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AFIT/GCFJENG/94D 

Abstract 

Expert Systems are tools that can be very useful for diagnostic purposes, however 

current methods of storing and reasoning with knowledge have significant limitations. One 

set of limitations involves how to store and manipulate uncertain knowledge: much of the 

knowledge we are dealing with has some degree of uncertainty. These limitations include 

lack of complete information, not being able to model cyclic information and limitations on 

the size and complexity of the problems to be solved. If expert systems are ever going to be 

able to tackle significant real world problems then these deficiencies must be corrected. This 

paper describes a new method of reasoning with uncertain knowledge which improves the 

computational efficiency as well as scalability over current methods. The cornerstone of this 

method involves incorporating and exploiting information about the structure of the knowledge 

representation to reduce the problem size and complexity. Additionally, a new knowledge 

representation is discussed that will further increase the capability of expert systems to model 

a wider variety of real world problems. Finally, benchmarking studies of the new algorithm 

against the old have led to insights into the graph structure of very large knowledge bases. 

Key Words: Expert System, Linear Constraint Satisfaction, Efficiency, Scalabil­

ity, Inferencing, WAODAG, Large Knowledge Base Structure, Knowledge Representation, 

Bayesian Forest. 
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Generalized Probabalistic Reasoning 

and 

Empirical Studies on Computational Efficiency and Scalability 

I. Introduction 

1.1 Background 

Knowledge Based Expert Systems (KBESs) are useful tools for aiding decision making, 

diagnosis, or process monitoring (44]. The expert system can be thought of as a.framework 

consisting of three primary parts, the knowledge base, the user interface and an inference 

engine. The knowledge base is the collection or database of knowledge within a narrow 

problem domain such as medical diagnosis of blood disorders or infectious diseases [ 41, 3, 40], 

prospecting for oil (12], modeling chemical interactions (25] or configuring computers (26]. 

The inference engine is the portion of the KBES that manipulates this knowledge in order to 

solve our problem (16]. 

Almost every domain that is of interest to expert systems developers contains knowledge 

that is inherently inexact, incomplete or immeasurable. The method used to manipulate and 

combine this information is important in order to avoid results that are inaccurate and counter 

intuitive. A great deal of controversy exists concerning which method is the best for modeling 

and reasoning with uncertainty (11, 30, 46]. The community is very polarized, each method's 

proponents feel that their method is the only viable solution. [30, 43]. 

The reasoning model is the method we use to represent the knowledge so that it can be 

manipulated to perform some task. The choice of our representation will affect or determine 

which methods of inferencing we can use. The uncertainty of the knowledge deals with 

the truth value of a fact or set of facts which are not entirely true or entirely false, but 

instead lie somewhere in between. In other words there is some level or scale of truthfulness. 
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Uncertainty is most often the result of inaccurate or incomplete information but can also 

be caused by reasoning with and combining incomplete information. Another important 

source is the inaccurate and conflicting combination of knowledge from multiple experts 

[11, 17, 29, 30, 46]. 

Three of the most common methods of representing and reasoning with uncertain 

knowledge are Bayesian Networks [30], Dempster-Shafer Theory [11, 37], and Fuzzy Logic 

[46, 45] each with their own strengths and weaknesses [17, 29]. A newer representation called 

a Weighted AND OR Directed Acyclic Graph (WAODAG) [6] is much more versatile in 

generally representing real world knowledge and combined with a method of converting the 

graph into a system of linear inequalities [34, 22, 36] should be much faster in solving for the 

optimum solution of a problem (34]. 

1.2 Problem 

The purpose of this research is to determine an inferencing methodology that will allow 

us to solve currently modeled problems more efficiently. We also want to be able to solve 

larger and more complex problems than were previously possible. 

The inferencing methodology must consist of two parts, the representational model and 

the method of extracting inferences from that representation. 

We will investigate new models ofrepresenting and reasoning with uncertain knowledge, 

such as WAODAGs, that resolve some of the problems and limitations of current reasoning 

methods. Specifically we want to address the problems of having incomplete information about 

the uncertainties we are reasoning with, of not being able to incorporate cyclic information, 

and limitations on the size and complexity of the problems we can attack. If we are ever going 

to be able to create systems that reason about significant real world problems and solve them 

in a reasonable amount of time, these are deficiencies that must be addressed. 

In real world problems, we rarely if ever have complete knowledge about a situation. 

This results in gaps in our information. Information about the actual uncertainties is no 

different. For instance, in a medical diagnosis the doctor may have evidence that supports the 
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diagnosis of a particular disease. Lack of that evidence, however, might not lend support to 

the diagnosis that the patient does not have the disease. 

Cyclic information is important because many of the processes that occur in nature are 

cyclic. For instance the simple representation of fire implies smoke and smoke implies fire 

cannot be represented in current methods. Current graph traversal techniques for inferencing 

require that the graphs be acyclic or they face the danger of infinite looping in the cycle. 

Perhaps one of the most significant deficiencies in current approaches is the size and 

complexity of the problems they are able to manipulate. If a user has to wait too long for the 

results (too long being dependent upon the application the expert system is being used for) they 

are unlikely to continue using the tools. In addition, if we are only able to solve small problems 

then some domains which could greatly benefit from such tools will be consistently out of 

reach of this technology, particularly when the problem cannot be broken down sufficiently. 

For example, the WAODAG representation is more versatile in representing uncer­

tain and partial knowledge than other representations, however the algorithm that solves a 

WAODAG is currently limited in the size and complexity of the problems it is able to solve. 

The WAODAG representation, like the other models, also cannot deal with cyclic information. 

1.3 Scope 

This study was limited to probabilistic models of representing uncertain information. 

Other models exist, however they lack the structured methodology and implementation of the 

. probabilistic models as well as the tools for analysis. 

1.4 Approach 

Earlier work with WAODAGs [34] demonstrated that inferencing could be accomplished 

by converting the WAODAG graphs into boolean linear programs [34, 36] which were then 

solved using techniques from the field of Operations Research such as the Simplex method 

[22, 27, 36, 28, 34]. The earlier methods while effective, are somewhat crude and limited in 

the size and complexity of problems they can solve. In addition, the Simplex method is an 
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algorithm for optimizing arbitrary sets of linear inequalities. It does not care where they came 

from or what they represent. It is our belief that we can take advantage of information about 

the structure of our representation and incorporate this knowledge into the equations to reduce 

the size and complexity of the problems that are fed to the Simplex method thereby reducing 

the amount of time necessary to solve for the optimum or most probable solution. 

The approach taken was to develop a new algorithm for inferencing with WAODAGs 

that incorporates and exploits knowledge of its structure to reduce the problem size and 

complexity. This should substantially increase the computational efficiency over the old 

algorithm as well as make it possible to solve larger and more complex problems. A new 

knowledge representation called a Bayesian Forest [34, 31] will then be explored to see if that 

representation is able to resolve some of the deficiencies that still exist with the WAODAG 

representation and to see if the new reasoning algorithm can be generalized to work with the 

new knowledge representation. 

1.5 Solution 

First, we developed and extensively studied an efficient algorithm for inferencing with 

WAODAGs which incorporates knowledge of the structure of the graphs into all phases of the 

problem. We useq. WAODAGs because of their versatility and subsumption of other models 

such as Bayesian networks [6]. 

We found that our solution is much better than existing algorithms. Most significantly 

the algorithm is faster at finding the optimum solution as well as being able to solve much 

larger problems than could ever be tackled before. Benchmarking of the new algorithm 

against the old emphasi_zed testing with realistic large random graph structures which led to an 

exploration of large·knowledge base graph structures. This study yielded important insights 

into what the structure of very large real world knowledge bases might look like. 

Additionally, we explored the new model for representing uncertainty called a Bayesian 

Forest [34, 31] that overcomes many of the limitations and deficiencies of the other current 

models. Models such as the Bayesian network can even be converted into Bayesian Forests 

4 



with no loss of information since Bayesian networks, like WAODAGS, are actually a subset 

of Bayesian Forests. These Bayesian Forests can use either the current or new method of 

inferencing and promise to efficiently solve larger and more complex problems than are 

possible with current models and methods. 

1.6 Executive Overview 

We have successfully shown that information about the structure of a knowledge rep­

resentation can be incorporated into the problem in order to more efficiently solve for the 

optimum solution. This research resulted in a new algorithm for inferencing with either 

WAODAGs or Bayesian Forests that is more efficient and can solve larger and more complex 

problems than were possible before. The Bayesian Forest knowledge representation was ex­

amined and found to be a more complete and versatile representation that actually subsumes 

both the WAODAG and Bayesian network representations. It was found that the research 

using the WAODAG representation can be generalized to work with the Bayesian Forest repre­

sentation. An efficiency study of the reasoning algorithms led to important insights into what 

the structure of very large real world knowledge bases might look like. There are indications 

that very large scale knowledge bases are likely subdivided into smaller loosely connected 

cells that are themselves loosely connected. There are also indications that there might be 

some general limit to the depth of a larger knowledge base, probably in the neighborhood of 

5 to 8 levels of causality. 
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II. Literature Review 

In this chapter we will discuss the three methods of manipulating uncertain knowledge 

used most commonly in expert systems: Bayesian Networks [30], Dempster Shafer Theory 

[11, 37] and Fuzzy Logic [46, 45]. We will describe the basis of each method as well as 

some of their inherent advantages and disadvantages. Finally we will discuss a relatively new 

method of representing [6] and manipulating [34] uncertain knowledge called a WAODAG 

[6]. This method provides an efficient means of reasoning while eliminating some of the 

weaknesses of the previous methods [34]. 

2.1 Bayesian Networks 

Bayesian belief networks are rooted in traditional subjective probability theory which 

builds on the foundation of Pascalian calculus. In subjective probability theory the probability 

of a proposition represents the degree of confidence an individual has about that proposition's 

truth. This matches quite well to our knowledge base of information from a human expert in 

addition to his or her subjective beliefs about the accuracy of that information [29, 30]. 

Before we can describe Bayesian belief networks we must begin with the fundamentals 

of probability theory. Let A be some event within the context of all possible events E, within 

some domain, such that A E E and E is the event space. The probability of A occurring 

is denoted by P (A). P (A) is the probability assigned to A prior to the observation of any 

evidence and is also called the apriori probability. This probability must conform to certain 

laws. First, the probability must be non-negative and must also be less than one, therefore 

'v'A E E,O ~ P(A) ~ 1 (1) 

A probability of O means the event will not occur while a probability of 1 means the 

event will always occur. Second, the total probability of the event space is 1 or in other words 
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the sum of the probabilities of all of the events Ai in E must equal 1. 

(2) 

Finally, we consider the compliment of A, ,A, which is all events in E except for A. 

From equation 2 we then get 

P (A) + P (,A) = 1 (3) 

Now consider another event in E, B such that B E E. The probability that event A will 

occur given that event B has occurred is called the conditional probability of A given Band 

is represented by P (A I B). The probability that both A and B will occur is called the joint 

probability and is defined by P (An B). P (A I B) is defined in terms of the joint probability 

of A and B by 

P (A I B) = P (An B) 
P(B) 

Equation ( 4) can be further manipulated to yield Bayes Rule 

p (A I B) = p (B I A) X p (A) 
P(B) 

(4) 

(5) 

If these two events are independent, in that the occurrence of one event has no effect on the 

occurrence of the other, then P (A I B) = P (A) and P (BI A)= P (B). If we manipulate 

equation 5 still further we get 

P(B I A) X P(A) 
p (A I B)_ = [P (B I A) X p (A)]+ [P (B I A) X p ( ,A)] (6) 

This lays the foundation for managing and manipulating uncertainty using probability 

theory in expert systems. It allows us to tum a rule around and calculate the conditional 

probability of A given B from the conditional probability of B given A. For example 

consider the rule, if hypothesis A is true then some evidence B will be observed with a 
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Figure 1. A small Bayesian network. 

probability of p. Without knowing the truth value of A, if B is observed then from the 

previous equations we can calculate the probability that hypothesis A is true [4, 29, 30]. 

Bayesian belief networks use this information in a graphical form, an acyclic directed 

graph, to represent and manipulate uncertain knowledge. Nodes in the graph represent states 

or events and have some conditional probability of occurrence associated with them. The arcs 

connecting the nodes represent the conditional dependencies between nodes. Each arc may 

only connect two nodes and must be unidirectional. Figure 1 presents a small example network 

with only four nodes. In this example the state of node C is dependent on the state of node A, 

and the state of node D is dependent on the states of both nodes A and B. Nodes A and B 

are independent nodes if we are given D. Nodes C and D are independent of one another if 

we are given A and B. Therefore to determine the conditional probability of D we need only 

concern ourselves with the states of A and B since P (DI A, B, C) = P (DI A, B). We 

can also determine from the graph that P (CI A, B, D) = P (CI A). In order to determine 

the probability of a possible world where each node has a set value, for example A and C 

are True and B and_ D are False, we must have all of the conditional probabilities from the 

following list. 

P(A)=Pa 

P(C I A)= w 

P(B) =Pb 

p (CI ,A)= X 



P(,C I A)= y P(,C I ,A)= z 

P(fl I A,B) = a P(fl I A,,B) = b 

P(fl 1 ·A,B) = C P(fl 1 ·A,,B) = d 

P (,fl I A, B) = e P (,fl I A, ,B) = f 
p ( -,fl I ,A, B) = g p ( -,fl I ,A, ,B) = h 

The number of probabilities for each dependent node is equal to 2n where n is the number 

of conditional dependencies for the node [29, 30, 35]. To find the probability of a particular 

world we must have a complete assignment to all nodes in the graph. The conditional 

probabilities from the table for the appropriate instantiations are then multiplied together to 

give the probability of the world. In the previous example, the probability of the world would 

be w x f if we are given A is true and B is false. The object of inferencing is to find the 

world with the maximum probability given the evidence. 

Some of the advantages of Bayesian belief networks are that the representation is visual 

and easy to understand. It is also relatively straight forward to implement as the methodology 

for combining uncertainty follows set rules and procedures. Probability theory is a well-refined 

method for dealing with knowledge of unknown certainty [29, 30]. 

Bayesian belief networks still have some problems. They require large numbers of 

probabilities that must be obtained from the human expert. The number of probabilities is 

dependent on the complexity of the conditional dependencies in the domain. They also cannot 

represent cycles (eg. A implies B and B implies A) or infinite loops would occur during 

inferencing. Additionally because the sum of all possible states must equal 1, when evidence 

reinforces the belief in some possible world, it correspondingly decreases our belief in all other 

worlds. This is not necessarily the case in real life. Consider the case of medical diagnosis. A 

positive result on some test may increase our belief that the patient has some malady, however 

it does not necessarily decrease our belief that the patient has any other disease. It may in 

fact have no effect at all on our belief in another possible world. Finally, Bayesian networks 
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require us to make certain artificial assumptions about the independence of information/events 

leading to counter intuitive, possibly incorrect results [18, 24, 21, 29, 30, 13, 35]. 

2.2 Dempster-Shafer Theory 

Dempster-Shafer Theory (DST) was started by Arthur Dempster in the 1960's and 

expanded by Glen Shafer in the 1970's [11, 37]. Dempster felt there was a need for a new 

system of dealing with uncertainty because of two shortcomings he saw with probability 

theory. The first problem is the difficulty of representing ignorance. In probability theory 

ignorance is represented by uniform probabilities. To some, this approach seems to imply 

more information than was given, since equal prior beliefs can be attributed to either complete 

ignorance or to an equal belief in all hypothesis. The other problem Dempster recognized with 

probability theory was the idea that the subjective belief in an event and its negation must sum 

to one. He claimed that in many situations evidence that supports one hypothesis shoufd not 

necessarily decrease the belief in all others [11, 29, 37]. 

Dempster-Shafer theory represents ignorance explicitly by working with the power set 

of all possible hypothesis within the domain. It also does not fix the probability of the negation 

of a hypothesis once the probability of the hypothesis itself is known. 

Like probability theory DST starts with a universe of possible hypotheses, called the 

frame of discernment. However, in DST that universe contains the power set of those 

possible hypotheses and that is its foundation. In a universe U with possible singleton 

hypotheses A, B, and C such that A,B, and CE U, there are 9 possible hypotheses including 

{A}, { B}, { A, B}, and.{ A, B, C}. Ignorance is represented by hypothesis sets that contain 

more than one element. If the focal elements, subsets of U with nonzero basic probability 

assignments, are alt°singletons, then no ignorance exists regarding their occurrences. Further 

more, in DST evidence against a hypothesis only supports the negation of that hypothesis. For 

example, evidence against the hypothesis {A} (A and only A) supports its negation { B, C} 

( everything but A) but does not effect the other hypotheses sets such as {A, B}, {B}, or 

{ A, C} [9, 11, 29]. 
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If we now consider the subset A of U, the probability assigned to the set A is represented 

by m (A), which is the portion of total belief that has been assigned to A. An additional notation 

is Bel (A) which is a measurement of the total belief in A. For singletons Bel (A) = m (A), 

however for sets that contain more than one element this measurement is greater than or equal 

tom. For example, Bel ( { A, B}) = m ( { A, B}) + m ( {A}) + m ( { B}) 2 m ( { A, B}) 

[9, 11, 29]. 

When the available evidence yields more than one belief measurement about a single 

hypothesis, the beliefs should be combined to form a single overall belief in the hypothesis. 

DST does this by computing their orthogonal sums with Dempster's rule of combination 

[11, 29]. 

Although Dempster-Shafer theory overcomes the representational difficulties of prob­

ability theory concerning ignorance and disconfirming the negation of a hypothesis it suffers 

from implementational complexity. The frame of discernment requires the exhaustive enu­

merating of all possible set of hypotheses within the domain universe. More importantly, DST 

lacks an effective methodology for extracting inferences from the belief functions. The result 

is that very few expert systems have ever been built using DST [9, 29, 38]. 

2.3 Fuv,y Logic or Possibility Theory 

Fuzzy Theory or Possibility Theory was first developed by Lotfi Zadeh in the mid 1960's 

as an alternative to probability theory for representing and dealing with vague or imprecise 

information [46, 45]. In a knowledge base much of the information from the human experts 

is laced with phrases such as "very likely," "probably," and "sort of." When these terms are 

translated into subjecti~e numeric probabilities the "fuzziness" is lost. Zadeh developed fuzzy 

logic to accurately manipulate this vague knowledge without loss of information. To do this 

the traditional binary logic of probability theory is replaced with a multivalued logic [46]. 

In a typical knowledge base of rules, with their antecedents and consequents, approximate 

matching of facts to a rule's antecedent is difficult or impossible with conventional two valued 

logic but becomes natural for multivalued fuzzy logic [29, 46]. 
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Fuzzy logic starts with some set of objects, U. If A is a fuzzy subset of U then there is 

some function µ A ( u) which maps the elements of U into A by some number between O and 1. 

This number represents the degree of membership of the element in the set A. The difference 

from normal set theory is that rather than belonging or not belonging to a set, the elements of 

U can partially belong. Ifµ A ( u) = 1 then membership is absolute and µ A ( u) = 0 indicates 

nonmembership. When English modifiers are encountered in a rule base, these formula are 

altered using particular modifier rules to indicate increases or decreases in set membership 

[17, 29]. 

Inferencing in possibility theory is performed using generalized modus ponens. In 

standard modus ponens, if "A ---+ B" and "A" are true then "B" is true. In generalized modus 

ponens matching is not required to be exact and predicates can by fuzzy. For example, if A, 

A*, Band B* are fuzzy statements and we have the rule "If Xis A Then Y is B" then given 

"Xis A*" implies Y is B* ." [17, 29] 

Possibility theory enables inherently fuzzy knowledge to be represented and manipulated 

explicitly and easily with no loss of information. It does suffer from its share of problems 

however. Some properties of fuzzy sets have the potential to create inconsistencies when 

reasoning with fuzzy information. Another problem is the inherent lack of formal definitions 

for functional modifier rules. This can lead to inconsistencies between knowledge bases. 

Some subtle information can also be lost when similar linguistic terms are assigned the same 

modifier function. Perhaps the most important problem is that possibility theory lacks formal 

semantics [7, 17, 29]. These problems have not stopped many from creating successful expert 

systems [2, 14] particularly in Japan where fuzzy logic is widely used in a variety of fields 

[23, 29]. 

2.4 Weighted AND OR Acyclic Directed Graphs 

Another possible knowledge representation is called a Weighted AND/OR Directed 

Acyclic Graph (WAODAG) [6]. Like the Bayesian belief network this is a graphical knowl­

edge representation. An example of a small WAODAG is shown in Figure 2. The graph is 
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Root or 
Evidence 

Figure 2. A simple Weighted AND OR Directed Acyclic Graph or WAODAG. 

made up of nodes and interconnections or edges. The nodes represent facts or propositions in 

our knowledge base and can be either true or false. If a node is clamped or set to some value 

before the inferencing process begins then it is considered evidence and signifies what we are 

trying to explain. The edges represent relationships or dependencies between the propositions. 

The nodes come in three flavors, AND, OR, and LEAF nodes. An AND node is only true if 

all of the nodes it is dependent on, its child nodes, are true. An OR node is only true if one 

or more of the nodes it is dependent on is true. The LEAF nodes are those nodes that have 

no children and represent the possible hypotheses explaining the evidence. Originally each 

node has a cost which is the logarithm of the probability for that rule. It has been shown in [6] 

that the costs on the individual nodes can be combined and settled down to the LEAF nodes 

without loss of generality. The cost at the LEAF represents the cost incurred if this node is 

determined to be true. Summing the costs of the LEAF nodes that have been determined to 

be true, to find the cost of the particular world is equivalent to multiplying their probabilities 

[6]. The process of inferencing attempts to determine the best cost assignment of nodes in the 

graph to explain the evidence. 
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This representation works very well for modeling knowledge bases composed of if­

then rules, one of the easiest and most flexible ways for knowledge engineers to codify the 

knowledge in a particular domain (42]. Figure 3 demonstrates how we convert two different 

types of rules into their corresponding representation for the WAODAG. 

1: IF Event A occurs OR Event B occurs THEN Event C 
will occur with a Probability of P(CIA) + P(CIB) 

2: IF Event A occurs AND Event B occurs THEN Event 
C will occur with a Probability of P(CIA,B) 

Cost of node C: Cost of node C: 
Log [ P(CIA) + P(CIB)] Log [ P(CIA,B) ] 

Figure 3. Converting rules from a rule base into nodes and edges for a WAODAG. 

A flexible and structured knowledge representation is only half of the solution however. 

An efficient algorithm for inferencing over the representation must also be present for an 

effective and usable system. (34] has developed such a system. The algorithm converts 

the graphical structure of the WAODAG into a series of linear inequalities. This system 

of equations can then be solved using efficient linear programming techniques such as the 

Simplex method from the field of Operations Research (22, 28, 36, 27]. 

In order to convert the graph into the system of equations we let the true and false 

states of the nodes be represented by 1 and O respectively. We then let Xn denote a variable 

representing the state of node n. If n is true, Xn = 1 and if n is false Xn = 0. Further, we let 
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Dn represent the set of an nodes that are children of node n, Sis the set of all evidence nodes 

and Ln is the set of all leaf nodes. 

From [34] the complete set of equations representing the graph are: 

ifqisanANDnode: L xv- I Dq I +1::; Xq 
VpEDq 

if q is an OR node: L xv ~ Xq 
VpEDq 

if q is an OR node: 'efp E Dq { xq ~ xv} 

Evidence: 'ef q E S Xq = 1 

Cost function: L costxq x Xq 
qELq 

(7) 

(8) 

(9) 

(10) 

(11) 

-c12) 

Equations 7 and 9 comprise the backward chaining constraints since they dictate propagation 

from the direction of the evidence while equations 8 and 10 represent the forward chaining 

constraints and dictate propagation from the direction of the causes or hypotheses [34]. 

Equation 12 is the cost function that the Simplex method will attempt to minimize in order to 

determine the most probable explanation for the evidence. From our example WAODAG in 

Figure 2, Figure 4 shows the system of linear inequalities created to describe that graph. 

For the Simplex algorithm to solve them the first four equations are manipulated into 

the following form: 

(13) 

Xq - L Xp ~ 1- I Dq I (14) 
VpEDq 

(15) 

(16) 
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Root or 
Evidence 

A~C 
A~D 
AS:C+D 
B s; D 
B s; F 
B~D+F-1 
Cs; E 
CS:F 
C~E+F-1 
D~G 
D~H 
DS:G+H 

Figure 4. The simple WAODAG and the equations describing it. 

Solving the equations using the Simplex algorithm involves a two stage process. The 

first phase of the Simplex algorithm finds a possible solution in the feasible space of solutions. 

The second phase of the Simplex algorithm finds the optimum solution. This two stage 

process is guaranteed to find the optimum solution (34, 22, 27, 36]. One problem arises in that 

the optimum solution using this method may not be an integral solution; or rather, does not 

correspond to a 0-1 assignment or mapping of values to the nodes. Because an assignment of 

1 to a node indicates it is true and a O indicates it is false, a complete and valid assignment 

to the graph must be an integral 0-1 mapping. In the case of a non-integral solution the 

algorithm must go through an iterative branch and bound process to find the best integral 

solution. Research has shown that the entire algorithm exhibits an expected case polynomial 

time growth rate instead of the exponential growth rate of current search techniques (34]. 

2.5 Summary of methods 

Each of the previous methods has its advantages and disadvantages. To quickly sum­

marize: 
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2.5.1 Bayesian Belief Networks. The advantages of Bayesian Belief Networks are 

that it is a graphical representation that is easy to visualize and relatively straight forward 

to implement as well as having strong semantics and proven techniques for manipulation of 

information to calculate probabilities. The primary disadvantage is that it requires extensive 

probability tables. In fact inferencing has been shown to be an NP-Hard process [15, 8, 10, 39]. 

Other disadvantages include that it cannot represent cycles and requires certain possibly 

artificial independence assumptions. Finally there is the problem that all probabilities must 

sum to 1 which requires that evidence supporting belief in one possible world must decrease 

the belief in all other possible worlds whether correct or not. 

2.5.2 Dempster-Shafer Theory. The advantages of Dempster-Shafer Theory lie in 

its ability to better represent ignorance as well as its structure allowing evidence supporting 

one possible world to not necessarily detract from belief in all other worlds. The disadvan­

tages occur because of its implementational complexity and the requirement for exhaustive 

enumeration of all possible combinations of hypotheses. Dempster Shafer Theory also lacks 

an effective methodology for extracting inferences. 

2.5.3 Fuz.zy Logic or Possibility Theory. The advantages of Fuzzy Logic are 

that it not only models uncertainty well but represents and manipulates this fuzzy knowledge 

explicitly. In addition this representation makes it very easy for knowledge engineers to codify 

the knowledge in a particular domain. Unfortunately fuzzy logic lacks semantics for efficient 

inferencing. There is also the potential for inconsistencies due to inherent properties as well 

as a general lack of formal definitions for functional modifier rules. 

2.5.4 Weighted- AND OR Acyclic Directed Graphs. Like Bayesian networks, 

Weighted AND/OR Acyclic Directed Graphs are a graphical and intuitive knowledge rep­

resentations that translates easily from a rule base. One of the most significant advantages 

of using the method of converting the graph to a system of linear inequalities and solving 

this linear program is that the algorithm exhibits an expected case polynomial time growth 
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rate [34]. In addition, the use of the probabilities associated with the rules provides strong 

semantics to the costs used in the representation [6]. While the disadvantages are that it still 

cannot deal with cyclic information and the current method of converting and solving the 

linear programs limits the size of the problem that can be solved. 
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Ill. Methodology 

In this chapter we will discuss how we can improve computational efficiency in the 

original reasoning algorithm by incorporating information about the structure of our knowledge 

representation. By incorporating structural information into the problem before it is presented 

to the inferencing mechanism we hope to reduce the problem size and complexity, thereby 

reducing the amount of time necessary to solve for the best or most probable solution. 

3.1 Reasoning Algorithm Enhancement 

The original reasoning algorithm developed in [34] converts a directed acyclic graph 

into a system of linear inequalities. It then solves these equations using the Simplex method in 

a two stage process. The first phase of the Simplex algorithm determines an initial solution in 

the feasible space. The second phase of the Simplex algorithm finds the optimal solution. If 

the optimal solution is not an integral solution the algorithm must utilize a branch and bound 

process to find the optimal integral solution. This process is depicted in Figure 5. 

The problem with the Simplex method is that it is an algorithm for optimizing arbitrary 

sets of linear inequalities. It blindly solves for the optimal solution without any knowledge 

of where the equations come from or what they represent. It is our belief that we can take 

advantage of information about the structure of our knowledge representation and incorporate 

this knowledge into the equations to reduce the size and complexity of the problems that 

are fed to the Simplex method thereby reducing the amount of time necessary to solve for 

the optimum or most probable solution. To improve the computational efficiency of the 

inferencing algorithm we have three areas we can attack: the Simplex phase 1 calculations, 

the Simplex phase 2 calculations, and the branch and bound process. 

3.2 Jumpstart Solution 

3.2.1 Initial Jumpstart. It was observed in early, very preliminary jumpstart work 

[32, 34], that phase 1 of the algorithm took an average of 60% of the total solve time during 
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Convert WAODAG to a 
system of Linear 

Inequalities 

Simplex Phase 1 
(find initial solution) 

Simplex Phase 2 
(find optimum solution) 

Branch and Bound 

No 

No 

Most Probable 
Explanation 

Figure 5. Process flow for solving a WAODAG. 
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test runs. Therefore a quick means of giving the algorithm an initial solution, or jumpstart, 

would allow it to bypass phase 1 (see Figure 6) and possibly decrease the time required to 

solve for the optimal solution. This initial solution does not need to be the best solution, only 

one of the possible solutions. It gets the algorithm into the feasible space of solutions from 

which the optimum can then be calculated. 

Convert WAODAG to a 
system of Linear .,___ .. 

Inequalities 

Simplex Phase 1 
(find initial solution) 

Simplex Phase 2 
(find optimum solution) 

Figure 6. Jumpstart process flow. 

In order to provide an initial solution we must have an assignment of truth values to the 

nodes in the graph representing the path of a possible solution. From equations 7 through 10 

and the dependency definitions of the node types AND and OR which define the framework 

of the graph, we can determine how the truth values will propagate from the nodes that have 

been clamped or set to a value of true. Figure 7 describes this propagation. 

There are two types of propagation, forward (from a node to its parents) and backward 

(from a node to its children). We will first consider backward propagation since that is what 

leads us from the evidence to our hypothesis or explanation of the evidence. If an AND node 

is clamped to true then-all of its children must also be true. If even one of them is false, then 

the AND node can no longer be said to be true. If an OR node is clamped to true then we 

know that one or more of its children must be true. For this first phase of the jumpstart we 

simply pick a single node at random to clamp to true and further propagate from there. As 

we propagate our truth values toward the hypothesis nodes there can also be propagation back 

toward the evidence nodes (forward chaining or propagation). If a node is clamped to true 
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At least one must be true. 

Figure 7. Truth value propagation from the AND and OR nodes. 

then any of its parent nodes that are OR nodes, by direct dependency, must also be true. Any 

parent of the clamped node that is an AND node will also need to be clamped if all of its other 

children are already true and this last child completes its dependency. 

Figure 8 is an example of the propagation from an evidence node B which has been 

clamped to true. Node Bis an OR node and since it is clamped to true, we know that one 

or more of its children must also be true. If we pick node F and clamp it, we can further 

propagate the truth values. If node F is true then because it is an AND node, nodes H and I 

must also be true. If we then tum our attention to node F's parents we will see that node C 

becomes true by direct dependency. Additionally if all of node D's other children are already 
-

true then clamping F to true will cause node D to become true. We also show a continuing 

upward propagation from node C to node A which is a type OR parent of C. 

Using the propagation information we can determine a path from the evidence nodes 

to the hypothesis nodes including all other nodes which must be clamped to true in between. 

Once we have a possible solution, the equations that represent the graph can be modified to 
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Downward 
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Upward 
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Figure 8. Truth value propagation in a small sample graph. 
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incorporate the solution. When the new set of equations is passed to the Simplex algorithm, 

it will drop immediately into phase 2 of the calculations, bypassing phase 1. 

3.2.2 Incorporating the Jumpstart Solution. The method for incorporating the 

jumpstart solution into the equations describing the graph is straightforward and adds very 

little overhead to the creation of the linear program. As we create the equations representing 

the WAODAG we check each node to see if it is in the jumpstart solution. If the node is in 

the solution we negate it and subtract 1 from the opposite side of the equation [22, 32]. Any 

leaf nodes in the jumpstart are also negated in the cost function [22, 32]. For example in the 

equations 

if A were in the jumpstart solution the equations would become 

-A~B-1 

-A~ B +C-1 

and if C were also in the jumpstart then the equations become 

-A~B-1 

-A~ B-C 

Looking back at our earlier example WAODAG in Figure 4, Figure 9 shows how the equa­

tions are modified to incorporate a jumpstart solution. These modifications to the equations 

describing the WAODAG represent how known information is incorporated for the Simplex 
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Original 
Equations 

A~C 
A;::D 
ASC+D 
BSD 
BSF 
B;::D+F-l 
CSE 
CSF 
C;::E+F-l 
D;::G 
D~H 
DSG+H 

Equations if 
node Bis our 

evidence 

A~C 
A;::D 
ASC+D 
lSD 
lSF 
2~D+F 
CSE 
CSF 
C;::E+F-l 
D;::G 
D~H 
DSG+H 

Equations modified 
with Jumpstart 

J umpstart: A, D, F, H 

-A~C-l 
-A~-D 
-ASC+ -D 
OS-D 
OS-F 
O~-D+ -F 
CSE 
CS-F+l 
C~E+ -F 
-D~G-l 
-D~-H 
-DSG+ -H 

Figure 9. Incorporating the Jumpstart Solution into the equations. 

method and is sufficient to allow the algorithm to bypass phase 1 and move directly into phase 

2 to find the optimal solution. 

3.3 Heuristic Jumpstart 

The next area we can attempt to improve is the phase 2 calculations of the Simplex 

algorithm. The object is to determine an initial solution that is closer to the optimum solution 

than the previous jumpstart algorithm provided. We will still bypass phase 1 of the calculations 

but we should also reduce the number of phase 2 calculations necessary to optimize from the 

better initial solution. This will also help to avoid the problem that if the initial solution 

provided by the jumpstart algorithm is sufficiently more costly or further from the optimal 

solution in the feasible space than the solution found by the standard phase 1 calculations, 

then it is conceivable that the jumpstart may result in a longer solve time than the original 

non-jumpstart algorithm. 

One way we can improve the solution provided by the jumpstart algorithm is by incor­

porating a heuristic to make better choices during the process. Two possible heuristics were 
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considered. Both methods employed a propagation of the costs from the leaves prior to the 

search. During the search for the jumpstart path any choices as to which path to take could 

then utilize the. propagated costs in a greedy algorithm to chose the lowest local cost. 

The first method starts with the costs at the leaves of the graph. We then propagate the 

costs in stages to each successive layer of parents until we reach the root nodes. A parent node 

is assigned a cost based on the costs of its child nodes. If a parent is an OR node then its cost 

is assigned to be the lowest cost of its children since this would be the least cost that could be 

incurred by clamping this node. If a node is an AND node then its cost is assigned to be the 

highest cost of its child costs since the node will have at least this cost if it is clamped. Figure 

10 presents an example of this propagation. Notice that in this example the heuristic actually 

fails by picking the two nodes with costs 10 and 11 for a combined cost of 21 over the leaf 

with a cost of 18. 

ROOT - No Parents max of 9 & 9 =9 

min of 9 & 11 = 9 min of 10 & 9 = 9 

Figure 10. Cost propagation heuristic method A. 

The second method also starts with the costs at the leaves and propagates costs to each 

successive layer of parent nodes. However, in this method nodes are assigned a cost based on 
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the costs of the edges entering them (edges that come from their child nodes). The process of 

assigning the costs is then similar to the first heuristic. If the node is an AND node then its 

cost is the maximum of the costs coming into it. If the node is an OR node then its cost is the 

minimum of the costs coming into it. The costs are propagated out of the nodes toward the 

parent nodes by splitting the nodes' cost equally between its outgoing edges. In Figure 11 the 

cost of 18 for leaf L2 is split equally between its two outgoing edges. This heuristic does not 

max of 1 o & 11 = 11 

min of 18 & 11 = 11 min of 10 & 18 = 1 O 

Figure 11. Cost propagation heuristic method B. 

fail in the same situation as heuristic A however it also has its problems. If the cost of node 

L2 were 20 then node B would have to chose between two incoming edges both of cost 10 

and there is the possibility that it may chose the incorrect one. 

Based on studies of very similar heuristics for A* search algorithms done in [5], the 

second heuristic was chosen for the implementation. The splitting of the costs in the second 

method seems to be more intuitive because we are sharing the cost of a node among all of 

its parent nodes which prevents us from propagating the total cost of the node multiple times. 

Also going through some small examples by hand using the first heuristic it was apparent 
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that it would probably not gain us much over picking a node at random. In this case either 

heuristic would still be an admissible heuristic since it will never prevent the optimal solution 

from being found and as long as we impose backtracking. The only purpose of the heuristic 

is to provide a better jumpstart solution and reduce the amount of time necessary to find the 

optimal solution in phase 2 of the calculations. 

3.4 Branch and Bound 

In some cases, the solution provided by the Simplex method does not correspond to 

a 0-1 mapping to the nodes. In this case the linear program solver algorithm employs an 

iterative branch and bound process [34], illustrated in Figure 12. The algorithm picks a node 

xq, called the active node, that is non-integral and creates two new linear programs each with 

a new constraint of Xq = 1 or Xq = 0 that it in tum sends to the Simplex algorithm. Each 

time an integral solution is found its cost is compared to the current best solution. If it is 

less, then it becomes the current best. If the solution is non-integral and the total cost is less 

than the current best cost, a new active node is chosen from this sub-problem and two more 

sub-problems are created. If the total cost of the non-integral solution is greater than the 

current best cost or the sub-problem has no solution, then the branch is pruned. This process 

continues until there are no more branches to explore. At this point the current best integral 

solution is the overall best solution for the graph. An example of this process is shown in 

Figure 13. 

The branch and bound process was not necessary very often, in fact early studies [34] 

observed that for the random WAODAGs tested only 3% required branch and bound to solve. 

When branch and bou_nd is required however, the time to solve the random WAODAGs 

increases by an average of 236%. In addition, earlier work suggests that the percentage of 

real world problems requiring branch and bound to solve might be much greater than for 

the random WAODAGs [34]. Therefore, for completeness as well as the potential cost for 

requiring branch and bound in real world problems we shall attempt to improve the efficiency 

of the branch and bound process. 
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Figure 13. Branch and Bound example. 
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The algorithm which solves the linear programs already uses various techniques, such 

as the dual simplex method [22], to reduce the number of computations required to solve the 

multitude of linear programs created by the branch and bound process. If we could reduce 

the size of each of those sub-problems we should be able to substantially reduce the time to 

solve for the final optimal solution. The generic application created to solve arbitrary linear 

programs has the capability to accept additional clamping information. The application checks 

each node to see if clamping this node requires any additional nodes to be clamped. If a node 

is clamped its value is set and known so it can be eliminated from the problem. The result is 

that each subsequent linear program is reduced in size and should reduce the amount of time 

required to solve the whole problem. 

3.4.1 Resultant Clamping of Other Nodes. After the equations for the boolean 

linear program (BLP) have been created, it is necessary to determine which other nodes must 

be clamped to either 1 or 0 if we clamp each node individually in the graph. Figures 14 and 

15 show the local propagation of l's and O's from an OR node and an AND node that have 

been clamped to either 1 or 0. 

If an OR node is clamped to 1 we can't make any determination as to which of its children 

are clamped. We know that at least one must be clamped but we don't know which one or 

ones. We can however tell that any parent nodes that are also OR nodes must additionally 

be clamped to 1. If there are any parent AND nodes that have all of their other children 

already clamped then they too must be clamped. The same clamping decisions are made for 

the parents of an AND node clamped to 1. For the AND node however we can also make a 

determination about its children; because it is an AND node, if it is clamped to 1 then all of 

its children must also be clamped to 1. Moving back to the OR node in the case of it being 

clamped to 0, we can tell that all children of the OR node must be clamped to 0 since if any 

were non-zero the central OR node could not be 0. Also any parent AND nodes are rendered 

false or clamped to 0 because of this central clamping to 0. For the AND node clamped to 0 

the only clamping we can make is similar to that of the OR node with regard to any parent 

AND nodes. 
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Figure 14. Local propagation of 1 'sand O's from an OR node. 

Figure 15. Local propagation of 1 'sand O's from an AND node. 
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With this in mind, since we must already pass along the information about the active 

node being clamped to O or 1, we can also pass along the information about the resultant 

clampings. 

3.4.2 Eliminating Unnecessary Equations. We can also use the clamping infor-

mation to delete certain equations from the set describing the WAODAG to further reduce 

the size of the problem. The reason we can do this is because the clampings cause some of 

the equations to become vacuously or always true. For example if we look at equation 7 and 

clamp an AND node to O then this set of equations becomes 

(17) 

which is always true, therefore this set of equations may be discarded in this particular case. 

Similarly if an .AND node is set to 1 the equation corresponding to equation 8 may be discarded. 

If an OR node is set to O the equation corresponding to equation 9 may be discarded. Finally, 

if an OR node is clamped to 1 the set of equations corresponding to equation 10 may be 

discarded. 

In addition we can add an additional equation to the system of linear inequalities utilizing 

the jumpstart cost since it was an integral solution. If the algorithm must resort to branch and 

bound it can use this cost as a lower bound to reject paths with costs greater than the jumpstart 

path. 

With this information passed to the Simplex algorithm, should branch and bound be 

required, each of the linear programming problems to be solved will be significantly reduced 

in size. A similar approach has also been successfully used for Bayesian networks alone [33]. 
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TV. Implementation 

In this chapter we will first discuss the implementation of the benchmarking studies of 

the algorithms. We will then discuss the causes behind our research into the structure of large 

knowledge bases and how we went about studying them. Finally we examine the problem of 

full propagation of truth values versus backward propagation only. 

4.1 Testing 

The purpose for these experiments was to measure the improvement in efficiency for 

the new algorithms over the original algorithm. We wanted to use problems that would be 

representative of those that the algorithms might see in actual use as well as larger and more 

complex problems than are currently possible in order to show scalability. Because of the 

difficulty of Average Case Analysis we use empirical studies which should still show the 

necessary trends. Random test files were used in order to be as general as possible and to 

prevent testing to only a few or one particular application area. 

It was necessary to develop a test methodology that would provide valid results in order 

to run benchmarking tests on the new algorithms and compare them to the old algorithm. It 

was determined that running a series of randomly generated test files on all algorithms side by 

side and measuring the CPU time each took to solve for the optimal solution would provide 

adequate results to determine the difference in efficiency trends. The UNIX time command 

was used to measure the CPU time used by each process. Additionally au· of the tests were 

run on the same computer.or on computers of equal configuration. The nominal configuration 

of the testbed was a Sun Sparcstation 20 with 64 MB of RAM and between 500 Meg and 1 

Gigabyte of swap space. The algorithms themselves, including the original, were all written 

in C++ and compiled with the same optimization settings. 

The initial sizes of the test files used were 10, 25, 50, 100, 200, 400, 500, 800, 1000, 

1500, and 2000 nodes. It soon became clear that only the 200, 400, 500, 800, 1000, 1500, 

and 2000 node cases were of any real interest. The 10, 25, and 50 node graphs were solved 
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in less than a second and the 100 node graphs averaged 3 seconds. This did not provide 

enough variation in measurements to make an accurate comparison. Comparisons between 

the original algorithm and the enhanced algorithms is also difficult beyond the 400 node cases 

because the original algorithm is not able to solve (in a reasonable amount of time) the larger 

graphs beyond some level of complexity. When the problem size becomes too large or too 

complex the original algorithm gets stuck in phase 1 of the computations. The algorithm 

theoretically will eventually find the answer but it takes more than several hours to do so. 

Because of the large number of test files we ran against the algorithms, test runs that exceeded 

eight hours were terminated. 

The original reasoning algorithm developed in [34] was used as the baseline for the 

testing. The original algorithm translated the graph into a system of linear inequalities which 

was then passed to the Simplex algorithm to find the best integral solution. This solution is 

the most probable explanation of our evidence. The system of linear inequalities produced by 

the original algorithm included no information about the structure of the knowledge represen­

tation. Tests consisted of comparing the solve time of the Simplex method against five other 

systems of equations: the system of equations with the jumpstart information incorporated, 

the system with the heuristic jumpstart information incorporated, the system with the branch 

and bound information incorporated, the system with the jumpstart and branch and bound 

information incorporated, and finally the system with the heuristic jumpstart and branch and 

bound information incorporated. 

4.2 Graph or Knowledge Base Structure 

While testing the original graph solver algorithm and the first jumpstart algorithm against 

a series of randomly generated WAODAGs, it was observed that a large percentage of the 

graphs required more than 90 percent of the total number of nodes to be true for a complete 

assignment to the knowledge base. This was the case even when the number of evidence 

nodes set to true was limited to 4 in the 200 and 500 node cases. In a medical diagnosis 

knowledge base this might be equivalent to saying that given a particular set of patient 
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symptoms, the patient has every disease and should have every other symptom (because of 

forward propagation of truth values). 

The firsr randomly generated graphs had high connectivity, that is there was a large 

number of edges in the graph (averaged 10 percent of the maximum possible number of edges 

in a fully connected graph). Additionally a node at one level could connect to any other node 

in a lower level (topological ordering of nodes). 

Various combinations of the height of the graph, level of connectivity and ratio between 

the number of AND and OR nodes were experimented with. The result was no signifi­

cant decrease in the number of nodes clamped for a complete truth assignment. Figure 16 

demonstrates what these graphs might look like. 

Evidence Nodes 

Hypothesis Nodes 

Figure 16. A purely random WAODAG. 
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It was therefore decided that the structure of the graph must not be typical of real world 

knowledge bases. A change was made to the random graph generator to add a horizontal 

ordering to the-original vertical ordering. When the graph is generated the user inputs a range 

of values for the number of vertical slices in the graph. A slice metric parameter is used to 

control the level of cross linking between slices. The nodes in the new graph have a strong 

tendency (controlled by the slice metric) to connect only with the lower nodes in their own 

slice. This in effect creates a series of columnar subgraphs with various levels of connectivity 

between the subgraphs such as that shown in Figure 17. 

Evidence Nodes 

Hypothesis Nodes . 
I 

Figure 17. A columnar WAODAG. 
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Again, tests were run comparing the original solver algorithm to the jumpstart version 

of the algorithm. A number of cases were run varying the height of the graph, level of 

connectivity and ratio between the number of AND and OR nodes, as well as the number of 

vertical slices and the slice metric. In most of the cases the complete truth assignment still 

required more than half of the total number of nodes to be clamped to true. 

4.3 Full Propagation versus Backward Propagation Only 

One possible cause for this is forward or upward propagation of truth values. When 

we clamp a node to true, we propagate the truths backward from the evidence nodes to the 

cause or hypothesis nodes. If the newly clamped node is an OR type node then one of its 

children must be clamped to true. If the newly clamped node is an AND type node then for 

it to be true, all of its children must be true. Once this clamping is accomplished we forward 

propagate the truth values from the nodes we just clamped toward the evidence nodes. When 

fully propagated this gives a complete truth assignment to all nodes. 

A question arises as to whether it is necessary to forward propagate truth values. In a 

medical diagnosis system a certain amount of forward propagation may be useful in order to 

let the doctor know what other symptoms should be present if the patient has been diagnosed 

with a particular disease. 

In [6] it was shown that using backward propagation only does result in a valid solution 

to the problem. In fact, because it is not a complete assignment of the graph, the backward 

propagation only solutions should have lower costs than the full propagation solutions. The 

problem arises in the expl_anation of the solution. A minimal cost solution with a full assign­

ment of values in the WAODAG corresponds directly to the most probable explanation in the 

Bayesian belief network [6], however a partial solution is missing some node assignments 

so the final cost does not correspond to a valid probability for that world. We cannot in 

fact determine what the actual probability of this world is, we only know that it is the most 

probable. 
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Therefore if we require the actual probability of a solution then full propagation, both 

forward and backward, is necessary. However if our only concern is what is the most probable 

solution then forward propagation is not necessary and backward only propagation will provide 

a valid solution. 
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V. Test Results 

The primary purpose for these experiments was to compare the efficiency of the new 

inferencing algorithms to the original algorithm. Figure 18 gives a brief summary of the test 

graphs used. It is interesting to note that in previous research the largest graphs tested had at 

Nodes Edges Hypotheses 
Minimum 100 149 13 
Maximum 2000 5236 352 

Figure 18. This is a summary of the test graph parameters. 

most 387 nodes and a maximum of 699 edges [32]. 

A full summary of the test graph statistics is shown in Appendix A. It is broken down by 

the number of nodes and then into sub-categories to summarize the total set of test files, those 

that did not require branch and bound to solve, and those that did require branch and bound 

to solve. The total number of graphs used in the comparison was 185. Percent improvement 

was calculated using the accepted method [20]. 

It should be noted that there exists a certain inherent amount of inefficiency in the way 

the graphs are stored. The current method used to store the WAODAGs uses an adjacency 

matrix to represent the connections or edges between the nodes. In order to determine the 

children or parents of a node using the pre-existing software, the entire list of nodes must be 

searched for connections . .A more efficient method of storage might be to use a linked list for 

the children and another for the parents of each node. 

The results of the tests performed were excellent. Using the CPU time each algorithm 

required to solve for the optimum solution as the metric, Figure 19 shows a significant 

improvement over the original algorithm. The upper graph represents tests done using both 

forward and backward propagation, while the lower graph represents tests performed using 

backward propagation only. It is interesting to note that the increase in efficiency is much 
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more significant when considering backward propagation only. This is most likely the result of 

the large reduction in the number of equations necessary to describe a graph using backward 

propagation only. Backward propagation only actually requires only half of the equations 

necessary for describing full propagation. Figure 20 shows the execution time growth rate 

of the original reasoning algorithm compared to that of the jumpstart algorithm. The least 

squares best fit equations for both algorithms are presented below each graph. 

From the test results we make the following observations. The largest improvement 

appears to come from the incorporation of the jumpstart information. The heuristic jumpstart 

does not actually add much in terms of a time savings over the original jumpstart algorithm. 

Due to the fact that so few of the random graphs had to resort to branch and bound to solve, 

it is difficult to estimate what effect our improvements would generally have on actual real 

world graphs. From the test runs we do have it seems there should be a significant time savings 

particularly as the graph size becomes large. Finally, the overhead of finding the jumpstart 

initial solution, heuristic jumpstart solution and the branch and bound information averages 

about 3 
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Figure 19. Results of algorithm comparison using CPU time used as the metric. 
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Execution Time Growth Curve 
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200 400 600 800 1000 

Number of Nodes in Graph 
Original Algorithm: 2.00- 0.21 x + 0.0015 x2 - 3.62 • 10-7 x3 

Jumpstart Algorithm: 1.96 - 0.21 x + 0.0015 x2 - 7.32 • 10-7 x3 

Execution Time Growth Curve 
Backward Propagation Only 

200 400 600 800 
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1000 

Original Algorithm: 0.93 - 0.68 x + 0.00042 x2 + 1.80 • 1 o-7 x3 

Jumpstart Algorithm: -4.56 + 0.12 x - 0.00033 x2 + 3.34 • 10-7 x3 

Figure 20. Execution time growth curves comparing the original algorithm and the jumpstart 
algorithm. 43 



VI. Advanced Knowledge Representation - Bayesian Forest 
-

In this chapter we will explore a new knowledge representation called a Bayesian Forest 

which promises to be much more versatile in representing complex real world knowledge. 

We will further show that our techniques for inferencing as well as problem reduction from 

incorporating structural knowledge can be generalized to work with this new knowledge 

representation. 

6.1 Bayesian Forests 

The research presented thus far focused on the WAODAG representation, however that 

representation still has some deficiencies. It cannot model cyclic information and we cannot 

assign costs to false states of a node. A Bayesian Forest is a new representation that subsumes 

both WAODAGs and Bayesian networks. 

In the Bayesian Forest, the nodes of the graph represent individual instantiations of the 

random variables rather than the random variables themselves. This has the direct advantage 

of allowing us to assign probabilities/costs to all of the instantiations of a random variable. 

For instance we can now assign a probability/cost to a random variable A being true as well as 

a probability/cost for it being false. However instead of each instantiation itself being true or 

false they are either active or inactive and the node itself might represent a true instantiation or 

a false instantiation. For example if we have a boolean random variable A, its instantiations 

are A = True and A= False. Random variables may also have more than two states (eg. 

A = Red, A= Green, A = Blue, and A ,; Yellow). It should also be obvious that only 

one instantiation of a variable can be active at any given time. In the previous example either 

A = True is active and A= False is inactive or A= True is inactive and A = False is 

active. We can create this constraint with a single equation for each node. If we let Xn denote 

a variable representing the state of a proposition n (eg. x 1 -+ A) then we can let Xn; denote 

a particular instantiation of Xn (eg. xii -+ (A = True) and x 12 -+ (A = False)). If Xn; 

is active, Xn; = 1 and if Xn; is inactive Xn; = 0. Further, if we let In represent the set of all 
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possible instantiations of Xn then the equation is 

Vn (18) 

Another significant advantage of the separate instantiations is that we can now directly 

represent the following type of cycle. Given random variables A, B, C, and D: 

{ B = T} I\ { C = T} ➔ { A = T} 

{A= F} A {D = T} ➔ {C = F} 

(19) 

(20) 

(21) 

which cannot be modeled by either the WAODAG or the Bayes net because this would amount 

to 

BI\C ➔ A 

AI\D ➔ C 

6.2 Converting a Bayesian Belief Network into a Bayesian Forest 

One of the great strengths of this representation is that we can take a Bayesian belief 

network and convert it directly into a Bayesian Forest with no loss of information. In fact 

the Bayesian Forest representation becomes more versatile as we shall see. If we start with 

the small example of a Bayesian network in Figure 21 the process to convert it to a Bayesian 

Forest is relatively straightforward. Each node in the Bayesian network is first separated into 

its individual instantiations. From the probability table we then add support nodes, one for 

each entry in the conditional probability table. These support nodes act as AND nodes and 

the instantiations of the random variables act much like OR nodes. The probabilities are 

assigned to the support nodes. One obvious constraint on the support nodes is that they may 
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P(C=TIA=T, B=T) = a 
P(C=TIA=T, B=F) = b 
P(C=TIA=F, B=T) = c 
P(C=TIA=F, B=F) = d 
P(C=FIA= T, B= T) = e 
P(C=FIA= T, B=F) = f 
P(C=FIA=F, B=T) = g 
P(C=FIA=F, B=F) = h 

Figure 21. A simple Bayesian Belief Network. 

only have a connection to one instantiation of a given random variable. Figure 22 shows the 

complete transformation of Figure 21 into a Bayesian Forest, assuming that we have a complete 

conditional probability table for the Bayesian network. The advantage of the Bayesian Forest 

is that complete probability tables are not required. If some of the probabilities are missing or 

cannot be determined the appropriate nodes are simply deleted from the graph and inferencing 

continues with the probabilities we do have. To find the probability of a given solution 

we simply multiply together the probabilities of the active nodes and during inferencing we 

attempt to find the assignment of nodes that yields the highest probability. Another method is 

to transform the probabilities into costs by taking their logarithm. As we did for WAODAGs 

the sum of the costs is equivalent to multiplying the probabilities. The solution with the lowest 

cost is then equivalent to that with the highest probability [6]. 

6.3 Converting a Bayesian Forest into a System of Linear Inequalities 

As we can see from Figure 22 this representation is very similar to a WAODAG in this 

particular case. In order to use the earlier work presented in this paper to create an efficient 

inferencing algorithm for Bayesian Forests it is only necessary to generalize the method to 
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Boolean Random Variable node instantiations 

pseudo OR node 

P(C=TIA=T, B=T) = a 
P(C=TIA=T, B=F) = b 
P(C=TIA=F, B=T) = c 
P(C= TIA=F, B=F) = d 
P(C=FIA=T, B=T) = e 
P(C=FIA= T, B=F) = f 
P(C=FIA=F, B=T) = g 
P(C=FIA=F, B=F) = h 

Figure 22. Converting a Bayesian network to a Bayesian Forest. 
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work with Bayesian Forests. Given that 

Dn is the set of all nodes that are children of node n 

S is the set of all evidence nodes 

Ln; is the set of all leaf node instantiations 

In is the set of all instantiations of node n 

Xn represents a support node n 

Xn; represents a particular instantiation of some node n 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

if we only allow cycles of the type shown in Equation 19 the equations for the Bayesian Forest 

become 

if q is an AND support node: Vp E Dq { Xq S xv} 

if q is an AND support node: L Xp- I Dq I + 1 S Xq 
\/pEDq 

if Qi is an OR node instantiation: L Xp 2:: Xq; 
\/pEDq 

if Qi is an OR node: Vp E Dq {xq; 2:: xv} 

Evidence: Vqi ES Xq; = 1 

Cost function: L costxq; x Xq; 
q;ELq; 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

The semantics of the equations are the same as for the WAODAG [34]. Finally we add the 

requirement that only one instantiation of a random variable can be active at any given time. 

VQ (34) 

Note that when we are creating the graph structure we must also ensure that each support node 

is connected to no more than one instantiation of a given node. 
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From the transformation in Figure 22, we also begin to see why being able to work with 

very large networks is important. Converting a Bayesian net to a Bayesian Forest results in a 

much larger graph. If there are n nodes in the Bayesian net and there are y possible states for 

each node then the Bayesian Forest can have as many as y x n instantiations plus a support 

node for every probability available. 

This representation coupled with the method of converting the graph to a system of 

linear inequalities and solving those equations to find the most probable solution provides the 

necessary components for a versatile and efficient inference engine. Such a system would 

allow us to solve problems more efficiently as well as model and solve many more of the 

complex real world problems we were unable to solve previously. 
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VII. Conclusion 

7.1 Efficient Graph Solving Algorithms 

Our method of incorporating structural information from the knowledge representation 

into the problem prior to presenting it to the inferencing mechanism has been shown to 

significantly reduce the total time to solve in the random graphs tested. This method of 

problem reduction improves efficiency by reducing the amount of computations necessary to 

solve for the optimal solution. In fact the greater the reduction in problem size, the larger the 

initial problem to be solved can be. 

Our research has further shown that if we are not concerned with the exact probability 

of a solution and only wish to identify that it is the best solution, then using backward 

propagation only allows the graphs to be solved much more quickly due to the red11ced 

problem size. However, if we require the probability of the solution then both forward and 

backward propagation are necessary. A second enticement to using backward propagation only 

is the observation that we can solve problems at least twice as large as using full propagation. 

7.2 Large Graph Structure 

The empirical studies of large random graph structures have indicated some significant 

trends that can be related to large real world knowledge bases. The first is that very large 

knowledge bases do not seem to have uniformly distributed connections between nodes as 

shown previously in Figure 16. In fact the nodes in a large knowledge base are likely 

grouped together into smaller loosely connected subgroups or cells with some small amount 

of interaction between ·them. During testing the graphs which produced the most intuitive 

results were wide, low graphs with many columns. These graphs approached this idea of a 

cellular structure. The visualization of the potential large graph structure is shown in Figure 

23. The concept is also supported by recent research in the field of cognitive sciences which 

suggests that much of our knowledge is compartmentalized. 
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Figure 23. What most large real world knowledge base structures probably look like. 
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The second trend of interest is in the expected maximum depth of the graph (maximum 

levels of causality). Through observation of current knowledge bases [19] and our empirical 

studies, it is expected that there will be some maximum depth to the cells in the knowledge 

base and that even if the number of propositions or nodes in the graph or subgraph should 

double, the depth will not increase significantly, if at all. The current maximum depth of 

knowledge bases in use seems to be about 4 to 5 levels and even expecting our algorithms to 

allow solving much larger and more complex problems, the depth of the subgraphs will likely 

not exceed 8 levels. 

7.3 The New Bayesian Forest Representation 

The Bayesian Forest representation examined earlier solves several of the outstanding 

deficiencies with the WAODAG representation, particularly in the area of representing cyclical 

knowledge, as well as being able to assign costs or weights to all instantiations of a random 

variable instead of just the true instantiation. The Bayesian Forest has the additional advantages 

of allowing the conversion from a Bayesian belief network or WAODAG with no loss of 

information; allowing the use of random variables with more than two possible instantiations; 

and finally allowing reasoning with incomplete conditional probability tables. Because of its 

similarity to the WAODAG in structure, generalization of the techniques for inferencing as well 

as problem reduction from incorporating structural knowledge is relatively straightforward. 

This combination of the Bayesian Forest knowledge representation and the Linear Constraint 

Satisfaction approach for inferencing yields a powerful method of creating and efficiently 

reasoning with large and complex real world knowledge bases in order to solve significant 

problems and create useful tools. 

7.4 Recommendations for Future Work 

The next step is the actual implementation and testing of the Bayesian Forest repre­

sentation in conjunction with the linear constraint satisfaction method for inferencing and the 

incorporation of structural knowledge to reduce problem size. This combination of knowledge 
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representation and inferencing mechanism should allow for the creation of larger and more 

complex expert systems to solve real world problems than have ever been possible before. 

Due to our results suggesting that real world knowledge bases may be loosely connected I 

would recommend that any implementation of the Bayesian Forest experiment with using 

linked lists to store the parents and children of each node rather than an adjacency matrix. 

This will not only speed the search for children and parent nodes but also substantially reduce 

the storage requirements for large graphs. 

To further improve the efficiency and scalability of the algorithms further study of 

large knowledge base structure may provide important heuristics for subdividing problems 

into smaller pieces. It may be possible to precategorize or predefine the cells. Then, while 

the knowledge base is being created, information as to which cells a node belongs to, is 

incorporated into the nodes definition. This information might be used to eliminate some of 

the cells from the inferencing process, particularly during backward only propagation when 

the spreading of truth values from forward propagation is eliminated. The related field of 

graph drawing might also lead to additional heuristics by allowing the easier visualization of 

these large knowledge bases. 

The other area that might be improved by additional or different heuristics is the 

propagation of costs in the heuristic jumpstart method. A better quick initial solution would 

further reduce the amount of work necessary from the linear program solver. One alternate 

heuristic is a variation of the one used in this research. In the current heuristic the cost of 

an AND node is assigned to be the maximum of the costs of the edges entering the node, 

since setting the AND node to true will incur at least this cost. However, as an alternate 

assignment, if the AND node is set to true then we know that all of its children must be true 

and might assign it a cost that is the sum of all the edges entering the node. This might prove 

to be a better heuristic for our application and provide more significant improvements over 

the random jumpstart method. 
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VIII. Glossary 

AND node A node that is true only if all of its children are true. 

Any Time Algorithm After some point the algorithm can be stopped at any time and it will 
have a valid answer. If left to continue the algorithm will improve 
this answer until it finishes with the optimum solution. 

Backward Propaga- Also called backward chaining. The propagation of values from the 
tion evidence toward the possible hypotheses or causes for the evidence. 

BLP Boolean Linear Program 

Branching Table A table of information containing the local clamps possible for each 
possible state of each node in the graph 

Child node The nodes in the graph that a given node is dependent on for its 
state. 

Domain 

Edge 

Evidence node 

Expert System 

Exponential Growth 

Feasible Space 

Forward Propagation 

Heuristic 

Hypothesis node 

A narrow area of study such as the diagnosis of infectious diseases. 

The connection between two nodes which indicates a relationship 
or dependency. 

Nodes that are clamped to some truth value. These are the nodes or 
evidence that we are trying to explain by our inferencing. 

A framework consisting of a knowledge base, user interface and an 
inference engine. 

The function describing the computational time to solve or growth 
rate is an exponential inn, with respect to the size of the knowledge 
base or problem we are trying to solve. For example, if n represents 
the size of the knowledge base then the time to solve for the optimum 
solution might be represented by T(n) = C1eC2 n with C1 and C2 

being some constants. 

The portion of the problem space that contains only the feasible 
assignments of the nodes. The vertices of the hypercube that de­
scribes this space correspond to integral solutions or assignments 
of the nodes. 
Also called forward chaining. The propagation of values from the 
causes or hypotheses toward the evidence. 

Involving or serving as an aid to learning, discovery, or problem­
solving by experimental and esp. trial-and-error methods (heuris­
tic techniques) (a heuristic assumption); also: of or relating to 
exploratory problem-solving techniques that utilize self-educating 
techniques (as the evaluation of feedback) to improve performance 
(a heuristic computer program). [1] 

Nodes that represent explanations for our evidence. 
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Inference Engine 

Knowledge Base 

Knowledge Represen­
tation 

KBES 

Leaf node 

MBLP 

Multinet 

NP Hard 

Parent node 

Polynomial Growth 

Problem Space 

OR node 

Reasoning Model 

Research 

Root node 

The portion of the expert system that manipulates the knowledge in 
the knowledge base. 

A collection or database of knowledge within a narrow problem 
domain. 
How we represent the information we wish to reason with. Can 
be either graphical or textual. The representation has a large im­
pact on what methods can be used to extract inferences from the 
information. 
Knowledge Based Expert System 

Nodes that have no children. In our representations they are typi­
cally shown at the bottom of the graph and represent the possible 
hypothesis to explain our evidence. 

Mixed Boolean Linear Program - BLP file that includes the branch­
ing table information 

A new graphical knowledge representation, similar to a WAODAG 
except that the nodes represent individual instantiations of the ran­
dom variables rather than the random variables themselves. 
Refers to a problem with a particular type of complexity. For a 
complete description see (15]. 

A node that is dependent on the current node for its state. 

The function describing the computational time to solve or growth 
rate is a polynomial in n, with respect to the size of the knowledge 
base or problem we are trying to solve.For example, if n represents 
the size of the knowledge base then the time to solve for the optimum 
solution might be represented by T(n) = C0 + C1n 1 + C2n2 + 
C3n3 ... with Co, C1, C2, and C3 being some constants. 

The space containing all possible combinations of node assignments 
whether correct or not. 
A node that is true if one or more of its children are true. 

See Knowledge Representation 

Studious inquiry or examination; esp: investigation or experimen­
tation aimed at the discovery and interpretation of facts, revision 
of accepted theories or laws in the light of new facts, or practical 
application of such new or revised theories or laws. The collecting 
of information about a particular subject. [1] 

Nodes that have no parents. In our representations they are typically 
shown at the top of the graph. 
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Rule Base 

Uncertainty 

WAODAG 

A knowledge base or collection of causal knowledge in the form 
of if-then rules. For example: IF event A occurs THEN event B 
will occur with a probability of X. This is one of the most intuitive 
and easiest ways for a knowledge engineer to encode knowledge 
for use by an expert system. 

The quality of not knowing the truthfulness of our information. 

A weighted AND OR directed acyclic graph. A knowledge repre­
sentation using AND and OR nodes to represent facts in a knowl­
edge base as well as their interrelationships. 
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Appendix A. Summary of Test Results 
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400 Nodes 6 42.86% 105.17 128.88 34.33 38.67 26.17 17.98 70.83 67.73 31.33 
500 Nodes 8 21.05% 318.25 322.71 47.13 23.58 55.75 28.35 299.88 340.90 52.63 
1000 Nodes 11 25.00°/o 1814.64 2564.07 208.91 61.53 205.27 62.28 1160.09 1136.37 230.55 
1500 Nodes (4) 1 20.00°/o-- 2598.00 0.00 2522.00 o.ooJlmll!II 2534.00 

(4) The original algorithm was not able to solve the 1500 or 2000 node graphs even when using backward propagation only. 
(5) There were no 800 or 2000 node graphs in our test suite that required branch and bound to solve. 

Average Ext Jump 
Jumpw Ext Jump wbb 
bb Solve wbb Solve 

Time Solve Time 
StndDev Time Stnd Dev 

0.50 0.63 0.55 
4.48 3.03 1.20 

19.13 20.00 8.19 
19.21 33.39 26.41 
26.90 71.40 37.81 
81.98 145.14 76.47 

948.64 875.00 890.68 
1728.93 4333.40 1806.12 

0.49 0.55 0.59 
4.98 2.92 1.26 
5.87 16.63 4.90 
9.75 24.60 10.23 

26.90 71.40 37.81 
64.60 117.97 58.19 

539.01 486.75 487.80 
1728.93 4333.40 1806.12 

0.30 0.80 0.40 
0.90 3.50 0.76 

26.08 24.50 9.43 
26.76 66.38 39.27 
65.51 226.64 66.16 
0.00 2428.00 0.00 
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Overall Overall 

' 
Overall Overall Overall Improvement Overall Improvement 

Improvement Improvement Improvement No Jump to Improvement No Jump to 
('II 

:3 
('II 
::s 

No Jump to No Jump to Jump to Ext No Jump w No Jump to Ext Jump w 
Jump Ext Jump Jump bb Jumpw bb bb .... 

~ 
rJ 

100 Nodes 66.06% 80.30% 8.57% -21.12% 5.17% 34.26% 

200 Nodes 51.99% 50.90% -0.00% -4.75% -28.89% 29.54% 
('II 
:::, .... 
~ 

(JQ 

All Trials 
400 Nodes 29.51% 40.03% 10.00% 2.37% 38.16% 35.94% 

500 Nodes 29.60% 28.79% 1.57% -4.38% 19.10% 17.82% 
('II 
rn 800 Nodes 23.77% .23.93% 3.45% -4.97% 15.44% 15.68% 

0\ o' 0 
'"'I 

'Tl 
0 

~ 
~ a 
§ 
0. 

1000 Nodes 79.29% 92.67% 10.03% -8.15% 70.12% 82.52% 
Forward 

100 Nodes 59.01% 64.50% 3.45% -26.61% 19.26% 10.94% 
and 
Back Branch 200 Nodes 31.47% 37.39% 5.45% -10.03% 18.68% 21.03% 

Prop and Bound 400 Nodes 69.96% 71.20% 3.37% -4.56% 53.67% 56.34% 

Data not 500 Nodes 20.73% 20.05% 1.71% -5.41% 13.13% 11.75% 
required 800 Nodes 23.77% 23.93% 3.45% -4.97% 15.44% 15.68% 

0:, 
~ 

1000 Nodes 61.54% 74.42% 10.62% -3.80% 53.13% 64.78% 
0 

[ 
~ 

Branch 100 Nodes 87.50% 150.00% 33.33% 0.00% -25.00% 275.00% 

and Bound 200 Nodes 157.78% 103.51% -21.05% 12.62% -65.37% 58.90% 
a required 400 Nodes -7.75% 6.98% 16.77% 16.75% 17.95% 11.29% 

4' 500 Nodes 
0 

133.89% 130.99% 0.00% 2.38% 75.24% 75.79% 
"O 
~ 

(JQ 

a -· 0 
::s 



:n 
()Q 
C: 
"'1 
0 

Overall Overall 
Overall Overall Overall Improvement Overall Improvement 

Iv 
-.1 

Improvement Improvement Improvement No Jump to Improvement No Jump to 
No Jump to No Jump to Jump to Ext NoJumpw No Jump to Ext Jump w -3 

'O a 
< 

' Jump Ext Jump Jump bb Jump wbb bb 
100 Nodes 660.00% 375.00% -37.50% 72.73% 123.53% 100.00% 
200 Nodes 10.23% 44.78% 33.33% -17.09% -14.91% 6.59% 

0 
3 
0 ::s ...... 
'i:l 

400 Nodes 136.31% 180.00% 28.88% 33.21% 132.60% 165.00% 

All Trials 
500 Nodes 232.05% 200.78% -3.90% -0.19% 176.85% 144.13% 
800 Nodes -5.14% -14.18% -1.37% -22.43% -25.00% -34.45% 

0 
"'1 1000 Nodes 322.82% 323.12% 9.45% 39.55% 271.17% 267.33% 
(') 
0 1500 Nodes 0.00% 0.00% 5.05% 0.00% -100.00% -100.00% 
::s .... 
ll) 

°' ()Q ...... 0 

2000 Nodes 0.00% 0.00% 7.79% 0.00% -100.00% -100.00% 
100 Nodes 400.00% 400.00% 0.00% 100.00% 150.00% 81.82% 

Cl> 

8' 
"'1 

Back 200 Nodes -31.51% -1.96% 46.00% -28.57% -47.37% -28.57% 
Prop Branch 400 Nodes 2.78% 2.78% 8.70% -15.91% -15.27% -16.54% 

t:d 
ll) 
(') 
;i,;" 

Only and Bound 500 Nodes -0.72% -5.48% 3.72% -21.70% -20.92% -25.20% 
Data not 800 Nodes -5.14% -14.18% -1.37% -22.43% -25.00% -34.45% 

~ a required 1000 Nodes 7.60% 6.42% 10.06% -13.63% -7.58% -10.17% 
1500 Nodes 0.00% 0.00% 6.75% 0.00% -100.00% -100.00% 

~ 
'O 

2000 Nodes 0.00% 0.00% 7.79% 0.00% -100.00% -100.00% 
100 Nodes 1300.00% 250.00% -75.00% 16.67% 55.56% 75.00% 

~ Branch 200 Nodes 213.33% 193.75% -6.25% 0.00% 147.37% 123.81% 
ll) .... -· and Bound 400 Nodes 206.31% 301.91% 42.14% 48.47% 235.64% 329.25% 
0 
::s required 500 Nodes 575.33% 470.85% -12.83% 6.13% 504.75% 379.47% 
0 
2.. 
'< 

1000 Nodes 768.62% 784.01% 8.65% 56.42% 687.11% 700.68% 
1500 Nodes 0.00% 0.00% 4.08% 0.00% -100.00% -100.00% 



Graph Parameters 

AND to 
Num Num Max Avg Max Avg Root Clamped Leaf Graph Vertical Slice QR node 

Nodes Edges Children Children Parents Parents Nodes Nodes Nodes Depth Slices Metric ratio 

1 All Trjals Avg 100 236.97 7.80 2.n 10.17 1.87 32.93 2.87 26.07 4.43 2.93 0.25 0.70 
0 
0 

No 8 and 8 Avg 100 227.70 7.50 2.60 10.05 1.80 33.75 3.00 26.70 4.30 2.70 0.25 0.70 

'Tl ..... 
n BandBAvg . 100 255.50 8.40 3.10 10.40 2.00 31.30 2.60 24.80 4.70 3.40 0.25 0.70 

(JQ 
c:: ..., 
(1) 

2 All Trials Avg 200 451.90 8.23 2.43 11.00 1.63 63.30 2.63 48.13 5.63 3.00 0.25 0.70 
0 No 8 and 8 Avg 200 452.29 8.25 2.46 10.96 1.63 63.04 2.63 48.38 5.67 3.08 0.25 0.70 

N 
CX) 

O 8 and B Avg 200 450.33 8.17 2.33 11.17 1.67 64.33 2.67 47.17 5.50 2.67 0.25 0.70 

~ 
rn ...... 
0 ..., 

0\ .§ 
N :::r 

Cll 
c:: 

4 All Trials Avg 400 1038.93 9.36 2.71 13.79 2.14 120.07 3.00 78.86 6.86 2.86 0.25 0.70 

0 No 8 and 8 Avg 400 1041.88 9.50 2.75 13.25 2.13 118.13 2.88 86.25 6.25 2.75 0.25 0.70 
O Band BAvg 400 1035.00 9.17 2.67 14.50 2.17 122.67 3.17 69.00 7.67 3.00 0.25 0.70 

T 5 All Trials Avg 500 1182.03 8.84 2.55 13.29 1.84 155.21 2.58 110.79 7.21 4.66 0.25 0.70 
e o NoB and B Avg 500 1089.20 8.57 2.43 12.47 1.63 161.73 2.67 120.87 6.63 4.50 0.25 0.70 
s 0 

8 and BAvg 500 1530.13 9.88 3.00 16.38 2.63 130.75 2.25 73.00 9.38 5.25 0.25 0.70 t -
a S 8 All Trials Avg 800 1576.20 8.60 2.07 11.73 1.33 284.80 3.87 199.40 5.87 3.00 0.25 0.70 
a 
~ 
Cll ...... 
ii:, ...... ..... 
rn ...... 

u 0 NoB and BAvg 800 1576.20 8.60 2.07 11.73 1.33 284.80 3.87 199.40 5.87 3.00 0.25 0.70 
i 0 Band B Avg 800 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.70 
t 1 All Trials Avg 1000 2522.48 9.50 2.59 14.73 2.09 295.09 2.30 193.64 8.07 4.36 0.25 0.70 
e 0 

NoB and BAvg 
0 1000 2390.39 9.15 2.48 13.82 1.97 303.82 2.33 215.21 7.48 4.97 0.25 0.70 

..... 
0 
rn 0 Band B Avg 1000 2918.73 10.55 2.91 17.45 2.45 268.91 2.18 128.91 9.82 2.55 0.25 0.70 

1 All Trials Avg 1500 4370.00 10.00 2.60 18.00 2.60 398.80 1.40 170.00 10.00 5.00 0.25 0.70 

~ No 8 and B Avg 1500 4210.50 10.00 2.50 17.50 2.50 411.00 1.50 168.75 10.00 5.00 0.25 0.70 

0 Band BAvg 1500 5008.00 10.00 3.00 20.00 3.00 350.00 1.00 175.00 10.00 5.00 0.25 0.70 

2 All Trials Avg 2000 5140.20 9.60 2.20 19.00 2.00 563.60 2.00 246.20 10.40 5.00 0.25 0.70 
0 
0 

No B and B Avg 2000 5140.20 9.60 2.20 19.00 2.00 563.60 2.00 246.20 10.40 5.00 0.25 0.70 

0 Band BAvg 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.25 0.70 
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