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Dilated cardiomyopathy (DCM) is one of the most common primary myocardial
diseases. However, to this day, it remains an enigmatic cardiovascular disease
(CVD) characterized by ventricular dilatation, which leads to myocardial
contractile dysfunction. It is the most common cause of chronic congestive
heart failure and the most frequent indication for heart transplantation in young
individuals. Genetics and various other factors play significant roles in the
progression of dilated cardiomyopathy, and variants in more than 50 genes have
been associated with the disease. However, the etiology of a large number of
cases remains elusive. Numerous studies have been conducted on the genetic
causes of dilated cardiomyopathy. These genetic studies suggest that mutations
in genes for fibronectin, cytoskeletal proteins, and myosin in cardiomyocytes
play a key role in the development of DCM. In this review, we provide a
comprehensive description of the genetic basis, mechanisms, and research
advances in genes that have been strongly associated with DCM based on
evidence-based medicine. We also emphasize the important role of gene
sequencing in therapy for potential early diagnosis and improved clinical
management of DCM.
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1. Introduction

Dilated cardiomyopathy (DCM) is characterized by the enlargement of the left ventricle

(LV) and global or regional systolic dysfunction, which cannot be solely attributed to

abnormal loading conditions such as hypertension, valve disease, congenital heart disease,

or coronary artery disease (1, 2). It is considered one of the main causes of heart failure

with reduced ejection fraction (HFrEF) worldwide. Genetic defects are the primary cause

of DCM, with approximately 30%–35% of idiopathic cardiomyopathy being attributed to

genetic defects. The majority of genes associated with genetic DCM exhibit autosomal

dominant transmission, while a minority follow an autosomal recessive, X-linked, or

mitochondrial inheritance pattern (3). There are about 60 genes associated with DCM,

and evidence-based medicine has identified 12 genes that are highly associated with the

condition (4, 5). Familial DCM can be inherited as a recessive or X-linked trait, although

autosomal dominant inheritance is the most common (6). Non-genetic factors also play a

significant role in DCM, and there is overlap between genetic and non-genetic causes (7).

The objective of this review is to provide a comprehensive summary of the genes that are

clearly associated with DCM and to recommend sequencing of known cardiomyopathy

genes for all DCM patients. It is important to note that genetic causes of DCM cannot be
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ruled out in patients with no family history, as de novo mutations

may be responsible for the development of the condition (4, 8–10).

The standard treatment for heart failure resulting from DCM

involves drug therapy, such as loop diuretics, angiotensin-

converting enzyme inhibitors (ACEIs), beta blockers, and

sodium-glucose cotransporter 2 inhibitors (SGLT2i), as well as

cardiac resynchronization therapy (CRT) (11, 12). However,

current medications do not halt myocardial degeneration, and

heart transplantation remains the only option for patients in the

advanced stages of heart failure (13, 14). Nevertheless, the precise

pathological mechanisms responsible for variations in disease

susceptibility and phenotypic expression, including the risk of

heart failure (HF) or sudden cardiac death (SCD), remain elusive

(15, 16). As the genetic dimension of DCM becomes better

understood, gene therapy is emerging as a promising treatment

strategy for DCM (17).
2. Epidemiology

Reliable epidemiological data on cardiomyopathy is primarily

sourced from developed countries, where the accuracy of

prevalence data is dependent on the use of established diagnostic

evaluations and criteria. However, there is still a dearth of

epidemiological data concerning DCM in Asia (7). The Olmsted

County study concluded that the prevalence of idiopathic DCM

was 1 in 2,500. However, it is possible that the incidence and

prevalence of DCM may be greatly underestimated due to

various biases, such as misclassification and missing or

incomplete data. Recent studies suggest that the prevalence of

asymptomatic idiopathic DCM may be equal to or greater than 1

in 250 (3, 18, 19). The incidence of DCM is slightly higher in

males than in females, with an average sex ratio of 1.7:1 for

males with hereditary DCM and 2.5:1 for females with non-

hereditary DCM. The long-term prognosis for females is better

than that for males (20–22). However, these data are based on

estimates, and a formal, population-based epidemiological study

is still needed to determine the true prevalence and incidence of

DCM. Researches have shown that 26% of children with dilated

cardiomyopathy experience either death or the need for a heart

transplant within one year of diagnosis, with an additional 1%

per year thereafter (23). DCM is also the most common cause of

chronic congestive heart failure and sudden cardiac death in

individuals aged 20–60, as well as the leading cause of heart

transplants (24).
3. Clinical manifestation

Symptoms of DCM, such as dyspnea, fatigue, dizziness,

syncope, and edema, may intermittently manifest in some

patients during the early stages of DCM. However, these

symptoms become more pronounced as the disease progresses to

its severe stage (25). Uncommon yet significant signs and

symptoms like abnormal skin pigmentation, skeletal myopathy,

and neurosensory disorders (e.g., deafness, blindness) may
Frontiers in Cardiovascular Medicine 02
indicate a specific form of multisystem disease or a unique DCM

genotype. These symptoms are considered “red flags” for DCM

diagnosis (26).
4. Etiology

The etiology of dilated cardiomyopathy can be categorized into

genetic causes, which lead to primary dilated cardiomyopathy, and

acquired factors resulting in secondary dilated cardiomyopathy. It

is imperative for clinicians to rule out secondary causes prior to

confirming a diagnosis of “idiopathic DCM”, as there might be

potential reversible causes (27, 28). Single gene mutations

account for 25%–50% of all DCM cases. Genes linked to DCMs

can be categorized into various groups, which encompass those

encoding nuclear envelope proteins, sarcomere proteins,

structural proteins, ion channels, and proteins yet to be classified

(29). Jan Haas and his team identified a notably higher mutation

rate in familial instances compared to sporadic ones. Even when

genetic investigations fail to elucidate a familial disease,

alternative mechanisms like epigenetic modifications—including

microRNAs, histone modifications, and DNA methylation—

should be considered (30). There are also certain genetic

mutations that can indirectly lead to DCM by affecting the

stability of crucial cardiac structures. For instance, The Z-disc in

cardiac myocytes is a crucial region where numerous proteins

interact within the Z-disc to facilitate force transmission and

intracellular signaling in both the heart and skeletal muscles

(31, 32). Kindlin-2 collaborates with α-actinin-2 and β1 integrin

to preserve the structural integrity of the Z-disc in cardiac

muscle tissue (33). The elimination of Kindlin-2 in murine

models results in the disruption of the Z-disc structure,

subsequently causing cardiac malfunction (34, 35). Increasingly,

research studies are documenting the existence of multiple

potentially causative mutations in patients diagnosed with

Dilated Cardiomyopathy (DCM). While a significant number of

these are likely silent variants, an emerging model of oligogenic

inheritance—a disease provoked by a limited number of

mutations across multiple genes—is being recognized (36). These

acquired factors encompass infections, excess alcohol

consumption, exposure to toxins, cancer therapies, endocrine

disorders, pregnancy, tachyarrhythmias, and immune-mediated

diseases (37).
5. Genes strongly associated with DCM

The location and major cardiac manifestations of DCM related

genes are shown in Figure 1.
5.1. TTN

The Titin Gene (TTN) is one of the largest genes found in

humans, encoding the protein titin. With a molecular weight of

3,816 kDa, titin is the largest known polypeptide and a giant
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FIGURE 1

Location and major cardiac manifestations of DCM-related genes.
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muscle protein that spans half of the myotome from the Z line to

the M line. It serves as the fundamental structural and functional

unit of striated muscle, with its presence in both the heart and

skeletal muscle (25, 38, 39). The TTN gene expresses two major

isoforms in the heart, namely N2B and N2BA. These isoforms

contain four distinct regions referred to as z, i, a, and m lines

(40). Titin proteins not only provide structural, mechanical, and

regulatory support but also play a pivotal role in the passive and

active contractility of skeletal muscles (41). Truncation mutations

of TTN (TTNtv) are most prevalent in DCM, contributing to

approximately 25% of familial DCM cases and 18% of sporadic

DCM cases (40, 42). A significant number of TTN mutations,

responsible for DCM, are heterozygous truncation variants of

TTNtv. These include frame-shift mutations, nonsense

mutations, and critical splice-site mutations, which are

predominantly overexpressed in the A-band region of the titin

protein. Additionally, a minor percentage of DCM cases may
Frontiers in Cardiovascular Medicine 03
also be attributed to missense mutations in titin (43–45). The

clinical implications of TTNtv are largely contingent on exon

expression and the location of the mutation. TTNtv is

predominantly located in the A-band, with the severity of the

disease increasing as the mutation approaches the C-terminal,

indicating a location dependence (43, 44). The exact mechanism

through which titin truncation mutations induce cardiac

phenotypes remains uncertain. Several mechanisms have been

proposed to elucidate TTNtv-induced DCM, including

haploinsufficiency, poison peptide/dominant negative mechanism,

disruption of cardiac metabolism and signaling, and loss of

function. However, these mechanisms warrant further validation

through subsequent studies (43, 46–48). The mutation in TTNtv

instigates a metabolic transition in the cardiac system from fatty

acids to glycolysis (49). However, a chronical elevation in

glycolytic intermediates and branched-chain amino acids may

trigger the activation of the serine/threonine protein kinase
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mTOR complex 1 (mTORC1) signaling pathway. This activation

subsequently stimulates inefficient protein synthesis cycles and

suppresses autophagy (47, 50). TTNtv is characterized by

frequent arrhythmias, mainly atrial fibrillation and ventricular

arrhythmias (51, 52). Patients with DCM who are TTNtv-

positive have a significantly heightened risk of persistent

ventricular tachycardia compared to TTNtv-negative patients

(44). Studies suggest that in a certain percentage of patients,

TTNtv may interact synergistically with other factors (e.g.,

cardiotoxic chemotherapy, pregnancy), implying that treating

these exacerbating factors could lead to substantial recovery (47).

As our understanding of gene mutations improves, the potential

for genetic engineering-based therapies becomes apparent.

Techniques such as reverse-mediated exon skipping, targeted

therapy, and genome editing strategies could provide promising

therapeutic opportunities (53–55).
5.2. LMNA

The Lamin A and Lamin C Gene (LMNA) is comprised of

2,400 base pairs of DNA and 12 exons. Lamins A and C,

intermediate filamentous nuclear envelope proteins, are encoded

by the LMNA gene. This nuclear membrane protein is situated

in the inner part of the nuclear membrane and is generally

expressed in differentiated cells (56). The LMNA gene is the

second most frequently mutated gene in DCM。The occurrence

rate of Lamin A/C variations in patients diagnosed with DCM is

approximately 6% (57, 58). Patients with pathogenic LMNA

mutations exhibit a high rate of sudden cardiac death due to

malignant arrhythmias and a poor prognosis (59, 60). In

laminopathy, frameshift mutation is often associated with heart

disease, splice site mutation is an independent risk factor for

sudden cardiac death, and non-missense mutations (deletions/

truncations or mutations affecting splicing) are major

independent risk factors for malignant ventricular arrhythmias

(MVAs) (61). The exact pathogenesis of DCM caused by LMNA

mutation remains unclear, but three hypotheses—mechanical,

gene expression, and cytotoxicity—have been proposed to explain

the cardiac dysfunction associated with it. The mechanical

hypothesis suggests that the destruction of the nuclear layer

increases nuclear fragility and sensitivity to mechanical stress,

making myocardial tissue more susceptible to pathological effects

(62). One proposed mechanism views the nucleus as a

mechanosensor that modulates gene expression in response to

mechanical perturbations. Consequently, external forces

transmitted via the cytoskeleton induce nuclear deformation.

Simultaneously, contingent on lamin composition, there can be

an impact on its transcriptional activity by altering chromatin’s

organization and positioning. Concurrently, any modifications in

chromatin’s structure and organization can potentially influence

the nucleus’s mechanical attributes (63). Given that the nuclear

lamina possesses a higher degree of stiffness compared to the

nuclear membrane, it serves to shield the latter from substantial

mechanical forces. This buffering capability can notably influence

the stretch response of the nuclear membrane, subsequently
Frontiers in Cardiovascular Medicine 04
altering the distribution and organization of membrane-bound

proteins. The force-induced expansion of nuclear membranes

could potentially represent another mechanism activated by

disrupted mechanotransduction (64). Studies indicate that

decoupling the mechanical forces of the nuclear/nuclear skeleton

and cytoskeletal transduction can significantly extend the lifespan

of LMNA deficient mice (65). The gene expression hypothesis

posits that defective lamins impede signal transduction and

chromatin organization, thereby altering signal transduction, a

key driver of LMNA-associated dilated cardiomyopathy. This

directly affects and disrupts gene transcription and other

intracellular signaling pathways, significantly increasing

myocardial fibrosis and leading to left ventricular dysfunction

and heart failure (66, 67). The cytotoxic hypothesis suggests that

mutated prelamin A protein, also known as presenilin,

contributes to the disease by disrupting nuclear morphology,

heterochromatin distribution, and DNA damage repair pathways,

leading to premature aging (28, 62). Due to the risk of sudden

cardiac death in LMNA associated DCM being linked with heart

block and bradycardia, the use of Implantable Cardioverter

Defibrillators (ICDs) has been recommended for all indications

(68). Various other pathways downstream of the LMNA gene

have also been explored as potential therapeutic pathways, such

as the use of rapamycin/rapalog to inhibit mTOR and MEK1/2

kinase pathway inhibitors, the inhibition of the activation

of brominated domain protein 4 (BRD4), and the destruction

of LINC complex protein SUN1 to inhibit LMNA mutations

(65, 69–71). However, no specific and effective treatment is

presently available.
5.3. DSP

Desmoplakin (DSP), encoded by the DSP gene, is a major

component of desmosomes and is highly abundant in myocardial

tissue. The DSP protein exhibits a tripartite structure, which

includes a spherical N-terminal patch domain, a central α-helical

rod domain, and a C-terminal tail domain. The DSP gene,

located on chromosome 6p24.3, undergoes alternative splicing to

produce three subtypes: DSP-I (long), DSP-IA (intermediate),

and DSP-II (short). DSP-I is the primary cardiac subtype and

plays a crucial role in intercellular adhesion within

cardiomyocytes (72, 73). Gene-targeting studies in mice have

revealed that mice with ablated DSP genes die during early

embryonic development (74). In an assessment of genes

associated with DCM, DSP emerged as the highest-scoring gene.

However, the arrhythmia phenotype’s potential to complicate the

interpretation of experimental data led to questions about the

trial score. Consequently, the DSP gene was identified as a strong

contributor to DCM, rather than the definitive cause (4). Some

research suggests that DSP mutations are unique to adult DCM

(75). Palmoplantar keratoderma may serve as an early clinical

symptom of DCM associated with a DSP mutation (76). Carriers

of DSP variants exhibit a higher rate of arrhythmia events,

similar to those with LAMA variants, even in the absence of

significant left ventricular dysfunction or dilation (77). Current
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research has also classified desmoprotein cardiomyopathy as an

arrhythmic cardiomyopathy triggered by DSP mutations. This

condition is characterized by paroxysmal myocardial injury, left

ventricular fibrosis preceding systolic dysfunction, and a high

incidence of ventricular arrhythmia (73, 78). Typical

electrocardiogram (ECG) abnormalities include limb lead QRS

depression (peak <0.5 mV) and lateral or inferior lead T wave

inversion (73, 79). In arrhythmogenic cardiomyopathy (ACM)

caused by DSP variation, cardiomyocytes release a large number

of inflammatory cytokines and chemotactic molecules (80).

Histological analysis of left ventricular myocaroma in DSP

patients has also revealed inflammatory infiltration and scarring

(81). Consequently, inflammation is considered a key feature of

the disease, and regulating inflammatory signaling pathways may

present a new therapeutic target for desmosome-mediated

cardiomyopathy.
5.4. DES

DES encodes the primary intermediate filament (IF) protein,

desmin, in human heart and skeletal muscle (82). Desmin serves

as a structural component of the extramuscular cytoskeleton,

which forms a three-dimensional scaffold around the Z disk of

the myofibril. This structure connects adjacent myofibrils and the

myofibril apparatus to the nucleus, submuscular cytoskeleton,

and cytoplasmic organelles such as mitochondria (83). Desmin

proteins exhibit a tripartite structure, comprising a conserved

central rod domain flanked by non-alpha helical head and tail

domains. The central rod domain consists of four helical

segments (2A, 1B, 12A, and 2B) separated by three short

polypeptide junctions (L1, L1, and L2) (84). There are over 73

different IF proteins, with Desmin being the most abundantly

expressed IF protein in muscle-specific tissues and

cardiomyocytes (85). IFs perform numerous tissue-specific

functions, including providing mechanical support to cells and

regulating intracellular tissues, stress responses, cell growth,

proliferation, migration, and death (84–86). In patients with

DCM, the incidence of desmin gene mutations is less than 1.6%

(87). Most DES mutations are missense mutations within the

central domain; nonsense, insertion, deletion, or combination

insertion and deletion mutations are rare (88). Approximately

74% of DES mutation carriers exhibit cardiac symptoms, and

about 50% develop cardiomyopathy, with dilated cardiomyopathy

(DCM) being the most common type (89). Researches involving

mice with DES gene knockout have demonstrated that desmin

deficiency not only impacts heart structure but is also associated

with severe abnormalities in myocardial metabolism of glucose,

fatty acids, and amino acids (90, 91). Therefore, it may be

prudent to avoid drugs that could potentially exacerbate

mitochondrial function in patients with desmin deficiency (92).

The α-crystallin Β-chain (αB-crystallin), encoded by Desmin and

CRYAB, has a potential compensatory interaction in cardiac

protection. Overexpression of heart-specific αB-crystallin

improves mitochondrial dysfunction in desmin-deficient mouse

models, suggesting a potential new treatment approach (93).
Frontiers in Cardiovascular Medicine 05
5.5. MYH7

The MYH7 gene, encoding the cardiac beta-myosin heavy

chain, is situated on chromosome 14q11.2-q13. This gene

consists of 40 exons that produce a MYH7 protein containing

1,935 amino acids. This protein is primarily expressed in

ventricular muscle and type 1 skeletal muscle fibers, and it is a

significant component of human ventricular myosin. The MYH7

protein plays a crucial role in the energy supply for

cardiomyocytes and in maintaining the Ca2+ concentration

inside and outside these cells (94, 95). MYH7 mutations account

for 1%–5.3% of DCM cases (96). These mutations are

predominantly missense variants, inherited in a chromosomal

dominant pattern, with high penetrance in families and a

relatively high proportion among children (95, 97). Mutations in

the MYH7 gene can damage the integrity of the sarcomere

structure or function, affecting the contraction of the heart

muscle (95). Atrial fibrillation and atrial fibrosis are considered

early clinical manifestations of MYH7-related cardiomyopathy,

which may provide valuable insights for disease diagnosis (98). It

has been reported that combined mutations in MYH7 and

TNNT2, MYH7 and LAMA4, or MYH7 and TPM1 can result in

severe DCM (99–101). These findings highlight the importance

of comprehensive screening of DCM-related genes, even after

identifying a single disease-causing mutation. Studies have shown

that telomere length in mice can offer protection against heart

disease in humans. Mutations in proteins that are critical to

cardiomyocyte function, such as MYH7, TTN, and MYBPC3,

lead to shorter telomeres. Consequently, significant telomere

shortening can serve as a biomarker for premature aging of

cardiomyocytes in hereditary Hypertrophic Cardiomyopathy

(HCM) and DCM (102, 103). The Telomere Repeat Binding

Factor 2 (TRF2) has been demonstrated to prevent telomere

attrition, thereby improving cell morphological defects, activation

of DNA damage response, and premature cell death (104).
5.6. BAG3

Bcl2-associated athanogene 3 (BAG3) codes for an anti-

apoptotic protein located on the Z disc of myotomes. As a member

of the anti-apoptotic BAG protein family, BAG3 is abundantly

expressed in the heart, skeletal muscle, various types of tumor cells,

as well as in the brain and peripheral nervous system (105, 106).

BAG3 plays vital roles in anti-apoptosis, protein homeostasis

maintenance, mitochondrial stability regulation, myocardial

contraction regulation, and arrhythmia reduction (107, 108). The

multifunctionality of BAG3 in cardiomyocytes is attributed to the

presence of multiple functional domains, including the WW

domain, the IPV (Ile-Pro-Val) motif, the proline-rich motif, and

the BAG domain (109). However, studies indicate that all known

or probable pathogenic variants impact at least the WW domain,

IPV domain, or BAG domain, with none of the missense

pathogenic or possibly pathogenic variants affecting the proline-

rich motifs. These three protein domains play significant roles in

BAG3’s function in the heart (108). Large multicenter cohort
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studies reveal that DCM resulting from BAG3 mutations is

characterized by early-onset in most patients, a high risk of

progressing to end-stage heart failure, and a worse prognosis in

males (110). BAG3, an anti-apoptotic constituent of the BAG

protein family, possesses an inhibitory function against apoptosis.

A notable surge in apoptosis was observed in mice lacking BAG3

(111). As a cochaperone protein, BAG3 interacts with ATP-

dependent high molecular weight heat shock proteins and ATP-

independent small heat shock proteins (sHSPs) in large,

functionally different multichaperone protein complexes (112).

And after BAG3 is lost, the affected sHSPs levels are reduced due

to protein instability (112). BAG3-mediated macrophage

recruitment can maintain protein homeostasis, autophagic flux was

suppressed in BAG3-deficient hearts, which might result in

misfolded protein aggregates (113). Consequently, there is an

increase in the content of insoluble proteins, which accelerates the

process of cellular senescence. MicroRNAs (miRNAs) are small

non-coding RNAs (20–25 nucleotides) that function as epigenetic

regulators in cardiovascular system development and physiology.

Dysregulation of their expression is directly associated with the

pathophysiology of numerous cardiovascular diseases (114, 115).

Studies demonstrate that the co-expression of miR-154-5p and

miR-182-5p holds diagnostic value in DCM of BAG3 mutation

carriers (116). The transcriptional adaptation of gene expression

triggered by harmful gene mutations, known as genetic

compensation, has been observed in BAG3-knockout zebrafish to

protect against heart and skeletal muscle damage. This biological

phenomenon may also be active in some human carriers of BAG3

mutations (117). Further investigation of the relevant molecular

mechanisms may offer fresh insights for the development of

therapeutic interventions.
5.7. FLNC

The filamin family comprises three isomers: filamin A (FLNA),

filamin B (FLNB), and filamin C (FLNC) (118). FLNA and FLNB

are commonly expressed, while FLNC is most prevalent in skeletal

and cardiac muscle (119). FLNC plays a crucial role in the

regulation of cellular mechanics, Z-disk arrangement and

orientation, and intermyofibrillar connections in mammalian

hearts (120, 121). Deficiency of FLNC in cardiomyocytes can

lead to fetal death. Furthermore, adult mice deficient in FLNC

develop rapid and fulminant DCM within two weeks (122).

These studies underscore the significant role of FLNC in both

developing and adult cardiomyocytes. A truncation mutation in

FLNC (FLNCtv) is closely associated with DCM (123). Patients

with FLNCtv often exhibit left ventricular dilatation with systolic

dysfunction and myocardial fibrosis. Ventricular arrhythmias are

prevalent, and families carrying these mutations have a high

incidence of sudden cardiac death (124, 125). β-catenin

(CTNNB1) has been identified as the downstream target of

FLNC through co-immunoprecipitation and proteomic analysis.

FLNC is unable to induce nuclear translocation of CTNNB1,

which subsequently activates the platelet-derived growth factor

receptor-α (PDGFRA) pathway. Inhibition of PDGFRA can
Frontiers in Cardiovascular Medicine 06
partially reverse the pathological gene expression profile of FLNC

patient-specific cardiocytes, cardiac insufficiency, and arrhythmia

(126). Therefore, inhibition of this pathway presents a potential

therapeutic approach for FLNC-associated cardiomyopathy.
5.8. PLN

Phospholamban (PLN) is a 6.1 kDa protein situated on the

sarcoplasmic and endoplasmic reticulum (SR/ER) membrane.

PLN is responsible for the encoding of a crucial regulatory

protein associated with Ca2+ cycling. It serves as a principal

mediator of beta-adrenergic effects, which subsequently leads to

an augmentation of cardiac output (127). It is regulated by

protein kinase-mediated phosphorylation and serves as an

inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+

ATPase (SERCA2a). Homeostasis and cardiac contractility are

achieved by reversibly inhibiting SERCA2a activity (128). The

interaction between SERCA2a and PLN determines the rate of

diastole and contraction of cardiomyocytes (129). Impaired SR

function in diastolic and systolic Ca2+ circulation is a critical

factor in cardiac cardiomyocyte failure (130). Among all known

PLN mutants, the PLN-R14DEL mutation appears to be the

most prevalent (131, 132). The mutation of the PLN gene is not

a common cause of cardiomyopathy in our population, with a

mutation occurrence rate of less than 1% (133, 134). A large

multicentre study with long-term follow-up of PLN mutation

carriers found that early ventricular arrhythmia and end-stage

heart failure were common in PLN-R14DEL mutation carriers,

resulting in a significant increase in cohort mortality (135). From

the perspective of a cardiomyocyte, it is recognized that PLN

R14del significantly affects its function. Research has shown that

the R14del mutation results in the aggregation of PLN protein,

an escalation in the activity of the unfolded protein response,

dysregulation of calcium, as well as contractile and metabolic

dysfunction (136). Despite the well-defined genetic etiology, the

molecular mechanism driving the pathogenesis of PLN R14del-

cardiomyopathy remains elusive (137). Low-voltage

electrocardiograms are more common in women carrying PLN

mutations, but their prognostic value is higher in men (138). It

has been proposed that eplerenone treatment can prevent or slow

disease progression in presymptomatic PLN mutation carriers.

Further multicentre randomized double-blind trials are being

conducted to confirm this (139). As our understanding of the

PLN-R14del mutation mechanism continues to improve,

precision medicine, including gene editing and targeted gene

therapy, may represent a new direction for future treatment (136,

140, 141). However, most current research remains in the animal

testing phase, and it is unclear whether these findings will be

applicable to human patients (142).
5.9. RBM20

The RNA-binding motif protein 20 (RBM20) primarily

functions as a splicing regulator, predominantly expressed in the
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heart and skeletal muscle, where it orchestrates both constitutive

splicing and alternative splicing of pre-messenger RNA (143,

144). RBM20 gene mutations, which predominantly manifest as

missense mutations that alter conserved residues, are a leading

cause of DCM (145, 146). This mutations account for

approximately 3% of all DCM cases (143).

The pathophysiology of these RBM20 mutations stems from a

combination of functional loss and pathogenic functional gain

(147). Of the genes regulated by RBM20, TTN is the most

significant (146, 148). Diminished RBM20 activity also results in

the altered expression of protein subtypes that sustain muscle

structure and cardiac function, such as CAMKIIδ, LDB3, and

CACNA1C. These alterations can induce changes in

biomechanics, electrical activity, and signal transduction,

potentially leading to cardiomyopathy, fibrosis, arrhythmia, and

sudden death (149, 150). Patients with DCM who carry RBM20

mutations often exhibit impaired cardiac function and are

susceptible to atrial fibrillation, ventricular arrhythmia, and

sudden cardiac death (151). All-trans retinoic acid (ATRA) has

been identified as a potential regulator of RBM20, with studies

showing that ATRA can increase RBM20 expression and partially

restore the in vitro DCM phenotype. Therefore, pharmacological

upregulation of RBM20 expression could be a promising

therapeutic strategy for DCM patients with heterozygous RBM20

mutations (152). Most RBM20 mutations are clustered in an

arginine/serine (RS) -rich domain, suggesting that precision gene

editing using adenine base editing (ABE) and primer editing

(PE) might offer potential treatments (147).
5.10. SCN5A

The sodium channel family is comprised of nine genes (SCN1A-

SCN5A, SCN7A-SCN11A). Among these, the SCN5A gene, located

on human chromosome 3p22, encodes the cardiac sodium channel

pore-forming α subunit Nav1.5. SCN5A/Nav1.5 is predominantly

expressed in the atrial and ventricular myocardium, His bundle,

bundle branch, and Purkinje fibers (153). The prevalence of

SCN5A-mediated cases in patients with dilated cardiomyopathy

(DCM) is approximately 2% (154). Frameshift mutations in

SCN5A can result in a loss of function of the heart’s sodium

channels (155). The molecular pathway through which these

mutations cause ventricular dilation and dysfunction is yet to be

fully understood (156). Mutations in SCN5A may interfere with

the interaction between Nav1.5 and other components of the

complex, leading to structural deformities and contractile damage.

Two Nav1.5 mutations (R222Q and R225W) in the voltage sensor

domain (VSD), situated in the voltage-gated ion channel, are

hypothesized to generate gated hole currents that may be linked

with arrhythmia and ventricular dilation in humans (157). Occult

myocardial injury may also result from the impaired function of

the mutated SCN5A immune sensor (158). DCM typically exhibits

age-dependent penetrance, with the phenotype becoming more

pronounced with age (159). Clinically, it often manifests as severe

arrhythmias (including atrial fibrillation and ventricular

tachycardia) and conduction block (154, 160). The initiation of
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sodium channel blockers can prevent significant morbidity and

mortality (161). Research has revealed that the mRNA stabilizing

protein HuR protects SCN3A by binding to 5’-UTR mRNA,

preventing its decay. The risk of arrhythmia can be reduced by

enhancing mRNA stability to preserve decreased SCN5A

expression (162).
5.11. TNNC1, TNNT2

The TNNC1 gene (3p21.1) encodes cardiac troponin C (cTnC)

in heart tissue, while the TNNC2 gene (1q32.1) encodes cardiac

troponin T (cTnT) (163). The trimer filament Tn complex,

involved in muscle contraction, is formed by the combination of

cTnT, cTnI, and cTnC (164). Point mutations on TNNC1 can

alter the function of cTnC in two ways: by changing its binding

affinity for Ca2+ or by modifying the interaction of cTnC with its

binding partner (165). Troponin complex mutations are present in

approximately 6% of familial DCM cases (166). The occurrence of

mutations in the TNNC1 gene is roughly 1% (167). The frequency

of TNNT2 mutations in DCM is around 3% (168). Patients with

TNNC1 gene mutations are typically diagnosed at a younger age

and have a higher risk of experiencing potentially fatal events,

which often manifest as early severe systolic heart failure,

necessitating heart transplant surgery (163, 169). Research

indicates that a reduced sensitivity of myofilaments to Ca2+ plays

a critical role in the pathophysiology of filament-associated DCM.

Enhancing myofilament sensitivity to Ca2+ in the early stages of

DCM might be an effective treatment strategy (170). Xin actin-

binding repeat containing proteins (XIRPs) are a group of

rhabdom-specific proteins. The XIN protein, encoded by the

XIRP1 gene and also known as HXin-α or CMYA1, is a

rhabdom-specific gene in the XIRP family. Overexpression of the

repeating isomer XINB can ameliorate DCM remodeling induced

by TNNT2-ΔK210 mutations in mice, partially reversing cardiac

dilation, systolic dysfunction, and cardiac fibrosis. Therefore, XIN

could be a potential therapeutic target (171).
6. Conclusion

This review systematically summarizes the genes and mechanisms

implicated in dilated cardiomyopathy, as well as the latest research

directions in understanding its causes. It should be noted that with

the advancement of medical technology, the diagnosis rate of

dilated cardiomyopathy has been increasing. Nonetheless, patients

often present with early onset, severe clinical manifestations, and

poor prognosis. The standard approach for preventing or treating

heart failure is currently the first-line treatment for patients with

dilated cardiomyopathy. Cardiac resynchronization therapy and

implantable cardioverter-defibrillators may be necessary to prevent

life-threatening arrhythmias. It is recommended that all patients

with dilated cardiomyopathy undergo sequencing of known

cardiomyopathy genes. Gene-level therapy may represent a new

approach for future treatments, although our current understanding

of disease pathogenesis and gene therapy is primarily derived from
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preclinical animal models. This review also has some limitations,

primarily that it only encompasses genes with substantial supporting

evidence within the realm of evidence-based medicine. Due to the

constraints of the review’s length, there is a limited number of genes

currently being researched and a lack of supporting experimental

data. Consequently, some genes pertinent to “moderate

classification” and “limited classification” have not been included in

this review. Further research in this area is warranted.
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