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ABSTRACT

Solar Flare Prediction from Extremely Imbalanced Multivariate Time Series Data using

Minimally Random Convolutional Kernel Transform

by

Kartik Saini, MASTER OF SCIENCE

Utah State University, 2023

Major Professor: Shah Muhammad Hamdi, Ph.D.
Department: Computer Science

Solar flares are characterized by sudden bursts of electromagnetic radiation from the

Sun’s surface, and caused by the changes in magnetic field states in solar active regions.

Earth and its surrounding space environment can suffer from various negative impacts

caused by solar flares ranging from electronic communication disruption to radiation exposure-

based health risks to the astronauts. In this paper, we address the solar flare prediction

problem from magnetic field parameter-based multivariate time series (MVTS) data using

multiple state-of-the-art machine learning classifiers that include MINImally RandOm Con-

volutional KErnel Transform (MINIROCKET), Support Vector Machine (SVM), Canoni-

cal Interval Forest (CIF), Multiple Representations SEQuence Learner (MR-SEQL), Long

Short-Term Memory (LSTM)-based deep learning model, and the Transformer model. We

showed our results on the Space Weather ANalytics for Solar Flares (SWAN-SF) benchmark

data set, a partitioned collection of MVTS data of active region magnetic field parameters

spanning over 9 years of operation of the Solar Dynamics Observatory (SDO). The MVTS

instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class la-

bels, and attributed to extreme class imbalance because of the rarity of the major flaring

events (e.g., X and M). To minimize the dimensionality of the data, we also included data
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preprocessing activities such as statistical summarization. We used the true skill statistic

(TSS) and realizations of the Heidke Skill Score (HSS; HSS2) score as a performance val-

idation metric in this class-imbalanced dataset. Finally, we demonstrate the advantages

of the MVTS learning algorithm MINIROCKET, which produces better results than other

classifiers without the need for essential data preprocessing steps such as normalization,

statistical summarization, and class imbalance handling heuristics.

(62 pages)



v

PUBLIC ABSTRACT

Solar Flare Prediction from Extremely Imbalanced Multivariate Time Series Data using

Minimally Random Convolutional Kernel Transform

Kartik Saini

Solar flares are characterized by sudden bursts of electromagnetic radiation from the

Sun’s surface, and caused by the changes in magnetic field states in solar active regions.

Earth and its surrounding space environment can suffer from various negative impacts

caused by solar flares ranging from electronic communication disruption to radiation exposure-

based health risks to the astronauts. In this paper, we address the solar flare prediction

problem from magnetic field parameter-based multivariate time series (MVTS) data using

multiple state-of-the-art machine learning classifiers that include MINImally RandOm Con-

volutional KErnel Transform (MINIROCKET), Support Vector Machine (SVM), Canoni-

cal Interval Forest (CIF), Multiple Representations SEQuence Learner (MR-SEQL), Long

Short-Term Memory (LSTM)-based deep learning model, and the Transformer model. We

showed our results on the Space Weather ANalytics for Solar Flares (SWAN-SF) benchmark

data set, a partitioned collection of MVTS data of active region magnetic field parameters

spanning over 9 years of operation of the Solar Dynamics Observatory (SDO). The MVTS

instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class la-

bels, and attributed to extreme class imbalance because of the rarity of the major flaring

events (e.g., X and M). To minimize the dimensionality of the data, we also included data

preprocessing activities such as statistical summarization. We used the true skill statistic

(TSS) and realizations of the Heidke Skill Score (HSS; HSS2) score as a performance val-

idation metric in this class-imbalanced dataset. Finally, we demonstrate the advantages

of the MVTS learning algorithm MINIROCKET, which produces better results than other
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classifiers without the need for essential data preprocessing steps such as normalization,

statistical summarization, and class imbalance handling heuristics.
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CHAPTER 1

INTRODUCTION

Solar flares are strong outbursts of radiation that result from the sudden release of

magnetic energy that has been stored in the Sun. The length of time that a solar flare

lasts can range anywhere from a few minutes to 24-48 hours. Since 1974, the Geostationary

Operational Environmental Satellite (GOES) that are operated by the National Oceanic

and Atmospheric Administration (NOAA) have been able to detect and categorize the X-

ray flux that is produced by flare events in the 1-8 wavelength range. Based on their peak

soft X-ray emission in this range, flares are grouped logarithmically as A, B, C, M, and

X, ascending from less powerful to more powerful, starting 10−8 W m−2 [1]. As a direct

consequence of this, the peak X-ray flux of an X-class flare is typically one hundred times

stronger than that of a C-class flare and ten times stronger than that of an M-class flare.

Each class can be broken down into one of nine sub-classes ranging from, e.g., C1 to C9,

M1 to M9, and X1 to X9. When the X-ray level is high, it is sometimes difficult or even

impossible to detect flares of the A and B classes. However, flares of the C class and higher

are identified the vast majority of the time, particularly above level C2. Because of the po-

tential damage they could cause, flares of the M and X classes, which are the most severe,

are typically the focus of space weather forecasting.

Flares of the X-class and the M-class have the potential to cause radio blackouts across

the Earth and initiate persistent radiation storms in the upper atmosphere. It’s possible

to put astronauts, flight attendants, and passengers in danger. According to [2], the devas-

tation that was caused by this solar flare could end up costing more than a trillion dollars

to repair and replace the damaged infrastructure. By taking the necessary precautions and

utilizing an effective solar flare prediction system, the majority of damage can be mitigated.
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Fig. 1.1: On May 5, 2015, NASA’s Solar Dynamics Observatory captured these images
of an X2.7-class solar flare – as seen in the bright flash on the left. Each image shows a
different wavelength of extreme ultraviolet light that highlights a different temperature of
material on the sun. From left to right, the wavelengths are: visible light, 171 angstroms,
304 angstroms, 193 angstroms and 131 angstroms. Each wavelength has been colorized. By
comparing different images, scientists can better understand the movement of solar matter
and energy during a flare. Credits: NASA/SDO/Wiessinger

The rarity of the event, however, is the most difficult part of addressing solar flare clas-

sification. As stated by NASA, the solar cycle, which lasts 11 years, influences the frequency

with which solar flares occur. During times of solar maximum, it may occur multiple times

each day, and during times of solar minimum, it may occur less than once per week. In

addition, stronger flares occur less frequently than their less intense counterparts. For in-

stance, flares of the X10 class, which are considered severe, occur on average approximately

eight times every cycle, making it a very rare phenomenon. Flares of the M1 class, which

are considered small, occur on average around two thousand times per cycle. Since there is

a significant imbalance in the class distribution, traditional classifiers struggle to predict the

minority class with high accuracy. The majority of classification-based machine learning

algorithms were built on the assumption of an equal ratio of samples for each class [3].
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Furthermore, the dataset comprises a range of time series parameters obtained from

solar photospheric magnetograms, in addition to NOAA’s record of flares in active regions

(Refer table 3.1). It also includes physics-based magnetic field parameters, originally ac-

quired through the Space Weather HMI Active Region Patches (SHARP) data product [4].

This high-dimensional time series data poses another challenge because of the curse of di-

mensionality and the fact that many feature vectors can turn out to be noise. As a result,

if we do not minimize the dimension of the original input and reduce the feature set, we

will almost certainly overfit. Classifiers that achieve credible accuracy on imbalanced time

series data are quite computationally expensive. Even with small data sets, they can take

a substantial amount of time to train.

Ahmadzadeh et al. [1] comprehensively presented the challenges involved in handling

the SWAN-SF Dataset, which is the largest dataset to date on solar flares. The dataset is

based on MVTS-based photospheric magnetic field parameters of solar active regions. The

authors discussed the extreme class imbalance in the data as well as the temporal coherence

and proposed different remedies to tackle these problems. They began by extracting the

statistical features of each magnetic field parameter time series, such as median, standard

deviation, skewness, and kurtosis. Additionally, they included the last value of each time se-

ries, which reduced the dimensionality of the dataset and made it scalable. They then used

an SVM classifier to test the performance of flare prediction. To address the class imbalance

issue, they employed both undersampling and oversampling techniques as mandatory pre-

processing steps. At the classifier level, they tuned the misclassification weighting parameter

to minimize false positives and false negatives. For temporal coherence, they utilized 20

pairs of testing and training data from different partitions to avoid overlapping the sam-

pled MVTS sequence. To evaluate the forecast performance, they used True Skill Statistics

(TSS) and realizations of the Heidke Skill Score (HSS; HSS2) to assess the robustness of the

SVM model. However, these experimental settings had some limitations. Firstly, the cal-

culated five statistical features may not accurately represent the complete properties of the
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time series data, potentially leading to inaccurate predictions. Furthermore, an important

data preprocessing step, which involves undersampling or oversampling of training data, is

computationally expensive and complicates the application of the proposed ML model in

real-time flare forecasting systems.

To tackle the aforementioned drawbacks, we utilize the MINImally RandOm Convo-

lutional KErnel Transform, MINIROCKET [5] time series classifier to predict solar flares

in real-time with minimal data manipulation and preprocessing. MINIROCKET is based

on the state-of-the-art ROCKET classifier [6], which achieves high precision at a fraction

of the computing cost compared to most existing approaches. It achieves this by trans-

forming input time series using random convolutional kernels and training a linear classifier

with the transformed features. MINIROCKET is a (nearly) deterministic reformulation of

ROCKET that performs significantly faster on larger datasets while maintaining compa-

rable accuracy. Additionally, we trained the Canonical Interval Forest (CIF) [7], Multiple

Representations SEQuence Learner (MR-SEQL), and Long Short-Term Memory (LSTM)

deep learning models to compare MINIROCKET’s performance with other classifiers.

Additionally, we implemented the Transformer model introduced by [8] on the reduced

dataset. The transformer model is a neural network architecture based solely on self-

attention mechanisms, revolutionizing the field of natural language processing (NLP) and

serving as the foundation for subsequent advancements, including state-of-the-art models

like BERT and GPT [9]. The key advantage of the Transformer model is its ability to effi-

ciently capture long-range dependencies in parallel, leading to faster training and inference

times compared to previous models. Given its effectiveness, the Transformer model can

be a powerful choice for MVTS classification, leveraging its ability to capture long-range

dependencies and handle multi-variable, temporal data effectively. We aimed to explore

an alternative approach using Attention/Transformer Model-based techniques. By harness-

ing the power of self-attention mechanisms in Transformers, we strive to capture temporal
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dependencies and correlations among magnetic field parameters in the MVTS data. Ulti-

mately, this approach aims to improve solar flare classification performance and deepen our

understanding of these potentially catastrophic events. To assess the performance of our

model, we compared it with six other MVTS-based flare prediction baselines: Flattened

vector method (FLT), Vector of last timestamp (LTV), Time series summarization-based

MVTS representation (TS-SUM), Long-short term memory (LSTM), Recurrent Neural Net-

work (RNN), and Random Convolutional Kernel Transform (ROCKET). As this is still a

work in progress, all these 7 models are trained on the reduced dataset.



CHAPTER 2

RELATED WORK

Theo, [10], was among the first systems to predict flares. It was an expert system that

required human input. It used a set of sunspots and magnetic field parameters to fore-

cast different flare classifications. Rule-based flare prediction using Theo was adopted by

National Oceanic and Atmospheric Administration’s (NOAA) Space Environment Center

(SEC) in 1987. The current methods of flare prediction are data-driven and are divided

into two categories: linear statistical and nonlinear statistical. They can be further divided

into line-of-sight magnetogram-based models and vector magnetogram-based models. The

continuous stream of vector magnetograms is always considered a better means for param-

eterizing the Active Regions as they contain the full-disk magnetic field data as mentioned

in [11]. However, it was not easily available before the launch of the Solar Dynamics Ob-

servatory (SDO) by the National Aeronautics and Space Administration (NASA) in 2010,

and solar physicists had to depend on line-of-sight magnetic data for flare prediction.

Linear statistical studies aim to identify the AR magnetic properties that are correlated

with flares. [12]) used line-of-sight magnetograms to parameterize Active Regions and stud-

ied the correlation between AR parameters and flare occurrences. From many SOHO/MDI

longitudinal magnetograms, they evaluated three physical measures: the maximum hori-

zontal gradient, the length of the neutral line, and the number of singular points. Properties

of the photospheric magnetic field, such as non-potentiality and complexity, thought to be

highly related to solar flares, have been identified using these evaluated measures. Their

statistical analysis concluded that solar flare productivity increases with non-potentiality

and complexity. In a similar study, using line-of-sight Michelson Doppler Imager (MDI)

magnetograms of 89 active regions and Solar Geophysical Data (SGD) flare reports, [13]

assessed the magnitude-scaling correlations between three parameters of magnetic fields and
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the flare productivity of solar active regions. The mean value of spatial magnetic gradi-

ents at strong-gradient magnetic neutral lines (NL), the length of strong-gradient magnetic

neutral lines (LGNL), and the total magnetic energy were the parameters studied. Active

region MDI magnetograms used in their research were found to be relatively close to the

solar central meridian. In particular, they revealed strong positive linkages between the

parameters and both the total flare productivity of active regions and the potential of fol-

lowing flare production. Their findings confirmed the dependence of flare productivity on

the degree of non-potentiality of active regions. [14] was the first to determine AR param-

eters from vector magnetograms. They conducted statistical tests based on discriminant

analysis on a variety of photospheric magnetic parameters to identify those properties that

are critical for the production of energetic events such as solar flares. They concluded that

while the factors evaluated singly had minimal power to differentiate between flaring and

flare-quiet groups, the populations could be separated using multi-variable combinations.

Nonlinear statistical models are commonly implemented using traditional machine

learning classifiers. In the context of classification models, several approaches have been

explored. [15] utilized a C4.5 decision tree, while [16] employed logistic regression. [17]

opted for an artificial neural network, and [18] utilized a relevance vector machine. Addi-

tionally, [19] investigated the performance of three classifiers—k-NN, SVM, and Extremely

Randomized Tree—utilizing both line-of-sight and vector magnetograms.

The pioneering work by [20] marked the first instance of employing machine learning al-

gorithms on HMI vector magnetograms. They employed a Support Vector Machine (SVM)

classifier, leveraging four years of data from the Solar Dynamics Observatory’s (SDO) Helio-

seismic and Magnetic Imager (HMI) to forecast M- and X-class solar flares. Their work was

groundbreaking as it involved a vast dataset of vector magnetograms for flare prediction.

The authors curated a catalog of flaring and non-flaring active regions from a database con-

taining 2071 active regions, comprising 1.5 million active region patches of vector magnetic
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field data. Using 25 parameters, each active region was classified. Additionally, they em-

ployed a feature selection algorithm to identify the most effective features for distinguishing

between flaring and non-flaring active zones. To address the class imbalance problem, they

utilized a cost function to limit false negatives.

Efficiently addressing the solar flare prediction task, [21] framed solar flare classifica-

tion as a binary classification problem, distinguishing between flaring and non-flaring Active

Regions. They meticulously extracted time series samples of the Active Region parameters

and developed a flare prediction method utilizing k-NN classification on univariate time

series. Interestingly, their research revealed that employing a statistical summarization

technique on a specific Active Region parameter known as ”total unsigned current helicity”

outperformed using all Active Region parameters at a single point in time. Furthermore,

by exploring the time series properties of the AR parameters, the researchers identified the

most influential parameter, thereby simplifying the problem to a single-variate time series

classification. They proposed a novel approach of using a statistical summarization method

on the time series, allowing the top AR parameter to serve as the vector-based represen-

tation of flaring/non-flaring Active Regions. By applying the k-nearest neighbors (k-NN)

classifier within this reduced vector space, they achieved significant computational and time

savings. Importantly, they also demonstrated that including C-class flares in the positive

class did not improve classification performance.

Angryk et al. [22] presented a comprehensive multivariate time series (MVTS) dataset

derived from solar photospheric vector magnetograms in the Space weather HMI Active Re-

gion Patch (SHARP) series. The dataset encompassed 4,098 MVTS data instances collected

from active regions between May 2010 and December 2018. It included 51 flare-predictive

parameters and over 10,000 flare reports. The dataset served as a valuable test bed for solar

physicists and machine learning practitioners, providing a cleansed, integrated, and readily

available dataset with data verified from multiple sources. The study incorporated data
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from the GOES flare catalog, SSW and XRT flares, and NOAA AR locations to enhance,

verify, and cleanse the dataset. The authors recalculated magnetic field parameters from

individual region patches and transformed them into multivariate time series spanning the

entire length of a given HARP series. They further addressed dataset cleaning, accounting

for empty SHARPs, location-based filtering, and missing values. Subsequently, the dataset

was partitioned into target classes using flare intensity threshold criteria, while observation

window, latency, and prediction window concepts were utilized for custom slicing and la-

beling.

Ahmadzadeh et al. [1] discussed the challenges posed by the SWAN-SF dataset intro-

duced by Angryk et al. [22]. They highlighted the extreme class imbalance within the data,

as well as the temporal coherence. To tackle these issues, the researchers began by ex-

tracting statistical features from the time series, thereby reducing the dimensionality of the

dataset. They employed an SVM machine learning classifier to conduct their experiments

and addressed class imbalance through a combination of undersampling and oversampling

techniques at the data level. Additionally, they fine-tuned the misclassification weighting

parameter at the classifier level to minimize false positives and false negatives. To account

for temporal coherence, they employed testing and training data from different partitions

to prevent overlapping of data points.

The Transformer model, introduced by Vaswani et al. [8], offers several strengths, in-

cluding its ability to capture long-range dependencies, handle parallel computation, and

learn contextual relationships without relying on explicit sequential processing. In the con-

text of multivariate time series (MVTS) classification, the benefits of the Transformer and

self-attention mechanism can be utilized due to the sequential nature of the data.



CHAPTER 3

BENCHMARK DATASET

3.0.1 SWAN-SF

The benchmark dataset Space Weather ANalytics for Solar Flares (SWAN-SF) by An-

gryk et al. [22] serves as an illustrative example of a multivariate time series, aiming to

achieve unbiased flare forecasting and classification. This dataset encompasses five distinct

flare classes, ranging from the most powerful X-class and M-class flares to the smaller B-

class and C-class flares. Additionally, it includes a non-flaring class denoted as the F class.

In this paper, we refer to the flaring (M and X class flares) and non-flaring (F, B, and C

class flares) as the positive and negative classes, respectively. To ensure temporal segmenta-

tion, the dataset has been divided into five partitions, each containing approximately equal

proportions of X- and M-class flares (Figure 3.1).

The dataset comprises time series features derived from solar photospheric magne-

tograms, alongside NOAA’s active region flare history. The Solar Dynamics Observatory’s

(Pesnell et al. [23]) HMI Active Region Patches (HARP) data product provides magne-

tograms (Hoeksema et al. [24]). While the magnetic field parameters are initially derived

from the Space weather HMI Active Region Patches (SHARP) data product (Bobra et

al. [4]), they were recalculated and augmented with additional parameters for validation

purposes, including parameters not found in SHARPs (refer to Table 1 in Angryk et al. [22]).

The dataset consists of sliding time series slices, with each instance representing 24 physical

magnetic field parameters (see Table 3.1). These time series instances are logged at 12-

minute intervals over a total of 12 hours (60-time steps). The instances of the multivariate

time series are classified based on the most intense solar flare occurring within the preceding

12 hours.
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B - Class C - Class F - Class M - Class X - Class

Fig. 3.1: Distribution of classes in five partitions

Each solar active region exhibits a different range of flare classes or maintains a re-

gion of tranquil activity within a prediction window. These changes are reflected in the

representation of solar event i as mvts i, a multivariate time series instance, along with

its corresponding class label, yi. The term yi characterizes the various flare classes. Com-

prising N magnetic field parameters, the multivariate time series instance mvtsi ∈ RT∗N

encompasses multiple time series with periodic observations over an interval of T . The t-th

timestamp value is denoted as x<t> ∈ RN , while the j-th parameter time series is denoted

as Pj ∈ RT . The event is classified based on the active region’s state after the observation

time T and the subsequent prediction interval L. NOAA records of flare events are utilized

to determine the state of a given timestamp.

When the population of one or more data classes is significantly smaller than the major-

ity classes, the dataset is considered class imbalanced. The minority classes consist of data

points from the smaller group, while the other group is referred to as the majority classes.

Figure 3.1 illustrates the substantial class imbalance present in the SWAN-SF dataset. Tra-

ditional machine learning classifiers tend to favor the majority class, as highlighted by [25].

This becomes especially concerning in solar flare classification, where the focus lies on a

minority of cases. Class imbalance significantly impacts various performance metrics, in-

cluding accuracy, precision, and the F1 score. This is due to the metrics disregarding the

number of misclassifications. For instance, a model that assigns all instances to the major-

ity class may achieve high accuracy while learning very little about the minority class. In
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the following sections, we discuss TSS and HSS2 evaluation metrics, which are commonly

employed in such class imbalance scenarios to measure model performance.

Table 3.1: List of AR magnetic field parameters

Abbreviation Description Formula
ABSNJZH [14] Absolute value of the net current helicity Hcabs

∝ |
∑

Bz · Jz|
EPSX [26] Sum of x-component of normalized Lorentz force δFx ∝

∑
BxBz∑
B2

EPSY [26] Sum of y-component of normalized Lorentz force δFy ∝ −
∑

ByBz∑
B2

EPSZ [26] Sum of z-component of normalized Lorentz force δFz ∝
∑
(B2

x+B2
y−B2

z)∑
B2

MEANALP [27] Mean characteristic twist parameter, α αtotal ∝
∑

Jz·Bz∑
B2

z

MEANGAM [14] Mean angle of field from radial γ = 1
N

∑
arctan

(
Bh

Bz

)
MEANGBH [14] Mean gradient of horizontal field |∇Bh| = 1

N

∑√(
∂Bh

∂x

)2
+
(

∂Bh

∂y

)2

MEANGBT [14] Mean gradient of total field |∇Btot| = 1
N

∑√(
∂B
∂x

)2
+

(
∂B
∂y

)2

MEANGBZ [14] Mean gradient of vertical field |∇Bz| = 1
N

∑√(
∂Bz

∂x

)2
+
(

∂Bz

∂y

)2

MEANJZD [14] Mean vertical current density Jz ∝ 1
N

∑(
∂By

∂x −
∂Bx

∂y

)
MEANJZH [14] Mean current helicity (Bz contribution) Hc ∝ 1

N

∑
Bz · Jz

MEANPOT [28] Mean photospheric magnetic free energy ρ ∝ 1
N

∑(
BObs −BPot

)2

MEANSHR [28] Mean shear angle Γ = 1
N

∑
arccos

(
BObs·BPot

|BObs||BPot|

)
R VALUE [29] Sum of flux near polarity inversion line Φ = Σ |BLoS| dA (within R mask)

SAVNCPP [14] Sum of the modulus of the net current per polarity Jzsum
∝ |

∑B+
z JzdA|+ |

∑B−
z JzdA|

SHRGT45 [14] Fraction of Area with shear > 45◦ Area with shear > 45◦/ total area
TOTBSQ [26] Total magnitude of Lorentz force F ∝

∑
B2

TOTFX [26] Sum of x-component of Lorentz force Fx ∝ −
∑

BxBzdA
TOTFY [26] Sum of y-component of Lorentz force Fy ∝

∑
ByBzdA

TOTFZ [26] Sum of z-component of Lorentz force Fz ∝
∑(

B2
x +B2

y −B2
z

)
dA

TOTPOT [14] Total photospheric magnetic free energy density ρtot ∝
∑

(BObs −BPot)2dA
TOTUSJH [14] Total unsigned current helicity Hctotal ∝

∑
Bz · Jz

TOTUSJZ [14] Total unsigned vertical current Jztotal
=

∑
|Jz| dA

USFLUX [14] Total unsigned flux Φ =
∑
|Bz| dA

3.0.2 Reduced dataset

The following dataset is one of the benchmark datasets for MVTS-based solar flare pre-

diction published by Angryk et al. [22]. This dataset consists of multiple MVTS instances,

with each instance comprising 25-time series of active region magnetic field parameters (a

comprehensive list can be found in Table 1). The time series instances are recorded at

12-minute intervals, spanning a total duration of 12 hours (60-time steps). The dataset is

characterized by having 60 observation points (T ) and 25 parameters (N). Our experimen-
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tal dataset consists of 1,540 MVTS instances, which are evenly distributed across four flare

classes: X, M, BC, and Q. Here, ”Q” represents flare-quiet events, and ”BC” represents a

mixture of B and C class events.



CHAPTER 4

METHODOLOGY

4.0.1 MINIROCKET

While machine learning and deep learning-based classifiers for time series classification

have achieved impressive levels of accuracy, they often suffer from high computational com-

plexity. This drawback becomes particularly problematic for larger datasets, resulting in

longer training times and rendering them impractical. Moreover, many existing techniques

focus on specific aspects of the data, such as shape or frequency, neglecting the broader

picture. To address these challenges, [6] introduced the RandOm Convolutional KErnels

Transform (ROCKET) method. This novel approach leverages the success of convolutional

neural networks in time series classification by utilizing random convolutional kernels to

extract informative features. These features are then used to train a linear classifier. To

further enhance efficiency, [5] proposed a modified version called the MINImally RandOm

Convolutional KErnels Transform (MINIROCKET), which achieves faster execution and

nearly deterministic behavior.

The ROCKET method transforms time series data by convolving each series with

a set of random convolutional kernels. These kernels, similar to those in convolutional

neural networks, possess random characteristics such as length, weights, bias, dilation, and

padding. They capture a wide range of information and patterns at various frequencies and

scales. The output of each kernel undergoes two pooling techniques: global max pooling

and percentage of positive values (PPV) pooling. Global max pooling selects the maximum

feature value, while PPV pooling evaluates the prevalence of a pattern captured by the

kernel. ppv = 1/n
∑n−1

i=0 [zi > 0], where zi is the output of the convolution operation. The

fraction of positive values derived from PPV pooling plays a vital role in assessing the
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significance of the captured patterns, contributing to the method’s high precision. Each

kernel produces two features, resulting in a total of 20,000 features per input time series

when employing 10,000 random convolutional kernels. These extracted features are then

utilized for training a linear classifier.

Hyper-parameters ROCKET MINIROCKET

Length {7, 8, 11} 9

Weights N(0, 1) {-1, 2}

Bias U(-1, 1)
From convolution

output

Dilation Random Fixed

Padding Random Fixed

Fig. 4.1: Difference between ROCKET and MINIROCKET Kernel’s hyper-parameters

Both the MINIROCKET and ROCKET methods rely on PPV pooling to assess the

convolution values. MINIROCKET further optimizes computational efficiency by employ-

ing a fixed set of kernels with specific hyper-parameter settings, refer to figure 4.1. Key

modifications include fixing the kernel length at 9, limiting the weight hyper-parameter

to a fixed range, adapting the bias hyper-parameter to random convolutional output val-

ues, restricting the dilation hyper-parameter, and employing only PPV pooling instead

of global max pooling and PPV. These optimizations enable MINIROCKET to generate

half as many features as ROCKET while maintaining equivalent precision. MINIROCKET

achieves remarkable computational efficiency through a combination of the aforementioned

optimizations. It utilizes the mathematical properties of fixed kernels and PPV pooling to

compute PPV for both positive and negative weights simultaneously, effectively doubling

the number of applied kernels without increasing computations. It also maximizes the reuse

of convolution output and avoids multiplications by employing additive operations. Addi-
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tionally, MINIROCKET computes all kernels for each dilation at once, further optimizing

computation and output reuse. These optimizations significantly improve computational

efficiency while preserving the accuracy level of the ROCKET classifier.

In our experiments with the SWAN-SF dataset, MINIROCKET demonstrated superior

performance compared to other classifiers. Its computational efficiency and accuracy make

it an excellent choice for time series classification tasks. In the following section, we will

discuss the outcomes of our experimentation and provide a concise overview of the remain-

ing classifiers evaluated.

4.0.2 TRANSFORMERS

Notations

The solar event instance i is represented by an MVTS instance mvtsi. The MVTS in-

stance mvtsi ∈T×N is a collection of individual time series of N magnetic field parameters,

where each time series contains periodic observation values of the corresponding parameter

for an observation period T . In the MVTS instance mvtsi = {vt1 , vt2 , ., ., ., vtT }, where

vti ∈N represents a timestamp vector.

Data Preprocessing and Normalization

The magnetic field parameter values are recorded in different scales, so we perform

z-score normalization. Z-score normalization is a technique used to transform data in such

a way that it possesses a mean of zero and a standard deviation of one. By employing this

method, we can effectively assess and compare the relative significance of various features

within our dataset. Suppose that M number of MVTS instances each with N parameters

and T time points are represented by a third-order tensor X ∈M×N×T , where three modes

represent events, parameters, and timestamps. We perform parameter-level z-normalization



17

as a preprocessing step in the following three steps.

1. We perform mode-2 metrication, i.e., reshaping the tensor so that mode-2 entities (pa-

rameter) become the columns of the matrix. The matrix is denoted by X(2) ∈MT×N .

The columns are denoted by P1, P2, . . . , PN .

2. For each column Pj , we perform z-normalization:

x
(j)
k =

x
(j)
k − µ(j)

σ(j)

Here, x
(j)
k is the k-th value of the column Pj , where 1 ≤ k ≤MT , µ(j) is the mean of

the column Pj , and σ(j) is the standard deviation of the column Pj .

3. We reshape the matrix X(2) ∈MT×N back to third-order tensor, X ∈M×N×T .

Attention-based MVTS Classification Framework

In this study, we use the Transformer/Attention-based model to get better performance

in classifying the MVTS solar flare dataset. In our model, we create the transformer encoder

block as figure 4.2 shows. In [8] the authors proposed a model architecture called the

Transformer. The Transformer consists of an encoder and a decoder, both of which are

composed of multiple layers of self-attention and feed-forward neural networks. The encoder

processes the input sequence, such as a sentence in machine translation. It consists of a

stack of identical layers, where each layer has two sub-layers:

• Self-Attention Layer: This layer performs self-attention, allowing each word in the

input sequence to attend to all other words in the same sequence. It captures depen-

dencies between words and generates contextualized representations for each word.

• Feed-Forward Neural Network Layer: After self-attention, a feed-forward neural net-

work layer is applied to each word representation independently. It introduces non-

linearity and enables the model to incorporate additional information.
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Layer Normalization

Multi Head Attention

Layer Normalization

Dense

Dense
(Softmax)

Input Layer

Residual Connection

Conv1D(ReLU)

Residual Connection

Global Average
Pooling 1D

Output Layer

Conv1D(Linear)

Transformer Encoder Block

Feed Forward

Normalization and Attention

Fig. 4.2: Transformer/Attention Model for MVTS Classification

Algorithm 1 MVTS Transformer Encoder

1: function transformer encoder( inputs, head size, num heads, ff dim)

2: x← LayerNormalization(inputs, ϵ = 1e− 6)

3: x ← MultiHeadAttention(x, x, key dim = head size, num heads =

num heads)

4: res← x+ inputs

5: x← LayerNormalization(res, ϵ = 1e− 6)

6: x← Conv1D(x, filters = ff dim, kernel size = 1, activation = ”relu”)

7: x← Conv1D(x, filters = inputs.shape[−1], kernel size = 1)

8: return x+ res

9: end function
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Algorithm 2 Build MVTS Transformer Model

1: function build transformer model(input shape, head size, num heads, ff dim,

num transformer blocks, mlp units)

2: n classes← Length(unique y train)

3: inputs← Input(shape = input shape)

4: x← inputs

5: for i← 1 to num transformer blocks do

6: x← transformer encoder( x, head size, num heads, ff dim )

7: end for

8: x← GlobalAveragePooling1D( x, data format = ”channels first" )

9: for dim in mlp units do

10: x← Dense(x, dim, activation = ”relu”)

11: end for

12: outputs← Dense(x, n classes, activation = ”softmax”)

13: return Model(inputs, outputs)

14: end function

In our model, we utilize the transformer encoder block and use the benefits of the Multi-

Head Attention architecture which is a crucial component of the Transformer model. It

allows the model to focus on different parts of the input sequence simultaneously, enhancing

its ability to capture complex temporal dependencies and extract relevant features. By

using multiple attention heads, the model can learn different representations and attend to

different aspects of the input data in parallel. In the context of MVTS data classification,

Multi-Head Attention offers several advantages:

• Enhanced Representational Capacity: By attending to different parts of the input

sequence simultaneously, Multi-Head Attention allows the model to capture both local

and global dependencies effectively. This enables the model to learn complex patterns

within the time series data, leading to improved classification performance.
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• Robustness to Variable-Length Sequences: MVTS data often consists of sequences

with varying lengths. Multi-Head Attention can handle variable-length sequences ef-

ficiently by assigning different attention weights to different parts of the input. This

flexibility enables the model to adapt to sequences of different lengths without com-

promising its classification accuracy.

The Multi-Head Attention mechanism is a crucial component of the Transformer model,

allowing for the simultaneous capture of different aspects of the input sequence. It involves

the computation of multiple attention heads in parallel, enabling the model to effectively

process diverse information. The equations governing Multi-Head Attention are as follows:

• Scaled Dot-Product Attention:

Attention(Q,K, V ) = softmax
(
QKT
√
dk

)
V

Here, Q, K, and V denote input matrices representing queries, keys, and values,

respectively. The dimension of the key and query vectors is denoted by dk. The

attention mechanism computes the weighted sum of values based on the similarity

between queries (Q) and keys (K). Linear transformations are applied to the queries,

keys, and values before calculating attention weights through the dot-product oper-

ation. The softmax function normalizes these weights, and the resulting weights are

used to weigh the corresponding values (V ) to produce the final output.

• Multi-Head Attention:

MultiHead(Q,K, V ) = Concatenate(head1, head2, .., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V W V
i ). The matrices WQ

i , WK
i , and W V

i

represent learnable linear transformation matrices specific to the i-th attention head,

while WO is the linear transformation matrix applied to the concatenated heads. In

this step, the input matrices Q, K, and V are linearly transformed separately for

each attention head. The Attention function is then applied to obtain the attention

outputs for each head. These attention heads are again concatenated and transformed
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by matrix WO to produce the final output of the Multi-Head Attention layer [8].

Our model diagram, as shown in Figure 4.2, can be described as follows. The inputs un-

dergo a series of Transformer Encoder Blocks. Each Transformer Encoder Block comprises

a normalization and attention step, followed by a feed-forward step. For each Transformer

Encoder Block, the input data is passed through a Layer Normalization (Encoder) block

to normalize the inputs. The normalized inputs are then fed into the MultiHead Atten-

tion layer, which applies self-attention to capture dependencies between different parts of

the input sequence. The output of the MultiHead Attention layer is combined with the

original inputs using a Residual Sum operation, preserving the original information. The

result is further passed through another Layer Normalization (Encoder) block. The output

of the Layer Normalization block is fed into a 1D Convolutional layer with ReLU activa-

tion, enabling the capture of local patterns and non-linear relationships in the data. This

output then passes through another 1D Convolutional layer. The output of the second 1D

Convolutional layer is once again combined with the previous output using a Residual Sum

operation. The final output of the transformer encoder function is obtained by summing

the previous output with the input data, representing the transformed representation of

the inputs. The Transformer Encoder Blocks are repeated multiple times according to the

specified parameter.

After the last transformer encoder block, the output is fed into a Global Average

Pooling 1D layer to aggregate the features across the time dimension. Subsequently, the

output of the Global Average Pooling 1D layer is passed through a series of Dense layers

with ReLU activation, as determined by the mlp units parameter. The final Dense layer

generates the model’s outputs, with the number of units corresponding to the number of

output classes, and employs the softmax activation function. These outputs represent the

predictions made by the model. Algorithm 1 operates as follows:
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1. Layer Normalization: The input tensor is first normalized along each feature dimen-

sion by passing it through a layer normalization layer.

2. Self-Attention: The normalized tensor is then fed into a multi-head attention layer,

where a self-attention mechanism is applied. Each attention head attends to different

parts of the input sequence and learns to capture distinct relationships between time

steps. The output of the attention layer retains the same shape as the input.

3. Residual Connection: The output of the multi-head attention layer is element-wise

added to the original input tensor (inputs). This residual connection facilitates the

direct flow of gradients from the input to the output, easing the learning process for

the model.

4. Feed-forward: The result of the residual connection is passed through another layer

normalization layer.

5. Convolutional Layer: A 1D convolutional layer with ff dim filters and kernel size

1 is applied to the normalized tensor. This layer acts as a feed-forward neural net-

work layer, applying non-linear transformations independently to each position in the

sequence.

6. Second Convolutional Layer: Another 1D convolutional layer with inputs. shape[-1]

filters and kernel size 1 is applied to the result obtained from the previous layer.

7. Residual Connection: The output of the second convolutional layer is element-wise

added to the result obtained from the first residual connection layer.

8. Final Output: The sum of the previous residual connection and the original input

tensor (inputs) is returned as the final output.

Algorithm 2 incorporates several parameters, each described as follows: input shape

specifies the shape of the input data, head size determines the size of each attention
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head in the transformer, numheads denotes the number of attention heads in the trans-

former, ff dim represents the dimension of the feed-forward network in the transformer,

num transformer blocks indicates the number of transformer blocks to be stacked, and

mlp units is a list of integers specifying the number of units in each MLP layer. Within the

algorithm, it first determines the number of classes (n classes) based on the unique labels

present in the training data. It then defines the input layer and sets it as the current layer,

denoted as x. The algorithm proceeds by applying the transformer encoder block through

the transformer encoder function. After the transformer encoder blocks, a global average

pooling layer is applied to reduce the spatial dimensions of the data. Subsequently, a series

of MLP layers are implemented as specified by the mlp units parameter, with each layer

employing ReLU activation. Finally, an output layer is added with n classes units and a

softmax activation function for classification. The algorithm creates and returns a Keras

model with the defined inputs and outputs.
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EXPERIMENTS

In this section, we present an overview of the various models that we investigated and

compare them to the state-of-the-art MINIROCKET. The study was conducted by evalu-

ating the performance of each model under different data configurations and comparing the

results. To ensure the validity of the results, one partition was used for training, and the

remaining four partitions were utilized for testing. For instance, we employed partition 1

to train the model, while partitions 2, 3, 4, and 5 were used individually for testing. This

strategic approach yielded a total of 20 distinct partition pairs. This setting was chosen

to align with the methodology used by Ahmadzadeh et al. [1] to prevent data overlap and

remedy temporal coherence. The performance of the models was evaluated using the True

Skill Statistic (TSS) score and Heidke Skill Score (HSS2), the two most frequently used

metrics for flare prediction in class imbalance data.

5.0.1 Performance metrics: TSS Score and HSS2 Score

An effective method of evaluating the efficacy of a classifier is by comparing its perfor-

mance against a designated benchmark. This comparison can be accomplished through the

computation of a skill score. Typically, this score is expressed as the difference between the

score value and that of a standard forecast, divided by the difference between a perfect score

and the standard forecast. In the case of solar flare prediction, the development of such

a skill score is logical, considering that the number of non-flaring regions is considerably

greater than that of flaring ones. To assess the performance of various classifiers on the

SWAN-SF dataset for flare prediction, we relied on the use of forecast verification metrics,

with a focus on the True Skill Statistic (TSS) and Heidke Skill Score (HSS2).
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TSS and HSS2 are calculated based on the model’s confusion matrix, which depicts

the frequencies of predicted and actual values. The term ”TN” represents True Negatives,

reflecting the accurate classification of negative examples. Correspondingly, ”TP” signifies

True Positives, indicating the correct classification of positive examples. On the other hand,

”FP” denotes False Positives, representing the number of actual negative examples mistak-

enly classified as positive. Finally, ”FN” represents False Negatives, indicating the number

of actual positive examples erroneously classified as negative. An example of a confusion

matrix for binary classification is shown in Figure 5.1.

ACTUAL POSITIVE ACTUAL NEGATIVE

PREDICTED POSITIVE TRUE POSITIVE FALSE POSITIVE

PREDICTED NEGATIVE FALSE NEGATIVE TRUE NEGATIVE

Fig. 5.1: Confusion matrix for binary classification

[30] utilize a definition of the Heidke Skill Score (HSS) proposed by the Space Weather

Prediction Center, denoted as HSS2, which quantifies the enhancement of the forecast

compared to a random forecast. HSS2 is calculated using the following formula:

HSS2 =
TP + TN − E

P +N − E
(5.1)

Where E represents the anticipated number of correct predictions that can be corre-

sponded to chance:

E =
(TP + FP ) ∗ (TP + FN) + (FP + TN) ∗ (FN + TN)

P +N
(5.2)

Alternatively, HSS2 can be derived from the true positive (TP), true negative (TN),

false negative (FN), and false positive (FP) classification outcomes, in addition to the total

number of positive (P) and negative (N) instances:

HSS2 =
2 ∗ [(TP ∗ TN)− (FN ∗ FP )]

P ∗ (FN + TN) + (TP + FP ) ∗N
(5.3)
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While HSS2 may be influenced by the class-imbalance ratio of the testing set, TSS has

been recommended by [31] as a more suitable metric in these cases, as it is known to be

unbiased with respect to the class-imbalance ratio and is considered to be more equitable.

The TSS is defined as-

TSS =
TP ∗ TN − FP ∗ FN

P ∗N
=

TP

TP + FN
− FP

FP + TN
(5.4)

also known as the Hansen-Kuipers skill score or Peirce skill score ( [32], measures the dif-

ference between the recall and false alarm rate, and ranges from -1 to 1, with a score of 1

indicating a perfect forecast, a score of 0 representing a random or constant forecast, and a

score of -1 indicating a forecast that is always incorrect. The TSS is considered a desirable

metric for comparing the performance of various classifiers for solar flare forecasting, as it

takes into account both false negatives and false positives in a balanced manner, and is not

affected by the imbalance of the testing set.

A potential limitation of the True Skill Statistic (TSS) is that it considers false positive

(FP) and false negative (FN) predictions as having equal weight, even though the conse-

quences of these misclassifications can vary. In the context of forecasting solar flares, the

cost of a false negative (not predicting a flare that occurs) can be higher than the cost of a

false positive (predicting a flare that does not occur), such as in the scenario of a satellite

that needs to be rotated to protect against an increase in energetic particles. The costs

of false positives and false negatives are not symmetrical. The TSS is insensitive to the

imbalance ratio of the testing set, whereas the Heidke Skill Score (HSS2) can be influenced

by this ratio and converge to zero as the ratio increases.

5.0.2 Comparing different classes of classifiers

We evaluated the effectiveness of several time series classifiers, including LSTM, SVM,

MRSEQL, and CIF, based on their TSS and HSS2 scores. By comparing the performance

of these models, our analysis reveals that MINIROCKET achieves the highest accuracy and
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outperforms the other classifiers in binary classification and all-class classification. This

study highlights the potential of MINIROCKET as a powerful tool for flare classification.

In the following sections, we provide a brief overview of each classifier and later compare

the results obtained.

Long Short-Term Memory (LSTM)

We utilized Long Short-Term Memory (LSTM) networks in this research to learn

representations of Multivariate Time Series (MVTS) instances without relying on hand-

engineered statistical characteristics. The LSTM network was trained by sequentially feed-

ing magnetic field parameter vectors into LSTM cells. Cell weights were optimized using

gradient descent and backpropagation. The model effectively identified underlying patterns

in the data and produced reliable predictions for flare occurrences through automated fea-

ture learning. LSTM networks excel in processing and categorizing time-series data due to

their ability to capture order dependence and long-term dependencies that regular RNNs

cannot. Additionally, deep LSTM networks, created by stacking multiple LSTM layers,

can learn even more complex patterns in sequential data. The usage of LSTM networks in

this study showcases their usefulness in learning time series data representations and their

potential for various domains.

Support Vector Machine (SVM)

The support vector machine (SVM) classifier aims to identify a hyperplane in N-

dimensional space that can accurately classify input points. The search for an ideal hy-

perplane involves finding a plane with the greatest margin, which represents the maximum

distance between data instances of different classes. This margin is crucial as it enables ef-

fective generalization and improves prediction accuracy. Hyperplanes act as decision bound-

aries, separating data points, and their size is determined by the number of features in the

data. Support vectors, which are data instances closest to the hyperplane, greatly influence
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its orientation and placement. They play a critical role in optimizing the classifier’s margin.

By utilizing these support vectors, the SVM classifier finds the best hyperplane and achieves

high prediction accuracy.

In the case of class imbalance in the flare dataset, the optimal hyperplane that inter-

sects the decision boundary is pushed further toward the domain of the minority class. This

adjustment aims to minimize the overall number of incorrect classifications, leading to an

increase in true negatives (i.e., accurate classification of CBF-class flares) and a decrease in

true positives (i.e., accurate classification of XM-class flares). In a class-imbalanced setting,

models tend to exhibit a bias towards the majority class, which becomes concerning as the

focus of flare-forecasting research lies on minority instances rather than the majority. The

SVM classifier has gained popularity due to its ability to efficiently learn nonlinear decision

surfaces, facilitated by support vectors and transformation functions (kernels). Various ker-

nels can be utilized to enhance the transformation of data into new feature spaces, allowing

for a more accurate separation of instances. Kernels require the specification of one or more

variables in advance, similar to any other function.

Canonical Interval Forest (CIF)

The time series forest (TSF) classifier, known for its high performance, quick train-

ing, and prediction, is commonly regarded as a powerful interval method. However, it has

fallen behind in recent advancements in alternative techniques. TSF initially summarized

intervals using only three basic summary statistics. In recent developments, the ’catch22’

feature set ( [33]) was engineered as a concise and useful collection of 22-time series features

to facilitate extensive time series analysis. Building upon these advancements, the Canoni-

cal Interval Forest (CIF) classifier, proposed by [34], combines the capabilities of both TSF

and catch22. The CIF classifier aims to enhance performance and accuracy in time series

analysis by leveraging the unique strengths of both techniques.
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Multiple Representations SEQuence Learner (MRSEQL)

MRSEQL, proposed by [35], is a robust univariate time series classifier that trains on

features derived from multiple symbolic representations of time series. These representa-

tions include Symbol Aggregation Approximation (SAX) and Symbol Fourier Approxima-

tion (SFA), which are used with linear classification models (logistic regression). Mr-SEQL

utilizes SEQL ( [36]) to extract features based on three key ideas. Firstly, instead of rely-

ing on a single fixed representation, Mr-SEQL combines multiple symbolic representations

obtained from various parameters, such as multiple SAX representations. Secondly, it in-

corporates numerous domain representations in time (such as SAX) and frequency (such

as SFA), making it resilient across a wide range of problems. Finally, Mr-SEQL extends

a symbolic sequence classifier (SEQL) to effectively explore the significant symbolic-words

space, employing an efficient greedy feature selection technique to find optimal features for

each representation. Mr-SEQL is a highly effective time series classifier with important

qualities that make it well-suited for a wide range of applications.

5.0.3 Binary Classification

In the preliminary experiments, we executed a transformation of the original data la-

bels into binary labels to simplify the classification process. The positive class, denoted as

flaring, encompasses M and X class flares, while the negative class, referred to as non-flaring,

encompasses F, B, and C class flares.

To evaluate the effectiveness of the classification models, we trained five different mod-

els, namely MINIROCKET, CLF, MR-SEQL, LSTM, and SVM, and compared their per-

formances in terms of TSS and HSS2 scores. We present the results of our experiments in

the line plots displayed in Figure 5.2 and 5.3. These plots highlight the obtained scores for

TSS and HSS2, respectively.

Our analysis has demonstrated that the MINIROCKET classifier outperformed other
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Fig. 5.2: TSS score comparison of 5 different models

Fig. 5.3: HSS2 score comparison of 5 different models

classifiers on the SWAN-SF dataset, with an average improvement of 19.4% and 23.9% in

the TSS and HSS2 scores, respectively.

5.0.4 Multi-class: All Class Classification

At this stage, we are engaged in the task of classifying the five distinct categories,

namely F, B, C, M, and X. The experimental settings remain constant, wherein the train-

ing and testing are performed on 20 unique partition pairs, and the performance of the

selected models, MINIROCKET, and SVM, are compared based on the TSS and HSS2

scores. Refer to the line plots displayed in Figure 5.4 and 5.5 for TSS and HSS2 score

comparison.
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Fig. 5.4: TSS score comparison for all class classification

Fig. 5.5: HSS2 score comparison for all class classification

Our analysis of the all-class classification showed that the MINIROCKET classifier out-

performed the other classifiers with a 9.61% higher TSS score and 10.36% higher HSS2 score.

5.0.5 Analysis with the exclusion of B and C class flares

In this phase of the experiment, B- and C-class flares would be excluded. This decision

was made based on the research conducted by [31], which suggested that the inclusion of

C-class flares may have a negative impact on performance metrics. In our analysis, we

observed an improvement in the TSS score for all models after the removal of B and C-class

flares. This underscores the significance of this exclusion in achieving optimal model per-

formance.

Following the exclusion of B and C-class flares, the experiment was further divided
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into two categories: binary class classification (Refer Figure 5.6 and Figure 5.7) and all-

class classification (Refer Figure 5.8 and Figure 5.9).

Fig. 5.6: TSS score comparison of binary class classification after removing B and C class
flares

Fig. 5.7: HSS2 score comparison of binary class classification after removing B and C class
flares

After removing the B and C class flares, our analysis for binary classification showed

that MINIROCKET achieved a remarkable 30.06% increase in the TSS score and a 30.55%

increase in the HSS2 score compared to other classifiers.

After removing the B and C class flares, we also analyzed the all-class classifications

and observed that MINIROCKET again outperformed other classifiers by 20.13% in terms
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Fig. 5.8: TSS score comparison of all class classification after removing B and C class flares

Fig. 5.9: HSS2 score comparison of all class classification after removing B and C class flares

of TSS score and 18.94% in terms of HSS2 score.

5.0.6 Transformer Model Experiment

In this section, we present our experimental findings, where we compare the perfor-

mance of our model with six other MVTS-based flare prediction baselines using a benchmark

dataset. We implemented our Attention/Transformer-based MVTS classifier using Tensor-

Flow and the reduced dataset.

Dataset Description

For our experiments, we utilized the benchmark dataset for MVTS-based solar flare pre-

diction published by Angryk et al. [22]. This dataset consists of multiple MVTS instances,

with each instance comprising 25-time series of active region magnetic field parameters (a
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comprehensive list can be found in Table 1). The time series instances are recorded at

12-minute intervals, spanning a total duration of 12 hours (60-time steps). The dataset is

characterized by having 60 observation points (T ) and 25 parameters (N). Our experimen-

tal dataset consists of 1,540 MVTS instances, which are evenly distributed across four flare

classes: X, M, BC, and Q. Here, ”Q” represents flare-quiet events, and ”BC” represents a

mixture of B and C class events.

Baseline Models

We evaluated our model with six other baselines.

1. Flattened vector method (FLT): This is a naive method, where each 60 × 25

MVTS instance is flattened into a 1, 500- dimensional vector.

2. Vector of last timestamp (LTV): This method was introduced by Bobra et al [20],

where vector magnetogram data (feature space of all magnetic field parameters) were

used for classification. Since the last timestamp of the MVTS is temporally nearest

to the flaring event, we sampled the vector of the last timestamp (25 dimensional) to

train the classifier.

3. Time series summarization-based MVTS representation (TS-SUM): This

method, proposed by Hamdi et al. [21] summarizes each time series of length T by

eight statistical features: mean, standard deviation, skewness, and kurtosis of the

original time series, and the first-order derivative of the time series. As a result, we

get an 8 × 25-dimensional vector space, which is used for training the downstream

classifier.

4. Long-short term memory (LSTM): This LSTM-based approach was proposed by

Muzaheed et. al. [37]. Each MVTS instance was considered as a T -length sequence

of x<t> ∈N timestamp vectors. After sequentially feeding the LSTM model with

each timestamp vector, the last hidden representation was considered as the MVTS



35

representation. In our experiments, we set the number of cell state and hidden state

dimensions to 128, the number of training epochs to 500, and the learning rate in

stochastic gradient descent to 0.01.

5. Recurrent Neural Network (RNN): As the fifth baseline, we replace LSTM cells

of the model of [37] with standard RNN cells. We use the number of RNN hidden

dimensions as 128, the number of training epochs as 1,000, and the learning rate in

stochastic gradient descent as 0.01.

6. Random Convolutional Kernel Transform (ROCKET): ROCKET was shown

as the best-performing algorithm in the MVTS classification benchmarking study by

Ruiz et al [38], which included 26 MVTS datasets of the UEA archive [39]. ROCKET

uses a large number of random convolution kernels along with a linear classifier, where

each kernel is applied to each univariate time series instance. In line with the exper-

imental setting of Ruiz et al. [38], we set the number of kernels in ROCKET to 10,000.

The first three baselines involve embedding followed by classification methods. We use

a logistic regression classifier with L2 regularization for classification. In all the baseline ex-

periments, we split the dataset into train and test sets using the stratified holdout method,

with two-thirds of the data used for training and validation, and one-third for testing.

Multiclass classification performance

Table 5.1 presents the classification performances of the Transformer-based MVTS

classifier compared to several baseline methods. To provide a comprehensive evaluation,

we report accuracy, precision, recall, and F1 scores for each class. The experiments were

conducted using five different train/test sets, which were sampled using stratified holdout,

and we report the mean and standard deviation of the results.
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Table 5.1: Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM ROCKET Transformer
Accuracy 0.26 ± 0.012 0.32 ± 0.02 0.61 ± 0.091 0.43 ± 0.025 0.63 ± 0.03 0.74 ± 0.02 0.83 ± 0.026
Precision (X) 0.23 ± 0.024 0.34 ± 0.041 0.71 ± 0.054 0.53 ± 0.031 0.76 ± 0.028 0.92 ± 0.03 0.95 ± 0.023
Recall (X) 0.26 ± 0.053 0.39 ± 0.043 0.77 ± 0.024 0.63 ± 0.028 0.95 ± 0.023 0.98 ± 0.01 0.98 ± 0.008
F1 (X) 0.24 ± 0.032 0.36 ± 0.04 0.74 ± 0.034 0.58 ± 0.019 0.84 ± 0.014 0.95 ± 0.02 0.97 ± 0.013
Precision (M) 0.25± 0.012 0.32± 0.033 0.52± 0.031 0.41± 0.014 0.59± 0.018 0.66± 0.04 0.82 ± 0.051
Recall (M) 0.26± 0.023 0.33± 0.061 0.55± 0.022 0.40± 0.03 0.54± 0.014 0.7± 0.03 0.85 ± 0.067
F1 (M) 0.26± 0.026 0.33± 0.042 0.53± 0.023 0.41± 0.029 0.57± 0.02 0.68± 0.02 0.83 ± 0.026
Precision (BC) 0.23± 0.044 0.26± 0.024 0.45± 0.033 0.28± 0.031 0.50± 0.013 0.58± 0.02 0.71 ± 0.055
Recall (BC) 0.24± 0.053 0.21± 0.02 0.47± 0.014 0.26± 0.021 0.41± 0.023 0.57± 0.05 0.70 ± 0.066
F1 (BC) 0.24± 0.041 0.23± 0.024 0.46± 0.041 0.27± 0.031 0.45± 0.031 0.57± 0.03 0.70 ± 0.053
Precision (Q) 0.32 ± 0.034 0.34 ± 0.044 0.58 ± 0.045 0.48 ± 0.024 0.60 ± 0.024 0.81 ± 0.04 0.85 ± 0.056
Recall (Q) 0.25 ± 0.042 0.36 ± 0.071 0.66 ± 0.034 0.41 ± 0.042 0.68 ± 0.023 0.72 ± 0.03 0.78 ± 0.048
F1 (Q) 0.28 ± 0.014 0.35 ± 0.013 0.62 ± 0.043 0.45 ± 0.032 0.64 ± 0.024 0.77 ±0.03 0.81 ± 0.033

The results demonstrate that the Transformer-based MVTS classifier outperforms all

other baselines across all performance measures. When considering the overall evaluation,

ROCKET achieves the second-best performance, followed by the LSTM model in third

place. Notably, the Transformer-based MVTS classifier achieves an accuracy that is 20%

higher than that of the LSTM model. This highlights the significance of learning MVTS

representations in both spatial and temporal domains, rather than solely relying on the

temporal domain.

Among the shallow ML models, TS-SUM performs better than the FLT and LTV mod-

els. Overall, the exceptional performances of TS-SUM, RNN, LSTM, ROCKET, and our

Transformer-based MVTS classifier emphasize the importance of time series representations

in understanding solar events.

Binary classification performance

In the context of data-driven flare prediction, binary classification plays a significant

role in distinguishing major flaring events from minor flaring events or flare quiet events. In

this experiment, we focus on classifying X and M class MVTS instances as flaring events,

while considering all other instances (Q and BC) as non-flaring events. The figure depicts

the mean binary classification performances of all models over five different train/test sam-
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Fig. 5.10: Binary classification performance of all baselines.

ples. Evaluation metrics such as accuracy, precision, recall, and F1 scores are used for both

the flaring and non-flaring classes.

The results demonstrate that the Transformer-based MVTS model outperforms all

other baseline models, and achieves an average improvement of approximately 8% com-

pared to the second-best performing ROCKET algorithm across all performance metrics.

These findings highlight the superior performance of our model in binary classification

and multi-class classification. This consistency reinforces the efficacy and reliability of our

Transformer-based model in accurately predicting flaring events.

Classification varying training set size

To investigate the adaptability of our model to larger training datasets, we conducted

experiments by varying the size of the training set. The training set size was adjusted from
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10% to 90% of the total dataset size, while the remaining instances were used for testing.

Stratified train/test sampling was performed, and the classification performance of the clas-

sifiers was evaluated five times using distinct samples of training and test sets.

In Figure 5.11 5.12, we present the mean accuracy values and mean F1 (X class) val-

ues obtained from five runs. Across all training set sizes, our Transformer-based MVTS

classifier consistently outperformed the other baselines. Notably, the Transformer-based

MVTS model achieved a classification accuracy of 75% using only 20% of the training data,

surpassing the performance of the third-best performing LSTM model, which required 90%

of the training data to achieve a similarly high level of performance. We observed con-

sistent improvement patterns in deep learning and kernel-based methods, including our

Transformer-based model, ROCKET, LSTM, and RNN.
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Fig. 5.11: Multi-class classification accuracy with increasing training data.
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Fig. 5.12: F1 for X class with increasing training data

This observation suggests that with sufficiently large datasets, deep learning models

have the potential to outperform traditional classifiers or embedding methods by a sig-

nificant margin. These findings underscore the superiority of Transformer models when

working with large datasets.

t-SNE Embedding performance

Visualizing high-dimensional data in 2D or 3D space using techniques like t-SNE is a

well-established method for assessing the effectiveness of learned representations. To evalu-

ate the quality of the learned MVTS representations, we present a visualization of the t-SNE

transformed MVTS representations extracted from the final layer of the Transformer-based

model. All instances are projected onto a t-SNE-reduced 2D space (see Figure 5.13). We

employed a stratified holdout strategy for pre-training the model.
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The resulting 2D projection demonstrates distinct clustering of the MVTS instances.

The t-SNE scatter plot provides meaningful insights, as it allows us to easily distinguish

patterns among the four classes. Flare-quiet events (Q) and minor flaring events (B and

C) exhibit relatively similar characteristics. On the other hand, X and M class flares show

significant dissimilarity from the other classes. Additionally, we observe that certain flare-

quiet events share similarities with minor flaring events, while some minor flares display

characteristics similar to M-class flares. The characteristics of X-class flares are distinct,

with no observed similarity in instances from other classes.

By visualizing the t-SNE transformed representations, we gain valuable insights into

the distinguishable patterns and similarities among the different classes of MVTS instances.

This analysis allows for a deeper understanding of the learned representations and sheds

light on the distinct features and characteristics of flaring events.

Ablation Study of the Transformer-base MVTS Classification Mode

To gain a better understanding of the contributions and effectiveness of the different

layers in our model, we conducted several experiments to evaluate the significance of vari-

ous aspects (refer to figure 5.14). Firstly, we assessed the importance of the self-attention

mechanism by removing it from the model architecture and comparing the results. The

removal of the attention mechanism led to a noticeable drop in accuracy, from 83% to 71%.

This outcome highlights the significant role played by the Multi-Head Attention layer in

capturing relevant patterns and relationships within the MVTS data.

Secondly, we examined the impact of layer normalization by removing the layer nor-

malization layers from the model. This resulted in a decrease in accuracy from 83% to 77%.

This finding underscores the importance of layer normalization in maintaining the model’s

performance and stability.
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Fig. 5.14: Ablation Study: Revealing the Contributions of Model Components in MVTS
Classification of Solar Flares.

Lastly, we investigated the effect of the 1D convolutional layers. When these layers

were removed from the model, there was a significant drop in accuracy from 83% to 71%.

This result demonstrates the crucial role played by the 1D convolutional layers in capturing

important temporal features and contributing to the overall performance of the model.

Overall, the ablation study provided valuable insights into the contributions of differ-

ent layers in our model. The significant decrease in accuracy upon removing the attention

mechanism, layer normalization, and 1D convolutional layers highlights their importance

in capturing relevant patterns, maintaining stability, and extracting essential temporal fea-

tures. These findings underscore the effectiveness and significance of each layer in our model

architecture.
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CONCLUSION

The field of astrophysics lacks a specific physical theory that comprehensively explains

the mechanism behind the occurrence of solar flares, which limits the ability to forecast and

classify them [40]. While various groups of physicists are actively researching to unveil a

definitive theory for flare prediction, the likelihood of success remains uncertain. Given the

rapid advancements in AI and machine learning, the most promising approach is to adopt

a data-driven strategy using the Active Region parameters observed by the solar dynamics

observatory. The goal is to develop a model that can establish an empirical relationship

between AR parameters and flare occurrences.

In this work, we presented the application of novel MINIROCKET classifier, Trans-

formers/Attention based classifier, and baselines using the SWAN-SF dataset along with

the challenges posed by extreme class imbalance. We discussed various approaches to ad-

dress these issues, including undersampling and oversampling techniques. To evaluate our

approach, we adopted a total of 20 distinct partition pairs. One partition was used for

training, while the remaining four were used for individual testing. For instance, we trained

the model with partition 1 and tested it with partitions 2, 3, 4, and 5 separately.

Furthermore, we introduced the efficient application of MINIROCKET classifier, em-

phasizing minimal data manipulation and augmentation. Our model was compared with

other classes of classifiers, such as LSTM, MRSEQL, SVM, and CIF. To assess performance,

we employed the True Skill Statistic (TSS) score and Heidke Skill Score (HSS2), the most

commonly used metrics for flare prediction in class imbalance data. Our research revealed

that MINIROCKET outperformed other classifiers on the SWAN-SF dataset. Notably,

across all experimental settings, MINIROCKET achieved an average improvement of 19.8%
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in terms of the TSS score and 20.92% in terms of the HSS2 score.

Additionally, we introduced an end-to-end transformer-based flare prediction model

that utilized the self-attention mechanism for multivariate time series (MVTS) classifica-

tion. We validated our experiments using the reduced dataset and showcased the strengths

of the Transformer model in capturing temporal relationships within MVTS instances, in-

cluding higher-order inter-variable relationships and local and global temporal changes.

Our model, integrating attention/transformer-based techniques, achieved an impressive ac-

curacy of 83% in multi-class MVTS classification on the solar flare prediction dataset.

These results underscore the potential of our approach in enhancing the accuracy and

reliability of solar physics and space weather forecasting. The effectiveness of the Trans-

former model in handling MVTS data complexities and leveraging self-attention mechanisms

for crucial pattern detection is evident. Additionally, the remarkable performance demon-

strated by MINIROCKET with minimal data preprocessing can significantly advance the

vision of real-time solar flare classification. These contributions hold the promise for im-

proving space weather forecasting.
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