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ABSTRACT

Estimated Aerodynamic Forces and Moments and Optimal Orientation of the V-BAT

Airframe During Vertical Landing in Gusty Conditions

by

Parker C. Carter, Master of Science

Utah State University, 2023

Major Professor: Douglas Hunsaker, Ph.D.
Department: Mechanical and Aerospace Engineering

Ship based Unmanned Air Systems (UAS) face adverse conditions during flight in the

form of ship airwake. The objectives of this work are to first evaluate the variation in

forces and moments during the vertical landing phase of an approximated V-BAT model

and second identify the vertical landing trajectory that minimizes the variation in forces

and moments acting on the approximated V-BAT model. Methods for predicting the forces

and moments acting on an aircraft are presented. The methods include reasonable ap-

proximations for the mass, inertia, and aerodynamics of an aircraft created from individual

aircraft components and three-dimensional shapes. The V-BAT UAS model is described in

detail. The model is simulated over a sweep of altitudes and bank angles. The simulation

force and moment data are evaluated using two methods. The first method evaluates the

average and standard deviation of the forces and moments at each altitude and bank angle.

The second method creates contour plots of the bank angles that minimize the forces and

moments at each altitude and time step. Using these methods produces series of bank an-

gles that minimize the average force and force standard deviation as well as contour plots

showing the angles that minimize the forces and moments at each altitude and time step.

Five prescribed bank angle landing trajectories are simulated. The resulting forces and
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moments incurred during each simulation are piloted and compared to determine the land-

ing trajectory that minimizes the variation in forces and moments. The results show using

the minimum average and standard deviation force bank angle series while landing reduces

the maximum force from 57.9 lbf to 19.25 lbf and 20.05 lbf respectively and the average

force from 16.07 lbf to 6.27 lbf and 6.39 lbf respectively. Using the minimum average and

standard deviation force bank angle series also reduces the maximum moment acting on

the V-BAT from 20.62 lbf-ft to 14.32 lbf-ft and 18.49 lbf-ft respectively and the average

moment acting on the V-BAT from 8.49 lbf-ft to 4.84 lbf-ft and 5.44 lbf-ft respectively. The

results also show using the minimum force bank angle series, while landing, reduces the

maximum force from 57.91 lbf to 20.05 lbf and the average force from 16.07 lbf to 4.83 lbf.

Using the minimum force bank angle series also reduces the maximum moment acting on

the V-BAT from 20.62 lbf-ft to 15.97 lbf-ft and the average moment acting on the V-BAT

from 8.49 lbf-ft to 5.54 lbf-ft. In conclusion, the variation in forces and moments acting

on the approximated V-BAT model are best minimized using a vertical landing trajectory

bank angle series prescribed by the minimum force and moment contour plot data.

(142 pages)
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PUBLIC ABSTRACT

Estimated Aerodynamic Forces and Moments and Optimal Orientation of the V-BAT

Airframe During Vertical Landing in Gusty Conditions

Parker C. Carter

Ship based Unmanned Air Systems (UAS) are an important tool used by the United

States Navy for situational awareness and short-range operations. Naval UAS are used

to provide real-time intelligence, surveillance, reconnaissance, and target-acquisition while

being low cost, mission flexible, and safe. Unfortunately UAS suffer disadvantages with

respect to adverse environmental conditions caused by the air being displaced by the ship.

The accumulation of one or more adverse conditions is known as airwake. To counteract

the effects of airwake, the objectives of this work are to first evaluate the effect of forces

and moments during the vertical landing phase of an aircraft model and second identify

the vertical landing path that will minimize the forces and moments acting on the aircraft

model.

To accomplish these objectives, an overview of the aircraft models component’s mass

and aerodynamic properties are given. An overview of the V-BAT UAV model and pre-

scribed landing trajectories are discussed. The V-BAT model is simulated over a sweep

of bank angles and altitudes. The simulation force and moment data are evaluated using

two methods. The first method evaluates the average and standard deviation of the forces

and moments at each altitude and bank angle. The second method creates contour plots

of the bank angles that minimize the forces and moments acting on the V-BAT model at

each altitude and time step. The results show, during landing, the forces and moments are

minimised by following a series of bank angles taken from the minimum force and moment

contour plot data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Unmanned Air Systems (UAS) in use on naval warships are becoming increasingly

important for situational awareness and short-range operations. UAS such as the V-BAT

128 by Martin UAV [2] and MQ-8 Fire Scout by Northrop Grumman [3] are key tools for

providing real-time intelligence, surveillance, reconnaissance, and target-acquisition. UAS

have many advantages including low cost, increased flexibility, and improved safety but UAS

also have some disadvantages when working within the adverse environmental conditions

found around large ships.

A significant adverse condition ship based UAS face is the complex ship airwake flowing

about the ship through which the UAS must travel. Ship airwake occurs when air is

displaced by the body of the ship itself. As the air is forced to flow around the ship, burble is

introduced to the flow causing the air to become turbulent. Complex ship airwake is induced

as the ship cruses along or as winds blow over the ship. However, other adverse conditions

including nearly constant unsteady wind, gusts, and thermal effects can contribute to the

overall complexity of the ship airwake. Combining one, multiple, or all of these conditions

creates a complex airwake that is difficult for aircraft of all shapes and sizes to navigate.

Unfortunately, the effects of complex airwake are more pronounced for small UAS and rotor

craft [4–9]. For this reason complex ship airwake is the main adverse condition this work

seeks to counteract.

On account of these adverse conditions ship-based UAS have unique requirements in

comparison to land-based UAS. These requirements result in the fact that UAS which are

highly functional for land-based operations may not be suitable for ship-based operations.

Currently UAS are loosely categorized as either fixed-wing configurations, which takeoff
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and land like a traditional aircraft, vertical-takeoff and landing (VTOL) configurations,

which takeoff and land like a rotary aircraft, and hybrid VTOL UAS which can take off and

land traditionally, vertically, or a combination of the two [10]. Each configuration presents

unique challenges when maneuvering through the complex airwake to the deck touchdown

point. The present work primarily evaluates the performance of VTOL-type maneuvers of

aircraft near the ship, rather than maneuvers common to traditional fixed-wing aircraft,

although the influence of fixed-wings attached to the aircraft are included in the analysis.

The ability of any aircraft to successfully navigate the takeoff and landing phases of

ship-based operations depends on many factors, including the aircraft geometry, mass, iner-

tia, control effects, control algorithms, aerodynamics, and operational conditions. Because

of these factors, most aircraft follow a set of standards known as operating limitations

during takeoff and landing.

The purpose of this work is to demonstrate how the variation in aerodynamic forces

and moments relate to the aircraft’s trajectory and show how to evaluate a trajectory with

minimal variation in aerodynamic forces and moments during the aircraft’s vertical landing.

This is accomplished by first predicting the variation in forces and moments the aircraft

experiences in order to follow a specified vertical landing trajectory then second compare

a series of specified landing trajectories to determine the trajectory that minimizes the

variation in forces and moments. This work uses a flight simulation tool called Simulator

for Arbitrary Aircraft in Ship Airwakes (SAASHA) to accomplish this purpose.

1.2 SAASHA

SAASHA is a mass, aerodynamic, and flight simulation tool that predicts the forces

and moments acting on an aircraft while flying through a predetermined trajectory and

flight conditions. SAASHA can be used to simulate the forces and moments acting on any

aircraft, as long as the aircraft can be approximated using a combination of simple geometric

components including spheres, cylinders, cuboids, wings, and propellers.

SAASHA simulates the aircraft’s flight by first accepting inputs for the atmospheric

flight conditions, approximate aircraft geometry, and prescribed trajectory information.
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SAASHA then calculates each of the aircraft component’s weight and mass moment of

inertia tensor. SAASHA then calculates the aircraft’s center of gravity and uses the parallel

axis theorem to calculate the aircraft’s mass moment of inertia tensor about it’s center of

gravity. Once the moment of inertia is known, SAASHA calculates each of the component’s

aerodynamic properties to get the complete aerodynamic properties of the aircraft. Next

SAASHA simulates the aircraft’s flight through different flight conditions using the 6 degree-

of-freedom (6 DoF) equations of motion in conjunction with a 4th order Runge Kutta

integration method. After the simulation is complete, SAASHA returns the aircraft’s time

history data including the aircraft’s position, orientation, velocity, and forces and moments

at each time step. This data is saved as a CSV file for ease of use.

1.3 Alternative Software

Similar simulation work has been done on UAS and rotorcraft using a United States

Air Force produced software called Digital DATCOM usually in conjunction with other

software such as OpenVSP, [11] MATLAB, and SIMULINK [12–22]. Digital DATCOM

used in conjunction with MATLAB has many advantages and could have been used to

create a comparable simulator but there are several advantages to using SAASHA that

DATCOM and Matlab do not have. The first advantage of SAASHA is that SAASHA

does not lose accuracy at low reynolds numbers. Unfortunately, DATCOM loses accuracy

at low Reynolds numbers on the order of Re = 100,000 [23, 24] which are most commonly

experienced at low speed during takeoff and landing. Another advantage of SAASHA is

individual components of the aircraft can be assigned a density and a weight. According

to Vogeltanz [24] and Shankar, [21] when building geometries in Digital DATCOM, the

DATCOM software assumes the material properties of the aircraft are homogeneous. This

means DATCOM will not know the correct center of gravity location, so it will need to be

calculated separately, otherwise, the simulation will produce incorrect results.
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1.4 128 V-BAT

An approximate model of the Martin UAV V-BAT 128 is used in this work. The

Martin UAV V-BAT 128, shown hovering in Fig. 1.1, is a VTOL UAS used by the United

States Navy [25]. The V-BAT is primarily used for reconnaissance, surveillance, and target

acquisition [2]. Two of the main advantages of the V-BAT are that it can be deployed

from virtually anywhere and it takes up little room when disassembled. This makes the

V-BAT ideal for naval use on ships where storage space is limited, and takeoff and landing

conditions are not ideal.

Fig. 1.1: Martin UAV V-BAT in hover position.

1.5 Airwake Database

When landing on a naval ship, the V-BAT must fly through the airwake of turbulent air

being displaced by the ship. For this work, a database of complex ship airwake wind-gust

velocity data has been provided by the U.S. Navy Naval Air Systems Command(NAVAIR).

The airwake data describes the wind velocity in each direction within a 90.0 m x 67.0 m

x 33.0 m rectangular volume as shown in Fig. 1.2. The wind velocity in each direction is

known at every 1 meter junction from 0.0 m to 90.0 m in the x direction, -50.0 m to 17.0

m in the y direction and -7.0 m to 24.0 m in the z direction. The generic destroyer model
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used in the simulator and depicted in Fig. 1.2 was generated by the Canadian National

Research Council. The airwake data used in this work was generated by NAVAIR using

computational fluid dynamics(CFD). For more information on ship airwake and how CFD

is used to generate airwake data see Polski [26–29] and Forsythe [30].

Fig. 1.2: Ship airwake rectangular volume.

1.6 Objectives

The objectives of this work are as follows:

1. Evaluate the variation in forces and moments during the vertical landing trajectory

phase of an approximated V-BAT model.

2. Identify the vertical landing trajectory that minimizes the variation in forces and

moments acting on the approximated V-BAT model.
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To complete these objectives, an overview of the aircraft component’s mass and aerodynamic

computations used by SAASHA are given in Chapter 2 and Chapter 3. The 6 degree-of-

freedom equations of motion are explained in Chapter 4. An overview of the V-BAT model,

a prescribed landing trajectory, an example simulation, and a vertical landing trajectory

simulation overview are given in Chapter 5. The landing trajectory results of this work are

presented in Chapter 6. A summary and conclusion to this work is given in Chapter 7.



CHAPTER 2

A REVIEW OF AIRCRAFT MASS AND INERTIA PROPERTIES

The mass and inertia computations of each component type are presented in this chap-

ter.

2.1 General Properties

As stated in the introduction, this work assumes the geometry of the aircraft can be

approximated using a finite number of three dimensional shapes with constant density called

objects or components.

2.1.1 Volume, Mass, and Weight

The volume of each object is calculated by integrating the region within the objects

geometry. The volume integral is then

V =

∫∫∫
V
dV (2.1)

The object’s mass, m, with constant density, ρ, and volume, V , is calculated using

m = ρV (2.2)

The object’s weight, W , is calculated using

W = mg (2.3)

In this equation, g is the gravitational constant. Since each object is assumed to have

constant density, the mass of each object can be defined by the object’s volume and either

the object’s mass, density, or weight.
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2.1.2 Center of Gravity

The location of an object’s center of gravity (CG) is calculated using the mass distri-

bution. Since each object is assumed to have a constant density, the moments about each

axis are described by the volume integrals:

Myz = ρ

∫∫∫
V
x dV (2.4)

Mxz = ρ

∫∫∫
V
y dV (2.5)

Mxy = ρ

∫∫∫
V
z dV (2.6)

The object’s CG coordinates, measured relative to the object’s origin, are calculated using:

x̄ ≡ Myz

m
(2.7)

ȳ ≡ Mxz

m
(2.8)

z̄ ≡ Mxy

m
(2.9)

2.1.3 Mass Moment of Inertia

An object’s mass moment of inertia is described using the tensor

[I] =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 (2.10)
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Each object’s moments and products of inertia are calculated using using the volume inte-

grals [31]:

Ixx = ρ

∫∫∫
V
(y2 + z2) dV (2.11)

Iyy = ρ

∫∫∫
V
(x2 + z2) dV (2.12)

Izz = ρ

∫∫∫
V
(x2 + y2) dV (2.13)

Ixy = Iyx = ρ

∫∫∫
V
(xy) dV (2.14)

Ixz = Izx = ρ

∫∫∫
V
(xz) dV (2.15)

Iyz = Izy = ρ

∫∫∫
V
(yz) dV (2.16)

In this work the mass moment of inertia is referred to as the moment of inertia.

The complete aircraft’s mass and moment of inertia properties are estimated by sum-

ming each of the aircraft’s individual object’s mass and moment of inertia properties. The

following sections describe the three dimensional shapes used to approximate the properties

for a complete aircraft. The following sections include geometries for simple shapes such as

cuboids and complex shapes such as wings and propellers. For more information on how

each component’s properties were derived, see Moulton and Hunsaker [1].

2.2 Rectangular Cuboid

A cuboid is a three dimensional six sided shape also known as a hexahedron. A rect-

angular cuboid has six sides that meet at right angles and are all rectangular in shape. The

center of gravity for a rectangular cuboid is located at the center of the cuboid, halfway

between each parallel face. The CG location also functions as the origin for the cuboid’s

Cartesian coordinate system, where each axis is parallel or perpendicular to the cuboid’s

faces. The cuboid’s geometry is described by the length of the cuboid parallel to each axis,

as shown in Fig. 2.1.
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x

y

z

lx

lz

ly

Fig. 2.1: Rectangular cuboid geometric definition and coordinate system.(Used w/permis-
sion [1])

The volume of a rectangular cuboid is calculated using the triple integral

V ≡
∫∫∫

V
dV =

∫ lz/2

−lz/2

∫ ly/2

−ly/2

∫ lx/2

−lx/2
dxdydz = lxlylz (2.17)

The inertia tensor of a rectangular cuboid, about it’s CG, is calculated by integrating over

the same limits of integration applied to Eqs. (2.11) - (2.16). The result of integration is

given by

[I] =


m
12(l

2
y + l2z) 0 0

0 m
12(l

2
x + l2z) 0

0 0 m
12(l

2
x + l2y)

 (2.18)

This equation is confirmed in Engineering Mechanics Statics and Dynamics by Hibbeler

[32], Vector Mechanics for Engineers Statics and Dynamics by Beer, Johnson, and Eisenberg

[33,34], and Shigley’s Mechanical Engineering Design [35].

For a hollow rectangular cuboid the inner dimensions of the cuboid are lx1, ly1, lz1 and

the outer dimensions are lx2, ly2, lz2. The volume of the cuboid is calculated as

V = V2 − V1 (2.19)
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In this equation V1 = lx1ly1lz1 and V2 = lx2ly2lz2. The inertia tensor of the hollow rectan-

gular cuboid about it’s center of gravity is then

[I] =


m
12

V2(l2y2+l
2
z2)−V1(l2y1+l2z1)
V2−V1 0 0

0 m
12
V2(l2x2+l

2
z2)−V1(l2x1+l2z1)
V2−V1 0

0 0 m
12

V2(l2x2+l
2
y2)−V1(l2x1+l2y1)
V2−V1

 (2.20)

2.3 Hollow Cylinder

A hollow cylinder is described by an inner radius, R1, an outer radius, R2, and a length,

h. The origin of a hollow cylinder is at the CG of the cylinder, halfway between each end.

The Cartesian coordinate system is located at the cylinder’s CG, with the x axis aligned

with the cylinder’s axis of rotation as shown in Fig. 2.2.

x

y

z

h

R1

R2

Fig. 2.2: Cylinder geometric definition and coordinate system.(Used w/permission [1])

The volume of a hollow cylinder is calculated by converting Eqs. (2.1) and (2.11)-(2.16)

to cylindrical coordinates, (x, r, φ) where r = y2 + z2, and integrating gives

V ≡
∫∫∫

V
dV =

∫ 2π

0

∫ R2

R1

∫ h/2

−h/2
dxrdrdφ = πh(R2

2 −R2
1) (2.21)
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The inertia tensor of the cylinder about it’s CG is

[I] =


m
2 (R

2
2 +R2

1) 0 0

0 m
12 [3(R

2
2 +R2

1) + h2] 0

0 0 m
12 [3(R

2
2 +R2

1) + h2]

 (2.22)

The process for finding the inertia of a solid cylinder is the same except R1 = 0.

2.4 Hollow Sphere

A hollow sphere is described by an inner radius R1 and an outer radius R2. The origin

of the sphere is located at the sphere’s CG as shown in Fig. 2.3.

z

yx

R2

R1

Fig. 2.3: Sphere geometric definition and coordinate system.(Used w/permission [1])

The surface area of a sphere is 4πr2 therefore, the differential volume of the sphere is

dV = 4/3πr2dr. Applying this to the volume integral of a hollow sphere gives

V ≡
∫∫∫

V
dV =

∫ R2

R1

4πr2dr =
4

3
π(R3

2 −R3
1) (2.23)
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The inertia tensor of the sphere about it’s CG is

[I] =


2
5m

(R5
2−R5

1)

(R3
2−R3

1)
0 0

0 2
5m

(R5
2−R5

1)

(R3
2−R3

1)
0

0 0 2
5m

(R5
2−R5

1)

(R3
2−R3

1)

 (2.24)

The process for finding the inertia of a solid sphere is the same except R1 = 0.

2.5 Wing Segment

This section outlines the process to approximate the volume, mass, and inertia prop-

erties for a single simple wing segment. This section assumes any lifting surface can be

approximated by a finite number of simple wing segments. The section also assumes that

simple wing geometries can be summed together to approximate more complex wing ge-

ometries.

2.5.1 Geometry and Coordinate Definitions

A single wing segment is fully defined by the span, b, root chord, cr, tip chord, ct, root

airfoil thickness, τr, tip airfoil thickness, τt, sweep angle, Λ, dihedral angle, Γ , and airfoil

thickness distribution, µ(xa/c). A single wing segment with the wing’s geometric properties

is illustrated in Fig. 2.4. Note the span,b, runs parallel to the y-axis.

For a wing segment, the center of gravity is not known until the wing is analyzed.

Therefore, the origin of the finite wing will not coincide with the CG of the wing. For a

finite simple wing, the origin of the wing is placed at the wing-root quarter-chord as shown

in Fig. 2.4. The x-axis follows the chord-line pointing out of the root leading edge, the

y-axis goes in the same direction as a right wing, and the z-axis points toward the bottom

of the airfoil.
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x

z

y

Λ

cg

cr

ct

τt ct

b

τr cr

Fig. 2.4: Wing-segment geometry definitions.(Used w/permission [1])

The type of airfoil used on the wing segment has a large impact on the mass and inertia

properties of the wing. This work assumes the airfoil’s mass properties are dominated by

the airfoil’s thickness distribution. This work also assumes the wing’s camber effects are

negligible. The traditional airfoil coordinate system is located at the leading edge of the

airfoil and has the x-axis, xa, pointing along the chord-line toward the trailing edge and

the y-axis, ya, pointing upward out of the airfoil normal to the x-axis as shown in Fig. 2.5.

xa

ya c

τm

Fig. 2.5: Airfoil coordinate frame.(Used w/permission [1])

The methods presented in this work can use different types of thickness distributions

but only two methods are demonstrated in this work, NACA 4-Digit-Series and diamond

shaped airfoils. For more information on different thickness distributions see Moulton and

Hunsaker [1].

The volume of the wing segment is calculated by integrating over these bounds in Eq.

(2.1). The volume of the wing segment is then

V =
b

12
κaυ0 (2.25)
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The wing’s center of gravity is calculated by computing the volume integrals given

by Eqs. (2.4)–(2.6). The sweep angle must be accounted for in computing Myz because

sweep has an effect on the x coordinate of the wing’s mass. The moment Myz is computed

by applying the shift −y tanΛ to the x coordinate. This shift occurs due to sweep. The

equation for Myz is then

Myz = ρ

∫∫∫
V
(x− y tanΛ) dV = ρ

∫∫∫
V
x dV − ρ tanΛ

∫∫∫
V
y dV (2.26)

The effects of sweep do not apply to the integrations forMxz orMxy in Eqs. (2.5) and (2.6)

because there is no x terms in the integrals and sweep has no effect on the wing’s y or z

mass coordinates. Sweep has different effects depending on whether the wing is the right

or the left wing. The coefficient δ is used in subsequent equations to account for this. The

δ coefficient is defined as

δ ≡


1, right wing

−1, left wing

(2.27)

Myz,Mxz, and Mxy are found using the volume integrals [1]:

Myz = ρ[S1,0,0 − tanΛS0,1,0] = −ρ b

240
[3κbυ1 + 4bκcυ0 tanΛ] (2.28)

Mxz = ρδS0,1,0 = ρδ
b2

60
κcυ0 (2.29)

Mxy = ρS0,0,1 = 0 (2.30)

The location of the wing’s center of gravity relative to the wing’s origin is found by

using Eq. (2.25) in Eq. (2.2) then applying the result with Eqs. (2.28) through (2.30) in

Eqs. (2.7) through (2.9). The center of gravity location is then:

x̄ ≡ Myz

m
= −3κbυ1 + 4bκcυ0 tanΛ

20κaυ0
(2.31)

ȳ ≡ Mxz

m
= δb

κc
5κa

(2.32)

z̄ ≡ Mxy

m
= 0 (2.33)
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Neglecting twist and camber in the wing causes the z coordinate of the CG to go to zero.

Note the sweep only effects the center of gravity’s x coordinate.

2.5.2 Inertia Tensor

The inertia tensor about the wing’s origin is calculated by applying appropriate limits

to the volume integrals given in Eqs. (2.11)–(2.16). The inertia tensor about the wing’s

origin is found by applying the shift due to sweep. Solving the volume integrals result in [1]

[I]o =


Ixxo −Ixyo −Ixzo

−Iyxo Iyyo −Iyzo

−Izxo −Izyo Izzo

 (2.34)

where the components are

Ixxo = ρ(S0,2,0 + S0,0,2) = ρ
b

3360

(
56b2κfυ0 + κgυ3

)
(2.35)

Iyyo = ρ(S2,0,0 + S0,0,2 + S0,2,0 tan
2 Λ− 2S1,1,0 tanΛ)

= ρ
b

10080

[
84b

(
2bκf tan

2 Λ+ κd tanΛ
)
υ1 + 49κeυ2 + 3κgυ3

]
(2.36)

Izzo = ρ
[
S2,0,0 +

(
tan2 Λ+ 1

)
S0,2,0 − 2S1,1,0 tanΛ

]
= ρ

b

1440

[
12b

{
2b

(
tan2 Λ+ 1

)
κfυ0 + κdυ1 tanΛ

}
+ 7κeυ2

]
(2.37)

Ixyo = Iyxo = ρδ(S1,1,0 − S0,2,0 tanΛ) = −ρδ b
2

240
[4bκfυ0 tanΛ+ κdυ1] (2.38)

Ixzo = Izxo = ρ(S1,0,1 − S0,1,1 tanΛ) = 0 (2.39)

Iyzo = Izyo = ρδS0,1,1 = 0 (2.40)

and the kappa values and upsilon values are given in Moulton and Hunsaker [1].

Using Eq. (2.2) relating the mass to the volume and Eq. (2.25) for wing volume, the

tensor components can be converted to be expressed in terms of mass rather than density
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as given by:

Ixxo = m

[
56b2κfυ0 + κgυ3

280κaυ0

]
(2.41)

Iyyo = m

[
84b

(
2bκf tan

2 Λ+ κd tanΛ
)
υ1 + 49κeυ2 + 3κgυ3

840κaυ0

]
(2.42)

Izzo = m

[
12b

{
2b

(
tan2 Λ+ 1

)
κfυ0 + κdυ1 tanΛ

}
+ 7κeυ2

120κaυ0

]
(2.43)

Ixyo = Iyxo = −δbm
[
4bκfυ0 tanΛ+ κdυ1

20κaυ0

]
(2.44)

Ixzo = Izxo = 0 (2.45)

Iyzo = Izyo = 0 (2.46)

The inertia tensor about the wing-segment coordinate frame is found by plugging the inertia

components given in Eqs. (2.35)–(2.40) and (2.41)–(2.46) into Eq. (2.34). The inertia

tensor of the wing segment about its CG is needed to compute the inertia tensor of the

entire aircraft. The parallel axis theorem states that the inertia tensor about an arbitrary

point, [I]1, is related to the inertia tensor about the center of gravity, [I], according to the

relationship

[I]1 = [I] +m
[
(s · s)[E]− ssT

]
(2.47)

[I] = [I]o −m
[
(s · s)[E]− ssT

]
(2.48)

In this equation, s is a vector from the wing-segment CG to the wing-segment origin as

given by

s = −


x̄

ȳ

z̄

 (2.49)

The term ”s” can be computed for any wing segment using Eqs. (2.31) through (2.33). The

inertia tensor of the wing segment about the wing’s CG is found by plugging Eq. (2.49)
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into Eq. (2.48) and simplifying. The CG is then

[I] = [I]o −m


ȳ2 + z̄2 −x̄ȳ −x̄z̄

−x̄ȳ x̄2 + z̄2 −ȳz̄

−x̄z̄ −ȳz̄ x̄2 + ȳ2

 (2.50)

The inertia of the wing about its axis system is given by

[I] = [I]o −m


ȳ2 + z̄2 −x̄ȳ −x̄z̄

−x̄ȳ x̄2 + z̄2 −ȳz̄

−x̄z̄ −ȳz̄ x̄2 + ȳ2

 (2.51)

see Moulton and Hunsaker [1].

2.6 Rotor

Aircraft use different types of rotors depending on the desired performance character-

istics of the aircraft. Types of rotors can include propellers, jet turbines, helicopter blades

etc. In this work a rotor is defined by the number of rotor blades, Nb, rotor diameter,

dr, hub diameter, dh, hub height, hh, blade root chord, cr, blade tip chord, ct, blade root

airfoil thickness, τr, and blade tip airfoil thickness, τt. Similar to the wing twist and airfoil

camber, the rotor’s blade pitch and airfoil camber are assumed to be negligible. Figure 2.6

shows a 3 bladed rotor with the Cartesian coordinate system origin located at the center of

the hub. Since the rotor’s camber and pitch are negligible, the location of the origin at the

center of the hub is also the rotor’s CG.
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y
x

z

dr

dh
cr 

τr cr 

τt ct 

ct 

hh

Fig. 2.6: Rotor geometry definitions and coordinate frame.(Used w/permission [1])

The term rr = dh/2 represents the blade’s radius at the root while rt = dr/2 represents

the blade’s radius at the tip. SAASHA assumes the chord and maximum airfoil thickness

ratios vary linearly as a function of the radius, r, according to the relation

c(r) = (ct − cr)
(r − rr)

(rt − rr)
+ cr (2.52)

τm(r) = (τt − τr)
(r − rr)

(rt − rr)
+ τr (2.53)

The dimensional maximum airfoil thickness at any radius is then

t(r) = τm(r)c(r) (2.54)

2.6.1 Volume

The rotor’s volume is approximated by summing the volume of the hub with the volume

of the rotor blades. The volume of the hub, Vh, is approximated as the volume of a cylinder

with the cylinder radius equal to the hub radius, rr, and the cylinder height equal to the

hub height, hh, as shown in

Vh = πhhr
2
r (2.55)
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The volume of a single rotor blade is approximated using the same method as used for

approximating the volume of a wing from the previous section, except the span in Eq.

(2.25) is replaced with the with the difference between the rotor radius and hub radius.

The total volume of the blades is then calculated by multiplying the single blade volume

by the number of blades on the rotor, Nb, as

Vb = Nb
rt − rr
12

κaυ0 (2.56)

The total rotor volume is the sum of the volume of the hub and the volume of the blades

V = Vh + Vb (2.57)

Given the rotor’s total weight or mass, the rotor’s density is calculated by rearranging

Eqs. (2.2) and (2.3) and applying the total volume estimated from Eq. (2.57). After calcu-

lating the rotor’s density, the hub and blades mass and weight are individually calculated,

using the volumes found in Eqs. (2.55) and (2.56). The mass and weight of the hub and

blades will be used in the calculating the rotor’s inertia tensor.

2.6.2 Inertia Tensor

The rotor’s inertia tensor is calculated by summing the hub and blades inertia tensors.

The hubs inertia tensor is approximated using Eq. (2.22) with the inner radius, R1, equal

to zero, the outer radius, R2, equal to the hub radius, rr, the height of the cylinder equal

to the hub height, hh and the mass of the cylinder equal to the mass of the hub, mh. The

inertia tensor is then

[I]h =


mh
2 r

2
r 0 0

0 mh
12

(
3r2r + h2h

)
0

0 0 mh
12

(
3r2r + h2h

)
 (2.58)

where mh is the mass of the hub.
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The rotor blades inertia tensor at any moment in time depends on the blades orientation

about the rotor’s axis. The rotor’s inertia tensor is a function of time because rotors are

usually spinning during flight. Because of this, an approximate static inertia tensor can be

developed. To find an approximate static inertia tensor, the rotor blades mass is assumed

to be distributed within a circular disk with the same outer diameter as the rotor diameter.

The disks differential volume is assumed to be equal to the rotor blades differential volume

at each radial distance and same radial location. This is accomplished by setting the rotor

blades area equal to the area of a thin disk at any given radial distance. The area of a thin

cylinder of radius, r, and height, h, is given by

A(r) = 2πrh (2.59)

The rotor blades total area passing through a given radius is

A(r) = Nbτm(r)c(r)
2υ0 (2.60)

In this equation τmυ0 accounts for the airfoil area nondimensionalized by c2. Setting Eq.

(2.59) equal to Eq. (2.60) and solving for the disk height gives the height of the disk as a

function of radial position as

h(r) =
Nbτm(r)c(r)

2υ0
2πr

(2.61)

The system is converted to polar coordinates to simplify computing the inertia compo-

nents. The axis is aligned with the rotor’s axis where the x, y, and z coordinate conversions

are:

x = x

y = r cosφ

z = r sinφ
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The solution to the volume integrals result in [1]

[I]b =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.62)

where the coefficients are

Ixx = mb
T0,2,0 + T0,0,2

Vb
= mb

[
r3rγl + r2rrtγm + rrr

2
t γn + r3t γo

5 (rt − rr)κa

]
(2.63)

Iyy = mb
T2,0,0 + T0,0,2

Vb
= Izz = mb

T2,0,0 + T0,2,0
Vb

(2.64)

Ixy = Iyx = Ixz = Izx = Iyz = Izy = 0 (2.65)

with

mb = ρrVb (2.66)

and

T2,0,0 = N3
b υ

3
0

Ψ

13440π2rrrt(rr − rt)9

where the term Ψ is

Ψ = γar
10
r + γbr

9
rrt + γcr

8
rr

2
t + γdr

7
rr

3
t + γer

6
rr

4
t + γfr

5
rr

5
t + γgr

4
rr

6
t + γhr

3
rr

7
t + γir

2
rr

8
t + γjrrr

9
t + γkr

10
t

T0,2,0 = T0,0,2 =
1

120
Nbυ0

(
r3rγl + r2rrtγm + rrr

2
t γn + r3t γo

)
The γ values in the equations above are quite lengthy and are included in Moulton and

Hunsaker [1].
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The rotor’s total inertia tensor, about the rotor’s origin, is calculated by summing the

hub and blades inertia tensors as given by

[I] = [I]h + [I]b (2.67)

2.6.3 Angular Momentum

Spinning rotors create angular momentum that can effect an aircraft’s dynamics whether

or not the rotor generates thrust. The rotor’s angular momentum about it’s own axis is

computed from the product of the rotor’s inertia tensor and angular velocity. The rotor’s

inertia tensor is shown in Eq. (2.67). The rotor’s angular velocity is only about the x axis

due to the choice of rotor coordinate system. The rotor’s angular velocity in vector form is

ω =


ωx

0

0

 (2.68)

The rotor’s angular momentum vector is the product of the rotor’s inertia tensor and angular

velocity vector, which gives

h = [I]ω = [I]


ωx

0

0

 =


Ixxωx

0

0

 (2.69)

Note the rotor’s angular momentum is in the component coordinate system. The rotor’s

angular momentum is used to find the angular momentum of the entire aircraft from one

or more spinning rotors.

2.7 Mass and Inertial Properties of the Complete Aircraft

The entire aircraft’s total mass, center-of-gravity location, and inertia tensor are found

using the mass and inertia properties of each of the aircraft’s individual components. Each
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component’s influence on the entire aircraft depends on the component’s position and ori-

entation relative to the aircraft’s origin and coordinate system.

2.7.1 Coordinate Frames

This work uses the traditional body-fixed coordinate frame for an aircraft. In this

coordinate frame the x-axis points out of the nose of the aircraft, the y-axis points out of

the right wing, and the z-axis points out of the bottom of the aircraft and is orthogonal to

the x and y axes. This coordinate system is illustrated in Fig. 2.7. This coordinate system

is located at the aircraft’s CG. The inertia tensor of an aircraft is usually reported relative

to this coordinate frame.

x

y

z

Fig. 2.7: Drawing of the aircraft coordinate frame.(Used w/permission [1])

The matrix [R] is a rotation matrix which is used to convert the components of a vector

from the component coordinate system to the aircraft coordinate system as shown by


vxa

vya

vza

 = [R]


vxc

vyc

vzc

 (2.70)
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The matrix R in terms of Euler angles and quaternions is

[R] =


CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ



=


e2x + e20 − e2y − e2z 2(exey − eze0) 2(exez + eye0)

2(exey + eze0) e2y + e20 − e2x − e2z 2(eyez − exe0)

2(exez − eye0) 2(eyez + exe0) e2z + e20 − e2x − e2y

 (2.71)

Although an aircraft can have non-zero values for Euler angles and quaternions, most

aircraft do not. With most aircraft the rotation matrix [R] for the wing is a function of the

dihedral only. Dihedral is a rotation about the x axis, this means that the Euler angles θ

and ψ both go to zero. Using these Euler angles in Eq. (2.71) gives

[R] =


1 0 0

0 Cϕ −Sϕ

0 Sϕ Cϕ

 (2.72)

For a right wing the angle ϕ = −Γ , and for a left wing the angle ϕ = Γ . In this relationship

a positive value for the coefficient Γ represents a positive dihedral angle. A general relation

for any wing dihedral is derived using Eq. (2.27), as shown in

ϕ = −δΓ (2.73)

2.7.2 Position

The position of each component is defined relative to the aircraft’s coordinate system

in Cartesian coordinates see Moulton and Hunsaker. [1].
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2.7.3 Total Inertia Tensor

The complete system’s total inertia tensor is computed by summing each component’s

inertia influence. The problem with this is most of the component’s CG is not coincident

with the entire system’s CG and most of the component’s ordinates are also not aligned with

the entire aircraft’s coordinate system. To fix this problem each component’s inertia tensor

must be rotated and translated before they can be summed together to get the aircraft’s

total inertia tensor. See Moulton and Hunsaker [1] for the rotation and translation process.

The component’s inertia tensor evaluated at the aircraft’s CG location is found using the

parallel axis theorem as given by

[I]c = [I]a +m
[
(s · s)[E]− ssT

]
(2.74)

where m is the component’s mass, and [E] is again the 3 × 3 identity matrix. The inertia

of the entire aircraft is then given by

[I]aircraft =
N∑
i=1

[I]ci (2.75)

The aircraft’s inertia tensor given in Eq. (2.75) is about the aircraft’s center of grav-

ity. The aircraft’s inertia tensor about it’s origin is sometimes useful to know and can be

calculated using the parallel axis theorem as given by

[I]aircraftO = [I]aircraft +maircraft

[
(s · s)[E]− ssT

]
(2.76)

In this equation s is a vector connecting the aircraft’s center of gravity to the aircraft’s

origin, s = −raircraft.

2.8 Angular Momentum of Spinning Rotors

An aircraft can experience angular momentum when the aircraft is not rotating if the

aircraft is equipped with rotors. The angular momentum caused by rotating machinery

such as propellers, jet engines, or other rotor blades is called gyroscopic effects. Each
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rotor’s angular momentum about it’s axis or rotation is calculated using Eq. (2.69). The

entire aircraft’s gyroscopic vector is calculated by summing the gyroscopic effects from each

individual component as given by

haircraft ≡


hxb

hyb

hzb

 =
n∑
i=1

[R]ihi (2.77)

In this summation n is the number of rotors and [R] is the rotation matrix of the compo-

nent computed from Eq. (2.71). The components of the total gyroscopic vector, haircraft,

are usually written in tensor form when applying gyroscopic effects the to the aircraft’s

equations of motion as given by

[h]aircraft ≡


0 −hzb hyb

hzb 0 −hxb

−hyb hxb 0

 (2.78)

2.9 Additional Comments

From the equations above the mass and inertia properties of an entire aircraft can

be approximated by summing a few simple components. Because of this, largely complex

geometries can be broken down into simper geometries which can be evaluated. The inertia

properties can also be summed to create more complex components. An example of this

could be the applied to the hollow cylinder. A hollow cylinder could be used to model the

cabin of an airliner and rows of cuboids could be used to model the rows of passenger seats

inside the airliner. voids within an aircraft can be modeled by adding a component, such as

a cylinder, to the inside of another component, such as a wing, then setting the density of

the object within, the cylinder, to the negative of the external object. This method can be

used to create cavities in which other structures can be added, such as actuators, internal

engine turbine blades, payloads, hydraulic systems, etc. Hence, these simple shapes can be

used to model much more complex internal structures and mass distributions.
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Now that each component’s mass and inertia computations have been presented, each

component’s aerodynamic force and moment computations are presented in Chapter 3.



CHAPTER 3

LOW-FIDELITY AERODYNAMIC MODELING OF BASIC GEOMETRIES

The aerodynamic force and moment computations acting on each component type are

presented in this chapter.

3.1 Aerodynamic Model

The aerodynamic forces and moments acting on an aircraft depend on the aircraft’s

outward geometry. These forces and moments can be approximated using the 5 compo-

nent types discussed in the previous section, rectangular cuboids, cylinders, spheres, wings,

and rotors. Each component’s aerodynamic properties depend on the velocity of the fluid

surrounding the component relative to the component itself. The fluid velocity at the

component’s center of gravity varies depending on the surrounding air’s velocity vector ori-

entation relative to the aircraft’s coordinate system V∞ and the rotation rate of the aircraft

about the aircraft’s center of gravity as given by

ω ≡


p

q

r

 (3.1)

Note the freestream velocity, V∞, is the opposite sign from the aircraft’s velocity vector

ie. V = (u, v, w) = −V∞. If the aircraft’s rotation rates and the freestream velocity are

known relative to the aircraft coordinate system then the fluid’s velocity in the component

coordinate system at the component’s center of gravity can be found using the equation

Vi = [R]−1(V∞ +Pi × ω) (3.2)

In this equation, Pi ≡ ri − raircraft is the vector connecting the component to the aircraft’s
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center of gravity and [R] is the rotation matrix given in Eq. (2.71). The local velocity

vector can also be expressed as

Vi = V ui (3.3)

In this equation, V represents the local velocity magnitude and ui is a unit vector in the

direction of the local velocity vector

ui ≡
Vi

V
(3.4)

The local velocity vector is used to approximate each component’s pseudo aerodynamic

force, Fi, and moment, Mi, in the component coordinate system. The pseudo aerodynamic

forces and moments are then rotated from the component’s coordinate system to the air-

craft’s coordinate system about the aircraft’s center of gravity and summed together to

compute the entire pseudo aerodynamic force and moment vectors

Ftotal =
N∑
i=1

[R]iFi (3.5)

Mtotal =

N∑
i=1

([R]iMi +Pi × [R]iFi) (3.6)

The pseudo aerodynamic forces and moments of each component type depends on the

local fluid velocity, V, the local fluid velocity’s magnitude, V , and the fluid density, ρ.

3.1.1 Rectangular Cuboid

This section assumes the cuboid is a simple bluff body and does not create a moment

about the origin of the cuboid, therefore,

M = 0 (3.7)

The cuboids aerodynamic force is bluff cuboid drag in the direction of the local velocity.

The drag is given by

D =
1

2
ρV 2SCDui (3.8)
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In this equation, S is the cuboid’s characteristic area and CD is a drag coefficient. This

section assumes the characteristic area is the cuboid’s cross-sectional area normal to the

freestream velocity. the equation describing S is

S =


lylz

lxlz

lxly

 · |ui| (3.9)

To be conservative this section assumes the drag coefficient is the drag coefficient of a cube

with a face perpendicular to the flow [36] as given by

CD = 1.05 (3.10)

3.1.2 Cylinder

This section assumes the pressure distribution over the cylinder does not create a

moment about the cylinders origin, therefore,

M = 0 (3.11)

The aerodynamic force acting on the cylinder depends on the freestream angle relative to

the cylinder’s axis. In this work, the freestream angle is known as the angle of attack, α.

The angle of attack is calculated by using the definition of the dot product and representing

the cylinder axis with the unit vector (1, 0, 0). The angle of attack is then calculated from

the x-component of the local unit velocity vector ux as given by

α = cos−1(−ux) (3.12)

The total force acting on the cylinder is split into two forces. The first force is a lift force

that acts perpendicular to the incoming flow. The second force is a drag force that acts

in the same direction as the incoming flow. Both forces depend on the velocity magnitude
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normal to the cylinder’s axis as given by

Vn = V
√
u2y + u2z = V sin(α) (3.13)

The surface area, Sn, of the cylinder normal to the cylinder axis is

Sn = 2R2h (3.14)

The lift, L, and drag, D, forces are given by

L =
1

2
ρV 2

n SnCL (3.15)

D =
1

2
ρV 2

n SnCD (3.16)

In this equation, the lift coefficient, CL, and drag coefficient, CD, depend on the angle of

attack. For subcritical Reynolds numbers the coefficients CL and CD are related to the

angle of attack according the cross-flow principle [36]. CL and CD can be approximated by

CL = CD0 sin
2 α cosα (3.17)

CD = CD0 sin
3 α+ 0.02 (3.18)

In this equation, CD0 is a basic drag coefficient. This section assumes the basic drag

coefficient depends on the cross-flow Reynolds number, RE , as given by

RE =
2ρVnR2

µ
(3.19)

According to many experimental and analytic cylinder aerodynamic studies, the basic drag

coefficient is approximated using the piecewise function [36, 37] for a range of Reynolds
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numbers as given by

CD0 =



1.18 + 6.8
R0.89

E
+ 1.96

R
1/2
E

− 0.0004RE

1+3.64E-7R2
E
, 0 < RE ≤ 330, 000

3.78E-11R2
E − 3.56E-5RE + 8.7634, 330, 000 < RE ≤ 460, 000

−5.0E-15R2
E + 7.0E-08RE + 0.346, 460, 000 < RE ≤ 10, 000, 000

0.55, RE > 10, 000, 000

(3.20)

When RE < 0.01 the code assigns a value, CD0,= 430.0 to avoid a singularity at zero

velocity. After computing the lift and drag force the total force vector is given by

F = Dui + LuL (3.21)

where

uL =
vL
|vL|

(3.22)

vL = ui ×



1

0

0

× ui

 (3.23)

3.1.3 Sphere

A flow over a sphere does not induce a moment about the origin of the sphere, therefore,

M = 0 (3.24)

The pseudo aerodynamic force acting on a sphere is equal to the sphere’s drag acting in the

same direction as the local velocity. The force acting on the sphere is given by

D =
1

2
ρV 2πR2

2CDui (3.25)
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In this equation, R2 is the sphere’s outer radius, and CD is the sphere’s drag coefficient

which is dependant on the Reynolds number as given by

RE =
2ρV R2

µ
(3.26)

The drag coefficient is estimated from a piecewise function that has been fitted experimental

data on smooth spheres [36,37]

CD =
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RE

+ 6
1+

√
RE

+ 0.4, 0 < RE ≤ 450, 000

1.0E+29R−5.211
E , 450, 000 < RE ≤ 560, 000

−2.0E-23R3
E − 1.0E-16R2

E + 9.0E-09RE + 0.069, 560, 000 < RE ≤ 14, 000, 000

0.12, RE > 14, 000, 000

(3.27)

For RE < 0.01, the code uses the drag coefficient CD = 2405.0 to avoid a singularity at zero

velocity.

3.1.4 Wing

Geometric Considerations

The wing’s aerodynamics are approximated using the wing’s geometric properties from

the mass and inertia section along with several other aerodynamic parameters. This work

assumes that the known wing aerodynamic parameters are: the wing’s lift slope, CL,α, zero-

lift angle of attack, αL0, pitching-moment slope, Cm,α, pitching moment at zero angle of

attack, Cm0, and three drag terms CD0, CD1, and the Oswald efficiency e. Note the three

drag terms define the drag as a quadratic function of lift. Other properties that the user is

allowed to specify are the mounting angle, α0, control-surface effectiveness, ϵc, and control

surface deflection, δc. Each of these properties affect the wing’s aerodynamics. The wing’s

mounting angle is assumed to be negligible when approximating wing’s mass and inertia

relative to the aircraft. This assumption is made since the effects of mounting angle are
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small for most aircraft. The only problem with making this assumption is that the inertia

approximations will only be valid for wings with small mounting angles.

The wing’s planform area is calculated with the assumption that the wing tapers lin-

early as given by

Sw = bc̄ (3.28)

where the mean chord [38], c̄, is

c̄ =
cr + ct

2
(3.29)

The aspect ratio [38], RA, is defined as

RA =
b2

Sw
=
b

c̄
(3.30)

Dominant Forces and Moments

The distributed aerodynamic loading along the wing can be represented by a force and

moment vector acting at the wing’s aerodynamic center. The wings aerodynamic center

location depends on several factors including wing’s twist and sweep. This work assumes

the wing’s aerodynamic center is located at the quarter-chord of the wing centroidal chord.

From the geometric definition of the wing, the wing’s centroidal chord is at a spanwise

location defined by

ŷ = δ
b

3

(cr + 2ct)

(cr + ct)
(3.31)

In this equation the value for δ is defined to be the same as in Eq. (2.27). The corresponding

quarter-chord coordinate to this spanwise location is given by

x̂ = −δŷ tanΛ (3.32)
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From these equations the wing’s aerodynamic center location in the wing coordinate system

is given by 
x̂

ŷ

ẑ

 =


−δŷ tanΛ

δ b3
(cr+2ct)
(cr+ct)

0

 (3.33)

The wing’s arodynamic center location relative to the aircraft’s coordinate system is

rac = ro + [R]


x̂

ŷ

ẑ

 (3.34)

In this equation, ro is the vector connecting the aircraft’s origin to the wing’s origin and

[R] is the component’s rotation matrix calculated using Eq. (2.72).

The fluid velocity relative to the wing at the aerodynamic center location depends

on the freestream velocity, V∞, the aircraft’s rotation rate about the aircraft’s center of

gravity, ω, and the wing’s aerodynamic center location measured relative to the aircraft’s

center of gravity. This velocity vector is calculated using Eq. (3.2) with the term Pi defined

as

Pi ≡ rac − raircraft (3.35)

This work assumes the dominant forces and moments acting on the wing are only a

function of the wing’s longitudinal velocity component measured relative to the wing. There-

fore, this work assumes that the only velocity components affecting the forces and moments

acting on the wing, are the velocity components passing through the wing’s aerodynamic

center in the x− z plane as shown by

V w =


Vx

0

Vz

 (3.36)
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The local velocity vector of interest can also be expressed as

Vw = Vwuw (3.37)

In this equation Vw is the local velocity’s magnitude

Vw =
√
V 2
x + V 2

z (3.38)

and uw is a unit vector pointing in the same direction as local velocity vector of interest

uw ≡ Vw

Vw
(3.39)

This section assumes the resulting forces and moments are only longitudinal. Therefore,

this section assumes the lift, drag, and pitching moment all act in an x− z plane located at

the wing’s aerodynamic center. Furthermore, this section assumes that any sideforce acting

in the y-direction and any lateral moments acting about the x or z axes at the aerodynamic

center location are negligible. From this, the direction is given by

uL = uw ×


0

1

0

 (3.40)

In this expression the drag acts in the direction uw, and the pitching moment acts about

the wings y coordinate, therefore,

um =


0

1

0

 (3.41)

The total force vector in the wing coordinate system is

F = Duw + LuL (3.42)
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The total moment vector in the wing coordinate system is

M = mum (3.43)

The lift, drag, and pitching moment [39] are given by:

L =
1

2
ρV 2

wSwCL (3.44)

D =
1

2
ρV 2

wSwCD (3.45)

m =
1

2
ρV 2

wSw c̄Cm (3.46)

In this equation the lift coefficient, CL, drag coefficient, CD, and pitching-moment coeffi-

cient, Cm, are all dependant on the wing’s angle of attack and control surface deflections. If

the mounting angle affects are included, the angle of attack is calculated using the velocity

vector in the wing’s coordinate system as given by

α = α0 + tan−1

(
−uz
−ux

)
(3.47)

Aerodynamic Model Below Stall

For angles of attack below stall, the wing’s lift, drag, and pitching moment are approx-

imated from a basic aerodynamic model given by:

CLmodel
= CL,α(α− αL0 + ϵcδc) (3.48)

CDmodel
= CD0 + CD1CLmodel

+
C2
Lmodel

πeRA
(3.49)

Cmmodel
= Cm0 + Cm,αα (3.50)

Aerodynamic Model Above Stall

At high angles of attack the wing’s lift, drag, and pitching moment are approximated

using the flow over a flat plate at high incidence angles. An initial approximation model
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gives the lift [40, 41], drag, and pitching moment as:

CLstall
= 2sign(α) sin2 α cosα (3.51)

CDstall
= 2 sin(3/2)(|α|) (3.52)

Cmstall
= −0.8 sinα (3.53)

These coefficients are blended with the basic aerodynamic model below stall coefficients

using a sigmoid function. Beard and McLain [40] suggest the blending function

σ =
1 + e−M(α−αb) + eM(α+αb)

[1 + e−M(α−αb)][1 + eM(α+αb)]
(3.54)

where αb is a transition location and M is a blending rate parameter. In this equation αb is

a transition location and M is a blending rate parameter. This function produces a value

near 0 within a range of −αb < α < αb and a value near 1.0 outside of this range. When

α = αb, the function produces a value of σ = 0.5. Typical wings start to stall at angles of

attack between α = 15− 25 degrees have a transition location, αb, of 20 to 30 degrees. For

most wings a blending rate between 20 and 100 produces reasonable results with soft stall

occurring at M = 20 and abrupt stall occurring at M = 100.

Total Force and Moment

Applying the sigmoid function gives an approximation for the lift, drag, and pitching

moment coefficients over the entire range of angles of attack as:

CL = (1− σ)CLmodel
+ σCLstall

(3.55)

CD = (1− σ)CDmodel
+ σCDstall

(3.56)

Cm = (1− σ)Cmmodel
+ σCmstall

(3.57)

Note modifications to this simple model can be made for aircraft designed to maintain
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control effectiveness at high angles of attack. Using the results from Eqs. (3.48)–(3.53) and

plugging them into Eqs. (3.55)–(3.57) gives the total lift, drag, and pitching moment of the

wing.

3.1.5 Rotor

General Propulsive Properties

A rotating rotor produces aerodynamic forces and moments that a generally quantified

in terms of propulsive properties. A rotor’s advance ratio is a dimensionless property that

relates the rotor’s rotation rate to the rotor’s forward velocity. This parameter is defined

as

J ≡ 2πV∞
ωdr

(3.58)

In this equation ω is the angular velocity in radians per second. The power that is transferred

to the surrounding air is known as the propulsive power and is equal to the thrust multiplied

by the freestream velocity as given by

P ≡ TV∞ (3.59)

The power the motor must provide to turn the rotor is known as the brake power, which is

equal to the torque multiplied by the angular velocity as given by

Pb ≡ ℓω (3.60)

The thrust produced by the rotor, T , is related to the dimensionless thrust coefficient, CT ,

according to the relation

T = ρ(ω/2π)2d4rCT (3.61)

The brake power, Pb, is related to the dimensionless brake-power coefficient, CPb
, according

to the relation

Pb = ρ(ω/2π)3d5rCPb
(3.62)
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In this equation, the term (ω/2π) has units of rotations per second. The ratio of the

propulsive power to the brake power is known as the propulsive efficiency as given by

ηp ≡
P

Pb
=
TV∞
ℓω

=
CTJ

CPb

(3.63)

When a rotor is perfectly in line with the incoming freestream flow, the thrust is the

dominant force and the brake power, also known as torque, is the dominant moment. If

the rotor is not perfectly in line with the freastream flow, the rotor produces an additional

force and moment relative to it’s own coordinate system. The additional force, known

as the normal force is caused by the asymmetric drag on the rotor blades. The additional

moment, known as the yawing moment, is caused by the asymmetric lift on the rotor blades.

The normal force produced by the rotor is directly proportional to the angle of attack, and

related to the dimensionless normal-force coefficient, CN,α, according to the relation

N = ρ(ω/2π)2d4rCN,αα (3.64)

The yawing moment is related to the dimensionless yawing-moment coefficient, Cn, as given

by

n = ρ(ω/2π)2d5rCn,αα (3.65)
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Propulsive Parameter Inputs

Overall the rotor’s propulsive properties depend on the rotor’s geometry, number of

blades, rotation rate, and the oncoming freestream velocity. The rotor geometry used in

the previous section for approximating the mass and inertia properties are accurate for

that purpose. To predict a spinning rotor’s aerodynamic forces and moments or propulsive

properties requires additional information. For example the rotor geometry described in

the previous section did not account for any blade twist distribution (pitch) or any chord

distribution other than a linearly tapered chord. A rotor’s aerodynamics vary heavily

based on these two parameters. In this section the rotor’s propulsive properties will be

approximated using inputs from the user.

The rotor’s thrust, brake power, normal-force, and yawing-moment coefficients can be

closely approximated as parabolic functions of the rotor’s advance ratio as given by:

CT = CT0 + CT1J + CT2J
2 (3.66)

CPb
= CP0 + CP1J + CP2J

2 (3.67)

CN,α = CN1J + CN2J
2 + CN3J

3 (3.68)

Cn,α = Cn1J + Cn2J
2 + Cn3J

3 (3.69)

The parabolic functions for the normal force and yawing moment do not have a constant

term because the normal force and yawing moment are zero when the freestream velocity is

zero. As mentioned above these functions depend on the rotor’s pitch, diameter, and airfoil

properties. The rotor can be analyzed to find these coefficients using a method such as blade

element theory but to do this the rotor’s full properties must be known. For this work, these

coefficients are given as inputs and will need to be obtained from other computational or

experimental means.



43

Computational Method

The rotor aerodynamic model can be used two different ways in the code. The code is

given values for the coefficients CT0, CT1, CT2, CP0, CP1, CP2, CN1, CN2, CN3, Cn1, and

Cn2 as well as an operating airspeed and orientation of the rotor. This information can be

used to find the rotor’s thrust given the rotor’s rotation rate or the rotor’s rotation rate

given the rotor’s thrust.

Thrust given Rotation Rate: If the rotor rotation rate is given, the rotor’s thrust is

found by calculating the advance ratio from Eq. (3.58) then using the result in Eq. (3.66)

to find the thrust coefficient. The dimensional thrust can then be found by using the thrust

coefficient in Eq. (3.61).

Rotation Rate given Thrust: If the thrust is given, The rotation rate is found by using

Eq. (3.58) in Eq. (3.61) to eliminate the ω/(2π) term, then using the result in Eq. (3.66).

This gives a quadratic function of the advance ratio as

(
CT2 −

T

ρV 2
∞d

2
r

)
J2 + CT1J + CT0 = 0 (3.70)

This equation is then solved for the advance ratio, J , using the quadratic formula which

gives

J =

−CT1 ±
√
C2
T1 − 4

(
CT2 − T

ρV 2
∞d2r

)
CT0

2
(
CT2 − T

ρV 2
∞d2r

) (3.71)

The positive solution is usually the correct solution.

In each case once the advance ratio is calculated, the solutions to Eqs. (3.67)–(3.69)

are found. Then brake power, normal force, and yawing moment are found by plugging the

solutions to Eqs. (3.67)–(3.69) into Eqs. (3.62), (3.64), and (3.65). The torque the rotor

produces on the aircraft is then calculated by rearranging Eq. (3.60) to get

ℓ =
Pb
ω

(3.72)
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The angle of attack of the local flow relative to the rotor axis needed in Eqs. (3.64), and

(3.65) is identical to that for the angle of attack of a cylinder given in Eq. (3.12).

The total force vector from the rotor’s thrust and normal force are expressed in the

rotor’s coordinate system as

F =


T

0

0

+NuN (3.73)

where

uN =
vN
|vN |

(3.74)

vN =


0

uy

uz

 (3.75)

The total moment vector from the rotor’s torque and yawing moment are expressed in the

rotor’s coordinate system as

M =


−δℓ

0

0

− δnuN (3.76)

In this equation, δ depends on the direction of the rotor as given by

δ ≡


1, right-handed rotor

−1, left-handed rotor

(3.77)

Default Values

If the rotor information is not given, the following default values can be used to approx-

imate the coefficients used in Eqs. (3.66) through (3.69). These coefficients are a function of

pitch-to-diameter ratio, Kc, and were take from a propeller study performed by Phillips [42].
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The coefficients required for the thrust coefficient, CT , can be approximated as

CT0 = −0.119K2
c + 0.238Kc − 0.0194 (3.78)

CT1 = 0.146K2
c − 0.0816Kc − 0.0612 (3.79)

CT2 = 0.175K3
c − 0.496K2

c + 0.441Kc − 0.211 (3.80)

The coefficients required for the brake power coefficient, CPb
, can be approximated as

CP0 = −0.953K4
c + 2.5K3

c − 2.243K2
c + 0.885Kc − 0.115 (3.81)

CP1 = 2.17K4
c − 5.55K3

c + 4.9K2
c − 1.75Kc + 0.225 (3.82)

CP2 = −0.991K4
c + 2.34K3

c − 1.81K2
c + 0.541Kc − 0.132 (3.83)

The coefficients required for the normal force coefficient, CN,α, can be approximated as

CN1 = 0.0147K2
c + 0.0116Kc − 0.0034 (3.84)

CN2 = −0.0311K2
c + 0.0279Kc + 0.00984 (3.85)

CN3 = 0.0171K2
c − 0.0139Kc + 0.0176 (3.86)

The coefficients required for the yawing moment coefficient, Cn,α, can be approximated as

Cn1 = 0.0222K2
c − 0.0454Kc + 0.0034 (3.87)

Cn2 = −0.037K2
c + 0.0384Kc − 0.0065 (3.88)

Cn3 = 0.0206K2
c − 0.0266Kc + 0.0123 (3.89)
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Now that the mass and aerodynamic computations for each component type have been

presented, the 6 degree-of-freedom equations of motion are explained in Chapter 4.



CHAPTER 4

6 DEGREE-OF-FREEDOM EQUATIONS OF MOTION AND SIMULATION

The 6 degree-of-freedom equations of motion and gust disturbance modeling techniques

are presented in this chapter.

4.1 Equations of Motion

The generalized equations of motion for an aircraft using the flat-earth approximation

are given by [43]:


u̇

v̇

ẇ

 =
g

W


Fxb

Fyb

Fzb

+ g


−Sθ

SϕCθ

CϕCθ

+


rv − qw

pw − ru

qu− pv

 (4.1)


ṗ

q̇

ṙ

 =


Ixxb −Ixyb −Ixzb

−Ixyb Iyyb −Iyzb

−Ixzb −Iyzb Izzb


−1 


Mxb

Myb

Mzb

+


0 −hzb hyb

hzb 0 −hxb

−hyb hxb 0



p

q

r


+


(Iyyb − Izzb)qr + Iyzb(q

2 − r2) + Ixzbpq − Ixybpr

(Izzb − Ixxb)pr + Ixzb(r
2 − p2) + Ixybqr − Iyzbpq

(Ixxb − Iyyb)pq + Ixyb(p
2 − q2) + Iyzbpr − Ixzbqr



 (4.2)


ẋf

ẏf

żf

 =


CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ



u

v

w

+


Vwxf

Vwyf

Vwzf

 (4.3)



48


ϕ̇

θ̇

ψ̇

 =


1 SϕSθ/Cθ CϕSθ/Cθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ



p

q

r

 (4.4)

This formulation assumes the wind is moving at a constant velocity relative to the

earth-fixed coordinate system. The aircraft specific portions of these equations are the

body-fixed pseudo aerodynamic force vector, Fb, and moment vector, Mb, the weight, W ,

the body-fixed inertia tensor, [Ib], and the body-fixed gyroscopic tensor, [hb]. The vectors

Fb and Mb represent the aerodynamic forces and moments acting on the aircraft, including

thrust. The weight, inertia, and gyroscopic tensors of the aircraft can vary over time without

losing any fidelity to the simulation.

4.2 Gust Disturbance Modeling

4.2.1 Definitions

As stated in the introduction ship based UAS aircraft encounter adverse conditions

while flying, including ship airwake, unsteady wind, gusts, and thermal effects. These

adverse conditions cause disturbances in the UAS as it flies along a trajectory. In this work

disturbances caused by adverse conditions are modeled as gusts acting on the UAS flying

through constant wind at a given position and time. Modeling these gust disturbances in

flight simulation can be useful in determining how an aircraft will react to these disturbances

at varying magnitudes and duration’s. The total gust disturbance vector is defined using

three components in the earth-fixed coordinate system as given by


Vgxf

Vgyf

Vgzf

 =


Vg · îxf

Vg · îyf

Vg · îzf

 (4.5)

Gust disturbance models can be prescribed in the earth-fixed coordinate system or the body

fixed coordinate system. If the model is given in the earth-fixed coordinate system, the gust
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components ug, vg, wg, pg, qg, andrg can be obtained from the general vector rotation from

earth-fixed coordinates to body-fixed coordinates. If the aircraft orientation is known in

terms of Euler angles, the gust model is


Vxb

Vyb

Vzb

 =


CθCψ CθSψ −Sθ

SϕSθCψ − CϕSψ SϕSθSψ + CϕCψ SϕCθ

CϕSθCψ + SϕSψ CϕSθSψ − SϕCψ CϕCθ



Vxf

Vyf

Vzf

 (4.6)

If the aircraft orientation is known in terms of the quaternion formulation, the gust model

is 
Vxb

Vyb

Vzb

 =


e2x + e20 − e2y − e2z 2(exey + eze0) 2(exez − eye0)

2(exey − eze0) e2y + e20 − e2x − e2z 2(eyez + exe0)

2(exez + eye0) 2(eyez − exe0) e2z + e20 − e2x − e2y



Vxf

Vyf

Vzf

 (4.7)

The aircraft orientation expressed using quaternion algebra is


Vxb

Vyb

Vzb

 =



e0

−ex

−ey

−ez


⊗





0

Vxf

Vyf

Vzf


⊗



e0

ex

ey

ez




(4.8)

For details on quaternion algebra see Chapter 11 of Mechanics of Flight by Phillips [44].
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4.2.2 Atmospheric Database

As stated in the introduction, an atmospheric database of airwake wind-gust velocity

data is used to simulate the adverse conditions surrounding a generic destroyer model. The

atmospheric database was generated by the U.S. Navy Naval Air Systems Command(NAVAIR)

using a von Karman atmospheric turbulence model and computational fluid dynamics(CFD).

The generic destroyer model shown in Fig. 4.1 and Fig. 4.2 was created by the Canadian

National Research Council.

Fig. 4.1: Generic destroyer model front view.

Fig. 4.2: Generic destroyer model aft view.
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The atmospheric database describes the airwake wind velocity as a function of time

in the x, y, and z directions over grid coordinates evenly distributed at 1 meter junctions

within a 90.0 m x 67.0 m x 33.0 m rectangular volume. The rectangular volume is illustrated

by the red rectangular box shown in Fig. 4.3.

Fig. 4.3: Generic destroyer model simulation aft view with airwake box.

As seen in Fig. 4.3 and Fig. 4.4, the airwake data is not equally centered on the generic

destroyer. The airwake data’s origin is centered on the rear deck of the generic destroyer

but the airwake data on the port side of the ship is larger than the starboard side. The

measurements of the airwake box are from 0.0 m to 90.0 m in the x direction, -50.0 m to

17.0 m in the y direction and -7.0 m to 24.0 m in the z direction as shown in Fig. 4.4.

The airwake data was generated in this manner because the generic destroyer is symmetric.

Therefore, a solution produced while flying on one side of the destroyer would be nearly the

same as if it was produced using the opposite side of the generic destroyer. For reference

the landing pad for the 128 V-BAT is located at the position y = z = 0.0 m and x = 15 m

(49.2 ft) as shown in 4.4.
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Fig. 4.4: Generic destroyer model simulation top view with airwake box.

To use the airwake wind-gust database data in simulation, SAASHA uploads the data

and stores it in memory. Then SAASHA calculates the average wind velocity in the x, y,

and z direction across the full database. The average velocity in the x, y, and z directions

represent the Vwxf , Vwyf , and Vwzf terms from Eq. 4.3. Next SAASHA subtracts the

average x, y, and z wind values from each location in the database. The remainder at each

position represent gust disturbances or fluctuations in the flow. SAASHA then uses this

data set of fluctuations when calculating the Fxb , Fyb , Fzb terms in Eq. 4.1 and the Mxb ,

Myb , Mzb terms in Eq. 4.2.

4.3 Prescribed Trajectory Forces and Moments

For a prescribed trajectory the aircraft’s orientation and Cartesian coordinates are

known as a function of time. Therefore, the Aircraft’s Euler angles, ϕ, θ, ψ, flat-earth

coordinates xf , yf , zf , and first derivatives of the orientation and coordinates with respect

to time, ϕ̇, θ̇, ψ̇, (ẋf , ẏf , żf ) are known. This work assumes the gust velocity in earth-
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fixed coordinates, (Vgxf , Vgyf , Vgzf ), and the gust velocity’s first derivative with respect to

time, (V̇gxf , V̇gyf , V̇gzf ) are known. The aircraft’s angular rotation rates are then found by

rearranging Eq. (4) which gives


p

q

r

 =


1 SϕSθ/Cθ CϕSθ/Cθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ


−1

ϕ̇

θ̇

ψ̇

 =


1 0 −Sθ

0 Cϕ SϕCθ

0 −Sϕ CϕCθ



ϕ̇

θ̇

ψ̇

 (4.9)

The body fixed velocity components are then found by rearranging Eq. (3) which gives:


u

v

w

 =


CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ


−1

ẋf − Vwxf

ẏf − Vwyf

żf − Vwzf

 (4.10)


u

v

w

 =


CθCψ CθSψ −Sθ

SϕSθCψ − CϕSψ SϕSθSψ + CϕCψ SϕCθ

CϕSθCψ + SϕSψ CϕSθSψ − SϕCψ CϕCθ



ẋf − Vwxf

ẏf − Vwyf

żf − Vwzf

 (4.11)

Knowing the body-fixed velocities and angular rates, The pseudo aerodynamic forces

and moments as a function of time are found by rearranging Eqs. 4.1 and 4.2. This gives:


Fxb

Fyb

Fzb

 =
W

g


u̇− rv + qw

v̇ − pw + ru

ẇ − qu+ pv

−W


−Sθ

SϕCθ

CϕCθ

 (4.12)
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Mxb

Myb

Mzb

 =


Ixxb −Ixyb −Ixzb

−Ixyb Iyyb −Iyzb

−Ixzb −Iyzb Izzb



ṗ

q̇

ṙ

−


0 −hzb hyb

hzb 0 −hxb

−hyb hxb 0



p

q

r


−


(Iyyb − Izzb)qr + Iyzb(q

2 − r2) + Ixzbpq − Ixybpr

(Izzb − Ixxb)pr + Ixzb(r
2 − p2) + Ixybqr − Iyzbpq

(Ixxb − Iyyb)pq + Ixyb(p
2 − q2) + Iyzbpr − Ixzbqr

 (4.13)

Recall that the pseudo aerodynamic forces and moments include the thrust force. As-

suming there is adequate degrees of freedom to control the aircraft’s forces an moments,

control combinations on board the aircraft could be used to satisfy Eqs. (4.12) and (4.13)

at each time step. satisfying Eqs. (4.12) and (4.13) requires total control of the aircraft’s

six degrees of freedom. Since this level of control is not available on most aircraft, it can be

helpful to reduce the degrees of freedom required. This is done by constraining the aircraft’s

path. This method is known as coordinated maneuvering.

The V-BAT airframe model, prescribed landing trajectory, and simulation data sweep

are presented in Chapter 5.



CHAPTER 5

OVERVIEW OF THE V-BAT AIRFRAME AND LANDING TRAJECTORY

The V-BAT model design, prescribed landing trajectory, and simulation data sweep

are presented in this chapter.

5.1 Setup

5.1.1 V-BAT Model Design

Fig. 5.1 and 5.2 show an approximation of the Martin UAV 128 V-BAT. The V-BAT

model is comprised of six components consisting of a sphere representing the nose of the

aircraft, a long solid cylinder representing the fuselage, a hollow cylinder representing the

base of the aircraft, a main wing, a rotor, and a rectangular cuboid representing the mass

and inertia properties of the motor and accompanying hardware located in the lower region

of the fuselage.
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Fig. 5.1: V-BAT model in hover position.

Fig. 5.2: V-BAT model in horizontal flight position.



57

The geometric dimensions and weight of each of the V-BAT model’s components were

estimated from online sources [45]. The other dimensions were estimated from photographs

of the V-BAT. The following tables show the geometric dimensions and mass properties of

each component.

The geometric and mass properties for the nose are shown in Table 5.1.

Table 5.1: V-BAT nose geometric properties.

Property Nose

Radius[ft] 0.125

Weight[lbf] 5.00

Location[ft] [8.20, 0.00, 0.00]

The geometric and mass properties for the base cylinder and fuselage are shown in

Table 5.2.

Table 5.2: V-BAT cylindrical fuselage geometric properties.

Property Base Cylinder Fuselage

Inner Radius[ft] 1.375 0.0

Outer Radius[ft] 1.50 0.35

Length[ft] 0.75 6.70

Weight[lbf] 4.00 28.0

Location[ft] [4.87, 0.00, 0.00] [3.24, 0.00, 0.00]

The geometric and mass properties for the right main wing are shown in Table 5.3.

The properties for the left main wing are identical except the location is at -0.35 in the y

direction.
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Table 5.3: V-BAT wing geometric properties.

Property Main Wing

Span [ft] 4.85

Chord [ft] [1.105, 0.71]

Thickness [%] [12, 12]

Sweep [deg] 0.0

Dihedral [deg] 0.0

Airfoil NACA 2412

Weight[lbf] 2.00

Location[ft] [3.50, 0.35, -0.35]

The geometric and mass properties for the rotor are shown in Table 5.4.

Table 5.4: V-BAT rotor geometric properties.

Property Rotor

Span [ft] 0.225

Chord [ft] [0.20, 0.20]

Thickness [%] [12, 12]

Sweep [deg] 0.0

Dihedral [deg] 0.0

Hub Radius[ft] 0.125

Hub Height[ft] 0.20

Airfoil NACA 2412

Weight[lbf] 3.00

Location[ft] [1.50, 0.00, 0.00]
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The geometric and mass properties for the motor and hardware in the lower half of the

fuselage are shown in Table 5.5.

Table 5.5: V-BAT lower fuselage geometric properties.

Property Lower Fuselage

Height[ft] 0.70

Width[ft] 0.70

Length[ft] 3.22

Weight[lbf] 60.0

Location[ft] [3.24, 0.00, 0.00]

To simulate the V-BAT model, the geometric and mass and inertia properties are

compiled into a JSON file. The V-BAT JSON file is loaded into SAASHA and the data

is used to calculate the V-BAT model’s mass, inertia, and aerodynamic properties. Once

these properties have been calculated, the V-BAT can be used in the 6 DoF simulation to

simulate flight through specified trajectories which will be explained in the next section.

5.1.2 Landing Trajectory Overview

When the 128 V-BAT is in the air, it flies in a horizontal orientation like a conventional

fixed wing aircraft but when the V-BAT takes off or lands, it hovers in a vertical orientation

then transitions to or from the horizontal position. The 128 V-BAT uses thrust vectoring

to accomplish these maneuvers.

A typical landing sequence for the 128 V-BAT is shown in Fig. 5.3. When landing,

the V-BAT model flies horizontally toward the landing pad. As the V-BAT gets closer to

the pad it decreases velocity and starts to pitch up. As the V-BAT pitches upward it gains

altitude then hovers in place before descending vertically to the landing pad.
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Fig. 5.3: V-BAT landing trajectory simulation.

Fig. 5.4 shows the V-BAT model landing trajectory altitude versus range with a time

step of 0.1 seconds. The total landing sequence lasts for 10 seconds. During this landing

sequence the V-BAT starts at an altitude of 46 ft above the ship’s deck. Then as the V-BAT

approaches the landing zone, it pitches up until it reaches an altitude of 52 ft then descends

to the ship’s deck.

Fig. 5.4: V-BAT landing trajectory plot of altitude versus range.
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To simulate the landing trajectory shown in Fig. 5.4, the SAASHA program requires

a series of data points along the aircraft’s trajectory. Specifically, the SAASHA program

requires a CSV file with the aircraft’s x, y, and z locations, bank, elevation, and heading

angles, and the time step at which the aircraft is in the specified location and orientation.

Table 5.6 shows the trajectory data depicted by the V-BAT model in Fig. 5.3 and the

landing trajectory in Fig. 5.4.
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Table 5.6: UAS trajectory data used to simulate the 128 V-BAT model through a prescribed
landing trajectory.

Time[s] x-position[ft] y-position[ft] z-position[ft] ϕ[deg] θ[deg] ψ[deg]

0.0 175.0 0.0 46.0 0.0 0.0 0.0

0.5 160.0 0.0 46.0 0.0 0.0 0.0

1.0 145.0 0.0 46.0 0.0 0.0 0.0

1.5 130.0 0.0 46.0 0.0 0.0 0.0

2.0 115.0 0.0 46.0 0.0 0.0 0.0

2.5 100.0 0.0 47.0 0.0 15.0 0.0

3.0 85.0 0.0 49.0 0.0 30.0 0.0

3.5 75.0 0.0 51.0 0.0 45.0 0.0

4.0 65.0 0.0 52.0 0.0 60.0 0.0

4.5 58.0 0.0 52.0 0.0 75.0 0.0

5.0 51.0 0.0 51.0 0.0 90.0 0.0

5.5 49.0 0.0 46.0 0.0 90.0 0.0

6.0 49.0 0.0 41.0 0.0 90.0 0.0

6.5 49.0 0.0 36.0 0.0 90.0 0.0

7.0 49.0 0.0 31.0 0.0 90.0 0.0

7.5 49.0 0.0 26.0 0.0 90.0 0.0

8.0 49.0 0.0 21.0 0.0 90.0 0.0

8.5 49.0 0.0 16.0 0.0 90.0 0.0

9.0 49.0 0.0 11.0 0.0 90.0 0.0

9.5 49.0 0.0 6.0 0.0 90.0 0.0

10.0 49.0 0.0 1.0 0.0 90.0 0.0

A simulation of this trajectory using SAASHA is discussed in the next section.
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5.1.3 Prescribed Landing Trajectory SAASHA Simulation Example

Using the V-BAT model and prescribed trajectory, SAASHA simulates the forces and

moments acting on the V-BAT model in x, y, and z directions at each time step. SAASHA

starts by accepting several different input files including the V-BAT JSON file and the

trajectory model. Once the aircraft and trajectory data has been uploaded, the program

calculates the mass, inertia, and aerodynamic properties of the V-BAT then the program

uses cubic interpolation to calculate the remainder of the aircraft’s trajectory between each

data point. The SAASHA program then simulates the aircraft’s flight over the trajectory

and records the aircraft’s state at each timestep. The recorded state of the aircraft includes

the aircraft’s velocity, position, orientation, forces and moments required to complete the

landing, and forces and moments the aircraft experiences during the simulation. Several of

the resulting plots for this trajectory are shown.

Fig. 5.5 shows the V-BAT’s landing position versus time. As seen in the figure the

V-BAT flies in the x-direction toward the landing pad located at x = 49 ft. As the V-BAT

gets closer to the landing pad it starts to slow down and pitch up. As the V-BAT slows

down in the x-direction the velocity starts to increase in the z-direction. As shown in the

Fig 5.5 the V-BAT’s position converges toward an x position of 49 ft. The figure also shows

the V-BAT’s z location remains relatively constant until the V-BAT pitches up and starts to

descend at the constant rate. At this point the z position decreases till the V-BAT reaches

the deck.
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Fig. 5.5: V-BAT landing trajectory position versus time plot.

Fig. 5.6 shows the velocity of the V-BAT relative to the flow field. As shown in the

figure the V-BAT flies into the wind in the x-direction. Approximately 3 seconds into

later the V-BAT starts to pitch up. At this point the V-BAT’s velocity relative to the

wind in the x-direction decreases while the velocity in the z-direction increases due to the

coordinate system rotation. Eventually the velocity reaches an equilibrium point where the

velocity relative to the z-direction is approximately 59 ft/s and the velocity relative to the

x-direction is about -10 ft/s. This result is reasonable considering the air comes over the

front and top of the generic destroyer model then flows turbulently down to the landing

pad and off the back of the ship. Most of the air in this case pushes against the belly of the

of the aircraft in the z-direction but a portion of the remainder of the air pushes down on

the V-BAT in the −x-direction.
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Fig. 5.6: V-BAT landing trajectory velocity versus time plot.

Fig. 5.7 shows the forces acting on the V-BAT versus time. As the V-BAT flies into the

turbulent airwake, gusts of wind push on the aircraft in each direction which explains the

small sudden spikes in force in the z-direction. Then as the V-BAT pitches upward, more of

the V-BAT’s body and main wing become exposed to the turbulent flow. This causes the

force in the negative z-direction to increase very rapidly. The force in each direction then

decreases and converges toward zero as the V-BAT descends into the wind break caused by

the generic destroyer.

Fig. 5.7: V-BAT landing trajectory force versus time plot.
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Fig. 5.8 shows the moments acting on the V-BAT versus time. As the V-BAT starts to

fly throught the turbulent air the largest moment is positive about the V-BAT’s x axis. This

is probably due to the turbulent air coming over the top of the generic destroyer pushing

down ward on the V-BAT. As the V-BAT pitches up between 2 and 3 seconds into the

landing the moment about the x axis becomes a large negative number this is most likely

due to the V-BAT lifting into the wind in combination with a strong gusts. As the V-BAT

model lands and moves into the wind break the moments converge toward zero.

Fig. 5.8: V-BAT landing trajectory moment versus time plot.

In this example SAASHA was given a predetermined trajectory to use in the simulation

but the SAASHA program is also able to generate flight paths using a starting and an ending

points and interpolating the rest of the flight trajectory. For this work the later method

will be used to simulate the V-BAT’s landing trajectory as discussed in the next section.

5.2 Landing Trajectory Simulation

5.2.1 Landing Approach and Descent

The V-BAT’s landing trajectory can be split into two independent actions, the hori-

zontal landing pad approach, and the vertical decent to the deck. The V-BAT can approach

the ships landing pad from many directions and altitudes as illustrated in Fig. 5.9 however,
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due to safety concerns UAS are generally not flown directly toward the front of the ship.

In most cases UAS pilots approach the ship from either side or aft of the ship.

Fig. 5.9: Landing approach trajectories

As the V-BAT approaches the landing pad, the V-BAT experiences turbulence caused

by the ship’s airwake. As the V-BAT pitches up to start it’s vertical descent, the full body

and wings of the aircraft become exposed to the turbulent airwake. To minimize the forces

and moments acting on the V-BAT, the UAS pilot can change the V-BAT’s bank angle

relative to the oncoming airwake as the V-BAT descends to the ship’s landing pad. This

decent is illustrated in Fig. 5.10. This work seeks to simulate the V-BAT’s vertical decent

to identify a series of bank angle orientations that will minimize the variation in forces and

moments acting on the V-BAT model as it lands.
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Fig. 5.10: V-BAT landing descent

5.2.2 Descent Testing

To find the best bank angle orientation for the V-BAT at any point in time, the V-BAT

is simulated in place at a prescribed altitude and bank angle for 59 seconds, from 0.5 to

59.5 seconds in the gust database, with a time step of 0.5 seconds. After the simulation

is complete, the V-BAT’s bank angle is incremented and the simulation is run again. This

process is repeated over a sweep of angles and altitudes. During each simulation, SAASHA

calculates the forces and moments acting on the V-BAT at each altitude, bank angle orien-

tation, and time step. SAASHA records this information as well as the V-BAT’s state to a

CSV file. Once the full sweep of simulations is complete, the data is analyzed to find the

orientation that minimizes the variation in forces and moments acting on the V-BAT.

There are several methods to minimize the forces and moments acting on the V-BAT.

One method is to compute the average and standard deviation of the total forces and

moments at each altitude and orientation angle. Then plot the results on an error bar chart
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and contour plot to compare the results and see what angles minimize the average, and

standard deviations.

Another method is to compare the forces and moments acting on the V-BAT at each

time step and altitude to find the minimum force or moment, then take the orientation

angle corresponding to that force or moment as the optimum angle for the time step. Once

the optimum angle has been found at each time step the data can be mapped on a 2D

contour plot to determine a series of orientation angles and that will minimize the force and

moment variation as the V-BAT descends.

5.2.3 Minimum Average and Standard Deviation Decent

To find the bank angle orientations that minimize the average and standard deviation of

the forces and moments, the force and moment maximum, minimum, average, and standard

deviations are calculated at each altitude and orientation angle. Next the average and

standard deviations are plotted on the x axis with the altitude on the y axis. Using this

data, a set of hover ladder plots are created showing the series of optimum orientation angles

that occur at the lowest average forces and moments.

The advantage of using a hover ladder plot is it shows the series of bank angle orienta-

tions that minimize the forces and moments for most of the descent trajectory, regardless

of the time step. The drawback of using a hover ladder plot is there are better series of

landing orientations if the time of landing is taken into account.

5.2.4 Contour Plots Overview

To create contour plots of the altitude versus time versus the minimum force, the first

step is to compare the forces at each time step and altitude to determine the lowest force

and associated orientation angle at each time step. Once this is known, the minimum forces,

moments, force angles, and moment angles can be plotted and observed. The advantage of

using a contour plot over the minimum average and standard deviation plots is the contour

plot takes time into consideration when determining the best bank angle orientation to
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operate at during landing. That is the contour plot shows the bank angle orientation that

minimizes the forces and moments at each altitude and time step.

The one drawback of the contour plot is it is specific to each time step. The best

orientation angle is the best for that time step but not necessarily the best for the entire

data set so each trajectory must be planned accordingly.

5.2.5 Altitude and Angle Sweep

The V-BAT is simulated through a sweep of altitudes and angles at each altitude. For

this work the V-BAT starts at an altitude of 50 ft above the landing pad then descends

by 1 foot increments until it reaches 1 ft above the landing pad. A landing altitude of 1

ft above the landing pad is used because the actual 128 V-BAT UAS has thin wire legs to

land on which are not included in the V-BAT model.

Since the V-BAT model is nearly symmetric across the y axis, top to bottom, the forces

and moments felt by the V-BAT at any bank angle will be nearly the same as if the V-BAT

was rotated 180 degrees about the x axis as shown in Fig. 5.11 through Fig. 5.14. Since the

forces and moments across the y axis are nearly equal, the sweep of bank angles the V-BAT

passes through at each altitude start at 0 degrees, then rotate every 5 degrees until the

bank angle reaches 180 degrees. Once the angle sweep is complete, the V-BAT’s altitude

decrements by 1 foot and the angle sweep repeats.

The data used in Fig. 5.11 through Fig. 5.14 is found using a wrapper code that

simulates SAASHA through two sweeps of altitudes and bank angles as described. The two

sets of data are generated using an altitude sweep from 50 ft to 1 ft with a decrement of 1

ft. At each altitude, the first set of data uses a bank angle sweep from 0 to 180 degrees with

an increment of 5 degrees. Meanwhile, the second set of data uses a bank angle sweep from

0 to 360 degrees with an increment of 5 degrees. Both data sets show the lowest forces and

moments and associated bank angles at each altitude and time step. The 360 degree force,

moment, and bank angle, data is subtracted from the 180 degree data and the results are

plotted.
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Fig. 5.11 shows the scatter and contour plots of the minimum force bank angle differ-

ence between the 0 to 180 degrees data set and the 0 to 360 degrees data set. As expected,

most of the bank angle difference data is clustered about 0 degrees and -180 degrees. The

points where the data difference is approximately 0 degrees corresponds to the lowest force

occurring within 0 and 180 degrees at that altitude and time step. The points where the

data difference is approximately -180 degrees corresponds to the minimum force occurring

within 0 to 360 degrees at that altitude and time step.

Fig. 5.11: Minimum force bank angle difference scatter(left) and contour(right) plots show-
ing the bank angle difference centered around 0 and - 180 degrees.

Fig. 5.12 shows the scatter and contour plots of the minimum force difference between

the 0 to 180 degrees data set and the 0 to 360 degrees data set. As expected, the difference

in forces is clustered around 0 lbf with the greatest difference equal to 0.48 lbf.
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Fig. 5.12: Minimum force difference scatter(left) and contour(right) plots.

Fig. 5.13 shows the scatter and contour plots of the minimum moment bank angle

difference between the 0 to 180 degrees data set and the 0 to 360 degrees data set. similar

to the force bank angle difference, most of the moment bank angle difference data is clustered

about 0 degrees and -180 degrees, however, there are noticeably more outliers. As with the

force bank angle plots, the points where the data difference is approximately 0 degrees

corresponds to the lowest moment occurring within 0 and 180 degrees at that altitude and

time step. The points where the data difference is approximately -180 degrees corresponds

to the minimum moment occurring within 0 to 360 degrees at that altitude and time step.
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Fig. 5.13: Minimum moment bank angle difference scatter(left) and contour(right) plots
showing the bank angle difference centered around 0 and - 180 degrees.

Fig. 5.14 shows the scatter and contour plots of the minimum moment difference

between the 0 to 180 degrees data set and the 0 to 360 degrees data set. Similar to the force

difference, the difference in moments is clustered around 0 lbf-ft with the greatest difference

equal to 3.2 lbf-ft. A moment difference of 3.2 lbf-ft seems large but this value is reasonable

considering the V-BAT model has a near 10 ft wing span and is almost 9 ft long.

Fig. 5.14: Minimum moment difference scatter(left) and contour(right) plots.

The landing trajectory sweep results are presented in Chapter 6.



CHAPTER 6

SIMULATION RESULTS

The landing trajectory bank angle sweep results are presented in this chapter.

6.1 Minimum Average and Standard Deviation Results

Fig. 6.1 shows the altitude versus average force of the V-BAT at each orientation angle.

As shown in the figure, the average forces acting on the V-BAT decrease as the altitude

decreases. This is most likely due to the top of the destroyer model blocking the main

stream of wind as the V-BAT lands. The left edge of the data shown in red represents the

series of minimum average forces and bank angles. Following this series of angles during

vertical landing is one method to minimize the variation in the average forces over the

landing trajectory.

Fig. 6.1: Altitude versus minimum average force plot.

Converting Fig 6.1 to a 3D scatter plot using the bank angle as the third dimension

gives Fig. 6.2. As expected, the lowest average force follows a series of bank angles clustered
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about a bank angle of 90 degrees where the wing is mostly parallel to the wind as denoted

by the red data points.

Fig. 6.2: Altitude versus bank angle versus minimum average force.

Fig. 6.3 shows the altitude versus average moment of the V-BAT at each orientation

angle. Similar to the average force plot, the average moments acting on the V-BAT decrease

as the altitude decreases. As before, this is most likely due to the top of the destroyer model

blocking the main stream of wind as the V-BAT lands. The left edge of the data shown

in red represents the series of minimum average moments and corresponding bank angles.

Following this series of angles during vertical landing is one method to minimize the variation

in the average moments over the landing trajectory.
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Fig. 6.3: Altitude versus minimum average moment plot.

Converting Fig. 6.3 to a 3D scatter plot using the bank angle as the third dimension

gives Fig. 6.4. Similar to the average force plot, Fig 6.4 shows the bank angles corresponding

to the minimum average moment are clustered about a bank angle of 90 degrees but the bank

angle series seems to diverge away from 90 degrees more than the minimum average force

series. Note similar plots can be generated for the force and moment standard deviations.

Fig. 6.4: Altitude versus bank angle versus minimum average moment.
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Fig. 6.5 shows the 3D and 2D contour plots for the altitude versus angle versus average

force. The two lines depicted in the plot are the minimum average force solution in red

and the minimum force standard deviation solution in blue. Note the average force solution

follows the lowest path across the contour plot while the standard deviation solution deviates

from the lowest path from time to time.

Fig. 6.5: Minimum average force 3D and 2D contour plots with bank angle series solutions
shown.

Fig. 6.6 shows the 3D and 2D contour plots for the altitude versus angle versus standard

deviation. The two lines depicted in the plot are the minimum average force solution in red

and the minimum force standard deviation solution in blue. Note in this plot as expected,

the minimum force standard deviation follows the lowest path while the minimum average

force deviates. Note the minimum average solution and the minimum standard deviation

solution are the same between Fig. 6.5 and Fig. 6.6. This is because the minimum average

force bank angle series and minimum standard deviation bank angle series solutions are

only dependent on the altitude.
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Fig. 6.6: Minimum force standard deviation 3D and 2D contour plots with bank angle series
solutions shown.

Similar to the minimum average force plot, Fig. 6.7 shows the 3D and 2D contour plots

for the altitude versus angle versus average moment. The two lines depicted in the plot are

the minimum average moment solution in red and the minimum moment standard deviation

solution in blue. Similar to the previous plots, the minimum average moment solution

follows the lowest path across the contour plot while the minimum standard deviation

solution deviates from the lowest path occasionally.

Fig. 6.7: Minimum average moment contour plots with bank angle series solutions.
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Fig. 6.8 shows the 3D and 2D contour plots for the altitude versus angle versus moment

standard deviation. As with the other plots, the two lines depicted in the plot are the

minimum average moment solution in red and the minimum moment standard deviation

solution in blue. As expected, the minimum moment standard deviation follows the lowest

path while the minimum average moment deviates. The minimum average moment solution

and the minimum moment standard deviation solutions are the same between Fig. 6.7 and

Fig. 6.8. This is because the minimum average moment bank angle series and minimum

moment standard deviation bank angle series solutions are only dependant on the altitude.

Fig. 6.8: Minimum moment standard deviation 3D and 2D contour plots with bank angle
series solutions shown.

6.2 Force and Moment Orientation Contour Plots

Fig. 6.9 shows the 3D and 2D contour plots of the altitude versus time versus minimum

force. The plots show that the minimum force decreases significantly with decrease in

altitude. This is likely due to wind protection from the generic destroyer.
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Fig. 6.9: Altitude versus time versus minimum force 3D and 2D contour plots.

Fig. 6.10 shows the altitude versus time versus minimum force bank angle scatter and

2D contour plots. The plots show the bank angles that minimize the forces acting on the

V-BAT are clustered around 90 degrees for most altitudes except near the deck of the ship

where the bank angle is more sporadic. These plots, in conjunction with Fig. 6.9, are

significant because they show the bank angle that corresponds to the exact minimum force

at each time step and altitude. A UAS pilot or computer could look at the minimum force

contour plot in conjunction with the minimum force bank angle and plan any number of

landing trajectories that always meet the path that follows lowest possible force.
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Fig. 6.10: Altitude versus time versus minimum force bank angle scatter and 2D contour
plots.

Similarly Fig. 6.11 shows the 3D and 2D contour plots of the altitude versus time versus

minimum moment. Like Fig. 6.9, the plots show that the minimum moment decreases with

decrease in altitude due to the generic destroyer.

Fig. 6.11: Altitude versus time versus minimum moment 3D and 2D contour plots.

Fig. 6.12 shows the altitude versus time versus minimum moment bank angle scatter

and 2D contour plots. The plots show the bank angles that minimize the moments acting on

the V-BAT are clustered around 90 degrees for most altitudes, however, the data is spread
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out more than the minimum force angle data. The minimum moment bank angle data near

the deck of the ship is becomes more random and deviates farther from a bank angle of

90 degrees. As before, these plots, Fig. 6.12 in conjunction with Fig. 6.11, are significant

because they show the bank angle that corresponds to the exact minimum moment at each

time step and altitude. A UAS pilot or computer could look at the minimum moment

contour plot in conjunction with the minimum moment bank angle and plan trajectories

and that will always meet the path that follows lowest possible moment.

Fig. 6.12: Altitude versus time versus minimum moment bank angle scatter and 2D contour
plots.

6.3 Vertical Descent Trajectory Simulation

Table 6.1 shows a prescribed descent trajectory with the V-BAT starting at an altitude

of 50 ft and descending to 1 ft above the deck in 10 seconds. This data is used to simulate

a set of bank angle series shown in Table 6.2.
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Table 6.1: Trajectory data used to simulate V-BAT model over five different vertical tra-
jectories.

Time[s] x-position[ft] y-position[ft] z-position[ft] θ[deg] ψ[deg]

0.0 49.0 0.0 50.0 90.0 0.0

0.5 49.0 0.0 47.0 90.0 0.0

1.0 49.0 0.0 44.0 90.0 0.0

1.5 49.0 0.0 41.0 90.0 0.0

2.0 49.0 0.0 38.0 90.0 0.0

2.5 49.0 0.0 35.0 90.0 0.0

3.0 49.0 0.0 32.0 90.0 0.0

3.5 49.0 0.0 29.0 90.0 0.0

4.0 49.0 0.0 26.0 90.0 0.0

4.5 49.0 0.0 23.0 90.0 0.0

5.0 49.0 0.0 21.0 90.0 0.0

5.5 49.0 0.0 19.0 90.0 0.0

6.0 49.0 0.0 17.0 90.0 0.0

6.5 49.0 0.0 15.0 90.0 0.0

7.0 49.0 0.0 13.0 90.0 0.0

7.5 49.0 0.0 11.0 90.0 0.0

8.0 49.0 0.0 9.0 90.0 0.0

8.5 49.0 0.0 7.0 90.0 0.0

9.0 49.0 0.0 5.0 90.0 0.0

9.5 49.0 0.0 3.0 90.0 0.0

10.0 49.0 0.0 1.0 90.0 0.0

Table 6.2 shows five different series of bank angles corresponding to the prescribed de-

cent trajectory described in Table 6.1. Note each of the bank angles in Table 6.1 correspond

to each of the times and positions in Table 6.2 respectively. The first series describes the
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V-Bat landing at 0 degrees bank angle for the whole trajectory. The second series describes

the V-BAT landing with it’s wings turned adjacent to the wind at 90 degrees bank angle

with no variation. The third series describes the V-BAT following the minimum average

force bank angle series. The fourth series describes the V-BAT following the minimum

force standard deviation bank angle series. The fifth series describes the V-BAT following

the minimum force bank angles obtained from the minimum force bank angle contour plot.

Note the first four series do not depend on time but the minimum force angle contour series

does.
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Table 6.2: Bank angle series used to simulate the V-BAT model over five different vertical
landing trajectories.

0 deg ϕ[deg] 90 deg ϕ[deg] Min Avg ϕ[deg] Min Std Dev ϕ[deg] Min F ϕ[deg]

0.0 90.0 90.0 95.0 105.0

0.0 90.0 90.0 95.0 110.0

0.0 90.0 90.0 90.0 105.0

0.0 90.0 90.0 90.0 110.0

0.0 90.0 95.0 90.0 100.0

0.0 90.0 90.0 90.0 55.0

0.0 90.0 90.0 90.0 55.0

0.0 90.0 85.0 85.0 100.0

0.0 90.0 90.0 85.0 75.0

0.0 90.0 85.0 90.0 95.0

0.0 90.0 85.0 85.0 90.0

0.0 90.0 85.0 80.0 115.0

0.0 90.0 90.0 80.0 120.0

0.0 90.0 95.0 80.0 125.0

0.0 90.0 95.0 75.0 100.0

0.0 90.0 100.0 70.0 70.0

0.0 90.0 95.0 70.0 35.0

0.0 90.0 75.0 70.0 50.0

0.0 90.0 70.0 75.0 60.0

0.0 90.0 55.0 0.0 30.0

0.0 90.0 0.0 0.0 15.0

Simulating the prescribed descent trajectory given in Table 6.1 with each of the five

corresponding bank angle series given in Table 6.2 gives the five force versus time curves

in Fig 6.13. As shown in the figure, the trajectory from the 0 degree angle series incurs
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the highest forces. The 90 degree angle series follows a low force path at higher altitudes

but incurs higher forces closer to the landing pad where the forces become more sporadic.

The minimum average force and minimum standard deviation cases follow just above the

minimum force contour case at higher altitudes but at lower altitudes they incur more force

similar to the 90 degree case. As shown in the figure, the minimum force contour case

follows the minimum force path for the duration of the trajectory.

Fig. 6.13: Force versus time vertical landing trajectories.

Table 6.3 shows the maximum, minimum, average, and standard deviation of the forces

acting on the V-BAT using each bank angle series over the prescribed trajectory. The 0

degree series incurred the greatest maximum force at 57.91 lbf, almost three times higher

than the other bank angle series. The 0 degree series also incurred the highest average

force at 16.07 lbf and the largest standard deviation at 11.99 lbf. The minimum force series

incurred the lowest average force of 4.83 lbf, about 1.5 lbf less than the next lowest average.

The minimum force series also incurred the second lowest standard deviation after the 90

degree series.
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Table 6.3: Maximum, minimum, average, and standard deviation of the forces acting on
the V-BAT over the five vertical landing trajectories.

Bank Angle Series 0 deg ϕ 90 deg ϕ Min Avg ϕ Min Std Dev ϕ Min F ϕ

Max Force[lbf] 57.91 19.25 19.25 20.05 20.05

Min Force[lbf] 1.67 1.59 1.35 1.30 1.04

Avg Force[lbf] 16.07 6.67 6.27 6.39 4.83

SD Force[lbf] 11.99 3.57 3.79 4.25 3.65

The corresponding moment plot using the minimum force bank angle series is given in

Fig. 6.14. As shown in the figure, the 0 degree series incurs the highest moment for most

of the trajectory until almost 8 seconds into the trajectory where it mixes in with the other

trajectories. The 90 degree, minimum average, minimum standard deviation, and minimum

force series follow similar paths for the first 6.5 seconds of the trajectory then each series

incurs different moments. For the last 3 seconds of the trajectory the 0 degree, 90 degree

and minimum average series stay relatively close together, meanwhile, the minimum force

and minimum standard deviation series incur higher moments than the other 3 series.

Fig. 6.14: Moment versus time vertical landing trajectories.
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Table 6.4 shows the maximum, minimum, average, and standard deviation of the mo-

ments acting on the V-BAT using each bank angle series over the prescribed trajectory.

The 0 degree series incurred the greatest maximum moment at 20.62 lbf-ft, over 2 lbf-ft

higher than the next highest maximum moment. The 0 degree series also incurred the

highest average moment at 8.49 lbf-ft and the largest standard deviation at 5.08 lbf-ft. The

minimum average series incurred the lowest average moment at 4.84 lbf-ft and the lowest

standard deviation of 2.69 lbf-ft. The minimum force series incurred the second highest

average moment of 5.54 lbf-ft and the second lowest standard deviation of 2.88 lbf-ft.

Table 6.4: Maximum, minimum, average, and standard deviation of the moments acting on
the V-BAT over the five vertical landing trajectories.

Bank Angle Series 0 deg ϕ 90 deg ϕ Min Avg ϕ Min Std Dev ϕ Min F ϕ

Max Moment[lbf-ft] 20.62 14.32 14.32 18.49 15.97

Min Moment[lbf-ft] 1.01 0.46 0.56 0.53 0.69

Avg Moment[lbf-ft] 8.49 4.99 4.84 5.44 5.54

SD Moment[lbf-ft] 5.08 2.91 2.69 3.38 2.88

Optimizing for minimum forces over the trajectory, this data shows the minimum force

bank angle series achieved the best results. The minimum force series achieved average or

better force statistics compared to the other series in terms of minimizing the forces and

achieved average moment statistics compared to the other series in terms of minimizing the

moments while optimizing for minimum forces. The minimum average force bank angle

series performed second best. The minimum average series achieved the good results for

minimizing the forces and achieved the best results for minimizing the moments. Overall

the 0 degree bank angle series performed the worst in all categories.

A summary and conclusions of this work are presented in Chapter 7.



CHAPTER 7

SUMMARY AND CONCLUSIONS

A summary of this work and research conclusions are presented in this chapter.

7.1 Work Summary

The methods used to calculate the required forces and moments acting on an aircraft

with an arbitrary geometry composed of simple geometric shapes have been presented.

These methods can be applied to any arbitrary geometry and produce reasonable approx-

imate results for the forces and moments acting on the aircraft. The objectives of this

research are to evaluate the forces and moments during the vertical landing phase of an

approximated V-BAT model and identify the vertical landing trajectory that minimizes the

variation in forces and moments acting on the V-BAT model.

The methods used include an approximation for calculating the aircraft’s mass, moment

of inertia, and aerodynamic properties. The mass and inertia are calculated based on the

summation of the mass and moment of inertia of individual geometric components including

cuboids, spheres, cylinders, wings, and rotors. Together, these components can approximate

any number of complex aircraft.

The methods used to calculate the required aerodynamic forces and moments the ap-

proximated aircraft must produce during a simulation based on the 6 degree-of-freedom

equations of motion have been presented. The effects of adverse conditions such as complex

airwake are included in the simulation of the aircraft using gust disturbance modeling.

An overview of an approximate V-BAT model configuration and a prescribed landing

trajectory mimicking the actual 128 V-BAT has been shown. Simulation results produced

by SAASHA using the approximate V-BAT model, prescribed landing trajectory, and at-

mospheric database are given. The landing simulation results show the V-BAT model’s

position, velocity, and required forces and moments at each time step along the trajectory.
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The V-BAT’s landing is comprised of two parts, the landing approach and the landing

descent. This work focuses on mapping the forces and moments acting on the V-BAT in

different orientations during landing descent to the deck of the destroyer. To map the V-

Bat’s decent, the V-Bat model is simulated staying in place over a series of altitudes and

orientation bank angles. Force and moment data is recorded at each altitude, orientation,

bank angle and time step.

The data gathered in the data sweep is analyzed in two ways. The first way is to

compute the average and standard deviation of the forces and moments at each altitude

and bank angle. Next the data is used to generate a contour plot of the altitudes versus bank

angles versus forces or moments showing the orientations that minimize the average and

standard deviation of the forces and moments. An optimum series of orientation bank angles

is found by searching each contour plot and finding the orientation angles that minimizes

the average and standard deviation of the forces and moments.

The second way to analyze the data is to compare the forces and moments at each

altitude and time step to generate a contour plot of the altitudes versus time steps versus

orientation bank angles that minimize the forces and moments at each time step. Using

these contour plots a UAS Pilot or computer can chart a landing course that will minimize

the variation in forces and moments acting on the V-BAT.

The simulation results show the series of bank angles that minimize the average forces

and moments as well as the standard deviation of the forces and moments at each altitude

in the altitude-bank angle sweep. The results also show the bank angles that produce the

minimum forces and moments at each altitude and time step in the altitude-bank angle

sweep.

The results also show the forces and moments acting on the V-BAT during five pre-

scribed vertical descent landing trajectory simulations. The simulations show using the 90

degree bank angle series reduces the maximum force the V-BAT experienced from 57.91 lbf,

using the 0 degree bank angle series, to 19.25 lbf. Using the 90 degree bank angle series also

reduces the average force acting on the V-BAT from 16.07 lbf with a standard deviation of
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11.99 lbf, using the 0 degree bank angle series, to 6.67 lbf with a standard deviation of 3.57

lbf. The simulations also show using the 90 degree bank angle series reduces the maximum

moment from 20.62 lbf-ft, using the 0 degree bank angle series, to 14.32 lbf-ft. Finally, using

the 90 degree bank angle series also reduces the average moment acting on the V-BAT from

8.49 lbf-ft with a standard deviation of 5.08 lbf-ft, using the 0 degree bank angle series, to

4.99 lbf-ft with a standard deviation of 2.91 lbf-ft.

The simulations show using the minimum average and standard deviation force bank

angle series reduces the maximum force from 57.9 lbf, using the 0 degree bank angle series,

to 19.25 lbf and 20.05 lbf respectively. Using the minimum average and standard deviation

force bank angle series also reduces the average force acting on the V-BAT from 16.07 lbf

with a standard deviation of 11.99 lbf, using the 0 degree bank angle series, to 6.27 lbf

with a standard deviation of 3.79 lbf and 6.39 lbf with a standard deviation of 4.25 lbf

respectively. The simulations also show using the minimum average and standard deviation

force bank angle series reduces the maximum moment from 20.62 lbf-ft, using the 0 degree

bank angle series, to 14.32 lbf-ft and 18.49 lbf-ft respectively. Finally, using the minimum

average and standard deviation force bank angle series also reduces the average moment

acting on the V-BAT from 8.49 lbf-ft with a standard deviation of 5.08 lbf-ft, using the

0 degree bank angle series, to 4.84 lbf-ft with a standard deviation of 2.69 lbf-ft and 5.44

lbf-ft with a standard deviation of 3.38 lbf-ft respectively.

The simulations show using the minimum force bank angle series reduces the maximum

force the V-BAT experienced from 57.91 lbf, using the 0 degree bank angle series, to 20.05

lbf which is over 37 lbf less than the 0 degree bank angle series. Using the minimum force

bank angle series also reduces the average force acting on the V-BAT from 16.07 lbf with a

standard deviation of 11.99 lbf, in the 0 degree bank angle series, to 4.83 lbf with a standard

deviation of 3.65 lbf. The simulations also show, using the minimum force bank angle series

reduces the maximum moment from 20.62 lbf-ft, using the 0 degree bank angle series, to

15.97 lbf-ft. Finally, using the minimum force bank angle series also reduces the average

moment acting on the V-BAT from 8.49 lbf-ft with a standard deviation of 5.08 lbf-ft, using
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the 0 degree bank angle series, to 5.54 lbf-ft with a standard deviation of 2.88 lbf-ft.

7.2 Conclusion

These simulation results show the minimum force bank angle series performed best in

minimizing the variation in forces and moments acting on the V-BAT. The four bank angle

series compared to the 0 degree bank angle series, produced similar results in reducing

the maximum force and moment experienced by the V-BAT during the trajectory. The

minimum force bank angle series achieved the best performance in minimizing the average

force and standard deviation acting on the V-BAT over the full landing trajectory. The

minimum force bank angle series achieved an average force of 4.83 lbf with a standard

deviation of 3.65 lbf. The 90 degree, minimum average, and minimum standard deviation

bank angle series achieved similar standard deviations but experienced between 1.4 and 1.9

lbf higher average force over the course of the landing trajectory.

Using the 0 degree bank angle series, the average force experienced by the V-BAT was

16.07 lbf with a standard deviation of 11.99 lbf. Compared to the 0 degree bank angle

series, the minimum force bank angle series averaged 11.24 lbf less over the course of the

trajectory, which equates to less than a third of the average force experienced using the 0

degree bank angle series. Note the average force experienced by the 0 degree bank angle

series is large enough that the average force experienced using the minimum force bank

angle series is almost a full standard deviation outside of the average force experienced

using the 0 degree bank angle series.

In conclusion, reorienting the V-BAT so the wings are adjacent to the wind or using

the minimum average and standard deviation force and moment bank angle series produces

good results in minimizing the variation in forces and moments. However, the variation in

forces and moments acting on the approximated V-BAT model are best minimized using a

vertical landing trajectory bank angle series prescribed by the minimum force and moment

contour plot data.
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APPENDIX A
INPUT FILES

A.1 V-BAT Input File

{

"simulation" : {

"begin_time[sec]" : 0.0,

"end_time[sec]" : 15.0,

"time_step[sec]" : 0.01,

"ground_plane[ft]" : 0.0

},

"atmosphere" : {

"properties" : "standard",

"constant_wind[ft/s]": [57.89,0.0,0.0],

"gusts" : {

"database" : {

"numpy_binary" : "../databases/Case1_FS_V2_10s.npz",

"units" : "meters",

"original_wind_over_deck[ft/s]" : 57.89,

"shift_origin[ft]" : [0.0, 0.0, 0.0],

"show_bounding_box" : "red"

},

"ramp_in[sec]" : 0.0

}

},

"aircraft" : {

"filepath" : "vbat2.json"

},

"scene_components" : {

"filepath" : "NATO_scene.json"

},

"trajectory" : {

"xideal_touchdown_point[ft]" : [49.2, 0.0, 0.0],

"specified" : true,

"path" : {

"interpolation" : "linear",

"filepath" : "trajectory_1.csv",

"x[ft]" : [100.0, 49.2],

"y[ft]" : [0.0, 0.0],

"z[ft]" : [100.0, 0.0],

"bank_angle[deg]" : [0.0, 0.0],

"elevation_angle[deg]" : [0.0, 90.0],

"heading[deg]" : [0.0, 0.0]

},

"initial" : {

"velocity[ft/s]" : 0.0,

"alpha[deg]" : 0.0,

"beta[deg]" : 0.0,

"p[deg/s]" : 0.0,

"q[deg/s]" : 0.0,

"r[deg/s]" : 0.0,

"x[ft]" : 0.0,

"y[ft]" : 0.0,

"z[ft]" : 200.0,

"bank_angle[deg]" : 0.0,

"elevation_angle[deg]" : 0.0,

"heading[deg]" : 0.0

}
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},

"view" : {

"aircraft_geometry" : true,

"live_scene" : false,

"time_history" : true

}

}

A.2 V-BAT Geometry and Mass File

{

"airfoils" : {

"filepath" : "../databases/db_airfoils.json"

},

"propulsion" : {

"filepath" : "../databases/db_propulsion.json"

},

"components" : {

"main_wing" : {

"type" : "wing",

"include_aero" : true,

"location[ft]" : [3.5, 0.35, -0.35],

"weight[lbf]" : 2.0,

"side" : "both",

"span[ft]" : 4.85,

"chord[ft]" : [1.105, 0.71],

"thickness[%]" : [12.0,12.0],

"sweep[deg]" : 0.0,

"dihedral[deg]" : 0.0,

"airfoil" : "NACA_4",

"aerodynamics" : {

"mounting_angle[deg]" : 0.0,

"alpha_L0[deg]" : 0.0,

"CL,alpha[1/rad]" : 5.5,

"CD0" : 0.1,

"CD1" : 0.0,

"e" : 0.8,

"Cm0" : 0.0,

"Cm,alpha[1/rad]" : 0.0

},

"color" : "black"

},

"prop" : {

"type" : "rotor",

"include_aero" : true,

"location[ft]" : [1.5, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 3.0,

"rotation" : "RH",

"blade_count" : 10,

"rotor_diameter[ft]" : 1.4,

"blade_chord[ft]" : [0.2, 0.2],

"blade_thickness[%]" : [12.0,12.0],

"airfoil" : "NACA_4",

"hub_diameter[ft]" : 0.25,

"hub_height[ft]" : 0.2,

"propulsion" : "prop2",

"color" : "black",

"rpm" : 50,

"thrust[lbf]" : 0.5

},

"nose" : {
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"type" : "sphere",

"include_aero" : true,

"location[ft]" : [8.2, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 5.0,

"radius[ft]" : 0.35,

"color" : "black"

},

"fuselage" : {

"type" : "cylinder",

"include_aero" : true,

"location[ft]" : [4.87, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 28.0,

"radius[ft]" : 0.35,

"length[ft]" : 6.70,

"color" : "black"

},

"ring" : {

"type" : "cylinder",

"include_aero" : true,

"location[ft]" : [1.43, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 4.0,

"radius[ft]" : 1.5,

"radius_inner[ft]" : 1.375,

"length[ft]" : 0.75,

"color" : "black"

},

"fuselage_2" : {

"type" : "cuboid",

"include_aero" : false,

"location[ft]" : [3.24, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 60.0,

"length[ft]" : [3.22, 0.70, 0.70],

"color" : "black"

},

"bounding_box" : {

"type" : "cuboid",

"include_aero" : false,

"location[ft]" : [4.0, 0.0, 0.0],

"orientation[deg]" : [0.0, 0.0, 0.0],

"weight[lbf]" : 0.0,

"length[ft]" : [15.0, 10.0, 10.0],

"color" : "white"

}

}

}
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APPENDIX B
DATA TABLES

B.1 Bank Angle Tables

Bank angles corresponding to the lowest average forces and moments and lowest stan-
dard deviation in forces and moments are given in Table B.1 and Table B.2.

Table B.1: Bank angles corresponding to the minimum average forces, force standard de-
viations, average moments, and moment standard deviations at altitudes from 50 ft to 26
ft.

Altitude[ft] Min Avg Force ϕ Min SD Force ϕ Min Avg Moment ϕ Min SD Moment ϕ
50.0 90.0 95.0 85 85
49.0 90.0 95.0 85 85
48.0 90.0 95.0 85 105
47.0 90.0 95.0 80 95
46.0 90.0 95.0 95 95
45.0 90.0 95.0 95 100
44.0 90.0 90.0 100 100
43.0 90.0 90.0 100 75
42.0 90.0 90.0 85 85
41.0 90.0 90.0 90 85
40.0 90.0 90.0 90 90
39.0 90.0 90.0 90 90
38.0 95.0 90.0 90 85
37.0 90.0 90.0 90 80
36.0 90.0 90.0 80 80
35.0 90.0 90.0 75 75
34.0 90.0 90.0 80 75
33.0 90.0 90.0 85 75
32.0 90.0 90.0 80 80
31.0 90.0 90.0 85 85
30.0 85.0 90.0 85 90
29.0 85.0 85.0 90 90
28.0 90.0 85.0 90 90
27.0 90.0 85.0 95 75
26.0 90.0 85.0 75 80
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Table B.2: Bank angles corresponding to the minimum average forces, force standard de-
viations, average moments, and moment standard deviations at altitudes from 25 ft to 1
ft.

Altitude[ft] Min Avg Force ϕ Min SD Force ϕ Min Avg Moment ϕ Min SD Moment ϕ
25.0 85.0 85.0 80 80
24.0 85.0 90.0 80 95
23.0 85.0 90.0 85 85
22.0 85.0 85.0 85 85
21.0 85.0 85.0 85 85
20.0 85.0 85.0 80 85
19.0 85.0 80.0 80 105
18.0 85.0 80.0 75 70
17.0 90.0 80.0 110 80
16.0 90.0 80.0 115 75
15.0 95.0 80.0 110 105
14.0 95.0 75.0 80 80
13.0 95.0 75.0 80 80
12.0 95.0 75.0 75 80
11.0 100.0 70.0 75 85
10.0 100.0 70.0 75 65
9.0 95.0 70.0 65 90
8.0 80.0 70.0 80 90
7.0 75.0 70.0 90 90
6.0 70.0 75.0 105 95
5.0 70.0 75.0 95 75
4.0 65.0 180.0 95 5
3.0 55.0 180.0 160 0
2.0 180.0 180.0 160 0
1.0 180.0 180.0 175 175
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APPENDIX C
CODE

C.1 SAASHA Wrapper Code

# test file to run saasha and compute the difference between the forces and moments

# change states

import numpy as np

from saasha.sim import *

import pandas as pd

import csv

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# elementwise root sum square of three vectors of equal length

plot_everything = False

Record_FMA_Results_to_1_File = False

# Functions

# takes the root sum square of each component and returns an array of magnitudes

def rt_sum_sqr(x,y,z):

f = np.zeros(len(x))

for i in range(len(x)):

f[i] = (x[i]**2 + y[i]**2 + z[i]**2)**0.5

f=np.array(f)

return f

# Searches for the minimum value and its corresponding angle

def min_finder(A,B):

Values = []

Angles = []

for i in range(len(A[0,:])):

vec = A[:,i]

Val = np.min(vec)

vec2 = []

for j in range(len(vec)):

vec2.append(vec[j])

Ang = B[vec2.index(Val)]

Values.append(Val)

Angles.append(Ang)

Values = np.array(Values)

Angles = np.array(Angles)

return Values, Angles

# creates a 3D scatter plot

def plot_3D_scatter(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

x_array = X_vals

y_array = Y_vals

z_array = Z_vals
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fig = plt.figure()

ax = fig.add_subplot(111, projection=’3d’)

# Create a 3D scatter plot

ax.scatter(x_array, y_array, z_array, c=Color, marker=’o’)

# Set labels for the axes

ax.set_xlabel(X_label)

ax.set_ylabel(Y_label)

ax.set_zlabel(Z_label)

# Set a title for the plot

ax.set_title(’3D Scatter ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plot

plt.show()

return

# creates a 3D contour plot

def plot_3D_contour(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

fig = plt.figure()

ax = plt.axes(projection=’3d’)

ax.contour3D(X_vals,Y_vals , Z_vals, 50, cmap=’viridis’)

# Set labels for the axes

ax.set_xlabel(X_label)

ax.set_ylabel(Y_label)

ax.set_zlabel(Z_label)

# Set a title for the plot

ax.set_title(’3D Contour ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plot

plt.show()

return

# creates a 2D contour plot

def plot_2D_contour(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

#fig = plt.figure()

h = plt.contourf(X_vals, Y_vals, Z_vals, cmap=’viridis’)

plt.axis(’scaled’)

plt.colorbar()

plt.xlabel(X_label)

plt.ylabel(Y_label)

plt.title(’2D Contour’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

plt.show()

return

# creates a 3D scatter plot, 3D contour plot, and a 2D contour plot

def plot_all(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

x_array = X_vals

y_array = Y_vals

z_array = Z_vals

# 2D Contour Plot

fig3 = plt.figure()

h = plt.contourf(X_vals, Y_vals, Z_vals, cmap=’viridis’)

plt.axis(’scaled’)

plt.colorbar()
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plt.xlabel(X_label)

plt.ylabel(Y_label)

plt.title(’2D Contour ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# 3D Contour Plot

fig2 = plt.figure()

ax2 = plt.axes(projection=’3d’)

ax2.contour3D(X_vals, Y_vals, Z_vals, 50, cmap=’viridis’)

# Set labels for the axes

ax2.set_xlabel(X_label)

ax2.set_ylabel(Y_label)

ax2.set_zlabel(Z_label)

# Set a title for the plot

ax2.set_title(’3D Contour ’ +Y_label + " Vs " + X_label + " Vs " + Z_label)

# 3D Scatter Plot

fig1 = plt.figure()

ax1 = fig1.add_subplot(111, projection=’3d’)

# Create a 3D scatter plot

#ax1.scatter(x_array, y_array, z_array, c=Color, marker=’o’)

ax1.scatter(x_array, y_array, z_array, cmap=’viridis’, marker=’o’)

# Set labels for the axes

ax1.set_xlabel(X_label)

ax1.set_ylabel(Y_label)

ax1.set_zlabel(Z_label)

# Set a title for the plot

ax1.set_title(’3D Scatter ’ +Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plots

plt.show()

return

def minimum_data(Ang_Mat, Max_Mat, Min_Mat, Avg_Mat, Sdv_Mat):

Max_Sol = []

Min_Sol = []

Avg_Sol = []

Sdv_Sol = []

for i in range(len(Ang_Mat[:,1])):

Bnk_Vals = []

Max_Vals = []

Min_Vals = []

Avg_Vals = []

Sdv_Vals = []

for j in range(len(Ang_Mat[i,:])):

Bnk_Vals.append(Ang_Mat[i,j])

Max_Vals.append(Max_Mat[i,j])

Min_Vals.append(Min_Mat[i,j])

Avg_Vals.append(Avg_Mat[i,j])

Sdv_Vals.append(Sdv_Mat[i,j])



106

# Forces calculate the minimum of the max min mean and sd of each force

Min_Max_Val = np.min(Max_Mat[i,:])

Min_Min_Val = np.min(Min_Mat[i,:])

Min_Avg_Val = np.min(Avg_Mat[i,:])

Min_Sdv_Val = np.min(Sdv_Mat[i,:])

# Max

Min_Max_angle = Ang_Mat[i, Max_Vals.index(Min_Max_Val)]

Min_Max_Min = Min_Mat[i, Max_Vals.index(Min_Max_Val)]

Min_Max_Avg = Avg_Mat[i, Max_Vals.index(Min_Max_Val)]

Min_Max_Sdv = Sdv_Mat[i, Max_Vals.index(Min_Max_Val)]

# Min

Min_Min_angle = Ang_Mat[i, Min_Vals.index(Min_Min_Val)]

Min_Min_Max = Max_Mat[i, Min_Vals.index(Min_Min_Val)]

Min_Min_Avg = Avg_Mat[i, Min_Vals.index(Min_Min_Val)]

Min_Min_Sdv = Sdv_Mat[i, Min_Vals.index(Min_Min_Val)]

# Avg

Min_Avg_angle = Ang_Mat[i, Avg_Vals.index(Min_Avg_Val)]

Min_Avg_Max = Max_Mat[i, Avg_Vals.index(Min_Avg_Val)]

Min_Avg_Min = Min_Mat[i, Avg_Vals.index(Min_Avg_Val)]

Min_Avg_Sdv = Sdv_Mat[i, Avg_Vals.index(Min_Avg_Val)]

# Sdv

Min_Sdv_angle = Ang_Mat[i, Sdv_Vals.index(Min_Sdv_Val)]

Min_Sdv_Max = Max_Mat[i, Sdv_Vals.index(Min_Sdv_Val)]

Min_Sdv_Min = Min_Mat[i, Sdv_Vals.index(Min_Sdv_Val)]

Min_Sdv_Avg = Avg_Mat[i, Sdv_Vals.index(Min_Sdv_Val)]

# append each force and moment to the list of values to be used to generate the csv files

Max_Sol.append([Min_Max_angle, Min_Max_Val, Min_Max_Min, Min_Max_Avg, Min_Max_Sdv])

Min_Sol.append([Min_Min_angle, Min_Min_Max, Min_Min_Val, Min_Min_Avg, Min_Min_Sdv])

Avg_Sol.append([Min_Avg_angle, Min_Avg_Max, Min_Avg_Min, Min_Avg_Val, Min_Avg_Sdv])

Sdv_Sol.append([Min_Sdv_angle, Min_Sdv_Max, Min_Sdv_Min, Min_Sdv_Avg, Min_Sdv_Val])

Max_Sol = np.array(Max_Sol)

Min_Sol = np.array(Min_Sol)

Avg_Sol = np.array(Avg_Sol)

Sdv_Sol = np.array(Sdv_Sol)

return Max_Sol, Min_Sol, Avg_Sol, Sdv_Sol

# Writes a matrix of any size to a csv file

def write_csv_file( Property_Name, File_Name, Data_Matrix):

property = "," + Property_Name

with open(File_Name, ’w’) as Write_File:

for j in range(len(Data_Matrix[1, :])):

if j == 0:

Write_File.write(Property_Name)

else:

Write_File.write(property)

Write_File.write("\n")
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for i in range(len(Data_Matrix[:, 1])):

for j in range(len(Data_Matrix[1, :])):

if j == 0:

Write_File.write("{:>20.12E}".format(Data_Matrix[i, j])) # altitude

else:

Write_File.write(",{:>20.12E}".format(Data_Matrix[i, j])) # altitude

Write_File.write("\n")

return

if __name__=="__main__":

# Run landing Trajectories from 0 to 90

# Specify the output file name

time_frame = "0_60_20_"

output_file_x = time_frame + "state_hist_"

output_file = output_file_x + "combined.xlsx"

# Base file we are starting from

filename = "input_2.json"

Force_Results_File = time_frame + "Force_Results.csv"

Moment_Results_File = time_frame + "Moment_Results.csv"

Force_Devation_Results_File = time_frame + "Force_Dev_Results.csv"

Moment_Devation_Results_File = time_frame + "Moment_Dev_Results.csv"

Min_Force_Devation_Results_File = time_frame + "Min_F_Dev_Results.csv"

Min_Moment_Devation_Results_File = time_frame + "Min_M_Dev_Results.csv"

FDA_Altitude_File = time_frame + "FDA_Altitude.csv"

FDA_Angles_File = time_frame + "FDA_Angles.csv"

FDA_Max_Force_File = time_frame + "FDA_Max_Force.csv"

FDA_Min_Force_File = time_frame + "FDA_Min_Force.csv"

FDA_AVG_Force_File = time_frame + "FDA_AVG_Force.csv"

FDA_StdDev_Force_File = time_frame + "FDA_StdDev_F.csv"

FDA_Max_Moment_File = time_frame + "FDA_Max_Moment.csv"

FDA_Min_Moment_File = time_frame + "FDA_Min_Moment.csv"

FDA_AVG_Moment_File = time_frame + "FDA_AVG_Moment.csv"

FDA_StdDev_Moment_File = time_frame + "FDA_StdDev_M.csv"

FMA_Altitude_File = time_frame + "FMA_Altitude.csv"

FMA_Time_File = time_frame + "FMA_Time.csv"

FMA_Force_Angle_File = time_frame + "FMA_F_Angle.csv"

FMA_Force_File = time_frame + "FMA_Force.csv"

FMA_Moment_Angle_File = time_frame + "FMA_M_Angle.csv"

FMA_Moments_File = time_frame + "FMA_Moment.csv"

# Final Plot file mapping out the values

FMA_Results_File = time_frame + "FMA_Results.csv"

csv_files = []

altitudes = []

angles = []

# Forces

Max_Force = []

Min_Force = []

Mean_Force = []

Force_std_dev = []
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# Moments

Max_Moment = []

Min_Moment = []

Mean_Moment = []

Moment_std_dev = []

Total_Force_Matrix = []

Total_Moment_Matrix = []

# min Values arrays

Min_Max_Force = []

Min_Min_Force = []

Min_Mean_Force = []

Min_StdDev_Force = []

Min_Max_Moment = []

Min_Min_Moment = []

Min_Mean_Moment = []

Min_StdDev_Moment = []

Min_Max_Force_angle = []

Min_Min_Force_angle = []

Min_Mean_Force_angle = []

Min_StdDev_Force_angle = []

Min_Max_Moment_angle = []

Min_Min_Moment_angle = []

Min_Mean_Moment_angle = []

Min_StdDev_Moment_angle = []

# FDA Arrays

FDA_Altitude = []

FDA_Angles = []

FDA_Max_Force = []

FDA_Min_Force = []

FDA_AVG_Force = []

FDA_StdDev_Force = []

FDA_Max_Moment = []

FDA_Min_Moment = []

FDA_AVG_Moment = []

FDA_StdDev_Moment = []

# FMA arrays

Min_FMA_Min_Force = []

Min_FMA_Min_Moment = []

Min_FMA_Time = []

Min_FMA_Altitude = []

Min_FMA_Min_Force_Angle = []

Min_FMA_Min_Moment_Angle = []

Min_FMA_Min_Force_2 = []

Min_FMA_Min_Moment_2 = []

Min_FMA_Time_2 = []

Min_FMA_Altitude_2 = []

Min_FMA_Min_Force_Angle_2 = []



109

Min_FMA_Min_Moment_Angle_2 = []

Time_2 = []

if Record_FMA_Results_to_1_File:

csv_files.append(FMA_Results_File)

csv_files.append(FMA_Altitude_File)

csv_files.append(FMA_Time_File)

csv_files.append(FMA_Force_Angle_File)

csv_files.append(FMA_Force_File)

csv_files.append(FMA_Moment_Angle_File)

csv_files.append(FMA_Moments_File)

# FDA Result files

csv_files.append(Min_Force_Devation_Results_File)

csv_files.append(Min_Moment_Devation_Results_File)

csv_files.append(Force_Devation_Results_File)

csv_files.append(Moment_Devation_Results_File)

# FDA Files

csv_files.append(FDA_Altitude_File)

csv_files.append(FDA_Angles_File)

csv_files.append(FDA_Max_Force_File)

csv_files.append(FDA_Min_Force_File)

csv_files.append(FDA_AVG_Force_File)

csv_files.append(FDA_StdDev_Force_File)

csv_files.append(FDA_Max_Moment_File)

csv_files.append(FDA_Min_Moment_File)

csv_files.append(FDA_AVG_Moment_File)

csv_files.append(FDA_StdDev_Moment_File)

#csv_files.append(Force_Results_File)

#csv_files.append(Moment_Results_File)

# Load the json file

json_string = open(filename).read()

input_dict = json.loads(json_string)

Min_Alt = []

rows_counter = 0

# loop for updating the values then running saasha

for j in range(50,0,-1):

#j = 50

columns_counter = 0

input_dict["trajectory"]["path"]["z[ft]"] = [j,j]

Min_angle = []

FDA_Alt = []

Alt_Max_Force = []

Alt_Min_Force = []

Alt_Mean_Force = []

Alt_StdDev_Force = []

Alt_Max_Moment = []

Alt_Min_Moment = []

Alt_Mean_Moment = []

Alt_StdDev_Moment = []

FMA_Min_F = []
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FMA_Min_M = []

alt = []

for i in range(0,185,5):

# Specify the file path where you want to save the JSON data

#filename_new = "landing_input_" + str(i) + ".json"

input_filename = "landing_input_x.json"

# csv output file name

states_filename = "0_60_20_state_hist_" + str(j) + "_" + str(i) + ".csv"

# Update the output file name

input_dict["simulation"]["states_filename"] = states_filename

# Update the landing bank angle

input_dict["trajectory"]["path"]["bank[deg]"] = [i,i]

# Open the file to save the json data

with open(input_filename, "w") as json_file:

# Use the json.dump() function to write the data to the file

json.dump(input_dict, json_file)

# Start of saasha simulation

print("sim " + str(j) + "_" + str(i) + " Started")

# Initialize sim

print("\nReading input file...")

mysim = sim(input_filename)

print("Done")

# Initialize State

y = mysim.initialize_state()

# Run simulation

mysim.run(y)

print("sim " + str(j) + "_" + str(i) + " Finished")

# List of file paths to your CSV files

csv_files.append(states_filename)

# Altitudes and Angles for CSV Files

altitudes.append(j)

angles.append(i)

alt.append(j)

# file to open and analyze

fn = states_filename

print("Reading forces from file ", fn)

# get the data from the file

State_Data = np.genfromtxt(fn, delimiter=",", skip_header=1)

# print(State_Data)

# print(State_Data[1,20])

# print(State_Data[1,21])

# print(State_Data[1,22])

Time_Values = State_Data[:, 0]

Total_Force = rt_sum_sqr(State_Data[:, 20], State_Data[:, 21], State_Data[:, 22]) #

calculate the total forces

Total_Moment = rt_sum_sqr(State_Data[:, 23], State_Data[:, 24], State_Data[:, 25]) #

calculate the total moments

# print("############################################################################")

# print(Total_Force)

# print("############################################################################")
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FMA_Time_Values = State_Data[:,0]

FMA_Min_F.append(Total_Force)

FMA_Min_M.append(Total_Moment)

# print(’xxxxxxxxxxxxxxxxxxxx’)

# print(FMA_Min_F)

# print(’xxxxxxxxxxxxxxxxxxxx’)

# if i == 0:

# FMA_Min_F = Total_Force

# FMA_Min_M = Total_Moment

# else:

# FMA_Min_F = np.vstack((FMA_Min_F, Total_Force))

#

# FMA_Min_M = np.vstack((FMA_Min_M, Total_Moment))

# Calculate max, min, mean, and std dev of the forces

# Force values

F_Max = np.max(Total_Force)

F_Min = np.min(Total_Force)

F_Mean = np.mean(Total_Force)

F_Std_Dev = np.std(Total_Force)

# Moment values

M_Max = np.max(Total_Moment)

M_Min = np.min(Total_Moment)

M_Mean = np.mean(Total_Moment)

M_Std_Dev = np.std(Total_Moment)

# append minimum values of each set of values for this altitude

Min_angle.append(i)

FDA_Alt.append(j)

Alt_Max_Force.append(F_Max)

Alt_Min_Force.append(F_Min)

Alt_Mean_Force.append(F_Mean)

Alt_StdDev_Force.append(F_Std_Dev)

Alt_Max_Moment.append(M_Max)

Alt_Min_Moment.append(M_Min)

Alt_Mean_Moment.append(M_Mean)

Alt_StdDev_Moment.append(M_Std_Dev)

# end of minimum values

# Forces list used in csv 1 by x

Max_Force.append(F_Max)

Min_Force.append(F_Min)

Mean_Force.append(F_Mean)

Force_std_dev.append(F_Std_Dev)

# Moments list used in csv 1 by x

Max_Moment.append(M_Max)

Min_Moment.append(M_Min)

Mean_Moment.append(M_Mean)

Moment_std_dev.append(M_Std_Dev)

columns_counter += 1

FMA_Min_F_Mat = np.array(FMA_Min_F)
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FMA_Min_M_Mat = np.array(FMA_Min_M)

Alt_FMA_Min_Force, Alt_FMA_Min_Force_Angle = min_finder(FMA_Min_F_Mat, Min_angle)

Alt_FMA_Min_Moment, Alt_FMA_Min_Moment_Angle = min_finder(FMA_Min_M_Mat, Min_angle)

alt = []

for k in range(len(Alt_FMA_Min_Force)):

Min_FMA_Time_2.append(FMA_Time_Values[k])

Min_FMA_Altitude_2.append(j)

Min_FMA_Min_Force_2.append(Alt_FMA_Min_Force[k])

Min_FMA_Min_Moment_2.append(Alt_FMA_Min_Moment[k])

Min_FMA_Min_Force_Angle_2.append(Alt_FMA_Min_Force_Angle[k])

Min_FMA_Min_Moment_Angle_2.append(Alt_FMA_Min_Moment_Angle[k])

alt.append(j)

# FDA Values

FDA_Altitude.append(FDA_Alt)

FDA_Angles.append(Min_angle)

FDA_Max_Force.append(Alt_Max_Force)

FDA_Min_Force.append(Alt_Min_Force)

FDA_AVG_Force.append(Alt_Mean_Force)

FDA_StdDev_Force.append(Alt_StdDev_Force)

FDA_Max_Moment.append(Alt_Max_Moment)

FDA_Min_Moment.append(Alt_Min_Moment)

FDA_AVG_Moment.append(Alt_Mean_Moment)

FDA_StdDev_Moment.append(Alt_StdDev_Moment)

# FMA Values

Min_FMA_Time.append(FMA_Time_Values)

Min_FMA_Altitude.append(alt)

Min_FMA_Min_Force.append(Alt_FMA_Min_Force)

Min_FMA_Min_Moment.append(Alt_FMA_Min_Moment)

Min_FMA_Min_Force_Angle.append(Alt_FMA_Min_Force_Angle)

Min_FMA_Min_Moment_Angle.append(Alt_FMA_Min_Moment_Angle)

Time_2.append(FMA_Time_Values)

# print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")

# print((FMA_Min_F[:,0]))

# print((FMA_Min_F[0,:]))

# print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")

# Forces calculate the minimum of the max min mean and sd of each force

Min_F_Max = np.min(Alt_Max_Force)

Min_F_Min = np.min(Alt_Min_Force)

Min_F_Mean = np.min(Alt_Mean_Force)

Min_F_Std_Dev = np.min(Alt_StdDev_Force)

# Moments calculate the minimum of the max min mean and sd of each Moment

Min_M_Max = np.min(Alt_Max_Moment)

Min_M_Min = np.min(Alt_Min_Moment)

Min_M_Mean = np.min(Alt_Mean_Moment)

Min_M_Std_Dev = np.min(Alt_StdDev_Moment)

# Angle of minimum forces

Min_F_Max_angle = Min_angle[Alt_Max_Force.index(Min_F_Max)]
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Min_F_Min_angle = Min_angle[Alt_Min_Force.index(Min_F_Min)]

Min_F_Mean_angle = Min_angle[Alt_Mean_Force.index(Min_F_Mean)]

Min_F_Std_Dev_angle = Min_angle[Alt_StdDev_Force.index(Min_F_Std_Dev)]

# Angle of minimum moments

Min_M_Max_angle = Min_angle[Alt_Max_Moment.index(Min_M_Max)]

Min_M_Min_angle = Min_angle[Alt_Min_Moment.index(Min_M_Min)]

Min_M_Mean_angle = Min_angle[Alt_Mean_Moment.index(Min_M_Mean)]

Min_M_Std_Dev_angle = Min_angle[Alt_StdDev_Moment.index(Min_M_Std_Dev)]

# append each force and moment to the list of values to be used

# to generate the csv files

Min_Alt.append(j)

Min_Max_Force.append(Min_F_Max)

Min_Min_Force.append(Min_F_Min)

Min_Mean_Force.append(Min_F_Mean)

Min_StdDev_Force.append(Min_F_Std_Dev)

Min_Max_Moment.append(Min_M_Max)

Min_Min_Moment.append(Min_M_Min)

Min_Mean_Moment.append(Min_M_Mean)

Min_StdDev_Moment.append(Min_M_Std_Dev)

# Find the angle for each minimum value

Min_Max_Force_angle.append(Min_F_Max_angle)

Min_Min_Force_angle.append(Min_F_Min_angle)

Min_Mean_Force_angle.append(Min_F_Mean_angle)

Min_StdDev_Force_angle.append(Min_F_Std_Dev_angle)

Min_Max_Moment_angle.append(Min_M_Max_angle)

Min_Min_Moment_angle.append(Min_M_Min_angle)

Min_Mean_Moment_angle.append(Min_M_Mean_angle)

Min_StdDev_Moment_angle.append(Min_M_Std_Dev_angle)

rows_counter += 1

# end loop

# test1 = np.array([1,2,3])

# test2 = np.array([4,5,6])

# test3 = np.array([7,8,9])

#

# test4 = np.array([test1, test2, test3])

# print(test4)

# print(test4[:,0])

# print(test4[0,:])

# FDA Arrays

FDA_Altitude = np.array(FDA_Altitude)

FDA_Angles = np.array(FDA_Angles)

FDA_Max_Force = np.array(FDA_Max_Force)

FDA_Min_Force = np.array(FDA_Min_Force)

FDA_AVG_Force = np.array(FDA_AVG_Force)

FDA_StdDev_Force = np.array(FDA_StdDev_Force)

FDA_Max_Moment = np.array(FDA_Max_Moment)

FDA_Min_Moment = np.array(FDA_Min_Moment)

FDA_AVG_Moment = np.array(FDA_AVG_Moment)

FDA_StdDev_Moment = np.array(FDA_StdDev_Moment)
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FDA_Max_F, FDA_Min_F, FDA_Avg_F, FDA_Sdv_F = minimum_data(FDA_Angles, FDA_Max_Force,

FDA_Min_Force, FDA_AVG_Force, FDA_StdDev_Force)

FDA_Max_M, FDA_Min_M, FDA_Avg_M, FDA_Sdv_M = minimum_data(FDA_Angles, FDA_Max_Moment,

FDA_Min_Moment, FDA_AVG_Moment, FDA_StdDev_Moment)

# FMA Arrays

Min_FMA_Time = np.array(Min_FMA_Time)

Time_2 = np.array(Time_2)

Min_FMA_Altitude = np.array(Min_FMA_Altitude)

Min_FMA_Min_Force = np.array(Min_FMA_Min_Force)

Min_FMA_Min_Moment = np.array(Min_FMA_Min_Moment)

Min_FMA_Min_Force_Angle = np.array(Min_FMA_Min_Force_Angle)

Min_FMA_Min_Moment_Angle = np.array(Min_FMA_Min_Moment_Angle)

’’’

print("time",Min_FMA_Time)

print(" ")

print("time 2",Time_2)

print(" ")

print("altitude",Min_FMA_Altitude)

print(" ")

print("angle",Min_FMA_Min_Force_Angle)

’’’

if plot_everything:

# Plot everything

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Force_Angle,"Time[sec]","Altitude[ft]",/n

"Force_Angle[deg]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Force,"Time[sec]","Altitude[ft]",\n

"Force[lbf]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Moment_Angle,"Time[sec]","Altitude[ft]",\n

"Moment_Angle[deg]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Moment,"Time[sec]","Altitude[ft]",\n

"Moment[lbf-ft]","b")

write_csv_file("Altitude[ft]", FMA_Altitude_File, Min_FMA_Altitude)

write_csv_file("Time[sec]", FMA_Time_File, Min_FMA_Time)

write_csv_file("Min_F_Angle[deg]", FMA_Force_Angle_File, Min_FMA_Min_Force_Angle)

write_csv_file("Min_Force[lbf]", FMA_Force_File, Min_FMA_Min_Force)

write_csv_file("Min_M_Angle[deg]", FMA_Moment_Angle_File, Min_FMA_Min_Moment_Angle)

write_csv_file("Min_Moment[lbf-ft]", FMA_Moments_File, Min_FMA_Min_Moment)

# Record max min avg and std dev values for contour plots

write_csv_file("Altitude[ft]", FDA_Altitude_File, FDA_Altitude)

write_csv_file("Bank_Angle[deg]", FDA_Angles_File, FDA_Angles)

write_csv_file("Max_F[lbf]", FDA_Max_Force_File, FDA_Max_Force)

write_csv_file("Min_F[lbf]", FDA_Min_Force_File, FDA_Min_Force)

write_csv_file("Mean_Force[lbf]", FDA_AVG_Force_File, FDA_AVG_Force)

write_csv_file("Force_Std_Dev[lbf]", FDA_StdDev_Force_File, FDA_StdDev_Force)

write_csv_file("Max_M[lbf]", FDA_Max_Moment_File, FDA_Max_Moment)

write_csv_file("Min_M[lbf]", FDA_Min_Moment_File, FDA_Min_Moment)

write_csv_file("Mean_Moment[lbf]", FDA_AVG_Moment_File, FDA_AVG_Moment)

write_csv_file("Moment_Std_Dev[lbf]", FDA_StdDev_Moment_File, FDA_StdDev_Moment)

# Record the FMA forces and moments to one sheet

if Record_FMA_Results_to_1_File:
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# Record FMA Results

with open(FMA_Results_File, ’w’) as FMA_Res_File:

#FMA_Res_File.write("Altitude[ft],Time[sec],Min_F_Angle[deg],Min_F[lbf],\n

Min_M_Angle[deg],Min_M[lbf],Altitude[ft]")

# Titles

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Altitude[ft],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Time[sec],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Min_F_Angle[deg],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Min_F[lbf],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Min_M_Angle[deg],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Min_M[lbf],")

FMA_Res_File.write(" ,")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("Altitude[ft],")

FMA_Res_File.write("\n")

# Results

for i in range(len(Min_FMA_Altitude[:,1])):

for j in range(len(Min_FMA_Altitude[1,:])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Altitude[i,j]))# altitude

FMA_Res_File.write(",")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Time[i,j])) # Time

FMA_Res_File.write(",")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Min_Force_Angle[i,j])) # angle min

force

FMA_Res_File.write(",")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Min_Force[i,j])) # min force

FMA_Res_File.write(",")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Min_Moment_Angle[i,j])) # angle min

moment

FMA_Res_File.write(",")

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Min_Moment[i,j])) # min moment

FMA_Res_File.write(",")

# Error Calculations



116

# Min_Force_Dev_Results_File.write(",{:>20.12E}".format((Min_Max_Force[i] -

Min_Mean_Force[i])/Min_Mean_Force[i])) # min max force error

# Min_Force_Dev_Results_File.write(",{:>20.12E}".format((Min_Mean_Force[i] -

Min_Min_Force[i])/Min_Mean_Force[i])) # min min force error

# Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Force[i] /

Min_Mean_Force[i])) # min std dev error

for j in range(len(Min_FMA_Altitude[1, :])):

FMA_Res_File.write("{:>20.12E},".format(Min_FMA_Altitude[i,j])) # altitude

FMA_Res_File.write("\n")

# Record Min Force Results

with open(Min_Force_Devation_Results_File, ’w’) as Min_Force_Dev_Results_File:

Min_Force_Dev_Results_File.write(

"Altitude[ft],\

Min_F_Max_Angle[deg],Min_F_Max_Max[lbf],Min_F_Max_Min[lbf],Min_F_Max_Avg[lbf],\n

Min_F_Max_Sdv[lbf],\

Min_F_Min_Angle[deg],Min_F_Min_Max[lbf],Min_F_Min_Min[lbf],Min_F_Min_Avg[lbf],\n

Min_F_Min_Sdv[lbf],\

Min_F_Avg_Angle[deg],Min_F_Avg_Max[lbf],Min_F_Avg_Min[lbf],Min_F_Avg_Avg[lbf],\n

Min_F_Avg_Sdv[lbf],\

Min_F_Sdv_Angle[deg],Min_F_Sdv_Max[lbf],Min_F_Sdv_Min[lbf],Min_F_Sdv_Avg[lbf],\n

Min_F_Sdv_Sdv[lbf],\

Min_F_Max_Error,Min_F_Min_Error,Min_F_Std_Dev_Error,Altitude[ft]")

#Min_F_Min_Angle[deg],Min_F_Min[lbf],\

#Min_F_Mean_angle[deg],Min_F_Mean{lbf],\

#Min_F_Std_Dev_Angle[deg],Min_F_Std_Dev[lbf],\

#Min_F_Max_Error,Min_F_Min_Error,Min_F_Std_Dev_Error,Altitude[ft]")

Min_Force_Dev_Results_File.write("\n")

for i in range(len(Min_Alt)):

Min_Force_Dev_Results_File.write("{:>20.12E}".format(Min_Alt[i]))# altitude

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Max_Force_angle[i])) # angle min

max force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Max_Force[i])) # min max force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_F[i,2])) # min max min force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_F[i,3])) # min max avg force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_F[i,4])) # min max sdv force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Min_Force_angle[i])) # angle min

min force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_F[i,1])) # min max sdv force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Min_Force[i])) # min min force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_F[i,3])) # min max sdv force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_F[i,4])) # min max sdv force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Mean_Force_angle[i])) # angle

min avg force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_F[i,1]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_F[i,2]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Mean_Force[i])) # min avg force

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_F[i,4]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Force_angle[i])) # angle

min std dev

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_F[i,1]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_F[i,2]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_F[i,3]))

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Force[i])) # min std dev

# Error Calculations
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Min_Force_Dev_Results_File.write(",{:>20.12E}".format((Min_Max_Force[i] -

Min_Mean_Force[i])/Min_Mean_Force[i])) # min max force error

Min_Force_Dev_Results_File.write(",{:>20.12E}".format((Min_Mean_Force[i] -

Min_Min_Force[i])/Min_Mean_Force[i])) # min min force error

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Force[i] /

Min_Mean_Force[i])) # min std dev error

Min_Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Alt[i])) # altitude

Min_Force_Dev_Results_File.write("\n")

# Record Min Moment Results

with open(Min_Moment_Devation_Results_File, ’w’) as Min_Moment_Dev_Results_File:

Min_Moment_Dev_Results_File.write(

"Altitude[ft],\

Min_M_Max_Angle[deg],Min_M_Max_Max[lbf],Min_M_Max_Min[lbf],Min_M_Max_Avg[lbf],\n

Min_M_Max_Sdv[lbf],\

Min_M_Min_Angle[deg],Min_M_Min_Max[lbf],Min_M_Min_Min[lbf],Min_M_Min_Avg[lbf],\n

Min_M_Min_Sdv[lbf],\

Min_M_Avg_Angle[deg],Min_M_Avg_Max[lbf],Min_M_Avg_Min[lbf],Min_M_Avg_Avg[lbf],\n

Min_M_Avg_Sdv[lbf],\

Min_M_Sdv_Angle[deg],Min_M_Sdv_Max[lbf],Min_M_Sdv_Min[lbf],Min_M_Sdv_Avg[lbf],\n

Min_M_Sdv_Sdv[lbf],\

Min_M_Max_Error,Min_M_Min_Error,Min_M_Std_Dev_Error,Altitude[ft]")

Min_Moment_Dev_Results_File.write("\n")

for i in range(len(Min_Alt)):

Min_Moment_Dev_Results_File.write("{:>20.12E}".format(Min_Alt[i])) # altitude

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Max_Moment_angle[i])) # angle

min max force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Max_Moment[i])) # min max force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_M[i,2])) # min max min force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_M[i,3])) # min max avg force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Max_M[i,4])) # min max sdv force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Min_Moment_angle[i])) # angle

min min force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_M[i,1])) # min max sdv force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Min_Moment[i])) # min min force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_M[i,3])) # min max sdv force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Min_M[i,4])) # min max sdv force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Mean_Moment_angle[i])) # angle

min avg force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_M[i,1]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_M[i,2]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Mean_Moment[i])) # min avg force

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Avg_M[i,4]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Moment_angle[i])) #

angle min std dev

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_M[i,1]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_M[i,2]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(FDA_Sdv_M[i,3]))

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Moment[i])) # min std dev

# Error Calculations

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format((Min_Max_Moment[i] -

Min_Mean_Moment[i]) / Min_Mean_Moment[i])) # min max moment error
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Min_Moment_Dev_Results_File.write(",{:>20.12E}".format((Min_Mean_Moment[i] -

Min_Min_Moment[i]) / Min_Mean_Moment[i])) # min min moment error

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_StdDev_Moment[i] /

Min_Mean_Moment[i])) # min std dev error

Min_Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Alt[i])) # altitude

Min_Moment_Dev_Results_File.write("\n")

# Record Force Results csv

with open(Force_Devation_Results_File, ’w’) as Force_Dev_Results_File:

Force_Dev_Results_File.write("Altitude[ft],Angle[deg],Max_Force[lbf],Min_Force[lbf],\n

Mean_Force[lbf],Force_Standard_Deviation[lbf],Mean_F-StdDev[lbf],Mean_F+StdDev,Max_Percent,\n

Min_Percent,Mean+Max_P,Mean-Min_P,Mean+StdDev,Mean-StdDev,Altitude[ft],Angle[deg]")

Force_Dev_Results_File.write("\n")

for i in range(len(altitudes)):

Force_Dev_Results_File.write("{:>20.12E}".format(altitudes[i])) # altitude

Force_Dev_Results_File.write(",{:>20.12E}".format(angles[i])) # angle

Force_Dev_Results_File.write(",{:>20.12E}".format(Max_Force[i])) # max force

Force_Dev_Results_File.write(",{:>20.12E}".format(Min_Force[i])) # min force

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i])) # avg force

Force_Dev_Results_File.write(",{:>20.12E}".format(Force_std_dev[i])) # force std dev

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] - Force_std_dev[i])) #

Mean - std dev

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] + Force_std_dev[i])) #

Mean + std dev

Force_Dev_Results_File.write(",{:>20.12E}".format((Max_Force[i] - Mean_Force[i]) /

Mean_Force[i])) # max percent

Force_Dev_Results_File.write(",{:>20.12E}".format((Mean_Force[i] - Min_Force[i]) /

Mean_Force[i])) # min percent

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] + (Max_Force[i] -

Mean_Force[i])/Mean_Force[i])) # Mean + max percent

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] -

(Mean_Force[i]-Min_Force[i])/Mean_Force[i])) # Mean - min percent

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] +

(Force_std_dev[i]/Mean_Force[i]))) # standard dev + percent

Force_Dev_Results_File.write(",{:>20.12E}".format(Mean_Force[i] -

(Force_std_dev[i]/Mean_Force[i]))) # standard dev - percent

Force_Dev_Results_File.write(",{:>20.12E}".format(altitudes[i])) # altitude

Force_Dev_Results_File.write(",{:>20.12E}".format(angles[i])) # angle

Force_Dev_Results_File.write("\n")

# record moment results csv

with open(Moment_Devation_Results_File, ’w’) as Moment_Dev_Results_File:

Moment_Dev_Results_File.write("Altitude[ft],Angle[deg],Max_Moment[lbf-ft],Min_Moment[lbf-ft],\n

Mean_Moment[lbf-ft],Moment_Std_Dev[lbf-ft],Mean_M-StdDev[lbf],Mean_M+StdDev,Max_Percent,\n

Min_Percent,Mean+Max_P,Mean-Min_P,Mean+StdDev,Mean-StdDev,Altitude[ft],Angle[deg]")

Moment_Dev_Results_File.write("\n")

for i in range(len(altitudes)):

Moment_Dev_Results_File.write("{:>20.12E}".format(altitudes[i])) # altitude

Moment_Dev_Results_File.write(",{:>20.12E}".format(angles[i])) # angle

Moment_Dev_Results_File.write(",{:>20.12E}".format(Max_Moment[i])) # max force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Min_Moment[i])) # min force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i])) # avg force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moment_std_dev[i])) # force std dev

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] - Moment_std_dev[i])) #

Mean - std dev

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] + Moment_std_dev[i])) #

Mean + std dev
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Moment_Dev_Results_File.write(",{:>20.12E}".format((Max_Moment[i] -

Mean_Moment[i])/Mean_Moment[i])) # max percent

Moment_Dev_Results_File.write(",{:>20.12E}".format((Mean_Moment[i] -

Min_Moment[i])/Mean_Moment[i])) # min percent

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] + (Max_Moment[i] -

Mean_Moment[i])/Mean_Moment[i])) # Mean + max percent

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] - (Mean_Moment[i] -

Min_Moment[i])/Mean_Moment[i])) # Mean - min percent

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] +

(Moment_std_dev[i]/Mean_Moment[i]))) # standard dev + percent

Moment_Dev_Results_File.write(",{:>20.12E}".format(Mean_Moment[i] -

(Moment_std_dev[i]/Mean_Moment[i]))) # standard dev - percent

Moment_Dev_Results_File.write(",{:>20.12E}".format(altitudes[i])) # altitude

Moment_Dev_Results_File.write(",{:>20.12E}".format(angles[i])) # angle

Moment_Dev_Results_File.write("\n")

# total force file

######################################

print("Moments and Forces Found")

# Combining Files into one csv from Chat GPT

# Create an empty dictionary to store DataFrames

dataframes = {}

# Load each CSV file into a DataFrame and store it in the dictionary

for file in csv_files:

# Use a unique key for each DataFrame, such as the file name without extension

key = file.split(’.’)[0]

dataframes[key] = pd.read_csv(file)

# Create a Pandas Excel writer

with pd.ExcelWriter(output_file, engine=’xlsxwriter’) as writer:

# Loop through the DataFrames and write each one to a separate tab

for sheet_name, dataframe in dataframes.items():

dataframe.to_excel(writer, sheet_name=sheet_name, index=False)

print("csv files ready")

C.2 Plotting Code

# Code for plotting SAASHA data

# import statements

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm

from saasha.sim import *

#import pandas as pd

#import csv

from mpl_toolkits.mplot3d import Axes3D

save = False
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title = True

# max_min_avg_sdv = True

# creates a 3D scatter plot

def plot_3D_scatter(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

x_array = X_vals

y_array = Y_vals

z_array = Z_vals

# Plot setup

fig = plt.figure()

ax = fig.add_subplot(111, projection=’3d’)

# Create a 3D scatter plot

ax.scatter(x_array, y_array, z_array, c=Color, marker=’o’)

# Set labels for the axes

ax.set_xlabel(X_label)

ax.set_ylabel(Y_label)

ax.set_zlabel(Z_label)

# Set a title for the plot

ax.set_title(’3D Scatter ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plot

plt.show()

return

# creates a 3D contour plot

def plot_3D_contour(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

fig = plt.figure()

# Plot set up

ax = plt.axes(projection=’3d’)

ax.contour3D(X_vals,Y_vals , Z_vals, 50, cmap=’viridis’)

# Set labels for the axes

ax.set_xlabel(X_label)

ax.set_ylabel(Y_label)

ax.set_zlabel(Z_label)

# Set a title for the plot

ax.set_title(’3D Contour ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plot

plt.show()

return

# creates a 2D contour plot

def plot_2D_contour(X_vals,Y_vals,Z_vals,X_label,Y_label,Z_label,Color):

#fig = plt.figure()

h = plt.contourf(X_vals, Y_vals, Z_vals, cmap=’viridis’)

plt.axis(’scaled’)

plt.colorbar()

#labels

plt.xlabel(X_label)

plt.ylabel(Y_label)

plt.title(’2D Contour’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

plt.show()
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return

# creates a 3D scatter plot, 3D contour plot, and a 2D contour plot

def plot_all(X_vals, Y_vals, Z_vals, X_label, Y_label, Z_label, Color, time_frame, min_path = False,

max_min_avg_sdv = False, x_min=[], y_min=[], z_min=[]):

title_f = 17

tick_f = 17

space_f = 30

tick_s = 15

contour_s = 20

# 2D Contour Plot

fig3 = plt.figure()

h = plt.contourf(X_vals, Y_vals, Z_vals, cmap=’viridis’)

#plt.axis(’scaled’)

plt.colorbar().ax.tick_params(axis=’y’, labelsize=contour_s)

if max_min_avg_sdv:

#plt.plot(x_min[0], y_min, c="k", label="Min Maximum series",)

#plt.plot(x_min[1], y_min, c="darkorange", label="Min Minimum series")

plt.plot(x_min[2], y_min, c="r", label="Min Average Series")

plt.plot(x_min[3], y_min, c="b", label="Min Std Dev Series")

plt.legend(fontsize=contour_s)

plt.xticks(fontsize=contour_s)

plt.yticks(fontsize=contour_s)

plt.xlabel(X_label, fontsize=contour_s)

plt.ylabel(Y_label, fontsize=contour_s)

if title:

plt.title(’2D Contour, ’ + Y_label + " Vs " + X_label + " Vs " + Z_label, fontsize=contour_s,

pad=15)

if save:

plt.savefig(time_frame + ’2D Contour ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# 3D Contour Plot

fig2 = plt.figure()

ax2 = plt.axes(projection=’3d’)

ax2.contour3D(X_vals, Y_vals, Z_vals, 50, cmap=’viridis’)

# Set labels for the axes

ax2.tick_params(axis=’x’, which=’both’, labelsize=tick_f, pad=tick_s)

ax2.tick_params(axis=’y’, which=’both’, labelsize=tick_f, pad=tick_s)

ax2.tick_params(axis=’z’, which=’both’, labelsize=tick_f, pad=tick_s)

ax2.set_xlabel(X_label, fontsize=title_f,labelpad=space_f)

ax2.set_ylabel(Y_label, fontsize=title_f,labelpad=space_f)

ax2.set_zlabel(Z_label, fontsize=title_f,labelpad=space_f)

if max_min_avg_sdv:

#ax2.plot3D(x_min[0], y_min, z_min[0], c="k", label="Min Maximum Series",)

#ax2.plot3D(x_min[1], y_min, z_min[1], c="darkorange", label="Min Minimum Series")

ax2.plot3D(x_min[2], y_min, z_min[2], c="r", label="Min Average Series")

ax2.plot3D(x_min[3], y_min, z_min[3], c="b", label="Min Std Dev Series")

ax2.legend(fontsize=title_f)

# Set a title for the plot

if title:
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ax2.set_title(’3D Contour, ’ + Y_label + " Vs " + X_label + " Vs " + Z_label,

fontsize=title_f)

if save:

plt.savefig(time_frame + ’3D Contour ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# 3D Scatter Plot

fig1 = plt.figure()

ax1 = fig1.add_subplot(111, projection=’3d’)

# Create a 3D scatter plot

#ax1.scatter(x_array, y_array, z_array, c=Color, marker=’o’)

ax1.scatter(X_vals, Y_vals, Z_vals, cmap=’viridis’, marker=’o’)

#if min_path:

#ax1.scatter(x_min, y_min, z_min, c=Color, label="Min Average Moment Series", marker=’o’)

#ax1.legend()

#if max_min_avg_sdv:

#ax1.scatter(x_min[0], y_min, z_min[0], c="k", label="Minimum Average", marker=’o’)

#ax1.scatter(x_min[1], y_min, z_min[1], c="g", label="Minimum Average", marker=’o’)

#ax1.scatter(x_min[2], y_min, z_min[2], c="r", label="Minimum Average", marker=’o’)

#ax1.scatter(x_min[3], y_min, z_min[3], c="m", label="Minimum Average", marker=’o’)

if max_min_avg_sdv:

#ax1.plot3D(x_min[0], y_min, z_min[0], c="k", label="Min Maximum Series",)

#ax1.plot3D(x_min[1], y_min, z_min[1], c="darkorange", label="Min Minimum Series")

ax1.plot3D(x_min[2], y_min, z_min[2], c="r", label="Min Average Series")

ax1.plot3D(x_min[3], y_min, z_min[3], c="b", label="Min Std Dev Series")

ax1.legend(fontsize=title_f)

ax1.tick_params(axis=’x’, which=’both’, labelsize=tick_f, pad=tick_s)

ax1.tick_params(axis=’y’, which=’both’, labelsize=tick_f, pad=tick_s)

ax1.tick_params(axis=’z’, which=’both’, labelsize=tick_f, pad=tick_s)

# Set labels for the axes

ax1.set_xlabel(X_label, fontsize=title_f,labelpad=space_f)

ax1.set_ylabel(Y_label, fontsize=title_f,labelpad=space_f)

ax1.set_zlabel(Z_label, fontsize=title_f,labelpad=space_f)

# Set a title for the plot

if title:

ax1.set_title(’3D Scatter, ’ +Y_label + " Vs " + X_label + " Vs " + Z_label, fontsize=title_f)

if save:

plt.savefig(time_frame + ’3D Scatter ’ + Y_label + " Vs " + X_label + " Vs " + Z_label)

# Show the plots

plt.show()

return

return

# Creates a csv file of a 2x2 matrix

def CSV_File_Data(File_Name, Print_Data=False):

Data = np.genfromtxt(File_Name, delimiter=",", skip_header=1)

if Print_Data:

print(Data)

return Data

# Plots all minimum force and moment values
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def All_Plot(Time_Stamp_Version):

time_frame = Time_Stamp_Version

# file names to import data from

FMA_Altitude_File = time_frame + "FMA_Altitude.csv"

FMA_Time_File = time_frame + "FMA_Time.csv"

FMA_Force_Angles_File = time_frame + "FMA_F_Angle.csv"

FMA_Forces_File = time_frame + "FMA_Force.csv"

FMA_Moment_Angles_File = time_frame + "FMA_M_Angle.csv"

FMA_Moments_File = time_frame + "FMA_Moment.csv"

# Imported/extracted data

Min_FMA_Altitude = CSV_File_Data(FMA_Altitude_File)

Min_FMA_Time = CSV_File_Data(FMA_Time_File)

Min_FMA_Min_Force_Angle = CSV_File_Data(FMA_Force_Angles_File)

Min_FMA_Min_Force = CSV_File_Data(FMA_Forces_File)

Min_FMA_Min_Moment_Angle = CSV_File_Data(FMA_Moment_Angles_File)

Min_FMA_Min_Moment = CSV_File_Data(FMA_Moments_File)

#if plot_everything:

# Plot everything

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Force_Angle, "Time[sec]", "Altitude[ft]",

"Min F Bank Angle[deg]", "b",time_frame)

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Force, "Time[sec]", "Altitude[ft]",

"Force[lbf]", "b",time_frame)

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Moment_Angle, "Time[sec]", "Altitude[ft]",

"Min M Bank Angle[deg]", "b",time_frame)

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Moment, "Time[sec]", "Altitude[ft]",

"Moment[lbf-ft]", "b",time_frame)

# Plots difference between the data

def All_Plot_Difference(Time_Stamp_Version, Time_Stamp_Version_2):

time_frame = Time_Stamp_Version

time_frame_2 = Time_Stamp_Version_2

# Data 1 filenames

FMA_Altitude_File = time_frame + "FMA_Altitude.csv"

FMA_Time_File = time_frame + "FMA_Time.csv"

FMA_Force_Angles_File = time_frame + "FMA_F_Angle.csv"

FMA_Forces_File = time_frame + "FMA_Force.csv"

FMA_Moment_Angles_File = time_frame + "FMA_M_Angle.csv"

FMA_Moments_File = time_frame + "FMA_Moment.csv"

# Lists of imported file data from Data 1

Min_FMA_Altitude = CSV_File_Data(FMA_Altitude_File)

Min_FMA_Time = CSV_File_Data(FMA_Time_File)

Min_FMA_Min_Force_Angle = CSV_File_Data(FMA_Force_Angles_File)

Min_FMA_Min_Force = CSV_File_Data(FMA_Forces_File)

Min_FMA_Min_Moment_Angle = CSV_File_Data(FMA_Moment_Angles_File)

Min_FMA_Min_Moment = CSV_File_Data(FMA_Moments_File)

# Data 2

# Data 2 filenames

FMA_Altitude_File_2 = time_frame_2 + "FMA_Altitude.csv"

FMA_Time_File_2 = time_frame_2 + "FMA_Time.csv"

FMA_Force_Angles_File_2 = time_frame_2 + "FMA_F_Angle.csv"

FMA_Forces_File_2 = time_frame_2 + "FMA_Force.csv"

FMA_Moment_Angles_File_2 = time_frame_2 + "FMA_M_Angle.csv"

FMA_Moments_File_2 = time_frame_2 + "FMA_Moment.csv"

# Lists of imported file data from Data 2

Min_FMA_Altitude_2 = CSV_File_Data(FMA_Altitude_File_2)
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Min_FMA_Time_2 = CSV_File_Data(FMA_Time_File_2)

Min_FMA_Min_Force_Angle_2 = CSV_File_Data(FMA_Force_Angles_File_2)

Min_FMA_Min_Force_2 = CSV_File_Data(FMA_Forces_File_2)

Min_FMA_Min_Moment_Angle_2 = CSV_File_Data(FMA_Moment_Angles_File_2)

Min_FMA_Min_Moment_2 = CSV_File_Data(FMA_Moments_File_2)

# difference in forces and angles

Min_FMA_Min_Force_Angle_3 = Min_FMA_Min_Force_Angle_2 - Min_FMA_Min_Force_Angle

Min_FMA_Min_Force_3 = Min_FMA_Min_Force_2 - Min_FMA_Min_Force

Min_FMA_Min_Moment_Angle_3 = Min_FMA_Min_Moment_Angle_2 - Min_FMA_Min_Moment_Angle

Min_FMA_Min_Moment_3 = Min_FMA_Min_Moment_2 - Min_FMA_Min_Moment

# Check the difference in data

print(Min_FMA_Min_Force_Angle_3)

print(Min_FMA_Min_Force_3)

print(Min_FMA_Min_Moment_Angle_3)

print(Min_FMA_Min_Moment_3)

#if plot_everything:

# Plot all the data accordingly

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Force_Angle_3, "Time[sec]", "Altitude[ft]",

"Force Bank Angle[deg]", "b","360-180 case")

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Force_3, "Time[sec]", "Altitude[ft]",

"Force[lbf]", "b", "b","360-180 case")

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Moment_Angle_3, "Time[sec]", "Altitude[ft]",

"Moment Bank Angle[deg]", "b","360-180 case")

plot_all(Min_FMA_Time, Min_FMA_Altitude, Min_FMA_Min_Moment_3, "Time[sec]", "Altitude[ft]",

"Moment[lbf-ft]", "b","360-180 case")

# Plots all Maximum, Minimum, Average, and Standard deviation values

def All_Plot_2(Time_Stamp_Version, Plot_Max_Min_F=False, Plot_Max_Min_M=False, min_path=False):

time_frame = Time_Stamp_Version

# Filenames for the altitude

FDA_Altitude_File = time_frame + "FDA_Altitude.csv"

FDA_Angles_File = time_frame + "FDA_Angles.csv"

# Filenames for the forces

FDA_Max_Force_File = time_frame + "FDA_Max_Force.csv"

FDA_Min_Force_File = time_frame + "FDA_Min_Force.csv"

FDA_AVG_Force_File = time_frame + "FDA_AVG_Force.csv"

FDA_StdDev_Force_File = time_frame + "FDA_StdDev_F.csv"

# Filenames for the moments

FDA_Max_Moment_File = time_frame + "FDA_Max_Moment.csv"

FDA_Min_Moment_File = time_frame + "FDA_Min_Moment.csv"

FDA_AVG_Moment_File = time_frame + "FDA_AVG_Moment.csv"

FDA_StdDev_Moment_File = time_frame + "FDA_StdDev_M.csv"

# Imported file data

FDA_Altitude = CSV_File_Data(FDA_Altitude_File)

FDA_Angle = CSV_File_Data(FDA_Angles_File)

# Imported force data

FDA_Max_Force = CSV_File_Data(FDA_Max_Force_File)

FDA_Min_Force = CSV_File_Data(FDA_Min_Force_File)

FDA_AVG_Force = CSV_File_Data(FDA_AVG_Force_File)

FDA_StdDev_Force = CSV_File_Data(FDA_StdDev_Force_File)

# Imported moment datd

FDA_Max_Moment = CSV_File_Data(FDA_Max_Moment_File)

FDA_Min_Moment = CSV_File_Data(FDA_Min_Moment_File)

FDA_AVG_Moment = CSV_File_Data(FDA_AVG_Moment_File)
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FDA_StdDev_Moment = CSV_File_Data(FDA_StdDev_Moment_File)

# Results filename

F_Results_File = time_frame + "Min_F_Dev_Results.csv"

M_Results_File = time_frame + "Min_M_Dev_Results.csv"

# Results to CSV

F_Results = CSV_File_Data(F_Results_File)

M_Results = CSV_File_Data(M_Results_File)

# controls to the code

min_path = True

Plot_Max_Min_F=False

Plot_Max_Min_M=False

max_min_avg_sdv = True

# Forces

min_f_alt = F_Results[:,0]

# Max Force angles and values

min_f_max_angle = F_Results[:,1]

min_f_max = F_Results[:,2]

# Min Force angles and values

min_f_min_angle = F_Results[:,3]

min_f_min = F_Results[:,4]

# Avg Force angles and values

min_f_avg_angle = F_Results[:,5]

min_f_avg = F_Results[:,6]

# Std Dev Force angles and values

min_f_dev_angle = F_Results[:,7]

min_f_dev = F_Results[:,8]

# Moments

min_m_alt = M_Results[:,0]

# Max Moment angles and values

min_m_max_angle = M_Results[:,1]

min_m_max = M_Results[:,2]

# Min Moment angles and values

min_m_min_angle = M_Results[:,3]

min_m_min = M_Results[:,4]

# Avg Moment angles and values

min_m_avg_angle = M_Results[:,5]

min_m_avg = M_Results[:,6]

# Std Dev angles and values

min_m_dev_angle = M_Results[:,7]

min_m_dev = M_Results[:,8]

#if plot_everything:

# Plot everything

# Optimum paths for the minimum max, min, avg, and std dev

if max_min_avg_sdv:

# Forces

# minimum avg force angles, altitudes, and average force

min_f_avg_angle = [F_Results[:,1], F_Results[:,6], F_Results[:,11], F_Results[:,16]]
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min_f_alt = F_Results[:,0]

min_f_avg = [F_Results[:,4], F_Results[:,9], F_Results[:,14], F_Results[:,19]]

# minimum force standard devation

min_f_dev_angle = [F_Results[:,1], F_Results[:,6], F_Results[:,11], F_Results[:,16]]

min_f_alt = F_Results[:,0]

min_f_dev = [F_Results[:,5], F_Results[:,10], F_Results[:,15], F_Results[:,20]]

# Moments

# minimum avg moment angles, altitudes, and average force

min_m_avg_angle = [M_Results[:,1], M_Results[:,6], M_Results[:,11], M_Results[:,16]]

min_m_alt = M_Results[:,0]

min_m_avg =[M_Results[:,4], M_Results[:,9], M_Results[:,14], M_Results[:,19]]

# minimum moment standard devation

min_m_dev_angle = [M_Results[:,1], M_Results[:,6], M_Results[:,11], M_Results[:,16]]

min_m_alt = M_Results[:,0]

min_m_dev = [M_Results[:,5], M_Results[:,10], M_Results[:,15], M_Results[:,20]]

# Plots Max and min forces

if Plot_Max_Min_F:

plot_all(FDA_Angle, FDA_Altitude, FDA_Max_Force, "Bank_Angle[sec]", "Altitude[ft]", "Maximum

Force[lbf]", "r",time_frame, min_path, max_min_avg_sdv, min_f_max_angle, min_f_alt ,

min_f_max)

plot_all(FDA_Angle, FDA_Altitude, FDA_Min_Force, "Bank_Angle[sec]", "Altitude[ft]", "Minimum

Force[lbf]", "r",time_frame, min_path, max_min_avg_sdv, min_f_min_angle, min_f_alt,

min_f_min)

# Plots average and standard dev of the force

plot_all(FDA_Angle, FDA_Altitude, FDA_AVG_Force, "Bank_Angle[sec]", "Altitude[ft]", "Average

Force[lbf]", "r",time_frame, min_path, max_min_avg_sdv, min_f_avg_angle, min_f_alt,

min_f_avg)

plot_all(FDA_Angle, FDA_Altitude, FDA_StdDev_Force, "Bank_Angle[sec]", "Altitude[ft]", "Force

Standard Deviation[lbf]", "r",time_frame, min_path, max_min_avg_sdv, min_f_dev_angle,

min_f_alt, min_f_dev)

# Plots max and min moment

if Plot_Max_Min_M:

plot_all(FDA_Angle, FDA_Altitude, FDA_Max_Moment, "Bank_Angle[sec]", "Altitude[ft]", "Maximum

Moment[lbf-ft]", "r",time_frame, min_path, max_min_avg_sdv, min_m_max_angle, min_m_alt,

min_m_max)

plot_all(FDA_Angle, FDA_Altitude, FDA_Min_Moment, "Bank_Angle[sec]", "Altitude[ft]", "Minimum

Moment[lbf-ft]", "r",time_frame, min_path, max_min_avg_sdv, min_m_min_angle, min_m_alt,

min_m_min)

# Plots average and standard dev of the moment

plot_all(FDA_Angle, FDA_Altitude, FDA_AVG_Moment, "Bank_Angle[sec]", "Altitude[ft]", "Average

Moment[lbf-ft]", "r",time_frame, min_path, max_min_avg_sdv, min_m_avg_angle, min_m_alt,

min_m_avg)

plot_all(FDA_Angle, FDA_Altitude, FDA_StdDev_Moment, "Bank_Angle[sec]", "Altitude[ft]", "Moment

Standard Deviation[lbf-ft]","r",time_frame, min_path, max_min_avg_sdv, min_m_dev_angle,

min_m_alt, min_m_dev)

if __name__=="__main__":

# 360 degree data
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time_frame = "0_60_19_"

#All_Plot(time_frame)

# 180 degree data

time_frame_2 = "0_60_18_"

All_Plot(time_frame_2)

# 180 degree data updated

time_frame_3 = "0_60_20_"

#All_Plot_Difference(time_frame, time_frame_2)

# Plots the altitude vs angle vs max, min, avg, and sdv

#All_Plot_2(time_frame_2)

#All_Plot_2(time_frame_3)

’’’

plot_everything = False

FMA_Altitude_File = time_frame + "FMA_Altitude.csv"

FMA_Time_File = time_frame + "FMA_Time.csv"

FMA_Force_Angles_File = time_frame + "FMA_F_Angle.csv"

FMA_Forces_File = time_frame + "FMA_Force.csv"

FMA_Moment_Angles_File = time_frame + "FMA_M_Angle.csv"

FMA_Moments_File = time_frame + "FMA_Moment.csv"

Min_FMA_Altitude = CSV_File_Data(FMA_Altitude_File)

Min_FMA_Time = CSV_File_Data(FMA_Time_File)

Min_FMA_Min_Force_Angle = CSV_File_Data(FMA_Force_Angles_File)

Min_FMA_Min_Force = CSV_File_Data(FMA_Forces_File)

Min_FMA_Min_Moment_Angle = CSV_File_Data(FMA_Moment_Angles_File)

Min_FMA_Min_Moment = CSV_File_Data(FMA_Moments_File)

if plot_everything:

# Plot everything

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Force_Angle,"Time[sec]","Altitude[ft]",\n

"Force_Angle[deg]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Force,"Time[sec]","Altitude[ft]",\n

"Force[lbf]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Moment_Angle,"Time[sec]","Altitude[ft]",\n

"Moment_Angle[deg]","b")

plot_all(Min_FMA_Time,Min_FMA_Altitude,Min_FMA_Min_Moment,"Time[sec]","Altitude[ft]",\n

"Moment[lbf-ft]","b")

’’’

C.3 Final Plot Code

import numpy as np

from saasha.sim import *

import pandas as pd

import csv

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# elementwise root sum square of three vectors of equal length

def rt_sum_sqr(x,y,z):

f = np.zeros(len(x))

for i in range(len(x)):

f[i] = (x[i]**2 + y[i]**2 + z[i]**2)**0.5

f=np.array(f)

return f
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if __name__=="__main__":

# Base file we are starting from

filename = "input_2.json"

time_span = "10_0_10_"

output_file_x = time_span + "land_final_state_hist_"

output_file = output_file_x + "combined.xlsx"

Force_Results_File = time_span + "land_F_Results_f.csv"

Moment_Results_File = time_span + "land_M_Results_f.csv"

Forces = []

Moments = []

Time_Values = []

csv_files = []

csv_files.append(Force_Results_File)

csv_files.append(Moment_Results_File)

json_string = open(filename).read()

input_dict = json.loads(json_string)

for i in range(1, 6, 1):

# Specify the file path where you want to save the JSON data

# filename_new = "landing_input_" + str(i) + ".json"

input_filename = "landing_input_x.json"

# csv output file name

states_filename = time_span + "land_state_hist_" + str(i) + ".csv"

# Update the output file name

input_dict["simulation"]["states_filename"] = states_filename

# Update the landing input

input_dict["trajectory"]["path"]["filepath"] = "trajectory_final_" + str(i) +".csv"

# Open the file to save the json data

with open(input_filename, "w") as json_file:

# Use the json.dump() function to write the data to the file

json.dump(input_dict, json_file)

# Start of saasha simulation

print("sim " + str(i) + " Started")

# Initialize sim

print("\nReading input file...")

mysim = sim(input_filename)

print("Done")

# Initialize State

y = mysim.initialize_state()

# Run simulation

mysim.run(y)

print("sim " + str(i) + " Finished")

# List of file paths to your CSV files

csv_files.append(states_filename)

# file to open and analyze

fn = states_filename

print("Reading forces from file ", fn)

State_Data = np.genfromtxt(fn, delimiter=",", skip_header=1) # get the data from the file
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# print(State_Data)

# print(State_Data[1,20])

# print(State_Data[1,21])

# print(State_Data[1,22])

Time_Values_x = State_Data[:, 0]

Total_Force = rt_sum_sqr(State_Data[:, 20], State_Data[:, 21], State_Data[:, 22]) # calculate

the total forces

Total_Moment = rt_sum_sqr(State_Data[:, 23], State_Data[:, 24],

State_Data[:, 25]) # calculate the total moments

# print("################################################################################")

# print(Total_Force)

# print("################################################################################")

Time_Values.append(State_Data[:, 0])

Forces.append(Total_Force)

Moments.append(Total_Moment)

Time_Values = np.array(Time_Values)

Forces = np.array(Forces)

print(Forces)

Moments = np.array(Moments)

# Record Force Results csv

with open(Force_Results_File, ’w’) as Force_Dev_Results_File:

Force_Dev_Results_File.write("Time[sec], 0 deg Force[lbf], 90 deg Force[lbf], Avg Force[lbf],

StdDev Force[lbf], C Map Force[lbf]")

Force_Dev_Results_File.write("\n")

for i in range(len(Time_Values_x)):

Force_Dev_Results_File.write("{:>20.12E}".format(Time_Values_x[i])) # altitude

Force_Dev_Results_File.write(",{:>20.12E}".format(Forces[0][i])) # angle

Force_Dev_Results_File.write(",{:>20.12E}".format(Forces[1][i])) # max force

Force_Dev_Results_File.write(",{:>20.12E}".format(Forces[2][i])) # min force

Force_Dev_Results_File.write(",{:>20.12E}".format(Forces[3][i])) # avg force

Force_Dev_Results_File.write(",{:>20.12E}".format(Forces[4][i])) # force std dev

Force_Dev_Results_File.write("\n")

# Record Force Results csv

with open(Moment_Results_File, ’w’) as Moment_Dev_Results_File:

Moment_Dev_Results_File.write("Time[sec], 0 deg Moments[lbf-ft], 90 deg Moments[lbf-ft], Avg

Moments[lbf-ft], StdDev Moments[lbf-ft], C Map Moments[lbf-ft]")

Moment_Dev_Results_File.write("\n")

for i in range(len(Time_Values_x)):

Moment_Dev_Results_File.write("{:>20.12E}".format(Time_Values_x[i])) # altitude

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moments[0][i])) # angle

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moments[1][i])) # max force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moments[2][i])) # min force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moments[3][i])) # avg force

Moment_Dev_Results_File.write(",{:>20.12E}".format(Moments[4][i])) # force std dev

Moment_Dev_Results_File.write("\n")

# Combining Files into one csv from Chat GPT
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# Create an empty dictionary to store DataFrames

dataframes = {}

# Load each CSV file into a DataFrame and store it in the dictionary

for file in csv_files:

# Use a unique key for each DataFrame, such as the file name without extension

key = file.split(’.’)[0]

dataframes[key] = pd.read_csv(file)

# Create a Pandas Excel writer

with pd.ExcelWriter(output_file, engine=’xlsxwriter’) as writer:

# Loop through the DataFrames and write each one to a separate tab

for sheet_name, dataframe in dataframes.items():

dataframe.to_excel(writer, sheet_name=sheet_name, index=False)

print("csv files ready")
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