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Abstract. Printed circuit board (PCB) design can be sup-
ported to a high degree by adding AI modules to the de-
sign system. Predictions from these modules can be made
available to the designer in order to speed up circuit design
and make it more efficient. Problems regarding signal in-
tegrity (SI) can be detected in time by providing hints on
component connection or routing. However, the optimiza-
tion and ML methods used in this context are usually very
sophisticated (e.g., Bayesian optimization). Therefore, the
design parameters provided by the AI modules must be ac-
cepted without further insights (for the experienced as well
as the inexperienced designer). In this paper, a decision tree
for anomaly detection and SI verification is presented, which
by nature of this algorithm provides insights to the deci-
sions made to obtain the proposed design parameters. Using
a point-to-point (P2P) network as an example, the prediction
accuracy of the AI model is investigated. It is shown that as-
sessing SI effects with a decision tree provides a simple ap-
proach to obtain the suggested design. Furthermore, the pre-
dictions of the decision tree can be verified against the design
rules.

1 Introduction

The topic of signal integrity is becoming more and more
important due to continuously decreasing dimensions and
higher frequencies of electronic systems. Distortions and in-
terferences of signals as a cause of reflections must be elimi-
nated by the developer already in the prelayout phase. Since
SI effects have a great impact on EMC problems, the im-
portance of EMC analysis for different design levels can
also serve as a starting point for considering signal integrity.

Therefore, addressing signal integrity at earlier design stages
is inevitable as illustrated in Fig. 1. In addition to maintain-
ing the functionality of a design, other factors such as “time
to market”, “number of necessary iterations during design
process” and “cost” can be significantly reduced by ensuring
an SI-compliant design in prelayout.

By developing AI models and expressing them as AI mod-
ules for use in the SI-compliant design of PCB transmis-
sion line structures, the design tasks PreLayout and Post-
Layout can be efficiently supported. For this purpose, the
introduction of combined process and phase models to de-
scribe the development of electronic systems is mandatory.
A generalized design process (Process Model to Integrate SI-
Constraints into Electronic System Design; see also works
of John, 1996) was presented by John et al. (2022) to sup-
port the implementation of AI/ML models and modules with
respect to AI/ML-relevant data sources and objects.

In the following, the use of combined process and phase
models for effective implementation of AI models and mod-
ules, as well as their potential applications for PCB develop-
ment, are discussed in more detail.

1.1 Combined Model for Analyzing and Handling
Physical Coupling Effects

Combined process and phase models can be used to ana-
lyze and describe development processes. Insights gained in
the analysis enable an assessment of the examined process
with regard to its efficiency and can thus be the starting point
for optimization. The following considerations for the intro-
duction of generally usable process models refer in this pa-
per exclusively to SI effects caused by reflections on PCB
transmission line systems. The combined process and phase
model explained in the following can be used at any time
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Figure 1. Importance of EMC analysis for different design levels
(based on Marinova, 2002).

also for the EDA-based treatment of further physical cou-
pling effects (e.g. crosstalk/PDN/radiation/conducted distur-
bances/. . . ). The use of generally usable process and phase
models creates a very good basis for comparison, since in-
dustrial development and thus EDA-supported design pro-
cesses generally differ from one another.

The procedures for the development of electronic systems
are characterized by recurring basic principles. It is possible
to determine generally valid phases that are passed through
during system development. Complex systems are developed
in a hierarchical way. Process models can be found in the
literature, which reflect these basic principles among other
things (Schefström and van den Broek, 1993; Bortolazzi and
Müller-Glaser, 1990; John, 1996, pp. 365–372).

Figure 3 shows such a combined process and phase
model (John, 1993, 1995, 1996), which is in current use
within the project “progressivKI” (see works of John et al.,
2022 and Financial support).

The development of an electronic system covers the phases
“Requirement Description” via the phase Test “Integration”
to the phase “Test” or respectively “Field FeedBack”. It is
necessary to describe the development process hierarchically.
Only in this way is it possible to fully capture the design
boundary conditions at system, subsystem and component
level and to identify the interrelationships between the levels.
The respective development phases serve to structure the de-
velopment processes to be described and may have to be pro-
cessed overlapping. The respective system hierarchy results
inevitably from the required functionality of the electronic
systems. The system to be developed is usually partitioned
recursively into subsystems/components. In this way, a com-
plex development task can be divided into more manageable
subtasks. The resulting system hierarchy can be described by
a tree structure. The process model used was designed so that
both “top-down” and “bottom-up” approaches are possible.

1.2 Synopsis – Integration of AI Modules into EDA
Design Workflows

Printed circuit board design for high speed applications in-
volves complex interdisciplinary processes. Currently, it can

Figure 2. Daisy Chain topology with a bi-directional transmitter
and four receivers (memory devices).

be observed in the EDA landscape that, for reasons of time
and thus also of cost and quality, a significant shift of de-
sign revisions from the post layout (SI simulation) phase
to the concurrent layout phase is taking place (shift left;
Hess, 2022). It is therefore expected that a significant re-
duction in redesign cycles can be achieved by using, for ex-
ample, AI modules to predict suitable SI solutions. For this
purpose, e.g. for the development of an SI concept for up-
coming design tasks, the presented extended combined pro-
cess and phase model is essential. The integration of the AI
modules presented below, which are still under development,
into existing EDA design workflows is easily possible using
the process model presented above. The definition of inter-
faces (data generation + invoking AI modules) to the respec-
tive individual EDA tools to be used is to be tested as an
example at a later stage of the project.

1.3 PCB Transmission Line Network Applications

To illustrate the complexity of the SI issues to be addressed, a
PCB transmission line network with one transmitter and four
receivers (DDR), extracted from a typical industrial applica-
tion and transformed for simulations, has to be be considered
(see Fig. 2).
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Figure 3. Combined process and phase model: EDA-supported development of electronic systems as a basis for the development of AI
modules to support the SI-compliant design of printed circuit boards in industrial environments (see John, 1993, 1995, 1996).

For the PCB designer, for example, the complexity
of the design task consists of analyzing (simulation) the
application-specific parameters such as signal propagation
times, impedance mismatch, overshoot, undershoot and
noise limits (EMC) for each line network and evaluating the
input and output signals.

In order to be able to fundamentally investigate the use
of anomaly detection methods, the above PCB line network
was simplified and two typical PCB network types were in-
troduced (point-to-point and star point; see Figs. 6 and 7). In
the following, further considerations on the use of anomaly
detection methods will concentrate on these two PCB net-
work types.

1.4 Reduction of SI Analysis Complexity in PCB
Design

It is immediately clear that the designer is confronted with a
complex optimization problem due to many parameters to
be considered in the design space. For this purpose, sim-
ulations and measurements are generally necessary for a
consideration of signal integrity while ensuring constraints
in the design. Analytical solutions may be sufficient for
simple applications, whereas more complex designs require
3D full-wave solvers to compute the output (Trinchero and
Canavero, 2021). These simulations are very time and re-
source consuming if there are a large number of input pa-
rameters. Furthermore, especially for inexperienced design-
ers finding an SI compliant solution can become very dif-
ficult and error prone. In this regard, AI-based models of
electronic circuits can assist the designer. Numerous possi-
ble solutions have already been presented in the literature,

which are based, among other things, on the estimation of
eye diagrams (Ma et al., 2019; Lu et al., 2018) or of S-
parameters (Li and Hu, 2020) depending on the selected de-
sign parameters. Methods such as support vector regression
(SVR; Smola and Schölkopf, 2004), neural networks (NN;
John et al., 2022), sparse grids (Stoyanov, 2015), or random
forest regression (RFR; Segal, 2004) are used.

By combining the mentioned surrogate models with iter-
ative optimization techniques, such as Bayesian optimiza-
tion (BO) or genetic algorithms (GA), design parameters
can be proposed that ensure sufficiently good performance
in terms of signal integrity (Torun et al., 2018; Zhang et al.,
2022). Furthermore, inverse neural networks (INN) can be
found in literature to directly obtain predictions for de-
sign parameters from eye diagrams (Ambasana et al., 2021;
Moura et al., 2022).

The presented strategies for SI compliant design are
complex and mostly related to specific high-speed sys-
tems (Torun et al., 2018; Lu et al., 2018). Furthermore,
the mentioned algorithms such as BO and GA can become
very time-consuming for higher dimensions. Therefore, an
anomaly detection method is presented in this paper, which is
implemented by a decision tree. Various decision tree meth-
ods were already compared by Lai et al. (2023) for predicting
impedance values. However, these approaches treat the for-
ward problem and are not based on assessing output wave-
forms. The presented anomaly detection with a decision tree
allows the designer to evaluate SI effects in a simple struc-
tured decision process. Furthermore, the decisions that led to
the design proposal can be understood more easily (explain-
able AI). In addition to these advantages, decision trees rank
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Figure 4. Proposal for automated design optimization by using a
decision tree.

the features used in terms of significance and have a high
computational efficiency (Casas et al., 2016).

By using presented methods (k-Nearest Neighbor and NN)
from previous work (John et al., 2022), a design optimization
framework can be implemented for evaluating the proposals
with decision trees. One possible approach is shown in Fig. 4.
The designer makes an initial proposal. Then, a number of
feature sets are generated by the k-Nearest Neighbor. These
sets are evaluated by an anomaly detection, which divides
the waveforms in appropriate and not appropriate ones. If ap-
propriate waveforms are not available, the procedure will be
repeated with newly proposed feature sets by the k-Nearest
Neighbor algorithm. In the case of finding appropriate sets,
L−m predictions are chosen randomly. Finally, the predic-
tions of an AI model, which solves the inverse design prob-
lem, will lead to SI conform waveforms.

In contrast to the algorithms of Medico et al. (2019), which
are based on the assessment of signals by an anomaly de-
tection similar to the present work, the concept from Fig. 4
does not require complex algorithms such as BO or autoen-
coder (AE). Furthermore, the deployment of the decision
tree in presented work differs from the implementation of
Zhang et al. (2019), because the method here is not directly
dependent on physical parameters. The decision tree relies
on anomaly detection based on output waveforms and mod-
els the human evaluation process. Therefore, the introduced
anomaly detection can be seen as an independent model,
which can be deployed to output waveforms without consid-
ering the topology primarily (see Fig. 5). The information re-
garding the physical parameters are required only in the case
of utilizing the anomaly detection for optimizing a dedicated
design (see Fig. 4).

Present work first addresses the suitability of the deci-
sion tree for evaluating SI effects based on the output signals
(see Fig. 5). After verification of these results, the presented
anomaly detection can be used as a module for design opti-
mization (see Fig. 4).

For the implementation of the decision tree, Sect. 2 first
describes the idea of SI evaluation by a tree structure and

Figure 5. Anomaly detection using a decision tree to evaluate SI
effects.

briefly discusses the theoretical principles. In the Sects. 3
and 4, the findings are presented and the prediction accuracy
of the anomaly detection for different networks is investi-
gated. Finally, the results are summarized and future work is
presented.

2 Methodology

To evaluate SI effects with anomaly detection, the model
shown in Fig. 5 is used as a starting point in the follow-
ing. With the developer’s suggestions, output signals are first
generated from pyhsical parameters of the network by simu-
lations and then features are extracted. For this purpose, AI
models can be used instead of simulations, which perform
the prediction of features directly from the design parame-
ters. The selected features are inspected by anomaly detec-
tion and a decision is made whether the waveforms to be in-
spected are suitable from a signal integrity point of view. By
implementing an anomaly detection using a decision tree, the
human evaluation process is modeled at this point. The tree
structure implements an interpretable model of rules, which
are usually given by design guides or experienced designers.
The implemented model can be easily extended by adapting
the output signal requirements, if the networks under consid-
eration change.

2.1 Anomaly Detection

Anomaly detection is based on the identification of devia-
tions in a data set. In the present work, supervised learning
is used since both ideal and non-ideal output signals are la-
beled. In terms of the distribution of these two classes, it can
be said that the non-ideal output signals form the majority
class. In literature, methods (Joshi et al., 2019; Weiss and
Hirsh, 1998) for identifying events in unbalanced data sets
already exist. These strategies are not discussed further here,
as the main goal of the work is to investigate the applicability
of an anomaly detection approach with respect to SI evalua-
tion. The basic principle is analyzed using a simple decision
tree and the traceability of the predictions is demonstrated.
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Figure 6. Point-to-point network for modeling of the anomaly de-
tection.

Figure 7. Star point network for validation of the transferability of
the anomaly detection.

2.2 Decision Trees

By using decision trees, the supervised anomaly detection
can be easily implemented. Decision trees have a hierarchi-
cal structure and are implemented with algorithms such as
CART (Breiman et al., 1984) or C4.5 (Quinlan, 1993). At
a certain node, the feature space is partitioned according to
a metric. This procedure is continued until the leaves of the
tree are reached via the branches or the algorithm is aborted
due to other defined conditions (maximum depth). Overfit-
ting can be avoided by the last mentioned action. Gini index
or entropy are used as metrics for the partitioning of the fea-
ture space (Casas et al., 2016) in order to determine the in-
formation gain of the respective decision. The decision with
the largest information gain is usually made first.

The decision tree in this paper was implemented using
Matlab (The MathWorks, 2022) and is based on the CART
algorithm. The Gini impurity measure was used for deter-
mining the optimal splits.

3 Description of Used Networks and Data Processing

Two simple networks were considered for data generation
and validation of results. Starting from the point-to-point net-
work in Fig. 6, training data was generated and the prediction
accuracy of the implemented anomaly detection by confu-
sion matrices was assessed. Furthermore, the star point net-
work shown in Fig. 7 was used to demonstrate the applicabil-
ity of the previously created AI model for a different design.

It can be seen that both networks (Figs. 6 and 7) use non-
linear IBIS models (AC86 gates) as output and input devices.
Several reasons led to the selection of the AC technology.
The main purpose included the comparability to previous
works (John et al., 2022). Furthermore, AC86 Spice decks

Table 1. Variation of the parameters for the P2P and star point net-
works in Figs. 6 and 7.

P2
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k Values for R5 1 to 300�

(in increments of 1�)

Values for TL1 10 to 209 mm
(in increments of 1 mm)
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ar

po
in

tn
et

w
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k

Values for R1 10 to 160�

(in increments of 30�)

Values for TL1 20 to 220 mm
(in increments of 40 mm)

Values for R2/3/4 10 to 160�

(varied simultaneously) (in increments of 30�)

Values for TL2/3/4 20 to 220 mm
(varied simultaneously) (in increments of 40 mm)

will be available in future, so that additional investigations
can be carried out with the achieved results.

A detailed description of the selected parameter spaces and
simulation results can be found in the following subsections.

3.1 Data Generation for Training of the Decision Trees

Voltage curves were first generated for the networks with the
software eCADSTAR (Zuken Ltd., 2022). Parameters were
varied for the point-to-point network in a batch mode using
an implemented Python code according to Table 1. A total
of 60000 waveforms were generated for training and vali-
dation. Subsequently, waveforms for the star point network
were generated independently for transfer learning by vary-
ing the physical parameters (see Table 1). A small data set of
1296 simulations was used since no batch operation for the
star point network was available at the time of data genera-
tion. Nevertheless, the small dataset was sufficient because of
the fact that it was deployed for the expansion of the decision
tree and testing the possibility for transfer learning method-
ologies.

The dataset generation for the introduced AI model im-
plementation procedure is based on already validated EDA
simulation tools (Zuken Ltd., 2022).

Figure 8 shows two possible voltage curves measured at
the input of the receiver, representing an ideal (red) or non-
ideal (orange; more than 8 % deviation from the high/low
level) waveform from the signal integrity point of view. Fur-
thermore, the input voltage (blue) is plotted as a reference.
The processing of the signals was done with Matlab (The
MathWorks, 2022). For further use, only the first signal pe-
riods of the voltage curves were considered due to the peri-
odic nature of the waveforms. Additionally, signal propaga-
tion times were removed based on the lengths of the trans-
mission lines in order to reduce the number of time-domain
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Figure 8. Signal characteristics at the output/input of the transmit-
ter/receiver IC1/IC2 (see Fig. 6).

features (e.g., pin-to-pin delays) and complexity during train-
ing process.

3.2 Embedding Tacit Knowledge – Data Labeling

The task in this step is to develop a set of rules based on the
designer’s implicit knowledge (tacit knowledge) and to docu-
ment the information (explicit knowledge). However, it is not
always trivial to transform and formally describe the knowl-
edge of the SI expert. Therefore, rules from design guides can
additionally be used to identify voltage curves with respect to
signal integrity. For this purpose, a selection of possible cri-
teria is listed in Table 2.

The implementation for labeling the output curves can be
extended by the developer at any time by adding further SI
criteria like flight time, settling time and eye pattern values,
so that the model of the decision tree can be adapted by a new
training. However, the Matlab script for the labeling of volt-
age curves with SI conform characteristics was implemented
in this work according to the conditions slew rate (definition
as per JEDEC, 2012), over- and undershoot. Furthermore, it
was checked whether the output curves exceed or fall below
the voltage levels Vinh/inl during the transition to the high/low
state and maintain their values for a defined time (Fig. 9).

It can be seen in Fig. 9 that the deployment of the cho-
sen criteria for labeling was precise enough without increas-
ing the complexity of the implemented script by consid-
ering additional features. For the constraint “slew rate >

1.1 [V ns−1]” the choice of waveforms is mainly determined
by the restriction “over-/undershoot < 8%” (Fig. 9(a)).

Table 2. A selection of criteria for assessing waveforms from a sig-
nal integrity perspective.

SI criterion Brief description

Extrema Vmax|min Maximum/minumum value of waveform.

Topline Higher main value of histogram.

Baseline Lower main value of histogram.

Over-/Undershoot Maximum/minimum value, which is
higher/lower than VHI resp. VLO.

Rise time Time of rising edge
between 0.10 (topline-baseline)
and 0.90 (topline-baseline).

Fall time Time of falling edge
between 0.90 (topline-baseline)
and 0.10 (topline-baseline).

Slope∗ Time delay between low
and high states of signal.

Slew rate Ratio of voltage difference and slope.

∗ Zuken Ltd. (2022) uses the reference voltage Vth and Vinl/inh (stored in the IBIS
model of the receiver (AC86) from Fig. 6) as defined in JEDEC (2012). According to
other design rules in literature, voltage levels for slope can be defined as 10 % [20 %]
and 90 % [80 %] of topline-baseline as in the case of rise/fall time.

With a more strictly formulated constraint “slew rate >

1.45 [V ns−1]”, no significant over- or undershoot exists any-
more (Fig. 9(b)).

4 Training and Deployment of the Decision Trees

A partitioning of the generated data sets into 80% training
and 20% test data was first performed. Features were then
extracted according to the parameters listed in Table 3.

4.1 Utilizing the Decision Tree for the Point-To-Point
Network

The data of the point-to-point network were labeled accord-
ing to the criteria “slew rate > 1.45 [V ns−1]’ and “over-
/undershoot < 8%”. A tree structure was created by Matlab
during the training of the P2P model, which can be seen in
Fig. 10. Only the first four nodes are shown to illustrate the
predictions made. It can be seen that a decision is made in the
root node regarding the feature “Kurtosis”. Therefore, kurto-
sis has the highest importance with respect to the predictions
of the decision tree. Figure 11 illustrates this significance of
the kurtosis. The histograms of two voltage curves with ideal
and non-ideal characteristics can be seen. The histogram for
the voltage curve with overshoot (Fig. 11(b)) has a higher
kurtosis (more outliers) due to the deviations around the high
level and is well suited as a distinguishing feature.
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Figure 9. Labeled waveforms according to the defined signal in-
tegrity criteria (overshoot/undershoot, slew rate and voltage level
Vinh/inl): (a) Slew rate > 1.1 [V ns−1]; (b) Slew rate > 1.45
[V ns−1].

Furthermore, the comprehensibility of the implemented
model becomes clear by looking at the selected output volt-
age curves in the individual branches (see Fig. 10). By the
first decision in the root node, a high proportion of curves
with ideal characteristics is already selected in the left branch
(“Kurtosis < 1.258”). After node (2), there are no more out-
put curves with significant over- and undershoot on the left
half. The output signals on the right half are discarded due
to the decision in node (2) (“Integral of the signal ≥ 1.666×
10−8”), because they show a non-monotonic behaviour out-
side the range “over-/undershoot < 8%”.

Figure 12 assesses the prediction accuracy of the imple-
mented model. To create this confusion matrix, the test data
were used and evaluated in terms of signal integrity deploy-
ing the implemented anomaly detection. The voltage curves

Table 3. Features for the training of the decision tree.

Features Formula (discrete)

Slew Rate∗10/90 % sr = x90 %−x10 %
t90 %−t10 %

xi : signal samples; ti : time
samples

Mean x = 1
N

∑N
i=1xi

N : total number of samples

Variance var= 1
N

∑N
i=1(xi − x)2

Maximum amplitude Vmax =max(xi)

Energy of signal E =
(∑N

i=1|xi |
2
)
·1t

1t : sampling period

Kurtosis kurt =
1
N

∑N
i=1(xi−x)4(

1
N

∑N
i=1(xi−x)2

)2

Skewness skew =
1
N

∑N
i=1(xi−x)3(√

1
N

∑N
i=1(xi−x)2

)3

Integral of absolute integral =
(∑N

i=1|xi |

)
·1t

values

Integral of 1st derivative integral∇ =
(∑N

i=1∇ xi

)
·1t

Integral of 2nd derivative integral
∇2 =

(∑N
i=1∇

2 xi

)
·1t

∗ The convention 10/90 % was used to maintain comparability with previous
works (John et al., 2022).

initially labeled as ideal were also classified as ideal by the
AI model with a high accuracy. These proposed waveforms
are shown in Fig. 13. A brief reconsideration of the proposed
curves by the designer is essential at this point. The pro-
posals for SI compliant waveforms done by the AI model
cannot be accepted directly. So, the final approval based on
the designer’s visual observation is inevitable in order to en-
sure functional safety (IEC, 2010). Furthermore, a utiliza-
tion of the decisions made by the AI can still be a challenge
for the designer. Depending on the parameter combinations
to be assessed, the outcome may contain a significant num-
ber of SI conform waveforms as illustrated in Fig. 13. To
avoid a tedious selection of SI compliant waveforms at the
output of the implemented AI model, the designer could be
further supported by using a k-Nearest Neighbor approach
(John et al., 2022), for example. The combination of the de-
cision tree with a Nearest Neighbor algorithm enables a rapid
delimitation of the outcome by setting the factor k.

4.2 Utilizing the Decision Tree for the Star Point
Network

The already implemented AI model from Sect. 4.1 was used
to evaluate the star point network from Fig. 7 to verify the
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Figure 10. Decision tree for anomaly detection of the point-to-point network

Figure 11. Histograms of zero-mean waveforms with ideal and non-ideal characteristics (positive amplitudes): (a) Ideal waveform (kurto-
sis: 1.2281); (b) Non-ideal waveform (kurtosis: 1.5887).

Table 4. Parameters of the point-to-point model for the verification
of the transferability to the star point network.

SI criterion Value

Slew rate > 0.95 [V ns−1]
Over-/untershoot < 10%

applicability of the decision tree (transfer learning). For this
purpose, the training was first implemented with the param-
eters given in Table 4 using the P2P network.

The assessment results for the star point data set are shown
in Fig. 14. The AI model, which was trained on the P2P net-
work, was able to adequately predict SI compliant output sig-
nals in the entire data set. Out of 25 curves initially labeled
as ideal waveforms, 9 voltage curves were suggested by the
implemented anomaly detection (see Fig. 15).

However, the prediction with the AI model of the P2P net-
work had a limiting effect. Therefore, this model was ex-
tended with the star point network data to increase the predic-
tion accuracy. The implementation of the decision tree was
performed again using the parameters from Table 4 with the
training data of the networks from Figs. 6 and 7. The high
prediction accuracy in the case of AI model extension can be
seen in Fig. 16. All voltage curves initially labeled as ideal in
the star point network test data were also classified as ideal
by the decision tree. The proposed output voltages with ideal
characteristics are shown in Fig. 17.

5 Conclusions

The implementation of anomaly detection with a decision
tree was investigated with respect to the evaluation of se-
lected SI effects. Using the example of a point-to-point net-
work, the traceability of the decisions made by the imple-

Adv. Radio Sci., 21, 37–48, 2023 https://doi.org/10.5194/ars-21-37-2023



E. Ecik et al.: Decision Trees for AI Assisted Evaluation of Signal Integrity on PCB Transmission Lines 45

Figure 12. Confusion matrix for assessing the prediction accuracy
of the point-to-point model by using 20% test data.

Figure 13. Predicted waveforms with ideal characteristics for the
point-to-point network (391 curves; see Fig. 12).

mented AI model was shown. This approach allows the de-
signer to utilize the presented predictions more efficiently
compared to other methods such as Bayesian optimization
or genetic algorithms. Furthermore, the AI model trained on
the point-to-point network was used to evaluate a simple star
point network (transfer learning). Output signals from two
different networks, which showed SI compliant characteris-
tics, could be predicted with one decision tree by combining
the training data. High prediction accuracies were achieved.
For an extension of the data set, batch operation for the
star point network will be implemented in future work. Fur-
thermore, it should be mentioned that the presented results
are only valid for predefined simple transmission networks
and comprise an initial investigation of the presented deci-
sion tree approach for the assessment of signal integrity ef-

Figure 14. Confusion matrix for assessing the prediction accuracy
of the star point network by using the entire data set (prediction with
the point-to-point model).

Figure 15. Predicted waveforms with ideal characteristics for
the star point network (with point-to-point model; 9 curves; see
Fig. 14).

fects. Consequently, further topologies have to be analyzed.
A Daisy Chain Topology with a bi-directional transmitter and
two input memory devices has already been implemented in
another work for this purpose (Ecik et al., 2023). The imple-
mented decision trees achieved very good accuracies. How-
ever, more complex signal topologies with more than two
memory devices must be considered and additional features
like pin-to-pin delay times must be included during training
in future work. Most important, the validity of the presented
anomaly detection with a decision tree has to be verified for
various applications in circuit design, which involve a human
designer making decisions.
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Figure 16. Confusion matrix for assessing the prediction accuracy
of the star point network by using 20% test data (prediction with
the extended point-to-point model).

Figure 17. Predicted waveforms with ideal characteristics for the
star point network (with extended point-to-point model; 5 curves;
see Fig. 16).
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