
University of Huddersfield Repository

Gibson, Ian and Dovey, Matthew

A web-based system for collaborative electro-acoustic composition

Original Citation

Gibson, Ian and Dovey, Matthew (2006) A web-based system for collaborative electro-acoustic
composition. International Journal of Advanced Manufacturing Technology, 30 (9-10). pp. 968-973.
ISSN 0268-3768

This version is available at http://eprints.hud.ac.uk/4049/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/59542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A web-based system for collaborative electro-acoustic composition

GIBSON, I. and DOVEY, M.
School of Technology, Leeds Metropolitan University, Leeds, UK
e-Science Centre, University of Oxford, Oxford, Oxfordshire, UK

ABSTRACT

This paper describes development of an online system for collaborative electro-acoustic music
composition. Traditionally, software systems for music composition have been single user
systems. As accessibility to the Internet has increased, some systems have been adapted so that
musicians can produce collaborative work. However, many such systems are still based around
the composition methods of the original single user systems. Various Service Oriented
Architectures are emerging based on WebServices or GridServices and other Internet technologies
for dynamically building systems out of distributed components. Many e-Science projects are
using these architectures to build collaborative environments. The software described in this paper
takes such concepts and tools from Service Oriented Architectures and e-Science, and applies
them to develop software specifically for collaborative electro-acoustic composition on the
Internet, allowing compositional tools and components to be published, discovered and used
within a distributed environment. An objective is to explore and determine methods of
composition appropriate for this environment.

1 BACKGROUND

In many cases, electronic sound synthesis techniques can produce a greater range of timbres than
any one acoustic instrument. The composer-performer has access to a wide range of software and
hardware tools for score writing, sound synthesis, sound editing and music arrangement.

Real-time control of synthesized sound is often achieved using a device compatible with the
Musical Instrument Digital Interface (MIDI) protocol (1). However MIDI devices (such as
keyboards) tend to have limited degrees of freedom (2). For this reason, many electro-acoustic
composers choose to compose in non real-time using Music Computer Languages such as CSound
(3) which allow the user to attain a higher resolution of control over parameters but at the expense
of being more computationally intensive. Traditionally, these languages have taken the form of
text-based interfaces whereby the computer is used to process a script. CSound stores ‘instrument

definitions’ in an orchestra file and instructions for playing instruments in a score file.

2 SOUND SYNTHESIS TECHNIQUES

This section describes common techniques used by the composer-performer for synthesizing
sounds.

2.1 Additive Synthesis
Additive or Fourier synthesis operates in the frequency domain. A waveform may be represented
as a series of sinusoidal waveforms (partials). Fourier analysis may be used to analyse an audio
signal for re-synthesis. Small sections of the original audio signal (windows) are taken and
analysed in this way producing sets of partials with their amplitudes and phase. The size of the
window must be larger than the longest pitch period to be analysed. To increase accuracy of the
analysis stage, some fourier analysis programs allow interpolation between windows.

Re-synthesis becomes possible by generating sinusoidal oscillators which follow the amplitude
envelopes generated in the analysis stage. When re-synthesising acoustic instruments in this way
it is necessary to perform analysis over a range of frequency values. A note played on a lower
register will typically have different partial envelopes to a note played on a higher register.

Fourier synthesis can also be used to generate new sounds and musical effects. A morph between
two sounds may be achieved using interpolation between their respective envelopes, many
examples of which can be found in the piece "Vox 5" by Trevor Wishart. Further interpolation
may be applied within the time domain to resolve differences in attack or decay values between
the two sounds. This method is also useful for creating a sound which has timbral qualities of both
sounds.

The Digital Phase Vocoder (4) is an extension of fourier transform and has been used to control a
synthesiser from a traditional instrument (5). It is used to map spectral characteristics of the
acoustic instrument directly onto a synthesized sound using additive synthesis.

2.2 Subtractive Synthesis
Subtractive synthesis is based around the use of one or more of the following filters on a source
sound: low-pass, high-pass, band-stop, and band-pass. These filter out parts of the sound
spectrum, shaping the amplitude and phase of each spectral component. A low-pass filter permits
frequencies below a cutoff frequency (fc) to pass. Above the frequency fc, the spectral
components are reduced significantly in amplitude. The cutoff frequency is defined at that point
at which the power transmitted drops to one half (-3 dB) of the maximum power transmitted.

A high-pass filter allows only signals above the cutoff frequency to pass unaffected. A band-pass
filter rejects frequencies either side of two cutoff frequencies. These are specified by a centre
frequency and a bandwidth. The band-stop filter is the inverse of a band-pass, attenuating
frequencies within the specified bandwidth.

Because no new frequencies are introduced subtractive synthesis is particularly effective with
complex sound sources. Sawtooth and triangle waves produce sounds rich in harmonic spectra but

due to their periodic nature they can sound predictable. Noise and pulse waves are also used due
to their spectral richness. The pulse waveform has an amplitude which lasts just a brief period of
time (determined by the pulse width). A narrow pulse produces a large amount of spectral energy
in its higher frequencies relative to its low frequency components.

2.3 Frequency Modulation
Frequency modulation (FM) occurs when the output of one oscillator (the modulator) is used
to modulate the frequency of another (the carrier). The output spectrum resulting from frequency
modulation contains sidebands around the centre frequency. The faster the rate of modulation the
more power is found over the sidebands. Time varying modulation produces complex and varying
spectra. FM is ideal for bell-like sounds. Small changes in modulation frequency and amplitude
can have a dramatic effect on the timbre of the resulting sound.

Figure 1 An example FM instrument

An example FM instrument is shown in figure 1. This instrument has one carrier oscillator and
one modulating oscillator. fc is the output of the carrier if the modulating oscillator outputs zero.
When modulation occurs, the frequency fc is modulated above and below the modulating
oscillator output at a rate d. AMP is the amplitude of the output signal of the carrier oscillator. The
maximum frequency produced is fc + d, and the minimum is fc - d. For example, with a value fc of
400, d of 50, fm of 100, and AMP=1000, then the carrier oscillator will be modulated between the
values of 350 and 450 at a rate of 100 Hz, with a carrier oscillator output amplitude of 1000.

2.4 Amplitude And Ring Modulation
Amplitude modulation (AM) occurs when a sound’s amplitude is modulated over time between 0
and a maximum value. The rate of modulation is determined by the frequency of the modulating
oscillator. Ring modulation (RM) is similar to AM except amplitude (as well as the rate of
oscillation) is determined directly by the modulating oscillator.

2.6 Waveshaping Synthesis
Waveshaping synthesis occurs when a waveform is taken and transformed. Usually a transfer

function is used to produce an output waveform based on the input waveform. Like FM synthesis,
the outcome of subtle changes in parameters can not be often predicted especially if the waveform
is altered by a non-linear processor.

2.7 Granular Synthesis
Granular synthesis combines frequency and time domain synthesis techniques. Several grains
of sound are produced each with fixed frequencies and amplitudes. Many hundreds may be output
in a single second producing a rich and varying texture. This texture can be difficult to control due
to the large number of events involved, however granular synthesis can produce a variety of
sounds including those resembling shattering of glass or torrents of water.

3 THE SOFTWARE ENVIRONMENT

Work has begun on the implementation of a distributed environment to allow the sharing
synthesis techniques and eventually to allow real-time collaborative composition. The current
prototype system uses SOAP based Web Services to allow access to a database of audio samples,
audio processors and compositions.

3.1 Service Oriented Architectures
The current methodology in developing distributed systems is Service Oriented Architecture
(SOA), building upon methodologies such as Object Oriented programming, Components and
Distributed Object Request Brokers. Within a SOA, systems are composed of multiple individual
services located and maintained on different heterogeneous machines administered by different
organizations. The key in SOA is that the component services should be loosely coupled i.e. be
well-defined, self-contained, and should not depend on the context or state of other services (6).
To achieve this, a SOA should display the following properties:

• The services should implement a small set of simple, ubiquitous and well known interfaces
which only encode generic semantics.

• The interfaces should deliver messages constrained by extensible schema for efficiency.
This allows both services and consumers to work with well defined message structures,
but allowing new versions of the services to be introduced without breaking existing
systems

• The messages should be descriptive not instructive and the interfaces should not define
system behaviour. This allows internals of a service can be viewed as a “black box”.

• Service Oriented Architectures must have mechanisms for the discovery of services
matching the consumers requirements

There are a number of emergent technologies which can underpin SOA, namely REST
WebServices; SOAP WebServices and GRID Services:

• Representational State Transfer (REST) works on the basic of “resources” which can be
references by URIs (7). A REST web service is limited to using HTTP interfaces (GET to
obtain a representation of the resource; DELETE to remove a representation of a resource;
POST to update or create a representation of a resource; PUT to create a representation of
a resource). REST messages are in XML, constrained by schema definitions in the XML

Schema language (http://www.w3.org/XML/Schema) or Relax NG (http://www.oasis-
open.org/committees/tc_home.php?w-_abbrev=relax-ng)

• SOAP Web Services use messages encapsulated in a structure defined by the SOAP
specification (http://www.w3.org/2000/xp/Group/). This adds additional information in the
form of headers for message routing scenarios and mechanisms for reporting errors using
faults (a style similar to exceptions in various programming languages). SOAP Web
Services use Web Service Description Language (WSDL) to define both the structures
(again using schema languages such as XML Schema) but also messaging semantics such
as whether the message is initiated by the client or the server, and what messages can be
used as a response to a particular message.

• GRIDServices are based on WebServices but provide additional semantics. In particular
they add some object-oriented and REST concepts. The object-oriented concepts are the
ability to inherit service definitions (portTypes in WSDL terminology) and add new
messages using a multiple inheritance model and the ability to add properties (or service
data elements) to WebServices. The REST concept introduced is that of creating a new
representation of resource. In the GRIDServices model this uses a factory model whereby
a new instance of a GRIDService can be created by its corresponding factory
GRIDService. GRIDServices also offer an extensibility model whereby part of the
structure of the message can be left undefined, but the allowed structures can be
determined dynamically by querying the appropriate service data elements.

The current prototype is based upon SOAP based WebServices, although future versions may
need to take advantage of GRIDService based technology for some of the more advanced features
such as remote execution of compositions.

3.2 Web Service Definitions
The Web Service definitions define how the client communicates with the server using XML
based messages. The prototype definitions are defined within WSDL which would allow clients
and servers to be implemented on different platforms using different programming languages. The
definition defines three different “PortTypes” (which is the WSDL term for a collection of
functions). The division into different functional groups allows for a system in which different
servers implement different groups, although our current prototype server includes
implementations of all three. The defined PortTypes are:

3.2.1 Processor Service PortType
This defined two functions: processAudio and getProcessorsDescriptions. The
processAudio function allows the client to send audio data to be processed at the server. It takes
as its parameters an identifier, a collection audio sample and a collection of parameters and
returns a single audio sample. The identifier determines what code will be used to process the
audio using the various mechanisms described above. The collection of audio samples consists of
MIME based 64 encoded binary of the actual wave data plus a name to identify that particular
input to the code – typical names might be “input1”, “input2” etc. The collection of parameters
also consists of a list of name, value pairs and allows fine control over the functioning of the
server side sound synthesis code. The getProcessorsDecriptions returns a list of all the sound
synthesis techniques available on the server. For each technique, it also returns the list of names
for the input audio, the list of parameters including descriptions and type (e.g. integer, real or
Boolean), and also the provenance of the sound synthesis technique using Dublin Core[] metadata

such as title, creator and description.

3.2.2 Audio Service PortType
This defines functions for managing a server based database of audio samples. It implements the
functions getAudio and submitAudio for adding new samples and retrieving existing samples. It
also has the function getAudioDescriptions which returns a list of available samples and their
provenance using Dublin Core metadata (title, description, creator, date etc.)

3.2.3 Composition Service PortType
This defines functions for managing a server based database of compositions. A composition is
represented as an XML document detailing the identifiers of the audio samples and processors
used (i.e. the identifiers to use as a parameter for the getAudio and processAudio functions
respectively) and the workflow i.e. how the audio and synthesis are composed to form the final
audio. It implements the functions getComposition and submitComposition for adding new
compositions and retrieving existing compositions. It also has the function
getCompositionsDescriptions which returns a list of available compositions and their
provenance using Dublin Core metadata (title, description, creator, date etc.)

3.3 Server Implementation
A prototype server has been developed in Java implementing all three port types, i.e. performing
the roles of a audio repository, composition repository and a repository of various audio synthesis
processors. This has been developed using OpenSource components such as Apache Tomcat
(http://jakarta.apache.org) to provide the base HTTP functionality and the Apache Axis
(http://ws.apache.org) to provide SOAP functionality.

The Audio and Composition repositories have currently been implemented a simple file stores
with additional metadata store in an XML index file. The processor web service dynamically
loads new processors by compiling and loading java classes stored in the processor directory. A
web interface has been developed to allow remote uploading of new processors.

Helper java classes have been written to hide the Web Service complexity. To write a new
synthesis processor, you have to implement a java class which has the method processAudio. The
functions getAudioOutput () is available to return a ByteArrayOutputStream to which to write
the audio output, and functions getAudioInput(String name) and getGlobalParameter(String
name) are provided to access the audio input and parameters. Use is made of the the new Java 1.5
metadata feature to add descriptive metadata to the source code about the creator and title of the
processor, the names of the audio inputs and the names and types of the parameters which are
returned by the getProcesssorsDescriptions WebService function. A simple processor which just
adds samples together is show below (the lines beginning @ are the descriptive metadata using
the new Java 1.5 features):

public class SampleAudioProcessor extends AbstractAudioProcessor {

 @Provenance(creator=”Dovey, Matthew”, title=”Simple Processor”)
 @AudioStreams({@AudioStreamDescription(name=”in1”, description=”first”),
 @AudioStreamDescription(name=”in2”, description=”second”)})
 @Parameters({@ParameterDescription(name=”parm1”, description=””, type=”integer”)})

 public void processAudio() {
 byte array1[] = new byte[in1.available()];
 byte array2[] = new byte[in2.available()];

 this.getAudioInput("in1").read(array1);
 this.getAudioInput("in2").read(array2);

 for (int i = 0; i < array1.length && i < array2.length; i++) {
 this.getAudioOutput().write(array1[i] + array2[i] + intParameter(getGlobalParameter("parm1")));
 }
 }
}

A new processor is added to the server by dropping the source code in the processor directory
with the extension .jps (either directly or via a web form). The file is automatically and
dynamically detected and compiled by the server and the processor is then available for use.

3.4 Client Implementation

Figure 2 The prototype client user interface

A prototype client has been developed using Java Swing, and example of the user interface is
show in figure 2. The client establishes a link to the server and uses the
getAudioDescriptions and getProcessorsDescriptions WebServices to enumerate available

resources. This are listed in the Java JTree control on the left hand side. Audio samples and audio
synthesis processors can be dragged and dropped onto the flowchart control on the right hand side
which is implemented using the open source JGraph Swing control[1]. The various components
can be then linked up to form a composition. Right-clicking on a processor brings up a list of the
parameters that can be changed for that processor. The file menu allows the saving and loading of
compositions either to the server (via submitComposition and getComposition WebServices) or
to the local machine. The output of the composition can be sent to the speakers of the local
machine, a local wave file or to the server (via the submitAudio WebService).

The current system is in an early prototype and still needs testing and feedback by users. However
there are a number of areas which have already been identified as requiring further development

4 FUTURE RESEARCH

4.1 Searching
At present, a client must request the data for all the resources (audio, processors or composition)
on the server in order to discover what is available. This is clearly not scalable as the number of
resources grows. For this it would be better for the server to support a search interface so that
audio processors, audio clips or compositions can be found matching a user’s query. The use of
the generic SRW WebService protocol[2] will be investigated for this purpose.

4.2 Multiple Servers
The architecture should be expandable to support multiple servers, so that the client might use
processors, audio, etc. from numerous servers. For this to work there needs to be a naming
convention so that a resource (audio sample or synthesis processor) and the server on which it is
located can be determined from an identifier stored in a composition. Various systems such as WS-
Addressing will be investigated for this purpose. There are also various architectures as to how a
client discovers the various servers and there resources. In one case a client might send a
get…Descriptions web service (or a search) to multiple servers simultaneously. An alternative
might be for the servers to replicate metadata descriptions between themselves so that a client
need only send a get…Descriptions or a search to a single server which will then response with
information of the resource of all servers. It is likely that a hybrid approach will be implemented
for greater flexibility.

4.3 Server execution of compositions
The current prototype is inefficient in the use of network traffic. In a typical composition, the
client will retrieve a number of audio samples from the server using the getAudio WebService,
then send those audio samples back over the network to the server for a synthesis technique to be
applied via the processAudio WebService. The resultant audio will be transferred back to the
client. As this may be an input to another audio processor the resultant audio may be passed back
over the network to the server, and so on. A more efficient solution would be for the composition
to be sent to the server and executed on the server. With multiple servers it will be necessary to
calculate the most efficient workflow. GRID technologies will be investigated to provide this
functionality.

4.4 Peer to Peer technologies

The prototype architecture is a client-server approach. A more flexible approach might be to use a
peer to peer approach whereby a user can publish audio samples and synthesis processors from
their local machine. Combining the client with the server would enable this, once a multiple
server architecture is in place, although this may have some security implications to be
investigated.

4.5 Instant Messaging Technologies
The system described is meant to encourage collaborative composition. This can only be achieved
if the collaborative composers not only have access to shared resources but also to real time
communication tools such as text based chatting, whiteboards, video/audio conferencing etc.
Various technologies will be investigated for integration into the client.

REFERENCES

(1) IMA (1988). MIDI 1.0 Detailed Specification, version 4.0. International MIDI Association.
(2) GIBSON I.S. (1997). Voice Analysis for Music Synthesis Systems. PhD Thesis (York, UK),
2.
(3) VERCOE, B.L. (1986). The CSound Manual. Cambridge Massachussets: Experimental Music
Studio, Media Laboratory, MIT, Cambridge.
(4) FLANAGAN J.L. & GOLDEN, R.M. (1966). The Phase Vocoder. Bell System Technical
Journal, 45, 1493-1509.
(5) BAILEY N.J., PURVIS A., BOWLER I.W., MANNING P.D. (1993). Applications of the
Phase Vocoder in the Control of Real-time Electronic Musical Instruments. Interface, 22, 259 -
273.
(6) What is Service-Oriented Architecture.
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
(7) FIELDING, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation (University of California, Irvine), Chapter 5.

[1] http://www.jgraph.com
[2] http://www.loc.gov/z3950/agency/zing/srw/

