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Abstract. This contribution discusses the approximation of
radiated by conducted immunity tests by the example of High
Intensity Radiated Field (HIRF) and Direct Current Injection
(DCI) based on a surface current analysis. For this purpose,
Characteristic Mode Analysis (CMA) is applied to provide
basis functions for a surface current expansion in Character-
istic Modes. Via a matrix-based basis transformation algo-
rithm involving Characteristic Mode data of both HIRF and
DCI test setups, suitable DCI surface currents are derived.
The approximation of HIRF surface currents by the com-
puted DCI surface currents is analyzed for exemplary DUTs
over a broad frequency range. Within this frequency range,
those DCI frequencies leading to an optimal approximation
of the HIRF current are determined. Concerning practical is-
sues in DCI testing, the influence of DCI adapter parameters
on the surface current approximation is elucidated. The nu-
merical results show that DCI can approximate HIRF at low
frequencies largely independent from the DCI adapter set-
ting, whereas at high frequencies an approximation is diffi-
cult to realize.

1 Introduction

In Electromagnetic Compatibility (EMC) testing of aircrafts,
radiated immunity tests at high field levels are customarily
referred to as High Intensity Radiated Field (HIRF) tests
(EUROCAE, 2010). This procedure requires an irradiation of
the Device Under Test (DUT) from multiple angles with dif-
ferent polarizations, making HIRF rather time-consuming. It
is moreover expensive to implement at low test frequencies,

because large antennas and powerful amplifiers are neces-
sary. To remedy, inter alia, these deficiencies, the conducted
test method of Direct Current Injection (DCI) was introduced
in avionics (Carter and Willis, 1991). It employs the injec-
tion of currents onto the conducting surface of a DUT using
voltage or current sources as injection adapters, whereas ad-
ditional termination adapters realize a current return path via
a ground plane (Leat, 2007). Instead of a ground plane as re-
turn conductor, a coaxial return structure enclosing the DUT
is likewise possible (Pérez et al., 2019). Despite the intro-
duction of DCI several decades ago, its correlation to other
EMC test methods like HIRF is still subject to contemporary
research, see Rothenhäusler et al. (2019, 2023), Wang et al.
(2020), Ückerseifer et al. (2019, 2021, 2023).

In order to investigate whether DCI can generate EMC
test conditions similar to HIRF, the surface equivalence prin-
ciple is applied. In its generalized form, it states that the
EM-sources in a domain can be replaced by equivalent elec-
tric and magnetic surface currents (Huygens sources) at the
boundary of a closed surface separating an outer domain I
from an inner domain II (Harrington, 1961). The fields in
the outer (EI,H I) or inner (EII,H II) domain are considered
equivalent, whereas the fields in the other domain are usu-
ally set to zero (Love’s equivalence principle) as most sim-
ple solution of Maxwell’s equations satisfying the boundary
conditions on the surface. In the special case of a scattering
problem in which the closed surface is identical to the DUT’s
perfectly conducting surface, the equivalent surface current
corresponds to the electric surface current J S excited by the
EM-sources (Jin, 2010), see Fig. 1. Consequently, if the sur-
face current of HIRF caused by irradiation and the injected
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Figure 1. Surface equivalence principle for scattering by a perfect
electric conductor (PEC) (a) Original problem. (b) Equivalent prob-
lem.

current of DCI have similar structures, both methods can be
considered equivalent from an EMC point of view with re-
spect to the outer domain I.

As mathematical instrument to investigate surface cur-
rents, Characteristic Mode Analysis (CMA) (Harrington and
Mautz, 1971; Cabedo-Fabres et al., 2007; Chen and Wang,
2015) is applied. A CMA yields orthogonal basis functions,
called Characteristic Modes, in which surface currents can
be expanded. Characteristic Modes only depend on geomet-
ric and material properties of the test setup and are thus dif-
ferent for HIRF and DCI because of distinct boundary con-
ditions introduced by the DCI adapters (Rothenhäusler and
Gronwald, 2017).

Based on Characteristic Mode data of HIRF and DCI se-
tups, a basis transformation of the HIRF surface current from
HIRF modes to DCI modes is performed, by which expan-
sion coefficients for a DCI surface current expansion fol-
low. Its approximation to the HIRF current is analyzed by
means of a relative error measure for complex-valued vec-
tor quantities. Unlike in Ückerseifer et al. (2019), the basis
transformation algorithm employs only vector-matrix oper-
ations and is thus easier to automate for a broad frequency
range and arbitrary DUTs including spherical bodies. Apart
from the discussed surface current transformations, practical
issues concerning the influence of DCI adapter impedance
as well as injection and termination adapter positions on the
surface current approximation is discussed.

Section 2 starts with a mathematical overview over CMA
and its specific modal quantities. They constitute the foun-
dation for a basis transformation algorithm subsequently
demonstrated yielding DCI surface currents as approxima-
tion to HIRF surface currents. In order to apply this algo-
rithm, Sect. 3 introduces HIRF and DCI test setups for three
different canonical DUTs, whose modal properties are deter-
mined by a CMA. Finally, Sect. 4 presents computed DCI
currents for these DUTs and compares them to HIRF cur-
rents in a broad frequency spectrum for different physical
configurations of the DCI setup.

2 Mathematical background

The mathematical notation throughout this paper indicates
complex quantities with an underscore. In contrast to scalar

Figure 2. Normalized Characteristic Modes J̃H
n , J̃

D
n of a straight

wire (l = 5 m) in HIRF and DCI configuration for n= 1, 2, 3.

quantities, vectors and matrices are symbolized by bold vari-
ables.

2.1 Characteristic Mode Analysis

Characteristic Mode Analysis for perfect electric conduc-
tors (PEC) is commonly based on the Electric Field Integral
Equation (EFIE) operator Z= R+jX (impedance matrix) set
up in the Method of Moments (Harrington, 1967). In a CMA,
the generalized eigenvalue problem

XJ n = λnRJ n (1)

at a frequency f with real eigenvalues λn(f ) ∈ (−∞,∞)
and eigenvectors J n(f ) ∈ R called Characteristic Modes,
both quantities of order n ∈ N, is solved. The eigenvalues are
commonly expressed in a more convenient form with limited
value range as the modal significance

sn =
1√

1+ |λn|2
(2)

with sn ∈ [0,1], which indicates, how in-
tensively the nth Characteristic Mode can
contribute to a surface current distribution.
As an example, Fig. 2 shows amplitude-normalized
Characteristic Modes J̃H

n , J̃
D
n of a straight wire acting

as DUT in HIRF and DCI configuration. The boundary
conditions for the HIRF modes J̃H

n manifest as vanishing
currents at both wire ends, whereas for the DCI modes J̃D

n

non-vanishing boundary currents occur because of DCI
adapters attached to each wire end. Similar differences
between HIRF and DCI modes occur for more complex
bodies as well.

As the J n are linearly independent, they form a basis in
which the surface current JHIRF on a DUT resulting from a
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HIRF test can be expanded. Assuming a test frequency f H,
an expansion in M Characteristic Modes is set up according
to

JH(f H)=

M∑
n=1

β
n
(f H)JH

n (f
H)≈ JHIRF . (3)

Here, JH
n denote Characteristic Modes of the

HIRF setup and the expansion coefficients β
n

are
called modal weighting coefficients. Both quan-
tities are provided by numerical software tools.
To investigate whether a DCI surface current JDCI can
theoretically approximate a HIRF current distribution, the
latter needs to be expandable in Characteristic Modes of
the DCI setup, JD

n , and corresponding modal weighting
coefficients γ

n
like

JD(f D)=

M∑
n=1

γ
n
JD
n (f

D)≈ JDCI , (4)

where f D is the frequency, at which a CMA of the DCI setup
is carried out. Appropriate γ

n
for an adequate approximation

of JHIRF by JD can be obtained via a basis transformation
algorithm described in Knabner and Barth (2018). It is imple-
mented in MATLAB (MathWorks, Version R2021b) using
CMA data generated by the integral equation solver of CST
Microwave Studio (Dassault Systèmes, Version 2021.05) for
DUTs with NDUT mesh elements. Due to its enhanced mesh
capabilities, all meshes are created in the numerical software
FEKO (Altair Engineering, Version 2022.0.1) with a stan-
dard level of discretization and imported to CST in NAS-
TRAN format. The DCI mesh with NDCI =NDUT+NADAP
mesh elements serves as reference, from which the HIRF
mesh with NHIRF =NDUT elements is obtained by omitting
the adapter mesh elements NADAP. This ensures equal posi-
tions of all mesh elements for the HIRF and DCI setups and
thus enables an element-wise surface current comparison of
both test methods.

2.2 Basis transformation

2.2.1 One-dimensional DUT

A basis transformation matrix T with elements tnm for the
transformation of one-dimensional current distributions is
deduced by expanding each JH

n as linear combination of all
JD
n like

JH
m ≈

M∑
n=1

tnmJ
D
n , m= 1, . . .,M . (5)

The approximation sign is due to finite summation over M
Characteristic Modes as well as the different boundary con-
ditions for HIRF and DCI modes, see Fig. 2. In Eq. (5), the
JD
n only include the NDUT mesh elements belonging to the

DUT, since the basis transformation can only be applied to
these current elements.

In order to transform Eq. (5) from an index represen-
tation to a matrix one, both sets of Characteristic Modes
JH
n (i),J

D
n (i), evaluated at the ith mesh element, are col-

lected as column vectors in two matrices yielding

VH
=


JH

1 (1) JH
2 (1) · · · JH

M (1)

JH
1 (2) JH

2 (2) · · · JH
M (2)

...
...

. . .
...

JH
1 (NDUT) JH

2 (NDUT) · · · JH
M (NDUT)

 ,

VD
=


JD

1 (1) JD
2 (1) · · · JD

M (1)

JD
1 (2) JD

2 (2) · · · JD
M (2)

...
...

. . .
...

JD
1 (NDUT) JD

2 (NDUT) · · · JD
M (NDUT)

 .
(6)

At a given simulation frequency f , these matrices contain the
most significant modes, i.e. s1(f ) > s2(f ) > . . . > sM(f ),
which are found by deactivating mode tracking (Ludick et al.,
2014) in the CMA solver of CST. With Eq. (6), the equivalent
matrix form of Eq. (5) reads as

VH
≈ VDT. (7)

The desired transformation matrix T is hence

T≈ (VD)−1VH (8)

and (VD)−1 is in general, i.e. for non-quadratic matrices VD

(M 6=N ), evaluated as Moore-Penrose inverse (pseudoin-
verse), see Campbell and Meyer (2009).

With the help of T, the vectorized DCI weighting coeffi-
cients γ = [γ

1
, . . .,γ

M
]
T in Eq. (4) follow from the HIRF

weighting coefficients β = [β
1
, . . .,β

M
]
T via a coordinate

transformation. It is deduced, in a first step, by inserting
Eq. (5) in Eq. (3) with the result

JH
=

M∑
m=1

β
m

M∑
n=1

tnmJ
D
n =

M∑
n=1

(
M∑
m=1

tnmβm

)
JD
n (9)

and a subsequent comparison of coefficients with Eq. (4) as

γ
n
=

M∑
m=1

tnmβm
, n= 1, . . .,M (10)

or in matrix-vector notation

γ = Tβ. (11)

Having determined γ , expansion (4) can be set up and com-
pared to the current JHIRF.
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Figure 3. Determination of suitable DCI surface currents from
Characteristic Mode data of HIRF and DCI setups.

2.2.2 Two- or three-dimensional DUT

In two or three dimensions the HIRF weighting coeffi-
cients are transformed into separate DCI weighting coeffi-
cients γ

x
,γ

y
,γ

z
for each cartesian current component. For

this purpose, the matrices (6) are split into VH
x ,VH

y ,VH
z and

VD
x ,VD

y ,VD
z containing only one single cartesian component

of JH
n ,J

D
n . This yields transformation matrices

Tx ≈ (VD
x )
−1VH

x , Ty ≈ (VD
y )
−1VH

y , Tz ≈ (VD
z )
−1VH

z (12)

and weighting coefficients

γ
x
= Txβ, γ y = Tyβ, γ z = Tzβ, (13)

by which the cartesian current components are expanded as

JD
x
=

M∑
n=1

γ
n,x
JD
n,x , J

D
y
=

M∑
n=1

γ
n,y
JD
n,y , J

D
z
=

M∑
n=1

γ
n,z
JD
n,z. (14)

They can be combined to JD
= [JD

x
,JD

y
,JD

z
]
T , which

equals the seeked approximation (4) of the surface cur-
rent JHIRF.

Figure 3 summarizes the overall basis transformation al-
gorithm implemented in MATLAB based on Characteristic
Mode data of HIRF and DCI setups provided by CST. Hav-
ing determined the DCI expansion JD, its goodness of ap-
proximation to the reference current JHIRF can be analyzed
in a last step.

Figure 4. Canonical test objects in HIRF and DCI configuration.

3 Test setups and DUT properties

The outlined basis transformation is applied to three canon-
ical DUTs (straight wire, rectangular plate, circular cylin-
der) modelled as PEC in HIRF and DCI configuration for
f H
= f D, see Fig. 4. Each HIRF setup consists of an infi-

nite PEC ground plane placed 1 m beneath the DUT. It is
exposed to a plane wave with an electric field amplitude of
|Ei| = 1 Vm−1 and a polarization angle of 45◦ at two ex-
emplary frequencies f H

1 = 50 MHz and f H
2 = 100 MHz for

which the DUT appears electrically large (resonance region),
such that a sufficient number of Characteristic Modes is ex-
cited (Blevins, 2006). The corresponding DCI setup verti-
cally connects the DUT to this ground plane by one injection
and one termination adapter, either having a characteristic
impedance of Zinj = Zterm = 50�.

The number of Characteristic Modes N(f ) present on all
three test objects in free space is illustrated in Fig. 5 for
modes fulfilling sn ≥ 0.1. Due to low-frequency instabilities
inherent to RWG-based (Rao–Wilton–Glisson) EFIE formu-
lations of CMA (Qian and Chew, 2008), (Dai et al., 2017),
especially for those containing line sources like DCI excita-
tions (Hofmann et al., 2022), the lower frequency is chosen
sufficiently high in order to obtain a substantial number of
modes. Based on the polynomially fitted number of modes
in Fig. 5, the mode density D(f )= dN(f )/df in Fig. 6 is
calculated. It shows a constant mode density for the wire, a
linearly rising one for the plate and a parabolic one in accor-
dance with results for ordinary and generalized eigenvalue
problems in Blevins (2006), Courant and Hilbert (1924).

4 Results

4.1 Current distributions for HIRF and DCI

Figure 7 illustrates the currents JHIRF,J
D on a straight wire

(length l = 5 m, radius r = 1 mm) with NDUT = 58 mesh
segments for M = 5. Both curves show a good agreement at
f H

1 , but at f H
2 slight amplitude deviations and, more impor-

tantly, non-vanishing boundary currents due to current injec-
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Figure 5. Unfitted and fitted number of Characteristic Modes N(f )
for wire, plate and cylinder.

Figure 6. Mode density D(f ) for wire, plate and cylinder.

tion by the DCI adapters occur. Both effects can be mitigated
by increasing M , as can be seen in Fig. 8.

The surface currents JHIRF,J
D on a rectangular plate

(5 m× 2 m) with NDUT = 1464 mesh triangles are plotted in
Fig. 9 (top view). Even though the number of modes is in-
creased to M = 10, certain amplitude deviations at f H

2 re-
main visible. This is explainable with an increased mode den-
sity for two-dimensional DUTs, as emphasized in Fig. 6.

Finally, the surface currents JHIRF,J
D on a cylinder

(l= 5 m, r = 1 m) meshed with NDUT= 5692 triangles are
shown in Fig. 10 for M = 10. In this scenario, the approxi-
mation of the HIRF current at both frequencies is insufficient
owing to the even higher mode density of volumetric bod-
ies, again conveyed by Fig. 6. Since it is known that inner
resonances of volumetric bodies deteriorate the accuracy of
EFIE-based CMA formulations because of an ill-conditioned

Figure 7. Currents |JHIRF|, |J
D
| at fH

1 (blue) and fH
2 (red) for

M = 5.

Figure 8. Currents |JHIRF|, |J
D
| at fH

1 (blue) and fH
2 (red) for

M = 10.

impedance matrix (Dai et al., 2015), the more stable Com-
bined Field Integral Equation (CFIE) formulation of CMA is
used for the cylinder (Mautz and Harrington, 1977).

4.2 Broadband comparison of HIRF and DCI

The approximation of the HIRF current JHIRF by the DCI
expansion JD can be quantified over a broad frequency range
for all three DUTs. A measure for the relative error of two
complex-valued vector quantities (Mittra, 2014) defined at a
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Figure 9. Surface currents |JHIRF| (a, c) and |JD
| (b, d) at fH

1 (a, b) and fH
2 (c, d) for M = 10.

Figure 10. Surface currents |JHIRF| (a, c) and |JD
| (b, d) at fH

1 (a, b) and fH
2 (c, d) for M = 10.

mesh element i is

ε =

√∑NDUT

i=1
|JD(i)−JHIRF(i)|

2√∑NDUT

i=1
|JHIRF(i)|

2

· 100% , (15)

whose result is shown in Fig. 11 from 1 to 200 MHz in steps
of 1 MHz and different M for wire, plate and cylinder. In
accordance with the previous results, it is visible that more
modes are required at higher frequencies due to a higher
mode density for geometric complex DUTs. In contrast, a
relatively small error of approximately 20 % can be observed
for the wire and plate up to frequencies of around 100 MHz.
Steep ascents and descents in ε between neighbouring fre-
quencies indicate changes in the sorting of Characteristic
Modes deriving from deactivated mode tracking in CST (Lu-
dick et al., 2014).

In Eq. (15), all DUT mesh elements are evaluated, al-
though for EMC testing an approximation of interference

Figure 11. Relative error ε for fH
= fD.

Adv. Radio Sci., 21, 101–110, 2023 https://doi.org/10.5194/ars-21-101-2023



J. Ückerseifer and F. Gronwald: Approximation of HIRF by DCI using matrix methods based on CMA 107

maxima is most important. A criterion to include only mesh
elements of relevant current amplitude is their energy contri-
bution to the total current distribution. Since the PEC bound-
ary condition

JHIRF = n×H (16)

on a boundary described by its unit normal vector n en-
forces identical amplitudes of surface current and magnetic
field H , each current element can be assigned a magnetic
energy (Pozar, 2011)

Wi =
µ

4

∫
Vi

H (i) ·H ∗(i)dVi =
µ

4

∫
Vi

|H (i)|2 dVi

=
µ

4

∫
Vi

|JHIRF(i)|
2 dVi (17)

within a local mesh element volume Vi close to the DUT
surface. In Eq. (17), the complex conjugate H ∗(i) of H (i)
is indicated by an asterisk. Calculating all Wi and sorting
them in descending order (W1 >W2 > .. . > WNDUT ), these
elements of highest energy can be summed up and related to
the total energy

Wtot =
µ

4

∫
V

H ·H ∗ dV =
µ

4

∫
V

|H |2 dV (18)

=
µ

4

∫
V

|JHIRF|
2 dV =

NDUT∑
i=1

Wi (19)

present in the accumulated volume V =
∑NDUT
i=1 Vi according

to

Nlim∑
i=1

Wi

Wtot
≥ ξlim [%] (20)

until at a certain number of considered elements Nlim a pre-
defined percentual limit ξlim is exceeded. For several values
ξlim, Fig. 12 shows the relative error ε with NDUT in Eq. (15)
replaced byNlim regarding the cylinder. Apparently, mesh el-
ements with high energy dominate the overall surface current
approximation, as adding low-energy elements does not sig-
nificantly affect the error at most frequencies. Figure 13, in
addition, reveals the required number of elements Nlim ref-
erenced to all NDUT elements to reach the limits ξlim. It is
remarkable, comparing to Fig. 12, that a very limited num-
ber of mesh elements is responsible for the surface current
approximation.

Hitherto, the frequencies f H and f D were identical. Since
the DCI adapters change the electrical properties of the DUT,
an investigation, whether CMA frequencies f D

6= f H lead to
a better approximation of the HIRF current at f H

1 and f H
2 ,

Figure 12. Relative error ε for different ξlim and M = 10.

Figure 13. Mesh elements required for different ξlim and M = 10.

appears meaningful. Figure 14 conveys that a reasonable ap-
proximation can likewise be achieved for frequencies f D dif-
ferent from f H

1 ,f
H
2 . In particular, optimal approximations

for e.g. the plate are encountered at f D
= 94MHz 6= f H

2
and for the cylinder at frequencies f D

= 52 MHz 6= f H
1 and

f D
= 105 MHz 6= f H

2 .
The impact of different CMA formulations on the surface

current error for the cylinder is depicted in Fig. 15. In con-
trast to the CFIE solution, the EFIE formulation suffers from
discontinuities at inner resonances of the cylinder. For the
given case l/r ≥ 2, the dominant TE111 mode with a reso-
nant frequency defined by the pth zero x′np of the ordinary
Bessel function’s derivative J ′n according to

f TE
npq =

1
2π
√
µε

√√√√(x′np
r

)2

+

(qπ
l

)2
(21)
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Figure 14. Relative error ε for fD
6= fH and M = 10.

Figure 15. Relative error ε for EFIE- and CFIE-based CMA formu-
lations and M = 20.

of f TE
111 ≈ 92.82 MHz (Hill, 2009) can be identified as first

peak in Fig. 15. The basis transformation algorithm obvi-
ously can not overcome the drawbacks of inner resonances
related to the EFIE formulation.

As additional degree of freedom, the termination adapter
impedance Zterm in Fig. 4 can be altered from a matched
condition (Zterm = 50�) to the extrema of a short cir-
cuit (Zterm = 1µ�) and an open circuit (Zterm = 1M�), see
Fig. 16. In general, the curves show a good correspon-
dence despite the significant impedance range. Consequently,
the impedance can be chosen to fulfil practical criteria like
impedance matching to achieve sufficient test levels.

A further study involves the placement of injection and ter-
mination adapters (Zinj = Zterm = 50�), which are indicated
by numbered dots in Fig. 17. In addition to the excitation sce-
nario 1→ 2 of Fig. 4, the cases 3→ 4 and 1→ 5 are ana-

Figure 16. Relative error ε for three termination impedances Zterm
and M = 10.

Figure 17. Different adapter positions for (a) plate (top view).
(b) cylinder (top view).

lyzed with the outcome in Fig. 18. All adapter configurations
result in similar errors, such that for practical considerations
those adapter positions enabling an independent excitation
of Characteristic Modes should be selected (Peitzmeier and
Manteuffel, 2018, 2019).

5 Conclusions

The presented results show that, in theory, radiated immu-
nity tests can be approximated well by conducted immunity
tests at relatively low test frequencies for simple DUTs. As a
means of analysis, CMA and the outlined basis transforma-
tion algorithm provide a systematic approach to determine
suitable DCI excitations for a large variety of DCI configura-
tions. Especially at low frequencies with a small mode den-
sity a good agreement between the HIRF currents and their
approximation in DCI modes is achieved. The approximation
is primarily determined by a restricted amount of relevant
mesh elements. When the mode density increases simultane-
ously to the frequency, a sound approximation is difficult to
realize for complex DUTs and a large number of modes is
required. Moreover, the algorithm is computationally expen-
sive, since for each physical change of the DCI setup, a new
CMA in the entire frequency range is necessary.
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Figure 18. Relative error ε for different adapter positions and
M = 10.
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