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Abstract 

The three-dimensional, compressible Navier-Stokes equations in primitive variables 

are solved numerically to simulate vortex breakdown in tubes. Time integration is per- 

formed with an implicit Beam-Warming algorithm, which uses fourth-order compact op- 

erators to discretize spatial derivatives. Initial conditions are obtained by solving the 

steady, compressible, and axisymmetric form of the Navier-Stokes equations using New- 

ton's method. The effects of three-dimensionality on tube flows that are initially axisym- 

metric and stable to 2-D disturbances are examined. Stability of the axisymmetric "base" 

flow is assessed through 3-D time integration. 

Calculations performed at a Mach number of 0.3 and Reynolds number of 250 for 

increasing vortex strengths yield two significant results. First, there exists a critical vortex 

strength, beyond which stable axisymmetric (2-D) solutions become unstable and tempo- 

rally evolve into asymmetric (3-D), unsteady flows. The character of the stability change 

indicates a supercritical Hopf bifurcation. Second, axisymmetric solutions that are stable 

in 2-D and contain reversed flow are unstable in 3-D. Furthermore, such solutions time- 

asymptote to 3-D unsteady solutions, which may or may not have reversed flow, depending 

on the vortex strength. This behavior is correlated in terms of the vorticity dynamics. 

Axisymmetric solutions at a Mach number of 0.3 and Reynolds number of 1000 con- 

tain regions of nonuniqueness. Within this region, 3-D time integration reveals only unique 

solutions, with nonunique, axisymmetric initial conditions converging to a unique solution 

that is steady and axisymmetric. Past the primary limit point, which approximately iden- 

tifies the appearance of critical flow, the solutions bifurcate into 3-D periodic flows. Thus, 

the author postulates that the development of critical flow is approximately coincident 

with the loss of stability associated with a Hopf bifurcation. 

Flow visualization of the resulting time-asymptotic flow structures, as vortex strength 

is increased, reveal the growth of flow asymmetries. These asymmetric flows ultimately 

result in the spiral mode of breakdown. 

xx 



THE DEPENDENCE OF THE TIME-ASYMPTOTIC 

STRUCTURE OF 3-D VORTEX BREAKDOWN 

ON BOUNDARY AND INITIAL CONDITIONS 

/.   Introduction 

Vortex breakdown is an aerodynamic phenomenon of swirling flows. It was first ob- 

served over the suction side of a delta wing in an experiment by Peckham and Atkinson 

(1957). Almost two centuries before this discovery, in 1780, the same phenomenon was 

observed in waterspouts, as reported by Lugt (1989). Vortex breakdown, or simply break- 

down, is a feature of rotational flows involving a concentrated core of vorticity imbedded 

in a nearly irrotational flow that moves approximately parallel to the vortex. The term 

breakdown is used specifically in this work to identify the development of a stagnation 

point, followed by a limited region of reversed flow where the core size increases dramat- 

ically. Another term used in the literature is vortex bursting, which refers to the abrupt 

increase in core size without the appearance of a stagnation point. 

The study of vortex breakdown is important in both external and internal aerody- 

namics. For example, the bursting of a vortex over a delta wing severely alters airplane 

dynamics by producing significant changes in the slopes of lift, drag, and moment co- 

efficients (Sarpkaya (1971B)). In addition, the turbulent wake of vortex breakdown can 

promote fluid/structure interactions such as tail buffeting (Shah et al. (1990)). In internal 

combustion, Faler and Leibovich (1978) noted that promoting breakdown leads to a recir- 

culating fluid that can be used as a "fluid-dynamic flameholder." In all of these examples, 

the ability to control the breakdown process could result in improved performance and/or 

safety of airplanes. 

The pronounced effect of vortex breakdown on a delta wing is well illustrated in a 

photograph (Figure 1) taken from the experiments of Lambourne and Bryer (1961). Dye 

injection reveals two distinct types of breakdown, the nearly-axisymmetric bubble type 



Figure 1. Vortex breakdown in leading-edge vortices over a delta wing. The breakdown 
in the lower portion of the figure is the bubble type, while the spiral type is in 
the upper portion (Lambourne and Bryer (1961)). 

(later designated as Type 0 by Faler and Leibovich (1977)) and the highly three-dimensional 

spiral type (Type 2). The bubble type (lower portion of the figure) is characterized as a 

nearly axisymmetric swelling of the upstream vortex core in the shape of a bubble; a 

stagnation point exists on the vortex axis and is surrounded by a limited region of reversed 

flow. The spiral type has a three-dimensional character, which appears as a kink of the 

vortical core into a helical pattern. 

Vortex breakdown can also occur inside a simple tube geometry. Breakdown in 

tubes has been reported in numerous experiments (Faler and Leibovich (1977), Garg and 

Leibovich (1979), Sarpkaya (1971B), Brücker (1993)) and computations (Beran and Culick 

(1992), Beran (1994), Darmofal (1993), Darmofal and Mtfrman (1994), Lopez (1994)). The 

motivation for studying tube flows is the simplifying geometry. 



The relevancy of the study of breakdown in tubes to breakdown over a delta wing 

depends on the specific aspect of the study. Practical aspects of breakdown such as the 

breakdown position and parametric criteria for breakdown are highly dependent on the flow 

geometry, boundary conditions, and the method of vortex generation, all of which differ 

between tube flows and flows over wings. However, studies using tubes, such as this study, 

which focus on the breakdown structure and its qualitative behavior are believed by the 

author to be quite relevant to breakdown over wings, since experimental and computational 

evidence suggests that the resulting breakdown structures look similar and behave similarly. 

For example, compare the bubble and spiral breakdown in Figure 1 with the tube-generated 

bubble and spiral breakdown in Figures 2-3. The breakdown structures are found to be 

quite similar in form. Furthermore, Visbai (1993B) computed a bubble type breakdown 

over a delta wing, and commented that the resulting isosurface of total pressure provides a 

visualization of the bubble structure that is quite similar to the bubble structure in the tube 

experiments of Faler and Leibovich (1977). Finally, Leibovich (1984) claims that the main 

characteristics of vortex breakdowns above delta wings at high incidences appear to agree 

with experimental findings of flows in tubes. The behavior of the breakdown structures 

with changes in flow circulation are also similar. In both tube flows and flows over delta 

wings, an increase in flow circulation results in a forward movement of the breakdown 

position. 

Tube geometries have been used in the past to study the nearly axisymmetric bubble 

breakdown, employing a simplified set of governing equations valid only for axisymmet- 

ric flow. The numerical (tube) calculations of Beran and Culick (1992), Beran (1994), 

Darmofal (1993), Darmofal and Murman (1994) and Lopez (1994) have all exploited this 

simplifying assumption, although it is known from flow experiments that the bubble form 

is only approximately axisymmetric. 
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Figure 2. The Type 0 (bubble) breakdown (Faler and Leibovich (1977)). 

^^iW^KSHs^:"!^^^'^^:^^ 

, .„•    .. t* -    ,   A..W.J- 

Figure 3. The Type 2 (spiral) breakdown (Faler and Leibovich (1977)). 



A tube geometry would be particularly useful for numerically examining the stability 

of flows to 3-D disturbances. The tube geometry naturally gives rise to axisymmetric 

flows, assuming the vortex strength is sufficiently low that naturally occurring asymmetries 

do not develop. These axisymmetric flows provide a model of the vortex core, without 

the complication of the three-dimensional leading-edge geometry and flow structure. The 

ability to isolate an axisymmetric vortex core from the leading-edge geometry allows for 

a cleaner identification of the emerging vortex core asymmetries and their role in the 

development of breakdown. However, it is unclear how this isolation of the core from the 

surrounding 3-D delta-wing flow impacts the emergence of core asymmetries. Therefore, 

the growth of asymmetries in tubes may serve only as a guide in helping future studies 

content with the more complex issue of wing flow instability. 

Another aspect of the study of flows in tubes is that it allows for the computation 

of both axisymmetric and asymmetric flows under identical conditions. This would help 

examine a scenario of the emergence of the spiral (asymmetric) mode of breakdown put 

forth by Leibovich (1984). In this scenario, the growth of axisymmetric disturbances in the 

vicinity of breakdown eventually lead to the instability of these disturbances to asymmetric 

waves. The gain in energy of the spiral mode is postulated to come at the expense of 

energy in the axisymmetric mode. A study which considers both the axisymmetric and 

asymmetric solutions for identical conditions could numerically assess the scenario put 

forth by Leibovich (1984). 

An interesting feature of axisymmetric tube solutions is the appearance of nonunique 

solutions (Beran and Culick (1992), Lopez (1994)). A characterization of the nonunique 

solutions is shown in Figure 4, plotted in terms of the minimum axial velocity, Q, and 

the vortex strength. The solid lines represent solutions that are stable to axisymmetric 

disturbances, while the dashed line represents unstable solutions. As the vortex strength is 

increased, a fold in the solution space occurs, resulting in a primary limit point at V2. The 

limit point is found to occur before the development of bubble breakdown (Q < 0). As the 

vortex strength is slightly increased from V2, Q abruptly changes from positive to negative, 

indicating the formation of bubble breakdown. For flows with breakdown, decreasing the 

vortex strength results in generally larger (less negative) values of Q, until the secondary 
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Figure 4.    A representative solution branch of axisymmetric solutions: stable branch (solid 

lines); unstable branch (dashed line). 

limit point is encountered. The nonuniqueness of solution paths as the vortex strength 

is increased and then decreased results in what is known as a hysteresis loop. Between 

Vi and V2, nonunique axisymmetric solutions exist. Appendix B.l provides additional 

descriptions of the terminology associated with the axisymmetric solution paths. 

The location of the primary limit point in an axisymmetric solution space has been 

associated with changes in the flows ability to support upstream propagation of axisym- 

metric waves. Beran and Culick (1992) found that for sufficiently high Reynolds num- 

bers, a parabolized version of the axisymmetric governing equations, known as the quasi- 

cylindrical (QC) equations, agree well with solutions of the Navier-Stokes equations when 

the vortex strength is below the primary limit point, but fail to converge to a solution 

as the vortex strength is increased towards the primary limit point. The failure point 

of the parabolic QC equations is believed by Hall (1972) to be the approximate point at 

which the flow can support upstream propagating, axisymmetric waves. A flow which can 

support both upstream and downstream propagation of axisymmetric waves at some axial 

location is referred to as a subcritical flow (Section 2.1.1.1). In contrast, a flow which 

can only support the downstream propagation of axisymmetric waves is referred to as a 

supercritical flow. Thus, the work of Beran and Culick (1992) and Hall (1972) suggest that 

the flow transitions from supercritical flow to subcritical flow at a vortex strength which 

is approximately equal to the primary limit point. 



The stability of unique and nonunique axisymmetric solutions to three-dimensional 

disturbances has not been investigated. For example, assuming axisymmetry, the time 

integration of two different initial conditions may lead (depending on parameter values) 

to two distinct, stable time-independent solutions. However, it is uncertain if one of these 

solutions prevails when the vortex is generated by 3-D time integration, or if a third, 

distinct 3-D solution develops. Similarly, it is also unclear how asymmetric flows modify 

the underlying hysteresis loop present for an axisymmetric flow. 

Therefore, the three-dimensional and temporal nature of vortex breakdown in a tube 

is considered in this study. Solution paths consisting of time-asymptotic 3-D solutions 

are compared, under identical parameter settings, to solution paths formed by solving the 

axisymmetric governing equations. In this way, the relevancy of 2-D solutions is revealed. 

Furthermore, this study investigates the transition between 2-D and 3-D flows in the 

presence of 2-D solution paths, which may or may not contain nonunique solutions. Thus, 

the following questions can be answered in this study: 

1. Under what conditions is the axisymmetric assumption valid? 

2. Under what conditions is the assumption of steady flow valid? 

3. How does a solution branch consisting of steady, axisymmetric flows bifurcate onto 

another branch containing 3-D flows? 

4. Does nonuniqueness in 2-D solution paths play a role in the structure of 3-D solution 

paths? 

5. Does the criticality of 2-D flows have any bearing on the nature of the 3-D solution 

space? 

An analysis of the emergent 3-D characteristics of swirling flows and the associated 

consequences for vortex breakdown has not been investigated in previous studies. In fact, 

a unique feature of this study is that solutions to the steady, axisymmetric governing 

equations are used as initial conditions for time-integration of the 3-D equations of motion. 

Thus, transient solutions which deviate away from the initial condition do so as a direct 

consequence of three-dimensional disturbances. 



Previous computations with the 3-D equations of motion (Section 2.1.3) have instead 

provided valuable information on the structure of the 3-D breakdowns. Most notably, cal- 

culations have been performed for flows in unconfined domains (Breuer and Hänel (1989), 

Spall et al. (1990), Spall and Gatski (1991)) and over delta wings (Visbai (1993A, 1993B, 

1995)). These works provide descriptions of the various time-asymptotic breakdown struc- 

tures encountered, including the spiral and bubble forms. Spall and Gatski (1991) also 

compute breakdown structures other than the spiral or bubble type, which are documented 

in the tube experiments of Faler and Leibovich (1977) (Section 2.1.2.1). These works do 

not, however, consider the deviations of the emerging 3-D vortex core from the underlying 

axisymmetric flow. 

The principle issues of a 3-D study include flow unsteadiness, compressibility, three- 

dimensionality and solution nonuniqueness. The importance of these factors is illustrated 

by the following points: 

• Experimental evidence shows that all forms of breakdown are unsteady. Flow un- 

steadiness is allowed in this study. However, the vortex strength is held constant 

during time integration, equivalent in concept to holding the angle-of-attack con- 

stant during the computation of the flow over a delta-wing. Thus, dynamic effects 

due to breakdown (Beran (1994)), such as the dynamic lag in breakdown position 

with angle-of-attack, can not be considered in this study. 

• The assumption of incompressibility has been invaluable to the study of vortex break- 

down. However, for flows of aerodynamic interest such as flow over delta wings, future 

work must consider the effect of compressibility on the structure of breakdown, the 

criteria for breakdown, and the existence of nonunique solutions. There is already 

evidence that for flows in tubes, increasing Mach number can cause the disappear- 

ance of nonunique flow states (Morton (1989)). In addition, Visbal (1995) concludes 

that for a 75° delta wing, the large axial jet associated with leading-edge vortices 

result in supersonic core velocities if the freestream Mach number is greater than 0.3. 

While compressible flow is modeled in this study, the effect of compressibility is not 

considered. A fixed reference Mach number of M — 0.3 is prescribed. 



• Experimental evidence shows that even the bubble breakdown contains regions of 

three-dimensional flow. A 3-D time-integration study can determine how the pres- 

ence of three dimensionality affects the time-asymptotic breakdown structure of ini- 

tially axisymmetric flows, yielding new information on the relevancy of axisymmetric 

solutions. 

• The stability of nonunique axisymmetric flows to 3-D disturbances has not been 

established. 

In addition to the contributions towards the understanding of vortex breakdown, this 

study documents the development of a highly accurate, time-integration algorithm. The 

most notable feature of this algorithm is the implementation of fourth-order, spatially- 

accurate (compact) operators to discretize derivatives, replacing the traditional method of 

approximating derivatives using second-order differences. Furthermore, a unique, multi- 

block grid structure is incorporated into the time-integration algorithm. This grid structure 

allows the vortex core to be computed without an approximate treatment of the algorithm, 

which is necessary with a conventional single-block grid. This work appears to be the 

first to use the compact scheme in solving the unsteady, compressible, three-dimensional 

Navier-Stokes equations with a multiblock grid structure. 

1.1    Objectives. 

The primary goal of this investigation is to determine the time-asymptotic behavior 

and three-dimensional stability of compressible vortices as initial and boundary conditions 

are varied. Axisymmetric "base" flows and time-asymptotic 3-D flows, given identical 

parameter values, are compared. The specific objectives are as follows: 

1. For fixed Mach and Reynolds numbers and varying vortex strength, V, determine 

the critical vortex strength at which 3-D solutions first become distinct from the 

associated 2-D base flows. 

2. Characterize the change in solution behavior at the critical vortex strength by iden- 

tifying the type of bifurcation. 



3. For fixed Mach and Reynolds numbers and varying V, characterize the nature of 3-D 

solutions in the vicinity of nonunique axisymmetric solutions. 

4. Classify the computed 3-D structures in accordance with the forms of disturbances 

documented by the experiments of Faler and Leibovich (1977). 

1.2   Approach. 

The computational approach to this study is given in this section, along with the 

selected ranges of parameter values. 

The computational approach is as follows. First, a numerical algorithm provides the 

axisymmetric initial condition for a specified vortex strength, V, given fixed values of the 

freestream Mach number, M, and the Reynolds number, Äe. This axisymmetric solution 

is then interpolated onto a 3-D mesh using a fourth-order-accurate cubic-spline scheme, 

described in Appendix B.3. Then, time-integration is carried out by a 3-D, time-integration 

algorithm. 

Steady, axisymmetric initial conditions are computed using a pseudo-arclength con- 

tinuation (PAC) technique. The PAC method allows for the calculation of solution paths 

with folds, which occur at the higher Re considered here. The PAC algorithm provides 

a one-parameter family of axisymmetric solutions, where the parameter is the vortex 

strength. The nominal Mach number, M = 0.3, was chosen to provide "near incom- 

pressibility" while avoiding convergence problems associated with computing at low Mach 

numbers. The Reynolds numbers considered are 100, 250, 500, and 1000. Axisymmetric 

solution spaces for Re of 100 and 250 were found not to contain folds, whereas folds in the 

solution space exist at Re of 500 and 1000. 

The 3-D time-integration model, referred to as the Time-Accurate Navier-Stokes 

(TANS) model, is developed specifically for this work. The TANS model incorporates two 

unique features. First, the TANS model uses a multiblock grid structure in the crossfiow 

plane. The grid structure allows for a nearly Cartesian arrangement of nodes in the vicinity 

of the centerline, while maintaining near orthogonality at the circular tube wall. Second, 

the TANS model incorporates fourth-order compact operators into an approximate fac- 
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torization, Beam-Warming solution procedure. The compact scheme discretizes explicit 

spatial derivatives to fourth-order accuracy. Traditional central-difference discretizations 

are typically only second-order accurate. Results in Section 3.7 will show that the net 

reduction in CPU time using the compact scheme over central differencing (and assum- 

ing fewer required nodes) is about 42%. Furthermore, the compact scheme yields higher 

solution accuracy. 

1.3    Outline of Study. 

A summary of previous work in vortex breakdown in given in Chapter II, along with 

a summary of previous computations using the compact scheme. 

The TANS model is described in Chapter III. The geometry and grid are described in 

Section 3.1. The governing equations in physical and computational space are developed in 

Sections 3.2 and 3.3. Boundary conditions are formulated in Section 3.4 for flow in a tube 

with slip. The solution procedure is developed in Section 3.6. The solution procedure is 

a Beam-Warming approximate factorization scheme, incorporating fourth-order compact 

operators. A description of the method used to visualize the evolving 3-D flows is given in 

Section 3.8, along with definitions of the recorded data. 

Baseline grid requirements and code validation are presented in Chapter IV. Baseline 

grid requirements are found in Section 4.1 by using a second-order, central-difference form 

of the TANS model. The utility of the fourth-order compact operators is demonstrated in 

Section 4.1.4 by showing that the number of nodes in the crossplane grid can be reduced 

from that required with the second-order scheme, while maintaining similar levels of spatial 

accuracy. Code validation is performed by solving several model problems (Appendix D) 

and by cross-validating the TANS and PAC models (Section 4.2) under conditions which 

lead to steady, axisymmetric flow. 

Chapter V presents the results of this study. Section 5.1 presents results for flows 

at Re = 100. Flows at this Re were used primarily for validation purposes and to provide 

preliminary results for flows at higher Re. The vortex strength at which 3-D solutions first 

become distinct from the associated axisymmetric base flow is identified. 
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Section 5.2 presents results for flows at Re = 250, where the axisymmetric solutions 

are unique. This section provides validation of the preliminary results of Section 5.1. A 

sequence of runs are presented which indicate that as V is steadily increased, a critical 

value is reached where solutions change from 2-D and steady to 3-D and periodic. The 

effects of further grid refinement, tube length, and time step are also included. Several 

recorded parameters are plotted to illustrate the onset of asymmetry and periodicity. Flow 

visualizations are presented to illustrate the various flow structures encountered at this Re. 

Section 5.3 presents results for flows at Re = 500. The 2-D solutions at this Re 

contain a region of nonuniqueness. However, the span of vortex strength over which the 

nonuniqueness occurs is determined to be too narrow to allow for a detailed examination. 

Time integration is performed on nonunique, axisymmetric initial conditions. The nature of 

the resulting time-asymptotic solutions in this region of nonunique axisymmetric solutions 

is documented. 

Section 5.4 presents results for flows at Re = 1000. The 2-D solution space at this 

Re contains a broader range of nonunique solutions than at Re = 500. The axisymmetric 

solution paths are shown in Section 5.4.1, using three different axisymmetric grids to 

assess solution sensitivity to node spacing and tube length. Flows with vortex strengths 

prescribed to be less than the primary limit point are discussed in Section 5.4.2. Results 

for three different 3-D grids are shown to illustrate solution sensitivity to node spacing 

and tube length. Flows with vortex strengths prescribed to be greater than (but close to) 

the primary limit point are presented in Section 5.4.3. Solution sensitivity to tube length 

for vortex strengths beyond the primary limit point is discussed in Section 5.4.6. Flow 

visualization is presented in Section 5.4.7. 

A summary of the results of this work are presented in Chapter VI, while conclusions 

and recommendations are given in Chapter VII. 

Appendix A contains the dimensional and nondimensional form of the governing 

equations used by the TANS model, as well as a description of the nondimensionalization 

process. 
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The PAC model is described in Appendix B, starting with the definitions of frequently 

used terms pertaining to nonlinear systems in Section B.l. The PAC model is described 

in Section B.2. A similar description of a PAC model for a streamfunction / vorticity 

formulation (as applied to breakdown) can be found in the work of Beran and Culick 

(1992). The PAC algorithm is implemented using the same boundary conditions and tube 

geometry as in the TANS model, using a simple algebraic grid. The cubic spline method, 

used to interpolate PAC solutions onto the 3-D grid, is described in Section B.3. 

Appendix C contains details on the grid generation process, and presents the results 

of a grid rotation study. 

Solutions to model problems solved with the TANS model are contained in Ap- 

pendix D. Solutions for steady, incompressible and compressible flat plate flow, unsteady 

Couette flow, and unsteady heat conduction are contained in Sections D.1-D.4 respectively. 

Appendix E contains the development of simplified equations for steady, axisym- 

metric and inviscid flow. The Bragg-Hawthorne equation, valid for incompressible flow, 

is developed in Section E.l. The author extends the Bragg-Hawthorne analysis to treat 

compressible flows in Section E.2. 

Modifications to the traditional Beam-Warming solution procedure are discussed in 

Appendix F. The fourth-order compact scheme operator is derived in Section F.l, while 

the general form of the time-marching schemes is derived in Section F.2. The compact and 

time-marching schemes are incorporated into the Beam-Warming scheme in Section F.3. 
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//.   Background 

This chapter provides a summary of the existing vortex breakdown work, as well as 

a summary of previous applications of the compact scheme. 

This background information was obtained from references found during an extensive 

literature search of over 250 relevant technical papers. While all of the work cited in 

Section 2.1 pertains to breakdown research, particular attention is given to discussions on 

flow criticality, 3-D calculations, the experiment of Faler and Leibovich (1977), and work 

which considers the implications of solution nonuniqueness. 

Section 2.2 contains a summary of previous work using the compact-scheme approxi- 

mation. It is found in this review that this work appears to be the first to use the compact 

scheme in solving the unsteady, compressible, three-dimensional Navier-Stokes equations 

with a multiblock grid structure. 

2.1    Synopsis of Previous Work on Vortex Breakdown. 

The existing work in vortex breakdown will be categorized into theoretical, experi- 

mental and numerical work, as covered in Sections 2.1.1-2.1.3 respectively. 

There have been several review papers on vortex breakdown. The works of Hall 

(1972) and Leibovich (1978) are reviews that primarily consider the axisymmetric form of 

breakdown. Leibovich (1984) considers theories based on criticality and relevant work on 

the asymmetric forms of breakdown. Reports which serve to document (in-part) AFOSR- 

sponsored research in vortex breakdown is given by Leibovich (1991) and Berger (1989). 

The remaining portions of this report often refer to terms that pertain to the study 

of nonlinear systems. Brief definitions of some of these terms are found in Appendix B, 

including definitions of bifurcation, limit point, Hopf bifurcation, nonunique solutions, 

hysteresis, stable branch, and unstable branch. 

2.1.1 Theoretical Work. Theoretical work in vortex breakdown has focused pri- 

marily on theories based on axisymmetric flows. These flows are also assumed to be steady, 

inviscid and incompressible. Since this study focuses on the unsteady, three-dimensional 
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aspects of vortex breakdown, direct comparison of the numerical results with the axisym- 

metric theories will not be possible. Nevertheless, an overview of two theories is presented. 

The first is given in Section 2.1.1.1, and is known as the conjugate-flow theory, (Benjamin 

(1962, 1967). This theory is relevant to this work because it introduces an important 

concept—flow criticality. The second theory is due to Brown and Lopez (1990), who es- 

tablish a relationship between the production of negative azimuthal vorticity and reversed 

flow. This theory is utilized in Chapter V to help correlate the observed flow behavior 

with the emergence of flow asymmetries. 

2.1.1.1 The Conjugate Flow Theory and Critical Flow. As pointed out by 

Leibovich (1984), the main unifying element, whether originally recognized or not, in all 

formulations of criteria for onset of purely axisymmetric breakdown is the concept of critical 

flow. The most studied of the axisymmetric theories is due to Benjamin (1962, 1967) and 

is known as the conjugate-flow theory. The conjugate-flow theory applies to axisymmetric 

flows with (primarily) no axial gradients. In addition, the flow is assumed to be steady and 

incompressible. Viscous losses are incorporated in the theory by a dissipation parameter, q, 

which represents the loss in total head across the tube. The theory provides a condition for 

which breakdown can be expected, but does not offer a prediction of where the breakdown 

occurs. In addition, the theory does not offer any information on the structure of the 

breakdown. 

Before discussing the conjugate-flow theory, a review of a few fundamental concepts 

on the behavior of waves is in order (Whitham (1974)). Waves can usually be classified into 

two types: hyperbolic and dispersive. Hyperbolic waves are named after the hyperbolic 

partial differential equations from which they are formulated, such as the classic wave 

equation. Hyperbolic waves are characterized as having frequencies, u, which are directly 

proportional to the wavenumber, K, where K is inversely proportional to the wavelength: 

u = W(K) = C0K 
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The phase velocity, c, defined in general by 

is therefore a constant, c0, for hyperbolic waves over all wavenumbers K. 

Dispersive waves, which are found in vortical flows, get their name from the nonlinear 

dependence of frequency on wavenumber, implying that waves can disperse due to different 

phase speeds. A particular 1-D wave solution, (p, can be written in the form 

<p = €e^
K'-u^ 

where e is the wave amplitude, which generally depends on the spatial coordinate x and 

time, t. In general, flow disturbances consist of a spectrum of such waves, producing a 

complicated wave train that contains a range of wavenumbers. The different values of 

wavenumber propagate through the wave train with a speed known as the group velocity, 

defined as 

CM = *M 
an 

In dispersive mediums, the ability of disturbances to propagate upstream is determined by 

the group velocity, not the phase velocity (Leibovich (1984)). A negative group velocity 

is required for upstream propagation of a disturbance, while a positive group velocity 

indicates downstream propagation. 

The conjugate-flow theory states that vortex breakdown is a finite transition between 

two dynamically conjugate-flow states (Benjamin (1962)). The upstream flow (Flow A) 

must necessarily l be supercritical, i.e., a flow which cannot support standing axisymmetric 

waves. The group velocity of supercritical flows is positive, i.e., in the downstream direc- 

tion. The conjugate flow (Flow B) downstream of the breakdown region is always subcriti- 

cal, meaning it can support axisymmetric waves traveling either upstream or downstream. 

The critical flow condition is obtained when a standing wave is possible, corresponding to a 

wave of zero phase velocity. Squire (1960) suggested that breakdown first becomes possible 

^or no external agencies acting on the flow. 
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when the flow becomes critical. In his work, however, Squire only considered infinitesimal, 

infinitely long waves. In 1962, Benjamin showed that the group velocity of standing waves 

of this type is positive. Thus, Benjamin argued that if the flow was critical, then waves of 

this type can only form in the rear of a disturbing agency and cannot propagate upstream. 

In mathematical terms, Benjamin's (1962) theory relies on the solution of a Sturm- 

Liouville system with appropriate boundary conditions. This system is derived by starting 

with the Bragg-Hawthorne equation (developed in Appendix E.l). The streamfunction is 

allowed to take the form of the sum of a base-flow streamfunction, *(y), plus a perturba- 

tion: 

il>(y,z)= V(y) + e<p{y)eiz 

where y = |r2, r is the radial coordinate, and z is the axial coordinate. The small perturba- 

tion assumption limits the applicability of the theory to "small" deviations between Flows 

A and B. The Sturm-Liouville system can then be written in terms of the perturbation 

streamfunction in a limiting process as e —> 0, resulting in 

where P($,t/) depends on the total head and vortex circulation. Solving for cf> consists 

of solving an eigenproblem for which an infinite spectrum of real 2 eigenvalues 72, 72, 

7| • • • and corresponding eigenfunctions exist. A supercritical flow occurs when all of the 

eigenvalues are positive, i.e., no wave solution exits. A subcritical flow exists if at least one 

eigenvalue is negative. The critical condition therefore occurs when the smallest eigenvalue 

is identically zero. 

Benjamin (1962) then proceeded to obtain solutions to the perturbation streamfunc- 

tion by defining a flow force 5, as 

S = 2TT I   (p + pw2)dy 
Jo 

This is a consequence of j- > 0. See Boyce and DiPrima (1969), Theorem 11.1. 
2y 

17 



where a = \R2 and R is the local tube radius. The flow force represents the sum of axial 

momentum flux and axial pressure force. Benjamin assumed that the difference between 

the flow force of Flow A and the flow force at the breakdown point were balanced by the 

presence of a viscous force term, which was assumed to be O(^). The introduction of the 

flow force, S resulted in three basic types of solutions. As q approaches zero (the inviscid 

limit) the conjugate flow is a solitary wave. For small (but finite) values of q, the conjugate 

flow is a cnoidal 3 wave. As q is increased further, a limiting value is reached where the 

solution becomes columnar, i.e., free of axial gradients. Then breakdown is not possible. 

It should be noted that Benjamin's definition of critical flow is based on the phase 

velocity going to zero, not the group velocity. Tsai and Widnall (1980) define criticality 

based on the group velocity, where a positive group velocity indicates supercritical flow and 

negative group velocity indicates subcritical flow. Leibovich (1984) apparently clears up 

this inconsistency in definitions by showing that Benjamin's criterion for supercriticality is 

always consistent with a definition based on group velocity when the flow is axisymmetric. 

Furthermore, he argues that flows that are subcritical based on a phase velocity criterion 

are also subcritical based on the more fundamental group velocity criterion. 

Computations of group velocities from experimental data for both axisymmetric 

(n = 0) and asymmetric (n = ±1) disturbances were performed by Tsai and Widnall 

(1980). They conclude that flows with the axisymmetric (bubble) form of breakdown are 

supercritical upstream and subcritical downstream to both n = 0 and n = 1 modes. Flows 

with the spiral form of breakdown are found to be supercritical upstream for n = 0 and 

n = ±1, while the downstream flow is subcritical only for n = 0. These results assume 

that the definitions for supercritical flow and subcritical flow are applied independently 

to both axisymmetric and asymmetric waves. In this study, however, the terms subcrit- 

ical / supercritical refer to the flows ability / inability to produce upstream propagating 

axisymmetric waves. 

3An obscure term used to describe a periodic wave defined with the en function, which is employed in 
the solution of elliptic integrals. 
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2.1.1.2 The Theory of Brown and Lopez. Brown and Lopez (1990) have 

proposed that the production of negative azimuthal vorticity, 77, is necessary to retard 

the axial velocity component of an axisymmetric swirling flow. Thus, according to the 

theory, the appearance of negative azimuthal vorticity is necessary for breakdown to occur. 

However, negative azimuthal vorticity may exist in a flow without breakdown. 

The components of the Brown and Lopez theory relevant to this work are summarized 

by Darmofal (1993) and reproduced below utilizing a cylindrical coordinate system. The 

axial and radial coordinates are given by z and r respectively. The radial, azimuthal and 

axial components of velocity are denoted by ü, v and w respectively. The radial, azimuthal 

and axial components of vorticity are denoted £, fj and £, and are defined as 

c = i r 
d(rv)      du 

dr  ~ ~m (i; 

- 1 dw     dv 
'    =    r~d0~ ~di 

du      dw ,  . 
V     =      T7T - -X- (3) az      or 

The velocity field, u(x) — (ü,v,w)T, is decomposed into an irrotational and a rota- 

tional part 

u(x) = üi(x) + ur(x) (4) 

where the irrotational portion produces no vorticity: 

Vxtt,=0 (5) 

The velocity ur(x) due to the vorticity w(x') is given by 

1    f sx w(x') 
u, v-hr-^r1« 

where s = x — x'. 
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Brown and Lopez (1990) assume that axial deceleration of the flow, a prominent 

feature of breakdown flowfields, is due primarily to the rotational portion of the velocity 

field. Furthermore, for axisymmetric flow, the stagnation point is assumed to lie along the 

vortex core, r = 0. Then, Eq. 6 can be written for the axial velocity component along 

r = 0 as 

t&r(0, z) = \ f   f       r'2^T'^      dr'dz' (7) 

The integrand of Eq. 7 consists of positive quantities, with the possible exception of the 

azimuthal vorticity, 77. Therefore, given that the rotational portion of the axial velocity, 

wr, far upstream of breakdown is positive, breakdown along the axis can only occur if the 

flow contains negative azimuthal vorticity. 

2.1.2    Experimental Work. The earliest advancements in the study of vortex 

breakdown were made by experimentalists who studied the phenomenon over wings. Af- 

ter the work of Peckham and Atkinson (1957) came the experiments of Lambourne and 

Bryer (1961). They studied factors that affected the position of the breakdown point, and 

concluded that the essential condition for the breakdown to occur is a low total pressure 

within the vortex core coupled with an adverse pressure gradient along the axis. 

Lambourne and Bryer (1961) also conducted a vortex-tube experiment, an idea fur- 

ther promoted by Harvey (1962). Harvey utilized a swirl-vane apparatus as part of a 

wind-tunnel experiment, essentially separating the vortex breakdown problem from the 

more complicated flowfield resulting from a swept wing. This was the beginning of a 

trend towards "cleaner" studies of vortex breakdown involving tubes. Quantitative mea- 

surements were still very difficult, however, as noted by Harvey (1962), because of a hy- 

persensitivity of the breakdown structure to probe disturbances. This limitation existed 

for subsequent experiments in the sixties and early seventies by Elle (1960), Kirkpatrick 

(1964) and Sarpkaya (1971A, 1971B, and 1974). In the late seventies, advancing technol- 

ogy spawned the use of Laser-Doppler Anemometry (LDA) in the experimental work of 

Faler and Leibovich (1977, 1978). LDA provided data on flowfield velocities without the 

disturbances induced by probes. Faler and Leibovich (1978) used LDA to map the inter- 

nal flowfield of the bubble breakdown. Mean streamlines were constructed and revealed a 
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two-celled bubble structure. More recently, Uchida et al. (1985) used LDA to obtain data 

for both the bubble and spiral forms, while Suematsu et al. (1986) performed experiments 

in converging and diverging pipes to study the effects of pressure gradients on breakdown 

position. Suematsu et al. (1989) also performed an experiment to study the temporal 

behavior of the axisymmetric bubble. 

2.1.2.1    Experimentally Observed Flow Disturbances in  Tubes. Various 

types of large-amplitude flow disturbances, in addition to the bubble and spiral types 

(Figures 2-3) are reported in the tube experiment of Faler and Leibovich (1977). 

As Reynolds number and circulation are varied, six distinct flow disturbances are 

observed using die injection. Two are classified as Type 0 and Type 1 bubbles, which are 

distinguished by the means in which the dye injection fills and empties the bubble area. 

The spiral form is designated as Type 2. Both the bubble and spiral types are found to 

contain regions of reversed flow. In addition, the bubble and spiral types of breakdown 

occur at relatively large values of vortex strength and Reynolds number. 

Flow disturbances denoted as Types 3-6 are found to occur at generally lower values 

of vortex strength and Reynolds number. Furthermore, for fixed Reynolds number and 

increasing vortex strength, Types 3-6 generally occur in reverse order, starting with Type 

6 and progressing to Type 3. Further increases in swirl generally lead to the Type 2 spiral, 

followed by the bubbles forms, Types 0-1. 

The detailed descriptions of Types 0-6, given by Faler and Leibovich (1977), are 

summarized below. Types 0-2 represent bubble and spiral forms of breakdown, and are 

also described briefly at the beginning of this Chapter. The disturbances are described 

in their general order of appearance as vortex strength is increased. Types 5 and 6 do 

not contain reversed flow, whereas reversed flow is evident in the physical descriptions of 

Types 4, 3, 2, 1 and 0. 

The Type 6 disturbance occurs at low Reynolds numbers and low vortex strengths, 

and is characterized as a gentle, off-axis deflection of the central dye filament (Figure 5). 

The initial disturbance moves off-axis at a nearly constant azimuthal direction. The dye 

filament begins to rotate (with the same direction of the base flow) only after the dye 
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Figure 5. The Type 6 flow disturbance (Faler and Leibovich (1977)). 

reaches a significant off-axis distance of about one-half of the tube radius. The filament 

continues to expand in radial extent until it nearly reaches the tube wall. Noticeable 

oscillations then become evident, breaking up the filament. Figure 5 represents a Type 

6 disturbance in which the dye filament simultaneously "moves off axis and shears into a 

tape. Both a sheared and unsheared form of the Type 6 disturbance are reported in the 

experiment. 

The Type 5 disturbance is more commonly known as the double-helix disturbance. 

It was first observed in the experiments of Sarpkaya (1971 A), and later confirmed by 

Faler and Leibovich (1977). The Type 5 disturbance usually evolves directly from the 

Type 6 disturbance. The sheared filament of the Type 6 disturbance can, under fixed 

flow conditions, produce a second branch of the original filament (Figure 6). The central 

dye filament shears into triangular shape sheet, with the two branches of the filament 

separating near the aft portion of this region. The two branches rotate around each other 

with the same sense as the base flow. 

The Type 4 disturbance is also capable of forming directly from the Type 6 dis- 

turbance, or it can be produced by slightly increasing the swirl parameter. The Type 4 

disturbance evolves from the Type 6 disturbance when the deflected dye filament begins to 

roll up, back towards the initial deflection point. A tight spiral form develops, ultimately 

resulting in a region of recirculating flow. In Figure 7, the Type 4 flow is found to exit 

from the recirculation zone in one of two emptying tails. 
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Figure 6. The Type 5 (double helix) flow disturbance (Faler and Leibovich (1977)). 
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Figure 7. The Type 4 flow disturbance (Faler and Leibovich (1977)). 

The Type 3 disturbance, according to Faler and Leibovich (1977), has characteristics 

of both the Type 4 and the Type 2 breakdowns. In the Type 3 disturbance, the central 

dye filament decelerates rapidly to form a sharp kink, similar to a spiral breakdown. Some 

of the dye deflects off-axis, shearing slightly and spreading laterally to mark the remnants 

of the Type 4 disturbance (Figure 8). The kinked filament oscillates from side to side in a 

preferential plane and does not rotate as it does during spiral breakdown. 

The spiral mode of breakdown is designated as a Type 2 disturbance. In this form, 

the central dye filament decelerates rapidly and forms an abrupt kink (Figure 2, Chapter I). 

The dye deflects off-axis and forms a corkscrew shape, which rotates as a coherent structure 

in the same direction as the base flow. The sense of winding of the filament is in the same 

direction of the base flow as well (Faler and Leibovich (1977)). However, the winding of 

the corkscrew shape observed in the experiments of Brücker (1993) is opposite that of the 

base flow. 

Two types of bubble breakdown are observed by Faler and Leibovich (1977). In both 

Types 0 and 1, the central filament expands radially in a nearly axisymmetric fashion as 

23 



Figure 8. The Type 3 flow disturbance (Faler and Leibovich (1977)). 

a Stagnation point forms on the tube centerline. The Type 0 form (Figure 2, Chapter I) 

is the most axisymmetric of the six types of disturbances, however, even this form has 

asymmetric features. In particular, the rear of the recirculation bubble, where fluid enters 

and exits the bubble region, is observed by Faler and Leibovich to be asymmetric. The 

Type 1 bubble is even more asymmetric. The smooth outer appearance of the Type 0 

bubble is replaced with a more ragged appearance. The nose of the Type 1 bubble is found 

to be asymmetric as well. 

2.1.3 Numerical Work. The first numerical study of vortex breakdown was by 

Hall (1967). Hall suggested an analogy between the known failure of the laminar boundary- 

layer equations at the separation point and the failure of the parabolic quasi-cylindrical 

(QC) equations 4 at the breakdown point. His results showed that the solution to the QC 

equations failed at a distance of about 1-1.5 times the inlet vortex radius downstream of 

the experimentally observed breakdown point of Kirkpatrick (1964). 

Kopecky and Torrance (1973) were the first to model vortex breakdown using the 

Navier-Stokes equations. They assumed steady, axisymmetric and incompressible flow. 

These assumptions were also made in the studies of Grabowski and Berger (1976), Hafez et 

al. (1986), Hafez et al. (1987), Beran (1987, 1989), Beran and Culick (1992), and Salas and 

Kuruvila (1989). Grabowski and Berger calculated bubble-type breakdowns for Reynolds 

numbers, Re 5 up to 200 using the artificial compressibility method of Chorin (1967). 

Hafez et al. (1986) studied the differences between computed solutions of the Euler and 

Navier-Stokes equations.   They observed different structures between the bubbles calcu- 

4 The parabolized set of equations for swirling flows at high Re is commonly referred to as the quasi- 
cylindrical (QC) Equations. 

5 Reynolds number cited herein is based on inflow vortex radius and freestream axial velocity. 
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lated from the Euler equations versus those calculated from the Navier-Stokes equations at 

low Reynolds numbers. Hafez et al. (1987) and Beran (1987) used a direct Newton solver, 

and extended the range of Re in which axisymmetric bubbles could be calculated. Beran 

(1987) also combined the Newton solver with a pseudo-arclength continuation method. 

This allows for the efficient computation of neighboring steady-state solutions as a param- 

eter such as Re or circulation is varied. 

Four works were found that dealt with steady, axisymmetric, and compressible vortex 

breakdown. Liu et al. (1986) studied vortices which were assumed to be small in radius as 

compared to a suitable breakdown length scale. This is referred to as the slender-vortex 

approximation and is valid for high Re. They found certain "compatibility conditions" 

which must be satisfied for the vortex to remain slender. They also studied the depen- 

dence of the breakdown on upstream conditions for various Mach and Reynolds numbers. 

Morton (1989) determined that increasing Mach number inhibits the breakdown process. 

Results from this study also showed that for fixed Re and circulation, increasing Mach 

number could cause the disappearance of non-unique solutions. Kandil and Kandil (1991) 

performed work similar in scope to that of Liu et al. (1986). A review of work based on 

the slender-vortex approximation was done by Krause (1986). 

Several studies have been reported that include the temporal behavior of axisym- 

metric vortex breakdown. Salas and Kuruvila (1989) provided a stability analysis for 

breakdown flows at Reynolds numbers of 200 and 400. This analysis consisted of perform- 

ing unsteady calculations with the steady-state solution plus a 5% random perturbation 

as the initial condition. The behavior of the L2 norm 6 of the streamfunction was then 

plotted versus time to determine stability. The results showed that the Re — 200 flow 

was stable to axisymmetric disturbances. The Re = 400 flow showed the L2 norm oscil- 

lating about the steady-state value. This behavior was attributed to a Hopf bifurcation, 

although only one complete cycle of the L2 norm was presented. Krause et al. (1983) re- 

ported that flows where no breakdown occurred were steady, while those flows calculated 

past the point where the quasi-cylindrical equations failed were unsteady.  The unsteady 

6The L2 norm of a vector x consisting of n elements is given by: L2 = [£■ 53?=! xi\ 2li/2 
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calculations revealed a two-celled bubble structure which were similar in shape to the bub- 

ble shown in the experiments of Faler and Leibovich (1978). Similar results were given by 

Shi (1985). Wu and Hwang (1991) studied the effects of the wall boundary condition on 

flow inside tubes. A periodic solution was found for Re = 200 when the wall boundary 

was considered as a "viscous" wall as opposed to an "inviscid" wall. Menne (1988) studied 

the unsteady behavior of both the isolated and tube vortex. This study indicated that for 

isolated (unbounded) vortices, the specification of an inflow condition of zero axial gradient 

of the radial velocity may be ill-posed after some finite time. However, the same boundary 

condition applied to vortices in tubes were found to be well posed. Other unsteady, axisym- 

metric numerical studies were performed by Lugt and Abboud (1987), Pagan and Benay 

(1988), and Neitzel (1988). Compressibility was added by Kandil, Kandil and Liu (1991A, 

1991B), and by Kandil and Kandil (1992). These works concentrated on the supersonic 

flow regime. 

Recent numerical studies have been reported in which the breakdown was not as- 

sumed to be axisymmetric. Kuruvila and Salas (1990) developed an unsteady Beam- 

Warming algorithm with the inviscid fluxes discretized using Roe's scheme. Multigrid was 

used to accelerate three computed solutions for Re = 100, 375 and 400 and Mach number, 

M = 0.1, to a steady-state. They found two types of nearly axisymmetric breakdown: the 

nearly closed bubble breakdown (Type 0), and a mushroom type whose structure has a 

flattened rear end. Liu and Menne (1989) investigated breakdown using a quasi-3D Navier- 

Stokes algorithm based on incompressible flow. The quasi-3D nature of the algorithm is 

due to the use of a Fourier decomposition in the circumferential direction to describe 

the asymmetric influences. The effect of enforcing asymmetric inflow conditions was in- 

vestigated in their study. Spall and Ash (1987) solved the unsteady, 3-D Navier-Stokes 

equations and, consistent with Kuruvila and Salas as well as Liu and Menne, observed the 

formation of the bubble breakdown in an unbounded flow. Spall et al. (1990) performed 

a study considering the unsteady, 3-D, and incompressible nature of breakdown. Their 

results revealed that the bubble form (Re = 200) of breakdown showed little temporal 

change in outer appearance; however, large structural changes occurred in the interior of 

the bubble.   Later work by Spall and Gatski (1990, 1991) revealed for the first time a 
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numerical solution of the spiral form of breakdown. The spiral form was found through a 

process where the swirl ratio and Re were held fixed while adjustments were made in the 

freestream axial velocity distribution. The rotation of the helical structure was the same 

as the direction of the base vortical flow, which is consistent with experiments in tube 

flows with a swirl-vane generator. The direction is opposite to that found for breakdown 

over delta wings. 

Few researchers have actively considered the nonuniqueness of solutions. Berger 

(1989) stated that bifurcation processes of a mathematical nature are fundamental in 

understanding the two kinds of vortex breakdown. 

Leibovich and Kribus (1990) considered large-amplitude wave deviations from colum- 

nar vortices as static bifurcations of the Bragg-Hawthorne equation (BHE). The BHE is a 

steady, axisymmetric form of Euler's equations, and is derived in Appendix E.l. Figure 9 

shows a characteristic solution diagram for the BHE. Täasan (1986) identified a branch 

of soliton solutions, which is shown as branch III in Figure 9. This branch bifurcates at 

point A from the so-called trivial branch, which represents a family of specifying flows that 

must be invoked when constructing the BHE. The specifying flow is typically chosen to be 

columnar. Leibovich and Kribus identified branches II and IV. Branch II represents colum- 

nar solutions that correspond to the conjugate flows proposed by Benjamin (1962, 1967). 

The point A in Figure 9 corresponds to the critical state. Points on branch II below this 

critical value of vortex strength, V, correspond to the supercritical flows, while points above 

correspond to subcritical flows. Branch IV identifies solutions that exhibit wavetrain-type 

behavior. This branch extends from a second bifurcation point B. 

Beran and Culick (1992), using a tube geometry, compared the solution paths re- 

sulting from the BHE to corresponding solution paths of the Navier-Stokes (NS) equations 

for Re up to 6000. The assumptions of steady, axisymmetric flow were retained. Further- 

more, a constriction of the tube wall was used, inhibited breakdown from occurring near 

the inflow boundary and conflicting with the prescribed inflow conditions. Allowance for 

slip was also made at the wall, neglecting the influences of a wall boundary layer. 

27 



Q 

Vortex Strength 

Figure 9. Characteristic solution diagram for the Bragg-Hawthorne equation: (I) triv- 
ial branch; (II) principal conjugate branch; (III) soliton wave branch; (IV) 
wavetrain branch, and two bifurcation points: (A) primary; (B) secondary. Q 
represents the minimum axial velocity along the centerline. (Beran and Culick 
(1992)). 

Beran and Culick (1992) found that the paths of the NS equations were distinctly 

different from the BHE paths. However, they provided a scenario under which a slight 

movement of the bifurcation points A and B of Figure 9 could help explain the qualitative 

nature of their solutions at various points along the NS solution paths. In particular, if 

the bifurcation point B was allowed to move to the left of the bifurcation point A such 

that VB < VA, then the qualitative behavior of the solutions at certain points along the 

NS paths agreed in character with the character of the nearest BHE path. 

Thus, the inviscid solution space yielded valuable information that served two pur- 

poses. First, the inviscid (BHE) solutions provided a reference set of paths that can be 

assumed to be in proximity to the NS paths for sufficiently high Re. This provides, to some 

degree, a check on the validity of computed NS paths. Second, the inviscid paths allowed 

for an analysis of the effects of viscosity on the change in structure of the NS solution 

paths. 

Beran (1994) also examined the 2-D stability of the axisymmetric solution paths 

reported by Beran and Culick (1992). Time-integration was used to determine the stability 

of solutions obtained under the assumption of steady flow. The branch of solutions found 

between the two computed limit points was found to be unstable, while the other two 
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branches before the first limit point and after the second limit point were stable to 2-D 

disturbances. 

Lopez (1994), also confirmed the stability of solutions computed by Beran and Culick 

(1992). In addition, Lopez found a branch of unsteady, axisymmetric solutions that appear 

to be disconnected from the previously known steady branches. The vortex strengths 

associated with the unsteady branch are relatively large at low Reynolds numbers, but 

decrease steadily as Reynolds number is increased. 

The consideration of solution nonuniqueness has also lead to a link between the 

formation of a limit point and flow criticality. Beran and Culick (1992) provided numerical 

evidence establishing a link between the appearance of reversed flow and the movement 

across a limit point as vortex strength is increased. Solutions to both the QC equations and 

the NS equations were obtained and compared. The QC equations were found to fail at a 

vortex strength which was close to the limit point computed from the NS equations. The 

failure of the parabolic QC equations was linked to the presence of critical flow. Thus, this 

work provides numerical evidence that establishes a relationship between the appearance 

of a limit point in the axisymmetric solution space and the first appearance of critical flow. 

For vortex strengths past the limit point, stable breakdown solutions were computed. 

Darmofal (1994) computed the criticality of axisymmetric flows in a tube by solving 

the stationary perturbation equations of Hall (1972). He concluded that breakdown (in 

2-D flows) coincides with the occurrence of flow criticality. This result agrees with Squire's 

(1960) suggestion that breakdown is associated with the appearance of flow criticality, 

despite the issue of Squire considering only infinitely long, standing waves in his analysis. 

However, a definite relationship between flow criticality and the location of a limit 

point cannot be obtained from the results of Darmofal (1994), since limit points can not 

be precisely identified from the numerical procedure. Nevertheless, visual inspection of 

solution paths show that the slope of the paths at flow criticality are nearly infinite, which 

implies that the critical point and the limit point are at least approximately coincident. 
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2.2    Previous Applications of the Compact Scheme. 

The use of high-order schemes (such as the compact scheme) in compressible codes 

is very limited. Smith and Sankar (1991) evaluated the compact operator in both an Euler 

and Navier-Stokes solver. They documented a 40 - 50% reduction in the number of grid 

points required to model hovering rotor flows. Furthermore, they found that the accuracy 

of the compact scheme results were maintained when the number of grid points were 

reduced, in contrast to results obtained with a second-order scheme. Roach and Jenkins 

(1995) applied the compact scheme to the study of flow over a 65° delta wing. Compact 

differencing was used in two of the coordinate directions, with fourth-order, five-point 

central differences in the third direction. Comparison of computed oil-flow patterns with 

experiment showed that the fourth-order scheme provided an overall better comparison. 

Roach also confirmed an observation first made in this study: that a second-order boundary 

stencil yields better freestream conserving properties than a fourth-order boundary stencil. 

Ekaterinaris (1993) evaluated 3rd, 4th, and 5th-order upwind-biased differencing to assess 

the effects of spatial accuracy on the strength of leading-edge vortices. The results showed 

that higher accuracy yielded stronger vortices, with closer agreement between computed 

and measured surface pressures. Soh (1994) combined a wave solution method with a 

2-D unsteady Navier-Stokes solver (with a compact scheme) to produce an integrated 

aeroacoustic code to predict far-field jet noise. The application of compact schemes to the 

Euler equations was documented by Abarbanel and Kumar (1988). A summary on the 

technique of compact differencing was presented by Lele (1992). 
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III.   The Time-Accurate Navier-Stokes (TANS) Model 

In this chapter, a numerical model for the study of the temporal behavior of laminar, 

three-dimensional vortex breakdown in a tube is presented. This includes the descrip- 

tion of the tube geometry and the tube grid, the specification of governing equations and 

boundary conditions, the transformation of the governing equations and boundary con- 

ditions from physical to computational coordinates, the discretization of the transformed 

governing equations and boundary conditions, and the solution procedure. Descriptions of 

the computational resources, flow visualization, and recorded data are also included. 

3.1    Geometry and Grid 

A Cartesian and a cylindrical coordinate system will be referenced. The coordinate 

systems are shown in Figure 10a and 10b. The Cartesian system, (x,y,z), is defined such 

that positive x is aligned with the tube centerline and pointed downstream. The y and z 

directions are in a crossplane normal to x and form a right-handed system. The velocity 

components are denoted by (u,v,w). The cylindrical coordinate system, (z,r,6), aligns 

the z direction with x. The r and 9 directions lie in the crossplane normal to z such that 

6 = 0 corresponds to r = +y. The axial, radial and azimuthal velocity components are 

denoted by (w,ü,v). 

The physical domain consists of a two-stage cylindrical tube of circular cross-section 

and varying radius, and is nearly identical to the geometry used by Beran and Culick 

(1992). This domain is shown in Figure 11. The radius of the inlet station is denoted by 

R0. The radius of the first stage is given by 

R(x) = R0 + aR0[cos(2-Kx/xl) - 1]    (0 < x < xx) (8) 

where xx is the length of the first stage. The parameter a controls the amount of tube 

contraction. The values of a and xx are fixed for this work at 0.05 and 6.18 respectively. 

These parameter values were chosen to allow for comparison with results of Beran and 
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Figure 10. Coordinate systems: (a) Cartesian, (b) cylindrical. 

Culick (1992). The second stage of the tube has a constant tube radius of R0 

R(x) = R0    {xx < x < L) 0) 

where L denotes the tube length. Different values of R0 and L are evaluated in this study 

to determine their impact on the solution. The domain boundaries are denoted by si, s2, 

and s3, corresponding to the inflow, wall, and outflow boundaries, respectively. 

The constriction in the first stage of the tube provides a favorable pressure gradient 

in the converging section, while an adverse gradient forms aft of the throat. Thus, the 

constriction keeps the breakdown from occurring near si, where columnar conditions are 

enforced. This allows for flows that are consistent with those found in tube experiments. 

The experiments of Faler and Leibovich (1977) and Garg and Leibovich (1979) demon- 

strate that the flowfields upstream and far downstream of breakdown are quasi-cylindrical 

in nature. Quasi-cylindrical (QC) flows are defined to be nearly columnar, i.e., QC flows do 

not possess large axial gradients. Numerical simulations of breakdown in straight tubes as- 

suming QC inlet conditions typically involve breakdown near the inlet. Such computations 

are not self-consistent with the specified inlet conditions, due to the large axial gradients 

induced by breakdown. Beran and Culick (1992) demonstrated that the upstream flow in 

the proposed geometry agrees well with numerical solutions of the QC equations. 
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Figure 11. Schematic of tube geometry in an arbitrary (z,r) plane. 

A computational coordinate system is required to facilitate the use of finite-difference 

operations on equally spaced nodes. A generalized mapping transforms the physical co- 

ordinates (x,y,z) to the computational coordinates (£, r?,(). This transformation is per- 

formed in Section 3.3. The node indices in the (£,77,() coordinates are denoted by (i,j,k) 

respectively. The number of nodes in the (£,r?, C) coordinate directions are (nx,ny,nz) 

respectively. Two planes of the computational domain are shown in Figure 12. For sim- 

plicity, Figure 12 depicts a single-block grid. In the discussion below, a multiple-block 

crossplane grid structure is introduced. 

The 2-D crossplane grids employed in this work have a unique structure; nodes are 

arranged in a nearly rectilinear fashion close to the tube center, while maintaining near 

orthogonality at the tube wall (Figure 13a). This accomplishes three goals: (1) allows 

for nearly constant grid resolution near the centerline, where the vortex core may migrate 

off-center during spiral breakdown; (2) avoids an approximate numerical treatment at the 

tube centerline (essentially moving such treatment towards the tube wall), and (3) provides 

nearly orthogonal node placement at the wall, reducing numerical errors associated with 

the specification of Neumann-type boundary conditions. To achieve this type of grid, a 

multiple-block structure in the crossplanes, (r?,C), is used. The structure consists of an 

inner block surrounded by four outer blocks (Figure 13b). The outer blocks are physically 

connected to each other, but contain two edges each that are considered as branch cuts in 

the computational domain. These cuts are labeled 1-4 in Figure 13b. The parameters j'l 

and j2 define the node indices of 77 at the cuts, while kl and k2 are the node indices of 
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Figure 12.    Schematics of a single-block computational domain: (a) (r],Q crossplane, (b) 
(£,C) crossplane. 

C at the cuts. In Figure 13b, j'l = fcl = 6 , j2 = k2 - 36, and ny = nz = 41. The 2-D 

crossplane grid is generated using the grid generation software GRIDGEN, as described in 

Appendix C. 

The 3-D grid is generated by placing the 2-D crossplane grids at the desired axial 

node locations. The crossplane node positions corresponding to each axial node are scaled 

such that the radial distances from the tube centerline to the wall nodes are equal to the 

local tube radius. 

Clustering of axial node locations is used in this study to allow more axial nodes in 

the region aft of the tube throat (where breakdown is expected), while maintaining larger 

node spacings elsewhere. This helps reduce the overall computational effort by allowing 

fewer total nodes. The axial node locations are computed from x,- = xi_1 + Ax,-, where 

Axt = Ax0(l + /3[COS(27TXJ_I/X2)- 1])     (0 < x < x2) 

The parameters ß and x2 control the amount and axial extent of clustering respectively. 

When x = 0 or x > x2, Ax,- = Ax0. 
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Figure 13. Crossplane grid for Gl: (a) physical, (b) computational. 

The form of Axt allows for a smooth transition from a relatively large axial node 

spacing at x = 0, to a minimum spacing at x = x2/2, to an equally large node spacing at 

x = x2. The clustered grids used in this work are generated with ß = 1/4 and x2 = 10. 

This value of ß provides a minimum axial node spacing of 0.1, which is about one-half the 

spacing in the non-clustered regions. The value of x2 places the minimum node spacing at 

x = 5, which is believed to be a reasonable location for flow disturbances to first occur. 

Parameter values for all of the 3-D grids used in this work (designated G1-G13) are 

shown in Table 1. Grids with clustering are distinguished by the specification of x2 in 

Table 1, along with a nonzero value of ß. Axial slices of grids Gl and G2 through z = 0 

are shown in Figure 14. Table 1 is repeated as Table 23 in Appendix G, where the run 

matrix and grids for this study are summarized. 

3.2    Governing Equations 

The Navier-Stokes equations are an accurate set of governing equations for simulat- 

ing the flows of Newtonian fluids. The fluid is assumed to be a single-species perfect gas 

with no heat sources or external body forces.   In addition, there are no chemical reac- 
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Table 1. 3-D grid parameters. 

Grid nx ny nz L Ax0 ß X2 

Gl 98 41 41 20 .206 0.0 - 
G2 122 61 61 20 .200 .25 10 
G3 172 61 61 30 .200 .25 10 
G4 222 61 61 40 .200 .25 10 
G5 146 41 41 30 .206 0.0 - 

G6 98 61 61 20 .206 0.0 - 

G7 51 61 61 20 .400 0.0 - 

G8 101 61 61 20 .200 0.0 - 

G9 201 61 61 20 .100 0.0 - 

G10 51 61 61 10 .200 0.0 - 

Gil 201 61 61 40 .200 0.0 - 

G12 101 41 41 20 .200 0.0 - 

G13 101 81 81 20 .200 0.0 - 

8       x      12 

4 8        x      12 16 

Figure 14. Axial slice of grids through z = 0: (a) Gl, (b) G2. 
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tions and there are no electromagnetic effects. Given these assumptions, the Navier-Stokes 

equations are written below in terms of the fluid density, p, the Cartesian velocity com- 

ponents, (u,v,w), and the pressure p. All variables are expressed in nondimensional form 

(details on the transformation from dimensional to nondimensional variables are contained 

in Appendix A). 

Pt + P(ux + vy + wz) + upx + vpy + wpz = 0 

1 / d d a 1 

P1 
Ut + UUX + VUy + WUZ + -px =  - I -Z-Txx + -X-Txy + TTTXZ 

p \dx oy oz 

i      \ (a 
Vt + UVX + Wy + WVZ + -py  =  ~  (  —T, 

a a 
p\dx'yx '  dyTyy+ dzTyi 

1 i / a 
wt + uwx + vvjy + wwz + -pz = -    -T-TZX + -z-Tzy + 

a a 
p~        p \dx 'zx '   dy'*y '   dz' 

pt + upx + vpy + wpz + ip(ux + vy + wz) = (7 - 1)$ - V • q 

The nondimensional shear stress tensor, r, and viscous dissipation, $, are given by 

(10) 

(11) 

(12) 

(13) 

(14) 

JL 
Re 

dUj      du£\ _ 2     duk 

dxj      dxi J      3 %1 dxk 

(i,j,k= 1,2,3) 

and 

$ = V • (r • u) - (V • r) ■ ü 

(15) 

(16) 

The nondimensional heat flux vector, <f, is defined as 

9= - 
P 

Pr Re M2 VT (17) 

where M is the reference Mach number based on the reference velocity, T is the temperature 

and Pr is the Prandtl number (Pr = pre}cp/krej = 0.72). The reference velocity, u'ref, is 

defined as the axial velocity at the reference "point," taken to be at the juncture of the 

inflow and wall boundaries (the prime symbol is used to indicate that u'rej is a dimensional 

quantity). Thus, the reference point is actually a set of points. However, since the flow 

at the inflow plane (which contains the reference point) is assumed to be axisymmetric, 

there is no ambiguity in the selection of reference quantities. All other flow quantities at 

the reference point are denoted with the subscript "re/." The Reynolds number Re and 
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Mach number M are defined as 

Re = 
UrefrO 

Kef 

M = u'ref/c'ref 

(18) 

(19) 

where the length scale, r0, is defined as the radius of the vortex core at the inflow boundary. 

[For example, with r0 as the length scale, R0 = 2 implies that the outer boundary is located 

at a radial distance equal to two times the vortex core radius, while L — 30 implies that 

the outflow boundary is located a distance equal to 30 times the vortex core radius from 

the inflow boundary.] 

Auxiliary equations, necessary to close the system of differential equations, are ob- 

tained by assuming a perfect gas and Sutherland's formula: 

T = 
-y M2 p 

(20) 

^&±^T* (21) 
[T + C2] 

where C2 is a nondimensional constant defined in Appendix A. When Pr is fixed, we find 

the nondimensional relationship 

k = p (22) 

The governing equations, in vector form, become 

U, + AUX + BUy + CUZ = D (23) 

where U = (p,u,v,w,p)T and 

A = 

u    p     0    0    0 

0     u    0    0    i 
p 

0 0 u 0 0 

0 0 0 u 0 

0    7p   0    0    u 

B 

v   0     p    0    0 

0    v     0     0    0 

0    0     v     0    k 

p 

0    0     0     v    0 

0    0    7p   0    v 
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c 

-. 

w 0 0 p 0 0 

0 w 0 0 0 
1 

P 

dx'x*   '    dy   XV    '    dz   xz 

0 0 w 0 0 D = ■2-T     -4- —r     4- —T dx vx  ' dy w  ' dz yz 

0 0 0 w 1 
p ax 'zx '  dy '*y ~ dz'« 

0 0 0 IP w p[(7-l)*-V-9] 

3.3    Transformation to Computational Coordinates 

In this section, the governing equations are transformed to allow for computations 

over equally spaced nodes. The governing equations are rewritten in terms of computa- 

tional coordinates (£, n, (), where x = x((), y = y(£, »?,C) and z = z(£,n,()- Application 

of the chain rule to the spatial derivatives in the left-hand side of Eq. 23 results in 

Ut + AU& + AUnnx + AUcCx + BUnr,y + BUcCy + CU^> + CUcC = D (24) 

The viscous terms, D, are transformed to computational coordinates by application of the 

chain rule, and are found by first computing and storing the elements of the stress tensor, 

r, followed by the calculation of D. Eq. 24 can be written in the form 

Ut + AU( + BUn+CUc = D (25) 

where 

A = A£x     B = Anx + Bny + Cnz     C = A(x + B(y + C(z 

The metrics are evaluated from the following relations (Anderson et a!. (1984)): 

& = l/x( £» = 0 6=0 

Vx = -3{VizC ~ Vczi) Vy = Jx^z( nz = -Jx^y( 

(x = J(y^zv - yvzz)        (y = -Jx(zv        Cz - JxsVr, 
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where J = 1/J is the transformation Jacobian. The inverse transformation Jacobian, J, 

is given by 

J = x^(yvzi-zvyi) (26) 

The metrics (a^-^) are calculated using finite-difference approximations, where A£ = 1, 

A77 = 1, and AC = 1 are assumed for convenience. Details on the metric calculations are 

given in Section 3.6. 

Eq. 25 has the same form as Eq. 23, implying that the incorporation of the trans- 

formation involves replacing the matrices A, B, and C with ^4, ß, and C, along with the 

application of the chain rule to D. 

3.4    Boundary Condition Formulation 

Boundary conditions are categorized as follows: 

• inflow conditions (si) 

• wall conditions (s2) 

• outflow conditions (s3) 

Two conditions are formulated for the inflow and wall boundaries, while one condition 

is presented for the outflow boundary. Type 1 conditions consist of Inflow-1, Wall-1 and 

Outflow conditions. Type 2 conditions consist of Inflow-2, Wall-2 and Outflow conditions. 

3.4.I Specification of Boundary Locations. The specification of the boundary 

locations in both physical and computational domains is outlined in this section. 

The specification of boundary locations in physical coordinates (a;, y, z) is straightfor- 

ward. The inflow conditions (si) are evaluated at (0,y,z), where y2 + z2 < Äg. Similarly, 

the outflow conditions (s3) are evaluated at (£, y, z), where y2 + z2 < R\. The wall bound- 

ary conditions are applied for 0 < x < L such that y2 + z2 — R\ (it should be emphasized 

that x = 0 and x — L are not included in the wall boundary condition). 
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nz 

k2 

k1 

1   J1 j2 ny 

Figure 15. Schematic of crossplane grid in the computational domain. 

Node indices are used in favor of computational coordinates to denote the boundary 

locations. Sets of node indices, denoted as I1,!2 and I3 will be defined below as the nodes 

along si, s2 and s3 respectively. 

The specification of node indices in the crossplane is complicated by the multiblock 

nature of the grid structure. For convenience, node indices for a typical crossplane grid 

in the computational domain are presented in Figure 15. The following sets of crossplane 

indices (j, k) are defined to clarify their specification: 

K1    =    {{j,k):j=l,...,ny]k = kl,...,k2} 

K2    =    {(j,k):j = jl,...,j2;k=l,...,kl-l) 

^3    =    {{j,k):j = jl,...,j2;k = k2+l,...,nz} 
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The complete set of crossplane node indices is formed from the union of TZ1, TZ2 and TZ3: 

1lc = It1 U TZ2 U TZ3                                                     (27) 

Nodes along si, the inflow boundary, are denoted by the set I1, defined as 

I1 = {(i,j,k):i = l;(j,k) = ne}                                         (28) 

Similarly, nodes along the outflow boundary (s3) are denoted by the set I3, defined as 

I3 = {(i,j,k):i = nx;(j,k) = TZ<}                                      (29) 

The set of wall node indices is formed from the following sets of crossplane indices: 

^4 = {{j,k):j = l;k = kl,...,k2} 

K5 = {(j,k):j = ny;k=kl,...,k2} 

TZ6 = {(j,k):j = jl,...,j2;k=l) 

K1 = {{j,k):j = jl,...J2;k=nz} 

The complete set of wall node indices for a given crossplane is formed from the union of 

TZ4 - TV: 

1T = TZ4 U TZ5 U TZ6 U ft7 

The total set of wall node indices along s2 is denoted by J2, defined as 

I2 = {(i,;, k) : i = 2,..., nx - 1; (j, k) = TZW} (30) 

Indices at the wall/inflow juncture, i — 1, correspond to reference conditions, and are 

designated as 

r*i = {(i,j,k):i = l;(j,k) = TZw} (31) 
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3.4-2 Inflow-1. The principle assumptions are that the flowfield is steady, axisym- 

metric and incompressible at the inflow plane, si. For simplicity, the inlet axial velocity, 

w, is chosen to be uniform: 

Ä(0,r,ö)=l (32) 

This differs from flows exiting from a swirl-vane apparatus, which typically have a jet-like 

axial velocity profile. The effect of this axial velocity excess (or defect) on the vortex core 

is not explored in this work. 

Boundary conditions on v and w (Cartesian velocity components) are obtained by 

specifying appropriate profiles for v and u (cylindrical velocity components). The follow- 

ing swirl velocity profile is characteristic of a Burger-type vortex and is appropriate for 

modeling the profiles obtained from a swirl-vane apparatus (Faler and Leibovich (1977)): 

v(0,r,0) = Vr-\l~e-r2) = Tr-1 (33) 

where V is the vortex strength along si and T is the circulation (divided by 2ir). The radial 

velocity component is assumed to vanish to reflect columnar flow at the inlet: 

ü(O,r,0) = O (34) 

Transforming Eqs. 32-34 from the cylindrical system to the Cartesian coordinate system 

results in 

u(0,y,z)   =    1 (35) 

v(0,y,z)   =    -v(0,r,9)sind (36) 

w(0,y,z)   =    v(0, r, 9)cosd (37) 

where sin# = z/r, cosd = y/r and r = y/y2 + z2. 

The inflow density profile is assumed to be uniform: 

p(0,y,z)=l (38) 
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A boundary condition on pressure is obtained by considering the axial momentum 

equation for inviscid flow: 

ut + uux + vuy + wuz + -px - 0 (39) 
P 

Along the inflow plane, p = u = 1, and thus ut, uy and uz vanish, reducing Eq. 39 to 

ux{0,y,z) + px(0,y,z) = 0 (40) 

The continuity equation for incompressible flow in cylindrical coordinates is 

11 
ur + - + wz = 0 (41) 

r 

which can be simplified with Eq. 34 to obtain 

w2{0,y,z) = ux{0,y,z) = 0 (42) 

Substituting Eq. 42 into Eq. 40 results in 

p,(0,y,z) = 0 (43) 

Along si, the grid is constructed such that T]x = (x = 0 (even if a / 0) and therefore 

application of the chain rule to px results in simply px = ^xp^. Therefore, Eq. 43 can be 

written as 

Pt{0,y,z) = 0 (44) 

The Inflow-1 boundary conditions are summarized in physical coordinates as 

p(0,y,z) = 1 

u(0,y,z) = 1 

v(0,y,z) = —v(0,r,9)sm9 

w(0,y,z) = £(0,r,9)cos6 
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px(0,y,z)   =    0 

and in computational coordinates by 

P(i,j,k) = 1 (45) 

«(ij,*) = 1 (46) 

V(i,j,k) = -*(ij,*)sinÖ(i,;,*) (47) 

W(i,j,k) = W(i,i,*)cos^(i,j,*) (48) 

where (l,j,fc) G X1 from Eq. 28. 

3.4.3 Inflow-2. The primary difference between Inflow-1 and Inflow-2 is the inlet 

density profile. Inflow-1 assumes an incompressible (p = 1) fluid state. Inflow-2 utilizes 

a non-uniform density profile based on columnar flow, which is enforced as a Dirichlet 

condition at the inlet. 

p(0,y,z) = Pe(y,z) 

The density profile, pc, is obtained by solving the axisymmetric Navier-Stokes equa- 

tions with the PAC algorithm (Appendix B.2) in a tube of short (L = 0.01), but finite, 

axial extent. Inflow and outflow conditions of the short tube are enforced that dictate 

columnar flow. These conditions consist of fixed velocity components (Eqs. 32-34) with 

px = px = 0. The resulting columnar solution for density is defined as pc. 

Figure 16 shows Inflow-2 density profiles as vortex strength and Mach number are 

varied. The density at the centerline (r = 0) is shown to decrease with increasing vortex 

strength and Mach number. 

Morton (1989), studying unbounded vortices, used an inlet swirl velocity profile of 

the form 

Vr(2 -r2)   r < 1 

V/r r > 1 
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Figure 16.    Inflow-2 density profiles for selected Mach numbers:  (a) M = 0.1, (b) M = 
0.3, (c) M = 0.5, (d) M = 0.7. 

Morton (1989) also prescribed a non-uniform density profile assuming 2-D, compressible, 

columnar flow. The swirl momentum equation was utilized by Morton (1989) to obtain an 

expression for the internal energy at the inlet. Then, the axial momentum equation was 

used to solve for the inlet density. 

Results of Morton's approach (provided by Morton only at the juncture of the inlet 

plane and centerline) are compared to the current approach for a wide range of Mach 

numbers in Table 2. The agreement is excellent, especially at the lower values of Mach 

number. The Mach number used in this study is M = 0.3. The PAC model was modified 

to allow for the different swirl velocity profile in order to obtain the comparison in Table 2. 

The pressure for Inflow-2 is obtained by solving the steady, axial momentum equation. 

For steady, uniform axial flow at the inlet, uy = uz = 0, reducing the axial momentum 
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Table 2.    Comparison of centerline (r = 0) values of pc between PAC model and results 

of Morton (1989). 

M    pc (PAC) pc (Morton) percent difference 

"02        0.909             0.906 0.33% 
0.4        0.693              0.688 0.72% 
0.6        0.452              0.444 1.77% 

0.8        0.269              0.255 5.20% 

equation to 

us + V- = D2 (50) 
Pc 

where D2 is the second component of the vector D. In computational coordinates, Eq. 50 

is written as 

«e + ^ = D2/t, (51) 
Pc 

The Infiow-2 boundary conditions are summarized in physical coordinates as 

p(Q,y,z)   =   pe(y,z) 

u(0,y,z)   =   1 

v(0,y,z)   =    —v(0,r,d)sm0 

w(0,y,z)   =   v(0,r,9)cos6 

ux(0,y,z) + —    =    D2(0,y,z) 
Pc(y,z) 

and in computational coordinates as 

P(lJ,k) = Pc(j,k) (52) 

u(hj,k) = 1 (53) 

W(i,j,i) = -V(itjtk)sm0(i,j,k) (54) 

W(i,j,k) = *(ij,i)Cos6'(liji(t) (55) 

+ ^(lj.fc) _ -D2(l,j,t) ,5g. 

"c0',*) ^x 

where (l,j, A) G J1 from Eq. 28 and {j,k) G 1lc from Eq. 27. 
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3.4-4 Outflow. Outflow conditions are chosen to reflect an assumed columnar 

flow state. This is a reasonable assumption when the outflow plane is sufficiently far 

downstream. As previously mentioned, the experiments of Faler and Leibovich (1977) 

and Garg and Leibovich (1979) demonstrate that flows far downstream of breakdown are 

quasi-cylindrical in nature, implying that axial variations in flow quantities are small. 

The columnar conditions employed here assume no axial variations. Columnar outflow 

conditions are also assumed in the works of Darmofal (1994) and Beran and Culick (1992). 

The assumption of columnar flow at the outflow plane results in a complete set of 

outflow conditions: 

px(L, y, z) = ux(L, y, z) = vx{L, y, z) = wx(L, y, z) = px(L, y,z) = Q (57) 

Since r]x = (x = 0 at the outflow boundary, Eqs. 57 can be written in computational 

coordinates as 

Pi{nx,j,k) ~ Ut(nx,j,k) = VZ(nx,j,k) = WZ(nx,j,k) = Pt{nx,j,k) = ° (58) 

where (nx,j, k) £ Xs from Eq. 29. 

3.4-5 Wall-1. Wall boundary conditions are presented in this section for flows in 

a solid tube with slip. A straight wall (a = 0) is assumed for the Wall-1 conditions, with 

locally columnar flow prescribed at the wall. 

The Wall-1 conditions are formulated to help define baseline grid requirements in 

Section 4.1. Their usefulness comes from the fact that, along with Inflow-1 conditions, 

steady breakdown solutions can be obtained. This allows for a "clean" assessment of the 

necessary grid resolution, since temporal errors can virtually be eliminated. 

The absence of a wall boundary layer is likely to affect the location of breakdown, 

but it is not believed by the author to be a requirement for the development of breakdown 

or the resulting flow topology. Furthermore, when a constricted tube is used, a no-slip 

wall may result in regions of separated flow aft of the tube throat, which could complicate 

the flowfield and possibly contaminate the breakdown structures. For these reasons, and 
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for the reduced grid requirements allowed in the absence of a wall boundary layer, the slip 

wall is assumed. A slip wall is also used in the works of Darmofal (1994) and Beran and 

Culick (1992). 

Dirichlet conditions are specified assuming locally columnar flow at the walls, i.e., 

the (reference) Dirichlet conditions at the inflow/wall juncture are specified at all wall 

points. The Wall-1 conditions are limited to straight (a = 0) tubes, since impermeability 

can not be enforced with these conditions if a ^ 0. The conditions are written in physical 

coordinates along s2 (0 < x < L and y2 + z2 = R0 ) as 

p(x,y,z) =    p(0,y,z)=l 

u(x,y,z) =    u(0,y,z)=l 

v(x,y,z) =   v(0,y,z)=-(T{Ro)/R0)sme 

w(x,y,z) =   w(0,y,z) = (T{R0)/Ro)cosd 

p(x,y,z) =   p(0,y,z)=l/(1M
2) 

(59) 

(60) 

(61) 

(62) 

(63) 

In computational coordinates, the Wall-1 conditions are written as 

Pd,i,k) 

U(ij,k) 

V(i,j,k) 

Wd,j,k) 

P(i,j,k) 

P(l,3,k) =  ! 

=      U, (lj,*) =  1 

V(i,j,k) = ~ (T(i,j,k)/Ro) sinödj,*) 

W(l,j,k) = (T(i,j,k)/Ro) cos0(UiJl!) 

p(liiik) = 1/ (7 M
2) 

(64) 

(65) 

(66) 

(67) 

(68) 

where (i,j,k) G l2 from Eq. 30 and (l,j,k) G Tet from Eq. 31. 

3.4.6 Wall-2. Boundary conditions are presented in this section that enforce 

impermeability at the slip wall for a/0. The flow at the wall is assumed to be steady, 

inviscid, and of constant temperature. In addition, it is assumed that the flow is compress- 

ible, but that the influence of compressibility is small. 
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Describing the wall surface in the form S(r,x) = 0, the impermeability condition is 

written as 

V5(r,i)-5= 0 

where 

S{r,x) = r- R(x) 

u = (u, V,W) 

and R(x) is given by Eq. 8. Performing the dot product in cylindrical coordinates yields 

dR(x) . 
ax 

Defining dRW = —K(x), results in 

ü + K(x)w = 0 (69) 

where 

(27rai20/^i)sin(27r2;/a;1)    x < xx 

0 x > Xi 
K(x) = < (70) 

An expression for the swirl velocity, v, at the wall can be obtained by considering 

that, in the absence of viscous losses, the wall is a streamsurface of the flow. The azimuthal 

momentum equation written in terms of the circulation, T, reduces to DT/Dt = 0 along 

the wall for steady, inviscid flow. Thus, a fluid particle entering the physical domain at the 

inflow/wall juncture maintains a swirl velocity such that circulation remains constant. The 

■ condition that DT/Dt = 0 is exact for incompressible flow, and is applied approximately 

here assuming that the effects of compressibility are small near the wall (Batchelor, 1967). 

Therefore, considering Eq. 33, we can write at the wall 

v = RoRix)'1^ (71) 

where v0 denotes the constant swirl velocity at the juncture of the inlet and wall surfaces. 
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Density is made proportional to pressure along s2 by prescribing the reference wall 

temperature. Then, from the perfect gas law. p/p is constant along the wall: 

l = J-=J- (72) 
P 7M2 7M2 V ' 

A third velocity condition is obtained from the compressible Bernoulli equation, valid for 

steady, inviscid flow along the wall streamsurface: 

u2 + v2 -\- w2 7    p 
 1 = constant 

2 7 - 1 P 

This equation, along with Eq. 72, implies constant flow speed, y/u2 + v2 + w2, along s2. 

The flow speed at the wall is evaluated from the inlet conditions, and is found to be \/l + v2. 

Expressed in terms of cylindrical velocity components, Bernoulli's equation applied along 

the wall yields 

w2 + v2 + u2 = 1 + v2
0 (73) 

Substituting Eqs. 71 and 69 into Eq. 73 results in an expression for the axial velocity, u, 

along the wall: 

u = w 
1 + w, VfiwJ 

\| 1 + K\x) (74) 

The wall pressure is determined by enforcing the conservation of momentum in the 

y and z directions. The y and z momentum equations for steady, inviscid flow are given 

by 
V 

uvT + Wy + wvz + — = 0 (75) 
P 
r) 

uwx + vvjy + wwz -\—- = 0 (76) 

Two different boundary conditions, Eqs. 75-76, are used due to the solution procedure, 

described in Section 3.6. The y momentum equation is used to solve for p in the 77-sweep, 

while the z momentum equation is used to solve for p in the £-sweep. 
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The Wall-2 boundary conditions in physical coordinates are summarized below for 

0 < x < L and y2 + z2 = R0
2: 

1 P = J_ =   
p      7M2      7M2 

u + K(x)w = 0 

v — RQR(X)    VQ 

w 
l + «o2 1- R(x) 

\ 1 + K2(x 

Pv uvx + vvv + wvz H = 0 
p 

Pz uwx + vw„ + wwz H = 0 
p 

The last two equations represent one boundary condition for pressure. Which equation is 

used depends on the location of the wall node.  In computational coordinates, the above 

conditions are expressed as 

P(i,j,k) _     1 

P(i,j,k)     1M2 

ü(i,j,k) + KiW(ijtk) = 0 

V(i,j,k) — RaRi      V0 

\ 

l + »o2 i-m 
1 + K2i 

w(i,i,k) 

(uve&)(ij,*) + (vvAvh,i,k) + (vcA(h,j,k) + 

(uw&h,j,k) + (wvAv)(i,j,k) + (U>C
A

C)(«'J.*) + 

where Rt = Ä(i,-), K{ = K{x{), (i,j,k) e I2 and 

(Pr,Vy+PcCy)(.i,J,k) 

P{i,i,k) 

(PyVz +PcO\i,j,k)  _ 

0 

= 0 
P(i,j,k) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

Av = UT]X + vrjy + wqz 

Ac = u(x + v(y + w(z 

(83) 

(84) 
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Eqs. 81 and 82 have been simplified to reflect the fact that £y and ^ are zero for the grids 

developed in this work. 

3.5    Discrete Boundary Conditions 

The boundary conditions are approximated in discrete "delta" form in this section. 

The delta form implies that equations are written in terms of how the flow variables change 

from the known time level, n, to the unknown time level n + 1. For example, Anq refers 

to the change in an arbitrary flow quantity, q, between level n and n + 1, and is written as 

Anq = qn+1 - qn (85) 

The spatial accuracy of the discrete form of derivative boundary conditions is first- 

order accurate during implicit sweeps, which is less than the spatial accuracy of the discrete 

interior equations. The reduction in formal accuracy is due to the solution procedure, 

discussed in Section 3.6. The discrete form of the governing equations (including boundary 

conditions) is written as a block-tridiagonal system of algebraic equations. To retain 

the tridiagonal form of the equations at the boundaries, two-point forward or backward 

differences are employed, which are first-order accurate. 

Second-order accuracy is recovered at the end of each solution cycle by explicitly 

satisfying the boundary conditions using updated flow variables. For example, the outflow 

boundary condition for the density, p, is written in computational coordinates at the 

advanced time level as 

pr\nxJ,k) = o (86) 

where (nx,j,k) G I3. Eq. 86 is satisfied implicitly using a two-point backward difference: 

nn+1        - nn + l — 0 lJ{nx,j,k)       ^(nx~l,j,k) — u 

A second-order finite-difference formula involving p"t-2,j,k iS not usec^ to approximate 

Eq. 86 implicitly, since this violates the tridiagonal structure of the discrete form of the 

equations.  However, after the solution for p is obtained for every node from the current 
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solution cycle, the density at the outflow boundary is explicitly updated to second-order 

spatial accuracy from the three-point backward finite-difference discretization of Eq. 86: 

Solving Eq. 87 for p?„xj k) results in 

A.*) = (mpff-ij.» - (i/3)pS1-2J-lt) (88) 

The value of p?^j k\ provided by Eq. 88 is used to update the density at the outflow to 

second-order spatial accuracy. 

Time accuracy of the discrete boundary conditions are exact unless otherwise noted. 

No unsteady boundary conditions are used in this study, therefore, there are no errors 

resulting from the discretization of temporal derivatives at the boundaries. Some boundary 

conditions do however employ "lagging" of one or more terms. A lagged term implies that 

it is considered approximately equal to it's value at the previous time level to within an 

error of one order of magnitude. 

3.5.1 Inflow-1: Discrete Form. The discrete forms of the Inflow-1 boundary con- 

ditions are presented in this section. The Inflow-1 boundary conditions in computational 

coordinates are summarized in Eqs. 45-49 of Section 3.4.2. 

The discretization of Eqs. 45-49 into the delta form is straightforward, with p^ ap- 

proximated using a two-point forward difference. The delta form is typically obtained by 

simply writing the boundary condition at time level n + 1 and then subtracting from this 

the same condition at level n. Then, terms are grouped into the delta form using Eq. 85. 

For example, writing the Inflow-1 boundary condition for density at time levels n + 1 and 

n yields 

Pn+\i,J,k)    =    1 (89) 

Pn
(1,;,*)    =    1 (90) 
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where (j,k) G TV. Subtracting Eq. 90 from Eq. 89 results in 

A>(u.*) = 0 (91) 

The remaining Inflow-1 conditions in delta form are 

A>i,^) = 0 

AnP(2j,t) - Anpciiiii) = 0 

(92) 

(93) 

(94) 

(95) 

Eqs. 91-94 are exact, while Eq. 95 is first-order spatially accurate. Eqs. 91-95 are expressed 

in matrix form as 

10 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 10 

0   0   0    0-1 

AnU(1Jik) = Q (96) 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0     AnU(2ijtk) 

0 0 0 0 0 

0 0 0 0 1 

Eq. 96 is evaluated for all (j, k) 6 TV. 

3.5.2 Inflow-2: Discrete Form. The discrete form of the Inflow-2 boundary con- 

ditions are presented in this section. The Inflow-2 boundary conditions in computational 

coordinates are summarized in Eqs. 52- 56 of Section 3.4.3. 

Eqs. 52-56 are written in delta form as 

A"u(liM) = 0 

(97) 

(98) 

(99) 
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(100) 

(101) 

where the viscous term in Eq. 101 is lagged, resulting in the following approximation: 

AB(^)(iJ.*) = AB_1(^w)+o(A*r 

Therefore, Eq. 101 is written as 

Anu 
£(ij',*0 + *>(!,,■,*)  _   An-l(D2\1,],k) 

Pc(j,k) Zx 
(102) 

Eqs. 97-100 and Eq. 102 are discretized and written in matrix form using two-point, forward 

differences for the terms u^ and pf 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 1 0 0 1/p 

Anf/2jl 

1 0 0    0 0 0 

0 1 0    0 0 0 

0 0 1    0 0 *nVi,j,k = 0 

0 0 0    1 0 0 

0 -1 0    0 -1/p. L        e*        J 
103 

Eq. 103 is evaluated at all crossplane nodes (j,k) 6 1ZC. 

3.5.3 Outflow: Discrete Form. The discrete forms of the outflow boundary con- 

ditions are presented in this section. The outflow boundary conditions in computational 

coordinates are summarized in Eqs. 58 of Section 3.4.4. Derivatives in Eqs. 58 are approx- 

imated using first-order, two-point backward finite differences. The remaining process of 

formulating the boundary conditions in delta and matrix form is similar to that described 
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in Sections 3.5.1 and 3.5.2. The result is 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

&nUnx,j,k 

10 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 10 

0    0    0   0    1 

Eq. 104 is evaluated at all crossplane nodes (j,k) G 1ZC. 

A^^Lii = 0 (104) 

3.5.4 Wall-1: Discrete Form. The discrete forms of the Wall-1 boundary con- 

ditions are presented in this section. The Wall-1 boundary conditions in computational 

coordinates are summarized in Eqs. 64-68 of Section 3.4.5. Since all Wall-1 conditions are 

Dirichlet-type conditions, Eqs. 64-68 are written exactly in delta form as 

10   0   0    0 

0    10   0   0 

0    0    10    0     AnUiJtk = 0 (105) 

0    0   0    10 

0    0   0   0    1 

Eq. 105 is evaluated at the wall nodes (i,j,k) G T2. 

3.5.5 Wall-2: Discrete Form. The discrete forms of the Wall-2 boundary con- 

ditions are presented in this section. The Wall-2 boundary conditions in computational 

coordinates are summarized in Eqs. 77-82 of Section 3.4.6. 

Eqs. 77-82 can be expressed in delta form as 

Anp - 7ATA> = 0 (106) 

A"u = 0 (107) 

(108) 
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Anw = 0 (109) 

GnAnp + pn(unAnv^x + A%Ani7„ + A"CA» + An
Pr,r,y + Anpc(y = 0 (110) 

HnAnp + pn(unAnw& + An
vA

nwn + A"cA"Wc) + Anpflr]z + Anp((z = 0 (111) 

where G" = u"vn^x + vn
vA

n
r, + vn

cA
n
( and Hn = unwn^x + wn

vA
n„ + u/l

cAn<;. The terms 

A, and Ac are defined in Eqs. 83 and 84 (Section 3.4.6). Eqs. 110-111 are first-order time 

accurate due to the linearization of the equations. For example, casting the nonlinear term, 

un+1vx
n+1 into the delta form is not possible unless one the terms is held constant over 

the time interval. This results in first-order accuracy in time. The linearized, approximate 

expression, choosing to hold u fixed over the time interval results in unAnvx. 

Eq. 110 is rewritten in terms of computational coordinates to yield 

^A"p + A\A"«, + %A>„ = -un&A"t;f - A"cA
nvc - %A> (112) 

The right-hand-side terms are lagged to time level n — 1 to first-order temporal accuracy. 

~Anp + h.\Anvn + \Anp, = -«»^A-1^ - A"cA-
1^ - %A"-VC = RHSV (113) 

Similar manipulations to Eq. Ill result in 

^A> + An
(A

nwc + %A> = -u&A"-1^ - A%A""1«;, - ^A""1?, = RHSC (114) 

The Wall-2 boundary conditions are now written in matrix form at the wall nodes 

(i,j,k) 6 I2. At j = 1 and j - ny, the y momentum equation, Eq. 113, is used, while at 

k = 1 and k = nz, the z momentum equation, Eq. 114, is used. 

58 



At j = 1, Eqs. 106, 107, 108, 109 and 113 are discretized using first-order forward 

differences and are written in matrix form as 

1    0 0 0 -7M2 0 0 0 0 0 0 

0    1 0 0 0 0 0 0 0 0 0 

0    0 1 0 0 A"tfM,* + 0 0 0 0 0 AnUit2tk = 0 

0    0 0 1 0 0 0 0 0 0 0 

£   0 
p 

-An 0 
p 

0 0 An 0 
p   _ 

RH Sq 

(115) 

Eq. 115 is evaluated over 2 < i < nx - 1 and the set HA (Section 3.4.1). A similar 

condition holds at the wall nodes at j = ny. First-order backward finite differences are 

used to discretize the equations 

0 

0 

^■nUiiny-itk = 0 

0 

RHSn 

(116)" 

Eq. 116 is evaluated at 2 < i < nx — 1 and the set 7£5. 

The boundary conditions at k = 1 are discretized using first-order forward differences, 

resulting in 

1 0 0 0 -7M2 

0 1 0 0 0 

0 0 1 0 0 A"t/,-„y,t + 

0 0 0 1 0 

G 

p 
0 A" 0 2i 

p 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 -A" 0 -n 
p 

1 0 0 0 -7M2 

0 1 0 0 0 

0 0 1 0 0 An^,;,i + 

0 0 0 1 0 

H 

p 
0 0 -A"c p 

0    0    0      0 0 

0   0    0      0 0 

0    0    0      0 0 

0   0   0      0 0 

0   0    0   An
c k 

"> p 

A"^,i,2 = 

0 

0 

0 

0 

RHSC 

(117) 
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Eq. 117 is evaluated at 2 < i < nx - 1 and the set II6.   Finally, at k — nz, first-order 

backward differences are used to discretize the equations to yield 

1 0 0 0 -7M2 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

H_ 
p 

0 0 A"c p 

&nUi,j,nz+ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 -A", z± 

AnU, i,j ,nz — l 

o 

0 

0 

0 

RHS, 
(118) 

Eq. 118 is evaluated at 2 < i < nx - 1 and the set 1Z7. 

3.6    Solution Procedure 

The TANS solution procedure is described in this section. The spatial and tempo- 

ral discretization of the governing equations is discussed in Section 3.6.1. The addition 

of explicit artificial dissipation to the scheme is discussed in Section 3.6.2. The sweeping 

strategy for the multiblock grid and the evaluation of explicit terms in the governing equa- 

tions are discussed in Sections 3.6.3 and 3.6.4, respectively. A modification of the sweeping 

strategy is described in Section 3.6.5. Finally, the results of a freestream conservation 

check is presented in Section 3.6.6. 

The solution procedure is a Beam-Warming, approximate-factorization scheme. The 

equations are solved in a nonconservative, implicit manner using either the Euler implicit 

(El) scheme, the three-point backward scheme, or the trapezoidal scheme. Details con- 

cerning the development and application of the Beam-Warming algorithm are contained 

in Appendix F. 

Temporal accuracy for the inviscid terms is first-order for the El scheme and second- 

order for the three-point backward and trapezoidal schemes. The viscous terms are treated 

explicitly, implying first-order temporal accuracy for these terms. 

3.6.1    Spatial and Temporal Discretization. Spatial accuracy is increased to 

fourth-order by replacing the traditional central-difference approximation with the more 
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accurate compact, or Pade, approximation (Lele, (1990)). The compact scheme approxi- 

mation for the derivative of a scalar, u, with respect to x is given by 

1     fSxu 
2Kx~ VsT 

)+0(Ax4) (119) 

where 

6xu = ui+1 - u{ t'-l Sx = 1 + 8x
2/6       6xu = ui+1 - 2ui + Uj_i 

<S, 6 and S2 denote discrete operators, while the subscript refers to the chosen coordinate 

direction. Section F.l contains a derivation of the compact scheme approximation. It is 

of interest to note that for S = 1, the second-order, central-difference approximation is 

obtained. 

Consistent with the boundary conditions, the scheme is written in the so-called delta 

form, where the correction, AnU = Un+1 - Un is computed at each time level. The 

superscripts denote time level, where n denotes the known time level, while n + 1 refers 

to the unknown level. The general, approximately factored scheme (Appendix F) for the 

solution AnU is given by 

xyzAnu = n (120) 

where 

X 

y 

l + 02    2    S( 

0i Ai Bn+1 6V 
1 + 

1 + 02    2    S„ 
Ui&   r, 

Z = / + ; ^-r- - ^iO 
1 + 02    2    Sc 

i" C 

and 

n   =   il + n + *3 

t\ 
AtDn + e2A

n~lu 
l + 02 
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12   =   -u,At(l\ + 6\ + S\)W 

,3   =   I 
2 

(9lA
n+1 + (1 - 9i)An)^-Un + (exB

n+l + (1 - 91)B
n)^-Un + 

(e.c^1 + (i - el)c
n)^-un At 

Values of the pair (0i,02) 
are (1,0) for the El scheme, (1/2,0) for the trapezoidal scheme, 

and (1,1/2) for the three-point backward scheme. 

The .4, B, and C matrices (defined in Section 3.2) are evaluated at time level n + 1 to 

second-order accuracy to preserve the second-order temporal accuracy with which the in- 

viscid terms are treated (Appendix F.3). The matrices are obtained through extrapolation, 

resulting in 

(A,B,C)n+1 = {A,B,Cf + (AuBuCt)
nM + 0(At2) (121) 

For example, At, refers to the partial derivative of the matrix, A, with time, t. The 

elements of At, Bt, and Ct are evaluated to within an error of O(At) since these terms 

are multiplied by At in Eq. 121. The evaluation of the elements of At, Bt, and Ct is 

straightforward. Nearly all of the elements consist of linear combinations of elements of 

the solution vector, U = (p,u,v,w,p)T. Thus, for example, An — 6«, and therefore 

An
tn=£xut

n = t;x^^- + 0(At) 

An+ln = An
n + 6A"-1« + 0(At2) 

3.6.2    Artificial Dissipation. Explicit dissipation is necessary with the Beam- 

Warming scheme to suppress high-frequency oscillations in the solution. The damping 

term is spatially fourth-order in magnitude, allowing for the suppression of noise without 

formally degrading the spatial accuracy of the solution. The explicit damping coefficient, 

ue, is defined above such that the explicit damping term is multiplied by At. This is done 

to insure steady-state consistency, (Desideri et al. (1978)). The damping level used in this 

study is uje = 5/24. It was found that damping coefficients lower than 5/24 (e.g., ue = 1/8) 

62 



resulted in numerical instability and solution divergence.   Pulliam (1984), suggests that 

values of ue of 0(1) are typical. 

The implicit damping coefficient, a;,-, is set to zero for this work. Implicit damping 

is typically used to stabilize a scheme when large time steps are taken. However, for this 

work, the time-steps are small enough that implicit damping was found to be unnecessary. 

3.6.3 Sweeping Strategy. The solution is updated in Eq. 125 following the solution 

of Eqs. 122- 124 below, which represents the f, 77 and ( sweeps respectively: 

exAt A»*
1 

[Sf)I +- ; —bt + 

0,At ß"+1 

e.Atc^ 

AnU1    =   (5{)(U + t3) + <2 

AnUo 

AnU 

(SJA"^ 

(Sc)A
nU2 

Un+1 = Un + AnU 

(122) 

(123) 

(124) 

(125) 

Note that 5e is multiplied through Eq. 122 before solving the f sweep, and operates on all 

of the right-hand side terms except the damping term, t2. The damping term is excluded 

for consistency in comparing results to those obtained with the central-difference PAC 

scheme. Both the TANS and PAC models use the same fourth-order operator to provide 

numerical damping. If the TANS damping operator were modified by allowing S to operate 

on it, then the damping operators, and the corresponding damping characteristics, would 

change. 

The traditional method of sweeping in the 77 and ( directions is modified to allow 

for the presence of a multi-block grid structure (Section 3.1) in the 77 - ( plane. The 77 

sweep is depicted in Figure 17a. Each horizontal line represents a collection of nodes. The 

algorithm computes AnU2 implicitly along each line by solving a 5x5 block-tridiagonal 

system of 5 x ny equations. A"U2 is found along primary lines first (with wall boundary 

conditions imposed at j = 1 and j = ny) and then over secondary lines. The solid lines in 
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(a) (b) 
nz 
k2 

k1 

1 

"2 3 

1 4 

nz 
k2 

k1 

1 

1    J1 i j2  ny 1    J1 J 
j2   ny 

Figure 17.    Illustration of sweeping strategy: (a) n sweep (b) C sweep. Primary lines are 
solid, while secondary lines are dashed. 

the figure are the primary lines and the dashed lines are the secondary lines. The conditions 

at the boundary nodes of secondary lines (j = j'l and j = j2) are found by equating them 

with the corresponding primary line solutions A"C/2, since corresponding nodes along the 

cuts share the same physical location. Therefore, when the primary lines are solved, so 

are the boundary nodes of the secondary lines. Thus, Dirichlet boundary conditions are 

enforced along secondary lines. 

The C sweep is depicted in Figure 17b. The algorithm solves for AnU implicitly along 

each vertical line, each involving the solution of a 5x5 block-tridiagonal system of 5 x nz 

equations. AnU is found along primary lines first (with wall boundary conditions imposed 

at k — 1 and k = nz), and then over secondary lines. The conditions at the boundary 

nodes of secondary lines (k — kl and k = k2) are known from the primary line solutions, 

analogous with the n sweep. 

3.6.4 Evaluation of Explicit Right-Hand Side Terms. Spatial derivatives in tZ 

are computed implicitly at time level n to fourth-order spatial accuracy. This can be 

accomplished in an efficient manner, since the resulting set of equations are tridiagonal. 
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For example, Eq. 119 is implemented as 

ux,i+i + 4«x,i + w^i-i = (3/Ax)(ui+1 - ui_i) 

Boundary conditions are required to complete the tridiagonal system. At boundaries si, 

s2 and s3, second-order accurate, three-point forward/backward differences are used: 

6xux    =    -3«! -(- Au2 - u3 

£xunx      =      3wnr — 4wnx_i + Unx-2 

The resulting system for ux for becomes 

1     4     1 

1 

ux,i 

%.nr 

6xu/2Ax 

36xu/Ax 

ixu/2Ax 

which represents a constant matrix inversion problem for uxi with varying right-hand side 

terms. When considering solving many such systems along each line of nodes, the most 

efficient solution procedure is Lower/Upper Decomposition (LUD). 

The 77, C crossplanes contain four grid cuts, which are treated as boundaries when 

performing implicit operations. For example, in the calculation of uv along a secondary 

line k = k*, where 1 < k* < kl, the boundaries are at j = jl and j = j2 (Figure 18). An 

overlapping of the nodes across the cuts is required to promote smooth solutions. At these 

internal boundaries, fourth-order central approximations are employed for the specification 

of boundary conditions. The stencil used is 

uv = (-Ujj+2,* + 8ui,j+i,k - 8wjj_i,t + Ujj_2,*)/12 
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k=k1 

k=k* 

a b 

a: lb 

j=j1 i=J2 

Figure 18. Schematic of computational domain showing treatment of cut boundaries. 

which, for the current example at j = jl, would imply that points lying across the cut 

would be used as follows 

UV  = (~Ui,jl+2,k + &ui,jl + l,k ~ 8Uitk,kl + l + Uij.tki + 2)/12 

The metrics and viscous terms, D, are calculated to fourth-order accuracy in the 

same manner as above. For these quantities, three-point backward conditions are specified 

at computational boundaries si, s2 and s3, while the fourth-order approximation is used 

across the cuts. 

3.6.5 Modification of Sweeping Strategy. The sweeping strategy discussed earlier 

was modified slightly to further improve the stability of the algorithm near the cuts. The 

modification involves overlapping a line of nodes at the cuts when sweeping along secondary 

lines. For example, in the 77 sweep along secondary lines between cuts 1 and 4, data from 

k = k\ + 1 (horizontal dashed lines in Figure 18) is appended to the system consisting of 

nodes from j = jl to j = j2. The extended system solves from j = jl - 1 to j — j2 + 1. 
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Now the solution at the cut nodes depends on information from both sides of the cut. This 

is consistent with the treatment of the corresponding terms on the right-hand side. 

3.6.6 Freestream Conservation. The ability of the numerical procedure to con- 

serve a freestream was partially checked by solving for a uniform freestream with Dirichlet 

(no correction) boundary conditions at si, s2 and s3. The resulting temporal corrections, 

AnU, were found to be machine zero everywhere for 100 iterations over a wide range of 

time steps. It is of interest to note that employing a fourth-order-accurate boundary stencil 

(Lele (1992)) along the physical boundaries si, s2 and s3 of the form 

ue,i + 3ue,2 = (l/6)(-17«! + 9(u2 + u3) - u4) 

resulted in freestream conservation errors. 

3.7   Computational Resources and TANS Performance. 

3.7.1 Computational Resources. Computations and data visualization are per- 

formed on the following machines: 

1. DEC 4620/Alpha AXP Workstation (AFIT/ENY). This scalar machine hosts both 

the TANS and PAC codes. As a dedicated machine, the DEC provides wall-clock 

throughput comparable to a heavily "loaded" Cray Y-MP. Its 380 Mbytes of memory 

and dual processors allow two "large" jobs (grid G2) to run concurrently. 

2. Cray C-90/161024 (Naval Oceanographic Office, Bay St. Louis, MS). This 16 pro- 

cessor, vector machine is used to run the TANS code. 

3. Stardent ST-2000 Workstation, (AFIT/ENY). This machine hosts the AVS graphics 

software which generates the flowfield visualization discussed in Section 3.8. 

4. DEC 3000/400 Workstation (AFIT/ENY). This machine also hosts the AVS graphics 

software, however; its high-performance graphics hardware allows for faster imaging 

of the flow visualizations. 

5. Convex 220 (AFIT/ENY). This machine is used to run the TANS code. 
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6. Convex 3440 (Flight Dynamics Directorate: WL/FI). This machine supplements the 

DEC 4620 Workstation. 

7. Silicon Graphics IRIS-4D-8OGT Workstation (WL/FIGC). This Workstation hosts 

the software package GRIDGEN. 

3.7.2    TANS Performance. The TANS code consists of two major versions; 

one version uses second-order central differences while the other employs the fourth-order 

accurate compact scheme. The fourth-order version also has a vectorized version for use 

on the vector CRAY machines, and a scalar version for the DEC machine. The difference 

between the scalar and vector versions is in the data structure associated with the model's 

block solver. During each sweep, the scalar version treats data along lines of nodes one line 

at a time, while the vector version allows for solutions over many lines to be simultaneously 

obtained in a fully vectorized manner. 

The performance of the TANS model is shown in Table 3 for the various machines 

and versions. The Data Processing Index (DPI) is defined as the amount of CPU time 

per iteration per node point. This metric is determined by timing the code on various 

machines for a given grid, then computing the metric based on the elapsed CPU time, 

number of time steps, and total number of grid points. The number of iterations used for 

the data in this study is 50. This number was found to be sufficient to minimize the effect 

of calculations which are performed only in the first iteration (e.g., reading in the grid and 

restart files and computing the metrics). Mflops is a measure of the number of floating- 

point operations (in millions) that the processor performs per second. This metric is a 

function of both the host machine and the code being run. The number of floating point 

operations per iteration is determined by the hpm utility on the Cray C-90. To avoid the 

uncertainty involved in computing Mflops based on both scalar and vector operations, the 

code is first recompiled to prohibit all optimizations. This typically results in about 1% or 

less of the operations being vector. The number of (scalar) operations is then recorded for 

one iteration. Mflops is then computed based on the number of floating-point operations 

per iteration and the CPU time required to compute a known number of iterations. The 

last column in the table shows the required CPU time to integrate to a nondimensional 
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time of t = 100, normalized by the time (40.5 hours) required for the second-order version 

running on the DEC 4620. The CPU times are computed assuming the baseline grids 

and associated time-steps for both the second and fourth-order versions of the code. The 

baseline grids for the second/fourth-order versions are G6/G1 respectively, with associated 

time steps of 0.03 and 0.04. 

Table 3. Performance of the TANS code. 

Computer/Version DPI Mflops CPU (t = 100) CPU« = 100) 
CPU(DEC4620/2nd) 

DEC 4620/2nd 
DEC 4620/4th 

1.20E-04 
2.05E-04 

29 
26 

40.5 hours 
23.4 hours 

1.000 
0.577 

CRAY YMP/2nd 2.29E-05 153 7.7 hours 0.190 
CRAY C90/2nd 
CRAY C90/4th 

1.26E-05 
2.15E-05 

279 
237 

4.2 hours 
2.5 hours 

0.103 
0.062 

The required memory for the TANS code using grids G1/G2 is 9.8/18.8 million words. 

3.8    Visualization. 

The degree of difficulty in the visualization of a three-dimensional flowfield depends 

largely on the complexity of the large-scale flow structure. For example, if the flow is 

axisymmetric, data visualization is straightforward—only requiring contour plots on a 

plane that contains the vortex axis. Flow visualization is made more difficult when the 

flow is asymmetric, since no single plane gives a global description of the flow structure. In 

this case, one could consider displaying 3-D isosurfaces to help "visualize" the flow. These 

isosurfaces may prove to be useful if they are not greatly deformed. When isosurfaces 

are greatly deformed, however, interpretation of the flow becomes more difficult and sub- 

domains of the flow (such as recirculation regions) can become masked by the display 

of outer isosurfaces. This is a likely event for swirling flows that breakdown, since one 

encounters recirculation regions and (in the case of spiral breakdown) regions where the 

flow has a tendency to wrap around a common axis in a helical pattern. 

It is therefore advantageous, for the case of swirling flows, to consider alternative 

means of flow visualization. Streaklines have been widely used to help visualize unsteady 

flowfields in experiments.   The method chosen for this work utilizes discrete "material 
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points" that are introduced into the physical domain to create a discretized streakline. 

The material point positions are computed by integrating the current velocity field in 

time. 

The material point positions are updated using Euler's method. The position of the 

ith material point, äfj, is governed by the ODE 

^ = ^,0 (126) 

where u = (w, v, w)T is the known velocity field. The ODE is integrated to first-order 

accuracy in time to advance the material point position 

Si(t + At) * xt(t) + Ü (Xi(t), t)At (127) 

The velocity vector at the material point position, u (äf,-(2),i), is approximated to second- 

order spatial accuracy with the following Taylor series expansion 

u(Xi) = Unode + (VM)node -(Si- Xnode) (128) 

where xnode is the position of the node closest to the material point, unode is the velocity 

vector at the node, and (W)node is the gradient of the velocity field at the node. (W)node 

is approximated to second-order accuracy through central difference expressions. 

The flow visualization method consists of two steps. In step 1 all the material point 

positions are computed every Kth iteration and stored in a file at the end of the run. Thus, 

the reader should note that the material point positions are computed as the TANS model 

executes. In step 2 the AVS software reads the file containing the material point positions. 

AVS then displays spheres on the workstation screen using the material point positions 

as the centroids of the spheres. A new set of spheres are displayed every Kth time step 

to create a dynamic flow visualization. The advantage of this two-step approach is that 

the dynamic display of the material points on the screen is much faster once the time 

integration computations are completed. In addition, step 2 can be performed on a remote 

system, separate from the system used to perform the time integration. The disadvantage 
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is that one must wait until the end of the time integration run to visualize the discrete 

streakline. 

3.9   Recorded Data. 

In addition to the material point visualization, several scalar quantities are saved 

every mth iteration, where m is user specified. The first is the minimum axial velocity, 

Q, over all nodes. The second scalar is the maximum change in the solution vector, U, 

denoted A"Umax. This global maximum is computed considering all five components of U 

and by considering all nodes. The remaining recorded data consists of the time histories of 

the velocity components (if, v, w)T for a fixed centerline node, and the axial velocity along 

centerline nodes, uc(x), at the end of each run. 

3.9.1 Calculation of Q.     The quantity Q is defined by 

Q </n* [uiJik] (129) 

3.9.2 Calculation of A"?7max. The quantity AnJ/max is the maximum change in 

the solution vector over one iteration, and is defined by 

A"[/max    =    A"(p,U,t;,W,7M2p)Tmax (130) 

=    ?j$ [Anpijik,A
nuijik,A

nvijik,A
nwijik,iM2AnpiJik]T (131) 

3.9.3 Calculation of us, vs, and ws. The quantities us, vs and ws are the velocity 

components at a fixed centerline node, and are defined by 

u, = «(7,0,0) (132) 

r;3 = i;(7,0,0) (133) 

wg = w(7,0,0) (134) 

The location x = 7 is selected as a reasonable location, aft of the tube constriction, to 

expect flow disturbances to occur. Other locations along the centerline were not examined. 
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3.9.4    Calculation of uc(x).      The centerline axial velocity uc(x) is recorded at the 

end of each time-integration run and is defined by 

uc(x) = u(x,Q,0)     (0<x<L) (135) 

3.10    Definition of the i2 Norm. 

The L2 norm is used throughout this report to quantify results. The L2 norm of a 

vector x consisting of n elements is given by: 

1/2 

Lo = 
1^ 
;i>.2 
n .  , 

(136) 
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IV.   Grid Requirements & Validation 

Baseline grid requirements and validation of the TANS model are outlined in this 

chapter. 

In Section 4.1, node spacing and domain sizes are varied. Node spacings are varied 

to determine the value of the node spacings that, upon further reduction, have negligible 

impact on the solution. Solutions with such node spacings are said to be grid independent. 

The location of the outflow boundary is determined such that an increase in tube length has 

a negligible impact on the solutions. Finally, the influence of tube radius on the resulting 

solutions is discussed. It is found that solutions are sensitive to tube radius between R0 = 2 

and R0 = 3. However, it is demonstrated that solutions at R0 = 2 and low Mach number 

agree well with the incompressible results of Beran and Culick (1992). 

Comparisons between PAC and TANS solutions are presented in Section 4.2. The 

results show that when the vortex strength is sufficiently small, steady, axisymmetric solu- 

tions are admitted by the TANS model, even in the presence of an asymmetric crossplane 

grid structure. The resulting steady, axisymmetric solutions produced by the TANS model 

agrees with the PAC solutions to a very high degree of accuracy. This ability to produce 

steady, axisymmetric TANS solutions is important, since it allows for the possibility of 

studying the genesis of three-dimensional behavior. 

4-1    Grid Requirements 

Grid requirements are primarily assessed with the second-order accurate, central- 

difference formulation of the TANS model. Using the second-order model provides a con- 

servative assessment of the necessary node spacings, as well as a means of comparing the 

improved accuracy of the fourth-order model. However, it is found necessary to employ 

the compact scheme, with fourth-order spatial accuracy, to demonstrate convergence in 

solutions as the average radial node spacing is decreased. 

The effects of axial node spacing, tube length, and radial node spacing for the second- 

order model are discussed in Sections 4.1.1-4.1.3 respectively. The effects of radial node 

spacing using the fourth-order compact scheme are discussed in Section 4.1.4, while the 
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Table 4. Run matrix for grid resolution study. 

Run No. Re V M At a BC Type Grid Accuracy (Time/Space) 
1 100 1.80 0.3 .030 0.00 1 G7 lst/2nd 
2 100 1.80 0.3 .030 0.00 1 G8 lst/2nd 
3 100 1.80 0.3 .030 0.00 1 G9 lst/2nd 
4 100 1.80 0.3 .030 0.00 1 G10 lst/2nd 
5 100 1.80 0.3 .030 0.00 1 Gil lst/2nd 
6 100 1.80 0.3 .030 0.00 1 G12 lst/2nd 
7 100 1.80 0.3 .030 0.00 1 G13 lst/2nd 
8 100 1.80 0.3 .040 0.00 1 Gl 2nd/4th 
9 100 1.80 0.3 .025 0.00 1 G6 2nd/4th 

effects of tube radius are discussed in Section 4.1.5. A discussion on the grid requirements 

for the PAC model is given in Section 4.1.6, while Section 4.1.7 provides a summary of the 

results of Section 4.1. 

A summary of the model parameters for each run performed in this section is con- 

tained in Table 4. The vortex strength, V, is set to 1.8 so that a bubble breakdown would 

develop, ensuring that the grid refinement is assessed for a flowfield representative of the 

flows of interest. The baseline grid established in this section is determined based on a 

relatively low Re of 100. Results at higher Re, presented in Chapter V, include the effects 

of further grid resolution and tube length. 

The boundary conditions utilized are Inflow-1 and Wall-1, with a = 0. These con- 

ditions are referred to as Type 1 boundary conditions. Specification of Type 2 conditions 

(Inflow-2 and Wall-2) can lead to unsteady solutions for V = 1.8, even at Reynolds num- 

bers as low as 100. Thus, for purposes of determining the necessary grid resolutions, the 

Type 1 conditions are employed. Determining adequate grid resolution based on unsteady 

flow data would be problematic, since temporal and spatial errors could not be systemat- 

ically separated and analyzed. 

For each run, Euler implicit time integration is performed until a convergence crite- 

rion of (AnU)max < lO~6At is satisfied. 

4-1-1 Effects of Axial Node Spacing. The effect of axial node spacing are pre- 

sented by comparing the converged values of axial velocity along the tube centerline, uc, 
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Figure 19.    Effect of axial node spacing on centerline axial velocity for V=1.8, Äe=100 
and M=0.3. 

for Runs 1-3. Grids G7, G8, and G9 are used, which have 51, 101, and 201 axial nodes 

respectively, yielding axial node spacings, Ax, of 0.4, 0.2, and 0.1 respectively. The tube 

length, tube radius, and number of crossplane nodes are held fixed at L = 20, R0 = 2, 

and ny = nz = 61. Results are shown in Figure 19. It is observed that profiles of uc for 

Ax = 0.2 and 0.1 are nearly identical. At Ax = 0.4, the data appears to capture the first 

minimum value in the breakdown region (a; « 2) very well. Downstream (a; « 4), however, 

the axial velocity does not recover fully to that of the finer-grid solutions. For x > 7, all 

three solutions agree quite well. Based on these results, an axial node spacing of 0.2 is 

found to be sufficient to provide grid independence with respect to Ax. 

The L2 norm (Section 3.10) of the difference in uc between Ax = 0.4 and 0.2 is 

2.0E-02. The L2 norm of the difference in uc between Ax = 0.2 and 0.1 is 3.9E-03. 
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Figure 20.    Effect of domain length on centerline axial velocity for V=1.8, Äe=100 and 
M=0.3. 

4-1.2 Effects of Tube Length. Next, the tube length, L, is varied for R0 = 2, 

and ny = nz = 61. The tube lengths considered are Z=10, 20, and 40, corresponding to 

grids G10, G8, and Gil respectively. Figure 20 shows the centerline axial velocity, ue, for 

Runs 4, 2, and 5. When the tube length is 10, the axial velocity compares well with the 

solutions for the longer tubes near the breakdown region, x « 2. However, past x « 4, uc is 

significantly larger than that computed in the longer tubes. The solutions for tube lengths 

of 20 and 40 are shown to be in excellent agreement, with only a very slight variation in 

value past x = 10. From these results, and for this relatively low Re of 100, tube lengths 

greater than 20 provide a negligible improvement in accuracy. Therefore, L = 20 is selected 

for the baseline grid. 

The Li norm of the difference in uc between L = 10 and L = 20 is 5.5E-02. The L2 

norm of the difference in ur between L = 20 and L — 40 is 3.1E-03. 
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Another means of determining the necessary tube length comes from considering the 

outflow criticality. The concept of criticality is discussed in Section 2.1.1. If it can be shown 

that the outflow is supercritical, then by definition, disturbances at the outflow boundary 

are not capable of propagating upstream. This implies that any condition imposed at a 

supercritical outflow boundary should not impact the solution upstream. Thus, a suitable 

means of determining the outflow location would be to compute the flow criticality at each 

axial station to determine the location at which the flow transitions from subcritical flow 

(in the breakdown region) to supercritical flow aft of breakdown. This location could then 

be used as the outflow boundary. 

One problem with this tailored approach of determining outflow location is that Ben- 

jamin's (1962) analysis for computing criticality is limited to axisymmetric, inviscid flows. 

Thus, three-dimensional flows and flows where Re is not sufficiently large are inconsistent 

with the analysis. 

It should be noted that imposing the QC equations as an outflow boundary condition 

does not allow complete freedom in choosing an outflow location. Even though QC flows 

are necessarily supercritical, imposing QC conditions locally in a flow does not imply that 

the actual flow would have been supercritical at the outflow boundary. Furthermore, a 

supercritical outflow boundary implies that only axisymmetric disturbances cannot propa- 

gate upstream. Three-dimensional disturbances are still capable of upstream propagation 

in supercritical flows. 

Given the lack of suitable methods to compute flow criticality for 3-D, viscous flows, 

and the uncertainty involved in specifying QC outflow conditions, numerical experimen- 

tation, as represented in Figure 20, remains a robust, simple method to determine the 

necessary tube length. 

4-1.3 Effects of Radial Node Spacing: Second-Order Accuracy. Node spacing 

requirements in the crossplane are now considered. For L = 20, R0 = 2 and nx = 101, 

ny and nz are set to 41, 61 and 81, corresponding to grids G12, G8 and G13. Assuming 

nearly constant spacing, this corresponds to average radial step sizes, Ar, of 1/10, 1/15, 

and 1/20. Figure 21 shows the centerline axial velocities, uc, for Runs 6, 2, and 7. The 
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Figure 21.    Effect of crossplane node spacing on centerline axial velocity for V = 1.8, 
Re = 100 and M ■= 0.3. 

axial velocities are relatively insensitive to crossplane node spacing everywhere except in 

the region aft of the breakdown bubble. 

An average radial node spacing of 1/15 is chosen, since it is apparent that only a 

minimal increase in accuracy occurs upon further refinement. However, in a strict sense, 

this spacing cannot be considered adequate in demonstrating grid independence. Further 

reductions in Ar are not considered, since simultaneously increasing ny and nz has a 

substantially larger impact on the computational work than does increasing nx. This is 

true because two coordinate directions are involved when decreasing Ar, instead of one 

when decreasing Ax. Thus, choosing Ar = 1/15 represents a compromise between solution 

accuracy and computational efficiency. 
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4-1-4 Effects of Radial Node Spacing: Fourth-Order Accuracy. In Section 4.1.3, 

an average radial node spacing of Ar = 1/15 is chosen, even though the results showed 

some sensitivity to radial spacing at that value. In this section, the effect of the average 

radial spacing is reevaluated using the fourth-order version of the TANS model. Fig- 

ure 22 shows the effect of crossplane node spacing for Runs 8 and 9 using the fourth-order 

scheme. Average radial spacings of 1/10 and 1/15, corresponding to grids Gl and G6, are 

considered. The figure illustrates that the two grids yield nearly identical results, imply- 

ing that Ar = 1/10 is sufficient for grid independence. This is an improvement over the 

second-order accurate, central-difference scheme, where grid independence was not strictly 

achieved, even for Ar = 1/15. 

The improvement in spatial accuracy is also evidenced by computing the L2 norms of 

the differences in uc. The L2 norm of the difference in uc between Ar = 1/15 and 1/20 for 

the second-order model is 7.2E-03. The L2 norm of the difference in uc between Ar = 1/10 

and 1/15 is 1.2E-03. Thus, greater accuracy can be achieved on coarser node spacings. 

4-1-5    Effects of Tube Radius. An assessment of the effect of tube radius on 

centerline axial velocity using the Type 1 conditions is not performed. This is due to 

the author's belief that such an evaluation should incorporate the details of the tube wall 

geometry. That is, the Type 2 conditions (a = 0) should be used in this case, since these 

conditions are used throughout the remainder of the study. This was not an issue when 

considering the tube length, since the outflow boundary conditions are the same for Type 

1 and Type 2. 

The effect of the outer wall location has been assessed in other studies and it was 

found that R0 = 2 is sufficient. The analysis of Beran and Culick (1992) showed virtually 

no difference in minimum centerline axial velocity for R0 — 2 and Ro = 3 for Re between 

250 and 2000 and for a = 0.05. Salas and Kuruvila (1989) looked at vorticity profiles at a 

particular axial station of a straight tube for R0 = 2 and R0 = 4 and found the two profiles 

to be nearly identical for Re = 400. 

The PAC model, however, using Type 2 boundary conditions, produces results which 

show some sensitivity to wall position. In particular, as R0 is increased from 2 to 3 (for 
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Figure 22.    Effect of crossplane node spacing on centerline axial velocity for V = 1.8, 
Re = 100, and M = 0.3 using the fourth-order compact scheme. 

M = 0.3 and Re = 250) the vortex strength corresponding to the first appearance of 

reversed flow moves from about V = 1.55 to V = 1.3. However, the qualitative behavior of 

Q as V is increased is similar; the primary effect of larger R0 is the shifting of the curve 

Q{V) laterally towards smaller V. Similar trends in solution behavior were observed at 

M = 0.1 for R0 = 3. 

To investigate the accuracy of the PAC results for R0 = 2, incompressible results 

from Beran and Culick (1992) are used to compare against data from the PAC model for 

a low Mach number of 0.1 and R0 = 2. The comparison as shown in Figure 23 is very 

favorable, with breakdown points (Q = 0) of V = 1.49 and V = 1.506 for the published 

results and PAC model respectively. Below Mach numbers of 0.1, the PAC model yields 

spurious solutions. The effect of increasing Mach number from 0.1 to 0.3 with the PAC 

model moves the breakdown point from V = 1.506 to V = 1.55 (Figure 23). The preceding 
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comparison strongly suggests that the PAC model yields accurate results for R0 = 2. The 

general trend in solution paths for R0 = 2 as Mach number is reduced shows convergence 

to the incompressible solution path. 

The difference in solutions between R0 = 2 and R0 = 3 is most likely due to a 

decrease in vortex core pressure at the inflow plane as the wall location increases. The 

lower core pressures result from the necessity that pressure approximately satisfy the QC 

form of the radial momentum equation in the presence of a constant wall pressure. The 

lower pressures near the centerline appear to coincide with larger axial pressure gradients, 

which provides the physical mechanism to allow breakdown at smaller vortex strengths. 

Thus, to decrease the solution sensitivity to changing R0, it is necessary to allow 

the reference pressure to change as R0 is increased. This could be handled by specifying 

reservoir conditions, and by assuming that isentropic flow prevails such that the inlet/wall 

juncture maintains a constant total pressure. Then the reference pressure changes with 

R0, through isentropic relations, as the local Mach number changes. Increasing R0 would 

then result in a decrease in the local Mach number and an increase in the static pressure 

at the reference point. This behavior is necessary in providing a nearly equivalent inlet 

pressure profile with changing R0. 

4.1.6 Grid Requirements for PAC Model. Grid requirements for the PAC model 

differ from the TANS model since the PAC code uses second-order, central-difference oper- 

ators. The higher accuracy levels of the compact scheme can result in differences between 

the 2-D and 3-D solutions when the node spacings do not produce grid independence in 

each algorithm. Therefore, the average radial spacing for the PAC model should be com- 

parable to the average radial spacing for the TANS model using central differences. This 

radial spacing is about 1/15, which is approximately achieved using 32 radial nodes over 

a tube radius of 2. 

The blocking strategy used by the PAC model requires that the total number of 

nodes multiplied by five must be evenly divisible by 16 (Beran (1995)). While 101 axial 

nodes and 32 radial nodes meets this requirement, earlier work considered the use of 24 

radial nodes, which fails the requirement. The adopted number of axial nodes used in this 
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Figure 23. Comparison of 2-D Solution Paths between PAC model (M > 0) and model 
used by Beran and Culick (1992) (M = 0) for Re = 250. Solid lines represent 
data for R0 = 2 and the dashed line represents the PAC model result for 
M = 0.3 and R0 = 3. 

study is 98 instead of 101, since the combination of 24 radial nodes and 98 axial nodes 

meets the above requirement. This is why the distinction is made, for example, between 

grids Gl and G12, and G6 and G8. Practically speaking, these grids should yield nearly 

equivalent results, but they are distinguished to provide an accurate account of the grid 

evaluation process. 

In summary, the baseline grid for the PAC model consists of 98 axial nodes and 32 

radial nodes for R0 = 2 and L = 20. This grid is designated gl. 2-D grid parameters are 

summarized in Table 5. nr is defined as the number of nodes in the radial direction. 

2-D grids with nr = 32 are used to generate initial conditions for 3-D grids with 

ny = nz — 41.   Similarly, 2-D grids with nr = 48 are generally used to generate initial 
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Table 5. 2-D grid parameters. 

Grid      nx    nr     L     Ax0     ß      x2 

~gl        98    32    20    ^06    ÖTÖ       ~ 
g2      122    48    20    .200     .25    10 
g3       172    48    30    .200    .25     10 
g4      222    48    40    .200     .25    10 

conditions for 3-D grids with ny = nz = 61. The 3-D grids are constructed such that 

they share the same axial node locations as the 2-D grid from which the initial conditions 

are generated. This was done to simplify the 2-D/3-D interpolation process described in 

Appendix B.3. 

4-1.7    Summary of Grid Requirements. In summary, the required grid (nx X 

ny X nz) using central differences is at least 101 X 61 x 61 for a tube length of 20 and a 

radius of 2. This grid is designated G8. As shown in Section 4.1.4, this requirement can 

be reduced using the compact scheme to 101 X 41 X 41. For compatibility with the PAC 

model (Section 4.1.6), nx is reduced slightly from 101 to 98. Therefore, the baseline grid 

for the fourth-order compact scheme is 98 x 41 x 41, and is designated Gl in Section 3.1. 

The baseline grid for the central-difference scheme is 98 X 61 X 61, and is designated as grid 

G6. In evaluating the compact scheme, no attempt was made to increase the axial node 

spacing, anticipating a requirement for smaller spacings at higher Reynolds numbers. 

4-2    Validation 

The validation process of the TANS model proceeded along two lines. First, the 

model is used to solve a variety of model problems. These model problems include the 

incompressible and compressible flows over a flat plate, unsteady Couette flow and unsteady 

heat conduction. The comparisons between the model output and the known solutions to 

the model problems are contained in Appendix D. Second, the TANS and PAC models 

are cross-validated for flow conditions that lead to steady, axisymmetric solutions of the 

TANS model. 

It is shown in Chapter V that for Re = 100, steady and axisymmetric solutions are 

admitted by the TANS model when the vortex strength is at or below V = 1.7.  Under 
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Table 6. Summary of TANS run parameters for validation. 

Run No. Re       V       M      At       a       BC Type    Grid    Accuracy (Time/Space) 
10 
11 

100    1.00    0.3    .030    0.05           2           G6                     lst/2nd 
100    1.70    0.3    .030    0.05           2           G6                     lst/2nd 

these conditions, solutions to the PAC and TANS models should match with a high degree 

of accuracy when computed with identical parameter values. Runs 10 and 11, summarized 

in Table 6, are computed to demonstrate that when the vortex strength is sufficiently 

small, the TANS and PAC models yield apparently identical steady and axisymmetric 

solutions, even in the presence of an asymmetric grid structure. Runs 10 and 11 are 

computed with the second-order spatially accurate version of TANS. Section 5.2 shows 

that similar agreement between the PAC and TANS models exist when the fourth-order 

model is utilized. 

Initial conditions for Runs 10 and 11 are obtained from the PAC model solutions for 

V = 1.0 and 1.7 respectively. Cubic spline interpolation is used (Section B.3) to generate 

these initial conditions from the PAC solutions. Time integration is carried out by the 

TANS model until a steady-state convergence criterion of (An£/)max < 10~6At is met. 

Figure 24 shows the comparison between the TANS and PAC models for V = 1.0. 

The two solutions yield a good match in all of the primitive variables. The value of 

(A"(7)max at t — 0 was quite small, approximately 10~3, indicating that the initial solution 

was indeed very close to the final solution of the TANS model. Results for V = 1.7 are 

shown in Figure 25. This vortex strength is near the point at which reversed flow occurs 

for M = 0.3 and Re — 100. The comparison between the two solutions is good here as 

well. 
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(a) 

(b) 

(c) 

(d) 

Figure 24. Comparison between TANS and PAC solutions for V=1.0 (PAC model: dashed 
lines; TANS model: solid lines). Numbers in parenthesis indicate contour 
range: (a) density (0.907858,1.02033), (b) axial velocity (0.898258,1.30267), 
(c) crossplane velocity (0.0420968,0.631453), (d) pressure (7.28086,8.10293). 
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(a) 

(b) 

(c) 

(d) 

Figure 25. Comparison between TANS and PAC solutions for V=1.7 (PAC model: dashed 
lines; TANS model: solid lines). Numbers in parenthesis indicate contour 
range: (a) density (0.791321,1.0409), (b) axial velocity (0.082124,1.38003), 
(c) crossplane velocity (0.0719934,1.0799), (d) pressure (6.58968,8.28171). 
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V.   Results. 

The results presented in this chapter are divided into four sections; each section 

represents results at a different Reynolds number. Reynolds numbers of 100, 250, 500 

and 1000 are considered in Sections 5.2 - 5.4 respectively. All results presented in this 

chapter are derived from the fourth-order spatially accurate version of the TANS model. 

Furthermore, three-point backward time integration is used in all runs to achieve second- 

order spatial accuracy of the inviscid terms. Viscous terms are treated explicitly, resulting 

in first-order temporal accuracy for these terms. 

Runs at Re = 100 are included for validation purposes, and to provide preliminary 

evidence of flow behavior. 

Reynolds numbers of 250 and 500 are considered based on results of Beran and Culick 

(1992), who show that unique 2-D solutions exist at Re = 250, while a region of nonunique 

solutions exist at Re = 500. Similar results are found in this work. However, the region of 

nonunique solutions at Re = 500 is very small, and therefore, only a limited examination 

is done at this Reynolds number. The region of nonuniqueness is greater at Re = 1000, 

and therefore this value of Re is chosen for examining time-asymptotic 3-D solutions in 

the presence of nonunique 2-D solutions. 

5.1    Results for Re = 100. 

Four runs are presented at Re = 100. For each run, a distinct value of the vortex 

strength (V =1.0, 1.5, 1.7, and 1.8) is specified. A summary of run parameters for Re = 100 

is contained in Table 7. 

 Table 7. Summary of TANS run parameters for Re = 100.  

Run No.     Re    V        M     At       a      BC    Grid    Accuracy (Time/Space) 
12 100 1.00 0.3 .040 0.05 2 Gl 2nd/4th 

13 100 1.50 0.3 .040 0.05 2 Gl 2nd/4th 

14 100 1.70 0.3 .040 0.05 2 Gl 2nd/4th 

15 100 1.80 0.3 .040 0.05 2 Gl 2nd/4th 
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Figure 26. Q versus time for V=1.8: (a) global view, (b) magnified view near end of run. 

Runs 12-14 (V = 1.0 - 1.7) result in steady solutions which agree to a high degree 

of accuracy with the initial 2-D solutions obtained by the PAC model. Thus, the initially 

steady initial condition does not evolve in time to an asymmetric flow, even in the pres- 

ence of an asymmetric grid structure. In Run 15 (V = 1.8) the initially steady solution 

evolves into a periodic solution. Figure 26a shows a plot of Q, the minimum axial velocity 

(Section 3.9), as a function of time. Figure 26b shows a magnified view of the data near 

the end of the run, where the periodic nature of the solution is evident. 

The unsmooth nature of the data, evident in Figure 26b, is believed by the author 

to be due to the fact that Q is not evaluated at a fixed point. Instead, the node where Q 

occurs can move about as the solution evolves in time, resulting in the unsmooth behavior 

inQ. 
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Figure 27.    Evidence of periodic flow for V = 1.8 and Re — 100: (a) u,(t), (b) v,(t); solid, 
ws(t); dashed, (c) phase plot of us, (d) phase plot of vs. 

To better examine the smooth, periodic nature of the flow, the velocity components 

u,, v, and w, are plotted versus time in Figure 27a-b. These quantities, described in 

Section 3.9, are evaluated at a fixed centerline location of x = 7. The figures show that 

the solutions are smooth, and apparently periodic in nature. 

Periodicity is better illustrated with phase plots; generated by plotting the functions 

us, v,, or ws at time t versus the same function at a later time t + St. If a function is 

periodic, the phase plot will depict a closed path if more than one period of the data 

is included. The value of 6t used here is 0.8. Phase plots of us and v, are shown in 

Figures 27c-d, where the periodic nature of the flow is evident. The data represented in 

Figures 27c-d is from t = 470 to t = 500. 
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Figure 28.    Minimum axial velocity, Q, versus vortex strength, V, for Re = 100:  PAC 
model (solid line) and TANS model (square symbols). 

The change in solution type, from an equilibrium solution at V = 1.7, to a periodic 

solution at V = 1.8, is believed to be the result of passing a Hopf bifurcation point between 

V = 1.7 and V = 1.8. Further examination of this type of bifurcation is performed in the 

next section, where similar behavior is found for Re = 250. 

A summary of the results for Re - 100 are shown in Figure 28. The solid line is 

a plot of Q versus V corresponding to the steady, axisymmetric solutions obtained from 

the PAC model. The square symbols represent the time-asymptotic values of Q obtained 

from the TANS model. At V =1.0, 1.5 and 1.7, the time-asymptotic solution is steady, 

and agrees well with the PAC solution. At V =1.8, the value of Q is shown to be slightly 

higher than the value of Q obtained from the PAC model. This increase in minimum 

axial velocity near the onset of periodic flow is examined further in Section 5.2. Tabulated 

results for Re = 100 are given in Table 8. The tabular value for Q at V = 1.8 is computed 

by averaging the peak values in the oscillation. 

Table 8.    Comparison of 2-D (PAC) and 3-D (TANS) minimum axial velocities for Re = 
100. 

V Q (2-D) Q (3-D) 
1.0 0.868 0.865 

1.5 0.519 0.518 
1.7 0.072 0.084 
1.8 -0.131 -0.086 
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 Table 9. Summary of TANS run parameters for Re = 250.  
Run No.     Re    V M      At        a      BC    Grid    Accuracy (Time/Space) 

16 250 1.00 0.3 .040 0.05 2 Gl 2nd/4th 

17 250 1.50 0.3 .040 0.05 2 Gl 2nd/4th 

18 250 1.53 0.3 .040 0.05 2 Gl 2nd/4th 

19 250 1.55 0.3 .040 0.05 2 Gl 2nd/4th 

20 250 1.60 0.3 .040 0.05 2 Gl 2nd/4th 

21 250 1.65 0.3 .040 0.05 2 Gl 2nd/4th 

22 250 1.70 0.3 .040 0.05 2 Gl 2nd/4th 

23 250 1.80 0.3 .040 0.05 2 Gl 2nd/4th 

24 250 1.90 0.3 .040 0.05 2 Gl 2nd/4th 

25 250 2.10 0.3 .040 0.05 2 Gl 2nd/4th 

26 250 2.30 0.3 .040 0.05 2 Gl 2nd/4th 

27 250 1.50 0.3 .025 0.05 2 G2 2nd/4th 

28 250 1.53 0.3 .025 0.05 2 G2 2nd/4th 

29 250 1.53 0.3 .040 0.05 2 G5 2nd/4th 

30 250 1.55 0.3 .025 0.05 2 G2 2nd/4th 

31 250 1.55 0.3 .025 0.05 2 Gl 2nd/4th 

5.2    Results for Re = 250. 

A total of 16 runs are presented for Re = 250. A summary of run parameters for 

Re = 250 is contained in Table 9. All runs are initialized with the axisymmetric PAC 

solution. Runs 16-26 comprise a sequence of runs computed on grid Gl where the vortex 

strength is steadily increased from 1.0 to 2.3. Runs 27-31 are presented to determine 

the solution sensitivity to grid resolution, tube length, and time step at selected vortex 

strengths. Second-order accurate, three-point-backward time integration is used. The time 

step, At, for runs using grids Gl and G5 is 0.04, while runs on the finer grid, G2, have a 

time step of 0.025. The reduction in time step from 0.04 with grid Gl to 0.025 with grids 

G2 is necessary to avoid solution divergence. Data presented next in Section 5.2.1 shows 

that between V=1.0 and V=1.5, the initially steady, 2-D flow does not evolve in time to 

an asymmetric flow state, even in the presence of an asymmetric grid structure. Similar 

behavior is observed in Section 5.1 for vortex strengths up to 1.7. As V is increased slightly 

to 1.53, the flow becomes three-dimensional and time periodic. As V is further increased, 

the magnitude of the asymmetry also increases. This change in stability is attributed to 

the crossing of a supercritical Hopf bifurcation point between V = 1.5 and V = 1.53. 
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In Section 5.2.2, the effect of emerging three-dimensional flow on Q is examined. 

In particular, results in Section 5.2.1 show that the 3-D, time-asymptotic values of Q 

computed at vortex strengths just past the Hopf point are significantly greater than their 

initial, 2-D values. Section 5.2.2 presents an analysis of the 3-D vorticity dynamics, includ- 

ing elements of the theoretical framework of vortex breakdown put forth by Brown and 

Lopez (1990), to correlate the observed behavior of Q with the emerging three-dimensional 

effects. 

Flow visualizations using numerical streaklines are presented in Section 5.2.3 for 

selected vortex strengths. 

5.2.1 Evidence of a Hopf Bifurcation. Evidence for a supercritical Hopf bifurca- 

tion is presented in this section. Flows computed before a critical value of V are found to be 

steady and axisymmetric. Past the critical vortex strength, the computed flows are shown 

to be time-periodic and three-dimensional. A plot showing the agreement of axisymmetric 

and 3-D solutions at a vortex strength lower than the critical value is also presented. 

The deviations of Q from the initial conditions are illustrated in Figures 29a-d for 

V=1.5, 1.53, 1.55, and 1.65. The solid lines in this figure represent results computed with 

the baseline grid Gl. In Figure 29a (V=1.5), it is evident that no appreciable deviation from 

the initial condition is present. This appearance of a converged solution was confirmed by 

tracking A"C/'max at each iteration and observing a reduction to a minimum level near 10~6. 

At V=1.53 (Figure 29b), it is clear that the solution departs from the initial condition, 

as evident by the increase in Q as time increases. Eventually, the behavior of Q time 

asymptotes to time-periodic behavior, not discernable from the scales of the figure. At 

V=1.55 and 1.65 (Figures 29c-d), much larger deviations are evident. 

The effects of grid resolution are also illustrated in Figure 29 by presenting results 

computed on grid G2. Grid G2 incorporates 612 nodes in each crossplane, as opposed to 412 

for grid Gl. This reduces the average radial node spacing from 1/10 to 1/15. Furthermore, 

grid G2 uses axial clustering of nodes to achieve smaller node spacings just aft of the tube 

constriction. The minimum axial node spacing for grid G2 is 0.1 at x = 5, compared to a 

constant node spacing of 0.2 for grid Gl. 
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Figure 29.    Q versus time for M = 0.3 and Re = 250:  (a) V = 1.5, (b) V = 1.53, (c) 
V = 1.55, (d) V = 1.65. 

Figures 30a-d illustrate how grid refinement from Gl to G2 affects Q. At V = 1.5, 

resolving the grid from Gl to G2 results in a slight decrease in the time-asymptotic value of 

Q. However, the flow remains steady and axisymmetric. At V = 1.53, a more pronounced 

transient response is observed for the fine-grid G2; possibly representing a slight shift of the 

Hopf point to smaller values of vortex strength with grid refinement. The time-asymptotic 

behavior remains periodic (discussed later in this section), with time-asymptotic values of 

Q slightly less than the flow computed with grid Gl. Thus, the Hopf bifurcation point 

remains in the range between V = 1.5 and V = 1.53, even under grid refinement. The 

sensitivity to grid refinement appears to diminish as vortex strength is increased away 

from the Hopf point, as evident in Figure 29c. At V = 1.65, refining the grid results in a 

small shift in time in the onset of the transient response. However, the time-asymptotic 

levels of Q show little impact. 

Solution sensitivity to time step and tube length are illustrated in Figure 30. Fig- 

ure 30a shows that reducing the time step from 0.04 to 0.025 (Runs 19,31), with grid Gl, 

has a negligible influence on the transient behavior of Q. This suggests that the differences 

in Q evident in Figures 29a-d are due primarily to grid refinement and not to the reduction 

of the time step. The L2 norm of Qi9 - Q31 is 5.87E-03, where the subscripts of Q denote 
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Figure 30.    Effect of time step and tube length on Q for M = 0.3 and Re = 250: (a) effect 
of time step for V = 1.55, (b) effect of tube length for V = 1.53. 

the run number.  The effect of tube length is shown in Figure 30b, where increasing the 

tube length, L, from 20 to 30 appears to have a small, but negligible effect on Q. 

In summary, the data presented in Figure 29 suggests that grid Gl provides an ac- 

ceptable level of accuracy to allow further presentation of the data. One notable exception 

where Gl may not be adequate is for transient flows computed very close to the Hopf 

point. In addition, the effect of further grid refinement and tube radius is not explored, 

owing to practical limits on computer resources. 

A comparison of PAC and TANS solutions for a vortex strength below the Hopf point 

shows that both models produce steady, axisymmetric flows. The PAC and TANS solutions 

for Run 17 (V = 1.5) are plotted in Figure 31, where it is evident that the two solutions are 

in excellent agreement. Furthermore, this result also demonstrates that solutions obtained 

from the fourth-order version of the TANS model agree with PAC solutions for conditions 

which lead to steady, axisymmetric solutions. Similar comparisons of solutions between 

the PAC model and the second-order version of the TANS model are given in Chapter 4.2. 

The small differences in pressure contours near x = 8 in Figure 3Id are the likely 

result of the different relative discretization errors associated with the PAC and TANS 

models. 

The relative agreement between PAC solutions and axisymmetric TANS solutions is 

quantified by computing the X2 norms (Section 3.10) of the differences between PAC and 

TANS primitive variables. The PAC solution is first interpolated onto the 3-D grid, using 

the cubic spline routine of Section B.3. This allows for both solutions to be compared on 
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Table 10.    Quantification of the agreement between PAC solutions and axisymmetric 
TANS solutions. 

Run HP) L2(u) L2(v) L2(w) L2(p) 
17 
27 

1.12E-03 
3.05E-04 

4.38E-03 
2.27E-03 

2.58E-03 
2.47E-03 

2.57E-03 
2.43E-03 

4.89E-03 
1.30E-03 

the same grid, while also introducing interpolation error. The results are shown in Table 10 

for Runs 17 and 27 (V = 1.5) using grids Gl and G2 respectively. The L2 norms are small 

for both runs, with a noticeable reduction in the L2 norms associated with the finer grid, 

G2. 

The periodic nature of the flows are now examined. Figures 32 and 33 show vs, us, and 

ws as a function of time. These quantities, defined in Section 3.9, denote the three velocity 

components evaluated along the centerline at a fixed axial location of x = 7. Figure 32 

plots v,(t) and ws(t). Oscillations in vs and ws indicate three-dimensional behavior, since 

these velocity components are identically zero along the centerline for axisymmetric flow. 

The starting times for the data are distinct, since different amounts of time are required 

to achieve time-asymptotic behavior. Harmonic oscillations in v, and ws first appear in 

Figure 32 at V = 1.53, which coincides with the first temporal deviations in Q from the 

initial conditions in Figure 29. 

The amplitudes of the oscillations in vs and w, are found in this case grow larger 

as V is increased. However, this should not be interpreted as a general result, since the 

node from which data is collected is held fixed. If, for example, the axial position (where 

the maximum amplitude of the crossplane velocity components occur) starts at x = 9 and 

moves upstream as V is increased. Then, vs and w„ may grow in amplitude until a certain 

vortex strength is reached, followed by a decrease in amplitude with increasing V. 

In the analysis to follow, a new parameter, ft, is introduced. This parameter repre- 

sents the extreme values of the sum of v and w considering all of the centerline nodes. This 

parameter is found to increase monotonically as V is increased. Oscillations in the axial 

velocity component, us, are shown in Figure 33. A discernable oscillation first appears at 

V = 1.53, consistent with the first appearance of oscillations in va and ws in Figure 32. 
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Figure 31. Comparison between TANS and PAC solutions for Run 17, V=1.5 (PAC 
model: dashed lines; TANS model: solid lines). Numbers in parenthesis 
indicate contour range: (a) Density (0.819212,1.03179), (b) Axial Velocity 
(0.380704,1.36375), (c) Crossplane velocity (0.0677997,1.017), (d) Pressure 
(6.70018,8.21738). 

The amplitudes of the oscillations in axial velocity are a factor of 30 smaller than those of 

v, and ws. 

While Figures 32 and 33 are good for showing the temporal nature of the solutions, 

phase plots are better suited to demonstrate periodicity. Phase plots for the same vortex 

strengths and times considered in Figures 32 and 33 are presented in Figures 34-37. Phase 

plots of ws are not included, since this quantity is similar to vs when lagged in time, and 

would therefore provide redundant information. 

Plots of us(t) in Figures 34-37 show that, for solutions for vortex strengths less than 

2.3, the axial velocities are not evolved sufficiently to the point where pure time-periodic 

motion is evident. The effect of numerical errors may also play a role in this observation, 
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Figure 32.    Crossplane velocity components vs (solid lines) and w3 (dashed lines) versus 
time: (a) V = 1.5, (b) V = 1.53, (c) V = 1.55, (d) V = 1.65, (e) V = 2.3. 

owing to the relatively small amplitudes involved.  However, periodic motion is strongly 

indicated for v, at each vortex strength. 

At V = 2.3, periodic behavior is evident for all three velocity components. The 

period of us(t) here appears (from Figure 33e) to be about half of that for vs(t) and w,(t). 

However, upon examination of the data with the aid of the phase plot representation, it is 

found that the period of us(t) matches that of v,(t) and ws(t) to a high degree of accuracy. 

Figure 37a shows the closed path for us(t) with two "branches" in very close proximity. 

By inspecting the data, it is found that one period of the motion corresponds to traveling 

completely along both branches. The observed period of us(t) is found to be 4.16, the same 
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Figure 33.    Axial velocity component u, versus time:   (a) V 
V = 1.55, (d) V = 1.65, (e) V = 2.3. 
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1.5, (b) V = 1.53, (c) 

as the period of v,(t). These periods are found by taking the difference in time between 

peak values in the raw data. 

Two new parameters are now defined to aid in illustrating the effect of the Hopf 

bifurcation. To identify directly the onset of three-dimensionality, a global parameter, H, is 

constructed, which is defined to be the maximum absolute value oidv/dO. H departs from 

zero when the flow is asymmetric. Flow unsteadiness and asymmetry are characterized by 

another parameter, Q, which is defined as the minimum and maximum values of v,(t) + 

ws(t). By definition, O is zero for an axisymmetric flow, fi characterizes the "degree" of 

flow unsteadiness by representing the largest amplitude of the time-periodic wave, vs(t) + 

w,(t), along the centerline. Flow periodicity is demonstrated in Figures 32-37. 
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Figure 34. Phase plot for V = 1.53: (a) u,(t), (b) vs(t) 
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Figure 35. Phase plot for V = 1.55: (a) u,(t), (b) vs(t). 
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Figure 36. Phase plot for V = 1.65: (a) u,(t), (b) v,(t). 
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Figure 37. Phase plot for V = 2.3: (a) ua(t), (b) v,(t). 
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Figure 38. Evidence of a Hopf bifurcation for M = 0.3 and Re = 250. 

The nature of the Hopf bifurcation is illustrated in Figure 38. In Figure 38a, H 

abruptly departs from zero between V = 1.5 and V = 1.53. Within this range of V, fully 

3-D solutions bifurcate from the branch of 2-D solutions when the 2-D solutions become 

physically unstable. 

The onset of asymmetric flow is coincident with the onset of flow unsteadiness. Fig- 

ure 38b shows that O departs from zero at the same value of V that the flow becomes 

asymmetric. Thus, Figures 38a and 38b demonstrate that flow unsteadiness and asym- 

metry are intimately linked. The loss of stability to time-periodic flow is evidence for a 

Hopf bifurcation between V = 1.5 and V = 1.53. The bifurcation is supercritical, since the 

amplitude of the disturbance, characterized by fi, grows as V is increased past the Hopf 
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Table 11.    Summary of computed flow parameters for Re = 250. Solutions denoted by an 
asterisk (*) are computed with grid G2. 

V H ft Q (2-D)/(3-D) Period 

1.00 .0076 0.0/0.0 .856/ .852 - 

1.50 .0101 -.002/.001 .310/ .307 - 

1.50* .0081 -.002/.001 .303/ .285 - 

1.53 .0922 -.127/.127 .077/ .149 6.40 

1.53* .1283 -.164/.164 .063/ .135 6.40 

1.55 .1800 -.241/.241 -.102/ .109 6.40 

1.65 .3665 -.478/.482 -.111/ .034 6.16 

1.65* .4270 -.494/.493 -.111/ .020 6.13 

1.80 .4626 -.666/.667 -.157/-.042 5.76 

2.30 1.006 -.847/.849 -.159/-.544 4.16 

point.  A general depiction of the supercritical Hopf bifurcation is given in Figure 69 of 

Section B.l. 

The initial and time-asymptotic values of Q are shown in Figure 38c. The Hopf point 

occurs prior to the appearance of reversed flow; thus, loss of stability is not a consequence 

of a gross structural change in the flowfield. Also, Figure 38c shows a region in V where 

2-D flows with bubble-type breakdown evolve into 3-D, unsteady flows with no reversed 

flow. An examination of this evolution to positive values of Q (no breakdown) is presented 

in the next section. 

Data from selected points of Figure 38 are shown in Table 11, along with the tabulated 

periods of the solutions. The effect of grid refinement (for V = 1.5 and 1.53) on the time- 

asymptotic behavior is also shown. At V = 1.53, an increase in H and ft is evident as 

the solution is resolved from grid Gl to G2, indicative of a slight shift in the Hopf point 

in the direction of smaller vortex strength. The Hopf point remains, however, somewhere 

in the range between V = 1.5 and V = 1.53. Time integration for the other vortex 

strengths with grid G2 to their time-asymptotic solutions were not performed, due to the 

high computational expense. 

A comparison between 2-D and 3-D velocity fields further illustrates the departure 

from axisymmetric behavior. Figure 39a-d compares velocity vectors from the axisym- 

metric initial conditions to the planar projected velocity field for the 3-D time-asymptotic 
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solutions. The left column contains the 2-D results while the right column contains the 

3-D results. The two rows correspond to different vortex strengths. Figures 39a and 39c 

compare velocity vectors for V = 1.5. Here we see that both solutions depict axisymmetric 

flow. A region of mild axial flow deceleration is evident between x - 6 and x = 10. Fig- 

ures 39b and 39d compare vectors for V = 1.53. The axial deceleration evident at V = 1.5 

has increased in severity, as shown in Figure 39b, but the flow still has no region of re- 

versed flow. Furthermore, the region of decelerated flow has moved farther upstream. The 

movement of flow disturbances upstream with increasing vortex strength is also observed 

in the tube experiments of Faler and Leibovich (1977). The first signs of asymmetry are 

evident in Figure 39d. The asymmetry is characterized by the appearance of a component 

of velocity in the y direction along the centerline y = 0. 

Figures 40 and 41 show comparisons of velocity vectors at higher vortex strengths. 

Figure 40a and 40c, corresponding to V = 1.65, show a pronounced difference between 2-D 

and 3-D velocity fields. The 2-D flow is now reversed at this vortex strength, as evidenced 

in the figure between x - 6 and x = 7 for y = ±1/2. The 3-D flow, however, is not reversed. 

However, it is evident from the velocity vectors that the flow is more asymmetric in nature 

than at lower vortex strengths. This is apparent from the sharp deflection of the velocity 

vectors in Figure 40c near x = 6 and y = 0. At V = 1.8, the 2-D solution has a region of 

reversed flow that has expanded in both radial and axial extent from that at V = 1.65, as 

evident in Figure 40b. The corresponding 3-D flow in Figure 40d, however, has changed 

little in appearance from the solution depicted in Figure 40c. The time-asymptotic value 

of Q for this run from Table 11 is -0.042, indicating reversed flow. However, the particular 

slice of data in Figure 40d does not bear evidence of the reversed flow. The small region of 

reversed flow is most likely found at a slice in the x — y plane not containing the centerline, 

i.e., where z ^ 0. 

The breakdown region continues to move upstream as V increases to 2.3 in Fig- 

ure 41. The range of abscissa values in this figure are lowered to accommodate the forward 

movement of the breakdown regions. 

The 3-D flows shown in Figure 41c and 41d depict a noticeable region of reversed 

flow. The vectors generally mark a circular region which enclose a center point where the 
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Figure 39.    Velocity vectors in x = z,y = r plane (2-D) or x,y plane (3-D): (a) V = 1.5 
(2-D), (b) V = 1.53 (2-D), (c) V = 1.5 (3-D), (d) V = 1.53 (3-D). 

planar-projected velocity vector vanishes. The position of this center point approximately 

identifies the current spatial position where the vortical core, deflected off-axis at some 

upstream location, intersects the x - y plane. Visualization of this behavior is presented 

later in Section 5.2.3. 

The 2-D velocity vector plots are very informative, however, much information is lost 

when trying to depict 3-D behavior. The primary difficulty lies in the fact that no single 

plane in the 3-D flowfield can be isolated to depict the general flowfield. This is why the 

streaklines advocated in Section 3.8 are presented later in Section 5.2.3. 

5.2.2 The Effect of Three-Dimensionality on Q. Results of the previous section 

shows that when the vortex strength is specified between V = 1.53 and V = 1.9, the 

time-asymptotic values of Q are higher than the value of Q corresponding to the initial 

axisymmetric solution. 

104 



2t- 

Uli (a)   yogf 

2t- 

HI (b)  y° 

Figure 40.    Velocity vectors in x = z, y = r plane (2-D) or x, y plane (3-D): (a) V = 1.65 
(2-D), (b) V = 1.8 (2-D), (c) V = 1.65 (3-D), (d) V = 1.8 (3-D). 

This observed effect of three-dimensionality on Q requires further explanation. In 

particular, it is desired to establish a correlation between the increase in Q levels (at swirl 

values near the Hopf point) to certain asymmetric terms in the governing equations. To 

accomplish this requires the application of concepts put forth by Brown and Lopez (1990), 

along with an extension of an analysis of the 3-D vorticity transport equation performed 

by Darmofal (1993). 

Brown and Lopez (1990) established a link between the production of negative az- 

imuthal vorticity in axisymmetric flow and the extent of axial flow deceleration: negative 

azimuthal vorticity is a necessary condition for the deceleration of the axial flow, (Sec- 

tion 2.1.1.2). In particular, the more negative the azimuthal vorticity, the smaller Q 

becomes. Consequently, it is anticipated that the minimum azimuthal vorticity, fjm, for 

the 3-D flow would be greater (less negative) than that of the initial 2-D flow.   This is 
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Figure 41.    Velocity vectors in x = z,y = r plane (2-D) or x,y plane (3-D): (a) V = 2.1 
(2-D), (b) V = 2.3 (2-D), (c) V = 2.1 (3-D), (d) V = 2.3 (3-D). 

indeed the case, as shown in Table 12. At V = 1.5, the value of f]m is virtually the same for 

2-D and 3-D flow, allowing for some error due to calculating f)m from discrete data. This 

point lies before the Hopf bifurcation. Beyond the Hopf point, f}m is greater in the 3-D flow 

than for the initial 2-D flow. The data in the figure does not correlate, however, the trend 

at higher vortex strengths, where the paths of Q cross. Thus, the discussion is limited to 

vortex strengths near the bifurcation point. However, since the theory is only strictly valid 

for steady, axisymmetric flow, the movement away from steady, axisymmetric flow as V 

is increased reduces the applicability of the theory. Therefore, it is of little concern that 

the behavior of fj at the higher vortex strengths is inconsistent. With this established, an 

attempt is made to correlate the increase in Q with the physical mechanisms associated 

with the production of positive azimuthal vorticity in the 3-D flows. 
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Table 12. Comparison of minimum azimuthal vorticities for 2-D and 3-D flows. 

V      f,m (2-D)    7}m (3-D)    Af,m(%) 
1.50 -1.0 -.99 1.0 

1.53 -1.4 -1.3 7.1 

1.55 -2.0 -1.4 30.0 
1.65 -2.9 -1.9 34.5 

1.80 -3.6 -2.4 33.3 

1.90 -4.0 -2.8 30.0 

2.10 -4.3 -3.7 13.9 

A numerical evaluation of asymmetric terms in the governing equations is performed 

to help explain the increase of 3-D azimuthal vorticity levels. The following analysis as- 

sumes that compressibility and viscous effects are not important in identifying how positive 

azimuthal vorticity is produced. Then, the vorticity equation is written as 

^- = w-Vu (137) 
Dt y      ' 

where u = (w, w, v)  . The azimuthal component of Eq. 137 can be expanded and written 

as 
Df)      zdv     ;dv     üf)     T)dv 
Dt        or        dz       r       r ad 

Eq. 138 is in terms of the material derivative of 17; therefore, a Lagrangian viewpoint is 

adopted in the discussion below. Darmofal (1993) identified how each of the first three 

terms on the right-hand-side of Eq. 138 contribute to the production or decay of 77 for ax- 

isymmetric flow. The analysis is in terms of how vorticity stretching and tilting contribute 

to the production of azimuthal vorticity and, subsequently, breakdown. 

Along the same lines, the contribution from the new terms present for 3-D flows 

(e.g. the fourth term on the right-hand-side of Eq. 138) may provide the mechanism that 

produces a positive azimuthal vorticity contribution. The effect of three-dimensionality 

on the above equations is evident by the terms |y and |^- in the definitions of £ and C 

respectively. £ and ( in turn, affect the first two terms on the right-hand side of Eq. 138. 

Lastly, the fourth term in Eq. 138 is included for 3-D flow. Thus, the first, second, and 

fourth term on the right-hand side of Eq. 138 contain direct contributions from 3-D effects. 
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At V = 1.53 and t = 420, the three terms in question are numerically evaluated at the 

point where azimuthal vorticity is minimum. The second and fourth terms are negligible 

in comparison to the dominant first term, £§^. Inspection of how the swirl velocity, v, 

changes with radial position reveals that |^ is positive throughout the flow. Since —^ is 

also positive throughout a 2-D flow, this quantity is not important in the current context. 

Therefore, it is postulated that the effect of three-dimensionality on radial vorticity, f, 

plays a key role in understanding the emergent 3-D flow behavior. A region consisting 

of a positive net change in radial vorticity must exist in order to correlate the observed 

change in Q. In particular, iff has a positive net change from 2-D to 3-D flow, then from 

Eqn. 138, jfi also has a positive net change. Therefore, fj becomes larger in the region 

where azimuthal vorticity is minimum, which implies by the theory of Brown and Lopez 

(1990) that Q must increase from 2-D to 3-D flow. 

Contour plots of f are shown in Figure 42. Solid contours denote positive values, 

dashed are negative. Figures 42a-b show the contours for the axisymmetric and 3-D solu- 

tions respectively, while Figure 42c shows the net effect of the evolution from 2-D to 3-D. 

The figure clearly shows the development of a region of positive radial vorticity. Further- 

more, the asymmetric term, ^||, is found to be the dominant term in the calculation off 

from Eq. 2 of Section 2.1.1.2. 

In summary, the computed flowfield at V = 1.53 is used to evaluate how three- 

dimensional terms in the vorticity transport equation contribute to the net production of 

positive azimuthal vorticity in the region where the azimuthal vorticity is minimum. The 

effect of this net increase corresponds to an increase in Q as the flow evolves from its 2-D 

initial condition to the 3-D flow. The principal contributing factor to the net increase in i) 

is found to be an increase in radial vorticity. 

5.2.3 Flow Visualization. Flowfield visualization is performed by calculating the 

numerical equivalent of streaklines. Five material points are introduced into the flowfield 

at the inflow boundary. One point (white) lies initially on the tube centerline, the others 

(grey scaled) lie on the y and z axes at distances of ± 0.1 from the centerline. Every üfth 

iteration (K is user specified), five new material points are introduced into the flowfield 
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where the first five points were initialized, thereby simulating a numerical equivalent of 

die-injection in experiments. The positions of these material points are computed in time 

from the evolving velocity field using a first-order-accurate Euler time integration. 

Snapshots of the time-asymptotic streaklines are shown in Figure 43; the tube geom- 

etry is omitted for clarity. Vortex strengths of 1.5, 1.53, 1.65, 1.8 and 2.3, corresponding 

to Runs 17, 18, 21, 23 and 26, are considered. Vortex strengths not included in the visu- 

alization are found to be similar to the types of disturbances presented, and are therefore 

omitted. All flows have a base rotation in the clockwise direction when viewed in the pos- 

itive x direction. Material points are only computed in the inner grid block. If a particle 

convects out of the inner block, its position is no longer tracked. This situation only occurs 

for the highest vortex strength considered. 

At V = 1.5 (Figure 43a), before the Hopf point, the vortex core swells at an axial 

location of about x = 6. The swelling of the core occurs symmetrically, illustrating the 

effect of axial flow deceleration. At V = 1.53 (Figure 43b), beyond the Hopf point, an 

asymmetric disturbance occurs upstream of the initial swelling at x = 6 for V = 1.5. The 

upstream movement of flow disturbances with increasing V, evident between Figures 43a 

and 43b, is in agreement with experimental evidence (Faler and Leibovich, 1977). The 

axial deceleration along with a rotation of the disturbance produces rings of material 

points which subsequently convect downstream. The direction of rotation is clockwise 

(looking downstream); consistent with the base vortical flow. The initial disturbance near 

x = 5 appears as a swelling of the vortex core, which is of greater radial extent than that 

observed at V = 1.5. 

When V is increased to 1.65 (Figure 43c), the material points deflect off-axis in a 

more coherent structure, as shown in Figure 43c. A swelling of the vortex core is evident 

before the material points deflect off-axis as a group. This structure also rotates about 

the centerline with the same direction as the base flow. The flow at this vortex strength 

contains no reversed flow. However, the flow has nearly stagnated along the centerline, as 

evidenced by a time-asymptotic value of Q of 0.034. 
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A further increase in vortex strength to V = 1.8 (Figure 43d) "tightens" the coherent 

structure, while moving the disturbance farther upstream. A slight region of reversed flow 

exists just downstream of the position where the material points deflect off-axis. 

The flows depicted in Figure 43 do not have the tightly wrapped helical form of 

spiral-type breakdown. Instead, these flow structures have more in common with what 

Faler and Leibovich (1977) term "type 6." Type 6 disturbance is described as a low 

Reynolds number disturbance, characterized as a gentle, off-axis deflection of the central 

dye filament. The deflection is of nearly constant azimuthal location until the disturbance 

reaches a sufficiently large radial extent, at which time the structure rotates about the 

centerline in the direction of the base flow. The type 6 disturbance contains no reversed 

flow, consistent with the flows in Figure 43b-c, and therefore it is technically not considered 

as a form of breakdown. The flow depicted in Figure 43d does contain a small region of 

reversed flow, and therefore is believed to be an intermediate form between the type 6 

disturbance and the spiral breakdown. 

There are some differences, however, between the computed flow structures and the 

type 6 disturbance. First, the type 6 disturbance has been found to nearly reach the 

tube wall in the experiments of Faler and Leibovich (1977). Flows in Figure 43 do not 

possess such a large radial extent. Second, Faler and Leibovich (1977) state that when 

the disturbance nears the tube wall, noticeable oscillations are evident which break up 

the dye filament. Such a disruption is not evident in the computed flows, since the flow 

disturbances do not approach the tube wall. 

Characteristics of flow Types 3-5 are not evident in Figure 43. Types 3 and 4 contain 

regions of flow recirculation, which are not evident in the flows in Figure 43, or by their 

positive (or slightly negative) time-asymptotic values of Q. The type 5 (double helix) form 

is not evident as well, since there is no indication that the material points deflect off axis 

to form the characteristic triangular pattern observed in experimental dye traces. 

At the largest value of vortex strength considered, V = 2.3, (Figure 44) the material 

points deflect of axis in a well defined helical-type structure, consistent with spiral-type 

breakdown. Figure 44 depicts the spiral breakdown at four different times which span the 

110 



period of rotation of the deflected particles. The rotation of the structure is the same as 

the base vortical flow, but the sense of winding of the helix is opposite that of the base 

flow. This observation is consistent with observations made in the experiment of Brücker. 

Downstream of the point where the material points deflect off the centerline axis, a limited 

region of reversed flow exists. Regions of reversed flow also exist in experimentally observed 

spiral breakdowns. 

The period of rotation of the helical structure, as well as for the other 3-D structures 

at lower vortex strengths, is at least approximately equal to the period identified in Ta- 

ble 11. The period is substantiated by plotting material points at four different times in 

the time-periodic cycle for V = 2.3. Due to computational constraints, new material points 

were "injected" into the flow every 10 iterations (0.4 seconds). Therefore, material points 

at a time of 4 seconds were easily obtainable, which is close to the tabulated period of 

rotation (4.16) of the spiral structure. The similarity between Figure 44a and Figure 44d 

approximately confirms the period of rotation. 

Finally, the spiral breakdown in Figure 44 can be compared to the corresponding 

planar projected velocity field given in Figure 41 of Section 5.2.1. Figure 44c corresponds 

in time to the velocity field in Figure 41. Consider a slice in Figure 44c through z = 0. 

The material points initially deflect towards the negative y and z directions, eventually 

intersecting the x — y slice from below near x = 5 and y = —1/2. This location in the x — y 

plane corresponds to the center of the planar velocity field evident in Figure 41. 
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Figure 42. Contours of radial vorticity, £, at y = 0.3 for V = 1.53. Solid lines denote pos- 
itive contour values; dashed denote negative values. Numbers in parentheses 
indicate contour range: (a) axisymmetric flow (-0.09,0.24), (b) 3-D, time- 
asymptotic flow (-0.11,0.22), (c) Net perturbation from the axisymmetric flow 
(-0.10,0.29). 
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Figure 43.    Particle traces showing development of three-dimensionality with increasing 
vortex strength: (a) V = 1.5, (b) V = 1.53, (c) V = 1.65, (d) V = 1.8. 
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(d) 

Figure 44.    Particle traces showing periodic rotation of flow structure for V = 2.3:  (a) 
* = 426, (b) t = 427.2, (c) * = 428.8, (d) t = 430. 
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5.3    Results for Re = 500. 

In contrast to the axisymmetric solution paths for Re = 100 and Re = 250, axisym- 

metric solution paths at Re = 500 contain folds, resulting in primary and secondary limit 

points (Section B.l). The behavior of flows with vortex strengths prescribed near these 

solution folds is briefly presented in this chapter. A more detailed investigation is deferred 

until Section 5.4, where flows at Re — 1000 are considered. 

Results in Section 5.3.1 show that equilibrium solutions occur when the vortex 

strength is prescribed to be less than the primary limit point. In particular, the speci- 

fication of three nonunique, axisymmetric initial conditions (at a vortex strength between 

the primary and secondary limit points) lead to three apparently identical time-asymptotic 

solutions which are steady and axisymmetric. When the vortex strength is prescribed to 

be greater than the primary limit point, a periodic, three-dimensional solution develops. 

The change in solution behavior is attributed to a Hopf bifurcation, believed by the author 

to lie at, or in very close proximity to the primary limit point. A similar change in solution 

stability near the primary limit point is found in Section 5.4 for Re — 1000. 

The growth and decay of asymmetric flow is briefly examined in Section 5.3.2 to assess 

if such asymmetries are traveling upstream and contradicting the prescribed axisymmetric 

inflow conditions. 

5.3.1    Solution Behavior Near the Primary Limit Point. In this section, four 

time-integrated solutions are obtained from the TANS model. The first three solutions 

are obtained by specifying nonunique, axisymmetric initial conditions, corresponding to a 

solution along the upper stable branch, the unstable branch, and the lower stable branch 

(Section B.l). The fourth solution is obtained by specifying a vortex strength slightly 

greater than the primary limit point. 

The region of nonunique, axisymmetric PAC solutions is shown in Figure 45 for 

Re = 500. The chosen initial conditions for the TANS model are denoted with square 

symbols in the figure, with the corresponding TANS model parameters for these runs 

summarized in Table 13. The time-asymptotic values of Q are denoted with diamond 

symbols in the figure.   The three runs at V = 1.49 are designated V = 1.49s+, V = 1.495-, 
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Figure 45.    Axisymmetric solution path for Re — 500 and M — 0.3: Stable branches; solid 
lines: unstable branch; dashed line: TANS initial conditions; square symbols. 

and V = 1.49", corresponding to the upper stable branch, the lower stable branch, and the 

unstable branch respectively. The primary and secondary limit points are encountered at 

Vp = 1.4918 and Vs = 1.4899 respectively. 

The three runs computed before the primary limit point all migrate to apparently 

identical solutions near the initial condition at V = 1.49s+. It is believed by the author 

that differences in grid resolution are responsible for the differences in the three time- 

Table 13. Summary of TANS model parameters for Re = 500. 

Run No. Re V M At a BC Grid Accuracy (Time/Space) 

32 500 1.49'+ 0.3 .040 0.05 2 Gl 2nd/4th 

33 500 1.49'" 0.3 .040 0.05 2 Gl 2nd/4th 
34 500 1.49" 0.3 .040 0.05 2 Gl 2nd/4th 
35 500 1.50 0.3 .040 0.05 2 Gl 2nd/4th 
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Table 14. Summary of results for Re = 500. 

Run No.    V H Q  ~ 
32 1.49s+ 0.010197 0.22685 

33 1.49s- 0.010198 0.22691 

34 1.49"  0.010194 0.23126 

35 1.50   0.119011 0.17422 

asymptotic solutions and the initial condition at V = 1.49s+. This issue is dealt with 

in more detail in Section 5.4.2.1. At V = 1.5, the time-asymptotic value of Q (diamond 

symbol) is significantly larger than the initial value of Q (square symbol). This observation 

is consistent with results at Re = 100 and Re = 250 for solutions computed past the Hopf 

bifurcation point. 

The minimum axial velocity component, Q, for Runs 32-34 is plotted versus time 

in Figure 46a. It is evident in all three runs, V = 1.49s+, V = 1.49s-, and V = 1.49", 

that the flow temporally evolves from a negative to a positive value of Q, indicating the 

elimination of a reversed flow region. The time-asymptotic solutions are found to be 

steady, since A"C/max converges to values near 10-6 at the end of these runs. The time- 

asymptotic solutions are also found to be axisymmetric by computing the values of H. 

The global parameter H characterizes the degree of flow asymmetry and is defined as 

the maximum absolute value of dv/dO. The time-asymptotic values of H for each run 

are given in Table 14. The small values of H indicate that the solutions are virtually 

axisymmetric. Furthermore, it is found that small errors interpolation errors, as well as 

errors in computing H with discrete data, contribute greatly to the given values of H. For 

example, the value of H2, corresponding to H for the initial (PAC) solution, interpolated 

onto the 3-D grid for V = 1.49s+ is 0.00908. This is approximately 89% of the total value 

of H. 

The fourth run (Run 35), computed at a vortex strength just past Vp, is found to be 

time-periodic and three-dimensional. Q is plotted for this run in Figure 46b. Examination 

of the behavior of Q and A"E/max, along with the computation of H in Table 14, indicates 

that the time-asymptotic behavior of Run 33 is unsteady and three-dimensional. Plots 

of vs and w, are shown in Figure 47a, with the corresponding phase plot of vs shown in 
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Figure 46.    Q versus time for Re = 500:  (a) V = 1.49'+ (solid line), V = 1.49s- (dot- 
dash), and V = 1.49" (dashed), (b) V = 1.5. 

Figure 47b, where St = 0.8. The periodic nature of va is evident in the figure. The phase 

plot of ws is not shown, owing to the similarity between vs and ws. The axial velocity 

component u, is found to be nearly steady in time, with no indications of periodic behavior. 

The preceding results indicate that a distinct change in solution character occurs 

when V is increased slightly from 1.49 to 1.50. All three solutions at V = 1.49 are steady and 

axisymmetric, while at V=1.5 the flowfield is periodic and three-dimensional. In between 

the vortex strengths of 1.49 and 1.5 lies the primary limit point at Vp = 1.4918. Thus, 

there is strong evidence that a Hopf bifurcation point lies at, or in very close proximity to, 

the primary limit point. 

To further illustrate the change in solution behavior, a new parameter is introduced, 

fti is defined as the sum of vs and ws, where v, and ws are crossplane velocity components 

at a centerline location of x = 7. Figure 48 shows plots of fix versus time for the four runs 
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Figure 47.    Periodic behavior of flow computed at V = 1.5 and Re = 500: (a) v3 (solid) 
and ws (dashed) versus time, (b) phase plot of v5 for t - 370 to t = 400. 

at V = 1.49 and 1.5. By comparing this figure to Figure 46, we see that for V = 1.49" and 

V = 1.49s_, an asymmetric disturbance develops in Figure 48b-c which is coincident in 

time with the migration of Q from reversed to nonreversed flow. However, as time marches 

on, these disturbances decay and vanish. At V = 1.5, a similar disturbance appears in 

Figure 48d which has almost twice the maximum amplitude as the other disturbances. 

The feature that distinguishes the flow at V = 1.5 from the other three is the reformation 

of an asymmetric disturbance near t = 200, which emerges after the transient disturbance 

vanishes. Figure 48 illustrates that asymmetric disturbances which appear at V = 1.49 do 

not survive, indicating stability to this type of disturbance. On the other hand, the flow 

computed past the primary limit point appears to be unstable to asymmetric disturbances, 

resulting in unsteady and three-dimensional flow. 
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Figure 48.    ftj versus time for Re = 500: (a) V = 1.493+, (b) V = 1.49", (c) V = 1.49' 
(d) V = 1.5. 
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5.3.2 The Growth and Decay of Asymmetric Flow Near the Inflow Boundary. 

The development and decay of asymmetric flow for a fixed observation point is illustrated 

the last section in Figure 48b-c. Also of interest to this study is the movement of asymmet- 

ric disturbances. In particular, if an asymmetric disturbance is formed, it may be possible 

for the disturbance to propagate upstream. If this occurs, the disturbance could reach the 

inflow boundary, violating the assumption of axisymmetric inflow conditions. 

The upstream propagation of asymmetric waves near the supercritical inflow bound- 

ary would require that asymmetric waves have a negative group velocity in supercritical 

flow. The criticality of axisymmetric waves is discussed in Section 2.1.1, however, little 

is known about the group velocity of asymmetric waves. The general conclusion of the 

few experimental investigations aimed at determining the group velocity of asymmetric 

waves (summarized by Leibovich (1984)) is that the group velocity of asymmetric waves 

in supercritical flow is positive, i.e. directed downstream. 

To investigate how the developed asymmetries propagate in the runs considered here, 

a new parameter, Sl2(x,t) is created. This function is defined as the absolute value of the 

sum v(x,t) + w(x,t) along the centerline. ü2(x,t) is plotted in Figure 49 at various times 

for Run 32. The selected times coincide with times when the maximum (positive) values of 

fii occur in Figure 48b. In Figure 49a, the data for times corresponding to increasing levels 

of the disturbance are shown, while in Figure 49b the (subsequent) times of the decaying 

disturbance are shown. Each line corresponds to a different time level, with alternating 

solid and dashed lines used to help delineate between them. The figure clearly shows the 

development and subsequent decay of the asymmetric disturbance. In addition, the most 

important observation in the current context is that the asymmetric disturbance is found to 

propagate downstream, consistent with the above-mentioned experimental findings. Thus, 

this limited investigation shows that the inflow assumption of axisymmetry is not being 

compromised. 
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Figure 49.    Growth and decay of asymmetric disturbance Q,2(x,t) versus x for various 
times: (a) t = 35.6, 41.92, 48.56, (b) t = 55.2, 61.48, 67.44. 
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5.4    Results for Re = 1000. 

Results for flows at Re = 1000 are presented in this section, with TANS run param- 

eters summarized in Table 15. 

The axisymmetric solution paths are shown in Section 5.4.1, using three different 

axisymmetric grids to assess solution sensitivity to node spacing and tube length. Initial 

conditions to the TANS model are selected from these axisymmetric solution paths. 

Flows with vortex strengths prescribed to be less than the primary limit point are 

discussed in Section 5.4.2. In particular, three initial conditions are selected; one from 

each of the upper stable branch, lower stable branch and the unstable branch of axisym- 

metric solutions. Time-integration from these initial conditions, in the presence of a three- 

dimensional geometry, result in three nearly-equivalent time-asymptotic flows which are 

all axisymmetric and steady. Results for three different 3-D grids are shown to illustrate 

solution sensitivity to node spacing and tube length. 

Flows with vortex strengths prescribed to be greater than (but close to) the primary 

limit point are presented in Section 5.4.3. These flows are found to be periodic and asym- 

metric, providing evidence of a Hopf bifurcation. A summary of Sections 5.4.2 and 5.4.3 

is given in Section 5.4.4, along with further evidence indicating that a supercritical Hopf 

bifurcation occurs at or near the primary limit point. The loss of periodic flow as vortex 

strength is further increased past the Hopf point is discussed in Section 5.4.5. 

Solution sensitivity to tube length for vortex strengths beyond the primary limit 

point is discussed in Section 5.4.6. The results indicate that a tube length of L = 20 is 

sufficient for flows computed near the primary limit point. However, solutions for V = 1.7, 

computed for both L = 20 and L = 30 indicate that a tube length of at least L — 30 

is required. Based on this result, solutions computed past the primary limit point are 

obtained with L — 30. 

Flow visualization is presented in Section 5.4.7. Flow disturbances visualized with 

numerical streaklines are found to be similar in form to those encountered at Re = 250. 
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 Table 15. Summary of TANS run parameters for Re = 1000.  
Run No.       Re    V M      At       a      BC    Grid    Accuracy (Time/Space) 

36 1000 1.475'+ 0.3 .040 0.05 2 Gl 2nd/4th 

37 1000 1.475'- 0.3 .040 0.05 2 Gl 2nd/4th 

38 1000 1.475" 0.3 .040 0.05 2 Gl 2nd/4th 

39 1000 1.475'+ 0.3 .025 0.05 2 G2 2nd/4th 

40 1000 1.475'- 0.3 .025 0.05 2 G2 2nd/4th 

41 1000 1.475" 0.3 .025 0.05 2 G2 2nd/4th 

42 1000 1.47'+ 0.3 .025 0.05 2 G3 2nd/4th 

43 1000 1.47'- 0.3 .025 0.05 2 G3 2nd/4th 

44 1000 1.47" 0.3 .025 0.05 2 G3 2nd/4th 

45 1000 1.50 0.3 .025 0.05 2 G3 2nd/4th 

46 1000 1.60 0.3 .025 0.05 2 G3 2nd/4th 

47 1000 1.70 0.3 .025 0.05 2 G3 2nd/4th 

48 1000 1.90 0.3 .025 0.05 2 G3 2nd/4th 

49 1000 1.90 0.3 .025 0.05 2 G4 2nd/4th 

50 1000 2.10 0.3 .025 0.05 2 G3 2nd/4th 

5.4.1 Axisymmetric Solutions for Re = 1000. Axisymmetric solutions from the 

PAC model are presented in this section to assess the impact of grid resolution and tube 

length. The axisymmetric solution paths are shown in Figure 50, where Figure 50a gives 

a "global" view and Figure 50b provides a "magnified" view near the region of solution 

nonuniqueness. The outer solid line (corresponding to the largest primary limit point, 

Vp) represents solutions computed with the 98 X 32 (baseline) grid, gl. The dashed line 

illustrates the effect of grid refinement to 122 x 48 nodes (grid g2). The inner solid line 

shows the effect of increasing the domain length from L = 20 to L = 30 using grid g3. 

The global view, Figure 50a, suggests that the effect of grid refinement and domain length 

are very small. However, the magnified view, Figure 50b, more clearly shows the acute 

sensitivity to both node spacing and domain length near the primary limit points. 

Increasing the grid resolution (gl to g2) results in a decrease in V at the primary 

limit. The primary and secondary limit points for solutions on gl are given by Vp = 1.48052 

and V, = 1.46422 respectively. For solutions computed on g2, the limit points are located 

at Vp = 1.47685 and V, = 1.45844. Increasing the domain length L also results in a 

decrease in the primary limit point. Solutions computed on g3 have a primary limit point 

Vp = 1.47435 and a secondary limit point Vs = 1.45844. 
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Figure 50.    2-D solution paths for Re = 1000 and M = 0.3: (a) global view, (b) magnified 
view. Square symbols denote selected initial conditions for the TANS model. 

Runs performed on grid g3 (L = 30) are done so at a slightly smaller value of vortex 

strength than those runs considered with grids gl and g2, due to the decrease in the 

primary limit points. The selected vortex strength for initial conditions computed on gl 

and g2 is V = 1.475, while a vortex strength of V = 1.47 is selected for initial conditions 

computed on grid g3. 

Given the above locations of the primary and secondary limit points, it appears that 

the separation in V between these points increases with increasing Reynolds number. At 

Re = 500, the primary and secondary limit points are separated by a distance of only 

0.0019. This distance grows to 0.015 at Re = 1000; a factor of 8 increase. 

Compressibility appears to diminish the region of nonuniqueness. Beran and Culick 

(1992) report limit point separations (M = 0) of about 0.012 and 0.04 for Re = 500 
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and Re = 1000 respectively, consistent with the observed trend with Reynolds number. 

However, these limit point separations for M - 0 are much greater (for the same Reynolds 

number) as those reported here for M = 0.3. Morton (1989) similarly observed that 

increasing M in 2-D flows result in smaller regions of nonunique solutions, eventually 

leading to Mach numbers where only unique 2-D solutions exist. 

5.4.2 Solutions for Vortex Strengths Less Than Vp. Solutions computed at vortex 

strengths below the primary limit point are presented in this section. In particular, three 

initial conditions, corresponding to solutions on the upper stable branch, lower stable 

branch and the unstable branch are considered. In addition, these three runs are repeated 

for grids Gl, G2 and G3, and are discussed in Sections 5.4.2.1- 5.4.2.3 respectively. The 

initial conditions for Runs 36-44 are denoted with square symbols in Figure 50b. These 

runs are performed to determine if nonunique, axisymmetric initial conditions lead to 

nonunique solutions of the 3-D governing equations. 

5.4.2.1 Solutions Computed On Grid Gl. Figure 51 shows plots of Q as 

a function of time for Runs 36-38, which are computed with grid Gl. Inspection of the 

time-asymptotic solutions indicates that all three solutions are steady and axisymmetric. 

Solution nonuniqueness, present in the 2-D solutions, is lost when time integration is 

performed with the three-dimensional governing equations. 

The three solutions converge at a value of Q which is somewhat higher (7.2%) than the 

initial value of Q corresponding to the upper stable branch. There are at least two possible 

explanations for why the solutions did not converge near one of the three initial conditions. 

First, the difference between initial and final values of Q (i.e., for Run 34) may be attributed 

to differences in grid resolution between the PAC and TANS models. Second, it may be 

possible that there exists another stable solution near the one computed by the PAC model. 

Of these two possible explanations, the first seems the most likely, and is investigated below. 

The second explanation is not investigated. However, for incompressible flows, Beran and 

Culick (1992), Darmofal (1994) and Lopez (1994) do not observe disconnected branches of 

steady, axisymmetric solutions. 
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Figure 51. Q versus time for Runs 36-38 (grid Gl). 

The PAC model is second-order accurate (spatially) while the TANS model is fourth- 

order accurate. The higher accuracy of the TANS model generally allows for larger node 

spacings over those used by the PAC model. In particular, comparing grids gl and Gl, the 

average radial node spacings are about 0.0645 and 0.1 respectively. Increasing the radial 

node spacing to 0.086 with the PAC model and recomputing the 2-D solution for the upper 

stable branch results in a larger value of Q, which is much closer to the time-asymptotic 

value achieved by the TANS model. Changing the axial node spacing has a minimal effect 

on Q. Therefore, it is suspected that a lack of crossplane grid resolution in the TANS 

model is responsible for the deviation away from the initial (2-D) value of Q. 

A scenario in which different node spacings are used in models of different spatial 

accuracies is depicted in Figure 52. The conceptual behavior of Q with the average radial 

node spacing, Ar, is illustrated, where deceasing Ar is equivalent to increasing 1/Ar. It 
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has generally been observed in this study that increasing 1/Ar results in a decrease in Q 

until a converged value is reached. The finer grid resolution allows for better definition 

of the decelerated region and minimizes the effects of numerical viscosity. The two curves 

in the figure correspond to the fourth-order model (TANS) and the second-order model 

(PAC). The radial node spacings of the PAC and TANS models are denoted Ar2 and 

Ar4 respectively. It is evident from the figure that if 1/Ar2 = l/Ar4, the TANS model 

will produce a more accurate (or equal) value of Q over the PAC model. Furthermore, 

convergence with the TANS model is achieved with a larger radial spacing. However, 

having two different radial spacings can lead to different values of Q, if grid convergence 

has not been achieved in one or both models. A lack of grid resolution can result in a 

slightly higher value, Q = Q4, in the TANS model over the initial condition, Q = Q2. 

Finally, it is evident that agreement in Q between the TANS and PAC models is a strong 

indication that both models are employing sufficiently resolved grids. This is the case for 

Re = 250, where initial and final values of Q agreed to within 1% for flows computed on 

Gl (Figure 29a). More of a deviation in Q is evident for grid G2 in Figure 29a, since gl 

(and not g2) is used to compute the initial solution. 

The conclusion to be drawn from the preceding discussion is that the baseline grid, 

Gl, is not adequate for resolving the 3-D flowfield at Re - 1000, due primarily to a lack 

of sufficient grid resolution in the crossplane. 

5.4.2.2    Solutions Computed On Grid G2. This section presents results 

where the three runs performed in the last section are better resolved by changing from 

grid Gl to grid G2. Runs 36-38 are recomputed on grid G2 and are denoted as Runs 39-41. 

Grid G2 decreases the average radial spacing by increasing the number of crossplane nodes 

from 412 to 612, and by clustering axial nodes. The minimum axial spacing for G2 is about 

0.1 at x = 5, whereas the constant axial spacing for Gl is about 0.2. Figure 53 compares Q 

as a function of time for the three initial conditions at V = 1.475 with grid G2. Generally, 

the behavior of Q is similar to the behavior observed in the previous three runs. However, 

all three runs are converging to a final value of Q which is within about 1% of the initial Q 

computed on the upper stable branch. Longer run times are apparently required to show 

128 



Q 

Q4 

\ 4th-order \ 2nd-order 

^~--^              ^— 

1/Ar 
1/Ar, 1/Ar, 

Figure 52.    Schematic representation of grid convergence for second and fourth-order 
schemes. 

full convergence of the three solutions. However, these runs were not carried out further 

in time, since sufficient convergence is evident on the coarser grid, Gl. 

5.4.2.3 Solutions Computed On Grid G3. The effect of domain length on 

the temporal behavior of Q is assessed by repeating the previous three runs using grid 

G3, which extends the tube length from L = 20 to L = 30 with node spacings held fixed. 

The results are shown in Figure 54. Despite the slight differences in initial conditions 

(V = 1.47) from runs computed on G2, the qualitative behavior of Q as a function in time 

remains basically the same as that observed in Runs 36-38. Therefore, it is concluded that 

grid G2 is adequate for resolving the flowfields for Re = 1000, at least for vortex strengths 

below the primary limit point. 
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Figure 53. Q versus time for runs 39-41 (grid G2). 

5.J.3 Solutions for Vortex Strengths Greater than Vp. Time histories of Q are 

presented in this section for flows with vortex strengths greater than Vp = 1.47435. In 

particular, vortex strengths of V = 1.5 and V = 1.6 are considered using grid G3. 

The deviations from the initial conditions are illustrated in Figure 55, where Q is 

plotted versus time for V = 1.5 and 1.6. In Figure 55a (V=1.5) it is evident that an 

appreciable deviation from the initial condition is present—similar to the transient that 

developed from the initial condition at V = 1.47'~. The initial axisymmetric flow at 

V = 1.5 has reversed flow, since the initial value of Q is negative. The time-asymptotic 

value of Q at V = 1.5 is positive, indicating the absence of reversed flow. Eventually, the 

behavior of Q time asymptotes to periodic behavior, which is not discernable from the 

scales of the figure (time periodicity is discussed later in Section 5.4.4). Furthermore, an 
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Figure 54. Q versus time for Runs 42-44 (grid G3). 

overall increase in Q, consistent with results at Re = 250, is evident. This increase in Q 

was correlated with the production of radial vorticity in Section 5.2.2. 

Figure 55b shows the behavior of Q for V = 1.6. Here the initial and final values 

of Q are negative, with time-periodic behavior developing near the end of the run. Thus, 

there exists a small region in V between at least 1.5 and 1.6 where initially symmetric and 

reversed flows time-asymptote to 3-D flows without reversed flow. This behavior is also 

evident at Re = 250 for flows computed past the Hopf bifurcation near V = 1.53. 

5.4-4 Evidence of a Hopf Bifurcation Near the Primary Limit Point. In Sec- 

tion 5.4.2, the behavior of Q for solutions computed before the primary limit are pre- 

sented, claiming these flows to be steady and axisymmetric. In Section 5.4.3, Q values 

are presented for solutions computed after the primary limit point, claiming these flows 
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Figure 55. Q versus time for M = 0.3 and Re = 1000: (a) V = 1.5, (b) V = 1.6. 

to be three-dimensional and periodic.  In this section, these claims are substantiated by 

presenting the nature of the solutions before and after the primary limit point. 

Flows computed before the primary limit point are steady and axisymmetric. Runs 

36-44 are found to be steady by monitoring the value of A" Umax and observing the steady 

reduction of this parameter to levels near 10~6. The flows are found to be axisymmetric 

by computing the value of H at the end of each run. if is a global parameter, defined as 

the maximum absolute value of dv/dO. Typical values of H are found to be about 0.0084 

for Runs 42-44. 

The periodic nature of flows computed past Vp is illustrated in Figures 56-57. Fig- 

ure 56 contains plots of vs and ws, where nonzero values of vs and ws indicate three- 

dimensional flow. At V = 1.47s+, both v„ and ws are virtually zero, indicating an ax- 

isymmetric flow. Slightly beyond the primary limit point at V = 1.5 and 1.6, a periodic 

oscillation in vs and w, is observed. The axial velocity component, us, (Figure 57) is also 

observed to be unsteady at V = 1.6, however, any axial velocity fluctuations for V = 1.5 

were too small to detect. 

Phase plots of us and v, for V = 1.5 and 1.6 are presented to further assess the 

periodicity of these flows. Figure 58 shows phase plots for V = 1.5 and 1.6 for 6t = 0.5. 

Only the crossplane velocity component, v„, is shown for V = 1.5, owing to the time- 

independence of u,. The crossplane velocity component, vs, is found to be nearly perfectly 
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Figure 56.    Crossplane velocity components vs and w, versus time for Re = 1000 (va(t) 
(solid); w.(t) (dashed)): (a) V = 1.47'+, (b) V = 1.5, (c) V = 1.6. 

periodic, with between 7-9 periods of data depicted in the figure. Periodicity is not strictly 

observed in us for V = 1.6. There are at least two possible explanations for this result. 

First, the amplitude of the oscillation in u, is much smaller than that of v„, making it more 

susceptible to numerical errors. Second, the axial velocity component has been found to 

take longer to reach a time-asymptotic state, which can cause a phase plot to drift. 

Finally, the nature of the Hopf bifurcation is illustrated in a manner similar to results 

for Re = 250, Section 5.2. Plots of the parameters H, O, and Q for flows computed 

before and after Vp are shown in Figure 59. Data presented in the figure is taken from 

computations on grid G3, and is summarized in Table 16. Figures 59a-b show that flows 

computed before the primary limit point at Vp = 1.47435 are axisymmetric and steady. 

Flows computed after the primary limit point are both three-dimensional and periodic. 

The loss of stability of equilibrium solutions to time-periodic solutions is evidence for a 

Hopf bifurcation. 

The fact that fi steadily increases from zero near Vp is evidence for the supercritical 

type of Hopf bifurcation (Section B.l). Figure 59c shows that the path of axisymmetric 

solutions branch off near the primary limit point to form a branch of three-dimensional 

flows.  Solutions on the branch of 3-D flows near the primary limit point do not contain 
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Figure 57.    Axial velocity component us versus time for Re — 1000: (a) V = 1.47s+, (b) 
V= 1.5, (c) V = 1.6. 
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Figure 58.    Phase plots for V = 1.5 and 1.6: (a) »,(*), V = 1.5, (b) u,(t), V = 1.6, (c) 
v,(t), V = 1.6. 

reversed flow.    Reversed flow is not achieved until the vortex strength is increased to 

V= 1.6. 

5,4-5 Results for Further Increases in V. Further increases in vortex strength 

past V = 1.6 yield two significant changes in temporal behavior from the periodic solu- 

tions computed between V = 1.5 and V = 1.6. The first change is the appearance of a 

large-scale, periodic fluctuation in the time-asymptotic value of Q. The second change is 

the loss of time-periodic behavior in the velocity components «,, v, and ws. These changes 

are attributed to additional bifurcations of the flow. The observed changes in flow behav- 
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Figure 59. Evidence of a Hopf bifurcation near the primary limit point for Re = 1000. 

ior are also discussed in light of results of Lopez (1994), who computed time-dependent, 

axisymmetric solutions under similar conditions and geometry. 

The behavior of Q for V = 1.7, 1.9 and 2.1 is shown in Figure 60. In contrast to 

the time-asymptotic nature of Q at lower values of V, Q shown here consists of both a 

small and large-scale oscillation. The large-scale oscillation is clearly evident in the figure, 

with the smaller scale oscillation barely visible. At V = 2.1, Q appears to have lost any 

large-scale periodic behavior. 

The velocity components us, v, and ws for V greater than 1.6 are no longer periodic. 

Figure 61 shows that the crossplane velocity components vs and ws are nearly periodic in 

nature for V = 1.7 and 1.9. However, periodicity is totally lost at V = 2.1, consistent with 

the irregular behavior of Q at this vortex strength. For V = 1.7 and 1.9, Figure 62 depicts 
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.369/ .371 - 

.056/ .364 - 
-.098/ .369 - 
-.128/ .124 6.05 
-.159/-.032 6.05 

Table 16. Summary of computed flow parameters for Re = 1000. 

V H                 ü              Q (2-D)/(3-D)    Period 

1.47»+ .0084 -0.0001/0.0001 
1.47" .0084 -0.0001/0.0002 
1.47s- .0084 -0.0003/0.0004 
1.50 .2491 -0.2513/0.2513 

1.60 .6653 -0.5080/0.5080  

a fundamental change in the behavior of the axial velocity component us over the behavior 

at lower values of V. High frequency oscillations in us are observed which are superimposed 

on a lower frequency oscillation. The period associated with the lower frequency behavior 

is about 24 time units, which is about a factor of four over the period of 6.05 for us, v, 

and ws at V = 1.6. At V = 2.1, periodicity is lost in us, as it is in Q, vs and ws. 

Phase plots for the three vortex strengths are shown in Figure 63. Figure 63a-d 

confirms that flows computed at V = 1.7 and 1.9 are found to be nearly periodic in vs and 

ws and aperiodic in ua. A further increase in V to 2.1 results in aperiodic behavior in both 

us(t) and vs(t), as evident in Figure 63e-f. 

The preceding plots of Q and the velocity components indicate changes in solution 

behavior between V = 1.6 and 1.7, and between V = 1.9 and 2.1. The occurrence of 

additional bifurcations from the original Hopf bifurcation near the primary limit point is 

the most likely explanation for these changes in solution behavior. The classification of 

such secondary bifurcations is beyond the scope of this work. 

The results of Lopez (1994) provide additional information which may help correlate 

the observed loss of stability of periodic solutions. Lopez (1994) studied the time-dependent 

behavior of axisymmetric solutions for Re = 250 to 1000 and for similar vortex strengths 

considered in this work. The tube geometry is identical to the geometry used in this work, 

with similar node spacings. Lopez (1994) found that for Re = 1000, both steady and 

unsteady axisymmetric solutions coexist for vortex strengths beyond V « 1.63. The branch 

of 2-D, unsteady solutions is computed up to V = 1.7. The appearance of this unsteady 

branch of axisymmetric solutions corresponds well with the development of large-amplitude 

oscillations observed in this study starting at V = 1.7. This may be another example of 
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Figure 60.    Q versus time for Re = 1000 and M 
V = 2.1. 

0.3:  (a) V = 1.7, (b) V = 1.9, (c) 

how changes in the underlying axisymmetric solution space can also correspond to changes 

in the 3-D solution space. The first example is the close proximity of the primary limit 

point, evident in paths of axisymmetric solutions, to the Hopf bifurcation observed in 3-D 

flows. 
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5.4-6 Solution Sensitivity to Tube Length. The results of Section 5.4.2.3 show 

that a tube length of L - 20 is adequate for computing flows when V < Vp and Re = 1000. 

Results in this section show that a further extension in tube length to L - 30 is required 

at higher vortex strengths. 

Figure 64 shows the effect of further increases in tube length. From inspection of 

Figure 64a, it appears that a tube length of L = 20 is adequate for V = 1.5. This result 

is consistent with the results of Section 5.4.2.3, where a tube length of L = 20 is found to 

be sufficient for V = 1.47. However, a substantial solution impact is evident at V = 1.7, 

where the tube length is increased from L = 20 to L = 30. This observed sensitivity to 

tube length prompted all runs computed past the primary limit point to be run with a 

tube length of 30. A further extension of the tube to L = 40 is considered in Figure 64c 

for V = 1.9, where it is evident that only small deviations in Q occur when the tube 

is lengthened. Therefore, it is concluded that runs at Re = 1000 generally require tube 

lengths of L = 20 for vortex strengths up to the primary limit point. A tube length of 

L = 30 is adequate for vortex strengths greater than the primary limit point. 

The solution sensitivity to tube length at V = 1.7 is most likely the result of the 

flow transitioning from subcritical to supercritical between x = 20 and x = 30. If the 

flow is subcritical at x = 20, then small, axisymmetric disturbances introduced by the 

downstream boundary condition may propagate upstream, affecting the transient solution. 

Increasing the tube length allows the flow to make the transition to supercritical before 

the outflow boundary is encountered. Then, since the flow is supercritical, disturbances 

can only convect downstream. 

The observed sensitivity to tube length at V = 1.7 is consistent with the 2-D results 

presented by Darmofal (1994), where for Re = 1000 and similar node spacings, flow crit- 

icality was computed for a converging tube similar to the one used in this study. At the 

onset of breakdown, the flow is subcritical in the (axial) vicinity of reversed flow, and does 

not recover to supercritical flow until approximately x = 24. 

5.4.7 Flow Visualization for Re = 1000. The types of flow disturbances observed 

at Re = 1000 are similar to the disturbances documented at Re = 250 in Section 5.2. The 
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recognizable disturbances are the Type 6 disturbance and the spiral (Type 2) mode of 

breakdown. Detailed descriptions of these flow types are contained in Section 5.2. 

Particle traces for flows at V = 1.473+, 1.5 and 1.6 are shown in Figure 65. An 

axisymmetric flow is evident in Figure 65a, where a mild region of axial flow deceleration 

occurs near x = 5. This vortex strength is slightly below the primary limit point, where 

flows are found to be steady and axisymmetric. The first sign of asymmetric behavior is 

evident in Figure 65b for V = 1.5. This value of the vortex strength lies just past the 

primary limit point, where flows are found to be periodic and three dimensional. This 

flow is void of reversed flow, and is therefore not a form of breakdown. The disturbance 

is most similar to the Type 6 disturbance documented by Faler and Leibovich (1977). A 

slightly higher value of vortex strength yields the disturbance shown in Figure 65c. The 

axial deceleration is greater here, resulting in reversed flow. Furthermore, there is visual 

evidence of a more coherent off-axis deflection of the particles. Downstream of the initial 

disturbance, the particles are scattered in a much more random fashion than in Figure 65b. 

Further increases in vortex strength lead to the formation of the spiral mode of vortex 

breakdown, shown in Figure 66. Figures 66a-b represent intermediate forms of breakdown, 

not easily characterized by one of the documented forms observed by Faler and Leibovich 

(1977). The spiral mode, Figure 66c, is characterized as a sharp, off-axis deflection of the 

central particle trace into a helical-type structure. This structure rotates about the tube 

centerline in a periodic fashion in the same sense as the base vortical flow. The sense of 

winding of the helical structure, is however, opposite to the swirling direction of the base 

flow. 
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Figure 65.    Particle traces showing development of three-dimensionality with increasing 
vortex strength: (a) V = 1.47s+, (b) V = 1.5, (c) V = 1.6. 
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Figure 66. Particle traces showing evolution of the spiral mode of vortex breakdown as 
vortex strength is increased: (a) V = 1.7, (b) V = 1.9, (c) spiral breakdown, 
V = 2.1. 
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VI.   Summary. 

Results of Chapter V are summarized in this chapter, along with a discussion on the 

utility of the TANS model. 

The TANS model is discussed in Section 6.1. Topics include the demonstrated utility 

of the compact scheme and the multiblock grid structure. 

A review of the results at Re = 250, where solution nonuniqueness is not evident 

in the 2-D solutions, is contained in Section 6.2. Results at Re = 500 and 1000, where 

2-D solution nonuniqueness is found, is reviewed in Section 6.3. The types of flow distur- 

bances encountered in this study are related to those found in the experiment of Faler and 

Leibovich (1977) in Section 6.4. Finally, a summary of quantified results is presented in 

Section 6.5. 

6.1     The TANS Model. 

The unique features of the TANS model include the incorporation of the fourth- 

order compact scheme, discussed in Section 6.1.1, and the ability of the model to compute 

solutions over a specific type of multiblock grid (Section 6.1.2). 

6.1.1 The Compact Scheme. Previous works using the compact scheme in Eu- 

ler and Navier-Stokes solvers are summarized in Chapter 2.2. These works include the 

application of the compact scheme to compressible, 3-D, and unsteady flows. Previous ap- 

plications of the compact scheme to solvers employing multiple-block grids are not found. 

Therefore, it is believed by the author that this study represents the first application of the 

compact scheme to 3-D, compressible and unsteady flows in the presence of a multiblock 

grid. 

The development of the compact scheme version of the TANS model was not one 

of the original goals of this work. However, as the study progressed, it was evident that 

the time-accurate computation of 3-D grid-independent solutions was too computationally 

demanding for standard second-order schemes. The computational requirements in this 

study are driven primarily by the long amounts of time required for solutions to reach 
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their time-asymptotic behavior. The compact scheme allows fewer nodes to be used in the 

crossplane, with similar levels of spatial accuracy. This greatly relieves the computational 

requirements of the study and allows more runs to be computed in a given amount of time. 

The practical benefits of using the fourth-order model over the second-order model 

are primarily due to two factors. First, it was found in this study that similar levels of 

accuracy are achieved when 612 crossplane nodes (grid G6) are used with the second-order 

model and 412 crossplane nodes (grid Gl) are used with the fourth-order model. Thus, 

fewer nodes can be used with the fourth-order model with similar levels of spatial accuracy. 

Second, the larger radial node spacing associated with the fourth-order model allows the 

solution to remain stable at a larger time step. The maximum time step allowed with the 

second-order model using grid G6 is at least 0.03, while the maximum time step of the 

fourth-order model for grid Gl is at least 0.04. However, it should be noted that when both 

models use the same grid, a larger time step can be used with the second-order model. For 

example, the maximum time step of the second-order model using grid Gl is at least 0.06. 

Thus, some robustness in time step is sacrificed with the fourth-order model. However, in 

this study, the allowance of the larger radial node spacing recovered this loss, resulting in 

a net increase in the maximum allowable time step from about 0.03 to about 0.04. 

The overall savings in CPU time for the C-90 computer is computed assuming grids 

G6/G1 and time steps 0.03/0.04 for the second/fourth-order models respectively. The 

required CPU time to integrate to t = 100 is 4.2 hours for the second-order model and 

2.5 hours for the fourth-order model (Section 3.7). This corresponds to an overall savings 

in CPU time using the compact scheme of 42%. Section 3.7 provides TANS performance 

information for both the second and fourth-order versions of the model. 

The preceding comparison of CPU time may seem unjust, since different grids are 

used in computing the required CPU times. However, the intent is to show the required 

CPU time to compute a solution to a given final time on grids which provide similar levels 

of spatial accuracy. In this light, the preceding comparison of CPU time is justified, since 

the CPU times are based on grids which yield similar levels of accuracy for their respective 

schemes. The other seemingly unfair aspect of the above comparison is that different time 

steps are involved. The intent is to use the maximum allowable solution-independent time 
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step.  The higher time step associated with the compact scheme is a direct result of the 

coarser spacings in the crossplane grid. 

In this study, the larger allowable time steps associated with the compact scheme 

are adequate in providing solutions which are nearly independent of time step. The time, 

steps used are also specified to be very close to the maximum stable time step. That is, the 

maximum (solution-independent) time step in this study is less than, but in close proximity 

to, the time step in which solution stability is lost. This is generally an undesirable 

situation, especially if only a steady-state solution is sought. However, since time-accurate 

solutions are desired in this study, this situation is of less concern. In general, however, the 

time step for solution-independence may be much less than the time step associated with 

loss of stability. In these cases, increasing the time step (upon implementing the compact 

scheme) may not be possible if independence in time step is desired, resulting in less net 

savings of CPU time for the compact scheme than that cited above. About 22% of the 

42% reduction of CPU time is due to the reduced number of nodes, and factoring in the 

difference in code efficiencies. The remaining 20% is achieved by running at a larger time 

step, made possible by the greater crossplane node spacing. 

The data processing index (DPI) of the fourth-order version of the TANS model 

is (coincidently) 42% larger than the central-difference formulation. Much of the extra 

computations in the compact scheme come from computing the viscous terms to fourth- 

order accuracy. It would be of interest to study the effect of allowing the viscous terms 

to be computed to second-order accuracy, assessing the loss of accuracy against improved 

efficiency. 

Finally, a stability analysis of the compact scheme was not performed in this study. 

However, the observed requirement of smaller time steps for the compact scheme (over 

a second-order scheme) is confirmed by Lele (1992). Lele (1992) computed the explicit 

stability limits for two model problems, and generally found that the time step becomes 

more restrictive as the spatial accuracy of the scheme increases. The most restrictive 

time step for an explicit scheme was associated with spectral methods (Lele (1990)). The 

fourth-order compact scheme was found to have a time step restriction which lies between 

the limit associated with second-order schemes and spectral methods. 
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6.1.2 The Multiblock Grid. The crossplane grids employed in this work have a 

unique structure; nodes are arranged in a nearly rectilinear fashion close to the tube center, 

while maintaining near orthogonality at the tube wall. This accomplishes three goals: (1) 

allows for nearly constant grid resolution near the centerline, where the vortex core migrates 

off-center during spiral breakdown, (2) avoids an approximate numerical treatment at the 

tube centerline (essentially moving such treatment towards the tube wall), and (3) provides 

nearly orthogonal node placement at the wall, reducing numerical errors associated with 

the specification of Neumann-type boundary conditions. To achieve this type of grid, a 

multiblock structure in the crossplanes is used. The structure consists of an inner block 

surrounded by four outer blocks. 

The primary benefit of the multiblock grid is the elimination of an approximate 

solution treatment at the tube centerline, moving such treatment radially outward toward 

the tube wall. 

Finite difference methods may alternately use a radial-type grid for resolving a cir- 

cular crossplane. Node positions of a radial grid lie at the intersection of radial lines 

emanating from the tube centerline, and circles drawn concentrically about the centerline. 

A centerline node is mapped from a point in physical space to a line in the crossplane 

computational space. Solution sweeps in the radial direction fail to uniquely compute the 

solution along the centerline, typically requiring an averaging of values to determine a 

unique centerline solution. 

The multiblock grid used in this study eliminates the approximate treatment of the 

centerline solution. Instead, cuts in the computational domain are used to allow the grid 

to transition from a nearly rectilinear arrangement of nodes near the centerline, to an 

arrangement similar to a radial grid near the tube wall. 

Results from Appendix C.2 show that there is a negligible effect upon the solution 

when the grid is rotated. This symmetry in the grid structure greatly inhibits the tendency 

of a flow to produce flow asymmetries when the true physical behavior is axisymmetric. In 

fact, the most notable feature of the grids developed for this study is their ability to yield 

nearly perfect axisymmetric solutions when the node arrangement is asymmetric. 
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6.2    Summary of Results for Re = 250: The Hopf Bifurcation in the Presence of Unique 

Axisymmetric Solutions. 

The results of Section 5.2 are summarized in this section. 

Evidence of a Hopf bifurcation is summarized in Section 6.2.1, along with substanti- 

ating evidence from experimental observations. The correlation between the emergence of 

three-dimensional behavior and the observed increase in the time-asymptotic values of Q 

is summarized in Section 6.2.2. Finally, a summary of the effects of grid resolution, tube 

length and tube radius are given in Section 6.2.3. 

6.2.1 Evidence of a Hopf Bifurcation. Axisymmetric flows at Re = 250 are found 

to be unique, consistent with the results of Beran and Culick (1992). These axisymmetric 

solutions are used as initial conditions to the 3-D TANS model. When the vortex strength is 

prescribed to be less than a critical value, axisymmetric initial conditions remain steady and 

axisymmetric when time integrated with the 3-D TANS model. When the vortex strength is 

prescribed to be greater than the same critical value, the initially steady and axisymmetric 

solutions evolve in time to flows which are time-periodic and three-dimensional. The change 

in solution stability about the critical vortex strength is attributed by the author to a Hopf 

bifurcation. The type of Hopf bifurcation is supercritical, based on results presented in 

Section 5.2.1. 

The existence of a Hopf bifurcation for 3-D swirling flows in tubes is not unexpected, 

based on the experiments of Garg and Leibovich (1979) and Leibovich (1984). Garg and 

Leibovich (1979) studied the spectral characteristics of breakdown flowfields using power 

spectrum techniques. They state in their conclusions that the wake regions are unstable to 

nonaxisymmetric disturbances, producing coherent (periodic) low frequency oscillations. 

Similarly, Leibovich (1984) postulates the emergence of an asymmetric (n = 1) disturbance 

with an amplitude S(z,t), where z is the axial coordinate. Leibovich (1984) cites the 

presence of a coherent periodic signal in the spectra of disturbances measured by Singh 

and Uberoi (1976) and Garg and Leibovich (1979), and suggests that the nonaxisymmetric 

amplitude S(z,t) grows out of this instability as a Hopf bifurcation. The instability to 

which Leibovich refers is the presumed instability of finite-amplitude axisymmetric waves 
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to asymmetric disturbances. These findings by Garg and Leibovich (1979) and Leibovich 

(1984) concerning the emergence of three-dimensional, time-periodic flow are consistent 

with the discovery of the Hopf bifurcation in this study. 

6.2.2 The Relationship Between the Emergence of Three-Dimensional Flow and Q. 

The values of Q for vortex strengths prescribed slightly beyond the critical value migrate 

in time from a negative (reversed flow) initial value to a positive (no reversed flow) time- 

asymptotic value. This overall increase in Q is correlated in Section 5.2.2 with a production 

of radial vorticity in the vicinity of the point of minimum axial velocity. The production 

of positive radial vorticity coincides with an increase in the minimum azimuthal vorticity 

through the azimuthal component of the vorticity equation. Elements of the theory of 

Brown and Lopez (1990) provide that the production of negative azimuthal vorticity is a 

necessary condition for the deceleration of the axial flow. Thus, a net increase in azimuthal 

vorticity, according to the theory, corresponds to a net increase in Q. The emergence of 

three-dimensional flow coincides with a net increase in both radial and azimuthal vorticity, 

which implies a higher value of Q. 

The observed increase in Q from axisymmetric to 3-D flows also correlates with a 

framework of breakdown postulated by Leibovich (1984). Leibovich (1984) presented a 

scenario under which the emergence of the spiral mode of breakdown could be explained. 

In this scenario, the growth of axisymmetric disturbances in the vicinity of breakdown 

eventually lead to the instability of these disturbances to asymmetric waves. The gain in 

energy of the spiral mode is postulated to come at the expense of energy in the axisym- 

metric mode. Results in this study support this scenario. Flows computed past the Hopf 

bifurcation are asymmetric, resulting from the loss of stability of axisymmetric flow to 3-D 

disturbances. Furthermore, the emergence of asymmetric flow weakens the amplitude of 

the axisymmetric waves, as evidenced by an increase in the minimum axial velocity, Q. 

6.2.3 Assessment of Grid and Geometry Effects: Re = 250. Grid Gl, the baseline 

grid, is found to be adequate in resolving the flowfield at Re = 250. Grid Gl consists of 

98 x 41 x 41 nodes, where the 98 axial nodes are equally spaced to yield an axial node 

spacing of about 0.2. The average radial node spacing for grid Gl is 0.1. 
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A tube length of L = 20 is found to be adequate at this Reynolds number. Results 

for V = 1.53 show virtually no difference in Q between flows computed with a tube length 

of L = 20 and L = 30. 

An admitted limitation of this work is the lack of computations at values of the tube 

radius larger than R0 = 2. This limitation is due to the additional demands on computer 

resources required to resolve larger tubes. Typical values of R0 in experiments are near 

R0 = 3. 

Tube radius effects are not believed to be significant at vortex strengths near the 

observed bifurcation point. Planar projected velocity vectors shown in Section 5.2 (Fig- 

ures 39-41) reveal that the resulting flow disturbances at these vortex strengths (V = 1.5 

to V = 1.65) are very limited in radial extent. Therefore, it is unlikely that the position of 

the radial boundary is degrading these solutions. Furthermore, flows at vortex strengths 

as high as V= 1.8 are found to contain flow disturbances which are contained to within a 

radial extent of unity. 

Flows at the highest vortex strengths considered in this work may be impacted by 

a change in tube radius, however. The flow disturbances evident in Figure 41d consist of 

a large region of reversed flow. This region oscillates off-axis about the tube centerline, 

resulting in flowfield disturbances that are relatively close to the tube wall. A second, 

more indirect, tube wall effect may also exist for the higher vortex strengths. As the 

vortex strength is increased, the value of Q generally decreases, resulting in stronger and 

larger reversed flow regions. Considering flow continuity, larger axial velocity components 

are required to exist between the region affected by the reversed flow and the tube wall. 

It is more likely in these high vortex-strength cases that the region of high axial velocity 

is impacted by further increases in tube radius. 

6.3    Summary of Results for Re = 500 and Re = 1000: Hopf Bifurcation in the Presence 

of Nonunique Axisymmetric Solutions. 

The results for Re = 500 and Re = 1000 are summarized in this section. 
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The role of the primary limit point is discussed in Section 6.3.1. In particular, it 

is postulated, based primarily on the results of this study, that the loss of stability to 

time-periodic flow and the change in flow criticality are nearly simultaneous events. A 

summary of the effects of grid resolution, tube length and tube radius for Re = 1000 are 

given in Section 6.3.2. 

6.3.1 The Role of the Primary Limit Point. The axisymmetric flows computed 

in this study at Re = 500 and Re = 1000 contain solution folds, resulting in primary and 

secondary limit points. Results of Beran and Culick (1992) and Lopez (1994) also show 

nonunique axisymmetric solutions at these Reynolds numbers; both studies predict the 

first appearance of a limit point at Re = 360. 

When the vortex strength is prescribed to be less than the primary limit point, the 

resulting time-asymptotic solutions are found to be steady and axisymmetric. In particular, 

when three nonunique initial conditions are time-integrated with the TANS model, all three 

initial conditions time-asymptote to the solution corresponding to the initial condition of 

the upper stable branch. 

When the vortex strength is prescribed to be greater than the primary limit point, the 

resulting time-asymptotic solutions are found to be time-periodic and three-dimensional. 

Therefore, it is postulated that a Hopf bifurcation occurs at, or in very close proximity to, 

the primary limit point. 

The precision to which the locations of the Hopf and primary limit points can be 

shown to be coincident is limited primarily by the selected values of V. An upper bound on 

the computed difference in V between the location of the Hopf point and the primary limit 

point is equal to the greater of the two differences V2 - Vp and Vp - V\, where axisymmetric, 

equilibrium solutions are obtained at Vi and three-dimensional, time-periodic solutions are 

obtained at Vi- 

In this study, the smallest difference in V where the change in stability was observed 

is at Re = 500, where V2 = 1-5 and Vi = 1.49. The primary limit point for Re — 500 

occurs at Vp = 1.4918. Thus, the maximum difference in V between the location of the Hopf 

bifurcation and the primary limit point is 1.5 - 1.4918 = 0.0082 at Re = 500. This very 
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small difference in V is believed to be ample justification to claim that the Hopf point and 

the primary limit point are in very close proximity. At Re = 1000, the maximum difference 

between the Hopf bifurcation point and the primary limit point is 0.02565. Additional runs 

would be required to determine if this maximum difference at Re = 1000 could be reduced. 

The location of the primary limit point in an axisymmetric solution space has been 

associated with the appearance of critical flow. Beran and Culick (1992) found that for 

sufficiently high Reynolds numbers, a parabolized version of the axisymmetric governing 

equations, known as the quasi-cylindrical (QC) equations, agree well with solutions of 

the Navier-Stokes equations when the vortex strength is below the primary limit point, 

but fail to converge to a solution as the vortex strength is increased towards the primary 

limit point. The failure point of the parabolic QC equations is believed by Hall (1972) to 

be the approximate point at which critical flow develops. Thus, the work of Beran and 

Culick (1992) and Hall (1972) suggest that the flow transitions from supercritical flow to 

subcritical flow at a vortex strength which is approximately equal to the primary limit 

point. 

This relationship is somewhat evident in the work of Darmofal (1994), where the crit- 

icality of axisymmetric flows is computed by solving the stationary perturbation equations 

of Hall (1972). Visual inspection of Darmofal's plots of Q versus V show that the slope of 

Q at flow criticality is nearly infinite, which implies that the critical point and the limit 

point are at least approximately coincident. However, a definite relationship between flow 

criticality and the location of a primary limit point cannot be obtained from this work, 

since the absence of a continuation procedure precludes the computation of a limit point. 

The results of this study add further insight into the role of the primary limit point. 

The results presented in Chapter V demonstrate to within a precision of 0.0082 in V, that 

the Hopf bifurcation point and the primary limit point are coincident. Therefore, given 

the results cited above, it is postulated by the author that, to within close proximity in V, 

the loss of stability to time-periodic flow (via the Hopf bifurcation) and the occurrence of 

critical flow are coincident events. This relationship between the primary limit point and 

the loss of stability to periodic flow is believed by the author to be previously unreported 

in the literature. 
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It is of interest to contrast the role of the primary limit point for 3-D flows to the 

role associated with axisymmetric solutions. For axisymmetric flows, the primary limit 

point is associated with values of Q which are positive. However, a slight increase in V 

above the primary limit point brings about large differences in solution behavior, due to 

the sudden drop of solutions from the upper to lower stable branch. Thus, a slight increase 

in V from Vp in 2-D flows results in a dramatic change in solution character—from flows 

with no reversed flow to flows with reversed flow. 

Results in this study indicate that 3-D flows do not undergo this large change in 

flow structure as the primary limit point is crossed. Instead, flows computed just past the 

primary limit point are still void of reversed flow. (The correlation of the emerging three- 

dimensionality with the increase in Q from axisymmetric levels is treated in Section 5.2.2.) 

In 3-D flows, therefore, the primary turning point is not readily associated with imminent 

breakdown, as it is generally perceived in axisymmetric flows. For example, Figure 59c in 

Section 5.4 shows that the primary limit point is at Vp = 1.47435, whereas reversed flow 

is not achieved until approximately V = 1.6. In general, the effect of three-dimensionality 

delays the formation of reversed flow, requiring generally larger values of vortex strength 

to achieve breakdown than in axisymmetric flows. 

6.3.2 Assessment of Grid and Geometry Effects: Re = 1000. Grid Gl (98 X 

41 X 41, L - 20), the baseline grid, is found to be inadequate in resolving the flowfield at 

Re = 1000, due primarily to a lack of resolution in radial node spacing. Grid G2 is found 

to be adequate at Re = 1000 when the vortex strength is prescribed to be less than the 

primary limit point. Grid G2 consists of 122 X 61 X 61 nodes, where the 122 axial nodes 

are clustered to yield a minimum axial node spacing of about 0.1 near x = 5. The average 

radial node spacing for grid G2 is 0.066. Further refinements in node spacing from grid 

G2 were not explored, due to the requirement of excessive computational resources. 

A tube length of L = 30 is generally found to necessary when the vortex strength is 

greater than the primary limit point. Results for V = 1.9 show only minor differences in 

Q between flows computed with a tube length of L = 30 and L = 40. 
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The possible shortcomings of tube radius, described in Section 6.2.3 for Re = 250, is 

equally applicable when Re = 1000. 

6.4    Relationship Between Observed Types of Flow Structures with Experiments. 

A summary of the observed types of flow disturbances is given in this section, along 

with a discussion on how these disturbances relate to those found in the experiment of 

Faler and Leibovich (1977), referred to here as FL. 

A map showing the experimentally observed axial positions of the Types 0-6 dis- 

turbances as a function of the Reynolds number, ReFL, and the swirl parameter, ftFL, is 

reproduced from Faler and Leibovich (1977) in Figure 67. The abscissa represents the axial 

position where the disturbance begins. In the context of this study, it is only important to 

note the relative axial positions at which the flow disturbances occur. The ordinate, Re, 

and ft in Figure 67 are referred to in this study by ReFL and ftFL respectively. ReFL and 

ftFL are defined differently than Re and the vortex strength, V, used in this study. 

The numbers in Figure 67 correspond to the disturbance type. Types 0 and 1 refer 

to bubble forms of breakdown. Type 2 is the spiral form of breakdown, which is observed 

in this study. Types 3, 4 and 5, are intermediate forms of disturbances which generally 

occur at lower Reynolds numbers and vortex strengths between the Type 2 and Type 6 

disturbances. Numbers surrounded by short horizontal lines represent the observed axial 

movement of that particular disturbance. Multiple branches for a given ftFL indicate that 

multiple types of breakdown were observed with fixed values of the flow parameters. 

In attempting to correlate the results in this study to Figure 67, a consistent set of 

parameters must be defined. In particular, differences in definitions between QFL and V 

must be accounted for, as well as differences between ReFL and Re. 

ftFL and V differ in definition by the reference velocity used to normalize them from 

dimensional to nondimensional quantities. ftFi is normalized by the average axial velocity 

in the axial jet produced by the experimental apparatus. V is normalized by the reference 

155 



£1=1.28 £1=1.07 
7- \ -o -1 — -0-1       -2- 

IQ 

Q 
X 

6 

5 

4 

£1=154 

0  -1 - 

\o - 
-o- -i- 

-0__l 

£1 = 1.87          -oV 

-0- 

V 
i- 

-0,1- 
\ 
-0-1 

os- 

s2 

„ 1 

\ 1        -2 

0.1        -^ 
-.           |    —  2- 

\ 

|  ,      — 2  

■v 

-4- 

CD 
rr 

3 -0r 
11=2.30      "0:b-^ 

1-     ^--0-        -2". 

-0-1      — 2- 
^2- 

5   46 
/6 

2 
-Q- -2, -3==. -6- 

\ 

\i 

— 6  
\ 

—-2-_,        -6- -6"                6 6 

4~^,= 1 

0 

-6" 

<            i            ' . i i           i       . ...j  i '                       ' 

-2              0 2 4 6 8             10 
z/rt 

Figure 67.    Plot of the axial position (abscissa) of flow disturbances as a function of ReFL 

and the swirl parameter QFL (Faler and Leibovich (1977)). 

axial velocity, taken as the uniform axial velocity at the inlet. 

V = 
V 

re/ 
&FL  — W 

where V is the dimensional vortex strength and W is the average axial velocity used by FL. 

To reconcile these differences in definition, ClFL is adjusted to reflect a reference velocity 

corresponding to the axial velocity at the tube wall. This definition should provide a more 

favorable comparison between £1^ and V. In addition, selecting the reference velocity 

away from the vortex core region is consistent with the nature of naturally occurring jets 

in vortices over delta wings. In these cases, the axial velocity far removed from core values 

correspond to freestream values. 

Measured velocity data in FL indicate that the strength of the axial jet generally 

increases with ReFL. Thus, the differences in QFL and V are believed to be greater at higher 
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Reynolds numbers. Increases in the axial velocity from wall values to average values are 

found to range between 25% at ReFL - 3220 to near 50% at ReFL = 6000. Therefore, as 

a crude way to correlate the swirl parameters, £tFL at the higher values of ReFL should 

be multiplied by a factor of about 1.5; and by a factor of about 1.25 at lower Reynolds 

numbers. 

Two corrections are needed to correlate the Reynolds numbers. The first correction 

is required for the same reason as above; ReFi is based on average axial velocity, whereas 

Re is based on the wall reference value. The second correction is required because of 

differences in reference length. 

Re = —^— ReFi =   
v v 

where D is the diameter of the tube used by FL. The length scales D and r0 differ by a 

factor of about 6. Overall then, ReFL « 9Re at the higher Reynolds numbers in Figure 67, 

whereas ReFL « 7.5Re at lower Reynolds numbers. 

Flows performed in this study at Re = 250 and Re = 1000 are compared to the 

disturbances in Figure 67. Re = 250 is roughly equivalent, given the above corrections, to 

ReFL = 1875. Similarly, Re = 1000 is roughly equivalent to ReFi = 9000. Values of QFL 

then roughly span from V = 1.33 to V = 2.8 at ReFL = 1875. At ReFL = 9000, the values 

of SlFL roughly span from V = 1.6 to V = 2.8 (although the highest Reynolds number 

considered by FL is 7000). 

The Types 3, 4 and 5 forms of breakdown are not observed in this study. This is 

believed to be due to the selected values of Re of this study. Figure 67 shows that these 

forms of breakdown occur between ReFL = 2000 and ReFL = 3500, which corresponds to 

Re = 266 to Re = 388, given the above corrections. Reynolds numbers, Re, of 250 and 

1000 were heavily investigated in this study. These values were selected primarily because 

they correspond to axisymmetric solution paths without and with limit points. 

At Re = 250 (Section 5.2), increasing vortex strength from that which produces 

steady, axisymmetric flow results in a gradual progression of a three-dimensional flow 

structure. At relatively low vortex strengths near V = 1.5 to 1.65, the solutions contain no 
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reversed flow, and the form of the disturbance is most similar to the Type 6 disturbance 

documented by FL. As vortex strength is further increased, the gentle off-axis deflection of 

the central material points evolves into a more coherent and sharper deflection. Eventually, 

at V = 2.3, the deflection of the material points is very abrupt, and the material points 

deflect off-axis in a very coherent corkscrew shape. This form of flow disturbance is very 

similar to the Type 2 (spiral) mode of breakdown. 

A similar progression of flows is evident in Figure 67 for ReFi — 1875. The Type 6 

is evident in the figure for V = 1.33 (SlFL = 1.07) to 2.3 (0FL = 1.87). Past V = 2.3, the 

spiral form of breakdown is indicated in the figure. 

At Re = 1000 (Section 5.4) a vortex strength of V = 1.5 yields a structure again 

similar to the Type 6 form found in FL. Steadily increasing V finally yields a Type-2 

spiral at V = 2.1. 

In Figure 67, ReFL = 9000 is not considered in the figure. However, if the data is 

extrapolated, a spiral form of breakdown would be expected from V = 1.6 (&FL = 1-07) 

to V = 1.92 (DFL = 1-28). In this study, the spiral is not fully formed until V = 2.1. 

Any further comparisons between flow types found in this study to their location 

in Figure 67 would be problematic. Several other factors, including differences in tube 

geometry, inflow axial velocity profiles, the absence of slip in the TANS model, and com- 

pressibility will all effect the types and breakdown and the conditions necessary for devel- 

opment. Overall however, the observance of flows in this study generally coincide with the 

forms found in FL, once the parameters are defined in a consistent manner. 

Absent in this study is the observance of the bubble form of breakdown. While the 

observance of this form is not expected for Re = 250, based on Figure 67, it is expected for 

Re — 1000 at the higher vortex strengths. The most likely reason for the inability of the 

model to form the bubble breakdown is that the tube wall is influencing the breakdown 

structure at the higher vortex strengths. 
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Table 17. Summary of quantified results. 

Category Quantified Data Result Section 

Axisymmetric Soln. Cubic Spline Interp. 4th-Order Accuracy B.3 

of TANS Model Calculation of H H2D = 0.89H 5.3 

Agreement of 2D/3D Flows L2 < 2.5E-03 5.2 

Spatial Accuracy Model Problem: Steady L2 < 5.8E-03 D.l 

Axial Resolution L2 < 4.0E - 03 4.1 

Radial Res.: 2nd-Order L2 < 7.2E - 03 4.1 

Radial Res.: 4th-0rder L2 < 1.3.E-03 4.1 

Domain Length L2 < 3.LE-03 4.1 

Temporal Accuracy Model Problem: Unsteady L2 < 2.7E-0S D.4 

Time Step Resolution L2 < 5.9E-03 5.2 

6.5    A Summary Assessment of Numerical Accuracy. 

Quantified assessments of numerical accuracy performed in this study are summarized 

in this section. These assessments are categorized into three areas: spatial accuracy, 

temporal accuracy, and the accuracy of axisymmetric solutions of the TANS model. 

The summary is presented in Table 17. The three categories are listed in the first 

column of the table. The second column lists specific examples of quantified data used 

to assess accuracy. The third column lists the specific quantified result, while the fourth 

column provides the section where more details of the quantification can be found. 

The first category addresses the ability of the TANS model to compute axisymmetric 

solutions. The first set of quantified data verifies that the cubic spline interpolation method 

is fourth-order spatially accurate at interior nodes. Nodes near a boundary are at worst 

case second-order accurate. The second item shows that values of H presented in this study 

contain a substantial contribution from axisymmetric data. This is a likely consequence 

of small interpolation errors and discrete errors in computing H. The example given in 

the table shows that 89% of the value of H (for a specific run) is attributed to the value 

associated with the initial axisymmetric solution (H2D)- Therefore, the change in H due 

to asymmetries is generally smaller than the value of H indicates. The third item indicates 

that the L2 norm of the difference of TANS and PAC solutions (computed over the entire 

domain) is quite small. 

159 



The second category addresses the spatial accuracy of solutions computed in Chap- 

ter IV, where the baseline grid is determined. The most important observation here is that 

the L2 norms for the radial resolution are larger with the second-order scheme, even when 

larger node spacings are used with the compact scheme. 

The third category addresses the temporal accuracy of a model problem and of two 

solutions computed with different time steps. L2 norms here are also quite small. 
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VII.   Conclusions and Recommendations. 

7.1    Conclusions. 

The important conclusions of this study are summarized in this chapter, and are 

related to the stated objectives in Section 1.1. In addition, questions raised in Chapter I 

are answered in light of the study results and conclusions. 

The conclusions of this study which directly relate to the study objectives are sum- 

marized as follows: 

• For fixed Mach and Reynolds numbers and increasing vortex strength, a critical 

vortex strength is identified, where initially steady, axisymmetric solutions first lose 

stability to 3-D, time-periodic solutions. The identification of these critical vortex 

strengths satisfy Objective 1 of Section 1.1. 

• The loss of stability of equilibrium flows to time-periodic flows are attributed to 

Hopf bifurcations, evidenced for M = 0.3 at Re = 100, 250, 500 and 1000. The 

Hopf bifurcations are found to be of the supercritical type. The identification of the 

bifurcation type satisfies Objective 2 of Section 1.1. 

• The role of the primary limit point is further defined in this study. Previous (ax- 

isymmetric) work has established a correspondence between the primary limit point 

and a change in flow criticality, implying that flow criticality signals the emergence 

of axisymmetric breakdown. This study establishes a link between the location of 

the primary limit point, and the location of a Hopf bifurcation point. Thus, it is 

postulated that the change in flow criticality is associated with the loss of stability 

of equilibrium flows. The identification of a Hopf bifurcation point near the primary 

limit point satisfies Objective 3 of Section 1.1. 

• Flow types computed in this study are found to most closely resemble either the Type 

6 disturbance or the spiral (Type 2) form of breakdown, following the classification of 

Faler and Leibovich (1977). Bubble breakdowns are not observed for the parameter 

range considered in this study (Section 7.2.2). The comparison of the computed flow 
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disturbances with the experiments of Faler and Leibovich (1978) satisfies Objective 

4 of Section 1.1. 

Further conclusions can be drawn from the results of this study that surpass the 

stated objectives in Section 1.1. 

• Flows computed just past the critical vortex strength are found to have larger values 

of the minimum axial velocity than the initially axisymmetric flow. This observation 

is correlated to the emergence of 3-D contributions from the vorticity equation, and 

from elements of the theory of Brown and Lopez (1990). The observed increase in 

Q from axisymmetric to 3-D flows also correlates with a framework of breakdown 

postulated by Leibovich (1984). Leibovich (1984) presented a scenario under which 

the emergence of the spiral mode of breakdown could be explained. In this scenario, 

the growth of axisymmetric disturbances in the vicinity of breakdown eventually lead 

to the instability of these disturbances to asymmetric waves. The gain in energy of 

the spiral mode is postulated to come at the expense of energy in the axisymmetric 

mode. Results in this study support this scenario. Flows computed past the Hopf 

bifurcation are asymmetric, resulting from the loss of stability of axisymmetric flow 

to 3-D disturbances. Furthermore, the emergence of asymmetric flow weakens the 

amplitude of the axisymmetric waves, as evidenced by an increase in the minimum 

axial velocity, Q. 

• An investigation in Section 5.3 shows that a flow asymmetry produced in a super- 

critical flow convects downstream. This result implies that the group velocity of the 

asymmetric disturbances in the supercritical flow is positive, which is in agreement 

with experimental evidence (Leibovich (1984)). This result also demonstrates that 

the specification of axisymmetric inflow conditions in this study are not compromised 

by the upstream movement of flow asymmetries. 

• The implementation of fourth-order compact operators allows for a practical savings 

in computer CPU time of approximately 42%. The savings result from the require- 

ment of fewer nodes to resolve the flow to similar levels of accuracy, and from a 

corresponding increase in the maximum allowable time step. 
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The results and conclusions obtained from this study are now utilized to answer the 

five questions posed in Chapter I. 

• Questions 1 and 2: under what conditions are the assumptions of steady, axisym- 

metry flow valid? The results of this study show that steady, axisymmetric flows 

are stable to three-dimensional disturbances when the vortex strength is prescribed 

to be less than the identified critical value. Thus, the assumption of steady and 

axisymmetric flow is valid below this critical value of vortex strength. 

• Question 3: how does the steady, axisymmetric solution branch bifurcate onto a 

solution branch of three-dimensional flows? Flows computed before a critical value 

of vortex strength are steady and axisymmetric, while just beyond the critical value 

the flows are found to be three-dimensional and time-periodic. The loss of stability of 

equilibrium solutions to time-periodic solutions are evidence for a Hopf bifurcation. 

The Hopf bifurcations are found to be of the supercritical type. 

• Question 4: does the nonuniqueness of the 2-D solution paths play a role in the 

structure of 3-D solution paths? The specification of nonunique, axisymmetric initial 

conditions did not lead to nonunique 3-D solutions. Instead, the nonunique initial 

conditions lead to one unique time-asymptotic solution. This behavior was observed 

for both Re = 500 and Re = 1000. However, the appearance of nonunique 2-D 

solutions coexists with the appearance of a primary limit point. The next question 

posed addresses the role of the primary limit point. 

• Question 5: does the criticality of 2-D flows have any bearing on the nature of the 

3-D solution space? The works of Beran and Culick (1992) and Darmofal (1994) 

demonstrate that the location of the primary limit point in a 2-D solution space is 

at least approximately coincident with a change in flow criticality. The results of 

this work show that to within 0.0082 in vortex strength, the location of the Hopf 

bifurcation point and the primary limit point are coincident. Therefore, the author 

postulates that the change in flow criticality and the loss of stability due to the Hopf 

bifurcation are nearly simultaneous events. 
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7.2    Recommendations. 

Recommendations for future work are outlined in this section. Section 7.2.1 contains 

suggestions for improving the performance and accuracy of the TANS model. Specific rec- 

ommendations on how the code could be modified to allow for a more direct comparison 

with tube experiments are provided in Section 7.2.2. Section 7.2.3 contains recommenda- 

tions of how additional studies in tubes could provide valuable information on discretiza- 

tion requirements for flows over wings. Finally, Section 7.2.4 outlines recommendations to 

extend the model to allow for time-varying circulation. 

7.2.1 Improvements to TANS Model. Four recommendations are given to improve 

the performance or accuracy of the TANS model. 

The first recommendation is to consider evaluating the viscous terms, which appear 

explicitly in the TANS model, to 2nd-order spatial accuracy. Then, the reduction in spatial 

accuracy could be weighed against the substantial reduction in the required CPU time. 

The second recommendation is to consider a similarity transformation of the matrix 

form of the governing equations (Pulliam (1985)). A similarity transformation would re- 

duce the overall computational workload considerably by replacing the solution of a block 

tridiagonal system of equations with a block diagonal system of equations. Pulliam (1985) 

quantifies the computational savings for 2-D flow, predicting savings as high as 40%. Com- 

putational savings for 3-D codes are expected to be higher. The penalty for performing 

the diagonalization, however, using the three-point backward scheme, is a reduction to 

first-order temporal accuracy. This reduction in temporal accuracy could then be weighed 

against the decrease in the required CPU times to determine if the modification is war- 

ranted. Also, depending on the extent of CPU time reduction, a decrease in the time 

step could be investigated, regaining some temporal accuracy at the expense of additional 

computations. 

The third recommendation is to consider treating the viscous terms implicitly. This 

would increase the temporal accuracy associated with the viscous terms from first to 

second-order accuracy. The first recommendation could also be done in conjunction with 
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this modification by using second-order operators in the left-hand-side of the governing 

equations, instead of the compact operator. 

For flows at higher reference Mach numbers (past M = 0.3), it is recommended 

that the governing equations be reformulated into conservative form when the local Mach 

number is found to exceed unity. The formation of large axial velocities, along with 

high values of vortex strength can produce local Mach numbers that are considerably 

higher than the freestream value. For example, numerical results (Visbal (1995)) show 

that the large axial jets associated with delta wing flows can produce supersonic flow in 

the vortical core when the freestream Mach number is greater than 0.3. However, the 

current implementation of the TANS model does not model this large axial jet at the 

inflow, although large axial velocity components are produced naturally through the tube 

constriction. 

7.2.2 Further Validation. It is recommended that the TANS model be modified 

to allow for a direct comparison with a tube experiment, such as the experiment of Brücker 

(1993) or Faler and Leibovich (1977). Such a direct validation could not be performed in 

this study, primarily due to differences in the tube geometry. The required modifications to 

the model would include the specification of the tube geometry of the chosen experiment, 

specification of a no-slip wall (with appropriate changes in grid resolution near the wall), 

and formulation of representative inflow conditions (including the modeling of an axial 

jet). Specification of representative inflow conditions would be the biggest challenge of 

the required modifications. Inflow conditions on velocity would need to be available from 

experimental results. The density would be set to reference conditions, and the Mach 

number set to a sufficiently low value, for consistency with the incompressible flow of 

water in the experiments. The specification of an inflow pressure condition is unclear, 

however, depending on the chosen experimental geometry, the specification of a columnar 

inflow condition on pressure may be adequate. 

It is also recommended that additional runs with the current TANS model be per- 

formed. These runs would focus on determining why the bubble form of breakdown was 

not observed in this study. The bubble form is generally expected to occur (with increasing 
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likelihood) as Reynolds number and vortex strength are increased. However, increasing 

both of these parameters to levels where the bubble is likely to appear did not result in 

bubble breakdown. Thus, further increases in either Reynolds number or vortex strength 

are not likely to produce a bubble breakdown. The effect of grid resolution is not likely 

to be an inhibitor to the bubble form, since transient bubble breakdowns were observed 

in this study. The only remaining model parameter which may affect the appearance of 

the bubble breakdown is the tube radius, R0. It is recommended that the tube radius be 

increased to at least R0 = 3, with corresponding increases in the number of crossplane node 

points such that crossplane grid resolution remains constant. Such a large tube radius was 

not considered in this study, due to the excessive demands on computer resources. 

7.2.3 Additional Studies with the Tube Geometry. In addition to the physical 

information that breakdown in a tube provides, valuable information for those performing 

breakdown calculations over delta wings can be efficiently obtained. 

Breakdown in tubes can provide guidance on the necessary grid resolution and time 

step needed to model the vortical core over wings. This information could be obtained 

at a substantial savings in computational cost. It is estimated, based on the fine grids 

used by Visbal (1993A), that the grid requirements for a delta wing are at least a factor 

of four over the requirement in tubes. It must be noted, however, that a large portion of 

the nodes used in wing computations are placed to resolve the boundary layer near the 

wing surface. Breakdown in tubes is limited to providing information on the necessary 

resolution required in the vortex core. 

A more important role for 3-D computations in tubes may be in establishing how 

grid resolution affects the appearance of spurious steady and unsteady numerical solutions. 

Their have been several studies which address solution nonuniqueness in axisymmetric 

flows (Beran and Culick (1992), Lopez (1994), Leibovich and Kribus (1990)). However, 

few studies (other than the current study) have considered nonuniqueness in 3-D vortical 

flows. Visbal (1995) (and references within) discuss solution nonuniqueness as it appears 

over a 75° delta wing. For angles-of-attack between 27° and 32°, solution nonuniqueness 

is evident in the computations of Visbal (1995).   Within this range, for a final angle- 
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of-attack of 30°, different initial values of angle-of-attack lead to at least four different 

time-asymptotic behaviors of the computed lift coefficient. However, the development of 

spurious solutions could not be ruled out as a possible explanation of the different solutions. 

Further refinement in the grid over the wing is not always practical, given the enormous 

number of required grid nodes. In addition, the nondimensional times required for these 

solutions to reach time-asymptotic values are in the thousands, assuming a vortex core 

length scale. Therefore, it is proposed that a determination of the effects of grid resolution 

on the development of spurious, nonunique solutions can be performed more efficiently by 

the TANS model developed in this work, assuming the spurious solutions are the result of 

inadequate grid resolution. 

Lastly, breakdown in tubes may be an efficient alternative to full wing calculations 

for studying the unsteady pressure fluctuations present during tail-buffeting. Breakdown 

in tubes could provide guidance for the necessary grid and time-step resolution required to 

adequately resolve the frequency and amplitudes of coherent pressure fluctuations found 

in experiments. 

7.2.4 Time-Varying Circulation. It is recommended that the TANS model be 

modified to allow for the time-dependent behavior of the inlet circulation. Then, the 

dynamic movement of vortex breakdown position can be simulated, similar to that observed 

over pitching delta wings. 

The axial position of breakdown over delta wings is highly dependent on the instan- 

taneous angle-of-attack and its temporal derivatives. The time scale associated with the 

dynamic movement of breakdown position is relatively large, resulting in a larger time lag 

between the wing motion and the aerodynamic response than that present without break- 

down. This lag corresponds to larger phase shifts in the wing lift and pitching moment, 

reducing the aircraft's maneuvering performance. 

Specification of a time-dependent inflow condition for circulation can ultimately re- 

sult in information on the time scales associated with breakdown movement, rate effects, 

and possible control strategies. 
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The first step is to collect data on the dynamic response of the breakdown position 

to changes in circulation, and compare this behavior to available data collected over delta 

wings. If there is sufficient agreement in the dynamic behaviors, more studies are justified. 

These additional studies would involve strategies for either inhibiting breakdown, or 

decreasing the dynamic lags associated with breakdown. These strategies would be rated 

according to both their performance and their practical implementation on delta-wing 

geometries. 

The types of control strategies could include traditional blowing techniques, which 

have received much attention in the literature, or acoustic techniques, which have received 

less attention. An acoustic control technique would involve the generation of pressure waves 

at controlled values of amplitude and frequency. The selected frequency would generally 

correspond to the (assumed) frequency associated with the instability of the breakdown 

position. The effects of driving the instability with the generated pressure waves could be 

studied to determine if such a technique is feasible in affecting the dynamic response of 

the breakdown movement. 
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Appendix A.   The Navier-Stokes Equations. 

The Navier-Stokes equations are an accurate set of governing equations for the sim- 

ulation of Newtonian fluids. In this Appendix, the dimensional form of the governing 

equations are nondimensionalized, resulting in Eqs. 10-14 of Section 3.2. Development of 

the Navier-Stokes equations abound in the literature. For example, refer to Anderson et 

al. (1984). 

A.l    Dimensional Equations of Motion. 

The fluid is assumed to be a single-species perfect gas with no heat sources or body 

forces. In addition, there are no chemical reactions or electromagnetic effects. Given these 

assumptions, the dimensional Navier-Stokes equations are written below in nonconservative 

form in terms of the fluid density, p', the velocity components in the x',y' and z' directions, 

(u',v',w'), and the pressure p'. Primes are used here to denote dimensional quantities. 

p'v + />'«, + v'yl + w'z,) + u'p'x, + v'p'yl + w'p'z, = 0 

u't, + u'u'x, + v'u'y, + w'u'z, + -p'x, = - [ö^rxlx, + —r'x,yl + —T'X,ZI 

V't, + U'V'X, + V'v'y, + W'VZ, + ±Py,  =  - [ö^Ty,x, + —Tylyl + —Tylz, 

w't, + u'wx, + v'w'y, + w'w'z, + -p'z, = - (j^pT'zlx, + —r'zlyl + —T'Z,Z, 

p't, + u'p'x, + v'p'y, + w'p'z, + 1pl{u'x, + v'y, +w'tl) = {n- !)[$' - V • q' 

(139) 

(140) 

(141) 

(142) 

(143) 

Subscripts are used here to represent differentiation and t' is the dimensional time. The 

components of the shear stress tensor, r', is given by 

Tu = M 
9K      dv£\      2     du'k 

dx1:      dx' I      3 ij dx'h 
(i,j,k= 1,2,3) (144) 
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where y! is the fluid viscosity and 

h = < 
1    i = j 

0   i?j 

This description of the shear stress components incorporates Stokes' hypothesis, which 

assumes that the second coefficient of viscosity, A', equals -§//'. The viscous dissipation 

function, $', is given by 

$' = V-(T'-U')-(V-T
/
)-M' (145) 

where l ff = (u',v',w')T. Finally, the heat flux vector, q' is given by 

q' = -k'VT' (146) 

where k' is the coefficient of thermal conductivity and I" is the temperature. 

Eqs. 139-143 are five equations with eight unknowns, (p',u',v\w',p',T',fi',k'). Three 

auxiliary equations are required to close the system. The first equation comes from the 

perfect gas law 

p' = p'RT (147) 

where R is the universal gas constant. Two other equations are required to write the 

transport properties {ß1 ,k') in terms of the remaining variables. For low temperature 

gases, Sutherland's formula provides a very accurate 2 approximation for // 

T'3/2 
/i' = d'- —7 (148) 

T' + C2' 
v      ' 

where C[ and C'2 are dimensional constants. The thermal conductivity, &', is related to \x' 

by assuming that the Prandtl number, defined as 

Pr = C-4 (149) 

1A superscript T cited herein denotes the vector transpose operator, not temperature. 
2Eq. 148 is accurate to ±2% for air if T € [300° R , 3240° R] (White (1974)). 
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is constant throughout the fluid and equal to 0.72. The specific heats, cv and cp, and 

the ratio 7 = ^ = 1.4 are also assumed constant for a perfect gas. Eqs. 147-149 allow 

(T',n',k') to be written in terms of the remaining unknowns (p',u',v',w',p'), resulting in 

five equations with five unknowns. 

A.2    Dimensional Equations of Motion in Vector Form. 

The dimensional equations are now cast in vector form for compatibility with the 

formulation of the solution procedure presented in Section 3.6. In vector form, Eqs. 139-143 

can be written as 

U'tl + A'U'xl + B'V'yl + C'U't, = D' (150) 

where U' = (p',u',v',w',p')T and 

A' 

0 

0     0     0 

0   0   -V 

c = 

0 0 u' 0 0 

0 0 0 u' 0 

0    7p'    0     0    u' 

w' 0 0 p' 0 

0 w' 0 0 0 

0      0     w'     0      0 

0     0     0     w'     -h 
p 

0     0     0    7p'    w' 

B' 

D' 
P' 

0    ^ p' 

v' 0 p' 0 0 

0 w'     0 0 0 

0 0 v 

0 0      0 v' 0 

0 0 7p' 0 u' 

0 

dx< 'x'x' ~  dy'   x'y'    '    Sz'   *'*' 

-2-T'      4- -2-T'      4- -2-r' dx< 'y'x' ~ dy1  y'y' ~ dz> V*' 

dx'Tz'x' +   dy'Tz'y' +  a*'7*'*' 

A.3   Nondimensionalization of Equations of Motion. 

The governing equations are now cast in nondimensional form after specifying appro- 

priate length and velocity scales. The selected length scale is the radius of the vortex core 

at the inflow boundary, r0. The velocity scale is the axial velocity, u'rej, at the reference 

point, which is located at the intersection of the tube wall and the inflow boundary. The 

nondimensional (unprimed) variables are defined as 
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x y 
x = —     y = — 

r0 r0 

z 

r0 

ref 

I 
U 

P 

Pre} 

V' 

T = 
V 

±ref 

W 

./ V = 

ref 

I 

U\ ref 

k' 

Vref kL 

w = 

t = 
ref 

ref 

lref 

where 

Pref  — PrefUref 

and c'rej is the reference speed of sound. 

T'raJ = 293.166° K     t'ref =   _, r0 

Lref 
M = 

Jre/ 

Tef 

Substitution of the nondimensional variables into Eqs. 139-143 results in: 

Pt+   p(UX    +    Vy+WZ)    +    UPX    +    Vpy    +    WpZ     =     0 

d d 1 
-1 
p 

Ut + UUX + VUy + WUZ + -px  =  - I  — Txx + Tj-Txy +  ß~T^' -(- p \dx 

1 / d 1 1 / d d d 
Vt    +    UVX    +    Wy    +    WVZ    +    -Py     =     -     ^7-»*    +     Q^Tyy    +    —Tyl 

1 
wt + uwx + vwy + wwz + -pz 

1 (d a d 
d' ZX     I       rv      ' ZV     1       r\      ' 

x ay oz 

pt + upx + vpy + wpz + ip(ux + vy + wz) = (7 - 1)$ - V • q 

(151) 

(152) 

(153) 

(154) 

(155) 

As a result of the nondimensionalization, the (7 — 1) term is no longer present in the 

heat conduction term in Eq. 155. The nondimensional shear stress tensor, r, and viscous 

dissipation, $, are given by 

- JL 
Tij ~ Re 

dui      du 

dxj 
+ 2     duk 

on 
dxi J      3 1J dx 

(i,j,k= 1,2,3) 

and 

$ = V-(T-U)-(V-T) 

(156) 

(157) 
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where the Reynolds number is defined as Re = Pr°iui"iT°. The nondimensional heat flux 

vector becomes 
M 

Pr Re M2 

The auxiliary equations, Eqs. 147-148, become 

VT (158) 

P 
pT 

~i M2 

T'rt! = 293.166° K, C2 = 110.4° A') 

(159) 

(160) 

Eq. 160 can be rewritten as 

For fixed Pr we find that 

" = £rtlr!  <ft = °j>™«> 

k = ß 

(161) 

(162) 

yi.^    Fmol Form o/ Equations of Motion. 

The final form of the nondimensional equations of motion are written in vector form 

from Eqs. 151-155: 

Ut + AUX + BUy + CUZ = D (163) 

where U = (p,u,v,w,p)T and 

A 

u p 0 0 0 

0 u 0 0 i 

0 0 w 0 0 

0 0 0 u 0 

0 7p 0 0 u 

5 = 

v 0 p 0 0 

0 v 0 0 0 

0 0 v 0 i 

0 0 0 v 0 

0 0 7p 0 v 
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D=X- 
P 

w    0    0     p     0 0 

0    tu    0     0     0 

C -      0    0    w    0     0 

0    0    0     w     i 

p 

0     0    0    7p   w 

The fundamental effect of the nondimensionalization is to replace pi with ^ and replace 

QX I XX   T    gy  lXy   T    9z  '12 

9r '»* '  ay '»y ' dz 'yz 

p[{l - 1)* - V ■ g] 

(7 - 1) A;' with Pr .Re M2 ' 
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Appendix B.   The Pseudo-Arclength Continuation (PAC) Model. 

B. 1    Definitions 

The following are frequently used terms in the context of nonlinear systems (Seydel 

(1988)), such as the Navier-Stokes equations in discrete form. 

• Solution branch (or path): Consider a nonlinear system governed by 

qt + F(q;\) = 0 (164) 

where F is a set of n nonlinear, algebraic equations dependent on q and A, q is an 

re-component array of unknowns and A is a free parameter. In the present context A 

represents the vortex strength, V. Solutions characterized by a scalar norm, N, and 

plotted versus A usually comprise continua which appear as smooth curves. Such 

curves are referred to as solution branches. 

Different types of solution branches can occur. For example, solutions may represent 

a steady-state condition of the system, where qt = 0. These solutions of are typically 

referred to as equilibrium solutions. Another type of solution can exist in which 

equilibrium is not achieved, resulting in time-dependent behavior (qt ^ 0). The 

most common example of such solutions are periodic solutions. In addition, both 

equilibrium and nonequilibrium solutions can be either stable or unstable. 

Stable equilibrium solutions are usually defined by drawing a solid line in a diagram 

depicting N versus A. Unstable equilibrium are denoted with dashed lines. Stable 

periodic solutions are denoted with solid circles, whereas unstable periodic solutions 

are denoted with open circles. 

Limit (or turning) point: A limit point refers to a particular point on a solution 

branch where a fold occurs, resulting in multiple solutions for a given value of A. In 

Figure 68, limit points are found at A = Ai and A = A2. As A is increased along 

branches a and b, the first limit point encountered is at A2, which is referred to in 

this work as the primary limit point. The second limit point encountered is at Al5 

and is referred to as the secondary limit point. 
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Figure 68.    A representative solution branch depicting turning points: stable path (solid 
line); unstable path (dashed line) and jump in solution space (dash-dot line). 

• Upper/Lower Stable Branch and Unstable Branch: In Figure 68, the upper stable 

branch is defined by the paths a and b. As A is increased along branch 6, the primary 

limit point is encountered at A2. The unstable branch is depicted by the dashed 

line between Ai and A2. The secondary limit point is found at At. The lower stable 

branch is defined by the paths e and d. The branch between the two limit points 

is unstable since it is known that encountering a simple fold along a stable branch 

results in a change of stability in the solutions past the limit point (Seydel, 1988). 

Similarly, increasing A past the secondary limit point, the solution path changes from 

unstable to stable. 

It is known in this study that the upper branch, representing solutions of the PAC 

model, are stable (Beran (1994)). The term "stable" and "unstable" referring, in the 

present context, to stability of the axisymmetric solutions. 

• Nonunique solutions: Nonunique solutions occur in cases depicted in Figure 68 for A 

between Xi and A2, where two stable solutions and one unstable solution exist. 

• Hysteresis: Hysteresis can occur when a solution space contains regions of nonunique 

solutions. For example, in Figure 68, as A is increased, the physically realizable 

solutions are found along the path a - b — d.   However, the solution would travel 
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along the path d - e - a as A is decreased. This results in a hysteresis loop around 

the portion of the solution space where nonunique solutions exist. 

Bifurcation point: A bifurcation point refers to a specific value of A where two (or 

more) solution paths intersect. Bifurcation points are usually associated with a 

change in solution stability. Simple bifurcations involve the intersection of exactly 

two solution branches. A necessary condition for a simple bifurcation to occur is 

\Fq\ 
8F; 

dqj 
(165) 

where Fq is the Jacobian matrix. Thus, we see that a simple bifurcation occurs when 

the determinant of Fq vanishes. In practice, simple bifurcations are found numerically 

by detecting a change in the sign of \Fq\. 

Hopf Bifurcation: A bifurcation in which a time-invariant, equilibrium solution 

evolves into a periodic, time-varying solution. Seydel (1988) identifies the two classic 

types of Hopf bifurcation. The first is the supercritical Hopf bifurcation (Figure 69a). 

With the supercritical type, stable periodic orbits (filled circles) encircle a region of 

unstable equilibrium solutions (dashed lines). In addition, the "magnitude" associ- 

ated with the periodic behavior increases from zero at the bifurcation point, A1? with 

steadily increasing magnitude as A moves away from the bifurcation point. Thus, 

supercritical bifurcations are classified as a soft loss of stability. The second type 

(Figure 69b) is called a subcritical Hopf bifurcation. This type has a region of unsta- 

ble periodic solutions (open circles) encircling stable equilibrium (solid lines). The 

subcritical Hopf bifurcation is also known as a hard loss of stability , due to the 

abrupt change in solution character as A crosses the bifurcation point at A2. Solu- 

tions undergo a large transition from stable equilibrium to large-amplitude, periodic 

behavior. Between Ax and A2, one of two stable solutions are possible: a stable 

equilibrium solution or a stable periodic solution. 
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Figure 69. Graphical representation of Hopf bifurcations: (a) supercritical, (b) subcriti- 
cal. Stable periodic solutions; solid circles: unstable periodic solutions; open 
circles. From Seydel, 1988. 

B.2    The Pseudo-Arclength Continuation Model. 

A brief outline of the PAC model is given in this section. This very general and robust 

approach is used to compute steady, axisymmetric, and compressible base flows. The 

application of PAC to the computation of axisymmetric, incompressible flows is described 

by Beran and Culick (1992). 

The PAC model, developed by Beran (1994), is designed to be modular in the sense 

that a user of the model need only define and implement the necessary governing equations 

and boundary conditions. Elements of the Jacobian matrix are computed numerically, al- 

lowing the PAC model to be written generically for virtually any set of governing equations. 

For this study, the author's contribution to the PAC model, discussed in Sections B.2.2 

and B.2.3, consisted of modifying the compressible, axisymmetric Navier-Stokes equations 

(written for Cartesian coordinates) to allow for computations over a generalized grid. The 

author also defined and implemented the boundary conditions into the PAC code. 

B.2.1 The PAC Method. The PAC model requires that the governing equations 

be written in discrete form and cast as a nonlinear system of equations given by Eq. 164. 

While other methods can be used to solve Eq. 164, Newton's method is used in this study 

for it's systematic and efficient ability to compute 2-D base flows. Newton's method, a 

general method for solving non-linear systems of equations, requires an initial guess, q\ 
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which must be sufficiently close to the solution of interest. An improved solution, q,+1, is 

calculated from the Newton iterate 

Fq(q';X)(qt+1-qi) = -F(qi;X) (166) 

Newton iterates are repeated until a suitable convergence criterion is met. 

The PAC method allows for the efficient calculation of a solution which is considered 

"close" to an existing solution. A close solution refers to one in which a parameter, A, is 

slightly varied from its previous value. The advantage of PAC over some other types of 

continuation is that solutions can be found near limit points, where the Jacobian matrix 

becomes singular. The point Px is a known steady-state solution point on what could 

be an otherwise unknown path of solutions (Figure 70). The PAC algorithm computes 

the tangent vector T. The user specifies the distance from P1; along T, to the point P2, 

where a normal-direction search path is formed. The point P2 serves as the initial guess for 

Newton's method for an extended set of equations, consisting of the governing equations, 

plus an additional equation which constrains the search to a line normal to T at P2. Thus, 

the predictor step determines P2.   The corrector step is Newton's method, which solves 

the extended set of equations to limit the search to the line P3 — P2. The desired solution 

is denoted as point P3. The ordinate in Figure 70, N, represents a user-defined scalar 

measure of the solution q. For this work, the minimum axial velocity, Q, is chosen, since 

Beran and Culick (1992) found that this scalar effectively identified solution folds. 

B. 2.2    Governing Equations. The governing equations are the compressible 

Navier-Stokes equations written in cylindrical coordinates. Derivatives in the azimuthal 

(9) direction vanish to honor the assumption of axisymmetry. The equations are written in 

nonconservative, nondimensional form and are nondimensionalized in the same manner as 

the three-dimensional equations. This nondimensionalization is described in Appendix A. 

pü 
pur + upr + h pwz + wpz    =    0 (167) 

r 
PV 1 Tvy 

püür + pwüz \-pr [(rfn)r + (rT13)z] -\ =    0 (168) 
r r r 
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Solution path 

N 

Figure 70.    Graphical   representation   of   the   pseudo-arclength   continuation   solution 
procedure. 

puv 1 Tl2 
Pttfr +   + PWVZ [{rT12)r + {rT23)z\ ~ 

r r r 

puwr + pww2 +p2 \(rfi3)r + (rf33)z]    = 
r ' 

upr + wpz +j(V ■ u)p- (7 - !)(*- V -q)    - 

0 (169) 

0 (170) 

0 (171) 

where 

u = (u, v, w)1 

The components of the symmetric stress tensor, f, are given by 

Til 

r22 

fl2 

A[_(2/3)(V-tO + 2«P] 

A[_(2/3)(V.iO + 2Ä/r] 
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Tl3      =      15-   «r + Mz ite 

T33   =    j^[-(2/3)(Ür + ü/r) + (4/3)wz 

where f21 = f12, f31 = f13, f32 = f23. The viscous dissipation, $, is defined as 

*==^ + £<«nW+ «.") + £ WWW 

where the elements of the symmetric strain tensor, e, are given by 

eu    =    uT 

ei2    =    (vr-v/r)/2 

ei3     =     (Wr + ^j/2 

e22    =    w/r 

e23    =    £*/2 

e33    =    wz 

Finally, the divergence of the heat flux vector, q, is expanded, resulting in 

V " ? = -prReM^ - 1) [fl{Tr/r + T" + T"> + ^ + ^] 

Eqs. 167-171 reduce to five equations in five unknowns, (p, ü, u, w,p), when the assumption 

of a perfect gas and Sutherland's law are incorporated (Chapter III: Eqs. 20-21). 

The discretization of Eqs. 167-171 involves first writing the equations in compu- 

tational coordinates, where f and 77 refer to the computational coordinates in the z 

and r directions respectively. Derivatives are approximated using second-order-accurate, 

central-difference approximations at interior nodes and second-order, three-point formulas 

at boundaries. 
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Fourth-order damping terms are added to the above equations, analogous with the 

TANS model. The damping term has the form 

^M6AU^ +u)r,At64Un 

where U = (p,u,v,ib,p)T. The form of the damping term allows for different damping 

levels for the streamwise and radial directions. This is done to allow for greater consistency 

with the TANS model. The PAC model is only capable of supplying damping in the radial 

and axial directions, while the TANS model supplies damping in two crossplane directions, 

y and z, and the axial direction. One can think of the damping applied in y and z as 

being realigned into radial and azimuthal components. In this light, we see that the TANS 

model will provide greater levels of damping over the PAC model if damping coefficients 

are equivalent. To compensate for the lack of azimuthal damping in the PAC model, we 

set ujr, = 2u>£. This provided better comparisons between the two models, OJ^ is set equal 

to the explicit damping coefficient used in the TANS model, u>e. 

B.2.3 Boundary Conditions. The boundary conditions for the TANS and PAC 

model are identical, except for differences in implementation and coordinate systems. The 

TANS model solution is in the delta form, requiring the boundary conditions to be for- 

mulated in the delta form as well. The PAC model requires that the boundary conditions 

be written in the same form as the governing equations, i.e., in the form F(q; A) = 0. All 

but two of the inflow, outflow, and wall boundary conditions can be easily deduced by 

referring to the boundary condition description in Section 3.4. The first exception is the 

pressure condition for Inflow-2. The axial momentum equation is solved in both models 

to find an expression for pressure at the inlet. The PAC model solves Eq. 170, instead 

of the steady form of Eq. 11. The second exception is the Wall-2 condition for pressure. 

The TANS model solves the steady form of Eqs. 12-13, which represent the conservation 

of momentum in the y and z directions. The PAC model solves the radial momentum 

equation, Eq. 168. 

The PAC model requires boundary conditions along the tube centerline. The cen- 

terline values of radial and azimuthal velocity must vanish since the centerline is both a 
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streamline and a line of symmetry: 

«(0,2)= 0 

t)(0,z) = 0 

The remaining variables are constrained to be smooth and symmetric about the centerline 

by enforcing that the corresponding radial derivatives vanish: 

wr(0,z)   =    0 

MO, 2)    =    0 

Pr(0,z)      =      0 

B.3    Solution Interpolation Between 2-D and 3-D Grids 

This subsection describes the cubic spline interpolation routine (Press et al. (1989)), 

which takes axisymmetric data from the PAC model and interpolates it onto a 3-D grid. 

The cubic spline interpolation method has several features that make it a good choice for 

this problem. First of all, the method requires that first derivatives be continuous across 

the boundary between two intervals of data. This is a requirement for most applications 

where the tabulated data source is a physical process. Second, the method inherently cre- 

ates interpolating polynomials of low (third) degree. Some other methods (e.g., Lagrange 

polynomial method) create interpolating polynomials that are the degree of the number of 

tabulated points minus one. This can lead to the undesirable result of large variations (or 

"wiggles") in the polynomial behavior between data points. Third, the method yields high, 

fourth-order accuracy. Finally, the numerical procedure is very efficient and straightfor- 

ward, even when the tabulated points are not equally spaced. The cubic spline algorithm 

was adapted from Press et al. (1989), with supplemental error analysis supplied by the 

author. 

B.3.1 Cubic Spline Interpolation. The tabulated function is written as y;- = y{rj), 

j = 1,...,JV, where the independent variable r denotes the radial coordinate.   For r 6 
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(rj,rj+1), let r: = r — r;- and r2 = rJ+1 — r such that Ar = rx + r2 = rJ+1 — r;-. The 

goal is to construct an interpolating polynomial between r;- and rJ+i. The value of y(r) is 

approximated by writing a Taylor series about ?/;- 

2 „3 
1_ 

2 
2/(0 = Vi + ny'i + \y^ + ^'" + O(rS) (172) 

where primes denote differentiation. The central idea of cubic spline interpolation is to 

guarantee continuity in the first derivatives of the interpolating polynomial, and to use 

this contimiity to calculate y". Thus, with some foresight, Eq. 172 is written in terms of 

only the function, y, and its second derivative y". Utilizing Taylor series, the following 

expressions are obtained 

t/j = [yj+1 - Vj - (Ar2/2)y>; - (Ar3/6)y;"]/Ar + 0(Ar3) (173) 

y,/' = [y"+i-y"]/^r + °(^r) (174) 

Eqs. 173-174 are substituted into Eq. 172 and simplified with the relations A = r2/Ar and 

B = ri/Ar to obtain 

y(r) = Ayj + Byj+i + Cy/' + Dyj+1" + C^4, ^ArV^Ar) (175) 

where 

C = \{A* - A)(rj+l - rjf     D = ^B3 - B)(rj+1 - rrf 

Since rx can vary between 0 and Ar, the truncation error will be greatest when ri = Ar, 

allowing Eq. 175 to be written as 

y(r) = AVj + Byj+1 + Cy/' + Dyj+l" + 0(Ar4) (176) 

The second derivatives, y", are evaluated by requiring that the first derivatives be continu- 

ous between the boundaries of the intervals (r;-_i, r;) and (r;-, rJ+i). This conditions allows 
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for y" to be calculated from j = 2 to j = N - 1 as 

ay'/.1+by'/ + cy'/+1 = d (177) 

where 

a = (rj - r;-_!)/6     6 = (rJ+1 - r,,-^)/^ 

c = (r.+1_r.)/6     d= %•+!-%_ ft-tt-i 

Boundary conditions are required at j = 1 and j = N to complete the tridiagonal 

system represented in Eq. 177. Three boundary conditions have been implemented. The 

three conditions correspond to linear, parabolic, and cubic behavior at the end points. 

The formal truncation error within a boundary interval grows from fourth, to third, to 

second-order as the boundary condition changes from cubic, to parabolic, and then to 

linear behavior respectively. Once y" is calculated, the value of y at any given point, r, in 

the range of the tabulated data can be found from Eq. 176. 

B.3.2 Validation. The cubic spline algorithm written for this work was validated 

by comparison with data from the software package MathCAD (1988). The algorithm 

was also tested to verify the order-of-accuracy of the method for various test functions. 

A summary of the results are shown in Tables 18 and 19. Three different functions are 

presented in Table 18. Table 19 compares results from a fifth-degree polynomial tested with 

the three different boundary conditions. Errors in the tables are calculated by subtracting 

the known value of the function at the evaluated point from the interpolated value. The 

constant node spacing, Ar, is given by 

A'max        'min 
r = 

N-l 

where rmax and rmjn are the maximum and minimum values of the independent variable, 

r. The functions shown in the tables are evaluated at the point (r0 — Ar/2), with values of 

r0 given in Table 18. For the fifth-degree polynomial, r0 = 1, rmm = 0, and rmax = 1. The 

data verifies fourth-order truncation errors with possible exceptions of second or third- 
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Table 18. Cubic spline results. 

Function r0 'min 'max N             Error Factor 
y=sin(r) 7I-/2 0 2TT 257    9.4506369(-10) 

513    5.9063088(-ll) 16.00092 

y=exp(r) 1.6875 -3 3 257    4.1979460(-09) 
513    2.6394087(-10) 15.90487 

y=erf(r) 0.5 0 1 257    2.6637581(-12) 
513    1.6642243(-13) 16.00600 

Table 19. Effect of boundary conditions: y = r5 + r4 + r3 + r2 + r + 1 

Boundary Condition N Error              Factor 
linear 257 

513 
2.7925307(-05) 
6.9813671(-06)     3.99998 

parabolic 257 
513 

1.9288001(-07) 
2.4153221(-08)     7.98568 

cubic 257 

513 
8.6388230(-10) 

5.4085625(-ll)    15.97249 

order truncation errors near boundaries. The errors are evaluated by considering a halving 

of the spacing and checking the corresponding reduction in error (under heading of Factor 

in the tables). Factors of 4, 8, and 16 therefore represent second, third, and fourth-order 

truncation errors respectively. The accuracy of the method is important since truncation 

error due to interpolation must be of the same or higher order of magnitude than the trun- 

cation error of the second-order PAC model. The error analysis and the tests represented 

in Table 19 show that in the worst case (at the boundaries), the error will be second order, 

the same as the error introduced by the PAC model. Away from the boundaries the inter- 

polation introduces fourth-order inaccuracies, which are much smaller than second-order 

errors produced by the PAC model. Thus, the interpolation scheme does not degrade the 

formal spatial accuracy of the base flows computed by the PAC model. 

B. 3.3 Restart File Generation. The process of taking the axisymmetric data from 

the PAC model and using it to create a restart file to initiate the TANS model computations 

is mechanized into one algorithm. This algorithm reads the 2-D and 3-D grid files and the 

2-D restart file. The 2-D restart file contains the solution vector U = (p,u,v,w,p)T. The 

code first checks that the axial locations coincide for the two grids, and that the tube 
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radius at each axial location match. Then for each axial node, the second derivatives for 

the interpolating polynomial are computed. Then the radial position of each 3-D grid 

point (at that axial location) are evaluated and the cubic spline interpolation performed. 

A linear boundary condition is chosen along the centerline r = 0, consistent with the 

centerline boundary conditions enforced in the PAC model. At the tube wall, the cubic 

boundary condition is enforced. The process is repeated for each axial node and for each 

element of the solution vector. Then the radial and swirl velocities, (u,v), are transformed 

into the velocities in the y and z directions. This transformation is given by 

v = {yü — zv)lR 

w = {zu + yv)l R 

where R = \Jy2 + z2. The velocity components v and w are set to zero at the centerline, 

R = 0. The output of the algorithm is a 3-D restart file containing the interpolated solution 

vector U = (p,u,v,w,p)T valid at the 3-D grid points. 
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Appendix C.   Grid Generation 

A description of the grid generation procedure and the method used to access grid 

quality are described in this Appendix. Section C.l contains an overview of the grid con- 

struction process, which utilizes the software package GRIDGEN. Grid quality is assessed 

in Section C.2 by performing a grid rotation study, which demonstrates that their is no 

significant asymmetry in the grid structure. 

C.l    Grid Construction. 

The positions of the grid points in the (77, £) planes are generated by the GRIDGEN 

software, Version 8 (Steinbrenner (1990)). GRIDGEN is designed to be a user-friendly, 

robust grid generation tool capable of generating 3-D, multiple-block grids. The primary 

customers of GRIDGEN are typically those requiring grid generation about complex ge- 

ometries, such as a full aircraft configuration. The GRIDGEN software package consists 

of four distinct components, referred to as GRIDBLOCK, GEN2D, GEN3D, and VUE3D. 

The basic procedure to generate a 3-D grid using GRIDGEN involves three steps. 

First, GRIDBLOCK specifies the blocking strategy for the grid. This includes the spec- 

ification of the number of blocks, the location of the interfaces and their shapes, and the 

number of nodes. GRIDBLOCK initializes the gridpoints along the 2-D domains that make 

up the sides of the blocks. These gridpoints are determined from transfinite interpolation 

(TFI) methods. Second, GEN2D refines the domain gridpoints using standard elliptic 

partial differential equation (PDE) solvers. This refinement can only occur within each 

block. That is, GEN2D does not have the capability to perform multiple-block iteration. 

Finally, GEN3D initializes the 3-D grid with TFI using the gridpoints developed along the 

domains as boundary conditions. GEN3D then uses elliptic PDE solvers to smooth the 

interior points of the blocks. GEN3D has a multiple-block mode that helps smooth out 

points at block interfaces. VUE3D is a utility program that allows the user to visualize 

the grid. 

The grids developed for this work contain five blocks. The inner block is prescribed 

to initially have a circular shape in the {y,z) crossplane, located concentrically with the 

188 



Figure 71. Typical crossplane grids: (a) initial grid, (b) final grid. 

outer tube wall. The radius of this inner block is set at 1.5. The outer blocks are arranged 

as shown in Figure 71a. This crossplane is generated by GEN2D. To allow GRIDGEN 

to iterate over this crossplane in multiple-block mode, a 3-D geometry is created. This 

geometry resembles a short tube that has the crossplane structure of Figure 71a. The 

number of crossplanes (i.e., axial nodes) used is eleven. With this short tube geometry, 

the interior crossplane nodes can be determined using the GEN3D multiple-block mode. 

Then, the crossplane that is halfway down the length of the tube (Figure 71b) is selected as 

the crossplane grid. Figures 71a and 71b illustrate how GEN3D smooths out the interfaces 

between the inner and outer blocks. The final grid is constructed one crossplane at a time, 

by scaling the final crossplane grid to the local tube radius. 

C.2   Assessment of Grid Quality. 

Grid quality is verified in two ways. First, the grid metrics and Jacobian contours are 

plotted and visually inspected for smoothness. Second, a grid rotation study is performed. 

This is done to insure that there is no asymmetry in the grid structure that may preferen- 

tially bias a solution in a particular radial direction, promoting an asymmetric solution in 

cases where the flow is physically axisymmetric. 
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The grid rotation study utilizes a swirling, columnar flow in a tube of very short 

axial extent. A 3-D grid consisting of 3 axial nodes is constructed by taking the crossplane 

grid from Gl (at x = 0) and duplicating this grid over three equally-spaced axial nodes. 

In this way, fixed boundary conditions are enforced along the inflow and outflow planes 

to provide conditions for swirling, columnar flow. The inflow conditions enforce zero axial 

and radial velocity with pressure initialized to the reference value and p = 1. The specified 

swirl velocity at the inflow and outflow is of the form 

V 
(r 

where 

r _ r*\ \ ) 

r-r* = ^(y-r)2 + (^-2*)2       f = z* = 1/2 

The parameter r* was introduced to provide an asymmetric profile, essentially moving the 

vortex core off axis to (y*,z*). This is done to move the vortex core close to a corner point 

(e.g., j = j2 and k = k2), providing a region of strong flow gradients. It is believed by the 

author that this provides a better test of the model's ability to compute accurately near a 

corner node, as well as show that the effects of grid rotation are negligible. The axial and 

radial components of velocity are prescribed to be zero at the wall, while the wall swirl 

velocity is set equal to the inflow value. Pressure is prescribed to be the reference pressure 

and p = 1. The solution is then iterated until converged. 

Solutions are obtained for grids rotated at angles of 6 = 0, 90, 180, and 270 degrees. 

The upper right quadrant of the grid corresponding to 9 — 0 is shown in Figure 72a. 

Corresponding contour plots of pressure for all four rotation angles are shown in Figure 72b. 

The contour plots are virtually identical for each rotation angle, indicating that the grid 

is sufficiently "unbiased." The figure also illustrates that solutions near the grid block 

interfaces are "seamless" in that the underlying multiblock grid structure is not evident 

from the solutions. 

In an attempt to quantify the errors due to grid rotation, pressures are compared 

at two points in the crossplane. The two points are selected based on visual inspection of 

Figure 72b, where the greatest differences between pressure contours appear to occur near 
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Figure 72.    Results of grid-rotation study:  (a) grid (6 = 0), (b) coalesced pressure con- 
tours correspond to grids rotated at angles of 0, 90, 180, and 270 degrees. 

Table 20. Pressure values at two points in the crossplane for various grid rotation angles. 

6    Pressure 

0°     7.63129 

P32.32      90°     7.63131 
180°     7.63137 
270°     7.63125 

0°      7.76475 

P36.36      90°     7.76528 
180°     7.76485 
270°     7.76529 

y = z = 0.85. The closest node to this location is at j = k = 32. The second point is 

selected to be a corner node at j = k = 36 (y = z ss 1.06). Table 20 shows the pressures 

at these points for each rotation angle. 

The greatest relative error encountered at these two points occurs at the point j = 

k = 36, between pressures at 9 = 0° and 270°. The magnitude of this error is 0.00054. 

The pressure over the entire crossplane ranges from Pj,kmin = 7.52005 to Pjtkm&x — 7.91945. 

Denning a normalized pressure error as 

Ap = (P36,36J270° _ (P36,36)0o 

Pi.k» ^\7t^min 

gives Ap = 0.001352. 
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Appendix D.   TANS Validation. 

The solution procedures and results of four test flows are described in this Appendix. 

The first two test flows, described in Sections D.l and D.2, are incompressible and com- 

pressible flat plate flow. These checkcases are used to verify the steady-state accuracy of 

the TANS solutions. The remaining two test flows are unsteady Couette flow and un- 

steady heat conduction. These checkcases, described in Sections D.3 and D.4, validate the 

time-accuracy of the model. 

Results in this appendix are obtained with the second-order, central difference version 

of the TANS model using a simplified version which allows for conventional, single-block 

grids. Two-dimensional flows are simulated with the 3-D TANS model by specifying that 

the velocity component and all derivatives in one of the coordinate directions vanish, 

yielding essentially 2-D flow. This coordinate direction is referred to as the transparent 

direction. Grid requirements are reduced by specifying only three nodes in the transparent 

direction. 

D.l    Incompressible Flow over a Flat Plate. 

Steady flow over a flat plate (at zero incidence) is simulated to verify that the model 

accurately converges to a known steady solution. It is an approximate comparison since 

the TANS model is formulated to simulate compressible flows whereas the test flow is 

incompressible. To minimize the impact of this difference, the TANS model is run at a low 

Mach number (M = 0.2) and the boundary conditions are formulated for incompressible 

flow. In addition, the comparison is approximate since the exact solution is known only 

in the limit as Re —► oo. Therefore, the TANS model is only expected to yield reasonable 

comparisons to the test flow for sufficiently large Re; assumed here to be 10000. 

The solution to incompressible flow over a flat plate was first obtained by Blasius in 

1908, (White (1974)). Blasius formulated a similarity solution for the axial velocity, u, of 

the form 

u(x,z) = /'(»/),      n = r]{x,z) 

192 



to obtain the governing equation 

/"' + //" = 0 (178) 

where 
I Re 

u = f'(rj)     and     77 = z\, 

The quantity x is the nondimensional freestream coordinate and z is the nondimensional 

distance normal to the fiat plate. The boundary conditions are 

/(0) = /'(0) = 0,      /'(oo) = 1 

The above relations are in nondimensional form, where Re is based on the constant 

freestream velocity and plate length. No closed-form analytic solution to Eq. 178 has 

been found. Instead, the Blasius solution is computed by numerically integrating Eq. 178 

using a fourth-order Runge-Kutta method to obtain /'. The Reynolds number, Re, is 

required to obtain the solution u(x,z) from the similarity law. Thus, for a given Re, the 

Blasius solution is found and used to compare to the axial velocities produced by the TANS 

model. 

TANS model solutions are obtained over the region (0 < x < 2) and (0 < z < 0.15) 

using constant node spacing. The number of axial and normal nodes is 101. The y 

direction is chosen as the transparent direction, requiring that the corresponding velocity 

component, v, vanish. 

The boundary conditions consist of inflow, outflow, wall, and freestream conditions. 

The inflow conditions are p = u — 1 with v = w = 0. The pressure is initialized to the 

nondimensional reference pressure, Pref, which has a value of —^7. The freestream con- 

ditions are the same as the inflow conditions except that wz — 0 from the incompressible 

continuity equation. The outflow conditions dictate that (■)„ = 0 for all five dependent 

variables. At the adiabatic wall, uniform density is enforced and the boundary-layer as- 

sumption dictates that pz = 0. 

For Re = 10000 and M = 0.2, the TANS model was run until the maximum change 

in pressure over one iteration was less than 10-5. Velocities obtained from the TANS model 
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Figure 73.    Comparison of streamwise velocity profiles for steady, flat-plate flow for Re = 
10000 and M = 0.2. Blasius solution from Eq. 178. 

are compared to the Blausis profiles in Figure 73.  The two solutions are shown to be in 

excellent agreement. 

The L2 norms (Section 3.10) of the difference in u between the TANS model and 

the Blasius solution, corresponding to data at x = 0.8, x — 1.2 and x = 1.6 are 3.0E-03, 

3.9E-03 and 5.7E-03 respectively. 

D.2    Compressible Flow over a Flat Plate. 

This test flow is used to verify that the TANS model accurately predicts a steady-state 

temperature field. This augments the incompressible fiat plate flow, where steady-state 

velocities are validated. A constant temperature wall is assumed in this case. Three wall 

temperatures, corresponding to the known adiabatic wall temperature and ±1% of the 
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adiabatic temperature are specified. The result expected by the author is that when the 

adiabatic wall temperature is applied, the resulting temperature profile in z should result in 

a zero-slope (adiabatic) condition at the wall. A change in the heat flux at the wall should 

also occur when temperatures are specified above and below the adiabatic temperature. In 

addition, temperature profiles, T(z), at a chosen axial station are compared for the three 

wall temperatures to an exact relation referred to as the Crocco-Busemann relation. 

The geometry and parameter values for this flow are the same as the incompressible 

case, except the freestream Mach number is increased to 0.5 and Pr - 1. The wall pressure 

condition is found by solving the z-momentum equation for pz. 

The nondimensional adiabatic wall temperature, Taw, can be expressed, for Pr = 1, 

as 

1ref L 

where the reference conditions are in the freestream flow. 

T' (■y — 1 "1 
Taw = -^- = l+Ky n   >M2 (179) 

The 2nd Crocco-Busemann relation (White, 1974), given in nondimensional form as 

T = Tw + (Taui - Tw)u - [(l^l)M2]u2 (180) 

relates the axial velocity, u, to the temperature. It is valid for compressible and incom- 

pressible boundary layers for constant cp, Pr = 1, and zero axial pressure gradient. The 

analytically determined temperature gradient at the wall can be obtained by differentiating 

Eq. 180 with respect to z and evaluating at z = 0. Given that u = 0 at z = 0, this results 

in 

(!j). = (r--r->(£). = -fc/t (181) 

where the subscript w denotes wall conditions and qw is the wall heat flux. Inspection of 

Eq. 181 reveals that the wall temperature gradient is zero when the wall maintains the 

adiabatic wall temperature, or Tw = Taw. Furthermore, it is evident that the sign of the 

wall heat flux and the wall temperature gradient changes depending upon whether the 

wall temperature is higher or lower than the adiabatic temperature.  Thus, the following 
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behavior should be observed from the TANS model: 

dT 
= 0 T —T 

< 0 T > T 

> 0   T   < T 

The wall temperature chosen are Tw = Tau;, Tw = l.01Taw and T«, = 0.99Taw. 

The solid lines in Figure 74 shows the resulting TANS temperature profiles for the 

three wall temperatures, while the open circles show the results from the Crocco relation. 

A change in sign of the heat-flux at the wall occurs around the adiabatic wall temperature, 

while at the adiabatic wall temperature we see an adiabatic temperature profile. 

The insert to Figure 74 plots the computed wall temperature gradient versus the 

wall temperature. This figure shows the path crossing zero temperature gradient at a 

temperature that is virtually at the adiabatic temperature. Physically, the TANS model 

is correctly predicting that, for Pr = 1, the adiabatic wall temperature due to frictional 

heating equals the reference stagnation temperature, corresponding to a recovery factor of 

unity. 

The differences in temperature near the edge of the thermal boundary layer are due 

to about a 2% overshoot (from freestream) in the TANS model axial velocity, which is used 

in the Crocco-Busemann relation to find T. This error in w, denoted as e, is amplified by a 

factor of 2 due to the u2 term in Eq. 180, and from considering the binomial expansion of 

u2 written in the form (1 + e)2. Furthermore, the differences in temperature appear large 

due to the scaling of the figure. In fact, the error between T from the Crocco-Busemann 

relation and the model is at most 0.004Tau; (i.e., the spacing between 2 minor tick marks 

in the figure). The comparison near the wall is quite favorable, however, where both the 

TANS model and Eq. 180 correctly predict the change in sign of the heat flux. The L2 

norms of the temperature difference between the TANS model and the Crocco relation are 

1.9E-03, 1.7E-03 and 1.4E-03 for Tw/Taw = 1.01, 1.0 and 0.99 respectively. 
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Figure 74.    Temperature profiles for compressible, flat-plate flow for Re —  10000 and 
M = 0.5. Second Crocco-Busemann relation from Eq. 180. 

D.3    Unsteady Couette Flow. 

Unsteady Couette flow is simulated with the TANS model to verify the time accuracy 

of the computed velocity field. A nearly identical checkcase is given by Beam and Warming 

(1978), who used this type of flow to help validate the original Beam-Warming algorithm. 

Couette flow refers to the incompressible, steady flow between two parallel, infinite, 

and adiabatic plates that are a distance h apart. The upper plate is stationary while the 

lower plate moves with uniform speed, U0 = u'rej. Unsteady Couette flow refers to the 

transition between the no-flow state, existing before the lower plate is set into motion, and 

the final steady-state flow that ultimately develops. 

An exact solution for the axial velocity profile, u, for unsteady Couette flow (Schlicht- 

ing, 1955) is given as 

u = — = J2 erfcfinrix + rj] - V erfc[2(n + l)^ - 7?] 
n=0 n = 0 

(182) 

which is approximated by truncating the asymptotic series to 

u = erfc(r]) - erfc(2r)i - n) + erfc(2rji + TJ) — er/c(47?i - r?) + erfc(4r]i + 77)      (183) 
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where 

"' = iTS (185) 

and z' is the dimensional coordinate normal to the plates. The truncation of Eq. 182 to 

Eq. 183 results in errors in u less than 10-11. 

The boundary conditions for this one-dimensional problem consist of upper and lower 

plate conditions. Define h as the length scale such that z = z'/h. For t < 0, u = 0 for all 

z G [0,1]. For t > 0, u = 1 at z = 0 and u = 0 at z = 1. The TANS model requires the 

conditions v = 0, w = 0, and pz = 0 at z = 0 and z = 1. The derivatives in the x and j/ 

directions must also vanish to simulate one-dimensional flow. 

The number of unevenly spaced nodes in the z direction, nz, is 11, while three nodes 

in the x and y directions are used. The node locations in the z direction are given by 

z^ik-iy-'Azo     (fc = l,...,ll) 

where r = 1.1 and Az0 = 0.038554328. Unequally spaced nodes were used to help validate 

the inclusion of the grid metric calculations in the early development of the model. 

The Reynolds number for this calculation based on h is 6.2 and the Mach number 

is 0.09. The nondimensional time step (At = 0.00464) is taken from results of Beam 

and Warming (1978), who comment that the comparison was less favorable for Courant 

numbers x away from unity. The Courant number for this calculation is approximately 1.3. 

Figure 75 shows the excellent comparison between the solution from Eq. 183 and the 

TANS solution. 

The L2 norms of the difference in the velocities, u, between the TANS model and 

the exact relation are less than 4.2E-03 for the five time levels in the figure. 

'Courant number is defined as v = c'^j. 
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Figure 75.    Formation of Couette flow for Reh = 6.2 and M = 0.09. Exact solution from 
Eq. 183. t = nAt. 

D.4    Unsteady Heat Conduction. 

So far, two steady flows have been considered; comparing the steady velocities and 

temperature to known solutions. The Couette flow helped to validate the time accuracy 

of a the velocity field. The remaining checkcase extends the validation of time accuracy to 

the energy equation. 

A flat plate immersed in a motionless fluid is considered. At t < 0 the plate tem- 

perature is defined to be the reference temperature, or T = 1 for t < 0. At t — 0, the 

plate is impulsively heated the to Tw. The TANS model is used to predict the temperature 

above the plate, T(t,z), where z is the distance normal to the plate. This is similar to 

the Couette flow problem, where instead of impulsively moving the plate it is impulsively 

heated.   The difference, however, is that for this problem there is no upper plate, that 
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is,the dimensional temperature satisfies Tref as z -* oo. To model this problem, a new 

nondimensionalization is considered. This is necessary to avoid singular behavior with the 

current nondimensionalization when the flow is at rest.  The new nondimensionalization 

defines the reference velocity as 

/     _ a 

uref = -L 

where L is the reference length and a is the thermal diffusivity 

= — 
~ PCP 

The reference length L is defined to be one-third the normal distance from the plate to 

the edge of the finite computational domain. With no flow, the continuity and momentum 

equations are satisfied identically. The governing equations reduce to the energy equation. 

When the above nondimensionalization is substituted into Eqs. 139-143, (the dimensional 

equations of motion) the resulting equations are exactly that given by Eqs. 10-14 only if 

the following is true: 

Pr = 1     Re = 1     M2 = - 
7 

In other words, an artifice is established under this nondimensionalization that allows for 

the TANS model to solve this problem (without modification) given the above definitions 

for the flow parameters Pr, Re, and M. 

The nondimensional energy equation under the above assumptions reduces to 

Tt = 7aT„ (186) 

which is the classic heat conduction equation with the 7 term introduced by the current 

nondimensionalization. The exact solution to Eq. 186 follows from a solution from the 

problem of the suddenly accelerated plate, given by Schlichting (1955) as 

/" (77) + 2r7/'(77) = 0     /(0) = 1     /(oo) = 0 (187) 
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where 

f = [T - Tref]/[TW - Tref] (188) 

The analytical solution to Eq. 187 is 

'=2^ ,189) 

/ = erfc(V) (190) 

The TANS model requires an outer boundary that is sufficiently far away from the wall 

to model the boundary condition at infinity. The procedure to obtain the data from the 

TANS model involves selecting a target value of r) to achieve at some preselected outer 

boundary. Then from Eq. 189, the maximum run time that can be safely obtained without 

violating the upper boundary condition can be estimated. In other words, the thermal 

boundary layer grows with time, and yet the TANS model requires a boundary parallel to 

the plate and at a finite distance from the plate. Therefore, the TANS simulation will only 

be valid during a particular window of time. 

Boundary conditions for the 1-D problem consist of specifying the wall temperature 

(Tw = 1.2Tref) and setting u = v = w everywhere. The number of equally spaced nodes in 

the z direction is 31. The nondimensional time step is At = 0.001. 

The comparison of temperature profiles between Eq. 190 and the results of the TANS 

model is shown in Figure 76. The agreement is excellent, and as expected, the agreement 

lessens slightly as time increases, due to the movement of the thermal boundary layer 

towards the outer boundary. 

The effect of the outer boundary is also evident in the L2 norms of the differences 

between the TANS and exact temperatures. The smallest L2 norm occurs for n = 50, and 

is given by 1.2E-03. The norm steadily increases with time, reaching a value of 2.6E-03 at 

n = 250. 
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Figure 76. Unsteady heat conduction. Exact solution from Eq. 190. t = nAt. 
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Appendix E.   Simplified Euler Equations for Steady, Axisymmetric Flow 

One of the first studies to consider nonunique solutions of swirling flows is due to 

Leibovich and Kribus (1990). They categorized four distinct solution branches as static 

bifurcations of the Bragg-Hawthorne equation (BHE) (Bragg and Hawthorne (1950). The 

Bragg-Hawthorne equation refers to a single, elliptic differential equation for the stream- 

function, which results from simplifications of Euler's equations for steady, axisymmetric 

and incompressible flow. 

The BHE is developed from Euler's equations in Section E.l. The analysis below 

follows that of Batchelor (1967). In Section E.2, the author extends this analysis to com- 

pressible flows. The result of this analysis yields two equations with two unknowns, the 

streamfunction, ip, and the fluid density, p. One of the two equations can be viewed as a 

compressible version of the BHE. The second equation is obtained from the definition of 

the stagnation enthalpy, written in terms of the unknown variables. The two equations are 

referred to here as the compressible Bragg-Hawthorne equations (CBHE), and represent a 

simplified model for the study of compressible swirling flows previously unreported in the 

literature. The CBHE are valid for axisymmetric, inviscid, steady and subsonic flow. 

E.l    Development of the Bragg-Hawthorne Equation 

The goal of this analysis is to obtain a single differential equation in terms the 

streamfunction, tp. To achieve this goal, it is first necessary to show that the total head, 

H, and the circulation, T, are functions of only the streamfunction. This implies that both 

H and F are constant along a streamline. 

The radial, azimuthal and axial components of the velocity vector in cylindrical 

coordinates (r,6,z) are defined as ü, v and w respectively. The components of the vorticity 

vector, w, are obtained from the definition, w = Vx«, resulting in w = (—vz,üz — wr, i/r + 

vr)
T. The circulation, T, (divided by 2x) is defined as 

T = rv (191) 
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For axisymmetric flow, the streamfunction, t/>, is defined in the cylindrical coordinate 

system such that 

w = tpr/r ü = —ipz/r (192) 

Assuming a steady, inviscid and incompressible flow, the momentum equation is 

written as 

«•VM + V^=0 (193) 

Eq. 193 can be rewritten by utilizing the vector identity 

u ■ Vu = -V(u • u) - ü X w (194) 

Substituting Eq. 194 into Eq. 193 yields 

V (-[u ■ u} + -j =uxw (195) 

The momentum equation is now written in a form involving the total head, H, defined as 

H = ||w|2 +p/p. Therefore, Eq. 195 can be written as 

VH = uxw (196) 

Since VH is normal to ü, from Eq. 196, and u is locally tangent to the local streamline, 

then H must be constant along a streamline 

H = H(i/>) (197) 

The following will show that T is constant along a streamline, which is a restatement 

of Kelvin's circulation theorem for incompressible, inviscid flows. For axisymmetric flow, 

the azimuthal component of ViT is identically zero. Therefore, the azimuthal component 

of Eq. 196 can be expanded to find 

üü     .. „ . 
0 = — + uvr + wvz (198) 

r 
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The right-hand side of Eq. 198 is now shown to be related to the substantial derivative of 

the circulation, which for steady flow is 

D(rv) 
Dt 

= u ■ V(rv) = u ■ üVr + u • rVi :i99) 

Performing the dot products in Eq. 199, we obtain 

D(rv) 
Dt 

= uv + rxiVr + rwvz (200) 

Comparing Eq. 198 with Eq. 200, we find that 

D(rv)      D(T) 
Dt Dt 

= 0 (201) 

which implies that 

r = r(0) (202) 

i.e., the circulation depends only on ip. 

The Bragg-Hawthorne equation can now be obtained by considering the axial com- 

ponent of Eq. 196, which is written as 

Hz = ü(üz - wr) + vvz (203) 

Eq. 203 can be rewritten in terms of the streamfunction by utilizing Eq. 192, Eq. 197 and 

Eq. 202 to obtain 

H2 
-& + rr2 (204) 

From the chain rule of differentiation, we find that Hz = Htpz and Tz = Tij}z, where 

H = dH/dtp and T = dT/dtf). Substituting the expressions for Hz and Tz into Eq. 204 

yields 

-& + M£ = AH (205) 
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Multiplying Eq. 205 by r2/ißz yields the final form of the Bragg-Hawthorne equation 

(Bragg-Hawthorne (1950)) 

*,* + ^r-- = r2H - IT. (206) 
r 

The approach used by Leibovich and Kribus (1990) to solve Eq. 206 is to choose a "speci- 

fying" flow, which defines H(iß) and T(iß) to yield a particular form of the BHE that can 

be solved for iß. Leibovich and Kribus chose a columnar specifying flow, finding nonunique 

solution paths (Figure 9 of Section 2.1.3) which bifurcate from the branch of columnar 

solutions. 

E.2    Extension to Compressible Flows 

The following will show how the development of the Bragg-Hawthorne equation 

(BHE), given in Section E.l, can be extended to compressible flows. The result of this 

analysis yields a set of two equations: a modified BHE which includes density terms, and 

an auxiliary equation which represents the conservation of energy. These two equations, 

termed the compressible Bragg-Hawthorne equations (CBHE), can be solved for iß and p 

once a specifying flow has been defined (Leibovich and Kribus (1990)). The CBHE are 

nondimensionalized in terms of a freestream Mach number, MM, and are valid for steady, 

inviscid and axisymmetric flow. Subsonic flow is also assumed, allowing for the use of 

isentropic state relations. 

The governing equations representing conservation of mass, momentum, and energy 

for steady, inviscid, adiabatic, and compressible flow can be written in dimensional form 

as 

V ■ (pu) = 0 (207) 

u ■ Vu+ — = 0 (208) 
P 

V • (pHu) = 0 (209) 

206 



n"-^——-- 

where H is the stagnation enthalpy, defined by 

H = h + -(u ■ u) = e + - + -(u ■ u)                                 (210) 
2                         p     2 

and h is the specific enthalpy. The specific internal energy, e, can be written in terms of 

pressure and density for a perfect gas using Eq. 147 to obtain 

- H = l(u ■ u)+     7    P                                               (211) 
2V         '     7-1/» 

- By expanding Eq. 209 we see that 

V • (pHu) = V{pH) ■ u + pH(V ■ u) = 0                               (212) 

which can be simplified from Eq. 207, since 

V-u=     Vp'Ü                                                    (213) 
P 

Substituting Eq. 213 into Eq. 212 and simplifying yields 

u ■ V# = 0                                                          (214) 

which implies that the stagnation enthalpy is constant along streamlines for steady, invis- 

cid, and adiabatic flows (Batchelor (1967)). This statement is written as 

H = H(if>)                                                          (215) 

It is now desirable to obtain an expression similar to Eq. 196, written in terms of H. This 

can be accomplished by utilizing the fact that the flow is subsonic and isentropic, allowing 

for the use of the isentropic relation 

p = Kp1                                                          (216) 

I 
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where K is a constant. With Eq. 216 it follows that 

P       1 ~ 1     \P 

Rewriting the momentum equation 

Ü ■ Vu+ —- = 0 
P 

VP-     7    W(P-) (217) 

and the vector identity 

u ■ Viz = - V(u • Ü) — u X w 
2    v ; 

we see that, by utilizing Eq. 217, the momentum equation simplifies to 

V (-u ■ u + -^-l\ =tixw (218) 
V2 7-1/3/ 

or 

VH = üxw (219) 

Eq. 219 also indicates that H is constant along streamlines. 

Now the axial component of Eq. 219 can be expanded as in the incompressible anal- 

ysis to yield a compressible version of the BHE. This requires a new definition of the 

streamfunction which satisfies the compressible form of the continuity equation, Eq. 207. 

1 1 
w=— i>r u = V; (220) 

pr pr 

The azimuthal velocity component is defined as before in terms of the circulation from 

Eq. 191. The axial component of Eq. 219 is written as 

Hz = ü(üz -wr) + vv2 (221) 

Substituting Eqs. 191 and 220 into Eq. 221 yields the first of two equations comprising the 

CBHE. 
1   r ,i,       1 i ■_ 

= r2H - TV (222) 
1 

«2 i>zz + i>vr  ~ -(Pz^z + Pri>r) 
T P 
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Eq. 222 contains two unknowns: ip and p (cf. Eq. 206). 

A second equation is required to solve for the streamfunction, since the flow density 

represents a second unknown. Equation 211 represents a suitable second equation, since 

it can be written in terms of only ip and p by using Eqs. 220 and 216. 

Before Eq. 211 is rewritten in terms of ij) and p, a nondimensionalization of the 

governing equations is performed. This is done to allow for the freestream Mach number 

to be introduced into the equations. Until now, all of the equations presented have been 

in dimensional form. For the analysis to follow, let the dimensional variables be denoted 

with an asterisk, while nondimensional variables have no asterisk. The nondimensional 

variables are defined as follows: 

Ü = Ü* /UQO V = V* /Uoo W = W* /Uao 

p =  PVPOO 

P     =     P'/PcoUoo2 

T   =   iRT'/cJ 

where T is the temperature and R is the gas constant. U^, p^, and c^ represent dimen- 

sional reference conditions, where c is the speed of sound. Under this nondimensionaliza- 

tion, the two governing equations, Eq. 222 and Eq. 211 are unaltered in form. However, 

Eq. 211 contains a pressure term which must be rewritten in terms of the density. The 

equation of state, p* — p*RT*, can be written in nondimensional form as 

P = -~-, (223) IM,*, 

where M«, is the reference Mach number. For isentropic flow 

P" 
21*7/(7-l) 

- = K, (224) 
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where Ä'i is a constant. The nondimensional form of Eq. 224 can be written in the form 

pM0
2 

jilh-i) = K2 (225) 

where K2 is a constant. Now Eq. 223 can be substituted into Eq. 225 to eliminate tem- 

perature. This results in 

^ = -^ (226) 
pi      Mj 

where K3 is a constant and is evaluated by writing Eq. 226 at the reference condition. 

Eq. 226 can now be written as 

--     P (227) 

Eq. 211 can now be written in nondimensional form by substituting in Eqs. 191, 220, and 

227 to yield 

which is only a function of ip and p. 

Eqs. 222 and 228 represent the compressible Bragg-Hawthorne equations (CBHE), 

consisting of two equations with the two unknowns; ip and p. The CBHE are repeated 

here in non-dimensional form as 

1 

? i>zz + VVr {Pzi'z + Prtpr r       p 
r2H - IT 

r2       i   /, 2 . , 2\ ,      P
1
-

1 

^-rr=rrT Uv  +&    + 
2r2      2/>2r2 \Vr   T Yz J T (7 - l)Mro

2 

The CBHE can be solved once a specifying flow is defined and appropriate boundary 

conditions on tj) and p are formulated. The CBHE represent a simplified set of equations 

which will allow for the analysis of the effect of compressibility on steady, axisymmetric 

and inviscid swirling flows. 
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Appendix F.   Derivation and Application of the Beam-Warming Scheme. 

Details of the TANS solution procedure are contained in this chapter. The solution 

procedure is a modified version of the Beam-Warming scheme, outlined by Anderson, et al. 

(1984). The major differences in the application of the scheme are (1) the use of fourth- 

order compact differencing for discretizing spatial derivatives, (2) the use of governing 

equations written in nonconservative form, and (3) the explicit treatment of viscous terms. 

A derivation of the compact operator is given in Section F.l. Section F.2 provides a 

derivation of the time-marching scheme used by Beam and Warming (1978). This analysis 

results in an expression for the solution correction, AnU, written to first or second-order 

temporal accuracy. Section F.3 applies this general time-marching scheme to the non- 

conservative system of equations. Spatial discretization is performed using the compact 

scheme. 

F.l    The Fourth-Order Compact Scheme Approximation 

The compact scheme approximation (Lele, 1992) is derived in this section. As a 

general example, approximate the first derivative of the scalar u with respect to a; at a 

general node index, i. The compact scheme approximation considers not only the value, 

u, at adjacent points but also the derivative of u, denoted ux. This results in a tridiagonal 

system of equations for ux along a line of nodes. The approximation is in terms of ui+i, 

u,-_i, uXii+i, and uX}i_i. An approximation of these terms is found by expanding in a Taylor 

series about the node i assuming x,- — £,-_i = xi+i — x, = h. 

h2 h3 h4 

u,-_i    =    u{ - huXti + —uXXii - —uxxx<i + —uXXXXii - 0(h5) (229) 

h2 h3 h4 „„.. .      , 
ui+l    =    Ui + huXti + —uxx,i + —uXXTj + —uXXXXii + 0(h ) (230) 

h3 h4 

huXii+i    = huXii + h2uXXti + —uXXXti + —uXXXXii + 0(h5) (231) 

h3 h4 

hux>i^1    - huXti - h2uxx>i + —uXXXii - —uXXXXti + 0(h5) (232) 

A linear combination of Eqs. 229-232 is desired such that all of the h2, h3, and h4 

terms vanish.  Then ux<i is solved to the desired fourth-order accuracy since it is written 
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above with a coefficient of h. To form the linear combination of Eqs. 229-232, multiply 

Eq. 229 by a scalar a, Eq. 230 by 6, Eq. 231 by c, and Eq. 232 by d. Then sum Eqs. 229-232 

and group terms of similar powers of h. The coefficients a — d are solved to yield a single 

expression for uXii. If u,- is not to appear in the approximation then we must require that 

a + b = 0 (233) 

The requirement that the h2 and hA terms vanish result in the conditions 

a + b + 2c-2d = 0 (234) 

a + b + 4c-4d = 0 

These two equations are redundant if a + b = 0, therefore, only the first of these two will 

be retained. The h3 terms vanish if 

-a + b + 3c + 3d=0 (235) 

Finally, it is desired that uXji does not vanish, since this is the term requiring approximation. 

To insure that this term does not vanish, it will be required that 

-a + b + c + d=-4 (236) 

The right-hand-side of Eq. 236 is selected to provide a nonsingular solution, and to reduce 

the number of manipulations to obtain the expression for uxj. Solving Eqs. 233-236 yields 

a = 3, b = -3, c = d — 1. The linear combination of Eqs. 229-232 becomes 

3«j_i - 3ui+i + hux<i+1 + huXti_l = -4:huX:i + 0(h5) 

which is rearranged as 

h(6uXti + [uXii+1 - 2uXii + uXii_i]) = 3(ui+1 - Uj_i) + 0(h5) (237) 
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Eq. 237 is further simplified in form by defining 6X = U{+\ — w*_i and 6x~uxi = uxi+i - 

2uXii + uXii-i, to yield 

6/i(l + 6x
2/6)ux<i = 3M< + 0(h5) (238) 

which simplifies for Sx = I + 8X /6 to 

£,(«*,) = ^ + ö(Ä4) (239) 

Eq. 239, written over a line of nodes, represents a tridiagonal system of equations for ux. 

Boundary conditions are imposed at boundary nodes to complete the system of equations. 

The approximation for ux also appears in the literature (Anderson et al. (1984)) in the 

form 
1     fSxUi\     ,    ^,4.. 

"-•• = 2il1rJ+0<fc> (240) 

where the S operator appears in the denominator on the right-hand-side of Eq. 240. 

F.2    A General 3 Time-Level Marching Scheme. 

The Beam-Warming scheme utilizes a general three time-level marching scheme. The 

temporal derivative of the solution vector, Ut, at a point in space, is written as a sum of 

implicit (n +1) and explicit (n) contributions which satisfy a three time-level discretization 

of the form 

W + (i - w = ^"-1 + ^" + ^"+1 (241) 

where 6X is defined between 9i = 0 (fully explicit) and 9i = 1 (fully implicit) and 92 - 04 

are parameters selected to achieve different schemes. 

The time-marching scheme is written such that AnU is either first or second-order 

accurate, depending on the parameters #i — 94. Since AnU is of O(At), first/second-order 

accuracy of AnU requires truncation errors of ö(At2)/ö(At3), respectively. Similarly, 

since Ut
n+1 is of 0(1), it must be written to 0(At)/0(At2) to achieve first/second-order 

accuracy, respectively. 
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An approximate expression for Ut
n+1 is found by writing Eq. 241 at level n + 1; 

approximating terms at the other time levels with Taylor series to obtain 

e1u?+1 + (i-el)[u?+1-btu?t
+1] = 

At[        J     At 
Un+i - AtU?+l + ^U?t

+1 + 

At 
Un+l _ 2AiC/(

n+1 + ^j^tf,""1"1 2AT 
Y O(At)' 

Rearranging Eq. 242 results in 

(242) 

'^- (92 + 03 + 04) + f/("
+1 (1 + 202 + 03) + Utt

n+lAt (e, - 202 - U3 - l) +0(At)2 = 0 

(243) 

For first-order accuracy, the O(At) terms can remain in Eq. 243, only requiring that 

02 + 03 + <?4      =      0 

l + 202 + 03      =      0 

(244) 

(245) 

Eqs. 244-245 represent two equations with three unknowns, (02,03,04)- Therefore, the 

solution must be in terms of one of the parameters. Choosing 02 as this parameter, the 

requirement for first-order accuracy is 

-(l + 202) 

1 + 02 

(246) 

(247) 

For second-order accuracy, Eqs. 244-245 must again be satisfied, along with the 

additional constraint that O(At) terms in Eq. 243 vanish, requiring that 

?! - 202 - -d3 - 1 = 0 
2 

(248) 

Eqs. 244-245 and Eq. 248 represent three equations with four unknowns.   The solution 

in terms of 02 results in Eqs. 246-247, along with the following additional constraint for 
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second-order temporal accuracy 

0i = 02 + f249l 

Substituting Eqs. 246-247 into Eq. 241 yields a two-parameter discretization of C7( of 

the form 

w+, + (1 _ w = (l + ^)g-"-(i + Mi)g- + «,g- + 

o 

At 

h - i - 0,) (At) + (At)2 

(250) 

which is second-order accurate in time when Eq. 249 is satisfied. 

Eq. 250 is now cast into the delta form. The delta form of an equation is in terms 

of the difference between unknown quantities at time level n + 1 and known quantities at 

time level n. For a scalar, q, the term Anq is defined as 

Anq = qn+1 - qn 

Casting Eq. 250 into the delta form results in 

91~(Un + AnU) + (l-e1)-Un At = 

(i + e2)(u
n + Anu) - (i + 202)u

n + e2(u
n - A*-

1
!/) + 

o 

where upon cancelling terms and rearranging yields 

(251) 

h - \ - 92 ) (At)2 + (At)3 

AnU 
0i Ai 

1 + '2J 

d_ 
at 

o 

(AnU) + 
At 

U + 02 

a_ 
at (u

n) + 
i + 

An-LU + (252) 

0! - l- - e2) (At)2 + (At)3 

Eq. 252 is the general three-time-level scheme found in the literature. For example, refer 

to Anderson et al. (1984), Eq. 9-42. 
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Various time-integration schemes are employed by specifying 9i and 62, as shown in 

Table 21. 

 Table 21. Time marching schemes.  

Scheme 9X 62 Time Accuracy 
Euler Explicit 0 0 1st 
Euler Implicit 1 0 1st 
Trapezoidal ■ 1/2 0 2nd 
3-point Backward 1 1/2 2nd 

F.3    The Beam-Warming Scheme Applied to Equations in Nonconservative Form. 

The governing equations in nonconservative form are incorporated into the time- 

marching scheme, Eq. 252, to ultimately arrive at the approximately factored equation 

given by Eq. 120 in Section 3.6. The governing equations in nonconservative form, Eq. 25, 

are rewritten here for convenience as 

Ut + AU( + BUn +CUC = D (253) 

Using Eq. 253, expressions for the first two terms on the right-hand side of Eq. 252 are 

found, using 

— (A"U)   =   Dn+1 - Dn -An+1AnU^-An+1U^+ AnU^n (254) 

-Cn+1AnC/c - Cn+1Uc
n + CnU(

n 

— (Un)    =   Dn-AnUtn-BnUtl
n-CnU(

n (255) 

Eq. 254 is simplified by lagging the viscous terms with the approximation 

Dn+i _ Dn + ö(Atj (25g) 

This results in a significant simplification of the fully implemented Beam-Warming scheme 

given by Anderson, et al. (1984). The impact on the solution is a formal reduction of tem- 
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poral accuracy to first order. However, the convection terms, which greatly dominate the 

magnitude of the viscous terms in this study are still computed to second-order temporal 

accuracy. 

Substituting Eqs. 254-255 into Eq. 252 yields 

AnU = tl + 
0i Ai 

1 + 02J 
(-An+1AnUs - An+1Uzn + AnU{1 (257) 

-Bn+lAnUr) - B
n+lUn

n + BnUn
n - Cn+1AnC/c - Cn+lUc

n + CnUc
n) - 

At 
{AnU{1 + BnUn

n + CnL\n) + O 
.1 + 02.1 

where tl is rewritten from Section 3.6 as 

(9i-\-e2yAtf + (Atf;At2 

tl = 
AtDn +e2A

n~lu 
1 + 02 

and the first and second elements of the truncation error term refer to the temporal error 

of the inviscid/viscous terms respectively. 

The nonconservative form of the equations do not allow the matrices An+1, Bn+l, and 

Cn+1 to be "absorbed" into the delta terms like they are in a conservative set of equations. 

Therefore, these matrices are approximated by extrapolation in Section 3.6 to yield 

(A, B,C)n+1 = (A, B,Cf + (At,Bt,Ct)
nAt + 0{At2 (258) 

The second term on the right-hand side of Eq. 258 is required for second-order temporal 

accuracy in AnU. To see this, consider the term An+1U^n in Eq. 257. 

The delta terms appearing on the right-hand side of Eq. 257 are approximated to 

fourth-order spatial accuracy by writing 

A-tf, = i(4§^)+0(A«W,A,«) 

A»tf„ = 1 W + O(AX
4
,AJ/

4
,A/) 

(259) 

(260) 
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Ä^ = if^Wö(A*W,A; '(, 2\S, 
(261) 

where the operators 6 and S are defined in Sections 3.6 and F.l. Substituting Eqs. 259-261 

into Eq. 257 and rearranging terms yields 

T     „jAi  [An+l 6c     Bn+l 6„     Cn+1 Sc 

1 + 02 V    2    Se        2    5'     25, </J 
AnU (262) 

tl + 
OtAt 

Ll + 02 
-.4n+1£/?

n + AnUcn - ßn+1[/„n + £"[/„" - Cn+lU(
n + CnUf) 

At 

1 + 02 

O 

(AnUc
n +B"Un

n +CnUc
n) + 

0! - - -02] (Atf + {Atf; (Atf; (Ax\Ay\Az 

where the third element in the truncation error term is included to denote the spatial 

accuracy and / represents the identity matrix. 

The left-hand side of Eq. 262 is now approximately factorized to 0{Atf accuracy 

(Beam and Warming (1978)). Derivatives appearing on the right-hand side are discretized 

to fourth-order spatial accuracy and rearranged. The final result is 

/ + fliA* An+1 6C 

l + 02    2    J( 

'       6xAt Bn+l s„ 

l + 02    2    Sv 

6xAt Cn+l 6C 

o 

1 + 02    2    5C 

0X - \ - 02) (Atf + (Ai)3;(A/)2; (Ax4, Ay\Az 

AnU = tl + t3+    (263) 

where 

*3    = \n\®l; jjn    ■    ' *   ^».J-1    .    /- ~   s ~«- "„ (0Mn + 1 + (1 - ^)^n)-^f/" + (0!On + 1 + (1 - 0!)^")^^" + 
5? Sn 

(01C
n+1+(l-ö1)Cn)^^7n 

5C 

Ai 

1 + 02 

Eq. 263 is the approximately factored expression given by Eq. 120 in Section 3.6 (minus 

the implicit and explicit damping terms). The truncation errors are valid at interior nodes. 

Errors associated with discretizing the boundary conditions are given in Section 3.5. 

218 



Appendix G.   TANS Run Matrix and Grid Specification. 
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Table 22. TANS run matrix. 
Run No. Re V M At a BC Type Grid Accuracy (Time/Space) 

1 100 1.80 0.3 .030 0.00 1 G7 lst/2nd 
2 100 1.80 0.3 .030 0.00 1 G8 lst/2nd 
3 100 1.80 0.3 .030 0.00 1 G9 lst/2nd 
4 100 1.80 0.3 .030 0.00 1 G10 lst/2nd 
5 100 1.80 0.3 .030 0.00 1 Gil lst/2nd 
6 100 1.80 0.3 .030 0.00 1 G12 lst/2nd 
7 100 1.80 0.3 .030 0.00 1 G13 lst/2nd 
8 100 1.80 0.3 .040 0.00 1 Gl 2nd/4th 
9 100 1.80 0.3 .025 0.00 1 G6 2nd/4th 
10 100 1.00 0.3 .030 0.05 2 G6 lst/2nd 
11 100 1.70 0.3 .030 0.05 2 G6 lst/2nd 
12 100 1.00 0.3 .040 0.05 2 Gl 2nd/4th 
13 100 1.50 0.3 .040 0.05 2 Gl 2nd/4th 
14 100 1.70 0.3 .040 0.05 2 Gl 2nd/4th 
15 100 1.80 0.3 .040 0.05 2 Gl 2nd/4th 
16 250 1.00 0.3 .040 0.05 2 Gl 2nd/4th 
17 250 1.50 0.3 .040 0.05 2 Gl 2nd/4th 
18 250 1.53 0.3 .040 0.05 2 Gl 2nd/4th 
19 250 1.55 0.3 .040 0.05 2 Gl 2nd/4th 
20 250 1.60 0.3 .040 0.05 2 Gl 2nd/4th 
21 250 1.65 0.3 .040 0.05 2 Gl 2nd/4th 
22 250 1.70 0.3 .040 0.05 2 Gl 2nd/4th 
23 250 1.80 0.3 .040 0.05 2 Gl 2nd/4th 
24 250 1.90 0.3 .040 0.05 2 Gl 2nd/4th 
25 250 2.10 0.3 .040 0.05 2 Gl 2nd/4th 
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Table 22. TANS run matrix (con't) 
Run No. Re 

250 
V 

2.30 
M 

0.3 
At 

.040 
a 

0.05 
BCTyp e    Grid Accuracy (Time/Space) 

26 2 Gl 2nd/4th 
27 250 1.50 0.3 .025 0.05 2 G2 2nd/4th 
28 250 1.53 0.3 .025 0.05 2 G2 2nd/4th 
29 250 1.53 0.3 .040 0.05 2 G5 2nd/4th 
30 250 1.55 0.3 .025 0.05 2 G2 2nd/4th 
31 250 1.55 0.3 .025 0.05 2 Gl 2nd/4th 
32 500 1.49'+ 0.3 .040 0.05 2 Gl 2nd/4th 
33 500 1.49'- 0.3 .040 0.05 2 Gl 2nd/4th 
34 500 1.49" 0.3 .040 0.05 2 Gl 2nd/4th 
35 500 1.50 0.3 .040 0.05 2 Gl 2nd/4th 
36 1000 1.475'+ 0.3 .040 0.05 2 Gl 2nd/4th 
37 1000 1.475'- 0.3 .040 0.05 2 Gl 2nd/4th 
38 1000 1.475" 0.3 .040 0.05 2 Gl 2nd/4th 
39 1000 1.475'+ 0.3 .025 0.05 2 G2 2nd/4th 
40 1000 1.475'- 0.3 .025 0.05 2 G2 2nd/4th 
41 1000 1.475" 0.3 .025 0.05 2 G2 2nd/4th 
42 1000 1.47'+ 0.3 .025 0.05 2 G3 2nd/4th 
43 1000 1.47'- 0.3 .025 0.05 2 G3 2nd/4th 
44 1000 1.47" 0.3 .025 0.05 2 G3 2nd/4th 
45 1000 1.50 0.3 .025 0.05 2 G3 2nd/4th 
46 1000 1.60 0.3 .025 0.05 2 G3 2nd/4th 
47 1000 1.70 0.3 .025 0.05 2 G3 2nd/4th 
48 1000 1.90 0.3 .025 0.05 2 G3 2nd/4th 
49 1000 1.90 0.3 .025 0.05 2 G4 2nd/4th 
50 1000 2.10 0.3 .025 0.05 2 G3 2nd/4th 

Table 23. 3-D grid parameters. 

Grid nx ny nz L AxQ ß      x2 
Gl 98 41 41 20 .206 0.0 
G2 122 61 61 20 .200 .25    10 
G3 172 61 61 30 .200 .25    10 
G4 222 61 61 40 .200 .25    10 
G5 146 41 41 30 .206 0.0 
G6 98 61 61 20 .206 0.0 
G7 51 61 61 20 .400 0.0 
G8 101 61 61 20 .200 0.0 
G9 201 61 61 20 .100 0.0 

G10 51 61 61 10 .200 0.0 
Gil 201 61 61 40 .200 0.0 
G12 101 41 41 20 .200 0.0 
G13 101 81 81 20 .200 0.0 
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Table 24. 2-D grid parameters (grids gl-g4 usedin conjunction with grids G1-G4). 
Grid nx nr L Az0 ß Z2 

gl 98 32 20 .206 0.0 - 
g2 122 48 20 .200 .25 10 
g3 172 48 30 .200 .25 10 
g4 222 48 40 .200 .25 10 
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G.l    Estimate of Computer Usage. 

The two primary computers used to run the TANS model for this study are the DEC 

4620/Alpha AXP Workstation and the Cray C-90 (Naval Oceanographic Office, Bay St. 

Louis, MS.). 

The DEC workstation ran the Re = 100, 250 and 500 jobs. The estimated CPU time 

to perform these runs is 7000 DEC CPU hours. 

The C-90 computer ran all of the Re = 1000 jobs. The estimated CPU time to 

perform these runs is 800 C-90 CPU hours. 
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