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Abstract
Representing the scene appearance by a global image descriptor (BoW, NetVLAD, etc.) is a widely adopted choice
to address Visual Place Recognition (VPR). The main reasons are that appearance descriptors can be effectively
provided with radiometric and perspective invariances as well as they can deal with large environments because of
their compactness. However, addressing metric localization with such descriptors (a problem called Appearance-based
Localization, or AbL) achieves much poorer accuracy than those techniques exploiting the observation of 3D landmarks,
which represent the standard for Visual Localization. In this paper, we propose ALLOM (Appearance-based Localization
with Local Observation Models) which addresses AbL by leveraging the topological location of a robot within a map to
achieve accurate metric estimations. This topology-assisted metric localization is implemented with a sequential Monte
Carlo Bayesian filter that applies a specific observation model for each different place of the environment, thus taking
advantage of the local correlation between the pose and the appearance descriptor within each region. ALLOM also
benefits from the topological structure of the map to detect eventual robot loss-of-tracking and to effectively cope with its
relocalization by applying VPR. Our proposal demonstrates superior metric localization capability compared to different
state-of-the-art AbL methods under a wide range of situations.
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Introduction

The development of emerging technologies like autonomous
vehicles (robots, cars or UAVs) or Augmented Reality
devices demands fast and reliable Visual Localization (VL)
methods to determine the pose of a camera given a pre-
built model of the environment (Piasco et al. 2018; Toft
et al. 2020). Current state-of-the-art (SOTA) VL methods are
commonly addressed from a 3D perspective, by relying on a
model that comprises geometric entities (landmarks), mostly
3D points (Mur-Artal et al. 2015), and sometimes segments
as well (Gomez-Ojeda et al. 2019). With this model, the
camera pose is estimated by minimizing a cost function that
accounts for the errors between the landmark projections
and their corresponding image observations. This approach
has proved to perform very accurately in a wide variety of
scenarios, being nowadays adopted as the de facto standard
for VL (Lynen et al. 2020).

However, relying on such 3D map for VL also comes
with a number of limitations and drawbacks that arise when:
(i) global localization is required (e.g. for relocalization,
wake-up, and kidnapping problems); (ii) few and/or poorly
distributed features are detected in the images; (iii) the
lighting conditions of the scene vary substantially compared
to those in the map (e.g. day/night, different seasons, etc.);
or (iv) the map becomes very large, which demands further
processing and memory resources.

In contrast, Appearance-based Localization (AbL) offers
an entirely different perspective for VL, as it avoids modeling
the 3D geometry of the world. Instead, the image content
is encoded into a compact descriptor, typically through a

Convolutional Neural Network (CNN) (Arandjelovic et al.
2016; Lopez-Antequera et al. 2017a), and the environment
appearance is represented through a database of image
descriptors annotated with their locations, often known as an
Appearance Map (AM). These AMs have demonstrated to
be particularly suitable for Visual Place Recognition (VPR)
(Lowry et al. 2015), both in very large environments and
when facing strong lighting changes. Unfortunately, their
advantage for topological localization comes with a price:
poor performance for metric localization.

Such shortcoming becomes particularly pronounced when
using VPR to obtain accurate AbL results (Sattler et al.
2018), as the outcome is the pose of the element in the AM
with the highest visual resemblance. A commonly adopted
solution is to assume that the camera follows a previously
traversed path (Maddern et al. 2012; Thoma et al. 2019),
which leads to a substantial improvement in accuracy but
with limited applicability. Aiming for better generalization,
some authors opt to represent the environment by a dense
AM (Ham et al. 2005; Lopez-Antequera et al. 2016), but
this leads to maps containing unnecessary and redundant
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Figure 1. Our proposal models the correlation between pose
and appearance at each region Rj with a Gaussian distribution.
Metric pose can be estimated from this correlation which is
specific for each region.

samples, resulting in substantial computational burden and
memory expense.

As a solution to these dense, redundant AMs, in a
previous work (Jaenal et al. 2022) we proposed to cluster
samples that are close in both pose and appearance into
places represented by multivariate Gaussian distributions.
We call this abstracted representation of the AM a Gaussian
Appearance Map (GAM). However, in order to estimate the
Gaussian distributions in the high-dimensional joint space
of descriptor and poses, that work assumed conditional
independence between these variables. This consideration
restricted the GAM to topological location only.

In this paper, we build on top of these topological GAMs
to model the relationship between poses and appearance
on a local basis, now defining correlated distributions
over these two elements for each region (see Fig. 1).
Specifically, we consider planar poses for the robot and a
reduced (projected) version of the appearance descriptor. The
resulting conditional probabilities serve as local observation
models that are integrated into a complete probabilistic
framework based on a sequential Montecarlo filter, resulting
in a system called ALLOM (Appearance-based Localization
with Local Observation Models). This solution estimates
the robot pose with higher precision than existing AbL
techniques while keeping a low computational burden.
Moreover, the system is able to address relocalization by
triggering VPR when needed. This feature allows for fast
initialization and the capability to deal with the kidnapped
robot problem. This claim is supported by evaluating and
contrasting ALLOM against other SOTA methods in three
different indoor datasets: two gathered in real scenarios and
another one created with synthetic images. Additionally, we
provide a demonstration video* and have released the code†.

Related works
The most simplistic approach for addressing AbL is Visual
Place Recognition (Lowry et al. 2015), a technique that,
instead of estimating the query pose, assigns it the pose
of the most similar element in the AM. Several works
have proposed to exploit the spatio-temporal consistency
conferred by image sequences to improve the accuracy of
VPR (Milford and Wyeth 2012; Vysotska and Stachniss
2015, 2017). For example, the authors of Xu et al. (2020,

2021) rely on Bayesian filtering to achieve high performance
even under challenging lighting conditions. Similarly, in
Doan et al. (2020) the authors propose to incrementally build
an abstracted database through clusterization, achieving
state-of-the-art performance with a Bayesian filter upon
optimal computational cost. However, VPR approaches are
of a topological nature and cannot be employed for metric
estimation, requiring to be assessed by some metric threshold
(Sattler et al. 2017; Xu et al. 2021) that uniquely determines
whether a query has been correctly localized.

Some authors have enabled metric localization by
enhancing VPR with techniques for metric estimation such
as Gaussian Processes (GPs) regression (Huhle et al. 2010;
Schairer et al. 2011) or relative pose transform estimation
through CNNs (Laskar et al. 2017; Balntas et al. 2018;
Ding et al. 2019). On the other hand, CNN architectures
have been proposed for absolute pose regression from whole
images (Kendall et al. 2015; Brahmbhatt et al. 2018),
although they still present several limitations as the high
computational cost of learning a complete environment
and a restricted generalization ability (Sattler et al. 2019).
However, all these works are dedicated to estimating the
pose of individual images, which makes localization more
prone to inconsistency problems (e.g. Perceptual Aliasing)
in challenging conditions.

In recent years, though, some authors have proposed
more elaborate procedures for AbL. A common approach
is to employ AMs created from a single trajectory, so
the query pose can be determined through one-dimensional
interpolation between map samples. This way, CAT-SLAM
(Maddern et al. 2012) associates increments on pose
and appearance in order to address AbL on the discrete
maps proposed by FAB-MAP (Cummins and Newman
2008). Other authors have employed flow networks on
single sequence maps (Naseer et al. 2014, 2018; Thoma
et al. 2019), exploiting temporal and spatial correlation to
efficiently address camera localization or mapping. In a
similar manner, the AM proposed in (Jaenal et al. 2021)
consists of a set of adjacent elements that describe areas
where pose and appearance are assumed to be smooth,
addressing AbL through a PF combining GP‡, regression and
odometry. Obviously, using a pre-fixed sequence as AM is
a very restricted solution that lacks applicability to realistic
conditions where the robot moves freely in the environment.
In contrast to all these approaches, our work grounds on
maps expressed as a set of Multivariate Gaussians, which,
instead of relying on a pre-established path, enables further
generalization over the whole environment.

Another potential approach are generating dense,
unordered AMs for the environment, where techniques
such as Gaussian Process Particle Filters (GPPFs) (Lopez-
Antequera et al. 2016, 2017b) can carry out AbL, using GPs
as observation model and odometry for particle propagation.
In short, the GPPF method first finds the nearest samples in
the map in terms of pose for each particle and subsequently

∗https://youtu.be/4vkuK4_RfVQ
†https://github.com/AlbertoJaenal/AppearanceSeqMCL
‡The Gaussian Process employed by these works uses the pose as input and
the descriptor as output. However, the authors simplify the regression by
assuming independence between the components of the descriptors.
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weights the observation at that location through a GP.
Another work operating in dense AMs is the one in (Jaenal
et al. 2020), which proposes a position graph that combines
VPR over urban-scale AMs with accurate Visual Odometry
from local features, allowing the correction of the drift and
also to geo-alignment of the sequences. However, these
approaches require a high amount of samples to achieve
reasonable accuracy (most likely with redundant data), at
the cost of increasing both the computational time and
the map size. The topometric abstraction employed in
this work summarizes the information contained in dense
AMs, achieving a consistent and precise localization while
substantially improving its computational cost.

Finally, it is worth noting that, unlike the approaches
cited above, which assume independence between descriptor
components, ours is, to the best of our knowledge, the
first work for AbL that exploits the correlation between
the pose and appearance vector components (in this case, a
reduced/projected version).

Topometric Gaussian Appearance Maps
Our localization system builds on top of the concept
of Gaussian Appearance Map (GAM), proposed in our
previous work (Jaenal et al. 2022). In a nutshell, a
GAM is a probabilistic model consisting of a Mixture of
Multivariate Gaussian distributions over the joint space of
pose and appearance descriptor. In (Jaenal et al. 2022),
a GAM provides a topological-only representation of an
environment, suitable for efficient VPR but not for metric
AbL. To make this topological nature explicit, from now on
we will refer to it as TGAM . Here, we introduce a metric
version of a GAM, denoted MGAM , that now takes into
account the local correlation between pose and appearance
in order to facilitate metric AbL.

In the following, we start by formally defining an
Appearance Map (AM) as the source for building the
GAMs; then we review the basics concepts of the original
TGAM and address the synthesis of the new metric MGAM .
Finally, we define the aggregation leading to the topometric
TMGAM , which will allow for topology-assisted metric robot
localization. A summary of the notation used throughout the
paper is provided in Table 1, for quick reference.

Appearance Map
We define an Appearance Map (AM) as an unordered set
of geo-tagged image descriptors, typically collected during
several robot navigations (Gálvez-López and Tardós 2012;
Torii et al. 2015; Arandjelovic et al. 2016). Formally:

AM = {xi}Ni=1, (1)

where N is the number of pairs xi = [qi,di]
⊺, formed by

a pose vector qi ∈ SE(2) and a D-dimensional appearance
descriptor di ∈ RD.

In the case of indoors, where many parts of the
environment are likely to be revisited multiple times, AM
will include repeated (or very similar) views that do not add
any meaningful information to the map, while increasing its
size unnecessarily. Reducing this irrelevant data is the main
motivation behind the abstraction process that leads to the
TGAM described next.

Table 1. Summary of the employed notation

SYMBOL MEANING

xi,qi,di ith element in the database, its metric pose and
its appearance descriptor, respectively

TR , TRj Topological GAM, and its jth region
MR , MRj Metric GAM, and its jth region

TMR Topometric GAM
Tµ

q
j , TΣq

j Mean and covariance of the pose Gaussian
distribution for TRj

Tµ
d
j , Tσ2

j I
D Mean and covariance of the descriptor Gaussian

distribution for TRj

δj,i PCA-reduced ith descriptor for the jth region
Mµ

q
j , MΣqq

j Mean and covariance of the pose Gaussian
distribution for MRj

Mµ
δ
j , MΣδδ

j Mean and covariance of the descriptor Gaussian
distribution for MRj

MΣ
qδ
j Pose-descriptor cross-covariance matrix for MRj

pt, rt, ut Metric pose, topological region (in the GAM)
and odometry reading of the robot at time t

p̃t, r̃t, w̃t Metric pose, topological region and weight of a
certain particle at time t

Topological GAMs: TGAM
The topological GAM consists of a Multivariate Gaussian
Mixture Model that covers the mapped environment with
a set of M regions TR = {TRj}Mj=1, each representing a
local area with similar appearance. This similarity in both
appearance and poses defines a place of the environment.
The number of regions M chosen to cluster the TGAM
is selected according to the Davies-Bouldin (DB) Index
(Davies and Bouldin 1979), which estimates the optimal
value from the existing poses of the map. Further information
about this index can be found in our previous work.

According to this model, the elements Tx within each
region TRj are considered to follow a certain Gaussian
distribution over the joint space of pose and appearance:

Tx ∼ N

Tµ
q
j

Tµ
d
j

 ,

TΣ
q
j 0

0 Tσ2
j I

D

 (2)

A full explanation of the estimation of the distribution
parameters can be found elsewhere (Jaenal et al. 2022). From
now on, we will use TRj to refer indistinctly to both the
topological region and its associated Gaussian distribution.

As seen in Eq. 2, two simplifications are adopted in the
construction of this model due to computational reasons: (i)
the independence between poses and descriptors, and (ii)
the modeling of the appearance descriptor d as an isotropic
normal distribution. In the first one, the lack of correlation
between poses and descriptors prevents inferring information
about the camera pose given the image descriptor and vice
versa. Also, the assumption of an isotropic distribution of
the appearance of the region is too simplistic to properly
characterize the appearance variability of a place. Although
both simplifications have proved to be assumable for reliable
VPR, as demonstrated in (Jaenal et al. 2022), they are not
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suitable for metric localization, where a given observed
image descriptor must provide information about the pose
of the camera.

Metric GAMs: MGAM
In this paper, we present the metric MGAM , which
overcomes the above-mentioned limitations of the TGAM
by modeling the local correlation between pose and
appearance within each region MRj .

The main hindrance to the calculation of such correlation
is the high dimensionality of the appearance descriptor
(typically, D ≥ 210), which demands an unfeasibly huge
amount of map samples to estimate the covariance
between both variables (pose and appearance). Therefore,
we project the descriptor to a subspace with a more
manageable dimension (D′ ∼ 26). Particularly, we apply
Principal Component Analysis (PCA) (Pearson 1901), since
it preserves maximum variance between the descriptor
components. However, employing a single PCA-based
reduction for the entire map is inadequate because the
AM forms a highly non-linear manifold embedded in
the descriptor space, which can not be linearly mapped
without losing meaningful appearance information. This
becomes evident if we think that similar descriptors from
different locations can be projected to the same simplified
descriptor (i.e. Perceptual Aliasing), hence losing any
trustable correlation between the projected descriptors and
their corresponding poses. To avoid this, we apply PCA
on a local basis, that is, reducing the dimensionality of the
appearance by taking into account only those descriptors
located within each region of the map. Formally, for a given
appearance descriptor di associated to a sample located
within the jth region, we generate its projected descriptor
using a PCA model specifically trained for that region:

δj,i = PCAj(di) ∈ RD′
| (D′ ≪ D). (3)

This idea is key for the formulation of the localization
process described next, and shares the same principles as
other hybrid localization methods that use structure-based
maps (Blanco et al. 2008; Mazuran et al. 2018).

Dimensionality Reduction training. The PCA model for the
jth region of the map is trained with a subset ÂMj that
collects those samples that fulfill two requirements: (i) they
belong to the original dense AM, and (ii) their likelihood of
falling in the j-th region is the maximum among all regions.
Formally:

ÂMj =
{
xi | (xi ∈ AM) ∧

(
argmax

k
L (xi | TRk) = j

)}Nj

i=1
, (4)

where Nj is the number of samples of the subset and
L (xi | TRk) represents the likelihood of the ith sample
within the Gaussian distribution associated to the kth

topological region (defined in Eq. 2). Note that, although
this likelihood is evaluated in the space of concatenated pose
and appearance, only the descriptors will be used to train the
model PCAj for the region. Then, this model is employed to
project the descriptors di in ÂMj , leading to a new set:

MÂMj = {Mxi}
Nj

i=1 |
Mxi = [qi, δj,i]

⊺, (5)

now including the projected descriptors δj,i instead of the
original di.

Creation of the metric regions. The final step consists of
determining the parameters Mµj and MΣj of the Gaussian
distribution associated to each metric region MRj , given the
samples Mxk ∈ MÂMj :

Mxk ∼ N (Mµj ,
MΣj) ≡ N

Mµ
q
j

Mµ
δ
j

 ,

MΣ
qq
j

MΣ
qδ
j

MΣ
δq
j

MΣ
δδ
j

. (6)

where MΣ
qδ
j =

(
MΣ

δq
j

)T
.

These parameters are computed by applying a Maximum
Likelihood Estimation process:

Mµj =

∑
k wk

Mxk∑
k wk

, (7)

MΣj =

∑
k wk (

Mxk ⊟ Mµj)(
Mxk ⊟ Mµj)

⊺∑
k wk

, (8)

with k iterating over all elements in the subset and where
wk = L (Mxk | TRj) is the likelihood of the sample given the
topological region.

Here, the operator ⊟ represents the subtraction between
two samples in the concatenated [q, δ] space, that is:
Mx1 ⊟ Mx2 = [q1 ⊖ q2, δj,1 − δj,2]

⊺, where the operator ⊖
stands for the pose inverse composition (Fernández-Madrigal
and Blanco-Claraco 2012).

Topometric GAMs: TMGAM
At this point, we have defined two different Gaussian
Appearance Maps for an environment: TGAM describes it
from a topological perspective, while MGAM models the
local correlation between the pose and the appearance, being
suitable for metric localization.

For convenience of notation, we define a topometric map
TMGAM as a dual Multivariate Gaussian Mixture Model
composed of the following aggregation:

TMR =
{(

TRj ,
MRj

)}M

j=1
. (9)

As a result of maintaining both GAMs, we can leverage the
topological knowledge of the environment to improve metric
localization, as described next.

Sequential Montecarlo Localization
The proposed system ALLOM (Appearance-based Localiza-
tion with Local Observation Models) takes advantage of both
GAMs to sequentially estimate the metric pose of the robot
pt ∈ SE(2) while keeping consistency with its topological
location rt ∈ [1...M ] in the TGAM . We call this: topology-
assisted metric Appearance-based Localization. In addition,
ALLOM provides methods for initialization and relocal-
ization after loss-of-tracking that also relies on topological
information.

The sequential localization, whose graphical model is
shown in Fig. 3, is formulated as the estimation of the
posterior distribution:

p
(
pt | δt,ut,pt−1,

TMR
)
. (10)

In this formulation, the probability of the current pose
of the robot pt depends on: (i) its previous pose pt−1;

Prepared using sagej.cls
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Figure 2. Operation of ALLOM for Appearance-based Localization over a Gaussian Appearance Map ( TMGAM ). The left part of the
figure describes the process of initialization and relocalization after a robot loss-of-tracking: first, it applies VPR to detect the most
probable regions in the TGAM and then uses the specific descriptor for each region δr to determine the initial pose of each particle.
The right part describes the sequential localization: after propagating the particle pose with the odometry, each particle is assigned
to a region of the map. The local observation model of this region is used to compute the likelihood that weights the particle.

Figure 3. Probabilistic graphical model for ALLOM. The two
unknown (hidden) variables at each time instant are the region r
in the TMGAM that the robot is traversing and the global pose p.

(ii) the projection of the observed appearance descriptor
δt = PCArt(dt), given the topological location of the robot;
(iii) the odometry of the robot ut; and (iv) the TMGAM .
For convenience, from now on, we will omit specifying the
map TMR in the formulation, since it is involved in all the
derivations.

We estimate Eq. 10 through Bayesian filtering:

p (pt | δt,ut,pt−1) ∝ p (δt | pt)︸ ︷︷ ︸
Local obs. model

p (pt | ut,pt−1)︸ ︷︷ ︸
Transition model

,
(11)

where the rightmost term is the transition model and the
middle term represents a contribution of this work: a local
observation model specifically fitted for the region rt in
which the robot is located. We solve this localization problem
through a Particle Filter (PF), so that a set of Np weighted
particles approximates the posterior belief of the current
robot pose in Eq. 10.

In practice, the localization process modeled by Eq. 11 is
carried out as summarized in Fig. 2 (right): we first propagate
the previous metric pose of the particles, we then use the
resulting poses to determine their topological location, and,

finally, we update their weights, as explained next. For the
sake of clarity, in the following we will refer to the current
topological state, metric pose and weight of a particle by r̃t,
p̃t and w̃t, respectively.

Transition model
The transition model in Eq. 11 updates the pose of the
particles applying the odometry reading ut:

p̃t = p̃t−1 ⊕ ut ⊕ ϵ, (12)

with ϵ ∼ N (0,Σu) being Gaussian noise, and ⊕ the pose
composition operator (Fernández-Madrigal and Blanco-
Claraco 2012).

Local observation model
In turn, the local observation model in Eq. 11 modifies the
importance of each particle according to the likelihood of
the current appearance observation δt.

For that, the first step is to determine the topological region
r̃t where each particle lies in, defined as the region of the
MGAM where the particle has the maximum likelihood from
its pose:

r̃t = argmax
j

L
(
p̃t | Mµ

q
j ,

MΣ
qq
j

)
. (13)

Once the particle region is known, its associated PCA
projection function is applied to the observed image
descriptor dt to obtain the reduced descriptor δr̃t,t. Then, the
weight w̃t of each particle is updated with the likelihood:

p (δt | pt) = L
(
δr̃t,t | Mµ

δ
r̃t,t,

MΣ
δ
r̃t,t

)
, (14)

where Mµ
δ
r̃,t and MΣ

δ
r̃,t are the mean and covariance of

the conditional distribution over the space of the projected
descriptors given the current pose of the particle p̃t:

Mµ
δ
r̃t,t =

Mµ
δ
r̃t +

MΣ
δq
r̃t

MΣ
qq−1

r̃t

(
p̃t ⊖ Mµ

q
r̃t

)
MΣ

δ
r̃t,t =

MΣ
δδ
r̃t +

MΣ
δq
r̃t

MΣ
qq−1

r̃t
MΣ

qδ
r̃t .

(15)
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Note that, in this expression, all matrix multiplications can
be calculated off-line, since they do not depend on the actual
pose of the particle, but only on the parameters of the metric
region defined in Eq. 6. Just the inverse pose composition
and the subsequent product must be performed at each step.

Finally, in order to avoid the numerical divergences
derived from evaluating high-dimensional multivariate
likelihoods in the projected descriptor space, we weight the
particles through the log-likelihood:

w̃t ∝ w̃t−1 log L
(
δr̃t,t | Mµ

δ
r̃t,t,

MΣ
δ
r̃t,t

)
. (16)

As a common practice, when the Effective Sample Size
(ESS) of the PF falls below τESS = NP

2 , we apply Sampling
Importance Resampling (Rubin 1988).

Initialization and Relocalization
Once the procedure for sequential localization has been
stated, we discuss here the detection of the robot loss-of-
tracking and how the PF addresses initialization and particle
relocalization.

Loss-of-tracking detection. Due to the fact that local
observation models are defined specifically for each region,
a correct topological localization must be guaranteed in
order to obtain reliable metric estimations. This implies
determining whether the robot tracking is consistent or, on
the contrary, has been lost. Hence, we identify a loss-of-
tracking when the metric pose estimation pt of the robot is
significantly far from the center of its topological location
in the map rt during a certain time window wloss. This is
measured by means of the set of Mahalanobis distances in
pose ∆M (pt) =

{
∆M

(
pt′ ,

TRrt′

)}t

t′=t−wloss
within the

time window, with:

∆M (pt,
TRrt) =

√
(pt ⊖ Tµq

rt)
T
(TΣq

rt)
−1

(pt ⊖ Tµq
rt). (17)

Inspired by (Xu et al. 2021), we employ a chi-squared
cumulative distribution with three degrees of freedom over
such distances:

P (∆M (pt) < τχ) = χ2
3(τχ), (18)

to measure the probability mass of the Mahalanobis distance
being under the scalar threshold τχ. This probability
describes how likely the tracking of the robot has been lost
at time step t, in order to trigger a relocalization procedure.

Particle initialization and relocalization. Particle initializa-
tion in ALLOM is carried out according to the following
procedure, illustrated in Fig. 2 (left):

• First, the initial topological location of the particles r̃0
is obtained through probabilistic VPR. This involves
evaluating the likelihood of the observation d0 at the
appearance term of all the TGAM regions (see Eq. 2):

L0,j = L
(
d0 | Tµd

j ,
Tσ2

j I
D
)
. (19)

• We select all the regions whose likelihood is greater
than 80% of the most probable one (VPR ratio
verification in Fig. 2 (left)). For each of them, a
number of particles proportional to their likelihood are
deployed: Np,j ∝ L0,j .

• We then compute the projected descriptor δr̃0,0 for
each selected region and obtain a conditional Gaussian
distribution in pose N

(
Mµ

q
r̃0,0

, MΣ
q
r̃0,0

)
from the

metric regions in the MGAM , given the value of δr̃0,0:

Mµ
q
r̃0,0 = Mµ

q
r̃0 +

MΣ
qδ
r̃0

MΣ
δδ−1

r̃0

(
δr̃0,0 − Mµ

δ
r̃0

)
MΣ

q
r̃0,0 = MΣ

qq
r̃0 + MΣ

qδ
r̃0

MΣ
δδ−1

r̃0
MΣ

δq
r̃0 .

(20)

• The initial pose p̃0 of the particles for each region
r̃0 are determined by drawing samples from such
conditional distribution.

• Finally, the initial weights of the particles are
uniformly distributed w̃0 = 1

Np
.

In the case of loss-of-tracking, relocalization follows an
analogous procedure, but starting from the observation dt

instead.

Experimental setup
Before describing the experiments, we first introduce the
error measures chosen for the evaluation of our proposal and,
subsequently, the datasets and parameter settings employed
for the tests.

Evaluation error
Given that ALLOM is a topology-assisted AbL method,
we evaluate its performance in both metric and topological
terms, as detailed next.

Metric localization accuracy. Two different criteria have
been chosen to measure the metric accuracy: (i) the well-
known Absolute Trajectory Error (ATE), widely employed in
SLAM methods (Mur-Artal and Tardós 2017; Gomez-Ojeda
et al. 2019), and (ii) the Median Translation Error (MTE)
Sattler et al. (2018); Toft et al. (2020), since considering
only ATE for methods that can incur in loss-of-tracking
and perform relocalization yields biased results due to the
deviation that outliers induce in ATE. In such situations,
MTE brings more realistic results.

Topological localization accuracy. Regarding the topolog-
ical aspect, a grounded criterion to decide whether the
estimate at a certain time step is correct, consists of checking
how likely is that the ground-truth robot pose p∗

t lies in the
estimated topological region rt. This measure is typically
used in VPR-related works (Lowry et al. 2015; Xu et al.
2021; Jaenal et al. 2022). To this end, we consider that
the estimated region is correct if the Mahalanobis distance
between the ground-truth and the pose distribution of the
region ∆M (p∗

t ,
TRrt) falls below a value of 4, since it

represents the 99% confidence region for a three-dimensional
distribution, such as the pose in SE(2). From this detection
process, we evaluate the topological accuracy with the Area
Under the Curve (AUC) of the Precision-Recall (PR) curves
(Xu et al. 2020), varying a region importance threshold. The
importance of a region is computed as the sum of the weights
of the particles that have been topologically assigned to it.

Dataset description
We evaluate our proposal against three datasets containing
images of planar robot motion in indoor scenes: two publicly
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(a) COLD Database (b) Robot at Virtual Home (R@VH)

(c) COLD Database (using Std. seq.) (d) MAPIR-LABS

Figure 4. Poses in the Appearance Maps (AMs) are plotted as green dots and the evaluation trajectories for the three employed
datasets are plotted as solid lines. The poses of the AM are a collection of unordered elements obtained from different robot
trajectories, while the evaluation dataset consists of sequences that do not totally overlap with the AM. The figure in (c) shows a
partially mapped version of the COLD database with evaluation trajectories traversing uncharted areas.

available (named COLD and R@VH) and an additional
one collected by ourselves (named MAPIR-LABS). All of
them contain several loops and revisitations of parts of the
environment, and include the challenges described below:

• The COsy Localization Database (COLD) (Prono-
bis and Caputo 2009) (concretely the sub-dataset
Freiburg-partA) includes images and odometry read-
ings from a robot navigating a real-world office at
5Hz, where sequences roughly follow two different
routes (depicted in Fig. 4a): a standard one (std.),
consisting of a smaller set of rooms; and an extended
one (ext.), which visits the whole environment. Each
type of route always follows the same order in which
the rooms were visited. The AM was created from four
of the sequences recorded under cloudy conditions
(two standard and two extended), containing a total
of ∼ 10k images of the environment under similar
lighting conditions, accounting for slight viewpoint
variations (see Fig. 4a). The evaluation for this dataset
uses a standard and an extended sequence under all
possible appearance settings, namely: cloudy (differ-
ent from those sequences employed to create the map),
night and sunny, presenting challenging appearance
variations w.r.t. the map.

• The synthetic Robot at Virtual Home (R@VH)
(Fernandez-Chaves et al. 2022) provides realistic
simulations of robot navigations within ∼ 30 different
houses. We simulated the House21 subdataset, which
covers 16m × 8m and has 8 different rooms connected

by a corridor, as shown in Fig. 4b. We gathered
images and poses with a simulated robot under the
same lighting conditions at 33Hz, and we artificially
generated the odometry for this dataset, adding zero-
mean Gaussian noise with σ = (0.05m, 2.50◦) to the
ground truth poses. In this case, the AM consisted
of a sequence where the simulated robot visited each
room more than once without following a particular
order, resulting in > 50k images. Two short evaluation
sequences were provided for this dataset: the first
following a path similar to that used for the map (Sim.),
and another one where the virtual robot was driven
manually within the environment, following a different
order (Diff.).

• The third dataset, called MAPIR-LABS, was col-
lected by ourselves, teleoperating a Giraff robot
(Gonzalez-Jimenez et al. 2012) in three different labo-
ratories and a corridor that connects them in the School
of Computer Science and Engineering of the Univer-
sity of Malaga. The ground-truth for the sequences
was obtained with a Graph-SLAM implementation
(Grisetti et al. 2010) over the recorded laser scans,
while the odometry readings were obtained using
RF2O (Jaimez et al. 2016). The map consisted of
three sequences visiting a 30m × 15m environment
following different paths (as depicted in Fig. 4d), con-
taining more than 150k images captured at 33Hz. Two
evaluation sequences were also recorded: one visiting
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the whole environment (3-labs) under the same radio-
metric conditions as the map but following a different
path, and another one visiting only a room (1-lab)
which presents dynamic changes (moved furniture,
new objects, etc.).

The GAMs for each dataset were generated off-line,
before addressing the localization process. According
to the DB Index, the number of regions was set to
M = {35, 40, 65} for the COLD, R@VH and MAPIR-
LABS datasets, respectively.

Parameter setup
For the experiments, we have chosen the following parameter
settings:

• The GAMs were built employing samples from
sequences captured under the same lighting condi-
tions, which leads to underestimating the variance of
the projected descriptors when captured in different
circumstances. Consequently, we model the possible
impact caused by such different lighting conditions
as noise, modifying the covariance matrix of the esti-
mated Gaussian distribution of the projected descriptor
MΣ

δδ
j in Eq. 6. In particular, we multiply it with a

matrix whose diagonal entries are σii = 1.5 and whose
off-diagonal entries are σij|i ̸=j = 0.5.

• The covariance matrix of the odometry noise in Eq. 12
has been set to diag(Σu) =

[
0.0252, 0.012, 0.052

]
.

• The time window for detection is wloss = 3s, and the
loss-of-tracking detection threshold is τχ = 99%.

• The computational time for each analyzed method was
measured in an Intel Core i7-6700K computer with 16-
GB RAM, using Python and the NumPy library.

• For every experiment we depict the average results
after 5 runs.

Experimental results
Here we assess the performance of our proposed system and
compare it against other SOTA methods.

We first conduct a proof of concept to evaluate the
benefits of modeling the local correlation between pose and
appearance, a capital assumption in this work. Secondly, we
explore two essential aspects of our method: the influence
of the holistic descriptor chosen to represent the appearance,
and the advantages of using local observation models against
a global one. Then, we evaluate ALLOM’s topological and
metric accuracy, as well as its processing time, in comparison
to other SOTA approaches for AbL. Finally, we analyze
the capability of our proposal to achieve fast and precise
relocalization.

A proof-of-concept on local vs. global
pose-appearance correlation
This work is based on exploiting the correlation between
the appearance descriptor and the pose. We claim that such
correlation must be modeled locally, as a global correlation
may not exist given the complexity of the appearance
descriptor manifold. Intuitively, we can not assume a reliable
correlation that relates any scene appearance descriptor

(a) GAM with M = 1 region

(b) GAM with M = 35 regions

Figure 5. Two GAMs built from the COLD Database (see AM in
Fig. 4a) with different number of regions.

to a pose. Thinking locally, however, one can expect
that increments of the camera pose bring increments of
appearance. This is the principle of our local observation
model. To support this intuition, we have designed a
simple proof of concept using two maps reflecting extreme
scenarios: (i) a TMGAM with a single region M = 1
(see Fig. 5a) that models the pose-appearance correlation
globally; and (ii) a TMGAM with M = 35 regions (see
Fig. 5b).

Table 2. Results of ALLOM for maps with different number of
regions on the COLD dataset.

M AUC (%) ATE (m) MTE (m)

1 100.00 6.3493 5.5827

35 91.70 0.4974 0.2015

The results shown in Table 2 reflect the topological and
metric accuracy of ALLOM with a number of particles Np =
100 and using D′ = 128 as the dimension of the projected
descriptors, over the Std. Cloudy sequence on each GAM.
The values of these parameters have been chosen empirically,
as they provide an appropriate balance between accuracy and
computational burden.

As can be seen, for the one-region map, even though
the robot is always topologically localized within the
environment (obviously, as there is just one region), the
computed correlation between pose and appearance is
completely uninformative, resulting in a very poor metric
localization. In contrast, using multiple regions allows us
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to establish local correlation models between pose and
appearance, ultimately leading to a representation of the
environment more suited for metric localization.

Influence of the appearance descriptor
One of the capital elements of AbL is the choice of the
holistic descriptor employed to represent appearance, as
it heavily influences its performance. Since ALLOM is
not attached to any particular appearance representation
and can be run with any of the existing descriptors, here
we carry out some experiments using three of the most
popular holistic descriptors and analyze its performance: i)
NetVLAD (Arandjelovic et al. 2016), a 4096-sized Deep
Learning descriptor, ii) ImRet (Radenović et al. 2019), the
2048-sized Resnet-101 Generalized Mean (GeM) descriptor,
and iii) and an additional Bag of Words (BoW) descriptor
(Gálvez-López and Tardós 2012) built from ORB features,
with the vocabulary trained in (Mur-Artal and Tardós 2017)
accumulated into 1024 bins.

Table 3. Accuracy of our proposal for different descriptors on
the COLD dataset.

AUC (%) ATE (m) MTE (m)

ALLOM + ORB-BoW 32.68 9.1335 1.0264

ALLOM + NetVLAD 36.01 4.8728 0.7550

ALLOM + ImRet 91.70 0.4974 0.2015

The results depicted in Table 3 were also obtained with
Np = 100 and using D′ = 128 projected dimensions, and
clearly indicate that ImRet is a descriptor more suited for
our approach than NetVLAD and BoW. The results illustrate
the failure of the latter descriptors to meet one of the main
assumptions of this work: smooth descriptor variation with
respect to the pose. In fact, NetVLAD and BoW present
excessive variability even for close samples compared to
ImRet. Besides, this variability lacks any proportionality
to the pose, which becomes problematic when assuming
smoothness across a spatial region such as the GAMs. This
is an interesting issue that deserves to be addressed in more
detail in future work, but, for the rest of the experiments
and taking into account the empirical results, ImRet has been
chosen as the appearance descriptor.

Local vs. global observation model
Our work, which advocates defining different local
observation models for each region, postulates against those
methods that build a single observation model for the entire
environment.

In the following, we evaluate our proposal in comparison
to a global-observation-model-based method in terms of
metric accuracy as well as memory and computational cost.
For that, we have chosen the Gaussian Process Particle Filter
(GPPF) proposed in the series of works (Lopez-Antequera
et al. 2016, 2017b), as they define a single Gaussian Process
that operates indistinctly in all parts of the map. The main
reason behind selecting this approach is that, as the TMGAM
in which our proposal is based, it carries out AbL on
unordered sets of data points, which makes the two methods
directly comparable.

Fig. 6 shows the localization error (using the ATE) and the
computational time (seconds per step) for different number
of particles incurred by the GPPF technique operating on the
dense AM, and ALLOM over TMGAM obtained from the
same AM. Error bands representing the standard deviation
are also shown for each method. As can be seen, our proposal
reaches the accuracy of the GPPF for descriptor dimensions
greater than 100 while requiring much less computational
time. Notice that the ATE does not decrease significantly
for D′ > 100, indicating that, by applying PCA for each
region, we obtain a very compact descriptor that reflects
most of the pose information for that region. According to
these results, ALLOM obtains a similar ATE than GPPF
but requires one order of magnitude less time, thanks to the
abstraction provided by the GAMs.

In addition, Table 4 shows that our proposal requires
more lightweight maps, demanding at least 50× less memory
space. The size of the dense AM is calculated as the sum of
the sizes of each appearance descriptor as O(ND), with N
being the number of samples and D the dimension of each
descriptor. In turn, the size of the TMGAM is independent of
the original number of AM samples (reflected by the size
of AM), but depends on the number of regions M and
the size of the projected descriptor (D′ = 128 in this case),
as ∼ O(MD +MD′ +MD′2), being M the number of
regions. Note that, in both cases, the space occupied by the
poses is disregarded, as it is negligible in comparison.

Table 4. Size of the Topometric Appearance Map TMGAM (in
MB) for different size of the ImRet descriptor.

COLD R@VH MAPIR-LABS

Dense AM, AM 195.31 259.26 1156.80
TMGAM D′ = 10 0.58 0.68 1.11
TMGAM D′ = 50 1.26 1.50 2.44
TMGAM D′ = 100 3.21 3.89 6.33
TMGAM D′ = 128 4.60 5.90 9.59
TMGAM D′ = 200 10.16 13.11 21.55

Topological localization
Given the topology-assisted nature of our proposal, it is
of interest to evaluate the correctness of the estimated
topological path, that is, the sequence of traversed regions,
as it has a direct impact on the metric results.

Table 5 shows a comparison between the topological
localization accuracy of three different approaches: (i) pure
VPR over the TGAM (i.e. to retrieve the topological region
that maximizes the Gaussian likelihood of a query descriptor
in appearance terms, as formulated in Eq. 19), using the
best and the three best matches (shown as Top-1 and Top-
3 in the table, respectively), (ii) the topological Bayesian
filter proposed in our previous work (Jaenal et al. 2022),
which makes use of a simple transition model between
regions based on the pose distance between them (for more
information, please refer to the paper), and (iii) ALLOM,
again with Np = 100 particles, and a projected descriptor
with D′ = 128 dimensions.

The results show that our method clearly outperforms
the topological accuracy of the other approaches in most
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Figure 6. Absolute Trajectory Error (ATE) and computational time using the ImRet descriptor for GPPF (Lopez-Antequera et al.
2017b) (Global Observation Model) and our proposal (Local) for different number of particles.

Table 5. Precision of the topological localization over the
Gaussian Appearance Map TMGAM measured through the AUC
in %. Three different methods are compared: pure VPR, a
topological sequential VPR filter and the topological part of
ALLOM.

VPR VPR Topol.
ALLOM

(Top-1) (Top-3) Jaenal et al. (2022)

COLD

Std. Cloudy 86.20 94.78 64.98 99.79

Ext. Cloudy 78.15 86.43 56.42 91.16

Std. Night 75.75 84.27 51.23 99.43

Ext. Night 72.99 81.33 43.79 94.77

Std. Sunny 72.80 80.81 45.11 90.21

Ext. Sunny 63.41 73.55 34.06 72.80

R@VH
Sim. 43.90 64.17 40.12 81.98

Diff. 44.07 57.86 27.13 67.19

MAPIR 1-lab 82.96 92.54 43.05 92.42

-Labs 3-labs 74.44 86.41 79.50 87.37

scenarios, although pure VPR also obtains very reliable
estimations. This seems to demonstrate that the abstracted
maps provide a description of the environment appearance
sufficiently adequate for VPR. The poor performance of the
topological filter for VPR is explained by the limitations
of the topological transition model in which it relies.
The topological nature of this recursive approach makes
it unable to incorporate metric information such as robot
odometry, which makes it sensitive to observation noise
and/or Perceptual Aliasing. In addition, it is also incapable
of recovering after a loss-of-tracking, consequently obtaining
reduced tracking performance in the long-term. These
shortcomings were one of the main motivations for the
development of this proposal.

Metric localization
To complete the localization evaluation, we now analyze the
results between ALLOM and other SOTA AbL methods in
terms of both topological and metric accuracy (through AUC,
and ATE-MTE, respectively), and processing time (seconds
per step).

We have compared three different techniques:

• VPR-Reloc. (Vysotska and Stachniss 2017), a graph-
based VPR tool that matches sequences following
different routes with partial overlap.

• Image-Nav. (Thoma et al. 2019), a flow network for
localization.

• MCL (Xu et al. 2020), a Monte Carlo-based
Localization method that employs odometry readings.

It should be noted in advance that all these approaches
are designed to address localization on AMs based on a
single sequence, usually subsampled for efficiency. Recall
that, in contrast, ALLOM works on a probabilistic TMGAM
that results from abstracting a dense, unordered set of
georeferenced images, built from individual samples without
any sequential information. Thus, to allow comparison,
we have run these SOTA methods using as a database
each of the sequences employed to create the TMGAM ,
and then averaging their final results. Furthermore, as they
require subsampling to improve efficiency, we measured
their performance using maps with an amount of samples
similar to the evaluation conditions they follow in their
respective proposals. The parameters of each method have
been left as the authors set by default.

Similarly to the measure defined in equation Eq. 17 for our
approach, the criteria to determine if a query image has been
correctly localized in topological terms by these techniques
turns into assessing whether the distance in pose between the
query estimation and the ground truth falls below a certain
threshold τ = (1m, 10◦). This threshold has been chosen
by adapting to indoors the (5m, 10◦) outdoors threshold
proposed in (Sattler et al. 2018).

The localization results for the four techniques can be
seen in Table 6, with ALLOM and MCL outperforming the
other two approaches in all cases. Note that VPR-Reloc is
a sequence-to-sequence matching proposal, so it is unable
to provide metric poses estimations (hence shown as N/E in
the table). Image-Nav., on the other hand, performed poorly
in most cases and also required excessively long processing
times.

In the COLD dataset, our proposal demonstrates accuracy
comparable to MCL on maps with considerably higher
sampling rate. It is important to note that, in this dataset,
the path of the robot between the evaluation sequences and
those employed to build the map follow similar trajectories, a
situation which is beneficial to single-sequence approaches.
On the contrary, since the evaluation trajectories from
MAPIR-LABS and R@VH datasets cover the environment
following different paths than their mapping sequences,
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Table 6. Compared ATE and MTE in meters, topological performance (through AUC) and time per step (p/s) in seconds of different
methods: VPR-Reloc Vysotska and Stachniss (2017), Image-Nav. Thoma et al. (2019) and MCL Xu et al. (2020). N/E means not
estimated.

COLD R@VH MAPIR-LABS

M AUC (%) ATE (m) MTE (m) Time p/s M AUC (%) ATE (m) MTE (m) Time p/s M AUC (%) ATE (m) MTE (m) Time p/s

VPR-Reloc. + ImRet 250 34.15 N/E N/E 0.0036 400 32.51 N/E N/E 0.0066 500 21.48 N/E N/E 0.0071

VPR-Reloc. + NetVLAD 250 35.64 N/E N/E 0.0036 400 41.39 N/E N/E 0.0065 500 36.86 N/E N/E 0.0075

Image-Nav. + ImRet 250 38.46 3.8744 1.3149 3.7974 400 9.23 4.1191 1.6252 7.6912 500 14.53 5.9410 2.1751 15.9024

Image-Nav. + NetVLAD 250 42.72 2.7467 0.9574 3.7314 400 15.13 3.7591 1.2636 8.6912 500 22.02 4.6941 1.8753 16.0089

MCL + ImRet 250 87.29 0.5283 0.2273 0.0506 400 76.04 2.0171 1.1342 0.0642 500 39.81 8.7259 6.4464 0.0642

MCL + NetVLAD 250 87.06 0.5055 0.2070 0.0506 400 84.67 0.8018 0.4449 0.0516 500 58.84 4.2320 1.4241 0.0532

ALLOM + ImRet 35 91.70 0.4974 0.2015 0.0325 40 74.58 0.8797 0.3515 0.0369 65 89.89 0.5952 0.4737 0.0534

ALLOM + NetVLAD 35 42.02 4.3749 0.6418 0.0422 40 46.84 5.3729 0.8179 0.0401 65 27.96 6.4199 1.0457 0.0572

ALLOM significantly outperforms the metric accuracy of
MCL as this is unable to generalize the environment beyond
the mapping sequence. In this case, ALLOM obtains superior
performance, demonstrating that the topological knowledge
based on the spatial structure of the environment in which
TMGAM grounds provides better understanding than the
prefixed route from single-sequence maps. This improves the
metric accuracy for Appearance-based Localization.

Relocalization
Finally, to test the relocalization capability of our proposal,
we have designed a set of challenging scenarios in which the
robot loses its track, namely:

• Camera failure: The robot keeps moving while the
camera does not capture images (specifically, the
image turns black). This situation lasts 5-10 seconds.

• Slippery surface: The robot remains static during 5-10
seconds while providing unrealistic odometry reading
and receiving a still image from the camera.

• Kidnapped robot: We introduce a jump at some point
in the robot’s trajectory and place it at an arbitrary
location, without the odometry reflecting such jump.

• Unseen places: The robot aims to localize in a map
that only covers the scene partially (see Fig. 4c) ,
while the evaluation sequence visits rooms that are not
covered by it.

To evaluate all these scenarios, we used the Ext. Cloudy
from the COLD dataset. For the first three cases, we
randomly generated 25 different sequences of ∼ 10m length,
which begins with a ∼ 5m stretch where the robot must
initialize and keep track of the path; then, the specific
challenge takes place, and finally the robot continues
following a path of the same length in a normal manner. In
the Unseen Places case, the evaluation consists of sequence
excerpts beginning in the map, then leaving and re-entering
it, traversing uncharted rooms for more than 45 seconds.

After losing track, we consider the filter to be relocalized
when more than 50% of the particles are topologically
localized again, i.e. on the correct region. We measure
the relocalization capability of ALLOM through three
parameters: (i) whether relocalization was successful, by
checking if the correct region could be detected after the
event, (ii) the elapsed time between the occurrence of the
event and the moment when ALLOM detects the loss-of-
tracking, and (iii) the elapsed time between the occurrence
of the event and the relocalization. Table 7 shows the results

of the experiment yielded by our proposal with Np = 100
and D′ = 128 for each of the four situations.

Table 7. Relocalization performance of ALLOM in terms of
success ratio (%), time to detect the loss (seconds, with mean
and std. deviation) and relocalization time (seconds, with mean
and std. deviation)

Success (%) Loss detection (s) Reloc. time (s)

Camera failure 94.79 2.63± 1.20 2.98± 1.64

Slippery surface 88.89 2.74± 1.08 5.72± 4.63

Kidnapped robot 70.96 2.44± 1.49 10.75± 7.42

Unseen places 100.00 3.16± 3.01 4.16± 5.84

As can be seen, ALLOM can relocalize rapidly in the
two first cases. In the camera failure scenario, relocalization
is almost immediate upon the loss-of-tracking detection,
indicating that the particles are quickly re-associated
back to the correct region. In turn, the second scenario
introduces more inconsistency between the observation and
the odometry, so relocalization requires an average additional
time of ∼ 3 seconds. The kidnapped robot scenario, in
turn, represents a bigger problem that poses more difficult
challenges. However, ALLOM is still able to relocalize in
more than 70% of the cases, although requiring considerable
extra time to reach a successful relocalization. Finally, in the
case of traversing places that are not covered by the map,
ALLOM demonstrates its ability to promptly recognize that
the robot is leaving a mapped area. Then, while traversing
these off-map areas, ALLOM continuously tries to perform
relocalization without success but, finally, it is able to regain
tracking when the robot re-enters a mapped zone in ∼ 4s.

Conclusions and future work
We have presented ALLOM, a method for Appearance-
based robot Localization that provides consistent and reliable
topology-assisted metric pose estimation at indoors where
dense Appearance Maps are available.

First, we have introduced an extension for the topological
abstraction provided by the Gaussian Appearance Maps
(GAMs) proposed in previous work. Such extension relies
on modeling the probabilistic correlation between the pose
and a reduced version of the appearance descriptor in
local regions of the environment. As a result, we produce
enhanced GAMs ( TMGAM ) that enable accurate robot
metric localization by leveraging the information about its
topological location. This has been addressed through a
Particle Filter that resorts to conditional distributions derived
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from the TMGAM , which, in turn, serve as observation
models that are specifically fitted for each region. ALLOM
also resorts to the topological structure of the map in order to
detect any robot loss-of-tracking and to apply a VPR-based
initialization and relocalization.

Our proposal has demonstrated comparable performance
to a method based on global observation models running
over the original dense, unordered AM, but with a significant
increase in efficiency. Besides, ALLOM is also able to
achieve better metric accuracy than current state-of-the-
art techniques even under appearance challenges, since the
topological knowledge provided by our maps allows us to
handle situations where other techniques fail.

In our experiments, we have found several limitations
regarding the poor performance of two foundational VPR
descriptors such as NetVLAD and ORB-BoW. In this sense,
an important subject of study for future works is to design
specific appearance descriptors for AbL that are not invariant
to point-of-view, so they can provide reliable information
for localization. In addition, a promising research line for
future work is to study different Dimensionality Reduction
techniques, other than PCA, generating reduced descriptors
that result in better correlation with the pose.

It is also of interest to extend our method to work outdoors
with SE(3) poses, as well as to consider more sparse maps,
adapting abstracted AMs to work with non-Gaussian regions.
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