant organs (p< 0.05),

with the sequence of N content as follows: leaf > stem > root. However, no

significant differences were observed in nutrient content within the same organ

across different microenvironments (p > 0.05). A noteworthy discovery was the

significant allometric growth relationship between C-P in various organs (p<

0.05), while roots and stems exhibited a significant allometric growth relationship

between N-P (p< 0.05). The study highlighted the substantial impact of Total

Nitrogen (TN) and N-acquiring enzymes (NAE) on nutrient allocation within the

components of R. pudingense. Overall, the research demonstrated that N was

the primary limiting factor in the study area’s soil, and R. pudingense’s nutrient

allocation strategy was closely associated with N limitations in the karst

microenvironment. Specifically, the plant prioritized allocating its limited N

resources to its leaves, ensuring its survival. This investigation provided

valuable insights into how plants adapt to nutrient restrictions and offered a

deeper understanding of soil-plant interactions in karst ecosystems.

KEYWORDS

Karst microhabitat, enzyme stoichiometry, Rhododendron pudingense, nutrient
allocation, N limitation
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1 Introduction

The karst landforms in Southwest China are concentrated and

widely distributed (Song, 2015), exhibiting high habitat

heterogeneity, vast ecological space, rich biological resources (Xi

et al., 2011), fragility and harshness. Zhu (1993) divided six kinds of

karst microhabitats, such as rock surface, rock gully, rock trough,

rock hole, rock crevice and soil surface, according to the

morphology of rock-soil preservation. The study of microhabitat-

scale is conducive to our in-depth understanding of the plant-

environment interactions in karst regions. In 2020, a previously

unidentified plant species within the Ericaceae family,

Rhododendron pudingense, was first observed in Puding County,

Anshun City, Guizhou Province, China. This newly discovered

species is characterized by its pink blossoms and has a

predilection for the higher regions of karst mountains (Dai et al.,

2020). It has since been found in Zhenning County, Qinglong

County, Wangmo County, Kaiyang County and other places in

Guizhou Province, and is an endemic species to Guizhou.

Interestingly, while native Rhododendron plants mainly grow in

acidic soils (Su et al., 2020), this species thrives only in weak alkaline

soil in karst areas, highlighting its unique adaptation mechanisms

that require further study. Notably, study of Rhododendron

pudingense is significant due to its ecological importance, unique

characteristics, and potential contributions to conservation,

medicine, and horticulture (Yuan et al., 2023). This species plays

a role in supporting biodiversity within its habitat, and its

distinctive features add to our understanding of plant diversity.

Investigating its ecological function sheds light on its interactions

with other organisms, while exploring its adaptations to nutrient

limitation can provide insights into plant-soil relationships

(Sinsabaugh et al., 2008).

It’s noteworthy that soil enzymes play a critical role as biological

catalysts in ecosystem function, promoting soil material cycling and

energy flow (Wang et al., 2016). They are classified into extracellular

enzymes, intracellular enzymes, and free enzymes, and are mainly

generated through the decomposition of animal and plant

remnants, exudates of plant roots, and microbial activity in soil

(Cao et al., 2003). Microbes secrete extracellular enzymes that are

indispensable to the degradation of soil organic matter (Fan et al.,

2018). Moreover, these enzymes participate in almost all chemical

reactions in the soil, thereby stimulating soil organic matter

decomposition and nutrient cycling (Asmar et al., 1994; Leff et al.,

2015). However, when a soil microbe’s internal elemental balancing

mechanism and environmental resource supply and demand are

imbalanced, it might lead to microbial nutrient limitations. When

that happens, microbes compete with plants for nutrients, making

microbial nutrient constraints related to plant nutrient deficiencies

(Inselsbacher et al., 2010). Therefore, it is highly likely that nutrient

limitation in microorganisms is closely linked to nutrient limitation

in plants. Researchers have paid greater attention to microbial

nutrient limitations recently (Cui et al., 2021; Wang et al., 2023).

In addition, enzyme stoichiometry has been used to explore the

characteristics of soil microbial nutrient restriction in karst regions,

mainly aiming at different land use modes (Sun et al., 2021) and

different rock desertification degrees (Sun et al., 2022). However, it
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is not clear whether there are differences in microbial nutrient

restriction among different karst microhabitats in the same

succession stage and similar forest vegetation types. Assuming the

existence of nutrient limitation in the soil of the study area, it

remains unknown as to what nutrient allocation strategy the native

plant R. pudingense would adopt under such a nutrient limitation

regime. Ecological stoichiometry theory holds that there is a

dynamic balance between energy and chemical elements such as

carbon (C), nitrogen (N), and phosphorus (P) in ecosystems (Elser

et al., 2000; Cheng et al., 2010). Some researchers contend that

multiple extracellular enzymes related to the microbial acquisition

of C, N, and P elements like b-1,4-glucosidase (BG), b-1,4-N-
acetylglucosaminidase (NAG), L-leucine amino peptidase (LAP)

and alkaline phosphatase. (AP), also exist with ecological

stoichiometry relationships. By gauging the percentage of these

extracellular enzyme activities, we can assess the degree of microbial

need for C, N, and P elements and derive the notion of soil enzyme

stoichiometry (Schimel and Weintraub, 2003; Hill et al., 2006;

Moorhead and Sinsabaugh, 2006). Ecological enzyme

stoichiometry is also commonly used to appraise the

characteristics of nutrient metabolism inhibition in soils by

microbes (Sinsabaugh et al., 2009; Cui et al., 2021). The current

studies mainly focus on different geographic scales, including global

(Sinsabaugh et al., 2008), river basin (Hill et al., 2012), and north-

south transect scales of eastern China (Xu et al., 2017). However,

these conclusions may not be universally applicable.

C, N and P are essential nutritional elements required for plant

growth (Sardans et al., 2012). They not only compose the cell

metabolism, proteins and genetic material (Cui et al., 2018), but also

play an important role in regulating various physiological functions of

plants (Rong et al., 2012; Huang et al., 2019). Researchers use chemical

stoichiometry ratios of C, N and P to identify the nutrient limitation

status of plants (Tessier and Raynal, 2003; Gallardo and Covelo, 2005)

and nutrient allocation strategies (Chen et al., 2021). They have

consistently concluded that the nutrient content and proportional

relationship of a single organ cannot directly reflect the situation of

other organs or the entire plant, making it important not to ignore the

interaction between different organs (Zhang et al., 2020; Zhao et al.,

2021). The study on chemical stoichiometry of roots, stems and leaves

can help us understand the nutrient allocation strategy during the plant

growth process (Yao et al., 2023), as well as reveal how plants utilize

resources (Wang X. et al., 2015). In the research conducted by Zhao

et al. (2014), they studied the nutrient contents and chemical

stoichiometry ratios of the fine roots, stems and leaves of Larix

principis-rupprechtii plantation in North China. Their findings

showed that the C, N and P chemical stoichiometry ratios of fine

roots were relatively stable and not affected by the growth season. Chen

et al. (2016) discovered that the nutritional elements in different organs

of Cunninghamia lanceolata are mobile and interact with each other

based on their analysis of inter-organ chemical stoichiometric

characteristics. Therefore, using ecological stoichiometry can better

understand how elements couple among different organs of plants

(Chen et al., 2022), helping to reveal how plants cope with potential

resource limitations in karst regions.

Based on above consideration, the study’s objective is to

investigate nutrient allocation strategies in the native plant species
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R. pudingense within karst regions of Southwest China, with a

specific focus on the relationship between microbial nutrient

limitation and plant nutrient allocation. It aims to assess potential

differences in microbial nutrient restriction among different karst

microhabitats and their impact on R. pudingense’s adaptation to

nutrient-limited soils. Additionally, the study explores ecological

enzyme stoichiometry relationships to understand soil nutrient

metabolism inhibition and examines how chemical stoichiometry

ratios of carbon (C), nitrogen (N), and phosphorus (P) in different

plant organs (roots, stems, leaves) of R. pudingense can elucidate its

nutrient allocation strategies, ultimately shedding light on how this

plant copes with resource limitations in karst environments.

Findings from this research will contribute to providing

theoretical evidence for the protection of unique germplasm

resources and innovative utilization of R. pudingense in karst

rocky habitats, enrich the theories of adaptability and ecological

restoration of karst plants, and hold significant implications for the

recovery of karst vegetation.
2 Materials and methods

2.1 Study area and Karst
microhabitat division

The study area is located in Xinfa Village of Zhennin County

(ZN), Hama Community of Qinglong County (QL), and Heidong

of Wangmo County (WM) in Guizhou Province, China (Figure S1).

The three regions are situated between 105°1′ to 106°49′E and 24°

53′ to 26°11′N in the southwestern Guizhou Province, characterized

by a high northwest terrain and low southeast terrain that belongs

to the southwestern karst plateau zone at an elevation of

approximately 1200–1450 m above sea level. The region has a

subtropical monsoon humid climate with the following

characteristics: no severe cold in winter, no scorching heat in

summer, rainy season coinciding with hot weather, and warm

and moist during the festival season. The annual average

temperature is about 14.2–19.7 °C and the annual average rainfall

is around 1000–1600 mm. The soil on the limestone mountain is

black lime soil, and the forest community plant species are

primarily composed of Platycarya longipes, Carpinus pubescens, R.

pudingense, etc. (Table 1). Based on the research results of Yuan

et al. (2023), this study divided the karst microhabitats and selected

the most typical microhabitats with R. pudingense, namely rock

surface (RS), rock gully (RG), and soil surface (SS) within the plot,

according to the criteria shown in Table S1.
2.2 Sample collection

Soil samples were collected from three regions, Zhenning

County (ZN), Qinglong County (QL), and Wangmo County

(WM), respectively, from July 28th to August 1st, 2022. Three

plots (20 m x 10 m) were established in each region with an interval

of at least 20 m between neighboring ones. The geographical

coordinates, elevation, slope, slope direction, and other related
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factors were recorded for each plot. Sampling was conducted

based on the microhabitat types of R. pudingense within sample

plots, and information such as underground diameter, plant height,

and ground cover of the sampled plants was noted. At least one

representative R. pudingense plant per microhabitat category was

selected for sampling per plot. Samples were taken from healthy

plants with similar underground diameters and plant heights,

mature leaves were selected for leaf samples, young branches were

selected for stem samples, while fine roots and lateral roots were

selected for root samples. Around 200g of each sample was stored in

self-sealing bags and labeled before being placed in a foam box filled

with ice immediately after collection. A total of 27 soil samples were

collected from the three regions. After the rhizosphere soil was

collected, put it into a foam box with ice packs, about 50g. Brought

it back to the laboratory and stored in the refrigerator at –80 °C for

the determination of soil nutrients and enzyme activities after

the sampling.
2.3 Determination of soil physical and
chemical properties and enzyme activities

The plant samples are subjected to 105°C drying for 10

minutes in the laboratory after being collected. Next, they are

dried at 70°C until a constant weight is reached before being

crushed and sieved through a 100-mesh sieve for use as test

samples. The soil organic carbon content (SOC) was determined

using the potassium dichromate volumetric method, while the

total nitrogen content (TN) was determined using the Kjeldahl

method and the total phosphorus content (TP) was determined

using molybdenum-antimony resistance colorimetry. This study

employed enzyme-linked immunosorbent sandwich assays to

determine four types of extracellular enzyme activity, including

C-acquiring enzyme: b-1,4-glucosidase (BG); N-acquiring

enzymes: b-1,4-N-acetylglucosaminidase (NAG) and L-leucine
TABLE 1 Basic information on forest community in the study area.

Region ZN QL WM

Elevation 1394.3 1421.2 1220.9

Slope (°) 50 50 50

Arborous layer dominant
species

Platycarya
strobilacea

Platycarya
strobilacea

Platycarya
strobilacea

Mean diameter at breast
height (cm)

12.4 7.0 6.2

Arborous layer mean height
(m)

10.0 7.2 7.9

Arborous layer density
(plant/hm2)

350 2983 1025

Canopy density (%) 35 85 55

Mean ground diameter of R.
pudingense (cm)

1.9 1.4 1.6

Mean height of R.
pudingense (m)

1.8 1.7 1.7
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aminopeptidase (LAP); and P-acquiring enzyme: alkaline

phosphatase (AP). Different organs’ C content was determined

by the potassium dichromate volume method, N content was

determined by the Kjeldahl nitrogen determination method, and P

content was determined by the molybdenum-antimony anti-

colorimetric method.
2.4 Data analysis

All extracellular enzymes were logarithmically transformed.

The soil extracellular enzyme C:N was expressed as ln(BG)/ln

(NAG + LAP), the soil extracellular enzyme C:P was expressed as

ln(BG)/ln(AP), and the soil extracellular enzyme N:P was expressed

as ln(NAG + LAP)/ln(AP). The vector characteristics of soil

extracellular enzyme activity were calculated according to

Moorhead et al. (2016). The calculation formula is as follows:

The vector length reflects the degree of C limitation, with a

longer vector indicating stronger C limitation on microbes. The

angle of the vector reflects the degree of nitrogen and phosphorus

limitation, where an angle greater than 45° indicates P limitation,

and an angle less than 45° indicates N limitation. Moreover, this

type of limitation becomes stronger as it deviates further from the

45° angle (Moorhead et al., 2016; Cui et al., 2021).

The allometric growth equation was employed to analyze the

relationship between C, N, and P in different organs. After the

logarithmic transformation of the N and P contents in each organ,

the following formula was utilized to conduct calculations and

analysis: In the equation (Eq. 3), x and y represent the contents of C,

N and P, m is the allometric growth index, which refers to the slope

of the allometric growth equation, and n is the allometric growth

normalization constant, corresponding to the intercept of the

equation. All data processing and analysis were completed using

Microsoft Excel 2016 and IBM SPSS 26.0. When the enzyme activity

data did not conform to a normal distribution, logarithmic

transformation was performed to achieve normal distribution

before subsequent data analysis. Two-way ANOVA was used to

test the significant differences (p< 0.05) in soil nutrients,

stoichiometry ratios, as well as nutrient distribution across

different microhabitats and regions, and to determine the

significant differences (p< 0.05) in nutrient allocation among

different organs within each microhabitat. Pearson correlation

analysis was utilized to explore the relationship between soil

nutrients and enzyme activities, while Mantel tests were

conducted to investigate the correlation between organ nutrient

distribution and environmental factors, with Euclidean distance

matrix calculation for environmental variable distances and Bray-

Curtis distance matrix calculation for organ nutrient distribution

distances. Mental test analysis was performed on Tutools platform,

a free online data analysis website (http://www.cloudtutu.com).

Redundancy analysis was employed to explore the relationships

between soil nutrients, enzyme activities, stoichiometry ratios, and

organ nutrient characteristics. Canoco 5 was used to draw the

figures, while Origin 21.0 was used to draw the bar graph and

allometric growth model, and the graphical abstract was created

using Adobe Illustrator 2021.
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= Degress ATAN2½ln (BG)=ln(AP), ln(BG)=ln(NAG + LAP)�f g
(Eq: 2)

lnx = mlny + n (Eq: 3)
3 Results

3.1 Soil C, N and P contents in different
karst microhabitats

Table S2 presented data indicating that while QL soil TN and

TP were significantly different in RS and RG compared to SS (p<

0.05), there were no significant differences in the nutrient contents

of ZN and QL among the various niches (p > 0.05). Moreover, the

soil SOC and TN contents in WM shown significant differences

among different niches (p< 0.05). AN content of SS and RS

exhibited a significant difference (p< 0.05), while SAP content of

RS differed significantly from the other two niches (p< 0.05). The

rest of the indices did not present any significant difference (p >

0.05). According to the Table S3, niche had a notable influence on

each index (p< 0.05), and interregional effects were significant on

soil C, N, and P contents (p< 0.05). With the exception of soil C:N,

the interaction between niche and region remarkably affected soil

nutrient content (p< 0.05). Moreover, the nutrient content of SS was

lower, while the nutrient contents of QL and WM were higher than

those of ZN.
3.2 Extracellular enzyme activity in
different karst microhabitats

There were significant differences in C- acquiring enzyme

(CAE), N- acquiring enzyme(NAE) and P-acquiring enzyme

(PAE) activities among different karst microhabitats (p< 0.05)

(Figures 1A–C), but the changes were inconsistent. The N- and

P-acquiring enzyme activities for ZN and P-acquiring enzyme

activities for QL were RG>RS>SS, the N-acquiring enzyme

activities for QL and WM were RS>SS>RG, the activities of C-

acquiring enzyme activities and WM were the highest in SS. By

comparing the differences of the same karst microhabitat among

different regions, it was found that the enzyme activities of SS, RG

and RS among different regions were significantly different (p<

0.05), indicating that the soil in karst area also had high

heterogeneity among different regions. The results of two-way

analysis of variance showed that both the microhabitat and the

region had significant effects on the activities of C-, N- and P-

acquiring enzyme activities (p< 0.001), and there was also a
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significant interaction between the two on the activities of these

enzymes (p< 0.001).
3.3 Extracellular enzyme activity in
different karst microhabitats

Other than enzyme N:P showing no significant difference in ZN

between RG and RS (p > 0.05), there were significant differences

found in enzyme stoichiometric ratios among both karst

microhabitats and regions (p< 0.05) (Figures 2D–F). For enzymes

C:N and C:P, ZN and QL were the highest in SS, while WM was the

highest in RG. The vector angles were significantly different in
Frontiers in Plant Science 05
different regions and different karst microhabitats (p > 0.05). The

vector characteristics of soil extracellular enzymes intuitively

reflected the nutrient limitation of soil microbial metabolism

among different karst microhabitats (Figures 1G, H). The vector

length results showed that SS in the ZN and QL regions were most

severely limited by carbon, while RG was most severe in the WM

region. The vector angle of soil extracellular enzyme activities in

three karst microhabitats was all less than 45°, and there were

significant differences among microhabitats and regions (p< 0.05),

indicating that soil microbes in the study area were subject to

varying degrees of nitrogen limitation. Two-factor analysis of

variance showed that different regions and different karst

microhabitats had extremely significant effects on enzyme C:N, C:
A B C

D E F

G H

FIGURE 1

Characteristics of soil extracellular enzyme activities in different karst microhabitats (A–C), soil extracellular enzyme stoichiometric characteristics
among different karst microhabitats (D–F), and vector characteristics of soil extracellular enzyme among different karst microhabitats (G, H).
Different lowercase letters on the column indicate significant differences between different karst microhabitats in the same region, and different
uppercase letters indicate significant differences between different regions of the same karst microhabitats (p < 0.05).
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P, N:P, vector length, and vector angle (p< 0.001), and regions and

microhabitats have an extremely significant interaction effect on

enzyme stoichiometry ratios (p< 0.001).
3.4 Nutrient and stoichiometric
characteristics of different organs

According to Table 2, there were significant differences (p<

0.05) in N content and C:N among different organs of R.

pudingense, and leaf N content in RS significantly higher than
Frontiers in Plant Science 06
that in SS and RG (p< 0.05), and leaf C content in RG and RS

significantly lower than root C content (p< 0.05). Nevertheless, no

significant differences (p > 0.05) were observed in P content, C:P,

and N:P among different karst microhabitats and organs. The

allocation pattern of N and P content in different organs showed

a trend of leaf > stem > root, while C content showed the opposite

trend. Moreover, the C:N and C:P in different organs revealed a

pattern of root > stem > leaf, whereas N:P showed an entirely

opposite trend. From the perspective of microhabitats, R.

pudingense growing on the RS exhibited higher N and P contents

but lower C content in leaves and stems than that growing on SS.
A B C

D E F

G H I

FIGURE 2

C, N, P standardized major axis regression analysis (SMA) of different organs of R. pudingense. Leaf (A, D, G); stem (B, E, H); root (C, F, I).
TABLE 2 Contents and stoichiometric ratios of C, N and P in different organs of R. pudingense among different karst microhabitats.

Organ Microhabitat C N P C:N C:P N:P

Leaf SS 451 ± 13.4Aa 10.8 ± 1.05Ab 1.00 ± 0.41Aa 42.0 ± 3.66Ca 560 ± 296Aa 13.2 ± 6.65Aa

RG 442 ± 19.0Ba 10.6 ± 0.78Ab 0.96 ± 0.38Aa 42.0 ± 4.27Ca 561 ± 287Aa 13.5 ± 7.00Aa

RS 443 ± 23.0Ba 12.0 ± 1.69Aa 1.02 ± 0.33Aa 37.7 ± 5.92Ca 479 ± 165Aa 13.1 ± 5.13Aa

Stem SS 471 ± 21.9Aa 5.21 ± 0.80Ba 0.84 ± 0.48Aa 90.2 ± 13.2Ba 762 ± 458Aa 8.47 ± 4.79Aa

RG 469 ± 14.8Aa 5.41 ± 0.89Ba 0.92 ± 0.43Aa 88.2 ± 12.8Ba 692 ± 446Aa 7.50 ± 3.94Aa

RS 464 ± 17.5Aba 5.11 ± 0.62Ba 0.82 ± 0.37Aa 90.8 ± 10.96Ba 698 ± 374Aa 7.78 ± 4.25Aa

Root SS 461 ± 14.5Aa 3.06 ± 0.46Ca 0.66 ± 0.36Aa 157 ± 24.9Aa 1174 ± 986Aa 7.10 ± 5.51Aa

RG 467 ± 11.8Aa 3.31 ± 0.80Ca 0.70 ± 0.41Aa 149 ± 31.6Aab 1239 ± 1122Aa 7.61 ± 5.71Aa

RS 459 ± 18.1Aa 3.58 ± 0.44Ca 0.73 ± 0.44Aa 131 ± 12.3Ab 1242 ± 1168Aa 9.05 ± 7.97Aa
Different capital letters indicate that contents and stoichiometric ratios of C, N and P are significantly different between different organs (p < 0.05), and different lowercase letters indicate that
contents and stoichiometric ratios of C, N and P are significantly different between different karst microhabitats (p < 0.05).
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Moreover, roots exhibited higher N content but lower C and P

contents, resulting in lower C:N and higher C:P and N:P values. In

addition, the C content was highest in all organs of plants growing

on SS, whereas P content was higher in the roots. The indicators in

RG were at a moderate level. The results of Table 3 demonstrate that

different organs had significant effects on nutrient allocation and

stoichiometry of C, N, and P (p< 0.01); microhabitats significantly

affected the N content and C:N ratio in plant organs (p< 0.05); N:P

was influenced significantly by the interaction of microhabitats and

organs (p< 0.05).
3.5 C, N, and P in different organs
of R. pudingense

Based on Figures 2, 3, the allometric relationships of C, N, and P

in different organs of R. pudingense exhibit various patterns. In

leaves, there is a significant positive correlation between C-P (p<

0.01), and the slope is 6.745. Both C-P and N-P exhibit significant

positive allometric relationships in stems (p< 0.05), and the slopes

are 11.648 and 1.884 respectively. Similarly, the allometric

relationships of C-P and N-P in roots are also significant and

positive (p< 0.05), with slopes of 10.913 and 3.080, respectively.
3.6 Nutrient and stoichiometric
characteristics of different organs

Pearson correlation analysis was conducted on 11 soil factors,

and the results showed SOC was positively correlated with TN and

AN (p< 0.05), TN was positively correlated with TP, AN and AP (p<

0.05) (Figure 3). Both SOC and TN were negatively correlated with

AP (p< 0.01), and AP was negatively correlated with PAE (p< 0.01).

The relationship between enzyme stoichiometry ratios was also

closely related (p< 0.05). The results of the Mantel test indicated

that different nutrient allocation strategies in different organs of R.

pudingense were inconsistently affected by environmental factors.

TN significantly affected the allocation of nutrients in the leaf and

root (p< 0.05), while NAE was significantly correlated with the

nutrient allocation of the stem and leaf (p< 0.05). RDA analysis

revealed that for the leaf of R. pudingense (Figure 4A), soil factors

explained 78.12% of the total variation, with the first two axes

explaining 78.08% and 0.04%, respectively. ECN, TP, and ENP

significantly affected leaf stoichiometric characteristics (p< 0.05).

For the stem (Figure 4B), soil factors explained 54.31% of the total

variation, with the first two axes explaining 54.28% and 0.03%,

respectively. ECN and TP significantly affected the stoichiometric

characteristics of the leaves (p< 0.05). For the roots (Figure 4C), soil
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factors explained 81.88% of the total variation, with ECN, TP, and

ENP significantly affecting the stoichiometric characteristics of the

leaves (p< 0.05).
4 Discussion

4.1 Soil nutrient and enzyme stoichiometry
ratio analyses

It’s found that differences and interactions between

microhabitat and region scales significantly affected the content

and stoichiometry of soil C, N, and P (p< 0.05), with AN and AP

content being more influenced by microhabitat (p< 0.05). This

suggests that the high level of heterogeneity observed in karst

ecosystems is a consistent feature across various microhabitats

and regions. This has important implications for ecological

research, as it underscores the need for careful consideration and

evaluation of small-scale differences when investigating larger

ecological patterns in karst regions. Consistent with previous

research Liu et al. (2008), the nutrient content in SS was lower

than that in RG and RS. This may be due to the differences in water

and heat conditions among different microhabitats (Yu et al., 2011;

Liao et al., 2013), which affect soil microbial activity (Gao et al.,

2021). Additionally, the stability of soil aggregates was weakest in

SS, causing more severe soil erosion during heavy rainfall and

subsequent nutrient loss (Wei et al., 2022). The soil C, N, and P

content in ZN were lower than those in QL and WM, possibly due

to differences in tree density and biodiversity among regions

(Table 1). The density of trees in the QL community is higher

than that in ZN, and the region receives more precipitation. The

temperature in WM is higher, affecting soil microbial activity and

enzyme activity through temperature, humidity, and litter substrate

factors (Álvarez-Yépiz et al., 2008), ultimately resulting in

heterogeneity of soil nutrients in different microhabitats and

regions. Due to the high heterogeneity of karst habitat and

diverse microhabitat combinations, it was challenging to ensure

complete consistency in microhabitat selection. Therefore, only the

most typical SS, RG, and RS habitats of R. pudingense were selected.

Additionally, there were differences in slope, rock exposure rate,

and other factors even within the same microhabitat due to the

unique structure of these habitats. Factors such as slope, soil

thickness, and rock exposure rate have a certain impact on the

soil environment (Wang L. et al., 2015; Peng et al., 2016) and small-

scale climate (Jourgholami et al., 2019) of microhabitats, which led

to significant variations in soil physicochemical properties in RG

and RS in the results, further confirming the complexity and high

heterogeneity of karst microhabitats.
TABLE 3 Results of two-way ANOVA of microhabitat and organ on C, N, P content and stoichiometric ratio of R. pudingense (F value).

Factors C N P C:N C:P N:P

Microhabitat 0.794 2.171 0.034 2.051 0.012 0.041

Organ 12.096*** 447.260*** 3.695* 291.859*** 7.032** 7.671**

Microhabitat × Organ 0.480 2.166 0.113 1.897 0.042 0.157
*p < 0.05; **p < 0.01; ***p < 0.001.
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At the global scale, the enzyme C:N:P ratio in soils is close to

1:1:1 (Sinsabaugh et al., 2008), but given the diversity of global

ecosystem types and varying environmental conditions where

plants grow, some researchers have found this equilibrium

difficult to maintain (Guan et al., 2022). In this study, the soil

enzyme C:N:P ratios, after logarithmic transformation, were

calculated to be 1:1.49:1.15, which deviated from the expected

values. N-acquiring enzyme activities were higher in karst

microhabitats, and the enzyme vector angles were less than 45°,

indicating relative nitrogen scarcity in the area. When microbes

require a limited nutrient to meet metabolic demands, they typically
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secrete more specific enzymes, leading to these deviations

(Sinsabaugh et al., 2008). Overall, there were significant

differences in extracellular enzyme stoichiometry among different

karst microhabitats (p< 0.05). Enzyme C:N ratios and vector lengths

were highest in SS and lowest in RG and RS, while vector angles

were the opposite, suggesting weaker nitrogen limitation in SS

compared to RG and RS. The reason may be that the exposed

bedrock in RG and RS causes greater temperature fluctuations (Yan

et al., 2019), inhibiting microbial activity and reducing nitrogen

mineralization. During the experimental design phase, we selected

sampling points from three distinct regions while maintaining
A B C

FIGURE 4

Redundancy analysis of environmental factors and stoichiometric ratios in different organs of R. pudingense. (A) Leaf; (B) Stem; (C) Root. LC, leaf
carbon content; LN, leaf nitrogen content; LP, leaf phosphorus content. SC, stem carbon content; SN, stem nitrogen content; SP, stem phosphorus
content. RC, root carbon content; RN, root nitrogen content; RP, root phosphorus content.
FIGURE 3

Correlation heat map of soil nutrients, enzyme activities and nutrient allocation in different organs of R. pudingense. The three maps correspond to
three kinds of karst microhabitats. SOC, soil carbon content; TN, total nitrogen content; AN, available nitrogen content; TP, total phosphorus
content; AP, soil phosphorus content; CAE, C- acquiring enzyme, NAE, N- acquiring enzyme; PAE, P- acquiring enzyme; ECN, enzyme C:N ratio;
ECP, enzyme C:P ratio; ENP, enzyme N:P ratio. * p < 0.05; ** p < 0.01; *** p < 0.001.
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similar forest vegetation types within each region. The aim was to

identify phenomena of differing nutrient limitation patterns (N vs

P) that may exist across these regions, ultimately resulting in

potentially divergent adaptive strategies. Interestingly, all regions

were subjected to varying degrees of N limitation, which enables us

to more precisely address the previously posed question of “how R.

pudingense will allocate its nutrients under current nutrient

limitations” by focusing on a single mode of limitation.
4.2 Nutrient allocation strategies of
R. pudingense

Roots, stems, and leaves are critical organs for nutrient synthesis

in plants, and the nutrient allocation pattern between these organs

can reflect the plant’s ability to acquire, transport, and store

nutrients (Chapin, 1980; Chapin et al., 1990). In this study, the

content of C, N, and P in R. pudingense were 408.25-509.79 g/kg,

2.19-14.95 g/kg, and 0.14-1.59 g/kg, respectively. The C content was

not only comparable to that of Chinese shrub leaves (449.1 g/kg)

(Zhao et al., 2018), but also approached the global average for

terrestrial plant leaves (464.00 g/kg) (Elser et al., 2000). However,

the N and P content were lower than the global average (20.60 and

1.99 g/kg) (Elser et al., 2000). The C content was similar among

different organs, while the content of P had no significance SOC

content in the study area was significantly higher than that reported

by Sun et al. (2022) in the karst rocky desertification ecosystem

(22.23-35.60 g/kg). These findings suggest that R. pudingense has a

relatively balanced utilization of C in an environment where C and

P elements are not strongly limited or have little impact on the

plant, while the limitation of N elements has a greater impact on

this specie. Koerselman and Meuleman (1996) suggested that when

the N:P ratio of plants falls below 14, this indicates that the plant is

experiencing N limitation. Notably, all organs of R. pudingense

exhibit N:P ratios that are lower than 14, a finding that we posit is

indicative of habitat-driven N limitation.

The “growth rate hypothesis” proposes that rapid growth of

organisms requires a large amount of ribosomal RNA synthesis for

protein production, and because ribosomal RNA contains a large

amount of P, high-growth organisms have low C:P and N:P ratios

(Elser et al., 2000). In this study, the C:P ratio exhibited a root >

stem > leaf pattern in R. pudingense, consistent with the findings of

Liu et al. (2022), where leaves had the fastest growth rate and

therefore the lowest C:P ratio. However, the N:P ratio in different

organs of R. pudingense showed a completely opposite trend,

possibly due to the plant’s strategy to cope with N-limited

environments by prioritizing the allocation of more limited N to

leaves (Table S3). N content determines the photosynthetic rate of

plants and the synthesis of enzymes required to meet normal

physiological demands (De Groot Corine et al., 2003). Litter

decomposition is an important nutrient input into the karst forest

ecosystem, and R. pudingense stores more N in its leaves, which,

after falling, compensate for soil nutrients through extracellular

enzyme hydrolysis. For plants, this is a very effective survival

strategy. Under favorable conditions, nutrient allocation among

organs is relatively even to ensure the growth intensity of each
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organ, while under strong N limitation, more energy and nutrients

are allocated to aboveground parts to increase N use efficiency and

ensure survival priority, forming a clear trade-off between different

organs. This is the “adaptive growth hypothesis” proposed by

Zhang et al. (2020) and helps us understand the adaptive

strategies chosen by R. pudingense in N-limited environments.

The C:N ratio of R. pudingense was higher than that of terrestrial

plants globally (30.9 g/kg), indicating higher N use efficiency of R.

pudingense in strong N-limited habitats.

The distribution of nutrients and stoichiometry ratios in R.

pudingense is notably shaped by distinct organs, with only minor

influence from microenvironments. This contradicts our previous

beliefs. Nevertheless, it does not entirely negate the role of

microenvironments in shaping nutrient allocation strategies

employed by R. pudingense. Our findings suggest that various

karst microenvironments encounter differing degrees of nitrogen

limitation, and R. pudingense primarily adapts its nutrient

allocation within its body to deal with nitrogen-limited

conditions. These microenvironments might also impact the

stability of soil aggregates (Wei et al., 2022), the microbiome

community (Yuan et al., 2023), and other factors that alter the

effectiveness of soil nutrients and thus affect the nutrient allocation

of R. pudingense.

There may be some allometric relationships between nutrient

contents in different plant organs (Liu et al., 2010). Apart from the

negative correlation between leaf C and N, this study reveals

positive correlations between C-N, C-P, and N-P contents across

different organs of R. pudingense (Figure 2). The significant positive

correlations (p< 0.05) in the C-P and N-P allometric models of root,

stem, and leaf suggest similarity in the demand for C and P elements

among plant organs. There is no significant allometric relationship

between C and N in different organs (p > 0.05), possibly due to

stronger N limitation in the environment (Yin et al., 2021).

Compared with stems and roots, the slope of the leaf N-P

allometric equation is smaller, indicating faster N accumulation

and more stable N absorption. Under N deposition, challenges such

as reduced C:N ratio in plants (Zhang et al., 2018), soil acidification,

and restricted root growth (Liu et al., 2020) may arise, which require

further analysis of R. pudingense functional traits to uncover its

adaptation mechanisms in harsh karst environments.
4.3 Drivers of nutrient allocation strategies

R. pudingense adopts a nutrient allocation strategy of directing

limited N resources primarily to photosynthetic organs such as

leaves to cope with N limitation, which is consistent with some

previous studies (Zhao et al., 2021). SOC content is an important

indicator of soil nutrient availability for N and P, and studies have

shown that the cycling rate of soil carbon is closely related to the

effectiveness of N in ecosystems under N limitation (Singh et al.,

2010; Yang et al., 2011). Dong et al. (2021) found that microbial

activity was inhibited under N-limited conditions, leading to

weakened SOC decomposition. In this study, SOC was

significantly positively correlated with TN and AN, which is

consistent with the aforementioned research conclusions. When
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the AP content increased, P-acquiring enzyme activities decreased

significantly, following the predictions of the “resource allocation

theory”. When AP content is abundant in the soil, microbes balance

their own needs and invest more resources to obtain the limited

elements, thereby reducing the quantity and activity of P-acquiring

enzymes (Sinsabaugh et al., 2008). Mental test analysis showed that

TN significantly influenced nutrient allocation to leaves and roots

(p< 0.05), while AN significantly impacted nutrient allocation to

roots and stems. This might be due to the fact that roots were the

organs through which plants absorbed nutrients from the soil, the

deficiency of N in karst microhabitats caused R. pudingense’s leaves

to accumulate more N elements, leading to various organs of R.

pudingense being relatively sensitive to indicators related to soil N

elements. N-acquiring enzymes were closely related to the

effectiveness of soil N and indirectly affect the nutrient transport

rate to roots and stems (Ordoñez et al., 2009). Therefore, TN and

NAE exert the greatest influence on the nutrient allocation of

R. pudingense.
5 Conclusions

In this study, the complex interplay between microhabitat and

regional scales significantly influences soil carbon, nitrogen, and

phosphorus content in karst ecosystems, revealing pronounced

heterogeneity. The deviation from the conventional 1:1:1 C:N:P

ratio at a global scale underscores relative nitrogen scarcity in karst

microhabitats, leading to altered enzyme stoichiometry. R.

pudingense demonstrates a balanced utilization of carbon and

phosphorus, while actively prioritizing nitrogen allocation in

response to its N-limited habitat, reflecting an adaptive growth

strategy. Microhabitat differences minimally impact nutrient

allocation within the plant, but indirectly influence soil stability

and microbiome communities. Allometric relationships between

nutrient contents in different plant organs highlight the dynamic

nature of nutrient allocation, with positive correlations between

carbon-phosphorus and nitrogen-phosphorus contents. The drivers

of nutrient allocation strategies in R. pudingense are shaped by

factors such as soil organic carbon content, total nitrogen content,

and N-acquiring enzyme activity, revealing how the plant adapts to

nutrient limitations in karst microhabitats. Overall, this study

provides comprehensive insights into the intricate ecological

dynamics of karst regions, emphasizing the need for nuanced

consideration of microhabitat variations in ecological research.
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