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ABSTRACT
Most of the software developed in the world follows the 
object-oriented (OO) paradigm. However, the existing work 
on evolutionary testing is mainly targeted to procedural lan-
guages. All this work can be used with small changes on 
OO programs, but object orientation introduces new fea-
tures that are not present in procedural languages. Some 
important issues are polymorphism and inheritance. In this 
paper we want to make a contribution to the inheritance 
field by proposing some approaches that use the informa-
tion of the class hierarchy for helping test case generators to 
better guide the search. To the best of our knowledge, no 
work exists using this information to propose test cases. In 
this work we define a branch distance for logical expressions 
containing the instanceof operator in Java programs. In 
addition to the distance measure, we propose two mutation 
operators based on the distance. We study the behaviour 
of the mutation operators on a benchmark set composed of 
nine OO programs. The results show that the information 
collected from the class hierarchy helps in the search for 
test cases.
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1. INTRODUCTION
Automatic software testing is one of the most studied top-

ics in the field of Search-Based Software Engineering (SBSE).
From the first works [11] to nowadays many approaches have
been proposed for solving the automatic test case generation
problem. This great effort in building computer aided soft-
ware testing tools is motivated by the cost and importance
of the testing phase in the software development cycle. It is
estimated that half the time spent on software project de-
velopment, and more than half its cost, is devoted to testing
the product [4]. This explains why the Software Industry
and Academia are interested in automatic tools for testing.

Evolutionary algorithms (EAs) have been the most pop-
ular search algorithms for generating test cases [8]. In fact,
the term evolutionary testing is used to refer to this ap-
proach. In the paradigm of structural testing a lot of re-
search has been performed using EA and in particular, differ-
ent elements of the structure of a program have been studied
in detail. Some examples are the presence of flags in condi-
tions [3], the coverage of loops [5], the existence of internal
states [17] and the presence of possible exceptions [13].

In the field of evolutionary testing, the area of test case
generation for object-oriented (OO) programs is receiving
increased attention [12]. Most of the work found in the
literature related to automatic software testing focuses on
procedural languages and programs. However, most of the
software developed nowadays is object-oriented. OO lan-
guages are considered an evolution of procedural languages
and they allow developers to design and implement really
large software applications more easily than when using pro-
cedural languages, thanks to their ability for abstracting and
modularizing software components.

Most of the ideas used for testing procedural programs
can be used with no change in the object-oriented software.
However, we can find new features in OO languages that
do not exist in procedural ones. Some examples of these
features are inheritance, polymorphism, overloading, gener-
ics, and so on. No doubt these new features solve some
common errors found in procedural languages but they also
trigger new kinds of errors. Thus, when dealing with OO
programs, automatic software testing techniques must in-
clude new ideas that are not present in procedural testing.

Despite the importance of OO software in industry not
much work can be found in the literature on testing OO soft-
ware with EAs. One early example is the work by Tonella [12],
which used genetic algorithms. Later, Liu et al. [7] proposed
the use of ant colony optimization. The work by Wappler
and Wegener [14, 15] using hybrid algorithms and strongly-



typed genetic programming focuses on container classes. Re-
cently, the work by Arcuri and Yao [1] optimizes test cases
for covering all the branches at the same time and compares
different search strategies.

None of the previous work explicitly deals with inheritance
for generating test cases. The objects used as parameters
are generated by calling the constructor and some methods
of one class in order to reach a given state of the object.
However, no attention is paid to the position of the class
in the hierarchy, thus we wish to address this issue in this
work. We propose new approaches to take into account the
position in the class hierarchy of the classes used in the pa-
rameters of methods being tested. In particular, this work
focuses on the Java instanceof operator, which is related
to inheritance. The main and motivating question addressed
here is the following: what is the guidance for an automatic
test case generator if there is a method containing the code
in Fig. 1 and it needs to make the branch condition true?
We can use an objective function for this branch that takes
value 1 if the condition is true and 0 otherwise. However,
this objective function gives no clue on how near a test case
is from making the condition true and an algorithm using
this function can behaves like a blind search. To the best of
our knowledge no work exists dealing with such situation.

void function (Collection c)
{

if (c instanceof Set)
{
...
}

}

Figure 1: Instanceof expression in a sentence.

The specific contributions of this work are a new branch
distance defined for the instanceof operator, and two muta-
tion operators taking into account the class hierarchy. The
proposal made in this paper allows the algorithms to better
guide the search for test cases in the presence of the in-

stanceof operator. This operator appears in 2,700 of the
13,000 classes of the JDK 1.6 class hierarchy and more than
850 classes include this operator in between 1% and 12%
of their source code lines. This means that this operator
is used in real software and any contribution that facilitates
the testing process when it is present will have an important
impact on the OO software testing field.

The rest of the paper is organized as follows. We describe
our test data generator for Java programs in the next sec-
tion. Section 3 presents our first contribution: a formal def-
inition of the distance measure proposed for the instanceof

operator. Then, in Section 4 we describe the EA used in this
work and the proposed mutation operators (second contri-
bution). Section 5 describes the experiments performed and
discusses the results obtained. Finally, in Section 6 some
conclusions are outlined.

2. THE TEST CASE GENERATOR
In this work we use branch coverage as adequacy criterion.

This criterion is used in most of the related papers in the
literature. Our test case generator breaks down the global
objective (to cover all the branches) into several partial ob-
jectives consisting of dealing with only one branch of the
program. Then, each partial objective can be treated as a

separate optimization problem in which the function to be
minimized is a distance between the current test case and
one satisfying the partial objective. In order to solve such
minimization problem EAs are used. The main loop of the
test data generator is shown in Fig. 2.

Select a Partial

Objective

Optimization

Algorithm

End

Continue?
yes

no

Test Case Generator

Test case

Objective function

Program

Figure 2: The test case generation process.

In a loop, the test case generator selects a partial objective
(a branch) and uses the optimization algorithm to search for
test cases exercising that branch. When a test case covers
a branch, the test case is stored in a set associated to that
branch. The structure composed of the sets associated to all
the branches is called coverage table. After the optimization
algorithm stops, the main loop starts again and the test case
generator selects a different branch. This scheme is repeated
until total branch coverage is obtained or a maximum num-
ber of consecutive failures of the optimization algorithm is
reached. When this happens the test data generator exits
the main loop and returns the sets of test cases associated
to all the branches. In the rest of this section we describe
two important issues relating to the test case generator: the
objective function to minimize and the class instantiation.

2.1 Objective Function
Following on from the discussion in the previous section,

we have to solve several minimization problems: one for each
branch. Now we need to define an objective function (for
each branch) to be minimized. This function will be used
for evaluating each test case, and its definition depends on
the desired branch and whether the program flow reaches
the branching condition associated to the target branch or
not. If the condition is reached we can define the objective
function on the basis of the logical expression of the branch-
ing condition and the values of the program variables when
the condition is reached. The resulting expression is called
branch distance and can be defined recursively on the struc-
ture of the logical expression. That is, for an expression
composed of other expressions joined by logical operators
the branch distance is computed as an aggregation of the
branch distance applied to the component logical expres-
sions. For the Java logical operators & and | we define the
branch distance as1:

bd(a&b) = bd(a) + bd(b) (1)

bd(a|b) = min(bd(a), bd(b)) (2)

where a and b are logical expressions.

1These operators are the Java and, or logical operators with-
out shortcut evaluation. For the sake of clarity we omit here
the definition of the branch distance for other operators.



In order to completely specify the branch distance we need
to define its value in the base case of the recursion, that is,
for atomic conditions. The particular expression used for
the branch distance in this case depends on the operator of
the atomic condition. The operands of the condition appear
in the expression. A lot of research has been devoted in the
past to the study of appropriate branch distances in software
testing. An accurate branch distance taking into account the
value of each atomic condition and the value of its operands
can better guide the search. In procedural software testing
these accurate functions are well-known and popular in the
literature. They are based on distance measures defined for
relational operators like <, >, and so on [10]. One of our
contributions in this work is the definition of a distance mea-
sure for the instanceof operator. We defer the definition
of this distance to Section 3.

When a test case does not reach the branching condition of
target branch we cannot use the branch distance as objective
function. In this case, we identify the branching condition
c whose value must first change in order to cover the tar-
get branch (critical branching condition) and we define the
objective function as the branch distance of this branching
condition plus the approximation level. The approximation
level, denoted here with ap(c, b), is defined as the number of
branching nodes lying between the critical one (c) and the
target branch (b) [16].

In this paper we also add a real valued penalty in the
objective function to those test cases that do not reach the
branching condition of the target branch. With this penalty,
denoted by p, the objective value of any test case that does
not reach the target branching condition is higher than any
test case that reaches the target branching condition. The
exact value of the penalty depends on the target branching
condition and it is always an upper bound of the target
branch distance. Finally, the expression for the objective
function is as follows:

fb(x) =

{
bdb(x) if b is reached by x
bdc(x) + ap(c, b) + p otherwise

(3)

where c is the critical branching condition, and bdb, bdc are
the branch distances of branching conditions b and c.

Nested branches pose a great challenge for the search. For
example, if the condition associated to a branch is nested
within three conditional statements, all the conditions of
these statements must be true in order for the program flow
to proceed onto the next one. Therefore, for the purposes of
computing the objective function, it is not possible to com-
pute the branch distance for the second and third nested
conditions until the first one is true. This gradual release of
information might cause efficiency problems for the search
(what McMinn calls the nesting problem [9]), which forces
us to concentrate on satisfying each predicate sequentially.
In order to alleviate the nesting problem, the test case gen-
erator selects as objective in each loop one branch whose
associated condition has been previously reached by other
test cases stored in the coverage table. Some of these test
cases are inserted in the initial population of the EA used
for solving the optimization problem. The percentage of in-
dividuals introduced in this way in the population is called
the replacement factor and is denoted by Rf . At the begin-
ning of the generation process some random test cases are
generated in order to reach some branching conditions.

2.2 Class Instantiation
For the problem we are facing, we need to generate com-

plex objects. For this reason, we have developed a generator
of objects of a given class. The capacity of generating ob-
jects is essential in OO software testing. For creating an
instance of a given class our object generator randomly se-
lects a constructor of the class and generates random values
for its parameters. If any of the parameters is an object,
it is in turn generated by using again the object generator
recursively. The base case of the recursion is reached when
all the arguments of a constructor are primitive types.

In this work the generator returns constant values in the
case where primitive types are required. The reason is that
we focus here on the instanceof operator, and all the pro-
grams used in the experiments are composed of conjunctions
of instanceof conditions. For this reason the state of the
objects is not relevant, only its class is relevant.

3. DISTANCE FOR INSTANCEOF
In this section we present our proposal of distance mea-

sure for the intanceof operator. This distance will be used
in the base case of the branch distance definition (see Sec-
tion 2.1) when the instanceof operator is found. Since our
distance is based on the class and interface hierarchy, first we
need to present the notation for referring to the classes, in-
terfaces, and their relationship. In Java there is no multiple
inheritance among classes, that is, a class can only extend
one class. However, this does not hold for interfaces: one
interface can extend several interfaces and one class can im-
plement several interfaces. The natural way of representing
the class and interface hierarchy is by means of a graph.
Following the terminology proposed in the Java language
specification [6], we use the term reference type to refer to a
class or an interface.

Let us denote with GR = (R, ER) the graph representing
a hierarchy of reference types, where R is the set of refer-
ence types considered and ER ⊆ R × R is the set of arcs.
We call this graph the hierarchical graph of R. The set R
can be composed of all the classes and interfaces accessible
from a virtual machine or a subset of them. We will use the
notation CR and IR to refer to the set of classes and inter-
faces in R, respectively. The set of arcs ER is determined by
the relationship between classes and interfaces in R in the
following way. Let r1, r2 ∈ R be two reference types, then
(r1, r2) ∈ ER if and only if:

• r1, r2 ∈ CR and class r1 is a direct superclass of r2

• r1 ∈ IR and interface r1 is a direct superinterface of
reference type r2

We must recall here that there is only one class in Java
with no superclass: Object. This fact, together with the
lack of multiple inheritance for classes, implies that the sub-
graph of GR composed only by the set of classes CR is a
directed tree with the Object class in the root. We denote
this subgraph GCR .

At this point we can define the value returned by the
instanceof operator based on our definition of hierarchical
graph. Let “o instanceof r” be an instanceof expression
where o is an object of class c and r a reference type. This
expression evaluates to true if and only if a walk exists in
GR from r to c.



Once we have defined the hierarchical graph for a set of
reference types R we present now the definition of the dis-
tance d between one class c and a reference type r. This
distance is the one used for comparing the two arguments
of an instanceof operator. In this operator, the first ar-
gument is an object from which only its class c is used for
the comparison. The second argument can be any reference
type r. We distinguish two cases: when r is a class and when
r is an interface.

If r is a class then c and r belong to the directed tree GCR .
Let us call c′ the deepest class in the directed tree that is
ascendant of both c and r at the same time. The class c′

could also be c or r. Since GCR is a directed tree there exists
a unique walk from c′ to c, denoted by wc′→c, and a unique
walk from c′ to r , wc′→r. We call the first walk hierarchical
walk and the second one approximation walk. The distance
between c and r is defined as:

d(c, r) = h|wc′→c|+ a|wc′→r| , if r ∈ CR , (4)

where h and a are the hierarchical and approximation con-
stants that weight the length of the hierarchical and ap-
proximation walks, respectively. In order to satisfy an in-

stanceof expression the length of the approximation walk
must be zero. However, in this last case, the length of the
hierarchical walk is irrelevant to the satisfaction of the in-

stanceof expression. For this reason, in order to reflect the
real impact of each walk in the distance we should weight
the approximation walk with a higher value than the hier-
archical walk. We will experiment with the weights in the
experimental section.

When r is an interface we consider the distance from c
to the concrete classes of CR that implement interface r.
Let Sr ⊆ CR be the set of concrete (not abstract) classes
implementing r (a walk exists in GR from r to any class
of Sr). Then the distance from c to r is defined as:

d(c, r) = min
t∈Sr

d(c, t) , (5)

where d(c, t) is the distance between two classes defined
above in Eq. (4).

Fig. 3 illustrates the computation of the distance be-
tween class ArrayList and interface Set. There are two con-
crete classes that implement the Set interface in our exam-
ple: TreeSet and HashSet. The distance between class Ar-

rayList and them is in both cases the same: 2a+2h. Thus,
the distance between interface Set and class ArrayList is
d = 2a + 2h. If we set a = 50 and h = 10, then d = 120.

The computation of the distance defined in this section has
complexity O(a + h) in the case of two classes and O((a +
h) ∗ i) in the case of a class and an interface, where a and h
are the approximation and hierarchical distances (maximum
values in the case of the class and the interface) and i is the
size of the subset Sr. However, in order to reduce the cost of
computing these distances, these computations can be made
prior to the test case generation and stored in a table.

4. EVOLUTIONARY SOLVER
EAs [2] are metaheuristic search techniques loosely based

on the principles of natural evolution, namely, adaptation
and survival of the fittest. These techniques have been
shown to be very effective in solving hard optimization tasks.

 c 

  c’ 

r 
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Collection 
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 t1  t2 
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Figure 3: Example of distance between a class and
an interface.

They are based on a set of tentative solutions (individuals)
called population. The problem knowledge is usually en-
closed in an objective function, the so-called fitness function,
which assigns a quality value to the individuals.

Initially, the algorithm creates a population of µ individu-
als randomly or by using a seeding algorithm. At each step,
the algorithm applies stochastic operators such as selection,
recombination, and mutation in order to compute a set of λ
descendant individuals P’(t). The objective of the selection
operator is to select some individuals from the population
to which the other operators will be applied. The recom-
bination operator generates a new individual from several
ones by combining their solution components. This opera-
tor is able to put together good solution components that
are scattered in the population. On the other hand, the
mutation operator modifies one single individual and is the
source of new different solution components in the popula-
tion. The individuals created are evaluated according to the
fitness function. The last step of the loop is a replacement
operation in which the individuals for the new population
P (t + 1) are selected from the offspring P ′(t) and the old
one P (t). This process is repeated until a stop criterion is
fulfilled, such as reaching a pre-programmed number of iter-
ations of the algorithm or finding an individual with a preset
target quality.

In the following we focus on the details of the specific
EAs used in this work to perform the test case generation.
Regarding the representation, one solution is a vector ~o of
objects (see Fig. 4). These objects are used in the order
determined by the vector as actual parameters of the method
under test.

o1 o2 o3 o4 o5 o6 o7 

Objects 
o1 = neo.testing.C1@34b45 

o2 = java.lang.String@56bfa 

... 

Figure 4: Representation of one solution vector ~o.

For the selection operator we use q-tournament selection,
which selects a single individual by choosing q individuals
randomly from the population and selecting the best from



these q to survive. The recombination operator used is a sin-
gle point crossover that works by cutting the chromosomes
of the parents at some randomly chosen common point and
then the resulting sub-chromosomes are swapped. We de-
fer the description of the mutation operator to Section 4.1
because it is one of the contributions of this paper. The
replacement operator is an elitist procedure, where any in-
dividual can potentially leave the pool and be replaced by a
new one if the new one has a better fitness value. The fitness
function used in this work is the one presented in Eq. (3).

4.1 Mutation Operator
The mutation operator decides whether or not to change

a component of an individual according to the probability of
mutation M . The mutation operator is usually designed to
introduce small variations in the tentative solutions. In this
work we propose the use of the distance defined in Section 3
for computing the probability to change one object of the
solution to an instance of a different class. We call this mu-
tation operator distance-based mutation, denoted by MDn,
and it works as follows. For each component in the solution
it decides whether to change it or not with probability M .
If the object is changed, it selects the class of the new object
from a universe U of concrete classes. If the old object had
class c, the probability of changing to an object of class c′ is
given by the following expression:

p(c, c′) =





1
d(c,c′)∑

r∈U,r 6=c

1
d(c,r)

if c 6= c′

0 if c = c′

(6)

where d is the distance between classes defined in Eq. (4).
This way, it is more probable to mutate the object to a
new one whose class is near the old one in the class hierar-
chy. This is how a “small change” is interpreted (and imple-
mented) in the mutation operator. In Section 5.5, we will
justify the use of an adaptive mutation MDα that evolves
during the search. We defer its definition to the next section
because its mathematical expression can be better under-
stood after some results are shown.

5. EXPERIMENTAL SECTION
In this section, we apply the distance and mutation op-

erator presented throughout the paper to a benchmark set
of object-oriented test programs. Our main purpose is to
study the measure of distance defined in Section 3 for the
instanceof operator and the specific mutation operator
designed. In the following section we first describe the test
programs used for the experiments. We justify the param-
eterization of the algorithm in Section 5.2 and analyze the
influence on the results of some parameters in Section 5.3.
In Section 5.4 we compare the proposed mutation opera-
tor against a random mutation. Finally, in Section 5.5 we
present the results of an adaptive mutation MDα, whose de-
velopment has been motivated by the results of Section 5.4.

5.1 Test Programs
We use a benchmark set of nine test programs with differ-

ent features available at http://neo.lcc.uma.es. Since we
are interested in studying our proposals for dealing with the
instanceof operator, all the atomic conditions in the test
programs are instanceof expressions. This way we analyze

the instanceof operator in isolation, avoiding any influence
on the results of the distance expressions used for other rela-
tional operators. All the programs have the same number of
branches and we use the name obji j to refer to the program
with i atomic conditions per logical expression (varying from
2 to 4) and nesting degree j (varying from 1 to 3). Each
program consists of one method with six conditions, varying
the number of atomic conditions that appear in each one.
In addition to this benchmark set, we use another program
with only one condition composed of a conjunction of four
instanceof expressions that will be used in an experiment
discussed in Section 5.4.

5.2 Parameters of the algorithm
In the next section we show some preliminary results per-

formed in order to set the best values for the parameters.
However, in this section we want to specify and justify the
parameters used in the experiments.

First, we start with the parameters for the proposed dis-
tance measure d. In this distance, a length for the approxi-
mation walk greater than zero implies that the instanceof

expression is false. Thus, the approximation constant a must
be large. The values used for a are 50, 100 and 200. The
hierarchical constant h appears in the distance expression
even when the instanceof expression is true. This distance
helps the algorithm to search for test cases that are in the
boundary of the satisfaction region of the logical expressions.
It seems reasonable to think that this constant should be
smaller than a and, for this reason, we use the values 1, 25,
50, and 100 for it. Regarding the parameters of the EA, we
use the values 0.1, 0.2, and 0.3 for the probability of muta-
tion M , and the values 0.25, 0.50, 0.75 for the replacement
factor Rf presented in Section 2.1.

Since we are working with stochastic algorithms, we per-
form in all the cases a minimum of 30 independent runs
of the algorithms (increased up to 200 in some cases) and
Kruskal-Wallis’s statistical tests for multiple comparison with
a confidence of 95% (not shown for space reasons). In order
to obtain well-founded conclusions we base all our claims on
statistically significant differences.

5.3 Setting Parameters
In this section we analyze the influence on the average

coverage of the replacement factor Rf , the mutation proba-
bility M , the approximation constant a, and the hierarchical
constant h. The objective of this first study is to discover
the best values for these parameters. The experiments per-
formed have a factorial design. That is, for each of the nine
test programs and each of the 108 combinations of the four
above mentioned factors we have performed 30 independent
runs. This means a total number of almost 30, 000 indepen-
dent runs of the test case generator.

In this section we only show the average results of the most
complex programs (obj4_3, obj4_2, and obj3_3) because
the others achieve 100% coverage in most cases and could
inflate coverage percentage. For each combination of Rf
and M we have computed the average value of the coverage
when the other parameters (a and h) change. In this way
we have obtained Table 1. If we focus on the parameter M
we can observe that the coverage is higher when M is small.
The statistical tests confirm that the differences between
the results obtained with M = 0.1 and the other two values
are significant. Thus, we conclude that a small probability



Table 1: Average coverage percentage obtained
changing M and Rf in the most complex programs

M = 0.1 M = 0.2 M = 0.3
Rf = 0.75 83.08 76.10 67.29
Rf = 0.50 83.43 75.43 67.20
Rf = 0.25 82.10 73.81 66.74

Table 2: Average coverage obtained changing h and
a in the most complex programs

h = 1 h = 25 h = 50 h = 100
a = 200 75.45 75.33 74.93 75.68
a = 100 75.53 74.74 75.10 74.79
a = 50 74.86 75.81 74.44 73.57

of mutation must be used for programs with a high degree
of nesting and a large number of atomic conditions in each
logical expression. Regarding the replacement factor Rf ,
we can observe that the coverage increases with Rf when
M = 0.2 and M = 0.3. However, the differences in the
results are not statistically significant.

We have also studied the influence on the average cover-
age of the hierarchical and approximation constants h and
a. As in the previous tables, for each program and each
combination of a and h we have computed the average value
of the coverage percentage when the other parameters (M
and Rf) change. The results are shown in Table 2. On the
basis of our previous intuition on the behaviour of the dis-
tance proposed for the instanceof operator we expected no
significant differences except in the case a < h. The results
confirm our expectations; as we can observe in Table 2, when
a < h the average coverage is minimum (with statistically
significant differences). However, we cannot find a configu-
ration that is better than all the rest. We can only conclude
that a should not be less than h.

According to the results shown in this section we fix the
values of the four parameters studied in the following exper-
iments. The values chosen are M = 0.1, Rf = 50%, a = 50
and h = 25. In the rest of the experimental section we
analyze the proposed mutation operators.

5.4 Uniform vs. Distance-based Mutation
In this section we compare the distance-based mutation

MDn against a simpler mutation operator: one that selects
the class using a uniform distribution of probabilities. We
will call this operator uniform mutation (MU) in the follow-
ing. The only difference between the distance-based and the
uniform mutation is the probability distribution used for se-
lecting the new class c′. In MDn is given by Eq. (6) and in
MU is given by:

p(c, c′) =





1
|U|−1

if c 6= c′

0 if c = c′
(7)

where U is the universe of classes. One of the first questions
we want to answer in this experimental section is: which mu-
tation operator is better? Before the empirical evaluation we
present a theoretical analysis that allows us to make some
speculations. These speculations are based on the probabil-
ity of obtaining an objective vector ~t from a given vector ~o
by one application of the mutation operator. In the case of
the uniform mutation this probability is

pu(~o,~t) = (1−M)lMn−l

(
1

|U | − 1

)n−l

(8)

where M is the mutation probability, n is the length of the
vector ~o, and l is the number of objects of ~o that are in-
stances of the correct class (the class required by the objec-
tive vector ~t). In the case of the distance-based mutation
the expression is more complex:

pd(~o,~t) = (1−M)lMn−l
∏

{i|oi 6=ti}
p(oi, ti) (9)

where p is the probability distribution defined in Eq. (6)
and we have used oi and ti to denote the classes of the
corresponding objects.

At this point we must notice the following fact. If the
classes of two objects oi and ti are near in the hierarchy
of classes we have p(oi, ti) > 1/(|U | − 1). Thus, pd(~o,~t) >
pu(~o,~t) if solution ~o is near the objective ~t. On the other
hand, pd(~o,~t) < pu(~o,~t) if solution ~o is far from ~t.

In order to check this speculation we have performed an
experiment in which we used one program with one branch.
The EA is used to search for a solution satisfying the con-
dition. We have performed 200 independent runs of the EA
and we have registered the best fitness of the population at
each step of the EA in order to analyze the evolution of the
search. In Fig. 5 we show the average of the 200 independent
runs at each step of the execution for MDn and MU.
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Figure 5: Fitness evolution with a uniformly initial-
ized population.

We can observe in Fig. 5 that, although the behaviour
is quite similar using the two mutation operators, the MU
curve is lower than the other one at the beginning. The
advance produced by MU to the objective solution is faster,
since the initial population is far from this objective solution,
so using MDn provides no advantage. However, as the search
progresses we can observe that MDn is able to reach the
objective solution before MU. When any individual of the
population is near the objective solution, MDn guides the
individual to the objective solution better than MU. This is
the result expected from the speculations we made at the
beginning of this section.

In order to confirm this behaviour we perform a new ex-
periment in which the initial population is randomly gener-
ated using individuals that are near the objective solution.



We want to check if MDn is really faster than MU in this
situation. In Fig. 6 we show the average evolution over 200
independent runs and we can observe that MDn has a clear
advantage over MU when the population is near the opti-
mum. Thus, our main conclusion in this section is that,
in general, MDn is better than MU. However, MU can ad-
vance faster to the objective than MDn at the beginning of
the search. Ideally, we would like to obtain a combination
of the variability provided by the behaviour of MU at the
beginning and the behaviour of MDn at the middle stage
of the search. One way to achieve this is by means of an
adaptive mutation operator. This is what we analyze in the
following section.
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Figure 6: Fitness evolution with a population near
the objective solution.

5.5 Adaptive Mutation
Motivated by the results of the previous section we present

in this section a new mutation operator that changes its be-
haviour throughout the search. The difference between this
adaptive operator, denoted by MDα, and the ones studied
in the previous section is the probability distribution used
for selecting a class. In MDα the probability distribution is:

p(c, c′) =





(
1

d(c,c′)
)α

∑
r∈U,r 6=c

(
1

d(c,r)

)α if c 6= c′

0 if c = c′

(10)

In this expression, if α = 0, we have the uniform muta-
tion MU and if α = 1, we have the distance-based mutation
MDn. We can use values higher than 1 for α. If the value
of α is high, then the mutation only selects classes that are
close to the ones in the individual. We can see α as an
exploitation-exploration parameter. A low value for α leads
to an explorative search. A high value leads to an exploita-
tive search. In order to make it adaptive we must change the
value of α throughout the search. We use a linear increase
for α, that is:

α = λ · step (11)

where λ is a parameter called adaptive speed. With this
expression for α, the behaviour of the adaptive mutation is
the same as the behaviour of MU at the beginning and it
switches to the behaviour of MDn as the search progresses.

The higher the value of λ, the higher the speed of this change
in the behaviour. If λ = 0 we have the uniform mutation,
MU. On the other hand, if λ = 1/T , then MDα behaves like
MDn in T steps.

The adaptive speed λ is a new parameter and we must
analyze the behaviour of the algorithm for different values
of λ in order to give some guidelines for selecting its value.
A low value for λ means a very explorative search. A high
value for λ makes the algorithm change very fast from the
explorative phase to a very exploitative one. It is well-known
in the metaheuristic field that one of the key points in the
design of an algorithm is to select the exact balance between
exploration and exploitation. Thus, we expect the best value
for λ to be not too high and not too low: it should be some-
thing in between. In order to support these hypothesis we
have applied our test case generator using the adaptive mu-
tation to the nine programs presented in Section 5.1. We
used nine different values for λ and performed 100 indepen-
dent runs for each program and configuration. In all the
cases the generator was executed until 100% branch cover-
age was obtained and we use the number of evaluations for
comparison purposes. In Fig. 7 we show the average number
of evaluations for all the programs and the nine values of λ.
We have also included the results of MU (λ = 0).

As expected, when extreme values for λ are used the effort
required to reach the total coverage is higher. In particu-
lar, when random mutation is used (λ = 0) the effort is
higher than for intermediate values of λ (there are statis-
tically significant differences that confirm this observation).
On the other hand, when λ = 1/60, the higher value of λ,
the effort required is again increased. The reason is that
the search reaches a very exploitative stage in a few steps,
in which newly generated solutions are similar to the parent
solutions. In this situation it is difficult for the algorithm
to reach the objective. The best values for λ are between
1/100 and 1/200.
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Figure 7: Average number of evaluations required
for 100% branch coverage in all the test programs
for different values of λ.

We have also compared our proposals against a random
search. The random search proposes random classes for
the vector of objects that is used as test case. The ran-
dom search is able to reach 100% branch coverage only in
obj2_1 with an average of 1302 evaluations. For the other
(more complex) programs we stopped the random search
after 50,000 evaluations and the average coverage obtained



varies from 21% in obj4_3 to 99% in obj3_1. In the results
shown in Fig. 7 the maximum number of average evalua-
tions for a 100% branch coverage is around 8,000. Thus, we
conclude that our proposals are much better than a simple
random search.

The results of Fig. 7 also show the “difficulty” of the pro-
grams for the test case generator. From the results we can
sort the programs according to the effort required to reach
100% branch coverage. We can observe that, except in a
few cases, this ranking is independent of the value of λ and
is correlated with the value i + j where i is the number of
atomic conditions per logical expression, and j is the nesting
degree. Furthermore, we can observe that the influence of λ
on the results is higher in the “most difficult” programs, as
we could expect.

6. CONCLUSIONS
In this paper we have focus on one aspect of OO Soft-

ware, inheritance, to propose some approaches that can help
to better guide the search of test cases in the context of
OO evolutionary testing. In particular, we have proposed
a distance measure to compute the branch distance in the
presence of the instanceof operator in Java programs. We
have also proposed two mutation operators that change the
solutions based on the distance measure defined. In addition
to the proposals we have performed a set of experiments to
test our hypothesis. First, we have analyzed the most impor-
tant parameters of the algorithm in order to select the best
configuration. After that, we have analyzed and compared
one of the proposed mutation operators against a uniform
mutation. Finally, we have proposed an adaptive mutation
operator that is able to make a better exploration and we
have studied its main parameter.

As future work we plan to advance in the analysis of
our proposals by performing theoretical studies on their be-
haviour. These analyses can help in selecting the values for
the parameters of the mutation operators and the distance
measure. In this work we have studied the instanceof ex-
pressions in an isolated way. In the future we plan to analyze
how the distance measure defined and the mutation opera-
tors proposed can be combined with all the other approaches
related to OO software testing. In addition, an analysis of
the impact of the proposal in real-world software is a priority
in our research plans.
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