
High-Throughput DTW accelerator with minimum
area in AMD FPGA by HLS

1st Marco Hormigo-Jiménez
Industrial Engineering School

Universidad de Málaga
Málaga, Spain

marcohorjim@uma.es

2nd Javier Hormigo
Dept. Computer Architecture

Universidad de Málaga
Malaga, Spain

ORCID:0000-0002-5454-6821

Abstract—Dynamic Time Warping (DTW) is a dynamic pro-
gramming algorithm that is known to be one of the best methods
to measure the similarities between two signals, even if there are
variations in the speed of those. It is extensively used in many
machine learning algorithms, especially for pattern recognition
and classification. U nfortunately, i t h as a q uadratic complexity,
which results in very high computational costs. Furthermore,
its data dependency made it also very difficult t o parallelize.
Special attention has been paid to computing DTW on the edge,
as a way to reduce the load of communication on Internet-of-
Thing applications. In this work, we propose a minimum area
implementation of the DTW algorithm in AMD FPGAs with
optimal use of the resources. That is achieved by maximizing
the use time of the resources and taking advantage of the inner
structure of the AMD FPGAs. This architecture could be used in
small devices or as a base for a multi-core implementation with
very high-throughput.

Index Terms—Dynamic time warping, FPGA acceleration,
HLS implementation, interleaving

I. INTRODUCTION

The Dynamic Time Warping (DTW) algorithm is a tech-
nique that allows measuring the similarity between two sig-
nals, even if they are not of the same length [1]. This
method enables the two signals being compared to be aligned,
stretched, or compressed. Hence, DTW allows for identifying
patterns and classifying signals with greater precision than the
traditional Euclidean distance. As a consequence, it is one
of the preferred methods for similarity search in time series
mining and signal processing in general [2]. This makes it
very useful in applications such as gesture recognition [3],
speech recognition [4], or signature recognition [5]. In the last
years, special attention has been paid to computing DTW on
the edge, as a way to reduce the load of communication on
Internet-of-Thing (IoT) applications [6] [7] [2].

The main disadvantage of DTW is its high computation
time. That is due to its quadratic complexity and the direct
dependencies between the various steps of the algorithm that
made very difficult the parallelization of an isolated computa-
tion. Furthermore, this problem is exacerbated by the fact that

This work was supported in part by MCIN/AEI/10.13039/501100011033
and European Union Next Generation EU/PRTR under Project TED2021-
131527B-I00; by the Fondo Europeo de Desarrollo Regional (UMA20-
FEDERJA-059); and by AMD™(Xilinx™) University Program.

it has to be massively computed in those kinds of applications
where it is used. The acceleration of the computation of the
DTW has been addressed from software and hardware. Most
of the software approaches try to reduce the number of DTWs
that need to be completely computed for a specific application.
Those software techniques include the reduction of the number
of DTWs by pruning based on bounds estimations [8] [9]
or early abandon of the computation [10] [11]. However,
despite being very effective, DTW computation remains as
the task with the greatest portion of the computational time
of the application after applying these software techniques.
Consequently, it is not surprising that the acceleration of the
DTW computation itself has been also intensively studied.

The acceleration of the DTW computation itself has been
addressed in conventional accelerators like GPUs [12] [13]
[14]. In this case, the acceleration comes through the par-
allelization of the computation. In [12] and [13], the calcu-
lation of a batch of DTWs corresponding to an alignment
problem is parallelized by mapping each DTW into different
threads. Conversely, in [14], individual DTW computation is
parallelized in GPU by using different approximate DTW
algorithms that divide the DTW matrix into separate regions
calculated in parallel or computing the DTW matrix along
diagonals rather than rows.

Specific architectures for DTW computation have been also
proposed in both FPGAs and ASIC designs. Most of these
specific architectures are based on systolic arrays, mostly two
dimensions ones, to maximize the throughput. Sometimes,
these two-dimension (2-D) systolic arrays are complemented
with sophisticated technology or arithmetic to improve ef-
ficiency. For instance, [2] uses an analog memristor-based
circuit for computation, [15] uses Time-Domain computing,
where signals are encoded and processed with time pulses, and
[4] uses online arithmetic where values are coded in signed-
digit and processed digit by digit, in a most-significant digit
first fashion. These 2-D systolic arrays have to be adapted
to the size of the problem which is not always possible
in ASIC implementations. That is a lesser issue in FPGA
implementations like in [12], where a high-level description
tool is used to automatically generate the VHDL description
of the 2-D Systolic array, or in [7] where an array of processing
elements are arranged in a ring to manage longer signals.

Copyright © 2023, IEEE

This is the author's version of the paper M. Hormigo-Jiménez and J. Hormigo, "High-Throughput DTW accelerator
with minimum area in AMD FPGA by HLS," 2023 38th Conference on Design of Circuits and Integrated Systems (DCIS),
Málaga, Spain, 2023, pp. 1-6, doi: 10.1109/DCIS58620.2023.10335963. https://ieeexplore.ieee.org/document/10335963

These previous DTW hardware implementation uses a two-
dimension systolic array to maximize the throughput but at
the cost of using an enormous amount of area and a lack
of flexibility to use the circuit for different problem sizes or
implementation platforms. Furthermore, they are pipelined at
the processing element level and they need to move a large
amount of data through them to work effectively. In this work,
we try a different approach to minimize the movement of data
by keeping locally the DTW computation. Therefore, we opted
for an iterative implementation of the DTW with the goal of
minimizing the area of the DTW unit but, at the same time,
efficiently using the occupied resources. The latter is achieved
by pipelining the unit at the operation level(instead of a PE
level) and parallelizing several independent DTW calculations
using interleaving. This approach provides much more flexi-
bility because this small unit could be used effectively in very
constrained conditions or could be replicated as many times
as required to achieve high throughput solutions in high-end
FPGAs.

Regarding, the solution where the proposed DTW unit is
replicated extensively to obtain high throughput, someone
could argue that we ended up having an arrangement very
similar to a systolic array with a lot of data movement.
However, although it is true that input data need to be moved
to the different DTW units and special care has to be taken to
do it efficiently, in this case, the amount of data movement is
linear with the size of the problem. In contrast, systolic arrays
need to move the intermediate results whose amount grows
quadratically with the size of the problem.

In this article, we will study the implementation of a
minimum area design for AMD FPGAs to accelerate the
computation of the DTW algorithm when using the Sakoe-
Chiba band [1]. To use resources as effectively as possible,
we also consider the typical application where the input signal
has to be compared to an array of pattern signals. However,
the proposed design would be equally valid for comparing
several input signals with one pattern. To minimize the area,
we have taken into account the inner structure of the AMD
FPGAs, especially for the implementation of shift registers.
We have used High-Level Synthesis (HLS) software tools for
the design definition. This method greatly simplifies circuit
development and design space exploration. In future work, we
will use the proposed DTW unit as the core to implement
a highly parallel architecture by replicating it to achieve the
maximum throughput for a given FPGA platform.

II. THE DTW ALGORITHM

The DTW algorithm measures the distance (or similarity)
between two signals (or time series). Let us consider the signal
X with n samples and Y with m samples. To compute the
DTW(X,Y), the distance matrix calculation and the warping
path calculation can be combined in the same process [2]. The
n×m DTW matrix (W) is computed following the equation
(1) for each matrix element:

wi,j = min(wi,j−1, wi−1,j , wi−1,j−1) +Dist(xi, yj) (1)

Wi,j

R

Y signal

X
si

gn
al

Fig. 1. DTW matrix computation scheme

where Dist correspond to a two-point distance measurement
and w0,0 = Dist(x0, y0). If any of the required elements is
outside the matrix, its value equals infinite. Hence, the DTW
matrix is easily computed starting with w0,0 and computing
each row in order, from left to right, and from top to bottom,
as is shown in Fig. 1. The value of the last-row last-column
element (wn−1,m−1) is the DTW distance (DTW (X,Y)) (the
green square ”R”+ in Fig. 1). As shown in Fig. 1, to calculate
the wi,j element, it is necessary to know the values of the
elements highlighted with zigzag lines on the figure. This is
what makes it difficult to parallelize the computation of the
matrix. Although the DTW matrix is required to extract the
warping path, most of the applications only use the DTW
distance. Therefore, the whole W matrix does not need to
be stored, since only the last computed row is required for
the actual row computation. Consequently, only a sliding row
(colored squares in Fig. 1) has to be temporarily kept in
memory for the subsequent calculations.

In the literature, several distance measurement has been
proposed for Dist, such as Euclidean or Manhattan distance.
In our study, we will use the squared Euclidean distance
which balances precision and computation cost. However, the
proposed architecture could be easily adapted to implement
any other distance measurement.

To prevent impractical matchings and accelerate the compu-
tation, generally, some constraints are applied to the warping
path. In this work, we implemented the Sakoe-Chiba band [1].
This method reduces the elements to be evaluated in a row to
a neighborhood of radius R around the main diagonal of the
DTW matrix. In this way, only 2R + 1 elements have to be
evaluated on each row.

In a typical application, multiple input signals are com-
pared through DTW distance with one or several patterns. To
simplify the description from now on we will consider that
an input signal is compared with P patterns. However, the
proposed design would be equally valid for comparing several
input signals with one pattern. We will also consider that both
signal and pattern have the same number of samples (n), but
supporting different sizes would be straightforward.

III. ACCELERATOR DESIGN

In this section, we describe the proposed DTW accelerator
for AMD FPGAs. We reduce the utilized resources as much
as possible while keeping a reasonable throughput. To do
that, we compute the DTW matrix elements serially, but in
a pipeline datapath. Since the computation of one matrix
element depends on the previous ones, several independent
DTW computations are combined to keep the pipeline always
running. Moreover, shift registers are used to store temporally
the previously computed elements, to take advantage of the
efficient implementation of shift registers in AMD FPGAs.
This low-area accelerator could be used in low-power FPGAs
on the edge and IoT devices, or it could be replicated until
obtaining the required throughput for cloud servers.

A. Basic Architecture

To calculate the elements of the DTW matrix, we need
the previous element in the row and the elements of the
previous row. Hence, only a memory with the size of a row
is required to keep temporally these values. Similarly to a
2D convolution in image processing, a shift register with that
size could keep the values computed in the actual row and
the required values of the previous row, while providing easy
data synchronization. In this case, since a Sakoe-Chiva band
is used, this memory only needs to store 2R+ 1 elements.

Fig. 2 shows the proposed architecture. It consists of two
well-differentiated parts, the previous-result memory and the
Calculation Unit, where (1) is computed. To get an efficient
implementation of the shift register in the FPGA, the previous-
result memory is divided into a first register (Last), the shift
register (Band), and a last register (Output). In this way, the
three previous elements required to compute the next DTW
matrix element are accessed in parallel while the shift register
keeps only one output.

The Calculation Unit consists of the minimum unit and the
distance unit. The Minimum Unit has two comparators and
two multiplexers to select the smallest value among the data
received from the previous-result memory (Last, last value of
Band, and Output). In parallel, the Distance Unit calculates
the squared Euclidean distance between xi and yj . Since xi is
required in all distance computations corresponding to a row,
a register Rx temporarily stores the value of xi, thus avoiding
having to access memory multiple times. The entire calculation
unit is pipelined to improve circuit performance. However, as
we will see in Section III-C, some modifications are required
to take full advantage of the pipelined datapath.

B. Processing Flow

On each regular clock cycle, the proposed architecture com-
putes a new element wi,j of the DTW matrix. The register Last
provides the element wi,j−1 computed in the previous cycle.
The registers Band and Output provide the elements of the
previous row, wi−1,j and wi−1,j−1, respectively. These values
are compared in the minimum unit to output the minimum of
them. This value is added to Dist(xi, yj), computed in the
Distance Unit, to get the new element. This new element is

Distance
Unit

Minimun
Unit

BAND

yjxi

Rx

LAST OUTPUT

Fig. 2. Architecture diagram

stored in register Last, while all values in the previous-result
memory are shifted as a whole shift register.

Besides the regular iteration, other special ones are used to
provide proper synchronization of the architecture:

• At the beginning of a new DTW computation, all po-
sitions of the previous-result memory are filled with
infinite.

• Each new row i, Rx is loaded with xi for the distance
calculation for all the row elements. Furthermore, the
Sakoe-Chiba band has to be shifted one position to fit the
matrix diagonal. Hence, in that iteration, the computation
is skipped and infinite is loaded in Last, and the previous-
result memory shifted.

• In the first and last R rows, several elements of the
Sakoe-Chiba band are out of the dimension of the DTW
matrix. As in the previous case, the computation of wi, j
is skipped and the value infinite is used instead to fill the
previous-result memory.

All these special iterations are wasting processing cycles.
Additional hardware could be added to the proposed architec-
ture to avoid these extra cycles. However, this means more area
resources are utilized, and they may even increase the cycle
period. Moreover, for the typical size of the signals and the
band, these extra cycles are negligible compared with the total
amount of cycles required for a complete DTW computation.

C. Throughput Optimization

When we have described the proposed architecture, we have
mentioned that the calculation unit is pipelined and a new
element of the DTW is computed on each cycle. However,
the nature of the algorithm prevents us from starting the
computation of a new element every clock cycle, since the
value of the previous element in the row is required for
calculating the next one. Even utilizing pipeline shortcuts
would not be enough to reduce the initiation interval (i.e. the
number of cycles between two consecutive calculations in the
pipeline) of the datapath to one. To solve this problem, we
will use the interleaving technique.

Since we want to calculate the DTW of one input signal with
respect to P different patterns, the calculations of the different
DTWs corresponding to each pattern could be interleaved.
In this way, since these calculations are totally independent,

mi+1ni+1 ni mi mi-smi-s+1 ni-s+1 ni-s

Fig. 3. Band register with interleaving

the number of cycles between the calculation of an element
and the cycle when this element is required to compute the
next one is increased. Thus, we can reduce the initiation
interval of the architecture, in as many cycles as different DTW
computations are managed in parallel.

If the number of patterns P equals or exceeds the number
of pipeline stages of the calculation unit, we will be able
to start a new calculation every cycle. In fact, since the
HLS syntheses tool is usually able to reduce the initiation
interval by applying pipeline shortcuts, P only needs to equal
this initiation interval corresponding to the architecture before
applying the interleaving technique to achieve this throughput.

On the other hand, if the number of patterns was smaller,
the initiation interval would increase, losing performance. In
this case, a more effective option than increasing the initiation
interval would be to introduce dummy patterns (useless pat-
terns) to complete the required minimum number of patterns
to keep the initiation interval set to one. For instance, if P = 8
is needed to start a new computation every cycle, but we
only have 6, adding two dummy patterns would only reduce
the throughput by 25%. However, without the extra dummy
patterns, the initiation interval must be three cycles, which
means dividing the throughput by three.

Another option to keep the initiation interval set to one when
P is not big enough is to reduce the target clock frequency.
Doing that, the number of pipeline steps of the calculation
unit could be reduced until the initiation interval without inter-
leaving reaches P . Then, a new computation could start every
clock cycle by applying interleaving, although the reduction
of clock frequency will affect the throughput. Therefore, the
effectiveness of each solution must be studied for each specific
case. REsults in Section IV could guide this specific study.

Some minor modifications to the proposed architecture
are required to implement the interleaving technique. The
necessary changes on the datapath affect mostly the previous-
result memory. The registers Last and Output are now register
files with one position for each interleaved computation. The
same happens with Rx, which stores the actual value for each
interleaved pattern. In addition, the size of the shift register
Band is multiplied by the number of interleaved computations.
In this way, the data of the calculations of the same element
but different patterns will be adjacent to each other, as shown
in Fig. 3. Therefore, the implementation of the interleaving
computation has a significant cost in memory resources, but it
is balanced out by the increases in throughput (see Section IV).

IV. IMPLEMENTATION RESULTS

The proposed DTW accelerator has been described at a
high level using C++ for HLS and implemented using AMD
Vitis HLS 2022.2 software and targeting a Xilinx Alveo U200
board. A behavioral description of the circuit is provided in

C++ and the desired circuit is obtained by using the appro-
priate directives. That allows us to perform easily a design
space exploration and testing of the proposed architecture.
For the results shown here, all signals and computations have
been performed in single-precision floating-point IEEE-754
standard. Changing the numeric format to represent the signal
or to make the computation only involves changing the data
type in the C++ description. Moreover, signals and patterns
have the same number of samples (”Size”).

The proposed circuit has been validated using test vectors
generated using Matlab software. The signals were generated
randomly, and the golden DTW calculation between two of
these signals was performed through the dtw() function located
in the Matlab Signal Processing Toolbox. Multiple tests of
1000 trials each have been performed. Each trial included an
input signal with multiple patterns, all generated randomly.
The radius of the Sakoe-Chiva band, the signal size, and the
number of patterns interleaved were varied between each test.
The results were considered correct if the solutions generated
by Matlab and those produced by our circuit differed by less
than 0.01% since Matlab works with double-precision floating-
point format.

After validation, different variations of the proposed circuit
have been synthesized and implemented using the IP genera-
tion tool of Vitis HLS. Following we show the main results of
this study. We should note that the results provided here are
obtained after placement and routing, and the storage of the
input signals are not considered.

Table I shows the results for different signal sizes with
and without interleaving for 32 patterns when targeting a
clock period of 3 ns. As expected, we can observe that there
is not any significant change in the amount of resources
utilized when the size of the signal increases. In contrast,
the latency increases almost linearly with the size of the
signal, whereas the throughput decreases accordingly. These
results are consistent with the iterative unit we have designed.
Regarding the interleaving technique, it enables us to reduce
the initiation interval from 14 to 1, multiplying the throughput
by more than 12. This improvement is less than the theoretical
14 times because the clock frequency is slightly reduced due
to the increase of resources utilized. As we anticipated, the
increment of resources is very significant, although not that
much if we consider that we are computing 32 DTWs at
the same time. The number of LUTs is the most affected,
it increases by more than three times since they are used to
implement the shift register (Band), and its size is multiplied
by 32. The number of registers (FF) and DSPs increases by
more than 50% because of the increase of the other registers
in the previous-result memory, and also to fulfill the target
timing. For long signals, 2 BRAM is also included for the same
reasons as before. Despite the area increases, we believe the
use of interleaving is advisable in general, since the throughput
increases remarkably overcome these costs. We should also
note that using 32 patterns is not the best choice for this
example as we will see later.

To study the effect of the size of the Sakoe-Chiba band in

TABLE I
IMPLEMENTATION RESULTS FOR DIFFERENT SIGNAL SIZES WITH AND WITHOUT INTERLEAVING

Size R Pattern Period Throughput Latency II LUT FF DSP BRAM
(ns) (DTW/ms) (cycles)

100 16 1 2.107 10.0 47655 14 555 969 5 0
100 16 32 2.346 124.2 109861 1 1870 1569 8 0
500 16 1 2.214 2.0 238059 14 549 1001 5 0
500 16 32 2.346 25.0 545061 1 1870 1569 8 0

2500 16 1 2.025 0.4 1190056 14 552 1015 5 0
2500 16 32 2.546 4.6 2721061 1 1885 1583 8 2
5000 16 1 2.227 0.2 2380056 14 556 1023 5 0
5000 16 32 2.480 2.4 5441061 1 1891 1598 8 2

the architecture, Table II shows the results for different values
of R with interleaving for 32 patterns when targeting a clock
period of 3 ns. As we could expect, these results show a direct
correlation between the parameter R and the latency in cycles,
which translates also to the throughput. Regarding the area, the
increase of R only affects significantly the number of LUTs,
since only the shift register is increased and as we told before,
it is implemented by using LUTs.

As we can guess, increasing the number of patterns inter-
leaved beyond the initiation interval of the basic architecture
does not increase the throughput, but it increases resource
utilization. This is supported by the results in Table III where
the number of interleaved patterns are varied keeping the same
parameters as in previous tables. Inexplicably, the HLS tool is
not able to take advantage of the interleaving technique when
the number of patterns is too low. Much more area and less
throughput than the basic circuit is obtained when we try to
interleave only 4 patterns. In contrast, a speedup of 7 with
less than double area is achieved by using only 8 patterns.
However, since the initiation interval of the basic circuit is
14, until 16 patterns we do not reach one new computation in
every clock cycle. At this point, with 16 patterns, we reach
the maximum throughput for the minimum area, except for
accidental variations in the clock frequency.

An interesting finding of our study is that when only a
few patterns are available to interleave, alleviating the target
timing, not only reduces resource utilization but also may in-
crease the throughput. Table IV shows the results for different
numbers of patterns and target frequency. Increasing the target
period allows having fewer pipeline steps and consequently
reduce the Initiation Interval. As a consequence, the reduction
of frequency surprisingly increases the throughput whiles
reducing the area targeting 5 ns for the basic architecture, 5 ns
and 10 ns for 4 patterns, and 7 ns for 8 patterns. This effect
stops when the initiation interval reaches one.

Summarizing all the results, the size of the signals will only
affect the throughput whereas the band size will affect the
throughput and the area. Whenever possible, the interleaving
technique with the minimum number of patterns to reach
an initiation interval of one should be applied to obtain the
maximum throughput with the minimum amount of resource
utilization. When the number of patterns available prevents
reaching an initiation interval of one, a detailed study of the
clock frequency is required to achieve the best results.

We do not want to finish without making a comparison
of the proposed design with the state of the art. However,
making a fair quantitative comparison is very difficult for
several reasons, such as very different target technology, the
fast evolution of FPGAs, or disparities in the DTW algorithm
implemented. We are going to do a comparison with the
accelerator proposed in [7] which seems to be the more similar
one, but it is based on a very rough estimation. The systolic
array proposed in [7] can process 16-bit input signals with
1024 samples with a throughput of less than 80 complete
DTWs per second. It is implemented in a low-power Lattice
iCE40 UP5K FPGA using 99% of LUTs and 86% of BRAM.
That means roughly 5230 4-input LUTs, 980 Kbits of BRAM,
and probably 8 16x16-bit multipliers with 32-bit accumulators.
On the other side, we have adapted the proposed circuits
for 16-bit input signals with 1024 samples using a band
of 1025 elements, which approximates the complete DTW
without the band. It also performs interleaving with 8 patterns
for improving the throughput. This circuit reaches about 360
DTWs per second and utilizes 4481 6-input LUTs, 504 FF, 1
DSP, and 0 BRAMs. Therefore, the proposed architecture has
a throughput 4.5 times higher, using roughly 3.5 more logic re-
sources (if we roughly approximate that 6-input LUT is 4 times
more complex than 4-input LUT) and a negligible amount of
memory resources compared to the architecture in [7]. We
should also note that most of the logic resources used by our
proposal (about 4100 LUTs) are utilized to implement the shift
registers and those could have been implemented using about
128 Kbits of BRAM. Although an analysis is required for each
application, these results seem to show that our architecture
utilizes the resources more efficiently.

V. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed an FPGA accelerator
for DTW computation that allows us to efficiently use the
resources while using a very small area. We achieved this
by minimizing the number of partial results that are stored
or transmitted, taking advantage of the inner structure of the
target FPGA, and pipelining the calculation unit. To make the
most of the pipelining, we used the interleaving technique to
avoid having idle cycles in the calculator datapath. The use of
the HLS design style allows us easy development and rapid
design space exploration. A complete study of the different
parameters involved in the circuit design has been provided

TABLE II
IMPLEMENTATION RESULTS FOR DIFFERENT BAND SIZE

Size R Pattern Period Throughput Latency II LUT FF DSP BRAM
(ns) (DTW/ms) (cycles)

2500 8 32 2.386 9.3 1440549 1 1378 1581 8 2
2500 16 32 2.546 4.6 2721061 1 1885 1583 8 2
2500 32 32 2.606 2.3 5282085 1 2919 1590 8 2
2500 64 32 2.518 1.2 10404133 1 4972 1587 8 2

TABLE III
IMPLEMENTATION RESULTS FOR DIFFERENT NUMBER OF PATTERNS INTERLEAVED

Size R Pattern Period Throughput Latency II LUT FF DSP BRAM
(ns) (DTW/ms) (cycles)

2500 16 1 2.025 0.4 1190056 14 552 1015 5 0
2500 16 4 2.488 0.3 4760151 14 1229 1681 6 0
2500 16 8 2.848 2.8 1360291 2 1121 1588 8 0
2500 16 16 2.475 4.7 1360549 1 1354 1542 8 2
2500 16 24 2.234 5.3 2040805 1 1689 1567 8 2
2500 16 32 2.546 4.6 2721061 1 1885 1583 8 2

TABLE IV
IMPLEMENTATION RESULTS CHANGING THE CLOCK FREQUENCY

Size R Pattern Target Period Throughput Latency II LUT FF DSP BRAM
timing (ns) (ns) (DTW/ms) (cycles)

2500 16 1 3 2.025 0.4 1190056 14 552 1015 5 0
2500 16 1 5 3.337 0.5 595049 7 588 813 5 0
2500 16 1 7 5.260 0.4 510046 6 544 772 5 0
2500 16 4 3 2.488 0.3 4760151 14 1229 1681 6 0
2500 16 4 5 3.797 2.2 476145 7 1121 1588 8 0
2500 16 4 7 5.501 0.4 2040143 6 1090 1359 6 0
2500 16 4 10 8.722 1.3 340141 5 933 1119 6 0
2500 16 8 3 2.848 2.8 1360291 2 1121 1588 8 0
2500 16 8 5 3.744 1.6 1360278 2 993 965 6 0
2500 16 8 7 5.170 2.3 680276 1 1092 1106 8 2

to facilitate its fine-tuning for a specific problem. This small
architecture can be easily adapted by replication to achieve
maximum performance on the target FPGA. Future work will
concentrate on designing a parametric multi-core architecture
based on this core and minimizing the transmission of data to
achieve the maximum possible speed on a specific device.

REFERENCES

[1] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, February 1978.

[2] X. Xu, F. Lin, A. Wang, X. Yao, Q. Lu, W. Xu, Y. Shi, and Y. Hu,
“Accelerating dynamic time warping with memristor-based customized
fabrics,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 4, pp. 729–741, April 2018.

[3] S. S. Jambhale and A. Khaparde, “Gesture recognition using dtw and
piecewise dtw,” in 2014 International Conference on Electronics and
Communication Systems (ICECS), Feb 2014, pp. 1–5.

[4] M. Irwin, “A digit pipelined dynamic time warp processor (word
recognition),” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 36, no. 9, pp. 1412–1422, Sep. 1988.

[5] M. Okawa, “Analysis of session variability for online signature veri-
fication using local stability-weighted dtw,” in 2020 IEEE 9th Global
Conference on Consumer Electronics (GCCE), Oct 2020, pp. 220–221.

[6] H. Zhou, X. Xu, Y. Hu, G. Yu, Z. Yan, F. Lin, and W. Xu, “Energy-
efficient pipelined dtw architecture on hybrid embedded platforms,” in
2015 Sixth International Green and Sustainable Computing Conference
(IGSC), Dec 2015, pp. 1–8.

[7] S. Kang, J. Moon, and S.-W. Jun, “FPGA-accelerated time series mining
on low-power IoT devices,” in IEEE 31st Int. Conf. Application-specific
Systems, Architectures and Processors (ASAP), July 2020, pp. 33–36.

[8] S.-W. Kim, S. Park, and W. W. Chu, “An index-based approach for
similarity search supporting time warping in large sequence databases,”
in Proc. 17th Int. Conf. on data engineering. IEEE, 2001, pp. 607–614.

[9] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.-H. Lee, and P. Protopapas,
“Supporting exact indexing of arbitrarily rotated shapes and periodic
time series under euclidean and warping distance measures,” The VLDB
journal, vol. 18, pp. 611–630, 2009.

[10] J. Li and Y. Wang, “Ea dtw: Early abandon to accelerate exactly
warping matching of time series,” in Int. Conf. on Intelligent Systems and
Knowledge Engineering 2007. Atlantis Press, 2007, pp. 1200–1207.

[11] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2012, pp. 262–270.

[12] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, “Acceler-
ating dynamic time warping subsequence search with gpus and fpgas,”
in 2010 IEEE Int. Conf. on Data Mining, 2010, pp. 1001–1006.

[13] C. Hundt, B. Schmidt, and E. Schömer, “Cuda-accelerated alignment of
subsequences in streamed time series data,” in 2014 43rd International
Conference on Parallel Processing. IEEE, 2014, pp. 10–19.

[14] D. Yang, T. Shaw, and T. Tsai, “A study of parallelizable alternatives to
dynamic time warping for aligning long sequences,” IEEE/ACM Trans.
on Audio, Speech, and Language Processing, vol. 30, pp. 2117–2127,
2022.

[15] Z. Chen and J. Gu, “High-throughput dynamic time warping accelerator
for time-series classification with pipelined mixed-signal time-domain
computing,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp.
624–635, Feb 2021.

