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Active-illumination extension to the Priest and
Meier pBRDF

MARK F. SPENCER,* MILO W. HYDE IV, SANTASRI R.
BOSE-PILLAI, AND MICHAEL A. MARCINIAK

Air Force Institute of Technology, Department of Engineering Physics, Dayton, OH, USA
*mark.spencer@osamember.org

Abstract: This paper develops a 3D vector solution for the scattering of partially coherent
laser-beam illumination from statistically rough surfaces. Such a solution enables a rigorous
comparison to the well-known Priest and Meier polarimetric bidirectional reflectance distribution
function (pBRDF) [Opt. Eng. 41(5), 988 (2002)]. Overall, the comparison shows excellent
agreement for the normalized spectral density and the degree of polarization. Based on this
agreement, the 3D vector solution also enables an extension to the Priest and Meier pBRDF that
accounts for the effects of active illumination. In particular, the 3D vector solution enables the
development of a closed-form expression for the spectral degree of coherence. This expression
provides a gauge for the average speckle size based on the spatial-coherence properties of the
laser source. Such an extension is of broad interest to long-range applications that deal with
speckle phenomena.

1. Introduction

The Priest and Meier polarimetric bidirectional reflectance distribution function (pBRDF) is
an oft-used model for rough-surface scattering [1]. At its core, this model assumes the use of
Gaussian distributed and Gaussian correlated micro facets, in addition to the geometrical-optics
approximation (i.e., ray-optics propagation in the limit that the wavelength goes to zero). Such
simplifications enable a straightforward model to the problem at hand, but lack the rigor associated
with Maxwell’s equations.

In this paper, we develop a partially coherent 3D vector solution. This solution assumes the use
of Gaussian distributed and Gaussian correlated surface heights, in addition to the physical-optics
(PO) approximation (i.e., wave-optics propagation with Kirchhoff boundary conditions). Such
a solution then enables a rigorous comparison to the Priest and Meier pBRDF in terms of
the normalized spectral density (SD) and the degree of polarization (DoP). It also enables an
extension that properly accounts for the effects of active illumination.

When using active illumination, more often than not, a partially coherent laser beam illuminates
an object of interest. This topic plays a key role in long-range applications that use the light
scattered from distant objects for tactical purposes. Interestingly enough, limited literature
exists pertaining to the scattering of partially coherent laser-beam illumination from rough
surfaces.

In an effort to bridge this gap, recent publications derived a 2D scalar-equivalent solution for
the scattering of partially coherent laser-beam illumination from statistically rough surfaces using
the PO approximation [2,3]. Specifically, the analysis made use of a Gaussian Schell-model
(GSM) form in creating the incident field cross-spectral density function (CSDF). This choice
allows one to vary the size and spatial coherence properties of the incident radiation. In so
doing, the analysis formulated closed-form expressions for the scattered field CSDF to observe
the size and spatial coherence properties of the scattered radiation in the far zone. The analysis
also validated these analytical expressions through computational simulations and showed good
agreement between the theoretical predictions and the numerical results.

While the 2D scalar-equivalent solution is a convenient tool for gaining insight into rough
surface scattering, a complete understanding of the problem requires a 3D vector solution. With
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that said, this paper makes use of the PO approximation to determine a 3D vector solution for the
far-field scattering of laser-beam illumination with partial spatial coherence from statistically
rough surfaces. By formulating the 3D vector solution in a manner consistent with Wolf’s unified
theory of coherence and polarization [4,5], all physical implications inherent in Wolf’s work
apply here.

The 3D vector solution formulated in this paper considers three-different material substrates:
dielectrics, conductors, and a perfect electrical conductor (PEC). In turn, it goes well beyond the
results of a recent conference paper [6], which only studied the ideal case of a PEC. Additionally,
the 3D vector solution uses a GSM form in creating the incident field cross-spectral density
matrix (CSDM). This choice allows for the development of a closed-form expression for the
scattered field CSDM that is applicable to very rough surfaces.

As formulated, the 3D vector solution contains complicated functions of the source parameters
(size and coherence properties) and the surface parameters (surface height standard deviation
and correlation length). Under certain circumstances, it maintains a GSM form. Based on these
circumstances, we develop a closed-form expression for the spectral degree of coherence (SDoC).
This expression also contains complicated functions of both the source and the surface parameters.
Like with the 2D scalar-equivalent solution and a paraxial solution [7,8], we demonstrate that for
long-range applications, we can approximate/simplify the SDoC radius as a function of just the
source parameters.

In what follows, Section 2 provides the methodology used to obtain the 3D vector solution.
Here, we state all simplifying assumptions and explain their physical implications. Section 3
then provides a comparison to the Priest and Meier pBRDF, which shows excellent agreement for
the normalized SD and the DoP. Based on this agreement, Section 4 formulates a closed-form
expression for the SDoC and provides a comparison to the 2D scalar-equivalent solution and a
paraxial solution. Throughout Sections 2–4, we regularly refer to Supplement 1 for more details.
The conclusion for this paper follows thereafter in Section 5.

2. Methodology for the 3D vector solution

Figure 1 describes the geometry used to obtain a 3D vector solution. As shown, a zero mean
2D sample function h = h(x, y) describes the surface height at the rough interface with standard
deviation σh and correlation length ℓh. This function gives rise to a statistically rough surface S.
Spatially partially coherent laser-beam illumination (parameters given below) emanates from the
source-plane specified by the coordinates (x, u, v), which are different from the surface-plane
coordinates (x, y, z). As such, the vector ρ = xx̂ + uû points from the source-plane origin to a
transverse beam location since v = 0 in the source-plane; the vector rs = 0x̂ − ysŷ + zsẑ points
from the source-plane origin to the surface-plane origin; and the vector r = xx̂ + yŷ + zẑ points
from the surface-plane origin to an observation point. Here, we assume that the rough surface
is statistically isotropic [9,10] with impedance η. Therefore, and without loss of generality,
we align the x axes of the source and surface planes. Above, the medium is free space with
impedance η0.

2.1. Incident field cross-spectral density matrix

With Fig. 1 in mind, spatially partially coherent laser-beam illumination emanates from the source
plane. As such, we use a Gaussian Schell-model (GSM) form for the incident field cross-spectral

https://doi.org/10.6084/m9.figshare.24159882
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Fig. 1. The macro-scale scattering geometry of a 2D statistically rough surface S of length
2 L and width 2 L.

density matrix (CSDM)
↔

Wi(ρ1, ρ2) [5], such that

↔

Wi (︁ρ1, ρ2
)︁
≡

⟨︁
Ei (︁ρ1

)︁
Ei† (︁
ρ2

)︁⟩︁
=

⎡⎢⎢⎢⎢⎣
⟨︁
Ei

x
(︁
ρ1

)︁
Ei∗

x
(︁
ρ2

)︁⟩︁ ⟨︁
Ei

x
(︁
ρ1

)︁
Ei∗

u
(︁
ρ2

)︁⟩︁⟨︁
Ei

u
(︁
ρ1

)︁
Ei∗

x
(︁
ρ2

)︁⟩︁ ⟨︁
Ei

u
(︁
ρ1

)︁
Ei∗

u
(︁
ρ2

)︁⟩︁ ⎤⎥⎥⎥⎥⎦
= W i

mn
(︁
ρ1, ρ2

)︁
(m = x, u; n = x, u)

= Am exp

(︄
−

|︁|︁ρ1
|︁|︁2

4w2
s

)︄
An exp

(︄
−

|︁|︁ρ2
|︁|︁2

4w2
s

)︄
Bmn exp

(︄
−

|︁|︁ρ2 − ρ1
|︁|︁2

2ℓ2mn

)︄
,

(1)

where ⟨· · · ⟩ denotes ensemble average, † denotes Hermitian conjugate, and ∗ denotes complex
conjugate. In Eq. (1), the element-based parameters Am and An are the beam amplitudes in the x
and u directions, respectively, ws is the source width, and Bmn and ℓmn = ℓnm are the correlation
amplitude and correlation length, respectively. Note that Bmn follows additional constraints
[5,11]; namely,

Bmn = 1 when m = n

|Bmn | ≤ 1 when m ≠ n

Bmn = B∗
nm

. (2)

Also note that, in general, the incident field Ei and the parameters Am, ws, ℓmn, and Bmn are
radian frequency ω dependent [5]; however, we omit this dependence for brevity in the notation.
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2.2. Scattered field

In what follows, we use the PO approximation to develop a far-field expression for the scattered
field Es(r). For this purpose, we can write the incident field Ei(r) in terms of its spectrum
Ti(ki

x, ki
u) using the plane-wave spectrum representation [12]. Using the macro-scale scattering

geometry given in Fig. 1, the following expressions result:

Ei(r) =
1

(2π)2

∞∫
−∞

∞∫
−∞

Ti(ki
x, ki

u)e−jki ·rse−jki ·rdki
xdki

u (3)

and

Ti(ki
x, ki

u) =

∞∫
−∞

∞∫
−∞

Ei(ρ)ejki
xxejki

uudxdu, (4)

which are valid in the source-free half space where v ≥ 0. In Eqs. (3) and (4), ki = k0k̂i
=

ki
xx̂+ ki

uû+ ki
vv̂ is the incident propagation vector, k0 = 2π/λ0 is the free-space wavenumber, and

λ0 is the free-space wavelength.
Consistent with long-range applications, we assume that the observation points of interest

are in the far zone. As such, the scattered electric field Es(r) depends on the far-field vector
potentials, L(r) and N(r), using the following relationships [13]:

Es (r) ≈ jk0
e−jk0r

4πr

[︂(︂
ϕ̂θ̂ − θ̂ϕ̂

)︂
· L (r) − η0

(︂
θ̂θ̂ + ϕ̂ϕ̂

)︂
· N (r)

]︂
, (5)

L(r) =
∫∫

S

M(r′)ejk0 r̂·r′ds′, (6)

and
N(r) =

∫∫
S

J(r′)ejk0 r̂·r′ds′. (7)

In Eqs. (5)–(7), θ̂ and ϕ̂ are unit vectors in the polar (vertical polarization) and azimuth (horizontal
polarization) directions, respectively, M(r′) and J(r′) are the equivalent surface-current densities,
respectively, and the vector r′ = x′x̂ + y′ŷ + h′ẑ points from the surface-plane origin to a point
on the statistically rough surface S. Note that in the far zone, r>2D2/λ0, where D ≈ 2L and
r ≫ L. Consequently, we neglect all contributions to the scattered field Es that are in the radial r̂
direction because their contributions scale as 1/rn, where n = 2, 3, . . ., and are negligible [13].
Also note that in the case of rough surfaces, one can relate the far zone to the correlation length
of the surface, not its actual size. This outcome explains why lasers reflected from rough surfaces
almost immediately result in speckle.

Using the micro-scale scattering geometry given in Fig. S1 of Supplement 1 and the PO
approximation [13,14],

M (r′) ≈ −
↔

M′ · Ei (r′) (8)

and
J (r′) ≈

1
η0

↔

J′ · Ei (r′) , (9)

where
↔

J′ and
↔

M′ are dyadics, such that
↔

J′ = n̂′ × [ŝ′(1 − r′ ∥)p̂′ − p̂′(1 − r⊥′)ŝ′] (10)

https://doi.org/10.6084/m9.figshare.24159882
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and
↔

M′ = n̂′ × [ŝ′(1 + r′⊥)ŝ′ + p̂′(1 + r′ ∥)p̂′]. (11)

In Eqs. (10) and (11), n̂′ = n̂(x′, y′) is the 2D unit outward normal vector given by

n̂′ =
n′

|n′ |
=

−hx′ x̂ − hy′ ŷ + ẑ√︂
1 + h2

x′ + h2
y′

, (12)

where
hx′ =

∂h′

∂x′
=
∂h (x′, y′)
∂x′

hy′ =
∂h′

∂y′
=
∂h (x′, y′)
∂y′

. (13)

Furthermore, ŝ′ and p̂′ are the unit perpendicular and parallel vectors, whereas r⊥′ and r∥ ′ are the
corresponding Fresnel reflection coefficients, respectively. Referencing the micro-scale scattering
geometry in Fig. S1 of Supplement 1, the following relationships result:

ŝ =
k̂i × n̂|︁|︁k̂i × n̂

|︁|︁ p̂ = ŝ × k̂i p̂r = −ŝ × k̂r. (14)

Thus, in arriving at the expressions found in Eqs. (10) and (11), we use the geometrical-optics
(GO) approximation [14]; specifically, the law of reflection, such that −n̂ · k̂i = n̂ · k̂r. Please see
Section S1 of Supplement 1 for more details on the GO and PO approximations.

Based on Eq. (12), it is important to note that the integration in Eqs. (6) and (7) is over the
parameterized rough surface (i.e., ds′ = |n′ |dx′dy′). Consequently, using Eq. (3) and substituting
Eqs. (8)–(12) into Eqs. (6) and (7), we obtain the following expressions:

L(r) = −
1

(2π)2

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

↔

L′ · Ti
(︂
ki

x, ki
u

)︂
e−jki ·rsejq·r′dki

xdki
udx′dy′ (15)

and
N(r) =

1
(2π)2η0

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

↔

N′ · Ti
(︂
ki

x, ki
u

)︂
e−jki ·rsejq·r′dki

xdki
udx′dy′, (16)

where q = k0

(︂
r̂ − k̂i

)︂
= qxx̂ + qyŷ + qzẑ,

↔

L′ = |n′ |
↔

M′, and
↔

N′ = |n′ |
↔

J′. Without further
simplifications, no closed-form expression exists for the far-field vector potentials, L(r) and
N(r). This outcome is because the integrands in Eqs. (15) and (16) are complicated functions
of surface height and surface slopes; namely, h′, hx′ , and hy′ with respect to the integrals over
the parameterized rough surface. We simplify these integrals using the stationary-phase (SP)
approximation [14,15], where

∂
∂x′ (q · r′) ≈ 0 ∂

∂y′ (q · r′) ≈ 0 . (17)

As a result, the relationships found in Eq. (13) simplify, such that

hx′ ≈ −
qx
qz

hy′ ≈ −
qy
qz

, (18)

and in turn,
↔

L′ ≈
↔

L and
↔

N′ ≈
↔

N in Eqs. (15) and (16). Similar to the PO approximation, the
SP approximation physically dictates that reflection from the rough surface is locally specular
and excludes all local diffraction effects [14,15]. Note that in using Eqs. (6)–(18), we assume
that all observation points are in the far zone, the PO approximation holds, and the effects of
shadowing/masking and multiple scattering are negligible [9,16].

https://doi.org/10.6084/m9.figshare.24159882
https://doi.org/10.6084/m9.figshare.24159882
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2.3. Scattered field cross-spectral density matrix

Here, we develop closed-form expressions for the scattered field CSDM
↔

Ws(r1, r2). In general,
↔

Ws(r1, r2) depends on the scattered field Es(r), such that in the far zone
↔

Ws (r1, r2) ≡
⟨︁
Es (r1)Es† (r2)

⟩︁
=

⎡⎢⎢⎢⎢⎣
⟨︁
Es
θ (r1)Es∗

θ (r2)
⟩︁ ⟨︂

Es
θ (r1)Es∗

φ (r2)
⟩︂⟨︂

Es
φ (r1)Es∗

θ (r2)
⟩︂ ⟨︂

Es
φ (r1)Es∗

φ (r2)
⟩︂ ⎤⎥⎥⎥⎥⎦ .

= Ws
pq (r1, r2) (p = θ, ϕ; q = θ, ϕ)

(19)

Using Eq. (5), we determine the matrix elements found in Eq. (19) as

Ws
θθ (r1, r2) = Ω12

∑︂
i=x,y,z

∑︂
j=x,y,z

[︂
(ϕ̂1 · î)(ϕ̂2 · ĵ)

⟨︂
Li(r1)L∗

j (r2)
⟩︂

+ η0(ϕ̂1 · î)(θ̂2 · ĵ)
⟨︂
Li(r1)N∗

j (r2)
⟩︂

+ η0(θ̂1 · î)(ϕ̂2 · ĵ)
⟨︂
Ni(r1)L∗

j (r2)
⟩︂

+ η2
0(θ̂1 · î)(θ̂2 · ĵ)

⟨︂
Ni(r1)N∗

j (r2)
⟩︂]︂

,

(20)

Ws
θφ(r1, r2) = Ω12

∑︂
i=x,y,z

∑︂
j=x,y,z

[︂
−(ϕ̂1 · î)(θ̂2 · ĵ)

⟨︂
Li(r1)L∗

j (r2)
⟩︂

+ η0(ϕ̂1 · î)(ϕ̂2 · ĵ)
⟨︂
Li(r1)N∗

j (r2)
⟩︂

− η0(θ̂1 · î)(θ̂2 · ĵ)
⟨︂
Ni(r1)L∗

j (r2)
⟩︂

+ η2
0(θ̂1 · î)(ϕ̂2 · ĵ)

⟨︂
Ni(r1)N∗

j (r2)
⟩︂]︂

,

(21)

Ws
φθ (r1, r2) = Ω12

∑︂
i=x,y,z

∑︂
j=x,y,z

[︂
−(θ̂1 · î)(ϕ̂2 · ĵ)

⟨︂
Li(r1)L∗

j (r2)
⟩︂

− η0(θ̂1 · î)(θ̂2 · ĵ)
⟨︂
Li(r1)N∗

j (r2)
⟩︂

+ η0(ϕ̂1 · î)(ϕ̂2 · ĵ)
⟨︂
Ni(r1)L∗

j (r2)
⟩︂

+ η2
0(ϕ̂1 · î)(θ̂2 · ĵ)

⟨︂
Ni(r1)N∗

j (r2)
⟩︂]︂

,

(22)

and
Ws

φφ(r1, r2) = Ω12
∑︂

i=x,y,z

∑︂
j=x,y,z

[︂
(θ̂1 · î)(θ̂2 · ĵ)

⟨︂
Li(r1)L∗

j (r2)
⟩︂

− η0(θ̂1 · î)(ϕ̂2 · ĵ)
⟨︂
Li(r1)N∗

j (r2)
⟩︂

− η0(ϕ̂1 · î)(θ̂2 · ĵ)
⟨︂
Ni(r1)L∗

j (r2)
⟩︂

+ η2
0(ϕ̂1 · î)(ϕ̂2 · ĵ)

⟨︂
Ni(r1)N∗

j (r2)
⟩︂]︂

,

(23)

where
Ω12 = k2

0
e−jk0r1ejk0r2

(4π)2r1r2
. (24)
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In addition, using Eqs. (6)–(18), we determine the element-based correlations found in
Eqs. (19)–(23) from the following relationships:⟨︁

L (r1)L† (r2)
⟩︁
=

1
(2π)4∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

L1 ·
⟨︂
Ti

(︂
ki

x1, ki
u1

)︂
Ti†

(︂
ki

x2, ki
u2

)︂⟩︂
·
↔

L†

2

e−jki
v1rsejki

v2rsejqx1x′1e−jqx2x′2ejqy1y′1e−jqy2y′2
⟨︂
ejqz1h′1e−jqz2h′2

⟩︂
dki

x1dki
x2dki

u1dki
u2dx′1dx′2dy′1dy′2,

(25)

⟨︁
L (r1)N† (r2)

⟩︁
= −

1
(2π)4η0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

L1 ·
⟨︂
Ti

(︂
ki

x1, ki
u1

)︂
Ti†

(︂
ki

x2, ki
u2

)︂⟩︂
·

↔

N†

2

e−jki
v1rsejki

v2rsejqx1x′1e−jqx2x′2ejqy1y′1e−jqy2 y′2
⟨︂
ejqz1h′1e−jqz2h′2

⟩︂
dki

x1dki
x2dki

u1dki
u2dx′1dx′2dy′1dy′2,

(26)

⟨︁
N (r1)L† (r2)

⟩︁
= −

1
(2π)4η0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

N1 ·
⟨︂
Ti

(︂
ki

x1, ki
u1

)︂
Ti†

(︂
ki

x2, ki
u2

)︂⟩︂
·
↔

L†

2

e−jki
v1rsejki

v2rsejqx1x′1e−jqx2x′2ejqy1y′1e−jqy2y′2
⟨︂
ejqz1h′1e−jqz2h′2

⟩︂
dki

x1dki
x2dki

u1dki
u2dx′1dx′2dy′1dy′2,

(27)

and ⟨︁
N (r1)N† (r2)

⟩︁
=

1
(2π)4η2

0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

N1 ·
⟨︂
Ti

(︂
ki

x1, ki
u1

)︂
Ti†

(︂
ki

x2, ki
u2

)︂⟩︂
·

↔

N†

2

e−jki
v1rsejki

v2rsejqx1x′1e−jqx2x′2ejqy1y′1e−jqy2y′2
⟨︂
ejqz1h′1e−jqz2h′2

⟩︂
dki

x1dki
x2dki

u1dki
u2dx′1dx′2dy′1dy′2,

(28)

where rs = |rs |. Inherent in Eqs. (25)–(28) is the assumption that the incident field plane-wave
spectrum is statistically independent of the rough surface. This assumption is physically intuitive;
thus, Eqs. (25)–(28) contain two separate correlations.

The first correlation is with respect to the incident field plane-wave spectrum. This correlation
is equivalent to a dyadic [cf. Equation (4)]; namely,⟨︂

Ti
(︂
ki

x1, ki
u1

)︂
Ti†

(︂
ki

x2, ki
u2

)︂⟩︂
=

↔

Φi, (29)

where
↔

Φi =
↔

Φi
(︂
ki

x1, ki
x2, ki

u1, ki
u2

)︂
. The second correlation is with respect to the parameterized

rough surface. This correlation is a joint-characteristic function χ′ of the random variables
h′

1 = h
(︁
x′1, y′1

)︁
and h′

2 = h
(︁
x′2, y′2

)︁
, such that⟨︂

ejqz1h′1e−jqz2h′2
⟩︂
= χ′. (30)

In practice, we must choose a form for this joint-characteristic function.
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A very common choice for the statistical distribution of the rough surface is to assume that
the surface heights are Gaussian distributed and Gaussian correlated. In so doing, the joint
probability density function p′ = p

(︁
h′

1, h′
2
)︁

of the random variables h′
1 and h′

2 takes the following
form [17]:

p′ =
1

2πσ2
h

√
1 − Γ′2

exp

[︄
−

h′2
1 + h′2

2 − 2Γ′h′
1h′

2

2σ2
h
(︁
1 − Γ′2

)︁ ]︄
, (31)

where Γ′ = Γ
(︁
x′1 − x′2, y′1 − y′2

)︁
is the surface autocorrelation function, such that

Γ
′ = exp

[︄
−

(︁
x′1 − x′2

)︁2

ℓ2h

]︄
exp

[︄
−

(︁
y′1 − y′2

)︁2

ℓ2h

]︄
. (32)

History shows that one typically chooses Gaussian-Gaussian (G-G) models for analytical
convenience [18]; however, other models exist in practice. For example, the stretched exponential-
stretched exponential (SE-SE) model better characterizes surfaces roughened by random industrial
processes [19]. Basu et al. highlighted this point with profilometer measurements of sandblasted
metallic surfaces [20,21]. Unfortunately no general analytical form exists for the SE joint-
characteristic function; nevertheless, the analysis of Basu et al. also showed that G-G models
were still fairly good approximations for sandblasted metallic surfaces [20,21]. Thus, Fourier
transforming the joint probability density function p′ in Eq. (31) yields the desired joint-
characteristic function χ′ [17], such that

χ′ =

∫ ∞

−∞

∫ ∞

−∞

p′ejqz1h′1e−jqz2h′2dh′
1dh′

2

= exp

[︄
−
σ2

h
2

(︂
q2

z1 + q2
z2

)︂]︄
exp

(︂
σ2

h qz1qz2Γ
′
)︂

,
(33)

where χ′ = χ
(︂
ki

x1, ki
x2, ki

u1, ki
u2; x′1 − x′2, y′1 − y′2

)︂
. Note that throughout the literature, numerous

other surface models exist in addition to G-G and SE-SE models; for example, a recent publication
explored the use of non-Gaussian surface autocorrelation functions [22].

Using the relationships found in Eqs. (29)–(33), the integrands in Eqs. (25)–(28) still contain
complicated functions with respect to the source and surface parameters. To simplify things, we
can separate these complicated functions into amplitude and phase terms, viz.⟨︁

L (r1)L† (r2)
⟩︁
=

1
(2π)4∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

(︃∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

f Lejk0gdki
x1dki

x2dki
u1dki

u2

)︃
dx′1dx′2dy′1dy′2,

(34)⟨︁
L (r1)N† (r2)

⟩︁
= −

1
(2π)4η0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

(︃∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

f Kejk0gdki
x1dki

x2dki
u1dki

u2

)︃
dx′1dx′2dy′1dy′2,

(35)⟨︁
N (r1)L† (r2)

⟩︁
= −

1
(2π)4η0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

(︃∫ L

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

f Mejk0gdki
x1dki

x2dki
u1dki

u2

)︃
dx′1dx′2dy′1dy′2,

(36)
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and⟨︁
N (r1)N† (r2)

⟩︁
=

1
(2π)4η2

0∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L

(︃∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

↔

f Nejk0gdki
x1dki

x2dki
u1dki

u2

)︃
dx′1dx′2dy′1dy′2.

(37)
Here,

↔

f L = χ′
(︂
↔

L1 ·
↔

Φi ·
↔

L†

2

)︂
, (38)

↔

f K = χ′
(︂
↔

L1 ·
↔

Φi ·
↔

N†

2

)︂
, (39)

↔

f M = χ′
(︂
↔

N1 ·
↔

Φi ·
↔

L†

2

)︂
, (40)

and
↔

f N = χ′
(︂
↔

N1 ·
↔

Φi ·
↔

N†

2

)︂
, (41)

are amplitude dyadics that contains all of the amplitude terms, and

g =
[︁
rs + (ŷ · v̂)y′2

]︁
ki

v2 −
[︁
rs + (ŷ · v̂)y′1

]︁
ki

v1

+
1
k0

(︂
x′2ki

x2 − x′1ki
x1

)︂
+
(ŷ · û)

k0

(︂
y′2ki

u2 − y′1ki
u1

)︂
+

(︁
x̂ · r̂1x′1 − x̂ · r̂2x′2

)︁
+

(︁
ŷ · r̂1y′1 − ŷ · r̂2y′2

)︁ (42)

is a common phase function that contains the phase terms. Without further simplifications, no
closed-form expressions exist for the integral relationships given in Eqs. (34)–(37).

To simplify the integrals found in parenthesis in Eqs. (34)–(37), we use an asymptotic
mathematical technique known as the method of stationary phase (MoSP) [23,24]. In so doing,
we assume that the amplitude terms are slowly varying in the interval (−∞,∞). We also assume
that the phase terms are rapidly oscillating in the interval (−∞,∞) except near special points
where the rate of change is zero or “stationary.” These special points are critical points of the first
kind [24]. Away from these points, the phase terms are rapidly oscillating and the positive and
negative contributions of the integrand in Eq. (34)–(37) effectively cancel out.

Using the MoSP to simplify Eqs. (34)–(37) has two implications with regards to the macro-scale
scattering geometry given in Fig. 1. The first implication is with respect to the v component of
the incident propagation vector ki; namely,

ki
v =

√︂
k2

0 − (ki
x)

2
− (ki

u)
2. (43)

In particular, we assume that ki
v ≫ ki

x and ki
v ≫ ki

u. As a result,

ki
v1,2 ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k0 in

↔

f L
0 ,

↔

f K
0 ,

↔

f K
0 , and

↔

f N
0

k0 −

(︂
ki

x1,2

)︂2

2k0
−

(︂
ki

u1,2

)︂2

2k0
in g

. (44)

This physically implies that the incident electromagnetic fields are highly directional being
predominately directed along the v direction in Fig. 1. The second implication is that the distance
from the source-plane origin to the surface-plane origin must be much greater than half the
surface length (i.e., rs ≫ L), which is typically the case for long-range applications. Applying
the MoSP to evaluate these integrals physically means that the surface plane is in the far zone of
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the source plane. As such, using the MoSP to simplify Eqs. (34)–(37) results in the following
relationships: ⟨︁

L(r1)L†(r2)
⟩︁
≈

k2
0

(2π)2r2
s

↔

L, (45)

⟨︁
L(r1)N†(r2)

⟩︁
≈ −

k2
0

(2π)2η0r2
s

↔

K, (46)

⟨︁
N(r1)L†(r2)

⟩︁
≈ −

k2
0

(2π)2η0r2
s

↔

M, (47)

and ⟨︁
N(r1)N†(r2)

⟩︁
≈

k2
0

(2π)2η2
0r2

s

↔

N , (48)

where
↔

L,
↔

K,
↔

M, and
↔

N are dyadics that contain all of the amplitude and phase terms evaluated
at the critical points of the first kind, which we determine as

ki
x1,2 ≈

k0
rs

x′1,2 ki
u1,2 ≈

k0(ŷ · û)
rs

y′1,2. (49)

Please see Section S2 of Supplement 1 for more details. Please also see Section S3, where we
explicitly formulate

↔

L,
↔

K ,
↔

M, and
↔

N for different material substrates (i.e., dielectrics, conductors,
and a PEC).

Provided Sections S2 and S3, we are still left with integrals with respect to the parameterized
rough surface. These integrals take the following element-based form:

Ψmn =

∫ L

−L

∫ L

−L

∫ L

−L

∫ L

−L
Φ

i
mn

(︃
k0
rs

x′1,
k0
rs

x′2,
k0(ŷ · û)

rs
y′1,

k0(ŷ · û)
rs

y′2

)︃
χ′

(︃
k0
rs

x′1,
k0
rs

x′2,
k0(ŷ · û)

rs
y′1,

k0(ŷ · û)
rs

y′2; x′1 − x′2, y′1 − y′2

)︃
exp

[︁
jk0

(︁
x̂ · r̂1x′1 − x̂ · r̂2x′2

)︁ ]︁
exp

[︁
jk0

(︁
ŷ · r̂1y′1 − ŷ · r̂2y′2

)︁ ]︁
exp

[︃
−j

k0
2rs

(︂
x′21 − x′22

)︂]︃
exp

[︃
−j

k0(ŷ · û)2

2rs

(︂
y′21 − y′22

)︂]︃
exp

[︁
−jk0(ŷ · v̂)

(︁
y′1 − y′2

)︁ ]︁
dx′1dx′2dy′1dy′2,

(50)

where (m = x, u; n = x, u). In Eq. (50), Φi
mn is equivalent to the Fourier transform of the incident

field CSDM elements found in Eq. (1), that is

Φ
i
mn =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

W i
mn(ρ1, ρ2)e

jki
x1x1e−jki

x2x2ejki
u1u1e−jki

u2u2dx1dx2du1du2

=
π2AmAnBmn

(a2
mn − b2

mn)
exp[−ãmn(ki

x1)
2
− ãmn(ki

x2)
2
+ 2b̃mnki

x1ki
x2]

exp[−ãmn(ki
u1)

2
− ãmn(ki

u2)
2
+ 2b̃mnki

u1ki
u2]

, (51)

and
amn =

1
4w2

s
+ bmn bmn =

1
2ℓ2

mn

ãmn =
amn

4(a2
mn−b2

mn)
b̃mn =

bmn
4(a2

mn−b2
mn)

. (52)

https://doi.org/10.6084/m9.figshare.24159882
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We can reduce the integrals found in Eq. (50) into a closed-form expression. For this purpose,
we first perform the following variable transformations:

xd = x′1 − x′2 xa = x′1 + x′2
yd = y′1 − y′2 ya = y′1 + y′2,

(53)

so that Eq. (50) simplifies into the following expression:

Ψmn =
π2AmAnBmn

4(a2
mn − b2

mn)
exp

[︄
−

k2
0σ

2
h

2
(ϑ2

z1 + ϑ
2
z2)

]︄
2L∫

−2L

2L−|ya |∫
|ya |−2L

2L∫
−2L

2L−|xa |∫
|xa |−2L

exp

[︄
k2

0σ
2
hϑz1ϑz2exp

(︄
−

x2
d

ℓ2h

)︄
exp

(︄
−

y2
d

ℓ2h

)︄]︄

exp

[︄
−

k2
0

2r2
s
(ãmn + b̃mn)x2

d

]︄
exp

[︄
−

k2
0

2r2
s
(ãmn − b̃mn)x2

a

]︄
exp

[︄
−

k2
0(ŷ · û)2

2r2
s

(ãmn + b̃mn)y2
d

]︄
exp

[︄
−

k2
0(ŷ · û)2

2r2
s

(ãmn − b̃mn)y2
a

]︄
exp

[︃
j
k0
2
(ϑx1 + ϑx2)xd

]︃
exp

[︃
j
k0
2
(ϑx1 − ϑx2)xa

]︃
exp

[︃
j
k0
2
(ϑy1 + ϑy2)yd

]︃
exp

[︃
j
k0
2
(ϑy1 − ϑy2)ya

]︃
exp

[︃
−j

k0
2rs

xaxd

]︃
exp

[︃
−j

k0(ŷ · û)2

2rs
yayd

]︃
dxddxadyddya

, (54)

and
ϑx1,2 = x̂ · r̂1,2 ϑy1,2 = ŷ · r̂1,2 − ŷ · v̂ ϑz1,2 = ẑ · r̂1,2 − ẑ · v̂ . (55)

From here, we must handle the exponential term containing the surface-autocorrelation function
(i.e., the first exponential term inside the integrals above).

In the literature, this term has been handled in two ways. The first is to expand it in a Taylor
series and proceed with the evaluation of the integrals [17]. Mathematically, this approach is
applicable to all surfaces; however, because the series is slowly convergent, we limit this approach
to smooth-to-moderately rough surfaces. The other approach involves expanding the surface
autocorrelation function [cf. Equation (33)] in a Taylor series and retaining only the first and
second order terms [17]. This treatment is applicable to very rough surfaces and is the approach
taken in this paper. In practice, the criterion σh ≥ 0.5λ0 helps in discerning the transition point
from the smooth-to-moderately rough surface regime to the very rough surface regime and is an
empirically determined relationship. This criterion is quite physical and says that very rough
surfaces are surfaces where the average optical-path difference is greater than one wave. For
such surfaces, we should expect complete constructive/destructive interference of the scattered
field. This outcome stands in contrast to smooth-to-moderately rough surfaces, where we get
partial interference.

2.4. Very rough surfaces

When considering very rough surfaces, we expand the surface autocorrelation function found
inside the first exponential term in Eq. (54). We first rewrite the joint-characteristic function
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found in Eq. (33) in an alternative form, such that

χ′
(︂

k0
rs

x′1, k0
rs

x′2, k0(ŷ·û)
rs

y′1, k0(ŷ·û)
rs

y′2; xd, yd

)︂
=

exp
(︂
−k2

0σ
2
hϑz1ϑz2

[︂
ϑz1
2ϑz2
+

ϑz2
2ϑz1

− exp
(︂
−

x2
d
ℓ2

h

)︂
exp

(︂
−

y2
d
ℓ2

h

)︂]︂ )︂ . (56)

For very rough surfaces,
k2

0σ
2
hϑz1ϑz2 ≫ 1, (57)

and the alternative form found in Eq. (56) maintains significant value when

ϑz1
2ϑz2

+
ϑz2
2ϑz1

− exp

(︄
−

x2
d

ℓ2h

)︄
exp

(︄
−

y2
d

ℓ2h

)︄
≈ 0. (58)

Since all of the observation points of interest are in the far zone,

ϑz1
2ϑz2

≈
ϑz2
2ϑz1

, (59)

and the relationship found in Eq. (58) is only possible for small xd and yd.
With Eqs. (56)–(59) in mind, it makes sense to expand the exponential functions found in

Eq. (58) and retain only the first and second order terms, so that

exp

(︄
−

x2
d

ℓ2h

)︄
exp

(︄
−

y2
d

ℓ2h

)︄
≈ 1 −

x2
d

ℓ2h
−

y2
d

ℓ2h
. (60)

Substituting Eq. (60) into Eq. (54) allows us to again separate the integrals over the parameterized
rough surface. As mentioned before, this allows for the development of a closed-form expression
for very rough surface conditions without having to convert to polar coordinates. Carrying out
the subsequent integrations, a closed-form expression results. Specifically, we must complete the
square in the exponential terms and use the following integral relationship [24, p. 266]:∫ ∞

−∞

exp(−at2)exp(−jbt)dt =
√︁
π/aexp[−b2/(4a)] (61)

where a>0. In so doing,

Ψmn =
4π4r4

s ℓ
2
hAmAnBmn

k2
0 |ŷ · û|(a2

mn − b2
mn)

exp

[︄
−

k2
0σ

2
h

2
(ϑz1 − ϑz2)

2

]︄
1√︁

Ax
mnA

y
mn

exp

[︄
−

k2
0r2

s ℓ
2
h

4Dx
mnA

x
mn

(Ax
mn − r2

s ℓ
2
h )(ϑ

2
x1 + ϑ

2
x2)

]︄
exp

[︄
−

k2
0r2

s ℓ
2
h

4Dy
mnA

y
mn

(A
y
mn − r2

s ℓ
2
h (ŷ · û)2)(ϑ2

y1 + ϑ
2
y2)

]︄
exp

[︄
−

k2
0r2

s

Ax
mn

(ℓ2h b̃mn + r2
sσ

2
hϑz1ϑz2)(ϑx1 − ϑx2)

2

]︄
exp

[︄
−

k2
0r2

s

(ŷ · û)2Ay
mn

(ℓ2h b̃mn(ŷ · û)2 + r2
sσ

2
hϑz1ϑz2)(ϑy1 − ϑy2)

2

]︄
exp

(︄
j

k0r3
s ℓ

2
h

2Ax
mnA

y
mn

[A
y
mn(ϑ

2
x1 − ϑ

2
x2) +A

x
mn(ϑ

2
y1 − ϑ

2
y2)]

)︄

, (62)
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and
Dx

mn = k2
0ℓ

2
h (ãmn + b̃mn) + 2k2

0r2
sσ

2
hϑz1ϑz2

D
y
mn = k2

0ℓ
2
h (ãmn + b̃mn)(ŷ · û)2 + 2k2

0r2
sσ

2
hϑz1ϑz2

Ax
mn = r2

s ℓ
2
h + 4(ãmn − b̃mn)D

x
mn

A
y
mn = r2

s ℓ
2
h (ŷ · û)2 + 4(ãmn − b̃mn)D

y
mn

. (63)

Provided the closed-form expression given in Eq. (62), we must satisfy the following conditions:

L> rs
k0ws

√︃
− ln(δx)

2

(︂
1 + 4

α2
mn

)︂
L> rs

k0ws |ŷ·û |

√︃
− ln(δy)

2

(︂
1 + 4

α2
mn

)︂
, (64)

where
αmn =

ℓmn

ws
(65)

is the element-based source ratio, and δx and δy are again user-defined parameters, respectively.
They denote the points at which the exponential functions with respect to xa and ya no longer
maintain significant value in Eq. (54). The conditions given in Eq. (64) physically mean that
the projected partially coherent incident beam must “fit” on the rough surface. In satisfying
these conditions, the xa and ya limits of integration extend to (−∞,∞) in Eq. (54). Additionally,
if δx = δy = δ, the second condition in Eq. (64) becomes the most stringent because of the
|ŷ · û| = cos(θi) in the denominator.

The closed-form expression obtained in Eq. (62) is remarkably physical. For instance, the
exponential terms on the second and third lines of Eq. (62) are predominately responsible for
the angular extent of the scattered SD. These exponential terms are functions of the sum of the
squares of the observation projections: ϑx1,2 and ϑy1,2. On the other hand, the exponential terms
on the fourth and fifth lines of Eq. (62) determine the angular extent of the scattered SDoC. Note
that these terms depend on the differences of the observation projections (i.e., |ϑx1 − ϑx2 | and
|ϑy1 − ϑy2 |). In turn, we can state that the closed-form expression obtained in Eq. (62) allows the
scattered field CSDM to maintain a GSM form with respect to ϑx1,2 and ϑy1,2. We examine these
points more closely in the sections that follow.

3. Comparison to the Priest and Meier pBRDF

In this section, we compare the 3D vector solution to a pBRDF developed by Priest and Meier
[1]. In general, the Priest and Meier pBRDF assumes fully incoherent illumination; thus, there is
no coherence information contained within the solution. Instead, the Priest and Meier pBRDF
provides the Mueller matrices for statistically rough surfaces that are characterized by G-G PDFs
[cf. Equation (31)]. As a result, if we assume unpolarized illumination, then the first column
of the Mueller matrix (given by the pBRDF solution) becomes the scattered Stokes vector [25].
Provided this scattered Stokes vector, we can then compare the normalized SD and the DoP
between the pBRDF solution and the 3D vector solution.

By formulating the 3D vector solution in a manner consistent with Wolf’s unified theory of
coherence and polarization [4,5], all physical implications inherent in Wolf’s work apply here.
Accordingly, we can readily formulate the scattered normalized SD Ss

N(r) and the scattered DoP

Ps(r) from the closed-form expression developed above for the scattered field CSDM
↔

Ws(r1, r2).
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For this purpose, we use the following relationships [5]:

Ss
N(r) =

Tr
{︂

↔

Ws(r, r)
}︂

max
[︂
Tr

{︂
↔

Ws(r, r)
}︂]︂ , (66)

and

Ps(r) =

⌜⃓⃓⃓⃓⃓⎷
1 −

4 Det
{︂

↔

Ws(r, r)
}︂

(︂
Tr

{︂
↔

Ws(r, r)
}︂)︂2 , (67)

where Tr{· · · } denotes the trace operation, Det{· · · } denotes the determinant operation, and
r = r1,2 corresponds to a single observation point. These relationships contain measurable
quantities and serve as metrics with which to compare the 3D vector solution to the Priest and
Meier pBRDF.

For this comparison, we used a 5.08 cm × 5.08 cm Labsphere Infragold coupon [26]. We
also used a realizable laboratory setup [27], where λ0 = 10.6 µm, rs = r1,2 = 185 cm, and
ws = 1.9 mm. As such, the Labsphere Infragold coupon maintains the following complex index
of refraction: n = 13.45 − j63.62 [28]. Note that a KLA Tencor Alpha-Step IQ Surface Profiler
[29] determined the surface statistics of the Labsphere Infragold coupon as σh = 11.09 µm and
ℓh = 116.9 µm using four 1 cm scans (step size 0.2 µm). These surface statistics relate to very
rough surface conditions [cf. Equation (57)].

3.1. Normalized SD comparison

Assuming unpolarized illumination (i.e., Ax = Au, and Bxu = Bux = 0), Fig. 2 shows the
comparison for the scattered normalized SD at θi = 20◦. Note the excellent agreement between
the Priest and Meier pBRDF and 3D vector solution for various scattering geometries. In practice,
we can obtain the scattered normalized SD from the pBRDF solution by cosine correcting the
first term of the scattered Stokes vector (i.e., multiplying by cos(θs) [30]) and thereafter dividing
by the max value.

3.2. DoP comparison

Again, assuming unpolarized illumination, Fig. 3 shows the comparison for the scattered DoP at
θi = 20◦. Note the excellent agreement between the Priest and Meier pBRDF and the 3D vector
solution for various scattering geometries. In general, the scattered DoP exists where light exists,
which makes sense considering that, by definition, the scattered DoP depends on the scattered
SD [cf. Equations (66) and (67)].
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Fig. 2. Comparison of the scattered normalized spectral densities obtained from the Priest
and Meier pBRDF (squares) and the 3D vector solution (x’s) for unpolarized illumination at
non-normal incidence of a very rough conducting surface. (a) depicts an in-plane scattering
geometry, whereas (b) depicts an out-of-plane scattering geometry both as a function of a
single polar angle. Conversely, (c) and (d) depict bistatic scattering geometries as a function
of a single azimuth angle. Note that the minimum occurs at the monostatic observation point
in both (c) and (d).
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Fig. 3. Comparison of the scattered degree of polarization obtained from the Priest and
Meier pBRDF (squares) and the 3D vector solution (x’s) for unpolarized illumination at
non-normal incidence of a very rough conducting surface. (a) depicts an in-plane scattering
geometry, whereas (b) depicts an out of plane scattering geometry both as a function of a
single polar angle. Conversely, (c) and (d) depict bistatic scattering geometries as a function
of a single azimuth angle. Note that the minimum occurs at the monostatic observation point
in both (c) and (d).
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4. Closed-form expression for the SDoC

Once again, by formulating the 3D vector solution in a manner consistent with Wolf’s unified
theory of coherence and polarization [4,5], all physical implications inherent in Wolf’s work apply
here. Accordingly, we can readily formulate the scattered SDoC µs(r1, r2) from the closed-form
expression developed above for the scattered field CSDM

↔

Ws (r1, r2). For this purpose, we use
the following relationship [5]:

µs (r1, r2) =
Tr

{︂
↔

Ws (r1, r2)
}︂

√︃
Tr

{︂
↔

Ws (r1, r1)
}︂√︃

Tr
{︂

↔

Ws (r2, r2)
}︂ , (68)

where again, Tr{· · · } denotes the trace operation and r = r1,2 corresponds to a single observation
point. This relationship contains a measurable quantity and serves as a metric with which to
compare the 3D vector solution to the 2D scalar-equivalent solution [2,3] and a paraxial solution
[7,9].

4.1. Comparison to the 2D scalar-equivalent solution

In order to compare the 3D vector solution to the previously validated 2D scalar-equivalent
solution [2,3], we assume horizontally polarized (s-pol) illumination and an in-plane scattering
geometry (i.e., Au = Bux = Bxu = 0 and ϕs = ϕs

1,2 = 90◦). This provides the setup needed to
make a fair comparison between the two solutions.

For this comparison, we can formulate a closed-form expression for the angular SDoC radius,
which describes the angular extent over which the scattered field is correlated. In general, the
angular SDoC radius provides a gauge for the average speckle size observed in the far zone and is
a quantity of importance for long-range applications that deal with speckle phenomena. Note that
the formulation presented here is highly analogous to that performed for the 2D scalar-equivalent
solution [2,3].

Assuming that Eq. (64) holds, so that the incident illumination “fits” on the rough surface,
the exponential terms on the fourth and fifth lines of Eq. (62), in general, determine the angular
extent of the scattered SDoC. Provided s-pol illumination and an in-plane scattering geometry,
only Ψxx exists, and the difference of the observation projections simplify, such that

|ϑx1 − ϑx2 | = |sin(θ21) cos(ϕs
1) − sin(θ22) cos(ϕs

2)| = 0 (69)

and
|ϑy1 − ϑy2 | = |sin(θs1) sin(ϕs

1) − sin(θs2) sin(ϕs
2)| = |sin(θs1) − sin(θs2)|. (70)

Consequently, the following “correlation” exponential γ results from Eq. (62) for Ψxx:

γ = exp

[︄
−

k2
0r2

s

(ŷ · û)2Ay
xx
(ℓ2h b̃xx(ŷ · û)2 + r2

sσ
2
hϑz1ϑz2)[sin(θs1) − sin(θs2)]

2

]︄
≈ exp

[︃
−

r2
sD

y
xx

2(ŷ · û)2Ay
xx
[sin(θs1) − sin(θs2)]

2
]︃ (71)

Upon setting γ equal to 1/e, the following expression results:

|sin(θs1) − sin(θs2)|1/e ≈
|ŷ · û|

rs

√︄
2Ay

xx

D
y
xx

=
|ŷ · û|

rs

⌜⎷
8w2

s ℓ
2
xx

ℓ2xx + 4w2
s
+

2r2
s ℓ

2
h (ŷ · û)2

k2
0[ℓ

2
hw2

s (ŷ · û)2 + 2r2
sσ

2
hϑz1ϑz2]

(72)
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Because the magnitude of the argument of γ is large (specifically the k2
0r4

sσ
2
hϑz1ϑz2 term),

sin(θs1) ≈ sin(θs2) for Eq. (71) to have significant value. This implies that θs1 ≈ θs2 and that γ is
approximately a function of ∆θs = θs1 − θ

s
2. Using this insight, Eq. (72) simplifies, since

sin(θs1) = sin(θs2 + ∆θ
s)

= sin(θs2) cos(∆θs) + cos(θs2) sin(∆θs)
≈ sin(θs2) + cos(θs2)∆θ

s
, (73)

cos(θs1) = cos(θs2 + ∆θ
s)

= cos(θs2) cos(∆θs) − sin(θs2) sin(∆θs)
≈ cos(θs2)

, (74)

and
ϑz1ϑz2

(ŷ · û)2
=

[cos(θs1) + cos(θi)][cos(θs2) + cos(θi)]
cos2(θi)

≈

[︃
1 +

cos(θs2)
cos(θi)

]︃2

. (75)

After some simple algebra, the expression for the angular SDoC radius becomes

|∆θs |1/e ≈
1
ϖrs

⌜⃓⃓⃓⃓⃓⃓⎷ 8w2
s

1 + (2/αxx)
2 +

2

k2
0σ

2
h′(1 +ϖ)

2

(︄
1 +

[︃
Ωs

σ2
h′ (1+ϖ)

]︃2
)︄ , (76)

where αxx = ℓxx/ws is a source ratio [cf. Equation (65)],ϖ = cos(θs2)/cos(θi) is a projection ratio,
Ωs = ws/rs is the source half angle (viewed from the rough surface), and

σh′ =
√

2
σh

ℓh
(77)

is the surface slope standard deviation [17]. Based on the assumptions used, valid surface slope
standard deviations must satisfy the condition σh′ ≤ 0.25 rad [15,31].

For all intents and purposes, we can neglect the term involving Ωs/σh′ in Eq. (76). This ratio
results in values on the order of 10−4 for long-range applications. With that said, we can also
claim that the source term contained in the radical above is much greater than the surface term.
Thus, factoring out the source term and using the binomial approximation yields

|∆θs |1/e ≈
Ωs

ϖ

⎛⎜⎜⎝2

√︄
2

1 + (2/αxx)
2 +

√︂
2[1 + (2/αxx)

2]

4k2
0w2

sσ
2
h′(1 +ϖ)

2

⎞⎟⎟⎠ ≈
2Ωs

ϖ

√︄
2

1 + (2/αxx)
2 (78)

For most cases of interest, we can neglect the second term contained within the parenthesis in
Eq. (78). It only provides a “small” correction to the angular SDoC radius due to the surface
parameters. As a result, the angular SDoC radius becomes a function of only the source
parameters. This is highly analogous to the result obtained by the 2D scalar-equivalent solution
[2,3]. It is also consistent with the classic, narrow-band, fully coherent illumination result derived
by Goodman [32].

In the comparison that follows, we used a nominal laboratory setup, where λ0 = 1.064 µm,
rs = r1,2 = 2 m, and ws = 2 mm. We also used partially coherent illumination of NKB7 glass
(n = 1.507 [28]) at θi = 0◦ and θi = 56.4◦ (i.e., Brewster’s angle). In support, we varied the
coherence of the incident illumination, so that αxx = 2 and 0.5 [cf. Equation (65)]. These values
relate to a relatively coherent source and to a relatively incoherent source, respectively. In
addition, we varied the surface roughness of the NKB7 glass, so that σh′ = 0.1 rad and 0.2 rad [cf.
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Fig. 4. Comparison between the 2D scalar-equivalent solution (squares and circles) and 3D
vector solution (x’s and +’s) for partially coherent s-pol illumination at normal incidence
and Brewster’s angle of a very rough dielectric surfaces. (a)–(d) show the magnitude of the
scattered SDoC as a function of the difference between two polar angles for varying source
parameter ratios and surface slope standard deviations.

Equation (77)], where ℓh = 100λ0 and σh = σh′ℓh/
√

2. These values both correspond to very
rough surface conditions, respectively.

Assuming partially coherent s-pol illumination (i.e., Ax = 1 and Au = Bxu = Bux = 0), Fig. 4
shows the comparison for the magnitude of the scattered SDoC. Note the excellent agreement
between the 2D scalar-equivalent solution and the 3D vector solution. Also note the excellent
agreement for the angular SDoC radius [cf. Equation (78) and vertical lines in Fig. 4]. This
agreement supports the finding that the angular SDoC radius approximately depends on only the
source parameters.

With Fig. 4 in mind, Fig. S2 of Supplement 1 shows the comparison for the scattered normalized
SD. In general, the results deviate between the 2D and 3D solutions as σh′ increases. This
deviation is deterministic in practice. For s-pol illumination and an in-plane scattering geometry,
the 2D and 3D solutions have the same functional dependence in the exponential term which
predominately drives the angular extent of the scattered SD. In practice, we can use the angular

https://doi.org/10.6084/m9.figshare.24159882
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SD radius θs1/e to identify the 1/e location for the scattered normalized SD. Assuming near
normal incidence,

θs1/e ≈ cos−1

(︄
2

1 + 2σ2
h′
− 1

)︄
, (79)

which states that the angular SD radius is approximately a function of only the surface parameters.
Please see Section S4 of Supplement 1 for more details.

Provided Section S4, there is a small difference contained in the amplitude terms when
comparing the 2D and 3D solutions. As formulated, the 3D vector solution contains a 1/

√︁
Ax

xxA
y
xx

amplitude factor [cf. Equation (63)], whereas the 2D scalar-equivalent solution contains only
a 1/

√︁
A

y
xx amplitude factor. These amplitude factors (in addition to polarization terms) appear

in front of the exponential term which predominantly drives the angular extent of the scattered
normalized SD. Functionally, these amplitude factors tend to “push” the scattered normalized SD
to the right, whereas the polarization terms tend to “pull” the scattered normalized SD to the left
(for positive incident angles—the opposite is true for negative incident angles).

As shown in Fig. S2(c) and (d), as σh′ increases, the SD peak for the 2D scalar-equivalent
solution shifts more and more to the left when compared to the 3D vector solution. The full-wave
2D method-of-moments (MoM) solution of Basu et al. shows similar behavior [20,21]. This
outcome is due to the lack of the aforementioned amplitude factor in the 2D solutions. Note that
comparisons with a full-wave 3D MoM solution are unrealizable at optical wavelengths with the
setup used in Figs. 4 and S2—the computational sampling and memory requirements are too
great for modern-day desktop computers.

4.2. Comparison to a paraxial solution

In practice, we can reformulate the 3D vector solution within a Cartesian coordinate system.
With that said, we must use the following relationships:

ϑx1,2 =
x1,2
r1,2

ϑy1,2 =
y1,2
r1,2

− sin(θi) ϑz1,2 =
z1,2
r1,2
+ cos(θi)

θ̂1,2 · x̂ = z1,2x1,2
r1,2ρ1,2

θ̂1,2 · ŷ = z1,2y1,2
r1,2ρ1,2

θ̂1,2 · ẑ = −
ρ1,2
r1,2

ϕ̂1,2 · x̂ = −
y1,2
ρ1,2

ϕ̂1,2 · ŷ = x1,2
ρ1,2

ρ1,2 =
√︂

x2
1,2 + y2

1,2 r1,2 =
√︂

x2
1,2 + y2

1,2 + z2
1,2

. (80)

Provided these relationships, we can compare the 3D vector solution to an ABCD-matrix
approach outlined by Korotkova et al. [7,8]. In general, the ABCD-matrix approach describes
paraxial-wave propagation through any complex optical system. When modeling rough surface
scattering using the ABCD-matrix approach, a phase-screen transmittance function characterizes
the scattering process for very rough surface conditions. The inclusion of a soft-Gaussian aperture
in the model also accounts for the size of the scattering surface and accompanying diffraction
effects.

In the comparison that follows, we used horizontally polarized (p-pol) illumination, so
that Au = 1, Ax = Bxu = Bux = 0, λ0 = 1.064 µm, rs = r1,2 = 10 km, ws = 2.54/2 cm,
ℓxx = ℓuu = 0.25ws, and θi = 0◦. This nominal long-range setup corresponds to partially coherent
illumination at normal incidence. For a fair comparison, we removed the soft-Gaussian aperture in
the ABCD solution to ensure that the incident illumination “fits” on the rough surface. In addition,
we assumed an idealized perfectly reflecting rough surface, where σh = 10λ0 and ℓh = 100λ0.
Such surface statistics correspond to very rough surface conditions [cf. Equation (57)]. Provided
this setup, Fig. 5 shows a comparison between the ABCD paraxial solution and the 3D vector
solution.

https://doi.org/10.6084/m9.figshare.24159882
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The magnitude of the scattered SDoC [Fig. 5(a)] shows excellent agreement. Here, the vertical
line depicts the angular SDoC radius [cf. Equation (78)] multiplied by the propagation distance
to the observation plane. Note that it correctly identifies the 1/e location for the scattered SDoC.
In addition, the normalized scattered SD [Fig. 5(b)] shows relatively good agreement between
the two solutions. The wings of the power distribution associated with the 3D vector solution
tend to be wider than those associated with the ABCD solution; nonetheless, the results show
good agreement out to the vertical lines, which depict the angular SD radius [cf. Equation (79)]
multiplied by the propagation distance to the observation plane. Also note that it correctly
identifies the 1/e location for the scattered normalized SD. Furthermore, the scattered DoP
[Fig. 5(c)] shows excellent agreement between the two solutions. Based on the assumptions
used in this paper, no de-polarization occurs upon scattering from the perfectly reflecting rough
surface [14], at least for isotropic beam parameters (i.e., when ℓxx = ℓuu). This outcome is also
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Fig. 5. Comparison between an ABCD paraxial solution (squares) and the 3D vector
solution (x’s) for partially coherent p-pol illumination at normal incidence of a very rough
perfectly reflecting surface. (a) shows the magnitude of the scattered SDoC as a function
of the distance between two values in the x direction, whereas (b) shows the scattered
normalized SD and (c) shows the scattered DoP both as a function of a single value in the x
direction.
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the case for s-pol illumination at normal incidence and is consistent with the 2D scalar-equivalent
solution [2,3]. Please see Section S5 of Supplement 1 for an example where this outcome is not
the case. Also see Code 1 (Ref. [33]) for MATLAB code to plot all figures in the main document
(Figs. 2–5) and Supplement 1 (Figs. S2–S4).

5. Conclusion

This paper formulated a 3D vector solution for the far-field scattering of spatially partially
coherent laser-beam illumination from statistically rough surfaces. Compared to previous efforts,
the 3D vector solution formulated here significantly extends the rough surface scattering literature,
since most of the theory developed to date only considered the effects of fully coherent or fully
incoherent illumination in the formation of solutions. Moreover, the 3D vector solution considered
three different material substrates: dielectrics, conductors, and a PEC. By incorporating the
effects of the material substrates, the 3D vector solution transcends previous efforts, which
included the effects of partially coherent beam illumination but not the effects of the material
substrates.

To develop the 3D vector solution, we used the physical optics approximation (Kirchhoff
boundary conditions). We also used a GSM form for the incident field CSDM. This choice
allowed for the development of a closed-form expression for the scattered field CSDM that is
applicable to very rough surfaces. The closed-form expression is extremely physical, and under
certain circumstances, maintained a GSM form. This outcome agrees with published results
valid only in the paraxial regime.

By using the CSDM notation within the 3D vector solution, all aspects inherent in Wolf’s
unified theory of coherence and polarization apply here. Accordingly, the 3D vector solution
enabled a rigorous comparison to the Priest and Meier pBRDF in terms of the normalized SD
and the DoP. Overall, the comparison showed excellent agreement for the scattered normalized
SD density and the scattered DoP. Based on this agreement, the 3D vector solution also enabled
an extension to the Priest and Meier pBRDF to account for the effects of active illumination.
In particular, the 3D vector solution enabled the development of a closed-form expression for
the scattered SDoC. This expression provides a gauge for the average speckle size based on the
spatial-coherence properties of the laser source. As such, this extension is of broad interest to
long-range applications that deal with speckle phenomena.
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