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ABSTRACT

Optimal Stopping of Multi-Robot Exploration for Unknown, Bounded Environments

by

Trey D. Crowther, Master of Science

Utah State University, 2023

Major Professor: Mario Harper, Ph.D.
Department: Computer Science

In multi-agent systems, the exploration of unknown environments poses a significant

challenge due to inherent uncertainty and limited resources. This research paper investi-

gates the problem of determining the optimal stopping point for multi-agent exploration

in such environments. The objective is to devise a strategy that maximizes the discovery

of valuable information while considering resource constraints and minimizing exploration

time. To evaluate the effectiveness of the approach, extensive simulations are conducted

in various scenarios with different environmental characteristics and resource distributions.

The findings of this research have significant implications for multi-agent systems deployed

in real-world applications such as robotic exploration, search and rescue missions, and au-

tonomous surveillance. The ability to determine the optimal stopping point of multi-agent

exploration in unknown environments can lead to more efficient resource utilization, reduced

exploration time, and improved decision-making capabilities.

(39 pages)
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PUBLIC ABSTRACT

Optimal Stopping of Multi-Robot Exploration for Unknown, Bounded Environments

Trey D. Crowther

Limited resources and uncertainty pose a substantial problem for multi-robot explo-

ration of unknown environments. This research paper looks to determine the optimal time

to terminate robot exploration while maximizing information gathered. Whilst making this

determination, the system’s resources and capabilities must be taken into account. To see

if our strategy works, we ran many simulations in varying environments. The results of

this research are important for real-world uses like robot exploration, search and rescue

missions, and automated surveillance. Determining when to stop exploring can help the

system save resources, explore faster, and make better decisions.
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CHAPTER 1

Single Agent Exploration

1.1 Introduction

Exploration and knowledge acquisition play a crucial role in robotics. To start our

research, we’ll delve into the fundamentals of agent exploration and aim to address these

questions: What is required for basic exploration? What limitations do we encounter?

What does a Minimum Viable Product entail? We will begin by exploring the fundamental

aspects of single-agent search and retrieval. Our discussion starts with the implementation

of a single agent assigned the task of identifying and collecting a specific object. This forms

a solid foundation for comprehending the capabilities of a fully integrated, multi-agent

system.

1.2 Background

The simplest of tasks on the part of an agent may still include many complexities and

hurdles to overcome. Our study of the single-agent search and retrieval task will utilize

a specific hardware system: the Lynxmotion Hexapod [1]. This implementation will start

with bare bone hardware, where the robot has no developed locomotion capabilities and

the entire system will have to be designed and implemented from the ground up. The goal

of the system is to identify, maneuver towards, and collect a specified object.

1.3 Implementation

1.3.1 Hardware

The Lynxmotion Hexapod is a six-legged, arthropod-inspired robot. It includes a total

of 25 servo motors, 18 for leg control and an additional 7 for head and tail movement.

Each of the six legs has three degrees of freedom which allow the system to move in any
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Fig. 1.1: Lynxmotion Hexapod

direction. The system includes two control boards. The first is a simple actuation controller

that communicates via serial UART to each of the servo motors. The second board is similar

to an Arduino [2] with its main responsibility being to interpret commands from the user’s

PS2 controller and pass the corresponding movements to the actuation controller.

As we began our initial inspection of the system we found the first board to be suf-

ficiently capable and that we could proceed with its included abilities. The second board

promised to have all locomotion capabilities built in and an easy start up process, but upon

further inspection we realized that it was missing several key hardware components and

didn’t include any documentation relative to its internal API.

This created a significant problem for us to overcome in determining how to proceed.

We were presented with two options: we could attempt to understand the internal workings

of the second control board and hope to find sufficient information to utilize its pre-built

software or we could utilize an entirely new system and implement all of its locomotion

from scratch. After attempting the first option for a period without luck, we decided to

pursue the second and implement a whole new system.

The primary hurdle in re-engineering all of the robot’s motion was to find a system

with adequate computational power to simultaneously perform robot locomotion and object

detection. We explored several different avenues in the effort to create a cohesive system,
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but ultimately decided to utilize a Raspberry Pi 4 as our central control unit. This system

promised to provide the necessary brain power for performing both tasks.

With this significantly more capable system backing our hardware we were able to move

into the development of the robot’s locomotion. As we began this process of implementing

its motion, we realized that the included servo motors were significantly under powered.

We found that the weight of the robot was often overbearing and led to motor failure in

several instances. With this in mind we would need to find a gait design that would provide

sufficient stability even with the absence of motor power.

The design that we ultimately utilized was that of the tripod walking gait. This motion

is performed by keeping three legs in constant contact with the ground and moving the other

three in the desired direction, whether that be forwards, backwards or sideways. This gait

provided a stable base and allowed for the under powered stepper motors to adequately

control and support the entire system.

1.3.2 Object Detection and Environment Analysis

Another considerable problem to overcome was that of object detection and environ-

ment analysis. There were many potential solutions that we could have pursued in the realm

of object detection, but in the interest of time we decided to utilize a pre-built Tensorflow

based model.

The model that we chose to utilize is a Single Shot Multibox Detector (SSD) model [3]

trained on the COCO [4] data set. Common Objects In Context (COCO) is a large collection

of images of many every day items such as people, animals and household objects which has

been extensively used in the realm of object detection and computer vision. This provided

an extremely capable model as our environment analysis tool and allowed for a very robust

system even with the semi-limited computational power of the Raspberry Pi. With few

exceptions this model was able to quickly identify the desired object in diverse and complex

environments.
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1.3.3 Results

For the final testing grounds we placed the robot in a complex environment and tasked

it with locating and retrieving the desired object, which in this test was a small bottle. We

programmed it to rotate in place until the object was located and then move towards the

object, keeping it within its vision, until it could be retrieved. The system was sufficiently

capable in this desired task and was able to accurately identify the object anywhere within

its immediate vicinity. The robot successfully retrieved the object with an approximately

80% success rate.

Fig. 1.2: Hexapod completing Search and Retrieval task

1.4 Conclusion

This system proves the viability of creating a simple search and retrieval agent even

within the limited capabilities of the Hexapod robot. It demonstrated its capacity to au-

tonomously analyze a room, locate an object, and maneuver itself to retrieve the object.

This simple solution allowed us to begin investigating the potential abilities of a more com-

plex multi-agent system. The limitations exposed here have shown the need for an over-

arching algorithmic structure to coordinate and organize these independent agents. Given

the intrinsic limitations, we will begin exploring the potential of optimal stopping and the

feasible use cases for similarly limited agents.



CHAPTER 2

Multi-Agent Optimal Stopping

2.1 Introduction

In the field of robotics, multi-robot systems [5] have emerged as a promising avenue for

addressing complex exploration tasks in unknown environments. These systems leverage

the power of collaboration and coordination among multiple agents to enhance efficiency,

coverage, and overall performance. An important challenge in this context is determin-

ing when to terminate the exploration process, given limited resources and the desire to

maximize the amount of information gathered.

The concept of optimal stopping [6,7] has significant potential as a means to solve the

exploration termination problem. Optimal stopping, a classic problem in decision theory,

seeks to find the best moment to halt a sequential decision process in order to maximize

an expected reward or minimize a cost. It is particularly relevant in scenarios where the

available information is inherently incomplete or uncertain, as is often the case in multi-

robot exploration tasks.

2.1.1 Overview

Many multi-agent exploration algorithms rely heavily on a shared knowledge base,

where newly acquired information regarding unexplored regions is promptly shared and

acted upon. All agents possess awareness of the remaining unexplored area and strategi-

cally plan their movements towards these unknown regions. However, this study deliber-

ately eliminates and inhibits the communication capabilities among these agents, aiming to

investigate the optimal stopping point for individual agents’ exploration.

What is the value in delving into the concept of optimal stopping? We recognize that

our systems face tangible limitations. These agents are constrained in their ability to search
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and perform tasks within a set time frame. Individually, they cannot cover the entire area

efficiently or within their physical constraints. However, by instructing each agent to explore

a specific amount (x%) of the total area, we can ensure that collectively, a comprehensive

layout is obtained. The goal is to optimize each agent’s utility, ensuring that no agent needs

to exceed their allotted x% exploration target.

In numerous scenarios, traditional methods of multi-agent exploration are often im-

practical due to constraints such as the allotted time frame, the hardware capabilities of

the agents, and the accessibility of entry points. One potential approach to address these

challenges is area assignment. Nevertheless, these constraints introduce complexity and

unreliability when relying solely on individual area assignments.

Furthermore, the inherent complexity of the intended search areas is exacerbated by

the possibility of significant layout changes. These changes can be triggered by factors

such as fallen debris, renovations, or unforeseen alterations (highly probable occurrences

in many of the scenarios we aim to tackle). Consequently, to adapt to these dynamic

environments, our study takes an innovative approach: deliberately restricting inter-agent

communication, thus shaping it into a distributed algorithm. This strategy compels agents

to operate autonomously and gather information as swiftly as possible within the confines

of their capabilities and the challenging conditions.

As a result of this experimental approach, substantial overlap among agents occurs,

with each individual exploring a significant portion of the total area before the team col-

lectively searches the entire environment. Our experiments include modifications in various

variables, allowing us to comprehend their influence on the individual effort required by

each agent. These variables encompass the number of agents, the size of the unknown

exploration area, the agent starting position, and the relative complexity of each area.

Ultimately, the central question addressed is: How much exploration is required by

each individual to achieve collective, complete area coverage?
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2.2 Background

In generic multi-robot exploration scenarios, the individual robots are tasked with au-

tonomously navigating through the environment, simultaneously avoiding obstacles and co-

ordinating their actions to efficiently explore the unknown region. However, it is important

to acknowledge the inherent communication limitations in such multi-agent environments.

Communication overhead becomes a significant factor, as coordinating and sharing infor-

mation among the robots often incurs additional computational and communication costs.

This limitation affects the scalability and efficiency of the exploration process, potentially

restricting the types of environments that can be effectively explored. In many real-world

scenarios, such as disaster response missions or planetary exploration, the robots may op-

erate in environments with limited or unreliable communication links. Consequently, it

becomes crucial to devise strategies that strike a balance between communication require-

ments and exploration performance.

The main contributions of our work are as follows:

Decentralized Exploration Strategy

Instead of relying on centralized control or extensive communication among agents,

our approach allows individual robots to make decisions autonomously based on local infor-

mation. By employing a decentralized [8] strategy, we reduce the communication overhead

while enabling effective exploration.

Scalability and Flexibility

Our proposed approach enhances the scalability of multi-robot exploration by reducing

communication bottlenecks. Moreover, the flexibility of the strategy allows it to adapt to

various environments, making it applicable in a wide range of real-world scenarios.

The ultimate purpose of any exploration task is to gain information that we can act

upon. We want to know when we know ”enough”. What amount of information about the

explored space is sufficient to make an informed decision? We want to know as much about

the map as possible, but don’t want redundant exploration.
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The optimal stopping strategy implemented in these experiments, is well known as the

’Secretary Problem’. [9] This is a reference to the problem many employers face in hiring

the best candidate. Their goal is to make the best decision by gaining as much information

as possible before deciding, but are often limited by either time or monetary resources. The

ultimate question it attempts to answer is ”When do we have enough information to act?”

The communication constraint is a critical aspect that sets the stage for the research

problem and allows us to explore our optimal stopping question. Experiments have been

performed in this realm of limited communication [10] and there are even some that compare

and contrast decision algorithms [11]. We, on the other hand, will ignore these decision

making algorithms and focus on the vanilla version of this problem: to find the best stopping

point for each agent to terminate its exploration.

In conclusion, our research aims to understand the impact of communication-constraints

on multi-robot exploration and efficient mapping of unknown bounded environments. By

leveraging optimal stopping theory and a decentralized approach, we provide important

insights into the realities of these complex systems. Our findings contribute to advancing

the field of robotics and have potential applications in various domains, including disaster

response, environmental monitoring, and planetary exploration.

2.3 Methods

2.3.1 Environment

The simulation utilizes the Python libraries Pygame and Matplotlib. We assume the

area is bounded and the robots have no prior knowledge about the search area. The sim-

ulation is capable of varying several hyperparameters, including the method used for ex-

ploration, the starting locations, the map length, the number of agents, the experiment

iteration, and the area complexity.

The simulation can be run for multiple iterations and multiple experiments can be run

in parallel. Many iterations can be used to evaluate the robustness of the different methods,

and the impact of varying hyperparameters. In this simulation, the decision was made to
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hold a few of the parameters constant to help focus on the most important variables and

their impact on the optimal stopping point. The modified variables are as follows:

2.3.2 Starting Locations

The first variable that we manipulated in our experiments was the starting locations

of the agents. The variations that we chose to test were edge, random and top left starting

positions. See Figure 2.1.

The edge starting location placed the agents evenly around the border of the map in a

divide and conquer type scenario. This simulates a tactical group entering an area at all of

the entrances and individually exploring the area closest to them.

The random starting location placed each of the agents randomly within the bounds

of the map. This simulates more of a planetary exploration where the agents are initially

placed somewhere in the center of the area and must expand outwards.

The top left variation started all agents in the same place at the top left section of the

map. This simulates a more constrained situation where there are limited entry points, as

is the case in many search and rescue [12] situations.

Fig. 2.1: Edge, Random and Top Left Start Locations

For all of the start positions, the agents were given an initial goal location randomly

located along the edge of the map. This allowed the agents to start off in non-identical

directions and helped jump start initial exploration.
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2.3.3 Map Details

The size of the map can also be varied to evaluate the impact, if any, of map size on

exploration efficiency. The three map sizes that were used in our experiments were square

areas of 25x25, 50x50 and 100x100 units.

The map complexity parameter was modified heavily to see what impact complexity

would have on the convergence times of the agents. This value is quantified by the percent-

age of the unknown area obstructed by untraversable objects such as walls. These values

varied from 0% area complexity (or an empty room) to nearly 25% area obstruction. We

ran experiments with a total of 7 different complexity levels. See figures 2.2 and 2.3.

Fig. 2.2: Large Map with high complexity Fig. 2.3: Map with zero complexity

2.3.4 Frontier Horizon

In this research, a careful consideration was given to the selection of an exploration

technique that strikes a balance between effectiveness and simplicity. While various explo-

ration methods with their distinct advantages and limitations were considered, the Frontier-

Based [13,14] search method was chosen for this study.

The Frontier-Based search method involves identifying the frontiers, the boundaries

between the known and unknown regions, of the environment and prioritizing the explo-
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ration of the closest frontier area. This approach was deemed suitable for the experiment

due to its demonstrated effectiveness in optimizing the exploration performance of a team,

as well as its simplicity of implementation. By utilizing this method, the experiment can

avoid the complexities associated with other sophisticated search techniques.

Therefore, the selection of the frontier-based search method serves as a pragmatic

approach that balances effectiveness, simplicity, and the experimental objectives. This

enables a focused investigation into the optimal exploration stopping point in the context

of the proposed research question.

2.4 Results

These results include a compilation of data from more than 30,000 total experiments.

2.4.1 Convergence Time

The first discussion of the final results is related to the convergence time with a varying

number of agents in the map. The most interesting find is related to the exploration speed

of 2 agents. Even though there are two agents exploring, each must individually explore

more than 90% to achieve full map coverage.

With a single agent performing the exploration we expect a linear progression, meaning

that as the agent learns more about the area, the more the group knows about the area.

From this result we can conclude that adding a single additional agent into the exploration

task where there is no communication is almost futile and results in very little benefit. This

outcome was invariant among all the results and was independent of all starting locations,

area complexities, and map sizes.

At the other end of the spectrum, when there are 16 agents performing the exploration

task, they need only individually explore approximately 30% of the total area before reaching

complete map coverage. The required exploration ratio with an increased number of agents

was expected to decrease, but the significance of the change is only evident as we grow the

number of agents in powers of 2.
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As we progress through an increasing number of agents we can see an increased benefit.

The combined results can be found in Figure 2.4.

Fig. 2.4: Combined results, from an edge start position

2.4.2 Starting Location

The variation that is seen when utilizing different starting positions introduces an en-

tirely different outlook on the problem. For this discussion we will consider convergence

when the group has collectively explored 99% of the map. The random start position pro-

duced the most efficient results and the agents converged with lowest required exploration,

which got to as low as 27% individual exploration per agent. Edge start and random start

were comparable, but random initial positioning had a slight advantage in all agent counts

and map complexities.

As mentioned earlier, the average convergence exploration ratio for the edge start was

almost 100% with just 2 agents, but with 16 agents the required ratio was reduced to as low

as 30%. On the other hand, the top left start position produced the worst results. While 2

agents yielded similar results for all three starting locations, at the maximum agent count
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the required individual exploration reached its minima at around 40%.

Table 2.1: Convergence Point in 50x50 Map

Agent Count 2 4 6 8 10 12 14 16

Edge 95 81 59 57 41 39 31 30
Random 95 80 57 53 35 31 28 27
Top Left 94 81 60 58 45 43 41 41

Fig. 2.5: Combined results, from a random start position

At the beginning of the plots for the random start there is a small plateau. This is

likely a result of the agents each exploring areas that were already seen by the other agents.

The agents expand outwards and are learning more individually, but collectively don’t gain

any new information.

The random start also saw steady advances in convergence point as more agents were

added. With random start positions the required exploration ratio consistently dropped

by 4 or 5 percent with each addition of 2 agents. The other starting positions saw less

significant jumps as agents were added.

The random start variation received a head start from each of the agents being placed
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somewhere in the center of the map. With 16 agents and without moving, the agents already

explored nearly 50% of the total area. This result compared to the top left start position

where there was no, or very little, information gained at the start of the experiment. This

can be seen in Figure 2.6 where, with all agent counts, the agents saw very little of the map

at first and needed to progressively expand together.

Fig. 2.6: Combined results, from a top left start position

Some of the most interesting results come from the direct comparison of the starting

locations in one graph.

Figures 2.7 and 2.8 outline these results

In the experiments with 2 agents, the starting position had very little bearing on the

required exploration ratio. All three of the start locations yielded almost identical results

and even had the top left start position finish first. As more agents are included, the

difference between the starting positions becomes more drastic.

One thing of note in all of the higher agent counts was that the edge start was on pace

to converge the fastest but ultimately random start positioning completed area coverage

first. As can be seen in the 16 agent graph, the edge start reaches 95% convergence faster
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Fig. 2.7: Visual comparison of experi-
ment progression with 2 agents

Fig. 2.8: Visual comparison of experi-
ment progression with 16 agents

but was unable to complete the last portion as quickly.

2.4.3 Map Sizes

Here we want to discuss the impact of the different map sizes on the convergence point.

As we gathered the data for the convergence point we expected to see similar results among

all map sizes, but the convergence data for the 25 by 25 map size yielded slightly different

results than the others. They are outlined in table 2.2.

As was mentioned before, we deemed convergence to be 99% combined area coverage.

For map sizes of 100x100 and 50x50 this results in a convergence point where the agents

can miss up to 100 and 25 area squares respectively. When there are a few missing squares

along the edges that has very little impact, but when the margin of error for a 25x25 map

is only 6 squares, it is much more difficult to achieve that convergence level. The group can

quickly explore a vast majority of the map, but the last few areas require significantly more

exploration.

To get a more realistic result we will use a slightly lower convergence level and then

compare the map sizes. The results for when we only expect 95% area coverage for conver-

gence are outlined in table 2.3.

Table 2.3 displays the expected results where the map size has little bearing on the

required exploration ratio of individual agents. Almost all values of the 25x25 map fall
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Table 2.2: 99% Coverage Convergence

Agent Count 2 4 6 8 10 12 14 16

25x25 Edge 96 92 85 73 66 65 54 53
50x50 Edge 95 81 59 57 41 39 31 30

100x100 Edge 96 82 62 59 41 35 32 30

25x25 Random 96 92 83 71 62 60 37 37
50x50 Random 95 80 57 53 35 31 28 27

100x100 Random 95 82 65 56 39 35 30 29

25x25 Top Left 96 93 87 76 66 67 57 56
50x50 Top Left 94 81 60 58 45 43 41 41

100x100 Top Left 94 82 66 64 49 46 43 42

-

Table 2.3: 95% Coverage Convergence

Agent Count 2 4 6 8 10 12 14 16

25x25 Edge 86 79 64 51 44 37 26 23
50x50 Edge 85 53 36 33 23 22 17 17

100x100 Edge 86 58 36 35 24 20 18 17

25x25 Random 85 70 46 36 25 22 18 18
50x50 Random 85 58 35 32 24 22 19 18

100x100 Random 84 60 38 32 25 23 20 19

25x25 Top Left 87 73 59 38 35 34 31 30
50x50 Top Left 84 60 40 39 35 34 33 33

100x100 Top Left 83 60 43 42 35 34 33 33

within close proximity to those of other map sizes.

2.4.4 Complexity

Thus far, the results have been combined for all complexity levels to get an overall

picture of how the starting locations and map sizes impacted the required exploration ratios.

At this point we will separate the data into the individual map complexities to understand

how complexity impacted the results.

It seems intuitive that the more complex maps will require more time to converge,

due to the lower direct visibility of individual agents, but these experiments will help us to
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understand whether that higher complexity will also require more individual exploration to

achieve that convergence. We will primarily look at the results from a large map due to the

larger impact that complexity can have with more area to explore.

The first results were those of varying map complexities with a random start position

and large map of 100x100. These results yielded very little variance among the diverse

complexity levels. All of the levels converged at a very similar rate, especially at higher

agent counts. Here are the results from 16 agents:

Fig. 2.9: Complexity comparison with 16 agents, random start position and 100x100 map
size

One significant note from this graph is that we see greater initial exploration values

from lower complexity levels. We also see this result as we increase the number of agents.

When we do both simultaneously we see a combined initial exploration percentage that

nears the 60% range.

Looking at a different variation of parameters we see higher variance among the com-

plexity levels. The variation with the greatest difference among complexities was the top
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left start position. It yielded the following results with 2 and 16 agents in Figures 2.10 and

2.11.

Fig. 2.10: Complexity comparison with 2
agents, top left start position and 100x100
map size

Fig. 2.11: Complexity comparison with 16
agents, top left start position and 100x100
map size

The plateaus in the first graph show that the 2 agents spend a significant amount of

time learning more for themselves, but gaining no additional knowledge for the group, as

was seen before. These plateaus are also evident in the higher agent counts but are not

visible due to the averaging that occurs among the many agents.

A differing result that can be seen in the second graph is that the most complex map

converged at a higher rate than any of the other map complexities, which is the opposite

result from that found in the random start position.

A final note about these results is that they were averaged across 50 different experi-

ments with maps created from all different random seeds. Thus, these results were derived

from a large amount of randomly created samples.

2.4.5 Time Constrained Exploration

One of the many reasons for this research is to understand how quickly a group of

agents can learn about a specific environment, but what about situations where time is the

real constraint? Thus far we have only discussed the amount of exploration in terms of
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ratios and percentages, now we will address that exploration in terms of exploration time.

The question is this: how much can we expect to learn assuming we have a specific time

constraint? For these results we will utilize the best performing start location and assume

a brisk agent velocity of 1 meter/second. These are the results:

Fig. 2.12: Combined exploration with 30 second time constraint, 16 agents, and random
start position

With a time conversion of one time step per second, in the most ideal of circumstances

(low area complexity, high agent counts and random starting position) the agents can

explore around 90% of the map in a 30 second period. In less ideal scenarios they can

explore around 85% of an unknown area.

To achieve the convergence that we have discussed up to this point, that of 99%, it

would take over 60 time steps or around 1 minute for most map complexities. For highly

complex maps we can expect a convergence time of nearly double that of 2 minutes.

Now let’s compare that to a situation where there is perfect communication among all

agents in Figure 2.13.

With full communication the agents can explore around 95% of the map in that same
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Fig. 2.13: Combined exploration with 30 second time constraint, 16 agents, random start
position, and full communication

30 seconds. That is only a 5% increase of area coverage when we allow communication

compared to the simulations with no communication. This bodes well for our optimal

stopping implementations and shows that their convergence times are very comparable to

a fully communicating system.

2.4.6 Cost of Exploration

Now that we have a grasp on the theoretical possibilities of these systems, let’s discuss

the real cost of implementation and knowledge gathering. Our knowledge gathering is highly

dependent on the capabilities of the sensor package available with these robots. Smaller

agents are slower, less capable and have lower sensor range, but come with a smaller price

tag and therefore greater expendability. For the types of scenarios that we have discussed,

it would require agents that are capable of exploring at a high rate of speed and traversing

difficult terrain. For example, a robust system filled with several of Boston Dynamic’s

extremely capable and robust Spot [15] robots would cost nearly $75,000 dollars a piece.

These systems are very expensive, but are equally capable and may be necessary in disaster

areas or areas with primarily uneven terrain.
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On the other hand, much of the same capability and ruggedness could be accomplished

by utilizing an option much like the Diablo Direct Drive [16] which provides similar levels of

versatility with a much smaller price tag of $3,500. This type of wheeled system may have

difficulty in instances where Spot may be comfortable, but overall it provides a similarly

capable option. Ultimately, the agent of choice is highly dependent on the types of scenarios

where it would be utilized, the desired capability of the user, and the available budget.

2.5 Conclusion and Future Work

This study has explored the impact of different parameters on the multi-robot explo-

ration task in terms of optimal stopping. We have evaluated the performance of few to

many agents, small and large maps, and distinctive starting position strategies. Ultimately

our primary research question was: How much exploration is required by each individual

to achieve complete area coverage?

In the most ideal of circumstances, with many agents, good starting position and a

simple map, the experiments yielded a ratio of approximately .30.

Other research can be performed relative to these topics to more fully understand their

place among these findings. One such example would be to perform these experiments with

live hardware instead of performing only simulation. This could give us further insights into

the true optimal stopping aspects of this problem and the need to maximize benefit whilst

minimizing cost.

The findings can inform the design of more effective and efficient exploration methods

for multi-robot systems, with potential applications in fields such as search and rescue,

surveillance, and environmental monitoring. This study contributes to the development of

intelligent and autonomous multi-robot systems that can navigate and explore unknown

environments.
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CHAPTER 3

Multi-Agent Reinforcement Learning

3.1 Introduction

We have explored the results of a deterministic simulation that included explicit rules

for the agents’ exploration. In this section we will explore a reinforcement learning based

solution to this multi-agent exploration problem. We are looking to understand what types

of learned actions the agents will adopt and how they will attempt to explore the unknown

area. Will the agents adopt new and original strategies? How will they coordinate their

actions to most effectively explore?

3.2 Environment

In our implementation we will be utilizing the OpenAI Gymnasium [17] toolkit. The

Gymnasium ecosystem is a tool utilized to train and compare reinforcement learning models

in simple to complex environments. The custom environment that we have created is a grid-

defined, bounded world similar to that of the previous simulation. This environment will

help us better understand the capabilities of reinforcement learning without making an

extremely complex real world model. The algorithm that we will utilize to train the model

is the Proximal Policy Optimization (PPO) [18], which has been shown to be very capable

in complex, high-dimensional state and action spaces.

The agents will have a similar field of view compared to that of our previous simulation

and will be able to see 4 grid spaces away from their current position in all directions. This

will give them an adequate range and is representative of the capabilities of many real world

systems. The agents are also capable of moving one space in any of the cardinal directions

every time step.



23

3.3 8 Agent Model

For this first implementation there will be eight agents and a square map of 50x50

units. The observation space of the model will be four values for each agent. The model

will receive the x, y coordinate of the agent and the x, y coordinate of the closest unexplored

square. This will result in a total observation space and learning model input of 32 values.

In an ideal scenario we would be able to output the entire world space and inform the

model of all relevant information. This could potentially include the agents’ positions, wall

locations and all unexplored areas. If we were to pass all of this information into the model,

this would increase the size of the input to around 2500 values, one for each x, y coordinate.

In an effort to limit the complexity of this model and minimize training time we decided

to restrict the number of output values of the environment and only provide the absolutely

necessary information to the model. Although this can potentially speed up training and

produce a better model, it also inhibits our ability to incorporate diverse features into the

environment, such as obstacles. Without the additional information provided by a complete

world observation space, the model would be unaware of the full set of map features and

would be unable to make informed decisions.

The reward structure for the first model will be as follows:

Rewards

• +1 for each agent that moves towards the closest unexplored region

• +100 for achieving complete area exploration

Penalties

• -1 for each agent that attempts to move into a wall or the edge of the bounded area

• -1 for each agent that moves back and forth between two adjacent spaces

This reward structure should incentivize the agents to explore quickly and work to-

gether.
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3.4 8 Agent Results

Here are the combined results from 50 simulation runs of the trained exploration model

after training for 25,000,000 time steps:

Fig. 3.1: Reinforcement Learning Results

This model produced less performant results compared to that of the deterministic

simulation. It took an average of approximately 130 time steps for the agents to complete

the combined exploration of the bounded area. This is approximately 4 times longer than

that of the previous simulation. The agents did not learn to strategically or collaboratively

explore the map, thus resulting in very slow exploration times. Even the most efficient

exploration done by the model took 96 steps to complete.

Despite the simplifications made and significant training time, the model was unable

to converge to a more efficient or unique stratagem. We believe that given more time and

training, the model could produce better results than that of the deterministic solution.

3.5 2 Agent Model

Following the unsatisfactory results obtained from training the initial model, we opted
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to develop a more straightforward alternative. For this one we will create a smaller grid of

15x15 and only include two agents. Due to the smaller grid we will be able to incorporate

the entire map into the observation without including an unreasonable number of inputs.

We hope that this will provide a more optimized result where the model can be more aware

of the entire state of the grid.

The reward structure for the second model will also be simpler to determine if that

will yield better results. The structure will be as follows:

Rewards

• +1 for each new square that the agents explore

• +100 for achieving complete area exploration

3.6 2 Agent Results

Here are the combined results from 50 simulation runs of the trained exploration model

after training for 10,000,000 time steps. We have also included the results from 50 runs of

the deterministic simulation with a 15x15 grid and 2 agents which achieved an average of

72 time steps.

The second model yielded significantly improved results, achieving an average of 73

time steps for completion during exploration, consistently delivering reliable outcomes. The

biggest improvement that we saw from the second model was the decreased variation in

convergence time. Almost all of the runs were able to complete in a small range of time

steps where this was not the first case with the first model.

The second model appeared to devise a more effective strategy for exploring the area.

Unlike the 8-agent model, individual agents autonomously explored nearby areas. In in-

stances where unexplored regions were situated in opposing corners of the grid, the agents

strategically divided and explored independently, which aligned with the anticipated strat-

egy.
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Fig. 3.2: Reinforcement Learning Results with 2 Agents and Full Observation

Fig. 3.3: Deterministic Simulation with 2 Agents
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CHAPTER 4

Conclusion

The initial research performed was a hardware implementation of a simple exploration

task. Due to the limitations of single agent exploration we now more fully understand

the need for a comprehensive algorithmic system to coordinate and organize their explo-

ration. This exercise led us to ponder about the implications of utilizing hardware systems

with limited physical capabilities and what remedies could be proposed to overcome these

limitations.

With these obstructions in mind we decided to investigate concepts within the realm

of optimal stopping to see what advancements could be made to help more efficiently utilize

resources. This allowed us to see the impact it would have in terms of the amount of

required exploration for individual agents. We determined that we can achieve comparable

results to systems that utilize a fully integrated communication model.

The integration of a trained reinforcement learning model revealed the intricacies in-

herent in the proposed environments, underscoring the inherent challenges of training a

high-performance model. Despite these challenges, the model demonstrated results closely

comparable to those achieved by other implementations.

The three topics discussed have allowed us to explore several facets of multi-agent explo-

ration. The primary contribution of this paper is an analysis of optimal stopping ideology in

the domain of multi-agent exploration. Overall, this study contributes to the development

of intelligent and autonomous multi-robot systems that can navigate and explore unknown

environments.
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