
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

12-2022 

Cooperative Wide Area Search Algorithm Analysis Using Sub-Cooperative Wide Area Search Algorithm Analysis Using Sub-

Region Techniques Region Techniques 

Shawn Whitney 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Other Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
Whitney, Shawn, "Cooperative Wide Area Search Algorithm Analysis Using Sub-Region Techniques" 
(2022). Theses and Dissertations. 6301. 
https://scholar.afit.edu/etd/6301 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F6301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6301?utm_source=scholar.afit.edu%2Fetd%2F6301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


COOPERATIVE WIDE AREA SEARCH
ALGORITHM ANALYSIS USING

SUB-REGION TECHNIQUES

THESIS

Shawn Whitney, Captain, USAF

AFIT-ENV-MS-22-D-041

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENV-MS-22-D-041

COOPERATIVE WIDE AREA SEARCH ALGORITHM ANALYSIS USING

SUB-REGION TECHNIQUES

THESIS

Presented to the Faculty

Department of Systems Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Shawn Whitney, M.S.

Captain, USAF

Dec 23, 2022

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENV-MS-22-D-041

COOPERATIVE WIDE AREA SEARCH ALGORITHM ANALYSIS USING

SUB-REGION TECHNIQUES

THESIS

Shawn Whitney, M.S.
Captain, USAF

Committee Membership:

David Jacques, Ph.D
Chair

Lt Col Jeremy R. Geiger, Ph.D
Member

Lt Col Warren J. Connell, Ph.D
Member



AFIT-ENV-MS-22-D-041

Abstract

Recent advances in small Unmmaned Aerial Vehicle (UAV) technology reinvigo-

rates the need for additional research into Wide Area Search (WAS) algorithms for

civilian and military applications. But due to the extremely large variability in UAV

environments and design, Digital Engineering (DE) is utilized to reduce the time,

cost, and energy required to advance this technology. DE also allows rapid design

and evaluation of autonomous systems which utilize and support WAS algorithms.

Modern WAS algorithms can be broadly classified into decision-based algorithms,

statistical algorithms, and Artificial Intelligence (AI)/Machine Learning (ML) algo-

rithms. This research continues on the work by Hatzinger and Gertsman by creating

a decision-based algorithm which subdivides the search region into sub-regions known

as cells, decides an optimal next cell to search, and distributes the results of the search

to other cooperative search assets. Each cooperative search asset would store the fol-

lowing four crucial arrays in order to decide which cell to search: current estimated

target density of each cell; the current number of assets in a cell; each coopera-

tive asset’s next cell to search; and the total time any asset has been in a cell. A

software-based simulation based environment, Advanced Framework for Simulation,

Integration, and Modeling (AFSIM), was utilized to complete the verification pro-

cess, create the test environment, and the System under Test (SUT). Additionally,

the algorithm was tested against threats of various distributions to simulate cluster-

ing of targets. Finally, new Measures of Effectiveness (MOEs) are introduced from

AI and ML including Precision, Recall, and F-score. The new and the original MOEs

from Hatzinger and Gertsman are analyzed using Analysis of Variance (ANOVA) and

covariance matrix. The results of this research show the algorithm does not have a

iv



significant effect against the original MOEs or the new MOEs which is likely due to

a similar spreading of the Networked Collaborative Autonomous Munition (NCAM)

as compared to Hatzinger and Gertsman. The results are negatively correlated to a

decrease in target distributions standard deviation i.e. target clustering. This second

result is more surprising as tighter target distributions could result in less area to

search, but the NCAM continue to distribute their locations regardless of clusters

identified.

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Digital Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem Statement and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Document Overview and Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Theory of Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Optimal Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Princess and The Monster Game . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cooperative Wide Area Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Super-Organism Cooperative Search Strategies . . . . . . . . . . . . . . . 10
2.2.2 Genetic Algorithm Search Strategies . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Statistical Cooperative Search Strategies . . . . . . . . . . . . . . . . . . . . . 13

2.3 AFSIM Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Autonomous System Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Hybrid Architecture for Multiple Robots . . . . . . . . . . . . . . . . . . . . . 18
2.5 Cooperative WAS Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 AFSIM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Munition Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Auction Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Measure of Effectiveness (MOE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Precision, Recall, and F-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Page

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Rapid Design and Evaluation of Autonomous Systems . . . . . . . . . . . . . . . 27
3.2 Cell Algorithm updates to Hyrbid Architecture for

Multiple Robots (HAMR) Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Cell Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Additional Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Total Targets vs Expected Targets . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.4 NCAM HAMR Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Target Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Algorithm Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Search Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Simulation Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Digital Engineering Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Summary of Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.1 How can DE be used to facilitate the rapid

design and evaluation of autonomous systems? . . . . . . . . . . . . . . . 54
5.1.2 How does creating search cells in cooperative

WASetection effect the results of compared to
the original work by Hatzinger and Gertsman? . . . . . . . . . . . . . . . 54

5.1.3 How does target clustering effect the
performance of the algorithm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.4 Are there other MOEs that which can evaluate
the algorithm more effectively? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Limitations and Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



List of Figures

Figure Page

1. AFSIM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. Updated version of the HAMR architecture including
the UBF. The Sequencer sends candidate behaviors to
the UBF for selection via arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. HAMR block diagram, including the Coordinator. The
arrows indicate information flow direction. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. HAMR with multiple robots. The internal data flow has
been removed for simplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. A visual description of Precision and Recall. . . . . . . . . . . . . . . . . . . . . . . . . 26

6. AFSIM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7. AFSIM Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8. DecideNextCell Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9. Results NCAMcreateGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10. Results NCAMsearchGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11. Results NCAMcooperate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12. Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



List of Tables

Table Page

1. NCAM Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Analysis Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Target distribution standard deviation based on degrees
and translated into Latitude and Longitude. . . . . . . . . . . . . . . . . . . . . . . . . 42

4. Original Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. New Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6. New Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7. Original MOE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8. New MOE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



COOPERATIVE WIDE AREA SEARCH ALGORITHM ANALYSIS USING

SUB-REGION TECHNIQUES

I. Introduction

1.1 Background and Motivation

Recent advancements in small Unmmaned Aerial Vehicles (UAVs) technology

combined with the modern communications systems have reinvigorated interest in

cooperative Wide Area Search (WAS) algorithms. These algorithms seek to optimize

multiple detecting agent sensors in order to search, and identify targets of interest.

The search area is bounded and could pose lower priority targets or false targets.

The searching agents must be able to search an area, identify targets, confirm tar-

gets, communicate target level, manage multiple targets, request assistance from other

searching agents, coordinate search areas, and aid other searching agents to confirm

targets. Using small UAVs, extensive research is possible to test algorithms, areas,

and other parameters pertinent to the WAS problem.

When considering search asset parameters, specific examples include number of

search assets, area coverage rate of search asset, sensor probability of detection (PD),

and warhead probability of kill (Pk). For the target parameters, examples include,

but are not limited to, number of targets, target priority, number of false targets,

distribution of targets, and target movement. Furthermore, cooperative search al-

gorithms introduce another set of parameters including, but not limited to, types of

search patterns and ability to cooperate. Modern testing techniques utilize Design of

Experiments (DOE) to find the most relevant factors, minimize the amount of testing

1



parameter combinations, and streamline testing. But even using DOE, the amount

of parameters to test can be daunting and create real limitations on development of

WAS algorithms. The construction, verification and validation of a cooperative wide

area search (WAS) algorithm suffers from the Curse of Dimensionality, a term first

coined by Bellman in 1957[1]. The curse of dimensionality indicates that the number

of samples needed to estimate an arbitrary function with a given level of accuracy

grows exponentially with respect to the number of input variables (i.e., dimension-

ality) of the function. Digital Engineering (DE) techniques are employed to manage

this “curse” and employ proper verification and validation of the cooperative WAS

algorithm.

DE can aid this limitation. DE is an integrated digital approach that uses au-

thoritative sources of systems’ data and models as a continuum across disciplines

to support life-cycle activities from concept through disposal [2]. It establishes how

models and simulations can support Systems Engineering (SE) processes by using

Model Based System Engineering (MBSE) and an environment for the models to

interact. MBSE is a formalized methodology that is used to support the require-

ments, design, analysis, verification, and validation associated with the development

of complex systems [3]. MBSE is not limited to a particular software suite or a par-

ticular set of modeling tools, but this research utilizes two main software tools. Catia

Magic Systems of Systems Architecture was used for model verification and Advanced

Framework for Simulation, Integration, and Modeling (AFSIM) was used for model

validation.

Cooperative control is an important task for efficient target search by a group of

UAVs. Compared with the centralized control algorithms, distributed control algo-

rithms are more robust to accidental failures of UAVs and breaks of communication

links [4].

2



1.2 Digital Engineering

DE is defined as ”An integrated digital approach that uses authoritative sources

of systems’ data and models as a continuum across disciplines to support life-cycle

activities from concept through disposal” [2]. While DE spans the entire life-cycle

of a system, this research concentrates on verification and validation of a system.

Department of Defense (DoD) policy enforces the Verification and Validation (V&V)

of models, simulations, and associated data used [5]. Verification confirms that a

system element meets design-to or build-to specifications [6]. Validation evaluates a

system or software component during, or at the end of, the development process to

determine whether it satisfies user needs [7]. A purpose of DE is to extend the V&V

process to digital platforms. The goal is to reduce the cost and schedule of V&V

while maintaining performance. The cost reduction can specifically be quantified in

the test phase. A limitation of this approach is the models are only as realistic as they

are programmed to be. A model may be constrained in an unforeseen and unknown

manner and therefore bias the data and the results.

1.3 Design of Experiments

When testing WAS parameters, a DOE approach can be utilized in order to test

the parameter space. DOE is a systematic, rigorous approach to engineering problem-

solving that applies principles and techniques at the data collection stage so as to

ensure the generation of valid, defensible, and supportable engineering conclusions.

In addition, all of this is carried out under the constraint of a minimal expenditure

of engineering runs, time, and money.

3



1.4 Problem Statement and Scope

While the research conducted on optimal search algorithms for cooperative and

non-cooperative WAS is extensive, the problem space is much too large for comprehen-

sive tests of all known, and potentially unknown, algorithms. This limitation, created

by the “Curse of Dimensionality,” facilitates the need for rapid algorithmic design up-

dates which can test the combination of many parameters without a requirement for

a physical test environment. With increased work in digital test environments, ad-

ditional trust of a digital verification and validation is gained. The ultimate goal of

this research is to increase the scope and applications of DE.

1.4.1 Scope

This research will explore a subset of cooperative search algorithms in an environ-

ment created by Hatzinger and Gertsman [8]. It will explore a subset of possibilities

associated with sub-dividing a search region for cooperative munitions to utilize for

search optimization. This research will explore target distributions and clustering of

targets. This research will add the Measure of Effectiveness (MOE) of F-score as a

result and discuss its effectiveness.

1.4.2 Research Objectives and Questions

This research specifically utilizes the previous work by Hatzinger and Gertsman

of a rich environment for exploring creative search algorithm techniques [8]. The

combination of sub-regions and non-uniform target distributions creates a new avenue

of parameters for verification.

The primary goal of this research is to model a set of cooperative WAS algorithm

using AFSIM in order to validate dividing the total search region into sub-regions

known as “cells,” increasing the communication between the Networked Collaborative

4



Autonomous Munition (NCAM), clustering the targets, and evaluating additional

MOE criteria. In support of this objective, the following questions will be answered:

1. How can DE be used to facilitate the rapid design and evaluation of autonomous

systems?

2. How does creating search cells in cooperative WAS detection effect the results

of compared to the original work by Hatzinger and Gertsman?

3. How does target clustering effect the performance of the algorithm?

4. Are there other Measures of Effectiveness (MOEs) that which can evaluate the

algorithm more effectively?

1.5 Methodology

The structure, functions, and autonomous munitions created in AFSIM by Hatzinger

and Gertsman [8] will be used to validate a decision-based algorithm which will divide

the entire region into sub-regions which will henceforth be called cells. New parame-

ters will be created to control the algorithm which will be discussed more thoroughly

and a walk-through of the algorithm will be presented. The original MOEs created

by Hatzinger and Gertsman will be analyzed along with new MOEs from Artificial

Intelligence (AI) and Machine Learning (ML) techniques known as precision, recall,

and F-score. Additionally, target clustering will be analyzed by creating distributions

of targets throughout the entire search region.

1.6 Assumptions and Limitations

AFSIM implements a robust Object-Oriented Programming (OOP) framework

built on C code. AFSIM guides, coding standards, and implementation contain as-

5



sumptions and limitations which are assumed for all programming. In addition to

these limitations, a number of other assumptions will be made:

1. AFSIM (version 2.7.1) is the simulation framework used for scenario generation,

mission effectiveness simulation, and results visualization. Some methods used

may be deprecated or not available if using different versions of AFSIM.

2. While the design of munition subsystems and components are relevant to mis-

sion effectiveness, they are beyond the scope of this thesis and will be abstracted

to the greatest extent possible.

3. All specific values used for system and subsystem value properties (e.g. munition

endurance, sensor capabilities, aerodynamic properties, etc.) are purely notional

and are not intended to be representative of any specific munition or fielded

system.

1.7 Document Overview and Preview

This document is organized as follows. Chapter I provides an overview of relevant

background information and motivation for this research, the problem statement,

research objectives, proposed methodology, and limitations and assumptions. Chap-

ter II discusses the relevant background, and literature review including theory of

search, WAS algorithms, experimental planning, AFSIM overview, and the current

model created by Hatzinger and Gertsman[8]. Chapter III details the methodology

used for developing a unique search algorithm, outlines the additions and changes

from the previous model, discusses the alternative target distributions, and describes

the analysis method. Chapter IV presents the results of the cooperative search algo-

rithm based on several variations. Finally, Chapter V discusses the conclusions drawn

from the results.

6



II. Background and Literature Review

This chapter discusses Digital Engineering (DE) techniques, search theory, history

of search algorithms, and discusses the previous and current research which setup this

project.

2.1 Theory of Search

The Theory of Search and the mathematical study began during World War II

by the US Navy Operations Research Group in the challenge of finding enemy sub-

marines in open seas [9]. Based on these experiences, probabilistic models for search

and detection were created that could then be optimized to most efficiently distribute

search effort over a given region. Due to the versatility of the model and myriad

requirements for search algorithms, the search theory has been applied to lost sub-

marines, in the cases of the USS Scorpion and USS Thresher [10], and to rescue lost

hikers [9]. Concurrent with the development of probability-based detection models,

game theory has been applied to search problems as well to investigate the effects

that target behavior may have on search methods [11].

2.1.1 Optimal Search

If random search can be thought of as a “lower end” for search effectiveness, then

clearly improvements in search effectiveness can be realized by imposing a search

methodology. Stone presented a “branch and bound” algorithm for formulating op-

timal path-constrained searches [12]. While the method presented was specifically

for searches in discrete time and space, Stone also noted that such methods could be

used to approximate search in continuous time and space as was done in the search

for the SS Central America.

7



Stone has completed work on the search for multiple targets using multiple searchers

[12]. The optimal solution here tends to spread the search effort across the most tar-

gets and the maximum target area. In this model, the targets could be moving or

stationary. While the function proposed by Stone does account for probability of de-

tection (PD) it does not account for probability of kill (Pk). When this is accounted

for, an even spread of multiple assets is no longer the optimal solution since it may

take more than one asset to destroy the target.

2.1.2 The Princess and The Monster Game

The Princess and the Monster Game is a two-player zero-sum game first introduced

by Isaacs [11] that models a searcher (the “monster”) looking for a mobile target (the

“princess”). Isaacs describes the search space as a dark room where they cannot see

each other. The monster has a known and limited speed w while the princess is free

to move at any speed. The monster captures the princess if it approaches the princess

within a fixed distance L. The princess seeks to maximize the time before capture by

the monster. As described by Isaacs, the Princess and the Monster Game is roughly

analogous to the search scenarios presented by Washburn and Koopman [9] that were

discussed previously, with the difference that it does not require the target speed to

be less than that of the searcher. Isaacs speculated that the optimal strategy for the

monster was to search randomly, while the optimal strategy for the princess was to

move at a speed w that matches the speed of the monster.

2.2 Cooperative Wide Area Search

The goal of a Wide Area Search (WAS) algorithm is to efficiently utilize multiple

assets to search, detect, and identify identify targets in a large, unknown environment.

In civilian uses, the targets could be survivors of a tsunami in order to save lives. In

8



military applications, the targets could be underwater submarines or mobile missile

system. In all of these, the environment and search asset changes, but the search

algorithms can be similar.

Several parameters define scenarios such as search area size, search pattern, search

asset speed, target density, target distribution, and target movement. Common met-

rics to evaluate wide area search algorithms include coverage area rate and false

detection rate with these largely being dependent on sensor performance [13].

Previous research applied to the munition WAS problem has shown that the ap-

plication of cooperation to a problem does not guarantee improved results and thus

should be thoughtfully applied [14]. It has been found that cooperation yields the

greatest improvement when sensor performance is relatively poor and when the num-

ber of deployed agents is scaled according to the target density [14, 15, 16]. A co-

operative WAS algorithm is primarily resource limited. The resources which limit

successful detection may include, but are not limited to, time, fuel, sensor Field of

View (FOV), and sensor PD [16].

Resources can be expanded through the use of multiple agents assigned to the same

mission area. While increasing the number of search assets increases the resources

available, it also new set of parameters such as whole search area size information,

chance of cooperation, allowance for reinforcement assets, and others.

All search algorithms are attempting to solve a cost function of some kind within

a set of constraints. One method which attempt to understand these constraints is

Model Predictive Control (MPC). MPC is a multi-variable control algorithm that

uses an internal model which can be static or dynamic, a cost function J , and an

optimization algorithm to minimize the cost function. MPC has been shown to solve

a cooperative WAS search patterns [17]. But the parameters which the cost function

will attempt to minimize are not always well defined.

9



2.2.1 Super-Organism Cooperative Search Strategies

A “super-organism” is any set of organisms which work in tandem to reach a goal.

While there are many examples of this in nature, the scientific community is also

seeing the human body as such a creature. In WAS, the “super-organism” either

communicates with or senses other searching assets to make a holistic assessment of

the search region and devise a strategy on where or how to search next. Quite often,

when a birds-eye view is taken, the assets can be viewed as having one motion or

intent.

2.2.1.1 Differential Search Algorithm

The Differential Search Algorithm (DSA) is an advanced swarm based evolution-

ary search algorithm [18]. DSA analogically simulates a super-organism that migrates

between two stopovers. DSA has its unique mutation and crossover operators. The

structure of mutation operator of DSA contains just one direction pattern apart from

the target pattern. The structure of crossover operator of DSA is very different

from the structures of crossover operators used in advanced Differential Evolution

algorithms (i.e., binomial and exponential) [19, 20]. DSA contains two control pa-

rameters which are used for controlling the degree to which the trial pattern will

mutate in comparison to the target pattern. Each trial pattern uses the correspond-

ing target pattern for evolving towards stopovers that provide a better fitness value.

DSA’s lack of a strategy based on greater utilization of the patterns that provide a

relatively better solution may affect its local search ability while solving the unimodal

problems.

10



2.2.2 Genetic Algorithm Search Strategies

Inspired by Charles Darwin’s theory of natural evolution, a genetic algorithm is

a search heuristic. This algorithm reflects the process of natural selection where the

fittest individuals are selected for reproduction in order to produce offspring of the

next generation. The algorithm requires test environments to ”evolve” a solution.

The goal is for the algorithm to make small changes to itself, select the most optimal

among the results, discard the rest, then repeat until a specific threshold is reached.

2.2.2.1 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithms are attempting to create a

“super-organism” which acts as one moving unit which is analogous to large flocks

of birds or schools of fish [21, 22, 18, 23, 24]. In a PSO algorithm, each random or

pseudo-random solution of an individual particle moves in response to the collective

super-organism. A PSO algorithm can be connected to a genetic algorithm and the

random solutions can be understood as changes in genes or chromosomes [25]. In this

case, the accumulated updates to the genetic algorithm are optimized according to

the PSO algorithm solution.This situation is believed to simulate the communication

mechanism between the homogenous living beings that move together with the super-

organisms [22, 18, 23].

2.2.2.2 Comprehensive Learning Particle Swarm Optimization

The Comprehensive Learning Particle Swarm Optimizer (CLPSO) algorithm uses

the historical best information of all other particles for updating the speed of a par-

ticle [26]. CLPSO, contrary to many other PSO versions, has the capability to solve

multimodal functions [23]. The control parameters that belong to CLPSO are; scale

factor, refreshing-gap, learning-probability and inertia-weight [26]. A detailed study

11



pertaining to the structure and problem solving success of CLPSO algorithm is pre-

sented in by Liang and Qin [26].

2.2.3 Differential Evolution

The Differential Evolution algorithm was first proposed by Storn and Price as a

population-based evolutionary algorithm for the optimization of continuous variables

in multi-dimensional spaces [27]. Like genetic algorithms, Differential Evolution is

modeled on the competitive mechanisms of natural selection and genetic pressure

studied by Darwin [28]. Differential Evolution is a method that optimizes a solution

by iteratively trying to improve a candidate solution with regard to a given measure of

quality. Differential Evolution is used for multidimensional real-valued functions but

does not use the gradient of the problem being optimized, which means Differential

Evolution does not require the optimization problem to be differentiable, as is required

by classic optimization methods such as gradient descent and quasi-newton methods.

Differential Evolution can therefore also be used on optimization problems that are

not continuous, are noisy, change over time, etc.

2.2.3.1 Self-Adaptive Differential Evolution Adaptation

The Strategy Adaptation Based Differential Evolution (SADE) algorithm uses the

mutation strategies used in the Differential Evolution algorithm adaptively [18, 29,

19, 20]. The mutation strategy to be used any time is determined on the basis of

the probability values calculated according to the problem solving success that the

related mutation strategies obtained in the previous iteration steps.

12



2.2.3.2 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm [18,

30] is a global search algorithm based on evolution-strategy. CMA-ES determines the

solutions that belong to the next generation by using multivariate normal distribution.

When the subject matter distribution is used, the relations between the parameters

of the problem are expressed by using a covariance matrix. CMA-ES is based on re-

updating of the covariance matrix that models the relations between the parameters

of the related optimization problem by using multivariate normal distribution, in

each generation. CMA-ES takes advantage of the ranks of candidate solutions to

update the related covariance matrix. In other words, to be able to update the mean

value of multivariate normal distribution CMA-ESS uses the solutions obtained in the

previous generation. For reaching a solution CMA-ES needs to know the dimensions

of the problem, the initial mean and standard deviation values of the multivariate

normal distribution. The problem solving success of CMA-ES has been examined in

detail in [18].

2.2.4 Statistical Cooperative Search Strategies

Statistical cooperative search strategies use various statistical formulas in order

to predict optimal search models.

2.2.4.1 Cuckoo Search

The Cuckoo-Search algorithm (CK) algorithm is a population based stochastic

search algorithm [31], which is quite successful in solution of numerical optimization

problems. In CK, every new solution has a tendency to search around the best solu-

tion obtained beforehand. CK is structurally very similar to Differential Evolution.

However, in general, it has a better problem solving success in comparison to Differ-

13



ential Evolution. CK has 2 control parameters. The structure and problem solving

effectiveness of CK have been examined in detail in [22, 31].

2.2.4.2 Biogeography-Based Optimizer

The Biogeography-Based Optimization (BBO) algorithm is a new biogeography-

inspired optimization algorithm that uses migration operator to ensure information

sharing between the obtained solutions [32]. BBO has been patterned as a Markov

process. BBO develops just one individual through the solutions obtained at a certain

moment. Every solution is named as a habitat. The obtained good solutions have a

tendency to share the individuals which they have with other solutions. Accordingly,

relatively worse solutions can accept an individual from other solutions. BBO has

been used in solution of image processing, power system optimization, and antenna

design problems. The structure of BBO and problem solving effectiveness is examined

in detail in [32].

2.3 Advanced Framework for Simulation, Integration, and Modeling (AF-

SIM) Overview

A brief overview of AFSIM is important in understanding some AFSIM specific

terms that are used in future chapters. AFSIM is a software simulation framework

that allows for the modeling and development of analytic simulations at various levels

of scope and fidelity. As a framework, AFSIM is not a single application or language; it

instead consists of multiple applications and libraries within an extensible architecture

[33]. The core AFSIM application is “mission,” which parses user defined “scenario

files” to construct and run the desired simulations. Other AFSIM applications include

“Wizard,” an integrated development environment and text editor used to create

scenario files and “Mystic,” a binary event replay program that allows for simulation

14



playback and visualization.

AFSIM scenarios make use of an Object-Oriented Programming (OOP) approach.

The core components of AFSIM scenarios are “platforms” which are entities within

the scenario that can be used to represent vehicles, buildings, people, etc. Each

platform is defined by a “platform type” or template that is common to all platforms

of that type; this is analogous to a class in other OOP languages. Each platform type

can be further broken down into “parts” that perform some function and “attributes”

that contain information relevant to the platform. An overview of AFSIM platforms is

shown in Figure 1. By default, AFSIM includes a variety of pre-defined platform and

part types, typically denoted by the prefix World Simulation Framework (WSF). Users

can modify these predefined types to create custom templates relevant for their use

cases. Once the desired platform types and part types are defined, specific platform

instances can be instantiated into a scenario for simulation. The OOP approach

and decomposition of platform types into multiple parts allows for a high degree of

modularity and reuseability within AFSIM scenarios.

AFSIM further differentiates between commands and scripts/methods. Com-

mands are typically used to set simulation options, to define attributes for platform

types and part types, and to instantiate platforms into the scenario. Scripts allow for

dynamic events to occur within the simulation by controlling platforms, accessing and

changing data, triggering events, etc. Scripts can be executed globally in the scenario

or locally by processors onboard each platform. Each platform and part type within

AFSIM has built in script methods associated with it that define specific functions

that can be performed. For example, air movers have built in methods associated with

setting waypoints to navigate to. Using combinations of commands and scripts, users

can define scenarios that are modular, dynamic, and of almost limitless complexity.

15



Figure 1: AFSIM overview of platforms and their constituent parts. Reproduced
from AFSIM User Training Materials [33].

2.4 Autonomous System Architectures

Early architectures for autonomous agent control emphasized a sense-plan-act ap-

proach [34]. These approaches emphasized a straightforward, linear flow of control

but were often found to be too unreliable and slow when implemented in real world

settings. In response to these shortcomings, Gat [34] proposed a three-layer archi-

tecture that decomposed the control of an autonomous agent into three components

that function simultaneously and that communicate in both directions between ad-

jacent layers. Gat conceptualized these components as the controller, the sequencer

and the deliberator. The bottom layer, the controller, is responsible for implementing

the transfer functions that transform control inputs into what Gat calls ”primitive

behaviors”, e.g. simple reactive control such as moving to a destination. The second

16



layer, the sequencer, selects which primitive behavior to do and when, enabling the

sequencing of primitive behaviors to perform more complex tasks. The top layer,

the deliberator, performs long-term planning to determine what sequences the agent

should perform and passes this information to the sequencer. Because these compo-

nents operate in parallel, the three layer architecture allows for long-term planning

to occur while not sacrificing the agent’s ability to make rapid reactions in a dynamic

environment. In addition, as the deliberator functions on a longer characteristic time

scale than the lower-layer components, Gat writes that ”there are no architectural

constraints on algorithms in the deliberator”, suggesting that any behavior model

including state machines, behavior trees, or even machine-learning approaches could

be used in the deliberator. A model shown in figure 2 shown data flows and Unified

Behavior Framework (UBF). The UBF is a tool for enabling both the selection of

behaviors by utility and generating composite behaviors from a collection of non-

competitive behaviors [35].

Figure 2: Updated version of the HAMR architecture including the UBF. The Se-
quencer sends candidate behaviors to the UBF for selection via arbitration. Repro-
duced from Hooper [35]

17



2.4.1 Hybrid Architecture for Multiple Robots

While Gat’s three-layer architecture was a significant step forward for single agent

autonomous control, it did not address autonomous control and cooperation between

multiple autonomous agents. Further work in this area was performed by Hooper

[35], who proposed an extension to Gat’s three-layer architecture called the HAMR.

HAMR adds an additional fourth component to the autonomous architecture, called

the coordinator. Hooper envisions the coordinator as the focal point for conducting

communications between the agents to include task assignment, monitoring of the

other agents, and maintaining a list of group members.

Figure 3: HAMR block diagram, including the Coordinator. The arrows indicate
information flow direction. Reproduced from Hooper [35]

A block diagram representation of HAMR for two agents is shown in Figure 4.

Hooper concluded that HAMR provided several benefits over alternate multi-agent

autonomous architectures, as demonstrated by a simulated team of HAMR agents

defeating a simulated team of Layered Multirobot Architecture agents in a game of

soccer. By preserving the three-layer approach of Gat, each individual agent is able

to act independently when necessary. In addition, HAMR is highly modular - as long

18



as the interfaces between the layers are maintained, HAMR is extensible and allows

for new capabilities to be added without altering the architecture as a whole. Finally,

Hooper found that HAMR was also robust to the loss of agents from the group as

the coordinator provided a means for task re-allocation to occur dynamically.

Figure 4: HAMR with multiple robots. The internal data flow has been removed for
simplicity. Reproduced from Hooper [35]

2.5 Cooperative WAS Scenario Description

The cooperative WAS studied in this research is based on the scenario developed

by Hatzinger and Gertsman [8]. They drew inspiration from the Princess and the

Monster game. Three types of “target objects” are distributed over a bounded search

region and can be defined as stationary or as capable of moving in a slow, randomized

manner as suggested by the Princess and the Monster game. The different types of

target objects are:

• High Priority Targets (represented by RED Scuds in the simulation)

• Low Priority Targets (represented by RED tanks in the simulation)

19



• False Target Objects (represented by GREEN trucks in the simulation)

At the beginning of the scenario, a bomber releases the WAS munitions which

ingress to the target area to begin searching, classifying, and attacking targets. Net-

worked Collaborative Autonomous Munition (NCAM) communicate among one an-

other if a target has been found. When a target has been found, an NCAM may

initiate a determination of the target threat and initiate a “bid” between the NCAM

for which munition will attack the target.

2.5.1 AFSIM Implementation

The WAS scenario is implemented in AFSIM using several modular command and

script files. The target objects are defined using newly created platform types that

inherit from AFSIM’s top-level WSF PLATFORM platform type. The newly defined

platform types include additional signatures (optical, infrared, and radar), icons, the

assignment of “sides” within the simulation, and the addition of a WSF GROUND

MOVER to enable the targets to move. A script is then used to instantiate the desired

number of each target object at the beginning of the scenario and to distribute them

over the search area. A bomber is also instantiated that carries the munitions, and

a script is used to command the bomber to release the munitions at time t = 2

minutes into the scenario. The code used to define and instantiate the platforms for

the scenario can be found in the “platforms” and “scenarios” folders of the AFSIM

directory as found in Appendix [add reference to the appendix once it exists].

2.5.2 Munition Description

The munition for the WAS scenario is called the NCAM and is modeled to the

level of major subsystems. The munition consists of an air vehicle body, a sensor used

to perform the search, classification and guidance functions required, a warhead, a

20



transmitter and receiver used for inter-missile communications, and several processors

as required.

The sensor and Autonomous Target Recognition (ATR) function uses a tertiary

confusion matrix to model correct and incorrect target identification as shown in

Table 1. As seen in Table 1, this implementation assumes a symmetric confusion

matrix with the same probability of correct identification (PID) for each target type

and an equal probability of incorrectly identifying a target as one of the other two

types. This symmetry is chosen to limit the number of factors to be varied in the

Design of Experiments (DOE) matrix. [8]

Table 1: Confusion matrix used by NCAM sensor in WAS scenario

Encountered /
Declared

SCUD TANK TRUCK

SCUD PID (1 - PID)/2 (1 - PID)/2
TANK (1 - PID)/2 PID (1 - PID)/2
TRUCK (1 - PID)/2 (1 - PID)/2 PID

2.5.3 Auction Algorithm Description

The critical factors in this cooperative scheme are the values of the bids returned

by the munitions and the thresholds required for bids to be accepted. When a mu-

nition sends a request for bids, it includes the perceived target location in the bid

request message. When munitions receive a request for bids, they calculate a bid to

return to the requestor based on their own location, flight time remaining, and the

reported target location as shown in Equations 1 and 2:

21



Bid =



%TimeUsed ∗ (1−%MaxRange), if NCAM State is Search or Ingress

−1, if NCAM State is NOT Search or Ingress

OR insufficient flight time to reach target

−2, if reported target location is within 100 meters

of munition’s current target

(1)

Where

%MaxRange =
RangetoTarget

DiagonalLengthofSearchRegion
(2)

As seen in Equation 1, bid values range from 0 to 1 for munitions that are con-

sidered ”available” for cooperation or are set to -1 if the munition is busy (such as

if it is already prosecuting a target). In addition, a munition can send a bid of -2

if it believes it is already prosecuting the found target; if a requestor receives a bid

of -2 from any munition other than those already cooperating with it, it returns to

search. This prevents multiple sets of cooperating munitions from converging on the

same target. For munitions that are available to cooperate, bid values initially begin

close to 0 and increase throughout the mission, meaning munitions are more likely to

cooperate later in the mission and are more likely to act independently early in the

mission, depending on the chosen cooperation thresholds.

2.5.4 Assumptions and Limitations

The following is a list of assumptions and limitations based on the original Hatzinger

and Gertman’s algorithm. These remain valid for this research unless otherwise stated

in the Chapter III.

22



1. The size and shape of the search region is fixed as a square of side length 200

km.

2. The total number of target objects (i.e. true and false targets) withing the

region is fixed at 20.

3. Terrain and environmental considerations are not modeled.

4. AFSIM can simply and easily create variables for World Simulation Framework

(WSF) platforms outlined explicitly. However, to outline a WSF platform ex-

plicitly removes the option to automate different variable numbers of NCAM

or threats. Therefore, using the auxiliary data format remains the optimal

programming method.

5. The ratio of high priority targets to low priority targets is fixed at 1:1.

6. In the uniform target distribution scenario, the target objects are randomly and

uniformly distributed within the search region at the beginning of each scenario.

7. We only considered a 2-dimensional control scheme assuming that all agents

move on a fixed plane parallel to the ground plane. However, in the real world,

Unmmaned Aerial Vehicles (UAVs) such as helicopters can change their alti-

tudes according to their task requirements so as to enlarge their sensing area

(here we only consider cameras with a fixed zooming level). Therefore, in this

paper, we will consider the influence of 3-dimensional dynamics of UAVs on the

detection performance.

2.6 Measure of Effectiveness (MOE)

An MOE is a measure of the ability of a system to meet its specified needs (or

requirements) from a particular viewpoint. This measure may be quantitative or qual-

23



itative and it allows comparable systems to be ranked. These effectiveness measures

are defined in the problem-space. An Measures of Effectiveness (MOEs) is typically

defined by a threshold value which is the minimum value for a system to be con-

sidered viable but these values can be considered an output parameter to maximize.

MOEs should use assessment indicators that are relevant, measurable, responsive,

and resourced so there is no false impression of task or objective accomplishment.

The selection of MOEs is paramount in evaluating an algorithm for success or failure.

In the design by Hatzinger and Gertsman[8], 17 response variables were measured

as MOEs which are identified in Table 2. These response variables provided am-

ple analysis space for the scenarios. Statistical software could then be employed to

determine the correlation between any input factor and any of the response variables.

Table 2: Analysis Parameters in Hatzinger and Gertsman Scenario Design
Percent True Target Detected Percent Total Targets Detected
Total Number of detections Percent Type 1 Errors
Percent Type 2 Errors Percent True Targets Destroyed
Percent High Priority Targets Destroyed Number Unique Scuds Attacked
Number SCUDs Attacked Number SCUDs Killed
Number Unique Tanks Attacked Number Tanks Attacked
Number Unique Trucks Attacked Number Tanks Killed
Number Trucks Attacked Number Trucks Killed
Number Munitions Ditched

When answering the research question of alternative MOEs, it is important to

note that the list outlined by Hatzinger and Gertsman may be sufficient. It is pos-

sible to use a combination of analysis parameter to maximize for greatest algorithm

effectiveness. But this list is not a all of the possible parameters. Machine Learning

(ML) techniques have brought additional analysis parameters which can be applied

in various methods.

24



2.6.1 Precision, Recall, and F-score

Drawing in the inspiration of Artificial Intelligence (AI) and ML algorithm analy-

sis, the response variable of precision, recall, and f-score are viable options for MOEs.

Precision is the percentage value indicating how many of those results are correct

(correct being based on the expectations of a certain application). Precision is math-

ematically defined in equation 3. It can be thought of as asking: How many retrieved

items are relevant?

Precision =
TruePositives

PredictedPositives
(3)

Recall is the percentage value indicating how many of the correct results are

found (correct being based on the expectations of a certain application). Recall is

mathematically defined in equation 4. It can be thought of as asking: How many

retrieved items are retrieved?

Recall =
TruePositives

ActualPositives
(4)

In Figure 5, a visual description of precision and recall is shown. In this diagram,

circles and X’s represent the data set with circles being actual positives and X’s

being actual negatives. Inside the green and red areas is what the system under

test understood as positives with false positives being the error associated with the

algorithm.

An F-score, also called the F1 score and F-measure, is the harmonic mean of

Precision and Recall values of a system and is given by equation 5

F -score =
2 ∗ Precision ∗Recall

Precision + Recall
(5)

Many systems face a challenge improving precision or recall without negatively

25



Figure 5: A visual description of Precision and Recall.

affecting the other which enables F-score to be a good measure. Criticism around the

use of F-score values are that a relatively high F-score can occur from an imbalance

of precision and recall and therefore will not be completely descriptive of the results.

chapter III will describe how this research expands on work outlined here.

26



III. Methodology

The following chapter discusses the relevant topics for implementing changes to

Hatzinger and Gertsman test assets and environment. The following topics are dis-

cussed: the implementation of rapid algorithm design and testing; alterations to the

Hyrbid Architecture for Multiple Robots (HAMR) architecture to implement a coop-

erative cell search algorithm, scenario updates to the threat distributions, and new

Measure of Effectiveness (MOE) analysis parameters.

3.1 Rapid Design and Evaluation of Autonomous Systems

This research and the algorithm proposed fits largely into the broader development

of Digital Engineering (DE). The Advanced Framework for Simulation, Integration,

and Modeling (AFSIM) provides a perfect platform to create a test environment, de-

sign a System under Test (SUT), and optimize the Measures of Effectiveness (MOEs).

Finally, it creates research space to rapidly change any of the four previously men-

tioned test aspects. It will be important to further dive into the rapid development

of each of these test aspects.

The test environment was not significantly altered from Hatzinger and Gertsman’s

initial test environment. Unchanged parameters include search region, geography,

landscape, number of targets, type of targets, target Radar Cross Section (RCS).

These similarities allow a sufficient comparison of the algorithm to previous work.

Rapid design and evaluation changes in the environment were introduced in two areas.

First, rapid design and programming allows the targets to be randomly distributed

for each run. This ensures that no two simulations will ever complete in an identical

fashion even though the decision algorithm remains deterministic. Second, in addition

to random target locations, target distributions and clustering was introduced. Rapid

27



design and specific programming instructions allows various and known distribution

of targets to be created, tested, and compared.

Utilizing rapid design techniques, the SUT also undergoes rapid changes through-

out the research and development process. First, it is important to discuss what was

not changed during this research. The Networked Collaborative Autonomous Mu-

nition (NCAM) assets were not altered in size, shape, velocity, sensor, or any other

physical aspects of the munition. This was important to enable some comparison

to previous work. Additionally, many internal systems were not altered either such

as the communication system. The NCAM assets were set up with an internal 10

second clock which would trigger updating some internal parameters and communi-

cating with other NCAM assets. The 10 second clock proved useful and remained.

Other internal aspects of the NCAM remain unchanged unless otherwise stated.

The creation of the HAMR architecture facilitated rapid design by its very nature.

It is intended to be “plug and play” for each module. Utilizing this architecture, rapid

development of promising ideas and removal of dead-ends can be implemented due to

the Object-Oriented Programming (OOP) design and simple additions of new scripts.

The specifics will be discussed in the remainder of this section.

While in the design by Hatzinger and Gertsman there were many MOEs were

selected to evaluate the system design, the rapid design and evaluation enables im-

plementation of new MOEs. Due to the software design of AFSIM and the system

environment, the new MOEs are easily added, measured, and scored to evaluate the

algorithm.

A final step in a rapid design feedback loop would be to implement the optimized

parameters in the algorithm based on the results of the MOEs. While the algorithm

was intermittently tested for various functionalities, the results of the MOEs are not

reintroduced into the research design system.

28



3.2 Cell Algorithm updates to HAMR Architecture

The HAMR architecture created by Hatzinger and Gertsman was maintained in

this research effort. Additions or modifications to particular aspects of the HAMR

architecture are described in the following sections. The HAMR architecture needs

to understand a new set of internal and external parameters in order to be able to

effectively decide and communicate with other NCAM assets. Internal parameters,

similar to interal messages defined later, are defined as parameters computed and

stored within a single NCAM asset and do not leave the NCAM which calculated it.

External parameters are computed and stored parameters which an NCAM will share

with other NCAM for other calculations.

3.2.1 Cell Description

The design of the new search algorithm is to subdivide the main search region,

allow multiple assets to search sub-regions, and report their status to the other NCAM

assets. Each sub-region is called a “cell”. Prior to the scenario, the number of cells

(N) is determined and fixed throughout the scenario. In order to limit the Design

of Experiments (DOE) factors, (N) is determined in a manner that the total region

is divided equivalently in latitude and longitude. This limitation creates i × i cells

where N = i2 i.e. 1, 4, 9, 16, etc. Each cell is adjacent to other cells or the total

border to the total search space and is identical in size and shape. An example of

i = 5 and N = 25 can be seen in Figure 6.

Each NCAM needs the ability to communicate information about a cell. Each

cell is given a reference number n and all NCAM assign reference numbers in an

identical process. The cell reference number starts at 0 to N where N is the total

number of cells. Counting for the cell reference numbers start in the south west cell

and increases sequentially to the northwest corner then repeats in this fashion. There

29



Figure 6: A screenshot of the WAS scenario as implemented in AFSIM. Note the 25
total cells and their corresponding reference number. The targets shown are normally
distributed in a single cluster.

is no significance to the numbering system as long as each NCAM understands the

same numbering system. A cell reference number example is seen in Figure 6.

For this research, the DOE analysis will have a limited subset of N where:

N = {1,4,9,16,25,36,49,64,81,100} (6)

When N = 1, the total search region is a cell and all NCAM search without any

updated information about smaller regions. N = 100 is the maximum because it

estimates the NCAM sensor search area close to the same size as one cell.

3.2.2 Additional Algorithm Parameters

A distinction must be made between the NCAM parameters and the environmen-

tal parameter. While the NCAM parameters can initially know some environmental

30



parameters, once the scenario has begun, the NCAM must act independently of,

or in response to, the environment as opposed to receive some environmental truth

parameter directly. Environmental parameters are withheld from from the NCAM

unless specified. Once the NCAM is in-flight, it no longer has access to environ-

mental parameters and must compute updates on its own processor. In order to aid

this distinction in the notation, a pre-subscript of e will be added for environmental

parameters and a pre-subscript of N will be added to NCAM parameters for specific

parameters which may be easily confused.

3.2.2.1 Environmental Parameters

The following global parameters are used for environment setup and not passed

to the NCAM.

1. Total Number of Targets (eTTarget) - An value of type integer defined as the

total of high priority targets, low priority, and false targets.

2. Total Number of NCAM (eTNCAM) - An value of type integer defined as the

total of NCAM deployed in the scenario.

3. Target Distribution Type (D) - A description marker used to place the targets

throughout the total search area and is restricted to Normal or Uniform.

4. Distribution Standard Deviation (DStdDev) - A value of type double used to

define the standard deviation of the normal distribution of targets. This value

is only used if (D) = Normal. This variable defines the clustering of the targets.

5. Region Width (RW ) - A value of type double and unit (m) defined as 200000m

or 200km.

6. Total Number of Cells (N) - A value of type integer defined as the total number

of cells.

31



7. Maximum NCAM assets per cell (M) - A value of type integer defined as the

maximum allowable NCAM to search a cell simultaneously.

8. Update Interval (UI) - A value of type integer and unit (seconds) of which an

NCAM until will send a regular status update message. The default value is

10s.

9. Area Searched per Second (ANCAM) - The width of an NCAM sensor based

on it’s altitude is 17km. It’s standard velocity is 100 m/s. Therefore, the area

searched by a single NCAM asset is 1.7× 106m2/s.

10. Number Cells of the Region Side(i) - A value of type integer equal to the square

root of the total number of cell N .

i =
√

N (7)

11. Cell Area (a) - A value of type double and in units of (m2)calculated as the area

of each cell.

a =
Total Area

N
= Cell Width2 (8)

12. Cell Length (Lcell) - A value of type double and units (m) calculated as the

Region Width (RW ) divided by the number of cells of the region side (i).

Lcell =
RW

i
(9)

13. Maximum Cell Search Time (eCSTMax) - A value of type double calculated

as the average amount of time needed for an NCAM to search a cell. This

initialized value will become the maximum allowable time for the NCAM Cell

32



Search Time CSTn matrix defined in Section 3.2.2.2.

eCSTMax =
Cell Area

NCAM Area Searched per Second
(10)

3.2.2.2 NCAM Parameter

Upon deployment of the NCAM in the scenario, the NCAM will initiate 4 matrices

of size equal to Total Number of Cells (N). Each matrix is enumerated similarly

according to the cell reference number 0 to N where N is the total number of cells

Each of these matrices are initiated with their corresponding starting values but

subsequently updated throughout the scenario according to their descriptions. These

matrices are:

1. Estimated Target Density (ETDn) - A matrix of type double defined as the

total number of targets divided by the number of cells and divided by the total

area for each n in ETDn. The purpose of this matrix is to have an estimate of

the various target densities of each cell throughout the total search region. All

values of ETDn are initialized to the same initial value according to Equation

11 which implies no known knowledge of the search region or a distribution of

targets.

ETDn =
Expected Total Number of Targets

Total Number of Cells
=

TargetE
N

(11)

Once the scenario begins, ETDn is updated according to cell search results.

2. Assets Per Cell (APCn) - A matrix of type integer contains the updated number

of search assets in cell n during the current UI. The purpose of APCn is for

each NCAM to have a count of all other NCAM locations throughout the total

33



search region and be able to select a new search cell such that:

APCn ≤M (12)

APCn is reset to 0 every UI and recalculated. An asset is considered in the cell

regardless of the asset’s current state or current objective.

3. Next Cell Decision (NCDn) - A matrix of type integer contains the updated

number of search assets which have chosen cell n during the current UI. The

purpose of NCDn is for each NCAM to know the future locations of all other

NCAM assets. NCDn is intended to limit the number of assets choosing the

same future cell based on the limitation:

NCDn ≤ TNCAM (13)

NCDn is reset to 0 every UI and recalculated.

4. Cell Search Time (CSTn) - A matrix of type integer is defined as the amount of

time any asset has its sensor activated and its current location is inside the nth

cell. The purpose of CSTn is for each NCAM to have a count of the amount

of time all NCAM have been within a cell and with its sensor activated. CSTn

begins at 0, accumulates throughout the scenario, and is never reset.

Each NCAM also creates a variables which it utilizes during the scenario. These

variables are typically one dimensional of various types.

1. Expected Total Number of Targets (NTExpected) - A one dimensional parameter

of type integer which is defined as the expect number of targets for all NCAM

to search. This value is assigned in the beginning of the scenario and does not

change.

34



2. Current Number of Targets (NTCurrent) - A one dimensional parameter of type

integer which defines the current number of targets for all NCAM. This value is

assigned in the beginning of the scenario and is initially set to Expected Number

of Targets. This value is updated during the scenario as an NCAM attacks a

target.

3. Current Cell Location (NLCurrent) - A one dimensional parameter of type integer

which identifies the location of the NCAM based on its location in the cell grid.

It is updated every UI interval.

4. Next Cell Location (NLNext) - A one dimensional parameter of type integer

which identifies the next cell location of the NCAM. It is updated during the

initiation of the TRAV EL2CELL phase. It may be the same as the Current

Cell Location if TRAV EL2CELL has not be re-initiated and the NCAM has

traveled to the targeted cell.

5. Current Cell Remaining For Search (NCellREMAIN) - A one dimensional pa-

rameter of type integer which contains the current number of cells remaining

to be searched. This parameter is initialized as the size of the cell grid and

reduced whenever a cell search is completed.

6. All Cells Searched - A one dimensional parameter of type boolean which identi-

fies if there are individual cells remaining to be searched. If all cells have been

searched, then this parameter is flagged as True and the remaining NCAM treat

the entire search region as one cell for the remainder of the scenario search time.

7. Maximum Time per Cell (NTCELLMAX) - A one dimensional parameter of type

integer which is calculated is the estimated amount of time in seconds an NCAM

would need to completely search a cell based on the sensor size and cell size.

35



Once calculated, this parameter is fixed throughout the scenario. It is used as

an upper limit for CSTn comparison.

3.2.3 Total Targets vs Expected Targets

For the algorithm to function, it requires an expectation about the number of

total targets in the total search region. Therefore, an important distinction must be

made between the Total Number of Targets (TTarget) and the expected number of

targets (ET ). Total number of targets is an environmental parameter used to setup

the targets within the Total Search Region. Expected number of targets (ET ) is a

variable for each NCAM of the amount of targets they compute to be still active

within the scenario at a specific time. ET is defined according the following equation:

ET =
∑
n

ETDn (14)

At the scenario initialization, (TTarget) equals (ET ) indicating the “intelligence”

given to the NCAM knew exactly how many threats were in the total search region.

ET will be divided among all N according to equation 11. Once the scenario begins

however, the algorithm re-evaluates ETDn and ET remains updated by equation 14.

3.2.4 NCAM HAMR Design

NCAM HAMR architecture is described in section 2.4.1 and the following sec-

tions only describes the changes from Hatzinger and Gertsman’s version of HAMR

architecture.

For the following HAMR architecture, the distinction between internal messages

and external messages in critical as it is described several times in the following

section. Internal messages is message traffic created inside on particular NCAM and

describes the information traffic between separate HAMR modules. External traffic

36



is only created by the NCAM Coordinator and is sent to other NCAM Coordinators

and contains the necessary data for other NCAM to update the matrices in section

3.2.2.2.

3.2.4.1 HAMR Deliberator

The HAMR deliberator has 2 major modifications. The first is a “TRAVEL2CELL”

phase was added. The purpose of this phase is to move the NCAM asset to its new

search location. During this phase, the NCAM sensor remains active, it can find

targets, and it can be queued from other NCAM assets to cooperate. Upon entering

the “TRAVEL2CELL” phase, an internal message to the Sequencer is initiated.

The second modification is the previous generic search phase is replaced with a

“CELLSEARCH” phase. The “CELLSEARCH” phase initiates 2 internal messages

to the Sequencer, one on entry and one on exit.

Figure 7: A basic diagram of the search algorithm additions presented by this model.

The primary algorithm of this cooperative search algorithm can be expressed if

the DecideNextCell script. In this script, each NCAM will make a decision on the

next cell to search with the follow checks:

37



1. Create an array of cells and ETD based on the following criteria:

a. Check if the ETDn = 0.0 for the nth cell;

b. Check if the distance to the cell is below a searching threshold;

c. Check if other NCAM have chosen the same next cell;

d. Check if the number of assets in the cell is below a threshold;

e. Check if CSTn < TCELLMAX for the cell;

f. Create a list of cell location which passed [a. through d.] and their respec-

tive ETDn;

g. If the list contains 0 cells, then expand the search criteria.

– Expand geographically

– Expand the amount of assets which have chosen to search a new cell.

– Expand the amount of assets which can search a cell

2. Once a list is created, it will search the list for a cell with the highest Expected

Target Density.

If no cells are found which meet this criteria, the script will expand its search

geographically first. If still no cells are found, the script will relax it’s requirement

of the number of NCAM assets which can search a cell. If all cells are searched, the

script will return a special code which identifies the total search region i.e. no grid

number. In this case, it will continue searching the total search region.

To describe an example, figure 8 shows the individual NCAM asset located in cell

12. When deciding which cell to search next, it needs to create a list of cells and rank

them on the highest ETDn. First, it will define a geographically local search area

and attempt to create a list of cells. For this example, see the left diagram on figure

8; it will search the cells of n = {6, 7, 8, 11, 13, 16, 17, 18}. If any of these cell have

38



ETDn > 0 and APCn < M , then it will be added to a temporary list. If the length of

this list is greater than 0, then the list will be sorted according to the greatest ETDn.

The cell of the highest ETDn will be selected. If the length of this list is equal to

zero, then it will need to attempt to create another temporary list of greater search

volume. For this example, see the right diagram on figure 8; it will search the cells

of n = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24}. Note, cell 12

remains off of the list due to the cell search being completed. Again, the algorithm

will check these cells for ETDn > 0 and APCn < M , and it will be added to a

temporary list. It will be sorted for the greatest ETDn and the cell location of the

highest ETDn will be selected. If this list length is equal to zero, the algorithm will

increase the amount of assets that can search the cell (relax the APCn requirement

by increasing it by 1). If this still yields a temporary list equal to zero, then it will

assume all cells have been searched. It will therefore consider the total search region

and treat it as a cell to be searched. Once in this state, it will continue to search

indefinitely i.e. until if finds a target, runs out of fuel, or the scenario time expires.

Figure 8: A description of the “DecideNextCell” algorithm. The NCAM is located in
cell 12 and searching for a new cell to explore. The first pass of deciding a new cell
may yield the results of the left. If the parameter for a new cell decision are not met,
the algorithm will expand to the search on the right.

39



3.2.4.2 HAMR Sequencer

Upon entering the “TRAVEL2CELL” phase from the deliberator, the Sequencer

updates the flight parameters, initiates the NCAM sensor, checks if all the cells have

been searched, decides the next cell, and builds a route to the next cell.

The selection of 3 was determined because the primary method of Sequencer phase

transition is completing waypoints. The limitation is due to the primary programming

of AFSIM state machine. The selection of three allowed an appropriate amount of

time in each cell to elapse, ensure a significant amount of the cell was searched,

and typically meant the CSTn was the limiting factor for a cell i.e. caused a phase

transition.

Upon exiting the “CELLSEARCH” phase from the deliberator, the Sequencer sets

the current location expected target density to zero and initiates an external message

to the other NCAM assets that the current local cell has been searched. Upon entering

a new “Cell Search” phase from the deliberator, the Sequencer initializes the NCAM

sensors, sets the flight parameters, creates 3 random way points to search inside the

cell, and starts a flight path to search those way points.

3.2.4.3 HAMR Coordinator

The coordinator has 3 major additions including an update status interval, a

receive message location for external NCAM time updates, and a receive process for

external NCAM completing cell searches.

The update status interval is a vital update for the coordinator to update its own

status and send external message on a known time interval. The update time interval

is used in calculation such as the area an NCAM can search in a update interval. On

every update interval, the coordinator process will:

1. Send an external message to other NCAM about its current location.

40



2. Update its own CSTn for its current cell.

3. Update its ETD for its current cell.

4. Draw the cell grid (for debugging purposes).

5. Reset the APC values of all APC to zero.

6. Check if all cells in the entire search space have been searched.

7. If the cell the NCAM is currently in exceeds the maximum time for search,

select a different cell.

When an NCAM asset receives a message from external NCAM about their time

and location, it is received in the “receive search time in cell” process. This process

will check if the message is valid and update it’s internal matrices by the following:

1. Increase the CSTn of the received location by the update interval length of time.

2. Increase the APCn of the received location by 1.

3. Reduce the ETDn of the received location by a percentage equal to the per-

centage of the cell that can be searched in the update interval.

When an NCAM asset received a message from external NCAM assets that a cell

search is completed, it is received in the “local cell search complete” process. This

process will accomplish the following:

1. Increase the ETDn of all non-searched cells.

2. Set the ETDn of the received cell location to zero if it is not the final cell to be

searched.

41



3.3 Target Distribution

The target distribution is altered based on scenario setup parameters. There are

two distributions of targets, uniform and normal. The total number of targets, ratio

of high value targets, low value targets, and false targets remain the same for both

distributions. Uniform distribution defines the targets to be randomly and uniformly

distributed in latitude and longitude in the total search space. No additional con-

sideration is given to any specific cell. Normal distribution defines targets to have

a single cluster, centered in the middle of the total search space, with a standard

deviation. For this research, only single cluster in the center of the search region was

analyzed. Various standard deviations are tested which are defined in Table 3.3.

Latitude Longitude (Degrees) Latitude (km) Longitude (km)

0.1 11.05 3.25
0.15 16.59 4.89
0.25 27.64 8.13
0.5 55.29 16.26

Table 3: Target distribution standard deviation based on degrees and translated into
Latitude and Longitude.

3.4 Algorithm Assumptions

The following is a list of assumptions and limitations imposed on or created by

the algorithm described above.

1. Cells are limited to n× n regions less than or equal to 100.

2. The number of munitions is fixed at 16.

The NCAM warhead is modeled based on a user-defined value for probability

of kill (PK). This abstracts the result of an engagement to two outcomes - either

42



the target is considered completely killed or no damage is done to the target at all.

The decision to use a binary outcome for warhead lethality rather than a graduated

approach allowing for targets to be damaged but not killed is intended to limit the

complexity and number of factors required for the designed experiment matrix. [8]

3.5 Output Description

The output of the algorithm is an expansion of Hatzinger and Gertsman’s original

.csv file[8] called “engagement report” which contains a output line for each run of the

algorithm. Each run line contain the independent variables in Table 4. The updated

algorithms adds the independent variables in Table 5.

Table 4: Run Identification and independent variables in Hatzinger and Gertsman
Design

Permutations Run Number
Search Type Flight Time
Sensor Probability of ID Sensor FOV
Total Number of Munitions True to False Target Ratio
High to Low Ratio Munition Probability of Kill

Table 5: New Independent Variables in the updated Algorithm Design
Number of Cells Target Distribution
Target Distribution Standard Deviation Percentage Cell Search Time

In addition to these independent variables, several dependent variables are intro-

duced according to Section 2.6.1 which include precision, recall, and F-score. These

MOE are calculated with respect to total targets destroyed and high priority targets

destroyed. Therefore, six MOE are added to the engagement report according to

Table 6.

The benefits of the engagement report method is simple input for statistical anal-

ysis software such at Statistical Package for the Social Sciences (SPSS).

43



Table 6: New dependent Variables in the updated Algorithm Design

Precision of Total Targets Destroyed Recall of Total Targets Destroyed
F-Score of Total Targets Destroyed Precision of Total High Priority Targets Destroyed
Recall of Total High Priority Targets Destroyed F-Score of Total High Priority Targets Destroyed

3.6 Search Algorithm Analysis

In order to analyze the algorithm, a multivariate linear regression analysis will be

conducted in order to understand and estimate the effect of the multiple independent

variables on the dependent variables. The dependent variables used will be restricted

to the new dependent variables outlined in Table 5. The analysis will be conducted

on selected dependent variables from the original dependent variables outlined in

Table 2 and all of the new dependent variables outlined in Table 6. The results will

be formulated into a table of each dependent variable, R2 value, model summary,

Analysis of Variance (ANOVA) summary, and summary of coefficients. The analysis

will be conducted on the engagement report .csv file discussed in the previous section

using SPSS.

A covariance matrix will be created with all of the dependent variables, new and

original, which will show the amount of correlation between each dependent variable.

chapter IV will present a summary of the results of this work.

44



IV. Results and Analysis

This chapter discusses the results of the designed run in the Advanced Framework

for Simulation, Integration, and Modeling (AFSIM) Wide Area Search (WAS) sce-

nario. A synopsis of a single scenario is presented as a simulation verification. The

overall results of Analysis of Variance (ANOVA) of key original Measures of Effec-

tiveness (MOEs) and updated MOEs. Finally a covariance matrix is computed in

order to test the similarities or differences in the MOEs presented.

4.1 Simulation Verification

The results of the simulation created show a positive result towards the Networked

Collaborative Autonomous Munition (NCAM) objective of maximizing the the targets

found and destroyed. The NCAM will accurately divide the search region into cells,

compute their own location, compute their results of searching a cell, and distribute

the data accurately. The NCAM will then accurately form the data into the correct

matrices as defined in Chapter III and make decisions based on this information. The

NCAM decisions will bring them to a predefined cell based on the algorithm.

Figure 9 shows a typical opening of the simulation. In the figure, the NCAM can

be seen making a 5 × 5 grid of the total search region as they move into the search

region.

Figure 10 show the Networked Collaborative Autonomous Munitions (NCAMs)

making new decision on cells to search based on the algorithm. They accurately look

for new cells to search with a non-zero Estimated Target Density (ETDn).

Figure 11 show the NCAMs retain the ability to cooperate with other NCAM to

destroy a target.

45



Figure 9: The NCAM create a grid to be searched.

Figure 10: The NCAM distribute themselves among the grid.

46



Figure 11: The NCAM continue to use the cooperation bidding system to effectively
search and destroy targets. In this case, a friendly target was identified and confirmed.

47



4.2 Digital Engineering Verification

The Digital Engineering (DE) verification of the WAS algorithm was successful

in this research. The AFSIM environment created a stable work platform to test

multiple hypothesis quickly and run several hundred iterations quickly. Once the

AFSIM model was created, a python script was used to repeatedly run the model.

This script repeated accessed a Design of Experiments (DOE) matrix, wrote the

updated variables from the DOE matrix, and ran the AFSIM model. Another Python

script was used to create and update the DOE matrix. AFSIM simulations runs would

then save the output to the engagement reporting discussed in section 3.5.

4.3 Experimental Results

This section will consolidate the linear regression results of 3 independent variables

(number of cells, target distribution, and, target distribution standard deviation). It

will show the R2 value, ANOVA F with significance, the coefficients with significance.

Table 7 compares the 3 independent variables with the Number of SCUDs killed,

Number of Tanks Killed, Number of Trucks Killed, and the Number of munitions

destroyed. The primary objective of this algorithm is to understand a correlation

between the Number of Cells in the model and the objective. But, the coefficient of

the Number of Cells remains insignificantly small in all cases with a high degree of

significance. Only in the number of Munitions ditched was the analysis less reliable

about the coefficient. The table also show the results of the distribution types and the

standard deviation of the distribution. The results of the distribution type is mixed

likely due to the discrete nature of the distribution variable, either uniform or normal,

which was coded into a 0 or 1. Therefore, while the significance is sufficient to make

specific judgments, there is not an underlying theme throughout the distribution data.

On the other hand, there is a theme to the distribution standard deviation. There is

48



a strong positive correlation between higher standard deviations and number of high

priority (SCUDs) and low priority (Tanks) killed. This result is surprising because

it means that the less clustered the targets are, the greater success the algorithm

had in finding and destroying a greater number of targets. The algorithm does not

remove a cell’s ETDn when a target is found, but it also does not increase or give the

other munitions any indication that the cell where a target has been found is worth

re-searching. It also shows that the algorithm does not flex from uniform distribution

to a clustered distribution well.

Table 8 compares the 3 independent variables with the Total Target Precision, To-

tal Target Recall, Total Target F-Score, SCUD Precision, SCUD Recall, and SCUD

F-score. Once again, the primary outcome of the algorithm was the comparison of the

number of cells with these dependent variables. As with the original MOEs, the coef-

ficient for this variable was insignificant and therefore there is no correlation between

the Number of Cells in the algorithm and precision, recall, or F-score. Some negative

correlation is seen between the type of distribution the total targets destroyed vari-

ables. The negative values shows that higher precision, recall, and F-score correlates

to a uniform distribution of targets. This result is in line with the original MOEs.

Also in line with the previous findings, the standard deviation of the targets has a

positive value, therefore the algorithm successfully destroys more targets when there

is less clustering.

A correlation table can be found in Figure 12. This table shows a significant

correlation between all dependent variables, both the original and new. Since all of the

variables are correlated, no specific Measure of Effectiveness (MOE) is a significantly

better indicator to evaluate the algorithm and any other.

49



Table 7: Linear regression analysis of the new independent variables with the original dependent variables

R2

with
Std Error

F with
Sig Level

Number of Cells
Coefficient
with Error

and Sig

Distribution
Coefficient
with Error

and Sig

Distribution
Std Dev

Coefficient
with Error

and Sig

Number of
SCUDs Killed

R2 : 0.260
Error: 1.284

F: 103.892
Sig: <0.001

Coeff: -0.006
Error: 0.001
Sig: <0.001

Coeff: 0.048
Error: 0.052
Sig: 0.352

Coeff: 1.479
Error: 0.124
Sig: <0.001

Number of
Tanks Killed

R2 : 0.221
Error: 1.279

F: 98.078
Sig: <0.001

Coeff: -0.006
Error: 0.001
Sig: <0.001

Coeff: -0.189
Error: 0.052
Sig: <0.001

Coeff: 1.463
Error: 0.124
Sig: <0.001

Number of
Trucks Killed

R2 : 0.395
Error: 0.916

F: 352.605
Sig: <0.001

Coeff: -0.002
Error: 0.061
Sig: <0.001

Coeff: 1.177
Error: 0.037
Sig: <0.001

Coeff: -2.018
Error: 0.089
Sig: <0.001

Number of
Munitions
Ditched

R2 : 0.352
Error: 2.242

F: 269.967
Sig: <0.001

Coeff: 0.000
Error: 0.001
Sig: 0.906

Coeff: -1.997
Error: 0.091
Sig: <0.001

Coeff: -0.292
Error: 0.217
Sig: 0.179

50



Table 8: Linear regression analysis of the new independent variables with the new dependent variables

R2

with Std
Error

F with
Sig Level

Number of Cells
Coefficient
with Error

and Sig

Distribution
Coefficient
with Error

and Sig

Distribution
Std Dev

Coefficient
with Error

and Sig

TOTAL
TARGET

PRECISION

R2 : 0.425
Error: 0.096

F: 419.616
Sig: <0.001

Coeff: 0.000
Error: 0.000
Sig: 0.012

Coeff: -0.135
Error: 0.004
Sig: <0.001

Coeff: 0.251
Error: 0.009
Sig: <0.001

TOTAL
TARGET
RECALL

R2 : 0.356
Error: 0.144

F: 277.274
Sig: <0.001

Coeff: -0.001
Error: 0.000
Sig: <0.001

Coeff: -0.005
Error: 0.006
Sig: 0.406

Coeff: 0.254
Error: 0.014
Sig: <0.001

TARGET
TOTAL

F-SCORE

R2 : 0.359
Error: 0.117

F: 281.267
Sig: <0.001

Coeff: -0.001
Error: 0.000
Sig: <0.001

Coeff: -0.049
Error: 0.005
Sig: <0.001

Coeff: 0.267
Error: 0.011
Sig: <0.001

SCUD
PRECISION

R2 : 0.148
Error: 0.128

F: 42.422
Sig: <0.001

Coeff: 0.000
Error: 0.000
Sig: 0.299

Coeff: -0.048
Error: 0.005
Sig: <0.001

Coeff: 0.133
Error: 0.012
Sig: <0.001

SCUD
RECALL

R2 : 0.262
Error: 0.109

F: 140.849
Sig: <0.001

Coeff: -0.001
Error: 0.000
Sig: <0.001

Coeff: 0.005
Error: 0.004
Sig: 0.268

Coeff: 0.133
Error: 0.011
Sig: <0.001

SCUD
F-SCORE

R2 : 0.204
Error: 0.111

F: 82.475
Sig: <0.001

Coeff: 0.000
Error: 0.000
Sig: <0.001

Coeff: -0.017
Error: 0.005
Sig: <0.001

Coeff: 0.138
Error: 0.011
Sig: <0.001

51



Figure 12: A correlation matrix of the original MOEs and the new MOEs.

52



chapter V will present a describe further summarize the results and describe how

this work can be expanded upon in future research efforts.

53



V. Conclusions

Chapter V discusses the conclusions and contributions derived from this research.

It highlights the limitations and lessons learned. It creates suggestions for future

work. Finally, it revisits the questions introduced in Chapter 1 with answers derived

from the results of this research.

5.1 Summary of Research Questions

5.1.1 How can Digital Engineering (DE) be used to facilitate the rapid

design and evaluation of autonomous systems?

DE has shown to be the optimal design space for multi-parameter algorithms. DE

teaches us to automate, simulate, and evaluate quickly in a simulation environment.

Utilizing an environment space such as Advanced Framework for Simulation, Inte-

gration, and Modeling (AFSIM), the DE revolution continues to optimize research

efforts in the 21st century.

5.1.2 How does creating search cells in cooperative Wide Area Search

(WAS)etection effect the results of compared to the original

work by Hatzinger and Gertsman?

The creation of cells enables the search assets to move through the main search

region effectively, but the individual assets are still subject to the original limita-

tions of cooperation, probability of detection (PD), probability of kill (Pk), etc. The

algorithm is also heavily dependent on the updating of Estimated Target Density

(ETDn). A different process for determining ETDn could create a vastly different

outcome. But the WAS algorithm created does not show any significant different in

performance from the original algorithms by Hatzinger and Gertsman.

54



5.1.3 How does target clustering effect the performance of the algo-

rithm?

The algorithm success is highly based on the clustering of the target. Surprisingly,

increased clustering of targets degrades the algorithm results. The algorithm and

cooperation are ideal for uniform distribution of targets. This result may be the

outcome of the initial search asset location which was not changed from the original

work. An updated initial distribution based on suspected target clustering may show

different results with the same search algorithm.

5.1.4 Are there other Measures of Effectiveness (MOEs) that which

can evaluate the algorithm more effectively?

There are other MOEs which can evaluate the success of the algorithm but the

MOEs selected have a strong correlation to previous MOEs selected by Hatzinger

and Gertsman. While the new MOEs may be easier to work with due to more

consistent levels of significance, additional work will need to be completed to prove

this hypothesis.

5.2 Limitations and Lessons Learned

While various Limitations were defined at various times throughout this thesis

but there are a few more that should be noted.

1. Simulations and results remains as good as programmed.

2. AFSIM programming contains several programming quirks to overcome. The

movement of date within the Networked Collaborative Autonomous Munition

(NCAM) created some difficulties.

55



3. AFSIM uses a limited number of options to chance its state machine program-

ming between phases and completing way-points remains the best option to

utilize although other options such as variable updates would be preferred.

4. The creation of an algorithm will create more parameters to analyze. While

many of the parameters created could be put into a logical ratio. It is unknown

if this remains the best route for this work.

5.3 Future Work

Overall, the AFSIM scenario delivered in this research serves as a framework upon

which future work can be performed to enhance the understanding of cooperative mu-

nition behavior schemes and their impacts on mission performance. Utilizing DE and

AFSIM, modifications can be easily made which expand this research or implement

new concepts altogether.

A requirement of a deterministic algorithm is such that the steps to make decision

are in a sequenced order. Specifically in the ”DecideNextCell” script, a choice was

made to loop through the Next Cell Decision (NCDn) matrix, a local area search,

and then a series of if-statements. While the decisions made for this algorithm were

meant to optimize the algorithm based on intermediate results, all possibilities were

not exhausted in the design of the algorithm. A more optimal design of the same

variables may exist.

The algorithm makes decision based on four main matrices and some internal data.

But there may be other variables which are also important which could improve

the algorithm. Time remaining was considered as one of these variables but not

implemented. A drawback of the algorithm is it continues to search systematically

with no concept of search limitations. While time is named here, time would correlate

to fuel and fuel is a very realistic limitation. An unexplored path would be utilizing

56



the time remaining into the if-statements smartly.

Another variable considered but unused is the distance between NCAM. Hatzinger

and Gertsman showed that a basic spread of the NCAM aided their search algorithm,

but the additions of cell could change how to cluster NCAM. The matrix NCDn is

an attempt to spread the NCAM where the munitions would not all choose the same

next cell, but this is only a limited method to spread the munitions.

Finally, another algorithm change considered, but not implemented, was a re-

searching feature if a target was found. The current algorithm does not reduce the

ETDn if a target is found, but it could request additional searching for the current

cell. One simple method to do this would be to increase the ETDn of the cell if a

target was found.

Previous paragraphs describe the search algorithm improvements possible, but

not the cooperation algorithm. The cooperation algorithm remains a bidding system

described in Section2.5.3. A new bidding algorithm could be implemented based on

an actual auction system, game theory system, or Artificial Intelligence (AI) and

Machine Learning (ML) algorithm.

AI and ML are referenced several times in this research. Another future work

would be to give AI control over the decision and cooperation algorithm. The algo-

rithm could use the matrices described in this work to control the NCAM direction

and cooperation. A reinforcement learning algorithm or genetic algorithm would be

optimal for this design.

5.4 Contributions

Without the ability to create a dynamic environment inside of AFSIM, this entire

research effort would have been impossible or remain entirely theory based. The

AFSIM interface also enables DE through rapid re-programming of the environment

57



and the System under Test (SUT).

The Hyrbid Architecture for Multiple Robots (HAMR) architecture became the

foundation of the research effort by enabling a hot swap ability of specific interfaces

within the SUT.

A special appreciation goes to Hatzinger and Gertsman, both for the work they

did on the project and allowing me to continue with their research.

5.5 Final Thoughts

This research demonstrated the capability for autonomous, collaborative muni-

tions with a unique decision algorithm performing a WAS mission to be modeled

and simulated in AFSIM. The simulation allowed for the evaluation of mission per-

formance of the munition and cooperative scheme against a variety of munition pa-

rameters across hundreds of simulated trials. Multivariate regression was then used

to analyze the data, examine trends, and interactions between munition parameters,

and to optimize the cooperative scheme for different system designs. Together, this

research demonstrated the feasibility of simulation to be used to examine autonomous

systems in the construct of DE and understand their performance and limitations,

which is vital in building toward trust in autonomy.

58



Bibliography

1. Bellman Richard. Dynamic programming. Princeton University Press, 1957.

2. DAU Glossary. Digital engineering.

3. Nataliya Shevchenko. An introduction to model-based systems engineering.

4. Tamio Arai, Enrico Pagello, and Lynee Parker. Editorial: Advances in multirobot

systems. IEEE, 18(5):655–661, 2002.

5. Department of Defense. Dod modeling and simulation (m&s) verification, vali-

dation, and accreditation (vv&a), 2018.

6. DAU Glossary. Verification.

7. DAU Glossary. Validation.

8. Jacob Hatzinger and Igor Gertsman. Mission effectiveness analysis of networked

cooperative munitions using modeling and simulation. Master’s Thesis, 2022.

9. Bernard Koopman. Search and screening: General principles with historical ap-

plications. The Military Operations Research Society, 1999.

10. Lawrence Stone. Theory of optimal search. Operations Research Society of Amer-

ica, 1989.

11. Rufus Isaacs. Differential games. Wiley, 1965.

12. Lawrence Stone, Johannes Royset, and Alan Washburn. Optimal Search for Mov-

ing Targets. Springer, 2016.

59



13. David Jacques and Meir Pachter. A theoretical foundation for cooperative search,

classification, and target attack. Proceedings of the 2020 Winter Simulation Con-

ference, 2004.

14. Robert Dunkel. Investigation of cooperative behavior in autonomous wide area

search munitions. Master’s Thesis, 2002.

15. Sang Park. Analysis for cooperative behavior effectiveness of autonomous wide

area search munitions. Master’s Thesis, 2002.

16. David King, David Jacques, Jeremy Gray, and Katherine Cheney. Design and

simulation of a wide area search mission: An implementation of an autonomous

systems reference architecture. Proceedings of the 2020 Winter Simulation Con-

ference, 2020.

17. Xiaoxuan Hu, Yanhong Liu, and Guoqiang Wang. Optimal search for moving

targets with sensing capabilities using multiple uavs. IEEE Swarm Intelligence

Symposium, 2007.

18. Pinard Civicioglu. Transforming geocentric cartesian coordinates to geodetic co-

ordinates by using differential search algorithm. Computers & Geosciences, Vol-

ume 46, September 2012, Pages 229-247, 2012.

19. Ferrante Neri and Ville Tirronen. Recent advances in differential evolution: a

survey and experimental analysis. Artificial Intelligence Review 33 (1-2) (2010)

61–106, 2009.

20. Kenneth Price, Rainer Storn, and Jouni Lampinen. Differential evolution: A

practical approach to global optimization. Springer, 2005.

21. Daniel Bratton and James Kennedy. Defining a standard for particle swarm

optimization. Journal of Systems Engineering and Electronics, 2017.

60



22. Pinar Civicioglu and Erkan Besdok. A conceptual comparison of the cuckoo-

search, particle swarm optimization, differential evolution and artificial bee colony

algorithms. Artificial Intelligence Review (in-press), doi: 10.1007/s10462-011-

9276-0m, 2011.

23. Maurice Clerc and James Kennedy. The particle swarm-explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on Evolu-

tionary Computation 6 (1) (2002) 58–73, 2002.

24. Dervis Karaboga and Bahriye Akay. A comparative study of artificial bee colony

algorithm. Applied Mathematics and Computation Volume 214, Issue 1, 1 August

2009, Pages 108-132, 2009.

25. Randy Haupt. Comparison between genetic and gradient-based optimization

algorithms for solving electromagnetics problems. IEEE TRANSACTIONS ON

MAGNETICS, VOL 31, NO 3., 2009.

26. Jing Liang and Alex Qin. Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Transactions on Evolutionary

Computation, vol. 10, no. 3, pp. 281-295, 2006.

27. Rainer Storn and Kenneth Price. Differential evolution: A simple and efficient

adaptive scheme for global optimization over continuous spaces. Journal of Global

Optimization, 23, 01 1995.

28. David Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Professional, 1988.

29. A.K. Qin, V.L. Huang, and P.N. Suganthan. Differential evolution algorithm with

strategy adaptation for global numerical optimization. IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION, 2009.

61



30. Nikolaus Hansen and Andreas Ostermeirer. Completely derandomized self-

adaptation in evolution strategies. Evolutionary Computation, vol. 9, no. 2, pp.

159-195, 2008.

31. Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. 2009 World

Congress on Nature & Biologically Inspired Computing (NaBIC) pp. 210-214,

doi: 10.1109/NABIC.2009.5393690, 2009.

32. Dan Simon. Biogeography-based optimization. IEEE Transactions on Evolution-

ary Computation, vol. 12, no. 6, pp. 702-713, 2008.

33. AFRL/RQQD. Afsim user training. https://confluence.di2e.net/display/AFSIM/AFSIM+Training+Material,

2021.

34. Erann Gat. On Three-Layer Architectures. AAAI Press, University of California,

1998.

35. Daylond Hooper. A hybrid multi-robot control architecture. Master’s thesis, Air

Force Institute of Technology, Wright Patterson Air Force Base, 2007.

62



Acronyms

APCn Assets Per Cell. 33, 34, 39, 41

CSTn Cell Search Time. 34, 36, 40, 41

ETDn Estimated Target Density. 33, 38, 39, 41, 45, 49, 54, 57

NCDn Next Cell Decision. 34, 56, 57

PD probability of detection. 1, 8, 9, 54

Pk probability of kill. 1, 8, 54

AFSIM Advanced Framework for Simulation, Integration, and Modeling. iv, vi, viii,

2, 4, 5, 6, 14, 15, 16, 20, 23, 27, 28, 30, 40, 45, 48, 54, 55, 56, 57, 58, 1

AI Artificial Intelligence. iv, 5, 25, 57

ANOVA Analysis of Variance. iv, 44, 45, 48

ATR Autonomous Target Recognition. 21

BBO Biogeography-Based Optimization. 14

CK Cuckoo-Search algorithm. 13, 14

CLPSO Comprehensive Learning Particle Swarm Optimizer. 11, 12

CMA-ES Covariance Matrix Adaptation Evolution Strategy. 13

DE Digital Engineering. iv, vii, 2, 3, 4, 5, 7, 27, 48, 54, 56, 57, 58

DoD Department of Defense. 3

63



DOE Design of Experiments. 1, 2, 3, 21, 29, 30, 48

DSA Differential Search Algorithm. 10

FOV Field of View. 9

HAMR Hyrbid Architecture for Multiple Robots. vii, viii, 17, 18, 19, 27, 28, 29, 36,

37, 40, 58

MBSE Model Based System Engineering. 2

ML Machine Learning. iv, 5, 24, 25, 57

MOE Measure of Effectiveness. vi, 4, 5, 23, 27, 43, 49

MOEs Measures of Effectiveness. iv, v, vii, 5, 24, 25, 27, 28, 45, 49, 55, 1

MPC Model Predictive Control. 9

NCAM Networked Collaborative Autonomous Munition. v, vii, ix, 4, 20, 21, 22,

23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 55, 57

NCAMs Networked Collaborative Autonomous Munitions. 45

OOP Object-Oriented Programming. 5, 15, 28

PSO Particle Swarm Optimization. 11

RCS Radar Cross Section. 27

SADE Strategy Adaptation Based Differential Evolution. 12

SE Systems Engineering. 2

SPSS Statistical Package for the Social Sciences. 43, 44

64



SUT System under Test. iv, 27, 28, 58, 1

UAV Unmmaned Aerial Vehicle. iv

UAVs Unmmaned Aerial Vehicles. 1, 2, 23

UBF Unified Behavior Framework. viii, 17

V&V Verification and Validation. 3

WAS Wide Area Search. iv, vii, 1, 3, 4, 5, 6, 8, 9, 10, 19, 20, 21, 30, 45, 48, 54, 58

WSF World Simulation Framework. 23

65



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–12–2022 Master’s Thesis Oct 2021 — Dec 2022

COOPERATIVE WIDE AREA SEARCH ALGORITHM ANALYSIS
USING SUB-REGION TECHNIQUES

Whitney, Shawn, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENV-MS-22-D-041

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research continues on the work by Hatzinger and Gertsman by creating a decision-based algorithm which subdivides
the search region into sub-regions known as cells, decides an optimal next cell to search, and distributes the results of the
search to other cooperative search assets. Each cooperative search asset stores the following four arrays in order to decide
which cell to search: current estimated target density of each cell; the current number of assets in a cell; each cooperative
asset’s next cell to search; and the total time any asset has been in a cell. A software-based simulation based
environment, AFSIM, was utilized to complete the verification process, create the test environment, and the SUT.
Additionally, the algorithm was tested against various distributions of target threats or clusters. Finally, precision, recall,
and F-score are introduced as new MOEs. The results show the algorithm does not have a significant effect against the
original MOEs or the new MOEs. Furthermore, the results are negatively correlated to a decrease in target distributions
standard deviation i.e. target clustering.

Cooperative Wide Area Search, wide area search (WAS), cells, sub-regions, precision, recall, F-score

U U U UU 66

Dr. David Jacques, AFIT/ENG

(937) 255-3636 x3329; David.Jacques@afit.edu


	Cooperative Wide Area Search Algorithm Analysis Using Sub-Region Techniques
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Digital Engineering
	Design of Experiments
	Problem Statement and Scope
	Scope
	Research Objectives and Questions

	Methodology
	Assumptions and Limitations
	Document Overview and Preview

	Background and Literature Review
	Theory of Search
	Optimal Search
	The Princess and The Monster Game

	Cooperative Wide Area Search
	Super-Organism Cooperative Search Strategies
	Genetic Algorithm Search Strategies
	Differential Evolution
	Statistical Cooperative Search Strategies

	Lg Overview
	Autonomous System Architectures
	Hybrid Architecture for Multiple Robots

	Cooperative WAS Scenario Description
	AFSIM Implementation
	Munition Description
	Auction Algorithm Description
	Assumptions and Limitations

	Measures of Effectiveness
	Precision, Recall, and F-score


	Methodology
	Rapid Design and Evaluation of Autonomous Systems
	Cell Algorithm updates to Lg Architecture
	Cell Description
	Additional Algorithm Parameters
	Total Targets vs Expected Targets
	Lg Lg Design

	Target Distribution
	Algorithm Assumptions
	Output Description
	Search Algorithm Analysis

	Results and Analysis
	Simulation Verification
	Digital Engineering Verification
	Experimental Results

	Conclusions
	Summary of Research Questions
	How can Digital Engineering be used to facilitate the rapid design and evaluation of autonomous systems?
	How does creating search cells in cooperative detection effect the results of compared to the original work by Hatzinger and Gertsman?
	How does target clustering effect the performance of the algorithm?
	Are there other Measures of Effectiveness that which can evaluate the algorithm more effectively?

	Limitations and Lessons Learned
	Future Work
	Contributions
	Final Thoughts

	Bibliography
	Acronyms

