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RESUMO 

Neste artigo, modelamos a ado9ao de tecnologias como um jogo evolucionario assimetrico baseado em encontros 

aleatorios bilaterais envolvendo duas popula^oes, firmas e consumidores. Inicialmente, consideramos 

extemalidades do lado da oferta e obtemos os resultados usuais da literatura recente sobre o tema: dependencia 

de trajetoria, "lock-in" e possibilidade de sele9ao de tecnologias inferiores. Em seguida, introduzimos 

extemalidades no lado da demanda, as quais no artigo classico de Leibenstein resultam nos efeitos cumulativo 

de consumo (bandwagon effect) e diferencia9ao de consumo (snob effect). For ultimo, examinamos as intera9oes 

entre a oferta e a demanda. 

Palavras-chave: competi9ao evolucionaria, racionalidade limitada, efeito cumulativo de consumo, efeito 

diferencia9ao de consumo e dependencia de trajetoria. 

ABSTRACT 

This paper models technology adoption as an evolutionary and asymmetric game based on a pairwise contest 

involving two populations, firms and consumers. First, externalities are considered only on the supply side, 

leading to the usual results found in the recent economic literature on the subject: path dependence, lock-in, 

and the possibility of selecting inferior technology. Next externalities are introduced on the demand side, which 

in Leibenstein's classic paper leads to bandwagon and snob effects, and interactions between supply and 

demand are examined. 
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I Introduction 

The survival of products or product technologies can be investigated using the classic ana- 

lytical approach, which focuses on the demand side, as proposed by Leibenstein in 1950. 

When two products that meet the same consumer need compete in the marketplace, if the 

bandwagon effect prevails only one of them will tend to survive. If the snob effect prevails, 

however, both products will tend to survive and share the market between them. Positive net- 

work externalities predominate in the former case, negative network externalities in the latter. 

The reasons for product technology survival can also be investigated using production 

theory, which emphasizes the supply side. Traditional production theory assumes non-increas- 

ing returns of scale and this leads to a predictable equilibrium for prices and market shares. 

Besides, this equilibrium is the most efficient allocation of resources. However, if increasing re- 

turns prevail there may be multiple equilibria and hence outcomes that cannot be analytically 

predicted.1 Using stochastic processes to model technology adoption with increasing econo- 

mies of scale, Arthur (1989) suggests that equilibrium is arrived at through an accumulation of 

minor causes characterized by path dependence and by the possibility of lock-in. 

An important factor in technology adoption processes is whether positive or negative exter- 

nalities are present, since these may drastically change the outcome. The above-mentioned 

studies take externalities into account to some extent on both the supply and demand side but 

do not treat these two influences simultaneously in a unified analytical framework. 

Moreover, Leibenstein's classic paper remains within the confines of static analysis, as is 

well known. The author himself acknowledges, nonetheless, that the problems raised by se- 

quential processes of technology and product adoption require a dynamic approach. The pur- 

pose of this study is to take a step toward the construction of a more general analytical frame- 

work, presenting the question as one that depends intrinsically on various different dynamics 

arising on both the supply and demand sides. 

Thus product diffusion and technology adoption are modeled here as an evolutionary and 

asymmetric game based on a pairwise contest involving two populations, firms and consumers, 

characterized in both cases by bounded rationality. The firms, whose costs depend on the mar- 

ket share captured by the technology they employ, among other factors, aim to increase their 

1 The technology adoption process can also be investigated empirically, as demonstrated in Chow (1967). 
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profit. Consumers aim to increase the surplus obtained in market transactions. Firms set prices. 

Interaction between firms and consumers takes place in a dynamic context in which time is an 

arrow and equilibrium is merely a possible event at the "end of history" 

II Evolutionary game 

Let the evolutionary game be defined in the context of a market in which two goods pro- 

vide the same type of service but can be differentiated by consumers according to the technol- 

ogy used to produce them, e.g. videocassette recorders with VHS and Betamax systems. Firms 

may opt for strategy or s2, each of which corresponds to one of these alternative technolo- 

gies. Because the total number of firms is considered constant, it is admitted for the sake of 

normalization that n^ and v2 = 1 - v1 represent the numbers of firms that adopt each of the 

two technologies. Consumers opt for strategy r] or r2 according whether they choose goods 

produced using technology 1 or goods produced using technology 2. Let |i] and |i2 = 1 - m be 

the proportions of consumers opting for each alternative. 

In a pairwise contest, firms and consumers are randomly removed from their respective 

populations, one by one, to take part in rounds of the game. The resulting encounters may or 

may not be effective from the economic standpoint. Effective transactions occur only in the case 

of strategy combinations , ^) or [s2, r2) Suppose, however, that the product is a consumer 

durable. If a unit is not sold during a given round, it is held in inventory at no cost so as to 

participate in the next round. Thus in the case of strategy combinations or {s2,rl), pro- 

ducers and consumers merely take payoffs equal to zero. 

Producers review their strategies using a process of imitation dynamics in a context of 

bounded rationality. Strategy reviews are formalized with a replicator dynamics similar, but not 

identical, to Nachbar's interpretation (1990). 

According to Nachbar's interpretation, each player compares their payoff with that of an- 

other player randomly chosen from the same population. A strategy switch is possible only if 

the comparison is made with a player who adopts the alternative strategy. It is assumed that 

there is a switching cost in accordance with a uniform distribution of probabilities. Given the 

difference in payoffs resulting from each of the two strategies, the proportion of players who 

effectively switch to the higher payoff strategy will depend on the probability that the switching 

cost is lower than or equal to this difference. 
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Let the payoffs accming to players in the two populations be , v^r. j and ^, 

where ij = 1,2. Then, we have the following payoff matrix: 

Producer 

Si S2 

Consumer 
r2 (t/{r2, v,, = 0;U{s1,v1;r2) = 0) 

([/(r,, v,; 52) = 0;U{s2, v,; r,) = 0) 

{U{r2,v1,s2);U{s2,vl;r2)) 

Given that these payoffs are nil when / ^ j, in Nachbar's interpretation the replicator dy- 

namics for firms is as follows: 

Vi =v1(l-v1)[c/(51,v1;r1)n1-(l-fi1)t/(^2,v1;r2)] (1) 

Consider the imitation process that makes possible equation (1). If a producer does not sell 

his product in a given meeting and if he compares his payoff with that of another producer that 

has employed the alternative strategy and has sold his product, he switches to the successful 

strategy. In a certain way, it is possible to say that this player can interpret the sale failure in 

that given meeting as an indication that there is an offer surplus in the market. This behavior is 

compatible with the hypothesis that the player does not know the market conditions fully and 

that he follows rules (in this case, he follows a very simple imitation rule). 

However, even when the two technologies coexist in the market, it is always possible that a 

firm does not succeed in selling its product, even if its technology is more profitable than the 

other. In others words, a sale failure in a given meeting does not imply that there is an offer 

surplus in the market. If bounded rationality prevails, it is possible to say that the player should 

orient himself by signals that synthesize the global conditions of the market (as it was affirmed 

by Hayek in The Use of Knowledge in Society). Considering the payoffs obtained by two dif- 

ferent players that succeed in selling their products, the difference between them furnishes a 

signal that satisfies this last requirement. As it will be seen by means of equation (4), this differ- 

ence expresses the two technologies prices variations that depend on the global offer or de- 

mand surplus. 

In this way, an alternative replicator dynamics can be obtained straightforward supposing 

that the players always compare the payoffs obtained by two successful players that had 
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adopted different strategies. In this case, even if the players orient themselves by means of rules 

in a bounded rationality context, they interpret market signals not as in the Nachbar's replicator 

dynamics. Now, the sale failure is not considered an indication of the global state of the busi- 

ness. Instead, the players gauge the market conditions by looking at the successful sales profit- 

ability. From an individual point of view - and in this paper context -, this kind of behavior is 

more plausible than of the one implicit in Nachbar's imitation process. Then, we have the fol- 

lowing equation: 

V, =v1(l-v1)[c/(51,v1;r1)-f7(52(v1;r2)] (2) 

Consumers review their strategies in accordance with a process that does not involve inter- 

personal comparisons of satisfaction and is termed "satisficing dynamics" in the literature. 

(Vega-Redondo, 1996, p. 91) Individuals learn not from each other but from themselves, by 

comparing the average payoff obtained from the chosen strategy with a satisfaction benchmark. 

If the average exceeds the benchmark, they do not switch strategies; if the average falls short 

of the benchmark, the probability of a strategy switch depends on the frequency with which 

the new strategy is adopted. Based on this assumption we can obtain a replicator dynamics for 

consumers that is analogous to the previous one: 

(i, =^1(l-^1)[t/(r1,^1;51)-C/(r2,^1;52)] (3) 

Lastly, assume prices change over time in accordance with excess demand; 

TC,. -V. ]' / = 1'2 (4) 

with X > 0. If we normalize prices using 7i1 + 7i2 = 1, we can consider only the price equation 

for good 1. 

Ill Demand side 

Let the demanders' payoffs be the consumers' surpluses, which are measured by the differ- 

ence between the price they are prepared to pay for the good, represented by Pp and the mar- 

ket price, ti . In each round the consumer may buy at most one unit of each good. Three cases 

can be distinguished in an analysis of demand functions. 
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(a) In the first case, consumer preferences do not depend on the consumption decisions of 

other players. Inverse demand for goods 1 and 2 is therefore independent from p and can 

be expressed using constant functions: 

^ = 1 and = for7 = 1,2. 

(b) The second case considers a situation in which consumers prefer what the majority prefers. 

Although the two products provide the same type of service, there is a positive network 

externality which gives rise to a bandwagon effect. Thus: 

^=14, and -it,., for 7 = 1,2. 

In Figure I, the straight-line segments AB and CD show the two characteristic behaviors of 

this payoff structure. If the figures were superimposed, they would intercept at the point where 

p, = 0.5 and Pi = 1/2, enabling the following properties to be seen more clearly if 

0 < p1 < 0.5, then ( /( /•) < ) and as consumers tend to acquire more of good 2, Pj de- 

creases; if 0.5 < Pj < 1, then Ufa) > Ufa2) and Pj increases. In both cases the solution tends 

toward the extremes at which only one product dominates the market. 

Figure I 
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, (c) In the latter case the effect is inverse: The smaller fhe number of consumers who buy the 

product, the larger the player's surplus at the same price. In other words, there is a nega- 

tive network externality which gives rise to a snob effect. Thus 

^=(1-Ix/) and for/= 1,2. 

The characteristic behaviors of this payoff structure, i.e. inverse demand for goods 1 and 2, 

can as before be represented graphically using straight-line segments AB and CD (see Figure 

II). If everyone is consuming good 2, for example, so that iil = 0, this is not an equilibrium 

situation since consumers will prefer to increase their demand for good 1 and as they do so |i1 

increases. Conversely, if everyone is consuming good 1 and demand for good 2 gradually rises, 

the proportion |i1 decreases. Thus consumers tend to move away from the two extremes and 

the two goods end up sharing the market between them. 

Figure n 
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If we obtain the average payoffs and then use (3), we generate differential equations for 

these three types of preference: neutral, producing a bandwagon effect, and producing a snob 

effect: 

fi. =^(1-^X1-2711) (5) 

fi, =2^(1-11,) (fi,-Tii) (6) 
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(7) 

IV Supply side 

Let the unit costs of the firms representing the two groups be defined by the following linear 

functions; 

c. =a.+(3, qi + ZrVj i = 1,2. 

Hence costs depend on production scales and external economies, represented by param- 

eters P and b respectively The following cases can therefore be distinguished. First, if b. is 

equal to, greater than or smaller than zero, external economies are non-existent, negative or 

positive respectively Second, if P is equal to, greater than or smaller than zero, technologies 

present constant, decreasing or increasing economies of scale. Considering the scenario char- 

acterized by pairwise contests, each firm will produce only one unit per round. Thus the dis- 

cussion does not focus on changes in scale but on each firm's average cost depending on the 

technology used and the externalities. The cost functions can therefore be simplified by assum- 

ing that a. + P. qi = a. 

c. = ai + bivi, z =1,2. 

If payoflfs to firms are defined as profit per unit produced, then; 

U{sl,vl\rl) = nl-al-bx\l\ 

^(^2'^!'^2 ) ~ ^2 — ^2 — )- 

Assume that c. < max{^:.}. If this condition is not satisfied there will be no price that pro- 

duces positive payoff for firms. Because costs must be strictly positive and 0 < 71. < 1, by nor- 

malization we have 0 < a < 1 and -1 < h <1. 

Substituting those payoffs into (2), we can obtain the following differential equation to rep- 

resent the replicator dynamics: 
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Vi = v^l - v,)^, + Z)2 + a2 - a, -1 - (&! + Z)2)v,] (8) 

If there are no externalities, bl=b2= 0, and the above equation is reduced as follows: 

V Dynamic interactions 

By combining the various assumptions regarding the payoffs to firms and consumers, we 

come to three distinct situations, each of which involves a system of three differential equa- 

tions. Price equation (4) and equation (8) for the replicator dynamics for firms are common to 

all three systems. The only difference is the equation for the consumer replicator dynamics: (5), 

Let A3 be the domain of these systems; 

A3 = {(v^i^tiJ |0< Vp Pj < 1 and 

The stationary solution to equation (4) requires that vi be equal to pr Hence it is possible 

to analyze the stationary solutions to the systems in the following set: 

<I) = {(v1,p1,7i1)|0<Vj =p1 <1 and 

As is evident, A3 turns out to be a parallelepiped in R3 (base 1 x 1 and height 1), while O 

turns out to be a rectangle in one of the planes that divide A3 diagonally into equal parts. Both 

are shown in Figure III. 

Now consider first of all the cases in which there are no externalities on the demand side. 

The system to be considered is formed by equations (4), (5), and (8) or (9). 

Clearly, Vj = m = 0 and Vj = = 1 constitute equilibria whatever the values of param- 

eters a. and A (/ = 1,2) The possibility of mixed-strategy equilibrium 0 < Vj = m < 1, de- 

pends on the values of both cost function parameters. 

(9) 

(6) or (7). 
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Figure DI 
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Consider first of all a situation in which there are no externalities =b2 =0) and firms 

have the same scale-related costs (^ = a2). A mixed-strategy equilibrium is possible: equations 

(5) and (9) require only that I / 2 2 Hence it can be concluded that all points in sets 

E1 = {(Vpi^pTij)|v, = (J., =0and O^Ti! <l}, 

={(vi'l^i'ni)lvi =l^i =land O^Ti! <l}, 

and 

El = I V, = h and nx = 1/2} 

2 In the case where ax ^ Ci2, (5) requires ni = A//2, but (8) and (9) require 71 j = (M + ax - a2)/2, so that these 

two conditions cannot be satisfied at the same time. Note that if technology 1 is less efficient, the difference ax — a2 

will be positive, so that Tij would have to be greater than 7i2 for both technologies to survive. 



Prado, E. F. S., Kadota, D. K.; Soromenho, J. E. C.: Survival of technologies 259 

are stationary. It is easy to see that in this case the stationary points in the complete system 

form an H in plane O. 

In sum, when there are no external economies and firms have the same scale-related costs, 

the market can be shared by the two technologies in any proportion, as one would expect. If 

there is a difference in scale-related costs, because the demand side requires 7il =n2 as a 

condition for stationarity, competition between firms will tend to evict the less efficient technol- 

ogy from the market and select only one in a path-independent manner. 

Now admit the presence of externalities (fy and b2 ^ 0), be they positive or negative. We 

obtain the following mixed-strategy equilibrium: 

1 , K-a 
71,=- and v, = n,=-i— (10) 

wherea = al -a2, provided bl +b2 ^ 0 and 0<{b2 -a)/(&1 +b2) < 1. 

Among the various possible combinations of the values for the parameters that satisfy the 

above condition, it is convenient to highlight those which correspond to positive or negative 

externalities for both technologies. If the external economies are negative and b2>0), there 

will be the possibility of a stationary equilibrium with survival of technologies having different 

scale-related costs that satisfy a-b2<0 and a + ^ > 0. The stability analyses (see Appen- 

dix) show that this equilibrium turns out to be stable. 

If the external economies are positive and b2< 0), any mixed-strategy equilibrium is un" 

stable, so that stable economies exist only when v1 = 1 or Vj = 0. Thus the final equilibrium 

depends on the initial conditions and is path-dependent. 

In sum, when preferences are neutral between 1 and 2, the outcome depends on scale- 

related costs and external economies. If there are no external economies {bx = b2), market 

equilibrium may occur in any fraction of the market, as shown earlier. If external economies 

are negative, the technologies may share the market in a proportion that depends on their rela- 

tive efficiencies; if they are positive, only one of the technologies may survive, depending on 

the path taken by the economy. The above analysis shows that evolutionary game theory is an 
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adequate framework to reproduce some of the results found in the recent economic literature 

on survival of technologies, such as path dependence, lock-in, selection of inferior technology 

etc. 

Now consider a situation in which there is a bandwagon effect. In this case equations (4), 

(6) and (8) form the system. Examination of differential equation (6) shows that it presents three 

stationary solutions: |lX1 =0, m = 1, and Demand-side dynamics restricts the possi- 

ble stationary points to points that belong to sets EVE2 and 

Ea ={(v1,|li1,7I1)|v1 — jLij — rij and 0<7i1 <l}. 

Note that these three sets form the figure 1/1 in O of A3 

All points in sets Ex e E2 satisfy equation (8), which portrays the supply-side dynamics, and 

equation (4). However, not all points in set E4 are stationary solutions. Whether or not there 

are external economies, the mixed-strategy equilibrium inE4 is unique: 

b0-a-I 

(") 

provided bj + b2 ^ 2 and 0 < (62 - a -1)/^ + - 2) < 1. Thus in any possible case the fig- 

ure in 0 formed by the stationary points in the system is | |. 

Stability analysis shows that this mixed-strategy equilibrium is always unstable (see Appen- 

dix). For this very reason, Leibenstein's result invariably comes out. This is the case even if 

external economies are negative. The bandwagon effect always prevails and only one technol- 

ogy survives. 

Lastly, consider the presence of the snob effect. In this case the system is made up of equa- 

tions (7), (4) and (8). Analysis of differential equation (7) shows that the stationary solutions 

are ^ = 0, ^ = 1 and /^ = 1 - . As before, demand-side dynamics restricts the possible ex- 

istence of stationary points to points belonging to sets Ev E2 and 

^5 ={(vplLli'7li)lvi and O^n, <l}. 
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Note that these three sets form the figure N in O. 

Equation (8) presents as a solution, besides Vj = 0 and Vj = 1, only one isolated point be- 

longing to E5. Thus we have a mixed-strategy equilibrium: 

^l-v.and^v^A^. (12) 

provided ^ ^ -2 and 0 < (ft2 ~ a + + Z?2 + 2) < 1. The stationary points in the sys- 

tem again form the figure | | in O. 

In this case, stability analysis indicates that demand-side dynamics favors a solution in which 

both products or product technologies survive in the market. However, in contrast with the 

previous case, supply-side externalities can modify this expected result. In the appendix we 

show that a mixed-strategy equilibrium may be unstable if the production externalities are posi- 

tive. More precisely, if bl + b2<0, instability may occur depending on parameter 11 which de- 

fines the process of price adjustment. 

VI Conclusions 

This paper analyzes technology survival within an evolutionary framework. It assumes that 

agents have bounded rationality and that as time goes by they tend to choose between strate- 

gies depending on the relative rewards. Initially, assuming an absence of network externalities, 

the results were found to be in accordance with the recent economic literature on the subject, 

including Arthur's papers among others. If the supply-side externalities are positive, one tech- 

nology survives and the equilibrium is path-dependent; moreover, the survival process may se- 

lect the less efficient technology. If the external economies are negative, both technologies may 

survive and share the market independently of the initial conditions. 

The next step was to investigate the survival of technologies when there are both network 

externalities and external economies. The demand-side externalities produce bandwagon or 

snob effects, which in themselves make a mixed-strategy equilibrium unstable or stable respec- 

tively. When there is a bandwagon effect, no matter which external economy prevails on the 

supply side, the market tends to adopt only one technology and the equilibrium will be path- 

dependent. Demand-side externalities produce instability that will prevail in the market. The 
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conclusion was similar for cases in which there is a snob effect, but the result was less defini- 

tive. If external economies are negative, the effects of supply-side and demand-side externali- 

ties are convergent and both technologies will survive. However, if external economies are posi- 

tive, depending on the values of the parameters a result like the former may not come out, and 

only one technology will survive in spite of the snob effect. 

Finally, it is important to note that although these conclusions were obtained in a dynamic 

framework, they are very similar to the findings obtained by Leibenstein in a static framework. 

Appendix: stability analysis 

A rest point is asymptotically stable if all eigenvalues of the Jacobian matrix have negative 

real parts and unstable if any eigenvalue has a positive real part. Let d3 + cfl2 + c2d + C3 = 0 

be the characteristic polynomial of a system of three differential equations. The Routh-Hurwitz 

necessary and sufficient conditions for stability are: cl > 0, c3 > 0, and - C3 > 0 

First system: no network externalities. 

Evaluating at equilibrium (10), the Jacobian matrix of (4), (5) and (8) is given by 

J = 

0 0 

0 Y 

X -X 

2Y 0, + b2) 

-27(^+^2) 

0 

-1 A 

-1 

where 

Y = 

{a + bx){a-b2) 

by +b2 

and the characteristic equation is 

3 2 4YA . 2Y2X 
0 — Y 0  —0+-^— 

by + by + bj 
= 0 
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If the mixed-strategy equilibrium exists and the external economies are negative bx,b2> 0, 

a-b2<0 and a + bl>0 So, y<0 and ^=-^>0; C3 = 2y2A(/(Z>1 + Z?2)>0; and 

c1c2-C3=2y2V(V^2) > 0. Thus the Routh-Hurwitz conditions are satisfied. If external econo- 

mies are positive, ^, Z?2 < 0 and c3 = + i2) < 0 Thus the equilibrium is unstable. 

Second system: positive network externalities (bandwagon effect). 

Evaluating at equilibrium (11), the Jacobian matrix of (4), (6) and (8) is given by 

J = 

r -2a 0 

0 Q)x + ft2 ^oc 

V 
-X 

2a ^ 

-2a 

0 
j 

where 

a = 
_ (l + a - Z?2 )(a + -1) 

(£1+62-2)' 

<0 

and the characteristic equation is 

03 -(^ + £2 -2)a 02 -2a[(Z>1 +£2)a + 2y\.]0 + 2(£1 +£2 -2)a2^ = 0 

As, by assumption, we have Hence the equilibrium is necessarily unstable. 

Third system: negative network externalities (snob effect). 

Evaluating at equilibrium (12), the Jacobian matrix of (4), (7) and (8) is given by 

J = 

'2(3 0 

0 (£, + b2 )P 

X -X 

2(3 

-2p 

0 
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where 

p_(l + a + Z>1)(a-Z>2-l) 

(^+^2+2)2 

and the characteristic equation is 

03 "■ (pi + 62"^" 02 + 2(3[(ftj + ^ )P — 2A<^ 9 + 2(pi + ^ ~^ 2)P2A, — 0 

As bi+b2> -2, Cj >0, c3 > 0. The third condition, _ ^3 > 9, implies A, > (^ + b2 )P 

As P < 9 , if 9 < ^ + ^ < 2, for X > 9 any the equilibrium is stable. On the other hand, for 

the open set -2 < ^ + &2 < 9, we can define bi+b2=-2 + E,0<E<2, and 

^[e;62]:=|3(Z>1+52)=^~1~Z>2^a"1
2"

62+£^£~2^ 
£ 

The function (|) is continuous, monotonically decreasing in £, with lim(t) = 00 and limcj) = 9 
E->0 £->2 

Therefore for any A > 0 there is a partition of -2 < ^ + Z>2 < 0 into two subsets: one where 

the equilibrium is stable, and the other where it is unstable. 
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