
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1994

Generalized Probabilistic Reasoning and Empirical Studies on Generalized Probabilistic Reasoning and Empirical Studies on

Computational Efficiency and Scalability Computational Efficiency and Scalability

Eric P. Baenen

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Baenen, Eric P., "Generalized Probabilistic Reasoning and Empirical Studies on Computational Efficiency
and Scalability" (1994). Theses and Dissertations. 6369.
https://scholar.afit.edu/etd/6369

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F6369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6369?utm_source=scholar.afit.edu%2Fetd%2F6369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

•
<J
en
en ..

Generalized Probabalistic Reasoning

and

Empirical Studies on Computational Efficiency and Scalability

THESIS
Eric Paul Baenen
Captain, USAF

A i:;"JT/r.r~ mNr./Q,1.f)

·-· .' ..

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCFJENG/940

Generalized Probabalistic Reasoning

and

DTiC T.
u =

Empirical Studies on Computational Efficiency and Scalability

THESIS
Eric Paul Baenen
Captain, USAF

AFIT/GCFJENG/940

DTIC

Approved for public release; distribution unlimited

UWPECTED2

AFIT/GCE'/ENG/94D

Generalized Probabalistic Reasoning

and

Empirical Studies on Computational Efficiency and Scalability

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Eric Paul Baenen, B.S.E.E.

Captain, USAF

December 1994

Approved for public release; distribution unlimited

Acknowledgements

I would iike to dedicate this work to my parents, , my brother

1111 and my sister. , without whose support and encouragement it would not have been

possible. I would also like to thank my close friends Melanie Steckbauer, Kim Zimmerman,

and fellow students John Berry, Greg Alhquist, Terry Wilson, Tevis Boulware and many others

too numerous to mention. Their support, encouragement and comradery each day made AFIT

bearable.

Special thanks to Ed Williams and the other readers who provided valuable comments

and suggestions that helped make this a better paper.

Last but not least I would like to thank my advisor and friend, Dr. Eugene Santos. I

owe a great deal to his guidance and encouragement.

This research was supported by AFOSR Project 940006.

Eric Paul Baenen

ii

Table of Contents

Acknowledgements .

List of Figures

Abstract

I.

II.

Introduction . 9 ,. • " • ~

1.1 Background.

1.2 Problem

1.3 Scope ..

1.4 Approach .

1.5 Solution

1.6 Executive Overview

Literature Review

2.1 Bayesian Networks

2.2 Dempster-Shafer Theory

2.3 Fuzzy Logic or Possibility Theory .

2.4 Weighted AND OR Acyclic Directed Graphs

2.5 Summary of methods

2.;5.1 Bayesian Belief Networks

2.5.2 Dempster-Shafer Theory .

2.5.3 Fuzzy Logic or Possibility Theory

2.5.4 Weighted AND OR Acyclic Directed Graphs

iii

Page

ii

vi

viii

1

1

2

3

3

4

s

6

6

10

11

12

16

17

17

17

17

Page

III. Methodology 19

3.1 Reasoning Algorithm Enhancement 19

J-.2 Jumpstart Solution ... 19

3.2.1 Initial Jumpstart 19

3.2.2 Incorporating the Jumpstart Solution . 24

3.3 Heuristic Jumpstart 25

3.4 Branch and Bound 28

3.4.1 Resultant Clamping of Other Nodes 31

3.4.2 Eliminating Unnecessary Equations 33

IV. Implementation . . 34

4.1 Testing 34

4.2 Graph or Knowledge Base Structure . 35

4.3 Full Propagation versus Backward Propagation Only 38

V. Test Results 40

VI. Advanced Knowledge Representation - Bayesian Forest 44

6.1 Bayesian Forests 44

6.2 Converting a Bayesian Belief Network into a Bayesian Forest 45

6.3 Converting a Bayesian Forest into a System of Linear Inequalities 46

VII. Conclusion

7 .1 Efficient Graph Solving Algorithms

7.2

7.3

7.4

VIII. Glossary

Large Graph Structure

The New Bayesian Forest Representation

Recommendations for Future Work . . .

lV

50

50

50

52

52

54

Appendix A.

Bibliography

Vita

Summary of Test Results .

V

Page

57

63

66

Figure

1. A small Bayesian network

List of Figures
Page

8

2. A simple Weighted AND OR Directed Acyclic Graph (WAODAG). 13

3. Converting rules from a rule base into nodes and edges for a WAODAG. 14

4. The simple WAODAG and the equations describing it. 16

5. Process flow for solving a WAODAG. 20

6. Jumpstart process flow. 21

7. Truth value propagation from the AND and OR nodes 22

8. Truth value propagation in a small sample graph . . . 23

9. Incorporating the Jumpstart Solution into the equations. 25

10. Cost propagation heuristic method A . 26

11. Cost propagation heuristic method B . 27

12. Branch and Bound process flow. 29

13. Branch and Bound example. . . 30

14. Local propagation of 1 'sand O's from an OR node 32

15. Local propagation of l's and O's from an AND node 32

16. A purely random WAODAG . 36

17. A columnar WAODAG 37

18. Test Graph Summary . 40

19. Results of algorithm comparison using CPU time used as the metric 42

20. Execution time growth curves comparing the original algorithm and the jump-

start algorithm. 43

21. A simple Bayesian Belief Network. 46

22. Converting a Bayesian network to a Bayesian Forest 47

23. A Large Knowledge Base Structure 51

24. Summary Test Statistics for Forward and Backward Propagation 58

vi

Figure

25.

26.

27.

28.

Summary Test Statistics for Backward Propagation Only

Improvement Percentages for Forward and Backward Propagation

Improvement Percentages for Backward Propagation Only

Test Graph Summary Statistics

Page

59

60

61

62

AFIT/GCFJENG/94D

Abstract

Expert Systems are tools that can be very useful for diagnostic purposes, however

current methods of storing and reasoning with knowledge have significant limitations. One

set of limitations involves how to store and manipulate uncertain knowledge: much of the

knowledge we are dealing with has some degree of uncertainty. These limitations include

lack of complete information, not being able to model cyclic information and limitations on

the size and complexity of the problems to be solved. If expert systems are ever going to be

able to tackle significant real world problems then these deficiencies must be corrected. This

paper describes a new method of reasoning with uncertain knowledge which improves the

computational efficiency as well as scalability over current methods. The cornerstone of this

method involves incorporating and exploiting information about the structure of the knowledge

representation to reduce the problem size and complexity. Additionally, a new knowledge

representation is discussed that will further increase the capability of expert systems to model

a wider variety of real world problems. Finally, benchmarking studies of the new algorithm

against the old have led to insights into the graph structure of very large knowledge bases.

Key Words: Expert System, Linear Constraint Satisfaction, Efficiency, Scalabil­

ity, Inferencing, WAODAG, Large Knowledge Base Structure, Knowledge Representation,

Bayesian Forest.

viii

Generalized Probabalistic Reasoning

and

Empirical Studies on Computational Efficiency and Scalability

I. Introduction

1.1 Background

Knowledge Based Expert Systems (KBESs) are useful tools for aiding decision making,

diagnosis, or process monitoring (44]. The expert system can be thought of as a.framework

consisting of three primary parts, the knowledge base, the user interface and an inference

engine. The knowledge base is the collection or database of knowledge within a narrow

problem domain such as medical diagnosis of blood disorders or infectious diseases [41, 3, 40],

prospecting for oil (12], modeling chemical interactions (25] or configuring computers (26].

The inference engine is the portion of the KBES that manipulates this knowledge in order to

solve our problem (16].

Almost every domain that is of interest to expert systems developers contains knowledge

that is inherently inexact, incomplete or immeasurable. The method used to manipulate and

combine this information is important in order to avoid results that are inaccurate and counter

intuitive. A great deal of controversy exists concerning which method is the best for modeling

and reasoning with uncertainty (11, 30, 46]. The community is very polarized, each method's

proponents feel that their method is the only viable solution. [30, 43].

The reasoning model is the method we use to represent the knowledge so that it can be

manipulated to perform some task. The choice of our representation will affect or determine

which methods of inferencing we can use. The uncertainty of the knowledge deals with

the truth value of a fact or set of facts which are not entirely true or entirely false, but

instead lie somewhere in between. In other words there is some level or scale of truthfulness.

1

Uncertainty is most often the result of inaccurate or incomplete information but can also

be caused by reasoning with and combining incomplete information. Another important

source is the inaccurate and conflicting combination of knowledge from multiple experts

[11, 17, 29, 30, 46].

Three of the most common methods of representing and reasoning with uncertain

knowledge are Bayesian Networks [30], Dempster-Shafer Theory [11, 37], and Fuzzy Logic

[46, 45] each with their own strengths and weaknesses [17, 29]. A newer representation called

a Weighted AND OR Directed Acyclic Graph (WAODAG) [6] is much more versatile in

generally representing real world knowledge and combined with a method of converting the

graph into a system of linear inequalities [34, 22, 36] should be much faster in solving for the

optimum solution of a problem (34].

1.2 Problem

The purpose of this research is to determine an inferencing methodology that will allow

us to solve currently modeled problems more efficiently. We also want to be able to solve

larger and more complex problems than were previously possible.

The inferencing methodology must consist of two parts, the representational model and

the method of extracting inferences from that representation.

We will investigate new models ofrepresenting and reasoning with uncertain knowledge,

such as WAODAGs, that resolve some of the problems and limitations of current reasoning

methods. Specifically we want to address the problems of having incomplete information about

the uncertainties we are reasoning with, of not being able to incorporate cyclic information,

and limitations on the size and complexity of the problems we can attack. If we are ever going

to be able to create systems that reason about significant real world problems and solve them

in a reasonable amount of time, these are deficiencies that must be addressed.

In real world problems, we rarely if ever have complete knowledge about a situation.

This results in gaps in our information. Information about the actual uncertainties is no

different. For instance, in a medical diagnosis the doctor may have evidence that supports the

2

diagnosis of a particular disease. Lack of that evidence, however, might not lend support to

the diagnosis that the patient does not have the disease.

Cyclic information is important because many of the processes that occur in nature are

cyclic. For instance the simple representation of fire implies smoke and smoke implies fire

cannot be represented in current methods. Current graph traversal techniques for inferencing

require that the graphs be acyclic or they face the danger of infinite looping in the cycle.

Perhaps one of the most significant deficiencies in current approaches is the size and

complexity of the problems they are able to manipulate. If a user has to wait too long for the

results (too long being dependent upon the application the expert system is being used for) they

are unlikely to continue using the tools. In addition, if we are only able to solve small problems

then some domains which could greatly benefit from such tools will be consistently out of

reach of this technology, particularly when the problem cannot be broken down sufficiently.

For example, the WAODAG representation is more versatile in representing uncer­

tain and partial knowledge than other representations, however the algorithm that solves a

WAODAG is currently limited in the size and complexity of the problems it is able to solve.

The WAODAG representation, like the other models, also cannot deal with cyclic information.

1.3 Scope

This study was limited to probabilistic models of representing uncertain information.

Other models exist, however they lack the structured methodology and implementation of the

. probabilistic models as well as the tools for analysis.

1.4 Approach

Earlier work with WAODAGs [34] demonstrated that inferencing could be accomplished

by converting the WAODAG graphs into boolean linear programs [34, 36] which were then

solved using techniques from the field of Operations Research such as the Simplex method

[22, 27, 36, 28, 34]. The earlier methods while effective, are somewhat crude and limited in

the size and complexity of problems they can solve. In addition, the Simplex method is an

3

algorithm for optimizing arbitrary sets of linear inequalities. It does not care where they came

from or what they represent. It is our belief that we can take advantage of information about

the structure of our representation and incorporate this knowledge into the equations to reduce

the size and complexity of the problems that are fed to the Simplex method thereby reducing

the amount of time necessary to solve for the optimum or most probable solution.

The approach taken was to develop a new algorithm for inferencing with WAODAGs

that incorporates and exploits knowledge of its structure to reduce the problem size and

complexity. This should substantially increase the computational efficiency over the old

algorithm as well as make it possible to solve larger and more complex problems. A new

knowledge representation called a Bayesian Forest [34, 31] will then be explored to see if that

representation is able to resolve some of the deficiencies that still exist with the WAODAG

representation and to see if the new reasoning algorithm can be generalized to work with the

new knowledge representation.

1.5 Solution

First, we developed and extensively studied an efficient algorithm for inferencing with

WAODAGs which incorporates knowledge of the structure of the graphs into all phases of the

problem. We useq. WAODAGs because of their versatility and subsumption of other models

such as Bayesian networks [6].

We found that our solution is much better than existing algorithms. Most significantly

the algorithm is faster at finding the optimum solution as well as being able to solve much

larger problems than could ever be tackled before. Benchmarking of the new algorithm

against the old emphasi_zed testing with realistic large random graph structures which led to an

exploration of large·knowledge base graph structures. This study yielded important insights

into what the structure of very large real world knowledge bases might look like.

Additionally, we explored the new model for representing uncertainty called a Bayesian

Forest [34, 31] that overcomes many of the limitations and deficiencies of the other current

models. Models such as the Bayesian network can even be converted into Bayesian Forests

4

with no loss of information since Bayesian networks, like WAODAGS, are actually a subset

of Bayesian Forests. These Bayesian Forests can use either the current or new method of

inferencing and promise to efficiently solve larger and more complex problems than are

possible with current models and methods.

1.6 Executive Overview

We have successfully shown that information about the structure of a knowledge rep­

resentation can be incorporated into the problem in order to more efficiently solve for the

optimum solution. This research resulted in a new algorithm for inferencing with either

WAODAGs or Bayesian Forests that is more efficient and can solve larger and more complex

problems than were possible before. The Bayesian Forest knowledge representation was ex­

amined and found to be a more complete and versatile representation that actually subsumes

both the WAODAG and Bayesian network representations. It was found that the research

using the WAODAG representation can be generalized to work with the Bayesian Forest repre­

sentation. An efficiency study of the reasoning algorithms led to important insights into what

the structure of very large real world knowledge bases might look like. There are indications

that very large scale knowledge bases are likely subdivided into smaller loosely connected

cells that are themselves loosely connected. There are also indications that there might be

some general limit to the depth of a larger knowledge base, probably in the neighborhood of

5 to 8 levels of causality.

5

II. Literature Review

In this chapter we will discuss the three methods of manipulating uncertain knowledge

used most commonly in expert systems: Bayesian Networks [30], Dempster Shafer Theory

[11, 37] and Fuzzy Logic [46, 45]. We will describe the basis of each method as well as

some of their inherent advantages and disadvantages. Finally we will discuss a relatively new

method of representing [6] and manipulating [34] uncertain knowledge called a WAODAG

[6]. This method provides an efficient means of reasoning while eliminating some of the

weaknesses of the previous methods [34].

2.1 Bayesian Networks

Bayesian belief networks are rooted in traditional subjective probability theory which

builds on the foundation of Pascalian calculus. In subjective probability theory the probability

of a proposition represents the degree of confidence an individual has about that proposition's

truth. This matches quite well to our knowledge base of information from a human expert in

addition to his or her subjective beliefs about the accuracy of that information [29, 30].

Before we can describe Bayesian belief networks we must begin with the fundamentals

of probability theory. Let A be some event within the context of all possible events E, within

some domain, such that A E E and E is the event space. The probability of A occurring

is denoted by P (A). P (A) is the probability assigned to A prior to the observation of any

evidence and is also called the apriori probability. This probability must conform to certain

laws. First, the probability must be non-negative and must also be less than one, therefore

'v'A E E,O ~ P(A) ~ 1 (1)

A probability of O means the event will not occur while a probability of 1 means the

event will always occur. Second, the total probability of the event space is 1 or in other words

6

the sum of the probabilities of all of the events Ai in E must equal 1.

(2)

Finally, we consider the compliment of A, ,A, which is all events in E except for A.

From equation 2 we then get

P (A) + P (,A) = 1 (3)

Now consider another event in E, B such that B E E. The probability that event A will

occur given that event B has occurred is called the conditional probability of A given Band

is represented by P (A I B). The probability that both A and B will occur is called the joint

probability and is defined by P (An B). P (A I B) is defined in terms of the joint probability

of A and B by

P (A I B) = P (An B)
P(B)

Equation (4) can be further manipulated to yield Bayes Rule

p (A I B) = p (B I A) X p (A)
P(B)

(4)

(5)

If these two events are independent, in that the occurrence of one event has no effect on the

occurrence of the other, then P (A I B) = P (A) and P (BI A)= P (B). If we manipulate

equation 5 still further we get

P(B I A) X P(A)
p (A I B)_ = [P (B I A) X p (A)]+ [P (B I A) X p (,A)] (6)

This lays the foundation for managing and manipulating uncertainty using probability

theory in expert systems. It allows us to tum a rule around and calculate the conditional

probability of A given B from the conditional probability of B given A. For example

consider the rule, if hypothesis A is true then some evidence B will be observed with a

7

Figure 1. A small Bayesian network.

probability of p. Without knowing the truth value of A, if B is observed then from the

previous equations we can calculate the probability that hypothesis A is true [4, 29, 30].

Bayesian belief networks use this information in a graphical form, an acyclic directed

graph, to represent and manipulate uncertain knowledge. Nodes in the graph represent states

or events and have some conditional probability of occurrence associated with them. The arcs

connecting the nodes represent the conditional dependencies between nodes. Each arc may

only connect two nodes and must be unidirectional. Figure 1 presents a small example network

with only four nodes. In this example the state of node C is dependent on the state of node A,

and the state of node D is dependent on the states of both nodes A and B. Nodes A and B

are independent nodes if we are given D. Nodes C and D are independent of one another if

we are given A and B. Therefore to determine the conditional probability of D we need only

concern ourselves with the states of A and B since P (DI A, B, C) = P (DI A, B). We

can also determine from the graph that P (CI A, B, D) = P (CI A). In order to determine

the probability of a possible world where each node has a set value, for example A and C

are True and B and_ D are False, we must have all of the conditional probabilities from the

following list.

P(A)=Pa

P(C I A)= w

P(B) =Pb

p (CI ,A)= X

P(,C I A)= y P(,C I ,A)= z

P(fl I A,B) = a P(fl I A,,B) = b

P(fl 1 ·A,B) = C P(fl 1 ·A,,B) = d

P (,fl I A, B) = e P (,fl I A, ,B) = f
p (-,fl I ,A, B) = g p (-,fl I ,A, ,B) = h

The number of probabilities for each dependent node is equal to 2n where n is the number

of conditional dependencies for the node [29, 30, 35]. To find the probability of a particular

world we must have a complete assignment to all nodes in the graph. The conditional

probabilities from the table for the appropriate instantiations are then multiplied together to

give the probability of the world. In the previous example, the probability of the world would

be w x f if we are given A is true and B is false. The object of inferencing is to find the

world with the maximum probability given the evidence.

Some of the advantages of Bayesian belief networks are that the representation is visual

and easy to understand. It is also relatively straight forward to implement as the methodology

for combining uncertainty follows set rules and procedures. Probability theory is a well-refined

method for dealing with knowledge of unknown certainty [29, 30].

Bayesian belief networks still have some problems. They require large numbers of

probabilities that must be obtained from the human expert. The number of probabilities is

dependent on the complexity of the conditional dependencies in the domain. They also cannot

represent cycles (eg. A implies B and B implies A) or infinite loops would occur during

inferencing. Additionally because the sum of all possible states must equal 1, when evidence

reinforces the belief in some possible world, it correspondingly decreases our belief in all other

worlds. This is not necessarily the case in real life. Consider the case of medical diagnosis. A

positive result on some test may increase our belief that the patient has some malady, however

it does not necessarily decrease our belief that the patient has any other disease. It may in

fact have no effect at all on our belief in another possible world. Finally, Bayesian networks

9

require us to make certain artificial assumptions about the independence of information/events

leading to counter intuitive, possibly incorrect results [18, 24, 21, 29, 30, 13, 35].

2.2 Dempster-Shafer Theory

Dempster-Shafer Theory (DST) was started by Arthur Dempster in the 1960's and

expanded by Glen Shafer in the 1970's [11, 37]. Dempster felt there was a need for a new

system of dealing with uncertainty because of two shortcomings he saw with probability

theory. The first problem is the difficulty of representing ignorance. In probability theory

ignorance is represented by uniform probabilities. To some, this approach seems to imply

more information than was given, since equal prior beliefs can be attributed to either complete

ignorance or to an equal belief in all hypothesis. The other problem Dempster recognized with

probability theory was the idea that the subjective belief in an event and its negation must sum

to one. He claimed that in many situations evidence that supports one hypothesis shoufd not

necessarily decrease the belief in all others [11, 29, 37].

Dempster-Shafer theory represents ignorance explicitly by working with the power set

of all possible hypothesis within the domain. It also does not fix the probability of the negation

of a hypothesis once the probability of the hypothesis itself is known.

Like probability theory DST starts with a universe of possible hypotheses, called the

frame of discernment. However, in DST that universe contains the power set of those

possible hypotheses and that is its foundation. In a universe U with possible singleton

hypotheses A, B, and C such that A,B, and CE U, there are 9 possible hypotheses including

{A}, { B}, { A, B}, and.{ A, B, C}. Ignorance is represented by hypothesis sets that contain

more than one element. If the focal elements, subsets of U with nonzero basic probability

assignments, are alt°singletons, then no ignorance exists regarding their occurrences. Further

more, in DST evidence against a hypothesis only supports the negation of that hypothesis. For

example, evidence against the hypothesis {A} (A and only A) supports its negation { B, C}

(everything but A) but does not effect the other hypotheses sets such as {A, B}, {B}, or

{ A, C} [9, 11, 29].

10

If we now consider the subset A of U, the probability assigned to the set A is represented

by m (A), which is the portion of total belief that has been assigned to A. An additional notation

is Bel (A) which is a measurement of the total belief in A. For singletons Bel (A) = m (A),

however for sets that contain more than one element this measurement is greater than or equal

tom. For example, Bel ({ A, B}) = m ({ A, B}) + m ({A}) + m ({ B}) 2 m ({ A, B})

[9, 11, 29].

When the available evidence yields more than one belief measurement about a single

hypothesis, the beliefs should be combined to form a single overall belief in the hypothesis.

DST does this by computing their orthogonal sums with Dempster's rule of combination

[11, 29].

Although Dempster-Shafer theory overcomes the representational difficulties of prob­

ability theory concerning ignorance and disconfirming the negation of a hypothesis it suffers

from implementational complexity. The frame of discernment requires the exhaustive enu­

merating of all possible set of hypotheses within the domain universe. More importantly, DST

lacks an effective methodology for extracting inferences from the belief functions. The result

is that very few expert systems have ever been built using DST [9, 29, 38].

2.3 Fuv,y Logic or Possibility Theory

Fuzzy Theory or Possibility Theory was first developed by Lotfi Zadeh in the mid 1960's

as an alternative to probability theory for representing and dealing with vague or imprecise

information [46, 45]. In a knowledge base much of the information from the human experts

is laced with phrases such as "very likely," "probably," and "sort of." When these terms are

translated into subjecti~e numeric probabilities the "fuzziness" is lost. Zadeh developed fuzzy

logic to accurately manipulate this vague knowledge without loss of information. To do this

the traditional binary logic of probability theory is replaced with a multivalued logic [46].

In a typical knowledge base of rules, with their antecedents and consequents, approximate

matching of facts to a rule's antecedent is difficult or impossible with conventional two valued

logic but becomes natural for multivalued fuzzy logic [29, 46].

11

Fuzzy logic starts with some set of objects, U. If A is a fuzzy subset of U then there is

some function µ A (u) which maps the elements of U into A by some number between O and 1.

This number represents the degree of membership of the element in the set A. The difference

from normal set theory is that rather than belonging or not belonging to a set, the elements of

U can partially belong. Ifµ A (u) = 1 then membership is absolute and µ A (u) = 0 indicates

nonmembership. When English modifiers are encountered in a rule base, these formula are

altered using particular modifier rules to indicate increases or decreases in set membership

[17, 29].

Inferencing in possibility theory is performed using generalized modus ponens. In

standard modus ponens, if "A ---+ B" and "A" are true then "B" is true. In generalized modus

ponens matching is not required to be exact and predicates can by fuzzy. For example, if A,

A*, Band B* are fuzzy statements and we have the rule "If Xis A Then Y is B" then given

"Xis A*" implies Y is B* ." [17, 29]

Possibility theory enables inherently fuzzy knowledge to be represented and manipulated

explicitly and easily with no loss of information. It does suffer from its share of problems

however. Some properties of fuzzy sets have the potential to create inconsistencies when

reasoning with fuzzy information. Another problem is the inherent lack of formal definitions

for functional modifier rules. This can lead to inconsistencies between knowledge bases.

Some subtle information can also be lost when similar linguistic terms are assigned the same

modifier function. Perhaps the most important problem is that possibility theory lacks formal

semantics [7, 17, 29]. These problems have not stopped many from creating successful expert

systems [2, 14] particularly in Japan where fuzzy logic is widely used in a variety of fields

[23, 29].

2.4 Weighted AND OR Acyclic Directed Graphs

Another possible knowledge representation is called a Weighted AND/OR Directed

Acyclic Graph (WAODAG) [6]. Like the Bayesian belief network this is a graphical knowl­

edge representation. An example of a small WAODAG is shown in Figure 2. The graph is

12

Root or
Evidence

Figure 2. A simple Weighted AND OR Directed Acyclic Graph or WAODAG.

made up of nodes and interconnections or edges. The nodes represent facts or propositions in

our knowledge base and can be either true or false. If a node is clamped or set to some value

before the inferencing process begins then it is considered evidence and signifies what we are

trying to explain. The edges represent relationships or dependencies between the propositions.

The nodes come in three flavors, AND, OR, and LEAF nodes. An AND node is only true if

all of the nodes it is dependent on, its child nodes, are true. An OR node is only true if one

or more of the nodes it is dependent on is true. The LEAF nodes are those nodes that have

no children and represent the possible hypotheses explaining the evidence. Originally each

node has a cost which is the logarithm of the probability for that rule. It has been shown in [6]

that the costs on the individual nodes can be combined and settled down to the LEAF nodes

without loss of generality. The cost at the LEAF represents the cost incurred if this node is

determined to be true. Summing the costs of the LEAF nodes that have been determined to

be true, to find the cost of the particular world is equivalent to multiplying their probabilities

[6]. The process of inferencing attempts to determine the best cost assignment of nodes in the

graph to explain the evidence.

13

This representation works very well for modeling knowledge bases composed of if­

then rules, one of the easiest and most flexible ways for knowledge engineers to codify the

knowledge in a particular domain (42]. Figure 3 demonstrates how we convert two different

types of rules into their corresponding representation for the WAODAG.

1: IF Event A occurs OR Event B occurs THEN Event C
will occur with a Probability of P(CIA) + P(CIB)

2: IF Event A occurs AND Event B occurs THEN Event
C will occur with a Probability of P(CIA,B)

Cost of node C: Cost of node C:
Log [P(CIA) + P(CIB)] Log [P(CIA,B)]

Figure 3. Converting rules from a rule base into nodes and edges for a WAODAG.

A flexible and structured knowledge representation is only half of the solution however.

An efficient algorithm for inferencing over the representation must also be present for an

effective and usable system. (34] has developed such a system. The algorithm converts

the graphical structure of the WAODAG into a series of linear inequalities. This system

of equations can then be solved using efficient linear programming techniques such as the

Simplex method from the field of Operations Research (22, 28, 36, 27].

In order to convert the graph into the system of equations we let the true and false

states of the nodes be represented by 1 and O respectively. We then let Xn denote a variable

representing the state of node n. If n is true, Xn = 1 and if n is false Xn = 0. Further, we let

14

Dn represent the set of an nodes that are children of node n, Sis the set of all evidence nodes

and Ln is the set of all leaf nodes.

From [34] the complete set of equations representing the graph are:

ifqisanANDnode: L xv- I Dq I +1::; Xq
VpEDq

if q is an OR node: L xv ~ Xq
VpEDq

if q is an OR node: 'efp E Dq { xq ~ xv}

Evidence: 'ef q E S Xq = 1

Cost function: L costxq x Xq
qELq

(7)

(8)

(9)

(10)

(11)

-c12)

Equations 7 and 9 comprise the backward chaining constraints since they dictate propagation

from the direction of the evidence while equations 8 and 10 represent the forward chaining

constraints and dictate propagation from the direction of the causes or hypotheses [34].

Equation 12 is the cost function that the Simplex method will attempt to minimize in order to

determine the most probable explanation for the evidence. From our example WAODAG in

Figure 2, Figure 4 shows the system of linear inequalities created to describe that graph.

For the Simplex algorithm to solve them the first four equations are manipulated into

the following form:

(13)

Xq - L Xp ~ 1- I Dq I (14)
VpEDq

(15)

(16)

15

Root or
Evidence

A~C
A~D
AS:C+D
B s; D
B s; F
B~D+F-1
Cs; E
CS:F
C~E+F-1
D~G
D~H
DS:G+H

Figure 4. The simple WAODAG and the equations describing it.

Solving the equations using the Simplex algorithm involves a two stage process. The

first phase of the Simplex algorithm finds a possible solution in the feasible space of solutions.

The second phase of the Simplex algorithm finds the optimum solution. This two stage

process is guaranteed to find the optimum solution (34, 22, 27, 36]. One problem arises in that

the optimum solution using this method may not be an integral solution; or rather, does not

correspond to a 0-1 assignment or mapping of values to the nodes. Because an assignment of

1 to a node indicates it is true and a O indicates it is false, a complete and valid assignment

to the graph must be an integral 0-1 mapping. In the case of a non-integral solution the

algorithm must go through an iterative branch and bound process to find the best integral

solution. Research has shown that the entire algorithm exhibits an expected case polynomial

time growth rate instead of the exponential growth rate of current search techniques (34].

2.5 Summary of methods

Each of the previous methods has its advantages and disadvantages. To quickly sum­

marize:

16

2.5.1 Bayesian Belief Networks. The advantages of Bayesian Belief Networks are

that it is a graphical representation that is easy to visualize and relatively straight forward

to implement as well as having strong semantics and proven techniques for manipulation of

information to calculate probabilities. The primary disadvantage is that it requires extensive

probability tables. In fact inferencing has been shown to be an NP-Hard process [15, 8, 10, 39].

Other disadvantages include that it cannot represent cycles and requires certain possibly

artificial independence assumptions. Finally there is the problem that all probabilities must

sum to 1 which requires that evidence supporting belief in one possible world must decrease

the belief in all other possible worlds whether correct or not.

2.5.2 Dempster-Shafer Theory. The advantages of Dempster-Shafer Theory lie in

its ability to better represent ignorance as well as its structure allowing evidence supporting

one possible world to not necessarily detract from belief in all other worlds. The disadvan­

tages occur because of its implementational complexity and the requirement for exhaustive

enumeration of all possible combinations of hypotheses. Dempster Shafer Theory also lacks

an effective methodology for extracting inferences.

2.5.3 Fuz.zy Logic or Possibility Theory. The advantages of Fuzzy Logic are

that it not only models uncertainty well but represents and manipulates this fuzzy knowledge

explicitly. In addition this representation makes it very easy for knowledge engineers to codify

the knowledge in a particular domain. Unfortunately fuzzy logic lacks semantics for efficient

inferencing. There is also the potential for inconsistencies due to inherent properties as well

as a general lack of formal definitions for functional modifier rules.

2.5.4 Weighted- AND OR Acyclic Directed Graphs. Like Bayesian networks,

Weighted AND/OR Acyclic Directed Graphs are a graphical and intuitive knowledge rep­

resentations that translates easily from a rule base. One of the most significant advantages

of using the method of converting the graph to a system of linear inequalities and solving

this linear program is that the algorithm exhibits an expected case polynomial time growth

17

rate [34]. In addition, the use of the probabilities associated with the rules provides strong

semantics to the costs used in the representation [6]. While the disadvantages are that it still

cannot deal with cyclic information and the current method of converting and solving the

linear programs limits the size of the problem that can be solved.

18

Ill. Methodology

In this chapter we will discuss how we can improve computational efficiency in the

original reasoning algorithm by incorporating information about the structure of our knowledge

representation. By incorporating structural information into the problem before it is presented

to the inferencing mechanism we hope to reduce the problem size and complexity, thereby

reducing the amount of time necessary to solve for the best or most probable solution.

3.1 Reasoning Algorithm Enhancement

The original reasoning algorithm developed in [34] converts a directed acyclic graph

into a system of linear inequalities. It then solves these equations using the Simplex method in

a two stage process. The first phase of the Simplex algorithm determines an initial solution in

the feasible space. The second phase of the Simplex algorithm finds the optimal solution. If

the optimal solution is not an integral solution the algorithm must utilize a branch and bound

process to find the optimal integral solution. This process is depicted in Figure 5.

The problem with the Simplex method is that it is an algorithm for optimizing arbitrary

sets of linear inequalities. It blindly solves for the optimal solution without any knowledge

of where the equations come from or what they represent. It is our belief that we can take

advantage of information about the structure of our knowledge representation and incorporate

this knowledge into the equations to reduce the size and complexity of the problems that

are fed to the Simplex method thereby reducing the amount of time necessary to solve for

the optimum or most probable solution. To improve the computational efficiency of the

inferencing algorithm we have three areas we can attack: the Simplex phase 1 calculations,

the Simplex phase 2 calculations, and the branch and bound process.

3.2 Jumpstart Solution

3.2.1 Initial Jumpstart. It was observed in early, very preliminary jumpstart work

[32, 34], that phase 1 of the algorithm took an average of 60% of the total solve time during

19

Convert WAODAG to a
system of Linear

Inequalities

Simplex Phase 1
(find initial solution)

Simplex Phase 2
(find optimum solution)

Branch and Bound

No

No

Most Probable
Explanation

Figure 5. Process flow for solving a WAODAG.

20

test runs. Therefore a quick means of giving the algorithm an initial solution, or jumpstart,

would allow it to bypass phase 1 (see Figure 6) and possibly decrease the time required to

solve for the optimal solution. This initial solution does not need to be the best solution, only

one of the possible solutions. It gets the algorithm into the feasible space of solutions from

which the optimum can then be calculated.

Convert WAODAG to a
system of Linear .,___ ..

Inequalities

Simplex Phase 1
(find initial solution)

Simplex Phase 2
(find optimum solution)

Figure 6. Jumpstart process flow.

In order to provide an initial solution we must have an assignment of truth values to the

nodes in the graph representing the path of a possible solution. From equations 7 through 10

and the dependency definitions of the node types AND and OR which define the framework

of the graph, we can determine how the truth values will propagate from the nodes that have

been clamped or set to a value of true. Figure 7 describes this propagation.

There are two types of propagation, forward (from a node to its parents) and backward

(from a node to its children). We will first consider backward propagation since that is what

leads us from the evidence to our hypothesis or explanation of the evidence. If an AND node

is clamped to true then-all of its children must also be true. If even one of them is false, then

the AND node can no longer be said to be true. If an OR node is clamped to true then we

know that one or more of its children must be true. For this first phase of the jumpstart we

simply pick a single node at random to clamp to true and further propagate from there. As

we propagate our truth values toward the hypothesis nodes there can also be propagation back

toward the evidence nodes (forward chaining or propagation). If a node is clamped to true

21

At least one must be true.

Figure 7. Truth value propagation from the AND and OR nodes.

then any of its parent nodes that are OR nodes, by direct dependency, must also be true. Any

parent of the clamped node that is an AND node will also need to be clamped if all of its other

children are already true and this last child completes its dependency.

Figure 8 is an example of the propagation from an evidence node B which has been

clamped to true. Node Bis an OR node and since it is clamped to true, we know that one

or more of its children must also be true. If we pick node F and clamp it, we can further

propagate the truth values. If node F is true then because it is an AND node, nodes H and I

must also be true. If we then tum our attention to node F's parents we will see that node C

becomes true by direct dependency. Additionally if all of node D's other children are already
-

true then clamping F to true will cause node D to become true. We also show a continuing

upward propagation from node C to node A which is a type OR parent of C.

Using the propagation information we can determine a path from the evidence nodes

to the hypothesis nodes including all other nodes which must be clamped to true in between.

Once we have a possible solution, the equations that represent the graph can be modified to

22

Evidence
True

Hypotheses

Backward or
Downward
Propagation

Forward or
Upward
Propagation

True

Figure 8. Truth value propagation in a small sample graph.

23

Parent

Child

incorporate the solution. When the new set of equations is passed to the Simplex algorithm,

it will drop immediately into phase 2 of the calculations, bypassing phase 1.

3.2.2 Incorporating the Jumpstart Solution. The method for incorporating the

jumpstart solution into the equations describing the graph is straightforward and adds very

little overhead to the creation of the linear program. As we create the equations representing

the WAODAG we check each node to see if it is in the jumpstart solution. If the node is in

the solution we negate it and subtract 1 from the opposite side of the equation [22, 32]. Any

leaf nodes in the jumpstart are also negated in the cost function [22, 32]. For example in the

equations

if A were in the jumpstart solution the equations would become

-A~B-1

-A~ B +C-1

and if C were also in the jumpstart then the equations become

-A~B-1

-A~ B-C

Looking back at our earlier example WAODAG in Figure 4, Figure 9 shows how the equa­

tions are modified to incorporate a jumpstart solution. These modifications to the equations

describing the WAODAG represent how known information is incorporated for the Simplex

24

Original
Equations

A~C
A;::D
ASC+D
BSD
BSF
B;::D+F-l
CSE
CSF
C;::E+F-l
D;::G
D~H
DSG+H

Equations if
node Bis our

evidence

A~C
A;::D
ASC+D
lSD
lSF
2~D+F
CSE
CSF
C;::E+F-l
D;::G
D~H
DSG+H

Equations modified
with Jumpstart

J umpstart: A, D, F, H

-A~C-l
-A~-D
-ASC+ -D
OS-D
OS-F
O~-D+ -F
CSE
CS-F+l
C~E+ -F
-D~G-l
-D~-H
-DSG+ -H

Figure 9. Incorporating the Jumpstart Solution into the equations.

method and is sufficient to allow the algorithm to bypass phase 1 and move directly into phase

2 to find the optimal solution.

3.3 Heuristic Jumpstart

The next area we can attempt to improve is the phase 2 calculations of the Simplex

algorithm. The object is to determine an initial solution that is closer to the optimum solution

than the previous jumpstart algorithm provided. We will still bypass phase 1 of the calculations

but we should also reduce the number of phase 2 calculations necessary to optimize from the

better initial solution. This will also help to avoid the problem that if the initial solution

provided by the jumpstart algorithm is sufficiently more costly or further from the optimal

solution in the feasible space than the solution found by the standard phase 1 calculations,

then it is conceivable that the jumpstart may result in a longer solve time than the original

non-jumpstart algorithm.

One way we can improve the solution provided by the jumpstart algorithm is by incor­

porating a heuristic to make better choices during the process. Two possible heuristics were

25

considered. Both methods employed a propagation of the costs from the leaves prior to the

search. During the search for the jumpstart path any choices as to which path to take could

then utilize the. propagated costs in a greedy algorithm to chose the lowest local cost.

The first method starts with the costs at the leaves of the graph. We then propagate the

costs in stages to each successive layer of parents until we reach the root nodes. A parent node

is assigned a cost based on the costs of its child nodes. If a parent is an OR node then its cost

is assigned to be the lowest cost of its children since this would be the least cost that could be

incurred by clamping this node. If a node is an AND node then its cost is assigned to be the

highest cost of its child costs since the node will have at least this cost if it is clamped. Figure

10 presents an example of this propagation. Notice that in this example the heuristic actually

fails by picking the two nodes with costs 10 and 11 for a combined cost of 21 over the leaf

with a cost of 18.

ROOT - No Parents max of 9 & 9 =9

min of 9 & 11 = 9 min of 10 & 9 = 9

Figure 10. Cost propagation heuristic method A.

The second method also starts with the costs at the leaves and propagates costs to each

successive layer of parent nodes. However, in this method nodes are assigned a cost based on

26

the costs of the edges entering them (edges that come from their child nodes). The process of

assigning the costs is then similar to the first heuristic. If the node is an AND node then its

cost is the maximum of the costs coming into it. If the node is an OR node then its cost is the

minimum of the costs coming into it. The costs are propagated out of the nodes toward the

parent nodes by splitting the nodes' cost equally between its outgoing edges. In Figure 11 the

cost of 18 for leaf L2 is split equally between its two outgoing edges. This heuristic does not

max of 1 o & 11 = 11

min of 18 & 11 = 11 min of 10 & 18 = 1 O

Figure 11. Cost propagation heuristic method B.

fail in the same situation as heuristic A however it also has its problems. If the cost of node

L2 were 20 then node B would have to chose between two incoming edges both of cost 10

and there is the possibility that it may chose the incorrect one.

Based on studies of very similar heuristics for A* search algorithms done in [5], the

second heuristic was chosen for the implementation. The splitting of the costs in the second

method seems to be more intuitive because we are sharing the cost of a node among all of

its parent nodes which prevents us from propagating the total cost of the node multiple times.

Also going through some small examples by hand using the first heuristic it was apparent

27

that it would probably not gain us much over picking a node at random. In this case either

heuristic would still be an admissible heuristic since it will never prevent the optimal solution

from being found and as long as we impose backtracking. The only purpose of the heuristic

is to provide a better jumpstart solution and reduce the amount of time necessary to find the

optimal solution in phase 2 of the calculations.

3.4 Branch and Bound

In some cases, the solution provided by the Simplex method does not correspond to

a 0-1 mapping to the nodes. In this case the linear program solver algorithm employs an

iterative branch and bound process [34], illustrated in Figure 12. The algorithm picks a node

xq, called the active node, that is non-integral and creates two new linear programs each with

a new constraint of Xq = 1 or Xq = 0 that it in tum sends to the Simplex algorithm. Each

time an integral solution is found its cost is compared to the current best solution. If it is

less, then it becomes the current best. If the solution is non-integral and the total cost is less

than the current best cost, a new active node is chosen from this sub-problem and two more

sub-problems are created. If the total cost of the non-integral solution is greater than the

current best cost or the sub-problem has no solution, then the branch is pruned. This process

continues until there are no more branches to explore. At this point the current best integral

solution is the overall best solution for the graph. An example of this process is shown in

Figure 13.

The branch and bound process was not necessary very often, in fact early studies [34]

observed that for the random WAODAGs tested only 3% required branch and bound to solve.

When branch and bou_nd is required however, the time to solve the random WAODAGs

increases by an average of 236%. In addition, earlier work suggests that the percentage of

real world problems requiring branch and bound to solve might be much greater than for

the random WAODAGs [34]. Therefore, for completeness as well as the potential cost for

requiring branch and bound in real world problems we shall attempt to improve the efficiency

of the branch and bound process.

28

N
\0

:n
1 -!-.J

t:x:l
~

§
(')
::r

8.
t:x:l
g
5.

"O

~
r:,,
r:,,

=ti
0
~

Simplex Phase 1
(find initial solution)

Simplex Phase 2
(find optimum solution)

Create two new
subproblems

No

Yes

Prune Branch

Make this solution the
current best solution

Current Best is the Most
Probable Explanation

(

\ ,...
II ,o

\

,...
II

IQ

....
u
II

cii
0 u

J

Figure 13. Branch and Bound example.

30

,...

The algorithm which solves the linear programs already uses various techniques, such

as the dual simplex method [22], to reduce the number of computations required to solve the

multitude of linear programs created by the branch and bound process. If we could reduce

the size of each of those sub-problems we should be able to substantially reduce the time to

solve for the final optimal solution. The generic application created to solve arbitrary linear

programs has the capability to accept additional clamping information. The application checks

each node to see if clamping this node requires any additional nodes to be clamped. If a node

is clamped its value is set and known so it can be eliminated from the problem. The result is

that each subsequent linear program is reduced in size and should reduce the amount of time

required to solve the whole problem.

3.4.1 Resultant Clamping of Other Nodes. After the equations for the boolean

linear program (BLP) have been created, it is necessary to determine which other nodes must

be clamped to either 1 or 0 if we clamp each node individually in the graph. Figures 14 and

15 show the local propagation of l's and O's from an OR node and an AND node that have

been clamped to either 1 or 0.

If an OR node is clamped to 1 we can't make any determination as to which of its children

are clamped. We know that at least one must be clamped but we don't know which one or

ones. We can however tell that any parent nodes that are also OR nodes must additionally

be clamped to 1. If there are any parent AND nodes that have all of their other children

already clamped then they too must be clamped. The same clamping decisions are made for

the parents of an AND node clamped to 1. For the AND node however we can also make a

determination about its children; because it is an AND node, if it is clamped to 1 then all of

its children must also be clamped to 1. Moving back to the OR node in the case of it being

clamped to 0, we can tell that all children of the OR node must be clamped to 0 since if any

were non-zero the central OR node could not be 0. Also any parent AND nodes are rendered

false or clamped to 0 because of this central clamping to 0. For the AND node clamped to 0

the only clamping we can make is similar to that of the OR node with regard to any parent

AND nodes.

31

Figure 14. Local propagation of 1 'sand O's from an OR node.

Figure 15. Local propagation of 1 'sand O's from an AND node.

32

With this in mind, since we must already pass along the information about the active

node being clamped to O or 1, we can also pass along the information about the resultant

clampings.

3.4.2 Eliminating Unnecessary Equations. We can also use the clamping infor-

mation to delete certain equations from the set describing the WAODAG to further reduce

the size of the problem. The reason we can do this is because the clampings cause some of

the equations to become vacuously or always true. For example if we look at equation 7 and

clamp an AND node to O then this set of equations becomes

(17)

which is always true, therefore this set of equations may be discarded in this particular case.

Similarly if an .AND node is set to 1 the equation corresponding to equation 8 may be discarded.

If an OR node is set to O the equation corresponding to equation 9 may be discarded. Finally,

if an OR node is clamped to 1 the set of equations corresponding to equation 10 may be

discarded.

In addition we can add an additional equation to the system of linear inequalities utilizing

the jumpstart cost since it was an integral solution. If the algorithm must resort to branch and

bound it can use this cost as a lower bound to reject paths with costs greater than the jumpstart

path.

With this information passed to the Simplex algorithm, should branch and bound be

required, each of the linear programming problems to be solved will be significantly reduced

in size. A similar approach has also been successfully used for Bayesian networks alone [33].

33

TV. Implementation

In this chapter we will first discuss the implementation of the benchmarking studies of

the algorithms. We will then discuss the causes behind our research into the structure of large

knowledge bases and how we went about studying them. Finally we examine the problem of

full propagation of truth values versus backward propagation only.

4.1 Testing

The purpose for these experiments was to measure the improvement in efficiency for

the new algorithms over the original algorithm. We wanted to use problems that would be

representative of those that the algorithms might see in actual use as well as larger and more

complex problems than are currently possible in order to show scalability. Because of the

difficulty of Average Case Analysis we use empirical studies which should still show the

necessary trends. Random test files were used in order to be as general as possible and to

prevent testing to only a few or one particular application area.

It was necessary to develop a test methodology that would provide valid results in order

to run benchmarking tests on the new algorithms and compare them to the old algorithm. It

was determined that running a series of randomly generated test files on all algorithms side by

side and measuring the CPU time each took to solve for the optimal solution would provide

adequate results to determine the difference in efficiency trends. The UNIX time command

was used to measure the CPU time used by each process. Additionally au· of the tests were

run on the same computer.or on computers of equal configuration. The nominal configuration

of the testbed was a Sun Sparcstation 20 with 64 MB of RAM and between 500 Meg and 1

Gigabyte of swap space. The algorithms themselves, including the original, were all written

in C++ and compiled with the same optimization settings.

The initial sizes of the test files used were 10, 25, 50, 100, 200, 400, 500, 800, 1000,

1500, and 2000 nodes. It soon became clear that only the 200, 400, 500, 800, 1000, 1500,

and 2000 node cases were of any real interest. The 10, 25, and 50 node graphs were solved

34

in less than a second and the 100 node graphs averaged 3 seconds. This did not provide

enough variation in measurements to make an accurate comparison. Comparisons between

the original algorithm and the enhanced algorithms is also difficult beyond the 400 node cases

because the original algorithm is not able to solve (in a reasonable amount of time) the larger

graphs beyond some level of complexity. When the problem size becomes too large or too

complex the original algorithm gets stuck in phase 1 of the computations. The algorithm

theoretically will eventually find the answer but it takes more than several hours to do so.

Because of the large number of test files we ran against the algorithms, test runs that exceeded

eight hours were terminated.

The original reasoning algorithm developed in [34] was used as the baseline for the

testing. The original algorithm translated the graph into a system of linear inequalities which

was then passed to the Simplex algorithm to find the best integral solution. This solution is

the most probable explanation of our evidence. The system of linear inequalities produced by

the original algorithm included no information about the structure of the knowledge represen­

tation. Tests consisted of comparing the solve time of the Simplex method against five other

systems of equations: the system of equations with the jumpstart information incorporated,

the system with the heuristic jumpstart information incorporated, the system with the branch

and bound information incorporated, the system with the jumpstart and branch and bound

information incorporated, and finally the system with the heuristic jumpstart and branch and

bound information incorporated.

4.2 Graph or Knowledge Base Structure

While testing the original graph solver algorithm and the first jumpstart algorithm against

a series of randomly generated WAODAGs, it was observed that a large percentage of the

graphs required more than 90 percent of the total number of nodes to be true for a complete

assignment to the knowledge base. This was the case even when the number of evidence

nodes set to true was limited to 4 in the 200 and 500 node cases. In a medical diagnosis

knowledge base this might be equivalent to saying that given a particular set of patient

35

symptoms, the patient has every disease and should have every other symptom (because of

forward propagation of truth values).

The firsr randomly generated graphs had high connectivity, that is there was a large

number of edges in the graph (averaged 10 percent of the maximum possible number of edges

in a fully connected graph). Additionally a node at one level could connect to any other node

in a lower level (topological ordering of nodes).

Various combinations of the height of the graph, level of connectivity and ratio between

the number of AND and OR nodes were experimented with. The result was no signifi­

cant decrease in the number of nodes clamped for a complete truth assignment. Figure 16

demonstrates what these graphs might look like.

Evidence Nodes

Hypothesis Nodes

Figure 16. A purely random WAODAG.

36

It was therefore decided that the structure of the graph must not be typical of real world

knowledge bases. A change was made to the random graph generator to add a horizontal

ordering to the-original vertical ordering. When the graph is generated the user inputs a range

of values for the number of vertical slices in the graph. A slice metric parameter is used to

control the level of cross linking between slices. The nodes in the new graph have a strong

tendency (controlled by the slice metric) to connect only with the lower nodes in their own

slice. This in effect creates a series of columnar subgraphs with various levels of connectivity

between the subgraphs such as that shown in Figure 17.

Evidence Nodes

Hypothesis Nodes .
I

Figure 17. A columnar WAODAG.

37

Again, tests were run comparing the original solver algorithm to the jumpstart version

of the algorithm. A number of cases were run varying the height of the graph, level of

connectivity and ratio between the number of AND and OR nodes, as well as the number of

vertical slices and the slice metric. In most of the cases the complete truth assignment still

required more than half of the total number of nodes to be clamped to true.

4.3 Full Propagation versus Backward Propagation Only

One possible cause for this is forward or upward propagation of truth values. When

we clamp a node to true, we propagate the truths backward from the evidence nodes to the

cause or hypothesis nodes. If the newly clamped node is an OR type node then one of its

children must be clamped to true. If the newly clamped node is an AND type node then for

it to be true, all of its children must be true. Once this clamping is accomplished we forward

propagate the truth values from the nodes we just clamped toward the evidence nodes. When

fully propagated this gives a complete truth assignment to all nodes.

A question arises as to whether it is necessary to forward propagate truth values. In a

medical diagnosis system a certain amount of forward propagation may be useful in order to

let the doctor know what other symptoms should be present if the patient has been diagnosed

with a particular disease.

In [6] it was shown that using backward propagation only does result in a valid solution

to the problem. In fact, because it is not a complete assignment of the graph, the backward

propagation only solutions should have lower costs than the full propagation solutions. The

problem arises in the expl_anation of the solution. A minimal cost solution with a full assign­

ment of values in the WAODAG corresponds directly to the most probable explanation in the

Bayesian belief network [6], however a partial solution is missing some node assignments

so the final cost does not correspond to a valid probability for that world. We cannot in

fact determine what the actual probability of this world is, we only know that it is the most

probable.

38

Therefore if we require the actual probability of a solution then full propagation, both

forward and backward, is necessary. However if our only concern is what is the most probable

solution then forward propagation is not necessary and backward only propagation will provide

a valid solution.

39

V. Test Results

The primary purpose for these experiments was to compare the efficiency of the new

inferencing algorithms to the original algorithm. Figure 18 gives a brief summary of the test

graphs used. It is interesting to note that in previous research the largest graphs tested had at

Nodes Edges Hypotheses
Minimum 100 149 13
Maximum 2000 5236 352

Figure 18. This is a summary of the test graph parameters.

most 387 nodes and a maximum of 699 edges [32].

A full summary of the test graph statistics is shown in Appendix A. It is broken down by

the number of nodes and then into sub-categories to summarize the total set of test files, those

that did not require branch and bound to solve, and those that did require branch and bound

to solve. The total number of graphs used in the comparison was 185. Percent improvement

was calculated using the accepted method [20].

It should be noted that there exists a certain inherent amount of inefficiency in the way

the graphs are stored. The current method used to store the WAODAGs uses an adjacency

matrix to represent the connections or edges between the nodes. In order to determine the

children or parents of a node using the pre-existing software, the entire list of nodes must be

searched for connections . .A more efficient method of storage might be to use a linked list for

the children and another for the parents of each node.

The results of the tests performed were excellent. Using the CPU time each algorithm

required to solve for the optimum solution as the metric, Figure 19 shows a significant

improvement over the original algorithm. The upper graph represents tests done using both

forward and backward propagation, while the lower graph represents tests performed using

backward propagation only. It is interesting to note that the increase in efficiency is much

40

more significant when considering backward propagation only. This is most likely the result of

the large reduction in the number of equations necessary to describe a graph using backward

propagation only. Backward propagation only actually requires only half of the equations

necessary for describing full propagation. Figure 20 shows the execution time growth rate

of the original reasoning algorithm compared to that of the jumpstart algorithm. The least

squares best fit equations for both algorithms are presented below each graph.

From the test results we make the following observations. The largest improvement

appears to come from the incorporation of the jumpstart information. The heuristic jumpstart

does not actually add much in terms of a time savings over the original jumpstart algorithm.

Due to the fact that so few of the random graphs had to resort to branch and bound to solve,

it is difficult to estimate what effect our improvements would generally have on actual real

world graphs. From the test runs we do have it seems there should be a significant time savings

particularly as the graph size becomes large. Finally, the overhead of finding the jumpstart

initial solution, heuristic jumpstart solution and the branch and bound information averages

about 3

41

Figure 19. Results of algorithm comparison using CPU time used as the metric.

42

800

rl.l
"CS = 600
0
~
QJ
rl.l

p 400
~ u

200

500

rl.l
400

"CS = 0 300
~
QJ
rl.l

p 200
~ u

100

Execution Time Growth Curve
Full Propagation

200 400 600 800 1000

Number of Nodes in Graph
Original Algorithm: 2.00- 0.21 x + 0.0015 x2 - 3.62 • 10-7 x3

Jumpstart Algorithm: 1.96 - 0.21 x + 0.0015 x2 - 7.32 • 10-7 x3

Execution Time Growth Curve
Backward Propagation Only

200 400 600 800

Number of Nodes in Graph

1000

Original Algorithm: 0.93 - 0.68 x + 0.00042 x2 + 1.80 • 1 o-7 x3

Jumpstart Algorithm: -4.56 + 0.12 x - 0.00033 x2 + 3.34 • 10-7 x3

Figure 20. Execution time growth curves comparing the original algorithm and the jumpstart
algorithm. 43

VI. Advanced Knowledge Representation - Bayesian Forest
-

In this chapter we will explore a new knowledge representation called a Bayesian Forest

which promises to be much more versatile in representing complex real world knowledge.

We will further show that our techniques for inferencing as well as problem reduction from

incorporating structural knowledge can be generalized to work with this new knowledge

representation.

6.1 Bayesian Forests

The research presented thus far focused on the WAODAG representation, however that

representation still has some deficiencies. It cannot model cyclic information and we cannot

assign costs to false states of a node. A Bayesian Forest is a new representation that subsumes

both WAODAGs and Bayesian networks.

In the Bayesian Forest, the nodes of the graph represent individual instantiations of the

random variables rather than the random variables themselves. This has the direct advantage

of allowing us to assign probabilities/costs to all of the instantiations of a random variable.

For instance we can now assign a probability/cost to a random variable A being true as well as

a probability/cost for it being false. However instead of each instantiation itself being true or

false they are either active or inactive and the node itself might represent a true instantiation or

a false instantiation. For example if we have a boolean random variable A, its instantiations

are A = True and A= False. Random variables may also have more than two states (eg.

A = Red, A= Green, A = Blue, and A ,; Yellow). It should also be obvious that only

one instantiation of a variable can be active at any given time. In the previous example either

A = True is active and A= False is inactive or A= True is inactive and A = False is

active. We can create this constraint with a single equation for each node. If we let Xn denote

a variable representing the state of a proposition n (eg. x 1 -+ A) then we can let Xn; denote

a particular instantiation of Xn (eg. xii -+ (A = True) and x 12 -+ (A = False)). If Xn;

is active, Xn; = 1 and if Xn; is inactive Xn; = 0. Further, if we let In represent the set of all

44

possible instantiations of Xn then the equation is

Vn (18)

Another significant advantage of the separate instantiations is that we can now directly

represent the following type of cycle. Given random variables A, B, C, and D:

{ B = T} I\ { C = T} ➔ { A = T}

{A= F} A {D = T} ➔ {C = F}

(19)

(20)

(21)

which cannot be modeled by either the WAODAG or the Bayes net because this would amount

to

BI\C ➔ A

AI\D ➔ C

6.2 Converting a Bayesian Belief Network into a Bayesian Forest

One of the great strengths of this representation is that we can take a Bayesian belief

network and convert it directly into a Bayesian Forest with no loss of information. In fact

the Bayesian Forest representation becomes more versatile as we shall see. If we start with

the small example of a Bayesian network in Figure 21 the process to convert it to a Bayesian

Forest is relatively straightforward. Each node in the Bayesian network is first separated into

its individual instantiations. From the probability table we then add support nodes, one for

each entry in the conditional probability table. These support nodes act as AND nodes and

the instantiations of the random variables act much like OR nodes. The probabilities are

assigned to the support nodes. One obvious constraint on the support nodes is that they may

45

P(C=TIA=T, B=T) = a
P(C=TIA=T, B=F) = b
P(C=TIA=F, B=T) = c
P(C=TIA=F, B=F) = d
P(C=FIA= T, B= T) = e
P(C=FIA= T, B=F) = f
P(C=FIA=F, B=T) = g
P(C=FIA=F, B=F) = h

Figure 21. A simple Bayesian Belief Network.

only have a connection to one instantiation of a given random variable. Figure 22 shows the

complete transformation of Figure 21 into a Bayesian Forest, assuming that we have a complete

conditional probability table for the Bayesian network. The advantage of the Bayesian Forest

is that complete probability tables are not required. If some of the probabilities are missing or

cannot be determined the appropriate nodes are simply deleted from the graph and inferencing

continues with the probabilities we do have. To find the probability of a given solution

we simply multiply together the probabilities of the active nodes and during inferencing we

attempt to find the assignment of nodes that yields the highest probability. Another method is

to transform the probabilities into costs by taking their logarithm. As we did for WAODAGs

the sum of the costs is equivalent to multiplying the probabilities. The solution with the lowest

cost is then equivalent to that with the highest probability [6].

6.3 Converting a Bayesian Forest into a System of Linear Inequalities

As we can see from Figure 22 this representation is very similar to a WAODAG in this

particular case. In order to use the earlier work presented in this paper to create an efficient

inferencing algorithm for Bayesian Forests it is only necessary to generalize the method to

46

Boolean Random Variable node instantiations

pseudo OR node

P(C=TIA=T, B=T) = a
P(C=TIA=T, B=F) = b
P(C=TIA=F, B=T) = c
P(C= TIA=F, B=F) = d
P(C=FIA=T, B=T) = e
P(C=FIA= T, B=F) = f
P(C=FIA=F, B=T) = g
P(C=FIA=F, B=F) = h

Figure 22. Converting a Bayesian network to a Bayesian Forest.

47

work with Bayesian Forests. Given that

Dn is the set of all nodes that are children of node n

S is the set of all evidence nodes

Ln; is the set of all leaf node instantiations

In is the set of all instantiations of node n

Xn represents a support node n

Xn; represents a particular instantiation of some node n

(22)

(23)

(24)

(25)

(26)

(27)

if we only allow cycles of the type shown in Equation 19 the equations for the Bayesian Forest

become

if q is an AND support node: Vp E Dq { Xq S xv}

if q is an AND support node: L Xp- I Dq I + 1 S Xq
\/pEDq

if Qi is an OR node instantiation: L Xp 2:: Xq;
\/pEDq

if Qi is an OR node: Vp E Dq {xq; 2:: xv}

Evidence: Vqi ES Xq; = 1

Cost function: L costxq; x Xq;
q;ELq;

(28)

(29)

(30)

(31)

(32)

(33)

The semantics of the equations are the same as for the WAODAG [34]. Finally we add the

requirement that only one instantiation of a random variable can be active at any given time.

VQ (34)

Note that when we are creating the graph structure we must also ensure that each support node

is connected to no more than one instantiation of a given node.

48

From the transformation in Figure 22, we also begin to see why being able to work with

very large networks is important. Converting a Bayesian net to a Bayesian Forest results in a

much larger graph. If there are n nodes in the Bayesian net and there are y possible states for

each node then the Bayesian Forest can have as many as y x n instantiations plus a support

node for every probability available.

This representation coupled with the method of converting the graph to a system of

linear inequalities and solving those equations to find the most probable solution provides the

necessary components for a versatile and efficient inference engine. Such a system would

allow us to solve problems more efficiently as well as model and solve many more of the

complex real world problems we were unable to solve previously.

49

VII. Conclusion

7.1 Efficient Graph Solving Algorithms

Our method of incorporating structural information from the knowledge representation

into the problem prior to presenting it to the inferencing mechanism has been shown to

significantly reduce the total time to solve in the random graphs tested. This method of

problem reduction improves efficiency by reducing the amount of computations necessary to

solve for the optimal solution. In fact the greater the reduction in problem size, the larger the

initial problem to be solved can be.

Our research has further shown that if we are not concerned with the exact probability

of a solution and only wish to identify that it is the best solution, then using backward

propagation only allows the graphs to be solved much more quickly due to the red11ced

problem size. However, if we require the probability of the solution then both forward and

backward propagation are necessary. A second enticement to using backward propagation only

is the observation that we can solve problems at least twice as large as using full propagation.

7.2 Large Graph Structure

The empirical studies of large random graph structures have indicated some significant

trends that can be related to large real world knowledge bases. The first is that very large

knowledge bases do not seem to have uniformly distributed connections between nodes as

shown previously in Figure 16. In fact the nodes in a large knowledge base are likely

grouped together into smaller loosely connected subgroups or cells with some small amount

of interaction between ·them. During testing the graphs which produced the most intuitive

results were wide, low graphs with many columns. These graphs approached this idea of a

cellular structure. The visualization of the potential large graph structure is shown in Figure

23. The concept is also supported by recent research in the field of cognitive sciences which

suggests that much of our knowledge is compartmentalized.

50

Figure 23. What most large real world knowledge base structures probably look like.

51

The second trend of interest is in the expected maximum depth of the graph (maximum

levels of causality). Through observation of current knowledge bases [19] and our empirical

studies, it is expected that there will be some maximum depth to the cells in the knowledge

base and that even if the number of propositions or nodes in the graph or subgraph should

double, the depth will not increase significantly, if at all. The current maximum depth of

knowledge bases in use seems to be about 4 to 5 levels and even expecting our algorithms to

allow solving much larger and more complex problems, the depth of the subgraphs will likely

not exceed 8 levels.

7.3 The New Bayesian Forest Representation

The Bayesian Forest representation examined earlier solves several of the outstanding

deficiencies with the WAODAG representation, particularly in the area of representing cyclical

knowledge, as well as being able to assign costs or weights to all instantiations of a random

variable instead of just the true instantiation. The Bayesian Forest has the additional advantages

of allowing the conversion from a Bayesian belief network or WAODAG with no loss of

information; allowing the use of random variables with more than two possible instantiations;

and finally allowing reasoning with incomplete conditional probability tables. Because of its

similarity to the WAODAG in structure, generalization of the techniques for inferencing as well

as problem reduction from incorporating structural knowledge is relatively straightforward.

This combination of the Bayesian Forest knowledge representation and the Linear Constraint

Satisfaction approach for inferencing yields a powerful method of creating and efficiently

reasoning with large and complex real world knowledge bases in order to solve significant

problems and create useful tools.

7.4 Recommendations for Future Work

The next step is the actual implementation and testing of the Bayesian Forest repre­

sentation in conjunction with the linear constraint satisfaction method for inferencing and the

incorporation of structural knowledge to reduce problem size. This combination of knowledge

52

representation and inferencing mechanism should allow for the creation of larger and more

complex expert systems to solve real world problems than have ever been possible before.

Due to our results suggesting that real world knowledge bases may be loosely connected I

would recommend that any implementation of the Bayesian Forest experiment with using

linked lists to store the parents and children of each node rather than an adjacency matrix.

This will not only speed the search for children and parent nodes but also substantially reduce

the storage requirements for large graphs.

To further improve the efficiency and scalability of the algorithms further study of

large knowledge base structure may provide important heuristics for subdividing problems

into smaller pieces. It may be possible to precategorize or predefine the cells. Then, while

the knowledge base is being created, information as to which cells a node belongs to, is

incorporated into the nodes definition. This information might be used to eliminate some of

the cells from the inferencing process, particularly during backward only propagation when

the spreading of truth values from forward propagation is eliminated. The related field of

graph drawing might also lead to additional heuristics by allowing the easier visualization of

these large knowledge bases.

The other area that might be improved by additional or different heuristics is the

propagation of costs in the heuristic jumpstart method. A better quick initial solution would

further reduce the amount of work necessary from the linear program solver. One alternate

heuristic is a variation of the one used in this research. In the current heuristic the cost of

an AND node is assigned to be the maximum of the costs of the edges entering the node,

since setting the AND node to true will incur at least this cost. However, as an alternate

assignment, if the AND node is set to true then we know that all of its children must be true

and might assign it a cost that is the sum of all the edges entering the node. This might prove

to be a better heuristic for our application and provide more significant improvements over

the random jumpstart method.

53

VIII. Glossary

AND node A node that is true only if all of its children are true.

Any Time Algorithm After some point the algorithm can be stopped at any time and it will
have a valid answer. If left to continue the algorithm will improve
this answer until it finishes with the optimum solution.

Backward Propaga- Also called backward chaining. The propagation of values from the
tion evidence toward the possible hypotheses or causes for the evidence.

BLP Boolean Linear Program

Branching Table A table of information containing the local clamps possible for each
possible state of each node in the graph

Child node The nodes in the graph that a given node is dependent on for its
state.

Domain

Edge

Evidence node

Expert System

Exponential Growth

Feasible Space

Forward Propagation

Heuristic

Hypothesis node

A narrow area of study such as the diagnosis of infectious diseases.

The connection between two nodes which indicates a relationship
or dependency.

Nodes that are clamped to some truth value. These are the nodes or
evidence that we are trying to explain by our inferencing.

A framework consisting of a knowledge base, user interface and an
inference engine.

The function describing the computational time to solve or growth
rate is an exponential inn, with respect to the size of the knowledge
base or problem we are trying to solve. For example, if n represents
the size of the knowledge base then the time to solve for the optimum
solution might be represented by T(n) = C1eC2 n with C1 and C2

being some constants.

The portion of the problem space that contains only the feasible
assignments of the nodes. The vertices of the hypercube that de­
scribes this space correspond to integral solutions or assignments
of the nodes.
Also called forward chaining. The propagation of values from the
causes or hypotheses toward the evidence.

Involving or serving as an aid to learning, discovery, or problem­
solving by experimental and esp. trial-and-error methods (heuris­
tic techniques) (a heuristic assumption); also: of or relating to
exploratory problem-solving techniques that utilize self-educating
techniques (as the evaluation of feedback) to improve performance
(a heuristic computer program). [1]

Nodes that represent explanations for our evidence.

54

Inference Engine

Knowledge Base

Knowledge Represen­
tation

KBES

Leaf node

MBLP

Multinet

NP Hard

Parent node

Polynomial Growth

Problem Space

OR node

Reasoning Model

Research

Root node

The portion of the expert system that manipulates the knowledge in
the knowledge base.

A collection or database of knowledge within a narrow problem
domain.
How we represent the information we wish to reason with. Can
be either graphical or textual. The representation has a large im­
pact on what methods can be used to extract inferences from the
information.
Knowledge Based Expert System

Nodes that have no children. In our representations they are typi­
cally shown at the bottom of the graph and represent the possible
hypothesis to explain our evidence.

Mixed Boolean Linear Program - BLP file that includes the branch­
ing table information

A new graphical knowledge representation, similar to a WAODAG
except that the nodes represent individual instantiations of the ran­
dom variables rather than the random variables themselves.
Refers to a problem with a particular type of complexity. For a
complete description see (15].

A node that is dependent on the current node for its state.

The function describing the computational time to solve or growth
rate is a polynomial in n, with respect to the size of the knowledge
base or problem we are trying to solve.For example, if n represents
the size of the knowledge base then the time to solve for the optimum
solution might be represented by T(n) = C0 + C1n 1 + C2n2 +
C3n3 ... with Co, C1, C2, and C3 being some constants.

The space containing all possible combinations of node assignments
whether correct or not.
A node that is true if one or more of its children are true.

See Knowledge Representation

Studious inquiry or examination; esp: investigation or experimen­
tation aimed at the discovery and interpretation of facts, revision
of accepted theories or laws in the light of new facts, or practical
application of such new or revised theories or laws. The collecting
of information about a particular subject. [1]

Nodes that have no parents. In our representations they are typically
shown at the top of the graph.

55

Rule Base

Uncertainty

WAODAG

A knowledge base or collection of causal knowledge in the form
of if-then rules. For example: IF event A occurs THEN event B
will occur with a probability of X. This is one of the most intuitive
and easiest ways for a knowledge engineer to encode knowledge
for use by an expert system.

The quality of not knowing the truthfulness of our information.

A weighted AND OR directed acyclic graph. A knowledge repre­
sentation using AND and OR nodes to represent facts in a knowl­
edge base as well as their interrelationships.

56

Appendix A. Summary of Test Results

57

::n
(IQ
t:
'"1
(1)

N Average No Jump Average Ext Jump
f>- Percent Average No Jump Average Jump Average Ext Jump No Jump wbb Average Jumpw Ext Jump wbb
C/l Num of Total No Jump Solve Jump Solve Ext Jump Solve wbb Solve Jumpw bb Solve wbb Solve
t:
3 of in Solve Time Solve Time Solve Time Solve Time bb Solve Time Solve Time

3 Files Category Time StndDev Time Stnd Dev Time Stnd Dev Time Stnd Dev Time Stnd Dev Time Stnd Dev

~ 100 Nodes 30 100.00% 2.10 1.66 1.27 1.24 1.17 0.93 2.67 1.62 2.00 3.21 1.57 0.67

~
200 Nodes 30 100.00% 14.03 13.54 9.23 7.67 9.30 8.66 14.73 11.81 19.73 57.09 10.83 10.83

r:,, All Trials 400 Nodes 13 100.00% 143.15 100.46 110.54 90.86 102.23 96.91 139.85 79.90 103.62 59.82 105.31 89.68
C/l 500 Nodes 37 100.00% 106.86 99.29 82.46 73.65 82.97 74.40 111.76 99.36 89.73 78.37 90.70 79.27

800 Nodes (1) 15 100.00% i1!1;)ffl 11;1 153.40 117.04 153.20 98.95 .;11;1 Ill!~ 164.47 116.40 164.13 99.20 p:, -· 1000 Nodes (1) 40 100.00% iii®~ 1•:1 542.95 531.57 505.25 417.99 I l~,8$ •• 1~~~ 572.20 540.97 533.35 436.87 en Forward -· 100 Nodes 28 93.33% 1.70 0.72 1.07 0.65 1.04 0.63 2.32 0.93 1.43 0.62 1.54 0.63 (")
r:,, and

Vlo' Back Branch 200 Nodes 28 93.33% 10.89 6.44 8.29 5.87 7.93 4.99 12.11 6.67 9.18 5.16 9.00 5.01
00 '"1 Prop and Bound 400 Nodes 10 76.92% 117.10 59.24 68.90 31.47 68.40 28.65 122.70 59.48 76.20 32.72 74.90 30.22
~ Data(2) not 500 Nodes 35 94.59% 97.00 88.72 80.34 72.27 80.80 73.16 102.54 89.76 85.74 73.18 86.80 74.69
;] required 800 Nodes (1) 15 100.00% •• !;Jiit lirai 153.40 117.04 153.20 98.95 j~ijq ··11~~ 164.47 116.40 164.13 99.20 a 1000 Nodes (1) 39 97.50% i!ff;fg B!l 540.26 538.07 500.36 422.18 \\lt@1 JIU/I 569.92 547.67 529.62 441.80

§ Branch 100Nodes 2 6.67% 7.50 1.50 4.00 3.00 3.00 2.00 7.50 1.50 10.00 9.00 2.00 1.00

0.. and Bound 200 Nodes 2 6.67% 58.00 10.00 22,50 14.50 28.50 19.50 51.50 4.50 167.50 158.50 36.50 26.50
to required 400Nodes 3 23.08% 230.00 149.11 249.33 86.19 215.00 146.40 197.00 107.81 195.00 32.87 206.67 135.83
p:, (3) 500 Nodes 2 5.41% 279.50 114.50 119.50 86.50 121.00 85.00 273.00 119.00 159.50 121.50 159.00 117.00 (")
::,;"
~
p:, (1) These results do not include the tests graphs that the original algorithm could not a solve. These were eliminated because they would have scewed the results too much. .,, (2) Using Forward and Backward Propagation, none of the algorithms could solve the a 1500 and 2000 node cases in any reasonable amount of time.

"O (3) There were no 800 or 1000 node test graphs that required branch and bound p:,
(IQ
p:, -· 0
::s

~
~
ca
N
Vt

Cl'.I
C:
3
3
~
~
en
Cl'.I
~-en

=-· Vto
\Oen

o'
'"'
t:0

~ a .,,
a

"O

ifJ
~-
0
:,

0
2..
'<

All Trials

Back
Prop Branch
Only and Bound
Data not

required

Branch
and Bound
required
(5)

Average No Jump
Percent Average No Jump Average Jump Average Ext Jump No Jump wbb Average

Num of Total No Jump Solve Jump Solve Ext Jump Solve wbb Solve Jumpw
of in Solve Time Solve Time Solve Time Solve Time bb Solve

Files Category Time Stnd Dev Time StndDev Time Stnd Dev Time Stnd Dev Time
100 Nodes 30 100.00% 1.27 0.84 0.17 0.37 0.27 0.51 0.73 0.63 0.57
200 Nodes • 30 100.00% 3.23 3.90 2.93 4.63 2.23 1.20 3.90 3.51 3.80
400Nodes 14 100.00% 53.00 95.78 22.43 27.64 18.93 13.71 39.79 52.01 22.79
500 Nodes 38 100.00°/4 81.53 192.27 24.55 17.78 27.11 21.38 81.68 193.09 29.45
800 Nodes 15 100.00°/o 46.80 22.42 49.33 23.36 54.53 23.15 60.33 25.67 62.40
1000 Nodes 44 100.00°/o 533.14 1481.76 126.09 81.09 126.00 73.05 382.05 728.52 143.64
1500 Nodes (4) 5 100.00°/o

-

843.60 967.53 838.80 932.60 900.00
2000 Nodes (4) 5 100.00°/4 4703.00 2392.15 4387.80 2156.32 4367.00
100 Nodes 20 66.67% 1.00 0.43 0.20 0.40 0.20 0.40 0.50 0.50 0.40
200 Nodes 24 80.00°/o 2.08 1.26 3.04 5.15 2.13 1.24 2.92 1.15 3.96
400Nodes 8 57.14% 13.88 4.75 13.50 5.41 13.50 4.21 16.50 5.24 16.38
500 Nodes 30 78.95% 18.40 11.28 18.53 8.95 19.47 9.35 23.50 12.41 23.27
BOO Nodes 15 100.00°/o 46.80 22.42 49.33 23.36 54.53 23.15 60.33 25.67 62.40
1000 Nodes 33 75.00°/o 105.97 78.15 98.48 66.75 99.58 55.03 122.70 90.37 114.67
1500 Nodes (4) 4 80.00°/o- 405.00 456.39 418.00 449.24- 491.50
2000 Nodes (4) 5 100.00% 4703.00 2392.15 4387.80 2156.32 4367.00
100 Nodes 10 33.33% 1.40 0.92 0.10 0.30 0.40 0.66 1.20 0.60 0.90
200Nodes, 6 20.00°/o 7.83 6.57 2.50 0.76 2.67 0.94 7.83 6.07 3.17
400 Nodes 6 42.86% 105.17 128.88 34.33 38.67 26.17 17.98 70.83 67.73 31.33
500 Nodes 8 21.05% 318.25 322.71 47.13 23.58 55.75 28.35 299.88 340.90 52.63
1000 Nodes 11 25.00°/o 1814.64 2564.07 208.91 61.53 205.27 62.28 1160.09 1136.37 230.55
1500 Nodes (4) 1 20.00°/o-- 2598.00 0.00 2522.00 o.ooJlmll!II 2534.00

(4) The original algorithm was not able to solve the 1500 or 2000 node graphs even when using backward propagation only.
(5) There were no 800 or 2000 node graphs in our test suite that required branch and bound to solve.

Average Ext Jump
Jumpw Ext Jump wbb
bb Solve wbb Solve

Time Solve Time
StndDev Time Stnd Dev

0.50 0.63 0.55
4.48 3.03 1.20

19.13 20.00 8.19
19.21 33.39 26.41
26.90 71.40 37.81
81.98 145.14 76.47

948.64 875.00 890.68
1728.93 4333.40 1806.12

0.49 0.55 0.59
4.98 2.92 1.26
5.87 16.63 4.90
9.75 24.60 10.23

26.90 71.40 37.81
64.60 117.97 58.19

539.01 486.75 487.80
1728.93 4333.40 1806.12

0.30 0.80 0.40
0.90 3.50 0.76

26.08 24.50 9.43
26.76 66.38 39.27
65.51 226.64 66.16
0.00 2428.00 0.00

::n
(JQ
C:
@
N
?" -:3

"O a
<

Overall Overall

'
Overall Overall Overall Improvement Overall Improvement

Improvement Improvement Improvement No Jump to Improvement No Jump to
('II

:3
('II
::s

No Jump to No Jump to Jump to Ext No Jump w No Jump to Ext Jump w
Jump Ext Jump Jump bb Jumpw bb bb

~
rJ

100 Nodes 66.06% 80.30% 8.57% -21.12% 5.17% 34.26%

200 Nodes 51.99% 50.90% -0.00% -4.75% -28.89% 29.54%
('II
:::,
~

(JQ

All Trials
400 Nodes 29.51% 40.03% 10.00% 2.37% 38.16% 35.94%

500 Nodes 29.60% 28.79% 1.57% -4.38% 19.10% 17.82%
('II
rn 800 Nodes 23.77% .23.93% 3.45% -4.97% 15.44% 15.68%

0\ o' 0
'"'I

'Tl
0

~
~ a
§
0.

1000 Nodes 79.29% 92.67% 10.03% -8.15% 70.12% 82.52%
Forward

100 Nodes 59.01% 64.50% 3.45% -26.61% 19.26% 10.94%
and
Back Branch 200 Nodes 31.47% 37.39% 5.45% -10.03% 18.68% 21.03%

Prop and Bound 400 Nodes 69.96% 71.20% 3.37% -4.56% 53.67% 56.34%

Data not 500 Nodes 20.73% 20.05% 1.71% -5.41% 13.13% 11.75%
required 800 Nodes 23.77% 23.93% 3.45% -4.97% 15.44% 15.68%

0:,
~

1000 Nodes 61.54% 74.42% 10.62% -3.80% 53.13% 64.78%
0

[
~

Branch 100 Nodes 87.50% 150.00% 33.33% 0.00% -25.00% 275.00%

and Bound 200 Nodes 157.78% 103.51% -21.05% 12.62% -65.37% 58.90%
a required 400 Nodes -7.75% 6.98% 16.77% 16.75% 17.95% 11.29%

4' 500 Nodes
0

133.89% 130.99% 0.00% 2.38% 75.24% 75.79%
"O
~

(JQ

a -· 0
::s

:n
()Q
C:
"'1
0

Overall Overall
Overall Overall Overall Improvement Overall Improvement

Iv
-.1

Improvement Improvement Improvement No Jump to Improvement No Jump to
No Jump to No Jump to Jump to Ext NoJumpw No Jump to Ext Jump w -3

'O a
<

' Jump Ext Jump Jump bb Jump wbb bb
100 Nodes 660.00% 375.00% -37.50% 72.73% 123.53% 100.00%
200 Nodes 10.23% 44.78% 33.33% -17.09% -14.91% 6.59%

0
3
0 ::s
'i:l

400 Nodes 136.31% 180.00% 28.88% 33.21% 132.60% 165.00%

All Trials
500 Nodes 232.05% 200.78% -3.90% -0.19% 176.85% 144.13%
800 Nodes -5.14% -14.18% -1.37% -22.43% -25.00% -34.45%

0
"'1 1000 Nodes 322.82% 323.12% 9.45% 39.55% 271.17% 267.33%
(')
0 1500 Nodes 0.00% 0.00% 5.05% 0.00% -100.00% -100.00%
::s
ll)

°' ()Q 0

2000 Nodes 0.00% 0.00% 7.79% 0.00% -100.00% -100.00%
100 Nodes 400.00% 400.00% 0.00% 100.00% 150.00% 81.82%

Cl>

8'
"'1

Back 200 Nodes -31.51% -1.96% 46.00% -28.57% -47.37% -28.57%
Prop Branch 400 Nodes 2.78% 2.78% 8.70% -15.91% -15.27% -16.54%

t:d
ll)
(')
;i,;"

Only and Bound 500 Nodes -0.72% -5.48% 3.72% -21.70% -20.92% -25.20%
Data not 800 Nodes -5.14% -14.18% -1.37% -22.43% -25.00% -34.45%

~ a required 1000 Nodes 7.60% 6.42% 10.06% -13.63% -7.58% -10.17%
1500 Nodes 0.00% 0.00% 6.75% 0.00% -100.00% -100.00%

~
'O

2000 Nodes 0.00% 0.00% 7.79% 0.00% -100.00% -100.00%
100 Nodes 1300.00% 250.00% -75.00% 16.67% 55.56% 75.00%

~ Branch 200 Nodes 213.33% 193.75% -6.25% 0.00% 147.37% 123.81%
ll) -· and Bound 400 Nodes 206.31% 301.91% 42.14% 48.47% 235.64% 329.25%
0
::s required 500 Nodes 575.33% 470.85% -12.83% 6.13% 504.75% 379.47%
0
2..
'<

1000 Nodes 768.62% 784.01% 8.65% 56.42% 687.11% 700.68%
1500 Nodes 0.00% 0.00% 4.08% 0.00% -100.00% -100.00%

Graph Parameters

AND to
Num Num Max Avg Max Avg Root Clamped Leaf Graph Vertical Slice QR node

Nodes Edges Children Children Parents Parents Nodes Nodes Nodes Depth Slices Metric ratio

1 All Trjals Avg 100 236.97 7.80 2.n 10.17 1.87 32.93 2.87 26.07 4.43 2.93 0.25 0.70
0
0

No 8 and 8 Avg 100 227.70 7.50 2.60 10.05 1.80 33.75 3.00 26.70 4.30 2.70 0.25 0.70

'Tl
n BandBAvg . 100 255.50 8.40 3.10 10.40 2.00 31.30 2.60 24.80 4.70 3.40 0.25 0.70

(JQ
c:: ...,
(1)

2 All Trials Avg 200 451.90 8.23 2.43 11.00 1.63 63.30 2.63 48.13 5.63 3.00 0.25 0.70
0 No 8 and 8 Avg 200 452.29 8.25 2.46 10.96 1.63 63.04 2.63 48.38 5.67 3.08 0.25 0.70

N
CX)

O 8 and B Avg 200 450.33 8.17 2.33 11.17 1.67 64.33 2.67 47.17 5.50 2.67 0.25 0.70

~
rn
0 ...,

0\ .§
N :::r

Cll
c::

4 All Trials Avg 400 1038.93 9.36 2.71 13.79 2.14 120.07 3.00 78.86 6.86 2.86 0.25 0.70

0 No 8 and 8 Avg 400 1041.88 9.50 2.75 13.25 2.13 118.13 2.88 86.25 6.25 2.75 0.25 0.70
O Band BAvg 400 1035.00 9.17 2.67 14.50 2.17 122.67 3.17 69.00 7.67 3.00 0.25 0.70

T 5 All Trials Avg 500 1182.03 8.84 2.55 13.29 1.84 155.21 2.58 110.79 7.21 4.66 0.25 0.70
e o NoB and B Avg 500 1089.20 8.57 2.43 12.47 1.63 161.73 2.67 120.87 6.63 4.50 0.25 0.70
s 0

8 and BAvg 500 1530.13 9.88 3.00 16.38 2.63 130.75 2.25 73.00 9.38 5.25 0.25 0.70 t -
a S 8 All Trials Avg 800 1576.20 8.60 2.07 11.73 1.33 284.80 3.87 199.40 5.87 3.00 0.25 0.70
a
~
Cll
ii:,
rn

u 0 NoB and BAvg 800 1576.20 8.60 2.07 11.73 1.33 284.80 3.87 199.40 5.87 3.00 0.25 0.70
i 0 Band B Avg 800 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.70
t 1 All Trials Avg 1000 2522.48 9.50 2.59 14.73 2.09 295.09 2.30 193.64 8.07 4.36 0.25 0.70
e 0

NoB and BAvg
0 1000 2390.39 9.15 2.48 13.82 1.97 303.82 2.33 215.21 7.48 4.97 0.25 0.70

.....
0
rn 0 Band B Avg 1000 2918.73 10.55 2.91 17.45 2.45 268.91 2.18 128.91 9.82 2.55 0.25 0.70

1 All Trials Avg 1500 4370.00 10.00 2.60 18.00 2.60 398.80 1.40 170.00 10.00 5.00 0.25 0.70

~ No 8 and B Avg 1500 4210.50 10.00 2.50 17.50 2.50 411.00 1.50 168.75 10.00 5.00 0.25 0.70

0 Band BAvg 1500 5008.00 10.00 3.00 20.00 3.00 350.00 1.00 175.00 10.00 5.00 0.25 0.70

2 All Trials Avg 2000 5140.20 9.60 2.20 19.00 2.00 563.60 2.00 246.20 10.40 5.00 0.25 0.70
0
0

No B and B Avg 2000 5140.20 9.60 2.20 19.00 2.00 563.60 2.00 246.20 10.40 5.00 0.25 0.70

0 Band BAvg 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.25 0.70

Bibliography

1. Websters Ninth New Collegiate Dictionary, First Digital Edition. Merriam Webster Inc.,
1992.

2. Adlassnig, K.P. and G. Kolarz. "Cadiag-2: Computer Assisted Medical Diagnosis using
Fuzzy Subsets," Approximate Reasoning in Decision Analysis, 219-247 (1982).

3. Buchanan, Bruce G. and Edward H. Shortliffe. Rule-Based Expert Systems. Addison
Wesley, 1984.

4. Caudill, Maureen. ''The Possibilities of Probabilities," AI Expert, 8(3):28-31 (1993).

5. Chamiak, Eugene and Saadia Husain. "A New Admissible Heuristic for Minimal-Cost
Proofs." Proceedings of the AAA/ Conference. 446-451. 1991.

6. Chamiak, Eugene and Solomon E. Shimony. "Probabilistic Semantics for Cost Based
Abduction." Proceedings of the AAA/ Conference. 106-111. 1990.

7. Cheesman, P. "In Defense of Probability." Proceedings of the Ninth IJCAI:. 1985.

8. Cooper, Gregory F. Probabilistic Inference Using Belief Networks is NP-hard. Technical
Report KSL-87-27, Medical Computer Science Group, Stanford University, 1987.

9. Cortes-Rello, E. and F. Golshani. "Uncertain Reasoning Using the Dempster-Shafer
Method: an Application in Forecasting and Marketing Management," Expert Systems,
7(1):9-18 (1990).

10. Dagum, Paul and Michael Luby. "Approximating Probabilistic Inference in Bayesian
Belief Networks is NP-hard," Artificial Intelligence, 60 (JJ:141-153 (1993).

11. Dempster, A.P. "Upper and Lower Probabilities Induced by a Multivalued Mapping,"
Annals of Mathematics and Statistics, 38(2):325-339 (1967).

12. Duda, R. 0., et al. "Subjective Bayesian Methods for Rule-Based Inference Systems."
Proceedings of the National Computer Conference. 1976.

13. E.P.D. Pednault, S.W. Zucker and L.V. Muresan. "On the Independence Assumption Un­
derlying Subjective Bayesian Updating," Artificial Intelligence, /6(2):213-222 (1981).

14. Fieschi, M. et al. "Sphinx: An Interactive System for Medical Diagnosis Aids," Approx­
imate Reasoning in Decision Analysis, 269-275 (1982).

15. Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W. H. Freeman and Company, 1979.

16. Giarratano, Joseph and Gary Riley. Expert Systems, Principles and Programming. PWS
Publishing Company, 1994.

17. Giles, Ro gin. "Semantics· for Fuzzy Reasoning," International Journal of Man-Machine
Studies, /7(4):401-415 (1982).

18. Glymour, Clark. "Independence Assumptions and Bayesian Updating," Artificial Intel­
ligence, 25(1):95-99 (1985).

63

19. Gunsch, Gregg Major, USAF, "On the maximum expected depth of a real world knowl­
edge base." Personal Communication, 1994.

20. Hennessy, John L and David A Patterson. Computer Architecture A Quantitative Ap­
proach. Morgan Kaufmann Publishers, Inc., 1990.

21. Henry E. Kyburg, Jr. "Bayesian and Non-Bayesian Evidential Updating," Artificial
Intelligence, 31(3):217-293 (1987).

22. Hillier, Frederick S. and Gerald J. Lieberman. Introduction to Operations Research.
McGraw Hill Publishing Company, 1990.

23. lshizuka, M., K.S. Fu and J.T.P. Ya. "A Rule-Based Inference with Fuzzy Sets for
Structural Damage Assessment," Approximate Reasoning in Decision Analysis, 261-
268 (1982).

24. Johnson, Rodney W. "Independence and Bayesian Updating Methods," Artificial Intel­
ligence, 29(2):217-222 (1986).

25. Lindsay, R. K., et al. Applications of Artificial Intelligence for Organic Chemistry: The
DENDRAL Project. McGraw-Hill, 1980.

26. McDermott, John. "Rl: A Rule-Based Configurer of Computer Systems," Anificial
Intelligence, 19(1) (1982).

27. McMillan, C. Mathematical Programming. John-Wiley & Sons, Inc., 1975.

28. Nemhauser, George L., et al., editors. Optimization: Handbooks in Operations Research
and Management Science Volume 1, 1. North Holland, 1989.

29. Ng, Keung-Chi and Bruce Abramson. "Uncertainty Management in Expert Systems,"
IEEE Expert, 5(2):29-48 (1990).

30. Pearl, Judea. Probabalistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., 1988.

31. Santos, Jr., Eugene. Computing with Bayesian Multi-Networks. Technical ReportTR93-
10, Air Force Institute of Technology, 1993.

32. Santos, Jr., Eugene. "Efficient Jumpstarting of Hill-Climbing Search for the Most
Probable Explanation." Proceedings of International Congress on Computer Systems
and Applied Mathematics Workshop on Constraint Processing. 183-194. 1993.

33. Santos, Jr., Eugene. "A Fast Hill-Climbing Approach Without An Energy Function for
Finding MPE." Proceedings of the 5th IEEE International Conference on Tools with
Artificial Intelligence. 1993.

34. Santos, Jr., Eugene. "A Linear Constraint Satisfaction Approach to Cost-Based Abduc­
tion," Artificial Intelligence, 65(1):1-28 (1994).

35. Schocken, Shimon and Paul R. Kleindorfer. "Artificial Intelligence Dialects of the
Bayesian Belief Revision Language," IEEE Transactions on Systems, Man, and Cyber­
netics, 19(5): 1106-1121 (1989).

64

36. Schrijver, A. Theory of Linear and Integer Programming. John Wiley & Sons Ltd.,
1986.

37. Shafer, Glen. A Mathematical Theory of Evidence. Princeton University Press, 1976.

38. Shafer, Glen and Prakash P. Shenoy. "Propagating Belief Functions with Local Compu­
tations," IEEE Expert, I(3):43-52 (1986).

39. Shimony, Solomon E. Finding MAPsfor Belief Networks is NP-hard. Technical Report
PC 93-09, Mathematics and Computer Science Department, Ben Gurion University,
1993.

40. Shortliffe, E. H. Computer-Based Medical Consultation: MYCIN. Elsevier, 1976.

41. Shortliffe, E. H. and B. G. Buchanan. "A Model of Inexact Reasoning in Medicine,"
Mathematical Biosciences, 23:351-379 (1975).

42. Shortliffe, E. H. and B. G. Buchanan. "A Model of Inexact Reasoning in Medicine,"
Mathematical Biosciences, 23:351-379 (1975).

43. Stallings, William. "Fuzzy Set Theory Versus Bayesian Statistics," IEEE Transactions
on Systems, Man, and Cybernetics, 7(3):216-219 (1977).

44. Winston, Patrick Henry. Artificial Intelligence. Addison-Wesley, 1992.

45. Zadeh, L.A. "Fuzzy Sets," Information and Control, 8(3):338-353 (1965).

46. Zadeh, L.A. "Fuzzy Sets as a Basis for a Theory of Possibility," Fuzzy Sets and Systems,
J(l):3-28 (1978).

65

Vita
Captain Eric P. Baenen . He received

his undergraduate degree in Electrical Engineering from Rose-Hulman Institute of Technology
in June of 1989, prior to receiving a commission in the United States Air Force. Captain
Baenen's first assignment was to the 6545th Test Group, Hill AFB, Utah as an Acquisition and
Engineering Project Manger. From 1990 to 1991 Captain Baenen was the Engineering Annex
Monitor for the Test Groups Engineering and Technical Support Services Contract, acting
as the official liason between the Air'Force and the Contractor's 70+ engineering personnel.
In this capacity he oversaw and inspected all work done under the Engineering Annex for
the Test Group. From 1991 to 1993 Captain Baenen worked on the Advanced Range Data
System (ARDS) Project to revamp the Test Group's Mission Control Center to add virtual
reality large screen mission display capability as well as to bring high accuracy, high dynamic
Global Positioning System capability to test vehicles operating in and around the Utah Test
and Training Range. Captain Baenen also helped design, managed the installation of, and
was the first systems manager of the Test Group's first local area computer network spanning
nine buildings, including two wireless spread spectrum radio links to connect over 250 PCs,
workstations, and mainframes.

Captain Baenen can be contacted by

66

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to a•erage 1 hour per_respon~. including the time for re•i~ing Instructions, searching existing data sources,
gathering and matntalnin!! the data nttded. and completing and revIewIng the coUectlon of 1nformet1on. ~nd co~ments r~ard1n9 this !>"rden estimate or any othe, aspect of this
collection of information including suggestions for reducing this burden. to Washington Headquarters Services, Directorate or Information Operations and Reports, 1215 Jefferwn
Da•is Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-01B8), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) ,2. REPORT DATE

December 1994 1
3. REPORT TYPE AND DA TES COVERED

Master• s Thesis
4'. TITLE AND SUBTITLE S. FUNDING NUMBERS

Generalized Probabilistic Reasoning and Empirical Studies on
Computational Efficiency and Scalability

6. AUTHOR(S)

Eric Paul Baenen, Capt. USAF
I

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology. WP AFB OH 45433-6583 REPORT NUMBER

AFIT/GCE/ENG/94D-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

Expert Systems are tools that can be very useful for diagnostic purposes, however current methods of storing
and reasoning with knowledge have significant limitations. One set of limitations involves how to store and
manipulate uncertain knowledge: much of the knowledge we are dealing with has some degree of uncertainty.
These limitations include lack of complete information, not being able to model cyclic information and
limitations on the size and complexity of the problems to be solved. If expert systems are ever going to be able
to tackle significant real world problems then these deficiencies must be corrected. This paper describes a new
method of reasoning with uncertain knowledge which improves the computational efficiency as well as
scalability over current methods. The cornerstone of this method involves incorporating and exploiting
information about the structure of the knowledge representation to reduce the problem size and complexity.
Additionally, a new knowledge representation is discussed that will further increase the capability of expert
systems to model a wider variety of real world problems. Finally, benchmarking studies of the new algorithm
against the old have led to insights into the graph structure of very large knowledge bases.

14. SUBJECT TERMS

Expert System, Linear Constraint Satisfaction. Efficiency. Scalability.
Inferencing, W AODAG, Bayesian Forest, Knowledge Representation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500

15. NUMBER OF PAGES

75
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39,18
298-102

	Generalized Probabilistic Reasoning and Empirical Studies on Computational Efficiency and Scalability
	Recommended Citation

	tmp.1704480149.pdf.UGcA6

