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Introduction: Posture extraction from videos is fundamental to many real-world 
applications, including health screenings. In this study, we extend the utility 
and specificity of a well-established protocol, the balance beam, for examining 
balance and active motor coordination in adult mice of both sexes.

Objectives: The primary objective of this study is to design a workflow for 
analyzing the postures of mice walking on a balance beam.

Methods: We developed new tools and scripts based on the FluoRender 
architecture, which can interact with DeepLabCut (DLC) through Python code. 
Notably, twenty input videos were divided into four feature point groups (head, 
body, tail, and feet), based on camera positions relative to the balance beam (left 
and right), and viewing angles (90° and 45° from the beam). We determined key 
feature points on the mouse to track posture in a still video frame. We extracted 
a standard walk cycle (SWC) by focusing on foot movements, which were 
computed by a weighted average of the extracted walk cycles. The correlation of 
each walk cycle to the SWC was used as the weight.

Results: We learned that positions of the camera angles significantly improved 
the performance of 2D pose estimation (90°) and 3D (45°). Comparing the SWCs 
from age-matched mice, we found a consistent pattern of supporting feet on the 
beam. Two feet were consistently on the beam followed by three feet and another 
three feet in a 2-3-3 pattern. However, this pattern can be mirrored among 
individual subjects. A subtle phase shift of foot movement was also observed 
from the SWCs. Furthermore, we compared the SWCs with speed values to reveal 
anomalies in mouse walk postures. Some anomalies can be explained as the start 
or finish of the traversal, while others may be correlated to the distractions of the 
test environment, which will need further investigation.

Conclusion: Our posture analysis workflow improves the classical behavioral 
testing and analysis, allowing the detection of subtle, but significant differences in 
vestibular function and motor coordination.
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1 Introduction

The vestibular system functions by detecting head position, movement, and relative gravity 
in space through a multisensory integration of vestibular input, eye movement, posture, 
orthostasis, and proprioception [Angelaki and Cullen (1), Review]. Testing the vestibular 
system, either passively or actively, in rodents has presented many challenges. Two well-
established protocols are walking on a rotarod and balance beam, which have been used to 
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indirectly measure active vestibular function. Video recordings of 
rodents performing behavioral tests provide additional measurements 
(2). Further assessment of mouse movements has been developed with 
markerless algorithms such as DeepLabCut (DLC) that provide 
quantitative tracking of limbs and joints (3). The analysis of such 
videos demands the digitization of mouse postures as joint locations 
from each video frame. These joints are also called landmarks or 
feature points and are represented by their 2D coordinate values in an 
image. Generating the posture information accurately can be labor-
intensive work, as each video commonly contains several hundred 
frames and each frame several tens of feature points. The rise of 
machine learning (ML) and artificial intelligence (AI) provides a 
feasible path to acquire posture information from videos in large 
quantities. Several neural network-based methods for pose estimation 
have been developed for markerless detection of anatomical feature 
points [i.e., landmarks or keypoints (4–7)]. An open-source method 
called OpenPose enables real-time key body keypoints to be tracked 
from a multi-person human detection library (5, 8), and has been used 
as part of a 3D markerless system to calculate joint angles during a 
normal gait (9). Human pose estimation is the computer vision task 
of localizing joints in an image or video (e.g., shoulder, elbow, wrist, 
ankle, foot, face). One implementation, DeepLabCut (DLC), originally 
designed for tracking animal behavior (7), has subsequently utilized a 
markerless neural-network approaches in human movement 
studies (10).

However, there are limitations of off-the-shelf pose-estimation 
packages when being applied in practice. First, training examples need 
to be manually generated. An easy-to-use and efficient tool is still 
needed for manually tracking feature points from video frames for 
AI-based training to properly start. The quality of training examples 
has significant influence on the ML outcome. The tool for manual 
tracking also needs to generate accurate examples. Second, pose 
estimation provides positions of body feature points for further 
posture analysis to extract information about movements and 
behaviors. Inaccuracies in AI-based pose estimation results introduce 
significant biases to subsequent posture analysis and need to 
be  reduced by user guidance. The accuracy requirements of pose 
estimation are less strict than those of posture analysis. Common 
applications of pose estimation include gaming, robotics and 
animation, and similar algorithms. For these applications, it is usually 
sufficient to predict the location of a body feature points to within 5 
to 10 cm. When calculating joint angles for posture analysis, this 
magnitude of error is unacceptable [Seethapathi et al. (11), Review]. 
For example, a foot slip has subtle speed changes that can be masked 
by an inaccurate tracking of several pixels. Thus, pose estimation 
algorithms cannot simply be used out of the box. A tool to correct 
errors introduced by AI is needed to guarantee the validity of posture 
analysis. Finally, the speed values derived from pose estimation lack 
the descriptive information to quantitatively evaluate and compare 
movements. Patterns of movements need to be further detected and 
extracted from speed values, which itself is an application of ML for 
posture analysis.

Here, we present an integrated workflow and accompanying tool 
for posture analysis that combines visualization, manual tracking, 
AI-based pose estimation, and pattern extraction (Figure  1). Our 
main platform is FluoRender, which supports viewing time-dependent 
images and tracking feature points. We added a Python interpreter 
into the FluoRender system that allows the integration of DLC 

functions for pose estimation. We improved the ruler functions in 
FluoRender to provide efficient and intuitive manual tracking 
capabilities. Furthermore, we developed a series of scripts based on 
the FluoRender architecture for extracting patterns as the standard 
walk cycle (SWC) of a mouse on a balance beam, so that most tasks in 
our workflow were automated by script executions. The extraction of 
a standard pattern allows users to compare libraries and detect 
anomalies in gait analysis in the mouse. Our new posture analysis 
workflow extends established markerless tracking methods by 
providing new measurements beyond the position and speed 
information to quantitatively describe the movements and behaviors 
of the mouse traversing a beam. Moreover, it is also a versatile tool for 
a variety of behavior-related balance and motor coordination 
applications including Parkinson’s disease, cerebellar diseases, acoustic 
neuromas, and traumatic brain injuries.

2 Methods

2.1 Animals

All animal experiments carried out in this study were conducted 
at the University of Utah and approved by the University of Utah 
Institutional Animal Care and Use Committee in accordance with 
NIH guidelines.

Both male and female C57BL/6 J (C57BL/6 J jax.org/
strain/0000664), a dual Cre-dependent reporter Polr2a-based 
GCaMP5G-IRES8 tdTomato, referred to as PC::G5-tdT (12), and a 
Gad2-IRES-Cre knock-in mouse driver line, referred to as Gad2::Cre 
(13), were used in these experiments. Both transgenic breeding pairs 
were obtained from The Jackson Laboratory (Polr2atm1(CAG-
GCaMP5g, tdTomato)Tvrd jax.org/strain/024477; Gad2tm2(cre)Zjh 
jax.org/strain/010802). The parental strain C57BL/6 J carries a 
cadherin 23 mutation leading to early onset hearing loss. However, 
age-related vestibular dysfunction is considered minimal in these 
mice, with no evidence of early-onset vestibular dysfunction (14). 
First-generation heterozygous transgenic offspring were used in all 
experiments. Mice were genotyped using real-time PCR [probes: 
“Polr2a-3,” “GCamp3-1 Tg,” and “tdRFP”; (Transnetyx, Inc.)]. Mice 
were housed in a 12 h light/dark cycle; light started at 6 a.m. Mice had 
unlimited access to water and Envigo 2,920X food. Temperature for 
housing and vestibular testing suites were monitored and maintained 
between 20 and 23°C.

2.2 Balance beam

The vestibular function of adult mice from both sexes was tested 
using a balance beam apparatus in this study. A custom balance beam 
and scaffold were built (Figures 2A,B), adapted from Carter et al. (15) 
and Tung et al. (16). The stainless-steel beam has a diameter of 2.54 cm 
and was stationary in this study. The start of the balance beam was 
positioned 60 cm above the ground, and the end of the beam (i.e., goal 
box) was positioned 66 cm above the ground. Recordings were made 
when mice traversed 60 cm in the middle of the beam, which was 
demarcated with tape. Mice were given four practice trials with 
sequentially longer distances to walk along the beam, with the goal of 
achieving one successful full-length distance of 60 cm section before 
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trial recordings. Following each trial, the mouse was placed back in 
his/her housing with food and water, to rest for a minimum of 2 min. 
All trials were video recorded at 30 frames per second (fps) for 
subsequent analysis.

2.3 Balance beam data acquisition

Each mouse walked from the start of the beam into a goal box. 
The process of walking across the middle 60 cm was filmed by two 
cameras positioned at two angles relative to the beam. Videos were 
recorded with smartphone cameras (iPhone7) with a 2.4 aperture, 12 
MP telephoto lens, and 30 fps. Each of camera was secured to a tripod 
located 60 cm away from the balance beam on either side. For the first 

configuration were positioned at the start of the beam and pointed to 
the center of the beam at 45° angles (A), and in the second 
configuration the two cameras faced each other on either side of the 
balance beam [left (L) or right (R)], pointing to the center of the beam 
at a 90° angle (B). Cameras were placed so that the entire beam was 
visible. All videos were taken with camera settings of 30 fps and high 
definition (HD). The test was repeated 5 times for each mouse.

2.4 Feature point creation and editing

We determined key feature points on the mouse to track its 
posture in a still video frame. We used the ruler tools in FluoRender 
for the placement of feature points. We  determined an 18-point 

FIGURE 1

The workflow to track and analyze videos of mice traversing the balance beam. (A) Integration of DLC into FluoRender to track raw videos. 
FluoRender’s ruler tools were used to generate example postures on select video frames. These examples were saved into a DLC project for training a 
DLC model. Crude postures were generated by applying the model to full videos. The ruler editing tools of FluoRender were used to curate the crude 
postures and achieve precise tracking results. (B) The left and right postures were merged depending on the viewing angles of the video camera 
setups. For the 45° videos, we reconstructed 3D postures using a computer vision workflow with autocalibration. For the 90° videos, we computed the 
average postures from left and right postures. Then, we computed the speed values from the postures. We extracted every walk cycle from the speed 
data and computed a weighted average as the standard walk cycle. The SWC was first used to generate synthetic walk animations. We also compared 
the SWC with the speed data for each video to detect special events and anomalies in the videos.
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configuration to be sufficient for tracking postures while maintaining 
work efficiency. The points were organized into 4 groups: 3 points for 
the head consisting of the left auricle (ear tip), the right auricle, and 
the nose tip, 4 for the torso (body), 7 for the tail, and 4 for the feet (left 
front and back, right front and back). Two different types of rulers in 
FluoRender were used to keep track of the grouping of feature points. 
For the head, a polyline of connected points was created by clicking 
on the ear and nose tips. For the body and tail, a polyline was created 
by the pencil tool in FluoRender, which allowed drawing by a freehand 
stroke. Each foot was labeled by a single point. We colored the coded 
points by groups whereas foot points were colored distinctively for 
ease of identifying the left from right foot (Figure 3). Feature points 
were only created for an initial video frame, where a mouse was fully 
visible. Feature point count and grouping were maintained over time. 
We  only modified point positions to track mouse postures in 
subsequent video frames. We developed three tools for FluoRender to 
edit feature points efficiently. The “move tool” moves one point at a 
time by allowing the user to click on the point and drag it around. The 
“magnet tool” avoids dragging by attracting the closest point after the 
user clicks on the desired location. To edit multiple points on a 
polyline ruler together, the magnet tool also lets the user draw a 
freehand stroke and attracts the points from the closest ruler to the 
stroke. To allow fine-tuning of the length of a ruler under editing, 
we designed a “redraw tool” that works similarly to the magnet tool 
but controls ruler length using the freehand stroke. In contrast, the 

magnet tool maintains the distance between two points when they are 
repositioned. The design of these editing tools is aimed at optimizing 
efficiency for full manual tracking of entire videos. Nevertheless, our 
tools also expedited generating deep-learning examples and curating 
deep-learning results when the DLC library was integrated 
with FluoRender.

2.5 DeepLabCut training and tracking

We installed and configured the DeepLabCut (DLC) library on 
the same computer running FluoRender. We  added a Python 
interpreter into FluoRender, which can function with DLC (17). 
We used FluoRender to generate training examples. The 20 input 
videos were divided into 4 groups based on camera positions (left 
and right) and viewing angles (45° and 90° from the balance beam; 
Figures 2A,B). Each group was trained and tracked with a dedicated 
DLC model (7). We selected video frames covering typical postures 
and various locations on the beam from each video group and 
generated feature points using the FluoRender rulers. For each 
model, the frame number required for training varied from 23 to 
31. We ensured that the 18-point configuration was consistently 
maintained for all models. In fact, the feature point configuration 
was only created once at the first selected frame for each model. All 
subsequent example frames were tracked by the editing tools 

FIGURE 2

Balance beam testing across different adults ages, sexes, and strains. (A) An illustration of balance beam (mouse not drawn to scale) with two cameras 
pointing to the center of the beam at 45° angles. (B) An illustration of the beam with two cameras facing each other on two sides of the beam. 
(C) Mean velocity (cm/second) for each adult mouse to traverse the beam between 4 to 5 trials (ages (P)ostnatal day 105 to P409). (D) Summary of 
mean velocities for males and females in Gad2-G5-tdT and wild type (WT) mice. (E) Summary of mean number of stops along the balance beam for 
males and females in Gad2-G5-tdT and wild type (WT) mice.
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we developed for FluoRender, such as the magnet and redraw tools. 
To further automate DLC-based training and tracking, 
we  developed two FluoRender scripts (video_train and video_
analysis, included with FluoRender releases on github.com). Once 
the example frames were generated, we  executed the first 
FluoRender script that performed a series of operations. It exported 
the example frames with rulers to a DLC project, launched the DLC 
within the Python environment, and started model training using 
the project. The script contained a default iteration count of 300 K, 
which we  found to be  a reasonable trade-off between model 
accuracy and time cost. Training was computed on an nVidia 

Quadro M6000 graphics card with GPU acceleration configured for 
DLC. The time cost of training is proportional to video resolutions. 
It took about 12 h to train a model for videos at 1280 × 720 
resolution and about 24 h for 1920 × 1080 resolution videos. Once a 
model was trained, we tracked all videos in its group using a second 
FluoRender script (18), which again called the Python code and 
leveraged the DLC project. The script read back the tracking results 
from DLC and converted them to FluoRender rulers for instant 
examination using FluoRender’s visualization. The time cost for 
tracking was negligible, as tracking results for a full video were 
generated when the video was viewed.

FIGURE 3

Incorrect tracking from DLC versus manual correction. The crude tracking rows show results from DLC. The manual curation rows show the results 
after fixing. The brightness of the videos was adjusted in FluoRender to aid feature discerning. Arrows point to the incorrect feature points. (A1,2) A 
blurry rear right foot caused incorrect tracking for both rear feet. (B1,2) Left and right ear tips were not correctly identified. (C1,2) Background object 
confused the tracking. (D1,2) Tracking of the tail failed because of the influence from the beam. (E1,2) Left and right rear feet switched positions. (F1,2) 
The feature points for the tail were not evenly distributed. (G1,2) Incorrect identification of the tail and body from self-occlusion. (H1,2) DLC was 
unable to track this atypical posture because it was not provided for training.
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2.6 Tracking curation

The tracking from DLC contained erroneous and imprecise 
placement of feature points. The quality of tracking results is limited 
by video clarity, which is affected by a multitude of factors including 
image sensor size, optical resolution, and viewing angle. Hence, 
simply increasing the iterations for training did not make a significant 
improvement. On the other hand, improving the model by iteratively 
increasing the training examples is a trial-and-error process, which 
would significantly increase the time cost as each training session 
took about 1 day. Given the amount of data and computing hardware 
available, we struck a balance between manual and machine time to 
ensure high tracking precision. We  manually curated the crude 
tracking by designing a streamlined curation workflow and leveraging 
FluoRender’s ruler editing functions, which were made for manual 
work productivity. In FluoRender, we  carefully examined every 
feature point in every frame. We also took advantage of FluoRender’s 
image enhancement settings to adjust the brightness and contrast so 
that features were easily discerned. Any erroneous or imprecise 
tracking was corrected by FluoRender’s editing tools, similar to how 
the training examples were created. Figure 3 lists typical issues from 
crude DLC tracking compared to manually curated results. The 
curation work was timed for an evaluation of efficiency. A total of 
4,292 frames were examined or corrected using 985 min (16.42 h). 
The average speed of curation was 4.36 frames/min, or 13.76 s/frame. 
The average speed for each video ranged from 2.44 frames/min to 
8.97 frames/min because work intensity varied for issues at different 
complexity levels.

2.7 3D reconstruction/left–right averaging

We adopted a dual camera configuration to improve tracking 
accuracy, as all 18 feature points were not always clearly visible from 
just one camera. Both advantages and disadvantages were present 
between the two viewing angles of 90° and 45°. A significant advantage 
of adopting the 45° camera viewing angle was the ability to reconstruct 
mouse postures three-dimensionally. DLC included functionality for 
3D reconstruction from a stereo camera configuration (7). However, 
DLC’s mandatory camera calibration limited its use in practice 
because of the lack of awareness for calibration and the fact that a 
calibrated setup could be  accidentally changed by operators. 
We developed a script in FluoRender to perform a 3D reconstruction 
of feature points independent of DLC. A reconstruction workflow 
described by Hartley and Zisserman (19) was implemented in steps. 
It calibrated the cameras using only information from the videos, 
which was input by the user tracing 3 pairs of corresponding parallel 
lines from two camera views (Figure 4). We traced the upper and 
lower edges of the balance beam, the outer edges of the destination 
goal box, and the edges of the goal box entrance. Given these lines, 
we  first computed the fundamental matrix from their endpoint 
coordinates using the least median squares (LMS) algorithm. We fixed 
the left camera matrix to canonical and derived the right camera 
matrix from the fundamental matrix using a QR decomposition. 
Then, we updated the camera matrices to enforce perpendicularity 
and parallelism among the line pairs in 3D. The coordinate system of 
the reconstructed scene was transformed, so that the line pairs were 
aligned with the XYZ axes: beam to X, box edges to Y, and entrance 
edges to Z. Finally, the values from physical measurements (beam 

length and inclination angle) were used to perform a shear correction 
and then map all point coordinates to their physical scale.

The camera matrices derived from the fundamental matrix 
described projections of the 2D feature points into a 3D scene, where 
each point became a ray. We computed the 3D coordinates of feature 
points by intersecting the two rays from corresponding feature points 
of left and right cameras, a process also termed triangulation. When 
two cameras were set up using the 45° viewing angle, the triangulation 
achieved the optimal precision because the camera’s optical axes were 
perpendicular. In contrast, the 90° viewing angle resulted in 
overlapping camera optical axes, which cannot be used to reliably 
determine intersections. Therefore, 3D reconstruction was only 
computed for the 45° videos.

The advantage of 90° videos was little perspective distortion 
because mouse M was walking on a straight line within an image plane 
perpendicular to the camera optical axes. We developed another script 
to compute postures from two camera angles of the 90° videos. To 
merge the feature points from the left and right cameras, we computed 
the average of corresponding points. Therefore, only 2D coordinates 

FIGURE 4

3D posture reconstruction with cameras positioned at 45°. (A) A still 
frame from the left-side camera. In addition to the feature points 
tracking the mouse movements, we drew straight lines in three 
groups, tracing the beam and edges of the box. (B) A still frame from 
the right-side camera. The same straight lines were drawn to 
establish a 3D world coordinate system. (C) The side view of the 
reconstruction result. Both the beam length and inclination angle 
were provided to map the reconstructed lengths to their physical 
values. (D) The top view of the reconstruction result.
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were available for the 90° videos. Similar to three-dimensionally 
reconstructed feature points, we transformed points of 90° videos to 
use the beam as the X-axis and mapped all coordinates to their 
physical scale.

2.8 Standard walk cycle extraction

We define the standard walk cycle (SWC) as a function of time (t) 
representing the speeds of all feature points with finite support, i.e., a 
cycle. The SWC is a recurring pattern to describe a mouse’s normal 
walking postures on the beam. To obtain the speed for each feature 
point, we used the finite difference method:

 
V X Xt t t t� � � � � � �� ��

 (1)

Where X t� � is a vector comprising all XYZ coordinates from all 
feature points x y z x y z1 1 1 2 2 2, , , , , ,�� � and ∆t  the time interval between 
two video frames (0.0333 s for 30-fps videos). Here, we  use N  to 
denote the set of coordinates and n  for its component. For the 2D 
coordinates from the 90° videos, N  contains 36 components; for the 
3D coordinates from the 45° videos, N  contains 54 components. 
We use the bold font to indicate a vector or vector-valued function of 
this layout, whereas the non-bold font with a subscript indicates 
its component.

When a mouse walks strictly following the SWC, its speed 
function is periodic:

 V VSWC SWCt t� � � �� ��  (2)

Where τ is the period of one cycle. A single cycle can be extracted 
using a window function W  of width τ and left edge at t0 0= :
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Where rect � � is a rectangular function. Ideally, the SWC is 
computed from V t� � by an optimization:
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Where T  is a set of all τ i, the length of each cycle, and ti, the start 
time of each cycle. They obey the following relationship:
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In Eq. 4, we want to compute an SWC that minimizes its speed 
difference, measured by the L2 norm, to an input V t� � when each 

cycle is duplicated from SWC under shift (of start time at ti) and scale 
(of period τ i). Since both T  and SWC  need to be determined for the 
optimization, a direct evaluation of Eq. 4 is difficult.

We considered a SWC of the same temporal resolution as the 
input videos to be  sufficient for subsequent analysis. Therefore, 
we developed a heuristic method to compute a discrete SWC in steps. 
First, we culled the input V t� � to remove undesired data, which were 
time points when a mouse stopped briefly on the beam or before 
entering the destination box (Figure 5A). Second, we examined the 
culled V t� � and manually selected an interval as the initial condition 
for SWC. In Figure 5B, the most prominent peaks of V t� � were from 
the foot movements. Empirically, we used prominent peaks from feet 
movements to identify a repeating pattern and chose the initial 
condition to best match the pattern. Third, the initial condition SWC0 
was used as a template to search for matching cycles from V t� �. This 
was achieved using a simplified optimization from Eq. 4:
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Here, we computed T  by maximizing the correlation between 
V t� � and a speed function generated by repeating SWC0 under shift 
and scale. In other words, we used the SWC0 as a template image and 
performed image registration to obtain subdomains T  in V t� �, so that 
each subdomain ti i,�� � of V t� � best matched SWC0. Since we were 
computing using discrete-time series V t� �, we fixed the search space 
using a series of periods ranging between half to double the length of 
SWC0. A maximum correlation sum was obtained by a full search on 
the finite grid of all candidate T s. Once T  was determined, the SWC 
was computed by a weighted average:
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Where Cmax  is the set of maximum correlation values 
corresponding to the T  obtained from evaluating Eq. 6. In theory, one 
SWC was uniquely computed for one mouse from all its videos. In 
practice, we accommodated the progressive refinement of the SWC 
when videos of the same mouse were analyzed sequentially. 
We designed a file format to save the SWC along with the weight 

i
iC

�
�
0

T

max, . When a new video was added to an existing analysis, 

we reevaluated Eq. 6, replacing SWC0 with the previous SWC t� � . 
Then, we computed the weighted average in Eq. 7 using both the new 
weights and the weight from the previous SWC t� �.

2.9 Synthetic walk generation

We obtained VSWC t� � by repeating SWC indefinitely over time. 
Under an initial condition X0, the synthetic posture of a mouse 
under SWC is:
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FIGURE 5

Standard walk cycle extraction. All horizontal axes are time (unit = m/s), which were captured at a 30-fps rate. (A) A graph showing the speed values over 
time for all XYZ speed components and all feature points. Time points when the mouse was not moving on the beam were cropped in the video analysis 
portion (pink planes). (B) The optimization process for computing the SWC was initialized by a manually selected cycle, illustrated by the cyan plane. 
(C) The SWC was plotted with all its XYZ speed components and feature points in a 3D graph. The most prominent peaks were from the movements of 

(Continued)
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We maintained the time interval ∆t  from the input videos 
captured at 30 fps. Therefore, we numerically evaluated Eq. 8 using the 
Forward Euler method:
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However, since SWC was computed by averaging walk cycles from 
V t� �, the condition for the synthetic walk returning to the posture of 
X0 after one period τ  was usually not satisfied:

 0
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(10)

Where V  is a constant 3D vector representing the overall 
movement in one SWC. To make meaningful synthetic walk 
animations, we normalized VSWC t� � to enforce Eq. 10. Considering 
the movement of a mouse was constrained by the beam, we computed 
V  by finding the maximum displacement in the X (beam) direction 
and setting YZ to 0:
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The synthetic walk generation was implemented using a 
FluoRender script. The initial condition X0 was drawn using the ruler 
tools in FluoRender. After running the script, the results were viewed 
three-dimensionally using the movie playback functions in 
FluoRender. The animation for the perspective view in Videos 1&2 
was generated by key-frame functions in FluoRender to track mouse 
body displacement with the camera.

2.10 Event abstraction

We compared the SWC against the input V t� � from each video to 
detect when and how much the walk deviated from the SWC. The 
result was a quantitative description of the events during a mouse’s 
walk. First, using the set of periods T  from Eq. 6, we computed a 
matrix of the correlation values for each period (τ i) and feature point 
axis (n). The values of the correlation matrix were normalized using 
the autocorrelation of SWC as a reference. Typically, a value of 0 
indicates no movement and 1 indicates a match with the SWC; values 

higher than 1 indicate movement at higher speed than the SWC; 
negative values indicate movements away from the directions of the 
SWC. Although the correlation values provided a detailed 
quantification of the walk, the amount of data from multiple feature 
points and XYZ directions made it difficult for users to understand. 
Some anomalies, such as slips, jumps, and hesitations, were observed 
in the videos. But their relationships to the correlation values were not 
instantly obvious to users. Therefore, further abstraction for easy 
interpretation was needed.

We derived the variance of correlation (VoC) from the correlation 
values in two steps. First, we grouped the feature points according to 
the body parts of a mouse: head, body, tail, and feet. Then, 
we computed the second central moment (variance) for the correlation 
values per group and per period (τ i). We plotted VoC against time by 
maintaining its value within each period (τ i). The computing of VoC 
produced a simpler quantitative representation for mouse movements: 
VoC is non-negative; a low value near 0 indicates little deviation from 
the SWC or no movement; VoC increases when there is a significant 
deviation of movements from the SWC.

2.11 Analysis and statistics

Data are shown as mean +/− SEM and statistical analysis was 
performed using one-way ANOVA to compare all groups within each 
category, including mouse strain, age, body mass, and sex. Within 
each category, two-tailed t-tests were used to complete pairwise 
comparisons, separately. Statistical significance is denoted as p-values 
between 0.01 and 0.05 (*), 0.001–0.01 (**), 0.001–0.0001 (***), 
<0.0001 (****), while any value of p > 0.05 is not significant (ns).

3 Results

We designed a workflow for analyzing the postures of transgenic 
mice walking along the balance beam for 60 cm (Figure  1). All 
computation and visualization tasks in this workflow were 
accomplished using an integrated system with an intuitive user 
interface, FluoRender. We developed new tools and scripts based on 
the FluoRender architecture, which were included within the latest 
release (v2.29.3) and can be  downloaded from github.com.1 
We performed the posture analysis by first opening a video file in 
FluoRender. Then, we used FluoRender’s ruler tools to create feature 
points as training examples. We executed the script “video_train” from 
the “Script” subpanel in the “Record/Export” panel to train a DLC 
model from the examples. To apply the trained model, we executed 

1 https://github.com/SCIInstitute/fluorender/releases/tag/v2.29.3

the feet in the X direction. (D1) A graph only showing the X speed of the four feet of mouse M. We detected a consistent pattern of supportive legs, at 
points where multiple curves crossed at near-zero speed (encircled grey regions). (D2-4) The still frames when the mouse was supported by 2 or 3 legs. It 
was easily observed from the still frames because the 30-fps video capture rate made moving legs blurry. (E1) A graph showing the X speed of the feet of 
mouse F. The same pattern of supportive legs was observed. However, mouse F tended to move two legs (FR and RL) at the same time. The pattern of 
supportive legs was also mirrored to that of mouse M. (E2-4) The still frames when mouse F was supported by 2 or 3 legs.

FIGURE 5 (Continued)
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another script “video_analysis,” which generated the tracked feature 
points for each video frame. We  used the script “ruler_speed” to 
generate the speed information on the tracked points; we used the 
script “stereo_reconstruct” to reconstruct a 3D tracking from a pair of 
45° videos; we used the script “gen_walk” to generate a 3D synthetic 
walk from a SWC. More details on FluoRender scripts including the 
specific scripts for posture analysis can be  found in Chapter 13, 
Automated Data Analysis with Scripts, of the online manual, which 
can be accessed from the main menu of FluoRender.

We examined transgenic and wild type mice traversing a balance 
beam by evaluating their dynamic gait, and motor coordination by 
tracking a single point on the mouse. We  initially evaluated 
performance of female and male adult mice, with different body 
masses by tracking a single point on the mouse. Gad2-Cre::GCaMP5G-
tdTomato (Gad2-G5-tdT), Gad2-Cre, PC::GCaMP5G-tdTomato 
(G5-tdT), and parental strain, C57BL/6 J in adults. We observed the 
Gad2-G5-tdT mice with small, but significant deficits in velocity based 
on age, strain, and sex (Figures 2C–E; Table 1).

Next, we tracked and analyzed a total of 20 videos in 10 left–right 
pairs per mouse using a multidimensional function. We used FluoRender 
to generate tracking examples from select still frames. We developed a 
FluoRender script to feed these examples to the DeepLabCut (DLC) 
library and perform model training. Videos of different viewing angles, 
i.e., left 45°, right 45°, left 90°, and right 90°, were grouped and separate 
models were trained for each group. We developed a second FluoRender 
script to apply the models to all videos, so that every frame was labeled 
with feature points representing mouse postures. We used FluoRender 
to examine and curate the crude tracking results (Figure 3). We frame 
matched videos from each left–right pair and then combined their 
feature point coordinates. Therefore, one time sequence of postures was 
produced for each video pair. For the 90° video pairs, we computed the 
feature points’ 2D coordinates as the mean values of corresponding 
points. For the 45° video pairs, we reconstructed their feature points’ 3D 
coordinates by first computing the fundamental matrix and then 
triangulating from corresponding points (Figure 4). We also traced the 
beam in FluoRender to map points in the 2D/3D scene to their real-
world scale using the measured length of the beam.

We computed the speed (a 2D vector for 90° video pairs and a 3D 
vector for 45° video pairs) per point per video frame using the finite 
difference method. We culled the speed data to only keep the frames 
when the mouse was walking on the beam (Figure 5A). We extracted 
walk cycles from the speed data using a heuristic optimization 
algorithm (Figures 5B,C; Eq. 6). The correlation of each walk cycle to 
the SWC was used as the weight. One SWC was computed for each 
mouse. Their graphs are in Supplementary Figures S1, S2. The SWC 
was used to describe how a mouse walked typically on the beam. Our 
examination of the SWCs was focused on the foot movements. 
We found both similarities and diverging characteristics between the 
two mice in our experiments (mouse M for the male mouse and 
mouse F for the female mouse). First, the temporal pattern of the 
number of supportive legs (i.e., legs on beam supporting body in one 
frame) was consistent. In Figures 5D1,E1, we observed that their four 
legs were moving in well-defined order. The body was supported by 
two or three legs in a repeating 2–3-3 pattern. However, the 
leg-dominance differed between mouse M and F, as the pattern was 
mirrored laterally to the moving direction: (FR-RL)-(FL-RL-RR)-(FL-
FR-RR) for mouse M vs. (FL-RR)-(FR-RL-RR)-(FL-FR-RL) for mouse 
F. This alternating pattern also indicated that the time intervals 
between leg movements were unevenly distributed. We detected two 
closely grouped peaks in the SWC graphs in Figures 5D1,E1: FL and 
RR for mouse M and FR and RL for mouse F. For mouse F this 
grouping of FR and RL was more obvious, which exhibited as these 
legs moved together consistently the majority of the time.

We generated synthetic walk animations from the SWC for each 
mouse (Figure 6). A SWC was normalized to remove inconsistent 
movements among the feature points. We drew a 3D initial condition 
in FluoRender and computed its displacements over time as an 
integral using the forward Euler method. Supplementary Video S1 
shows the synthetic walk of mouse M, viewed from different angles. 
Supplementary Video S2 shows the synthetic walk of mouse F. Since 
only 2D feature points were available for mouse M, there was no 
lateral movement in its synthetic walk, despite its initial condition 
being drawn in 3D. Supplementary Video S2 shows more realistic 
walk cycles when lateral movements were included from 3D 
reconstructed coordinates. The synthetic walk animations provided a 
means to visualize the SWC in an intuitive manner.

We used the SWC to quantitatively evaluate the movement and 
behavior of a mouse on the beam. First, we extracted individual walk 
cycles from the posture data for each video by an algorithm akin to image 
registration, where the SWC was used as a template image. For each walk 
cycle, we computed its correlation to the SWC, which measured the 
degree it deviated from the SWC. Figures 7A–C show the correlations 
for the XY speed of the three feature points of the head of mouse 
M. Here, we normalized the correlation values so that 0 indicated no 
movement and 1 for an exact match to the SWC. The correlation to the 
SWC provided detailed information on movement for each feature point 
but was not intuitive to interpret. We further organized the feature points 
into groups of head, body, tail, and feet. A single variance value was 
computed for all correlation values of feature points at each time point 
in each group. Figure 7D shows the variance of correlation (VoC) for the 
head group. The VoC provided a concise description of movement. 
Figure 8A shows the VoC of the head movement of mouse M, which 
walked halfway on the beam and stopped. The mouse raised his head and 
looked. Then, the mouse started walking and stopped again before the 
box at the other end of the beam. Another example is shown in Figure 8D 

TABLE 1 Statistical analysis of balance beam assessments.

Figure Parameter 
and 
comparison

Statistical 
test

p-
value

Significance

2B Mean velocity by 

age

One-way 

ANOVA

0.0006 ***

2C Mean velocity by 

age category

Two-tailed 

t-test

0.0453 *

2D Mean velocity by 

strain

Two-tailed 

t-test

0.0274 *

2E Mean velocity by 

sex

One-way 

ANOVA

4.671e-

13

****

2F Mean # of stops 

by sex

One-way 

ANOVA

0.1361 ns

2F Mean # of stops 

(WT Males v. WT 

Females)

Two-tailed 

t-test

0.0452 *

ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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for mouse F. The peaks of the VoC curve matched activities deviated 
from the typical walk posture. Supplementary Video S3 is an example of 
a composition including both the original video and VoC graphs, where 
we used red vertical lines to indicate current time for easy comparison. 
The VoC graphs revealed the characteristics of how a mouse walked. For 
mouse M, there existed a strong anti-correlation between its head and 
tail movements. Non-SWC movements of its head never overlapped with 
those of its tail, suggesting a certain compensative role of the tail. 
However, this relationship between head and tail was not always obeyed 
by mouse F. We  examined the consistency of footsteps, which was 
revealed by the VoC graphs of the foot group. We observed that mouse 
F walked with less consistency as the VoC values fluctuated at high levels. 
Notably, mouse F’s walk cycle deviated more significantly from the SWC 
when it just started walking. Mouse F often had a foot slipping off the 
beam (Figure 8B). Therefore, we also used the VoC graphs to detect 

anomalies in walk cycles, such as slipping, jumping, and phase shifting. 
Figure 8 shows typical anomalies that we found using the VoC graphs in 
the videos. We were able to draw a patten on temporal relationships 
among different groups. For example, the radical tail movements 
exhibited as a VoC peak in Figure 8E3 was likely a compensation to a 
brief stall/hesitation just 2 cycles earlier (Figures 8E1,2).

4 Discussion

4.1 Balance beam test

The balance beam test provides quantitative information on 
mouse movements at three levels of detail. First, the most simple and 
common analysis is to record the time to traverse a known distance 

FIGURE 6

(A) A single frame from the synthetic walk reconstructed from the SWC for mouse M. The SWC is 2D because of the camera angles. Therefore, there is 
no side movement from the orthographic views (Supplementary Video S1). (B) A single frame from the synthetic walk reconstructed from the SWC for 
mouse F. The SWC is 3D, representing the averaged postures from all videos that recorded mouse F traversing the beam (Supplementary Video S2).
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on the beam, and calculate the average velocity. Many events during 
the traverse, such as brief stops, cannot be effectively recorded using 
only the average velocity. Second, video recordings of the mouse are 
leveraged to track the traverse as a single point moving over multiple 
video frames. Third, a multidimensional function is generated by 
tracking the pose of the mouse, as described in this study. Our 
workflow provides more detailed information on subtle movements 
of the mouse in each frame. The choice of the data analysis depends 
on the research goal and cost of effort. In this study, speed data were 
gathered and analyzed from 50 videos to establish a broad scope of the 
performance (Figure 2). Then, we focused on two mice (mouse M and 
F) and performed studies on their posture (Figure  8 and 
Supplementary Video S3). More effort was demanded to fully analyze 
all 50 videos. Therefore, we focused on 20 videos to capture the details 
presented here.

4.2 Camera position

Comparing the 45° and 90° viewing angles for video capture, 
we recommend the 90° setup for its simplicity and effectiveness. Three-
dimensional reconstructed postures are optional because the movement 
of the mouse is constrained by the beam. When the optical axis of the 
camera is not at a right angle to the beam (i.e., 90°), perspective 
correction is required for correct speed evaluation. The information on 
Z movement allowed us to generate errorless synthetic walk animations. 
However, we only used XY speed values to compute the VoC for both 
mice male (M) and female (F). It allowed us to compare the results from 
both mice using identical calculations. A significant disadvantage of the 
45° setup is its decreased quality when the mouse moves further away 

from the camera. Fewer pixels are utilized when the image of the mouse 
becomes smaller (i.e., further away) because of foreshortening. The front 
of the mouse is more easily occluded, making accurate tracking difficult. 
For the 90° setup, the cameras are near the center of the beam and 
potentially distractive to the mouse during walk. This may be more 
problematic when larger cameras are used. Cameras with shift 
(perspective control) lenses can be placed near the start end of the beam 
while keeping the optical axes perpendicular to the beam. A more cost-
effective method we recommend is camera camouflage that blends it into 
the environment.

4.3 Video resolution and frame rate

We regard standard HD videos (1,280 by 720 pixels at 30 fps) from 
contemporary smartphones sufficient. Image clarity for accurate 
tracking is achieved by the combination of image sensor and optics 
more than the increase of resolution setting. Simply setting a high 
video resolution only results in larger files and prolonged processing 
time for model training. Similarly, increasing the frame rate by camera 
setting or dedicated high-speed imaging equipment also makes data 
processing and analysis costly. An advantage of using a relatively low 
30-fps rate is easy distinguishing between motion and inactivity from 
individual video frames, which might seem counterintuitive initially. 
Figures 5, 8 contain examples of motion blur from quick movements. 
We leveraged the motion blur as an indicator to identify the supportive 
legs for a mouse during its walk. Examining a frame from a high-
speed camera becomes more laborious when there are more frames to 
analyze, as it will require the user to check multiple adjacent frames to 
identify a leg in motion. For manual tracking and curation, when the 

FIGURE 7

Comparison of SWC against the speed data. All horizontal axes are time counted as video frames. (A) video frame is one thirtieth of a second. (A–C) 
The results show three feature points on the mouse head from Supplementary Video S3. We computed the correlation values for each speed 
component (X and Y for the 90° configuration) and each feature point. The correlation values were normalized using a scale where 0 indicates no 
movement and 1 indicates a match to the SWC within one cycle. (D) We computed a variance measure (VoC) from all speed components and feature 
points. This measure is easier to read because it is non-negative and high values indicate large deviations from either the SWC or static state.
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placement of a feature point became uncertain because of motion blur, 
we placed the point at the center of the blurred region.

4.4 DeepLabCut™ (DLC)

The bottleneck of deep learning in practice is model training. In 
our workflow, we provided training examples from manual work and 
generated models using available computing resources. Based on the 
timing of manual curation, we estimate that the net performance of a 
full manual tracking process is at least on par with our semi-automatic 
workflow. As the cost of human effort becomes prohibitive when the 
number of input videos increases, a workflow mixing manual work 
and deep learning is needed. We found it unfeasible to train a perfect 
model for error-free tracking using DLC. For example, we used every 
curated frame in a video to refine a DLC model, which was then 
applied to track the same input frames. Although there was a 
significant improvement to the original model, the tracking results 
from the refined model did not match the curated frames. Since errors 

are unavoidable from a machine-learning generated result, a hybrid 
workflow involving manual examination and correction is needed to 
ensure the quality of data analysis. When multiple videos are present 
for tracking, we recommend an iterative refinement of the model: (i) 
choose a video with the least complex movements and generate 
tracking examples with approximately 10% of total frames; (ii) train a 
model with the examples and apply it to the video; (iii) curate all 
frames of the first video; (iv) use the curated frames to refine the 
model; (v) choose a second video and track it with the refined model; 
(vi) examine and curate the second video; (vii) skip model refinement 
if errors diminish; (viii) repeat (v-vii) for the remaining videos and 
only refine the model if common errors in Figures 3A–G increase 
whereas special cases like Figure 3H do not need refinement.

4.5 Manual curation

Refinement of a DLC model is limited by both training examples 
and DLC model capacity, which makes manual curation necessary for 

FIGURE 8

Detection of events and anomalies using VoC. (A) The VoC of the head. The first peak is from when mouse M stopped and raised its head. The flat lines 
surrounding the first peak are from walking postures very close to the SWC. The peaks of the later half are from head movements before entering the 
box. (B) A peak from the VoC of the feet is from a slip when mouse F just started moving. (C) Mouse F jumped (both rear legs moving at the same time) 
when approaching the box. (D) Mouse F looked down below the beam, resulting in a high peak of the head VoC. (E1,2) The supportive leg pattern 
differed from the SWC. We observed brief hesitation of the mouse’s movements. (E3) The compensational movements of the tail, delayed by about 
two cycles, were observed after the abnormal movements of the legs.
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tracking quality. We demonstrated the efficiency of manual tracking 
is significantly improved by designing a workflow with accompanying 
tools. The general goal of designing our tools is to minimize the travel 
distance of a computer mouse for curation. Changing video frames is 
a commonly used function in manual curation, which is operated by 
mouse clicks on a timeline control within the user interface. However, 
this operation increases mouse travel distance and diverts user 
attention from the feature points. Frequent switches the focal point 
between the tracking results and controls within the user interface 
quickly cause fatigue. Therefore, keyboard shortcuts in FluoRender 
are recommended for changing video frames. Switching among 
different editing tools is another cause of fatigue. We repurposed and 
multipurposed existing FluoRender ruler editing tools based on the 
context of use to make a single tool intuitive for different curation 
tasks without user-enacted tool switching. For example, the move tool 
is normally operated by dragging a ruler point, but behaves like a 
magnet tool when operated by single-clicks; dragging without 
selecting a point temporarily enables view port manipulations, such 
as panning and zooming. Furthermore, we found that the operations 
for curation were streamlined at high efficiency when only one feature 
point was edited through all frames. Therefore, we provided ruler 
masking in FluoRender so that only the selected rulers are shown or 
modified within a focused scope. Nevertheless, manual curation 
requires considerable time and labor when the number of video 
frames increases. For projects with time constraints, some errors can 
be  tolerated to save time for correcting high impact errors. The 
determination of the impact of an error on the quality of analysis is 
project dependent. In our work, a common but high impact error is 
the switching of left and right points in Figures 3B,E, which results in 
an erroneous speed spike. It also requires more manual examination 
to detect and correct. Inaccurate placement of points, for example, on 
feet because of motion blur, usually have less impact and can waive 
curation for high throughput processing.

4.6 Standard walk cycle (SWC) and analysis

The SWC is an average of real walk cycles, which differ from the 
SWC with varying amplitudes and phases. The feature points in a real 
walk cycle can phase shift altogether, e.g., when a mouse stops briefly, 
or independently as in a jump (Figure 8C) or an abnormal supportive 
leg pattern (Figure 8E). The internal phase shifts influence the shape 
of the SWC. In Figure 5, the foot speed curve of mouse M is more 
pointed at peaks than mouse F. This is because internal phase shift 
was less frequent for mouse M, an indicator of its walk being 
consistent. Expanding the solution space by allowing more degrees 
of freedom of SWC0 when evaluating Eq.  6 can compensate for 
internal phase shift and improve the temporal resolution of the 
SWC. However, the computing cost may also increase significantly. 
A fixed SWC0 allowed us to accomplish a full search of the solution 
space at interactive speed, i.e., the result was computed before playing 
back through a video. Another simplification we made in Eq. 6 was 
measuring distance between two functions by correlation instead of 
the L2 norm. In addition to simpler calculation, computing 
correlations has the benefit that the resulting values are directly used 
as weights for averaging in Eq. 7. Furthermore, we used the same 

algorithm and code to compute the correlations to analyze the 
deviations of walk cycles from the SWC.

5 Conclusion

The balance beam is an established method for studying rodent 
vestibular function with unconstrained head movements. In this 
study, we presented an integrated workflow for analyzing the postures 
of a mouse traversing the balance beam. Our workflow combined 
DLC and FluoRender’s ruler tools, including the “magnet tool,” “move 
tool,” and “redraw tool,” for tracking feature points accurately. 
Although DLC offers immense benefits in markerless pose estimation, 
fully automatic and accurate tracking using AI cannot be achieved at 
this time without manual curation. Our workflow provides manual 
curation in FluoRender as an alternative to the built-in tool in DLC to 
improve the usability and efficiency. The integration of analysis 
functions in FluoRender scripts allowed us to further process the 
speed information obtained from pose estimation and generate 
quantitative measurements on movements and behaviors. We first 
extracted a standard walk cycle (SWC) from the repetitive patterns in 
mouse movements. Then, we used the SWC to quantitatively evaluate 
the degree of deviation in mouse movements. We further derived the 
variance of correlation (VoC) as a measurement of anomalies in a 
group of connected feature points. We were able to detect events such 
as stops, slips, and foot phase shifts using only VoC values, which 
reduced the amount of time needed to examine the video files. In 
future studies, our workflow can be integrated with eye tracking (20), 
and two-photon voltage or calcium imaging with cranial windows. 
Combining these tools could offer a multimodal technique to study 
spatiotemporal neuronal signaling in vivo while testing the 
vestibular system.
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SUPPLEMENTARY FIGURE S1

The SWC of mouse M. The SWC contains 18 feature points in 4 groups of 
head, body, tail, and feet, which are organized in 4 rows. The first column is 
for speed values in the X (beam) direction, the second column for Y, and the 
third XY combined. All horizontal axes are video frames and one frame is a 
thirtieth of a second. All vertical axes are time (seconds).

SUPPLEMENTARY FIGURE S2

The SWC of mouse F. The SWC contains 18 feature points in 4 groups of 
head, body, tail, and feet, which are organized in 4 rows. The first column is 
for speed values in the X (beam) direction, the second for Y, the third for Z, 
and the fourth for XYZ combined. All horizontal axes are video frames and 
one frame is a thirtieth of a second. All vertical axes are time (seconds).

SUPPLEMENTARY VIDEO S1

The full synthetic walk video reconstructed from the SWC for mouse M. The 
SWC is 2D only because of the camera angles did not support 3D 
reconstruction. There is no side movement, which can be observed from the 
orthographic views (Fig. 6A).

SUPPLEMENTARY VIDEO S2

The full synthetic walk video reconstructed from the SWC for mouse F. The 
SWC is 3D, representing the averaged postures from all videos that recorded 
mouse F traversing the beam (Fig. 6B).

SUPPLEMENTARY VIDEO S3

A composition of the original video (top left), a combined VoC graph 
containing all 4 groups of feature points (bottom left), and VoC graphs for 
individual groups (right column). They show relationships between the VoC 
values over time and events (deviations from SWC) in the video. This is an 
example of an original video (Mouse M).
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