
 
 

 

 

Bars overlapping in tensegrity structures belonging to the Octahedron family 
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ABSTRACT 

When performing the form-finding process of full-forms of tensegrity structures it is observed that 

beyond the double-expanded octahedron, struts overlapping occurs in space, making practicably 

impossible to materialize the tensegrity to employ it as a real structure. As the spatial coordinates of 

nodes that determine the geometry of the structure are provided as a linear combination of vectors 

composing a base of null space of the tensegrity force density matrix, an analytical study is carried out 

to check the existence of any combination of those vectors that avoids the overlapping of bars.  
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1. INTRODUCTION 

Tensegrity structures are, in general, spatial pin-jointed structures composed by compression (struts or 

bars) and tension (cables) elements which are pre-stressed so that the whole structure results free-

standing and self-equilibrated [1]. The application of this kind of structures is becoming more and more 

widespread [2][3].  

One of the key steps in the design of tensegrity structures is the form finding process. Although there 

are different approaches, as reviewed in [4], one of the most employed is the Force Density Method 

(FDM) proposed by Schek [5], based on the concept of force:length or force density ratio 𝑞 to linearize 

the equations of equilibrium of the structure. The main equations in the FDM for a tensegrity structure 

are given by Eq. (1): 

𝐃 · 𝐱 = 𝟎
𝐃 · 𝐲 = 𝟎
𝐃 · 𝐳 = 𝟎

 (1) 

 

where 𝐱, 𝐲, and 𝐳 are 𝑛-dimension vectors that contains the 𝑥, 𝑦 and 𝑧 coordinates of the 𝑛 nodes 

composing the tensegrity, and 𝐃 ∈ ℝ𝑛×𝑛 is the so-called force density matrix which is constructed 

according to Eq. (2):  

𝐷𝑖𝑗 =

{
 

 ∑𝑞𝑘
𝑘∈Γ

for 𝑖 = 𝑗

−𝑞𝑘 if nodes 𝑖 and 𝑗 connected by member 𝑘
0 otherwise

 (2) 

 

being Γ the set of members (cables and struts) connected to node 𝑖. The total number of members in 

the structure is denominated by 𝑚. Given that the equilibrium equations to be solved (Eq. (1)) are a 

system of homogeneous equations, the solution implies 𝐃 not to be full rank. Therefore, a set of proper 
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force densities 𝑞 need to be sought in order to accomplish this fact. As proved by Zhang and Ohsaki [6], 

if a 𝑑-dimension tensegrity is to be obtained, the rank deficiency of 𝐃 needs to be greater or equal to 

𝑑 + 1. 

2. THE OCTAHEDRON FAMILY 

One of the main inputs to the FDM are the nodal connectivity and the force density assignation for the 

members composing the connectivity of the structure. In this work, the connectivity or topology of the 

Octahedron family [1] is employed to build up the structure. The Octahedron family is based on 4-nodes 

rhombical cells which are composed by four tensioned cables and a compressed strut. The construction 

of the structure is made so that each node only receives a compressed strut. All the members in the 

family are built by duplicating nodes, cables and struts from the first member, the octahedron, that 

consists of three rhombical cells, that is, six nodes linked by three compressed bars and twelve 

tensioned elements. Figure 1 shows the basic rhombical cells and the three first members of the family. 

It is observed that the bars in the structures in the Octahedron family are grouped in 3 three groups of 

equal length and parallel bars. 

 
Figure 1. The Octahedron family: (a) basic rhombical cell, (b) octahedron (𝑝 = 1), (b) expanded octahedron 

(𝑝 = 2), (c) double-expanded octahedron (𝑝 = 3). 

An important aspect in the form-finding process of the different members of the Octahedron family is 

fullness. This is the property of the structure according to which there is no node with the same spatial 

coordinates as another in the structure. If this is accomplished, the structure is full. If not, then the 

structure is said to be folded. Fernández-Ruiz et al. [7] proposed that assigning all the same value of 

force density ratio, 𝑞𝑐, to the cables in the structure, and doing the same for the struts, 𝑞𝑠, then the 

following force density assignation leads to a 3D full form of the 𝑝-th member in the Octahedron family: 

𝑞𝑠
𝑞𝑐
= −

𝑝 + 1

𝑝
 (2) 

 

The observed problem in the structures belonging to the Octahedron family appears when 𝑝 ≥ 4, that 

is, the triple-expanded octahedron. In those structures there are bars that overlap each other, as shown 

in Figure 2. 

3. NODAL COORDINATES AS LINEAR COMBINATION OF BASE OF NULL SPACE OF 𝐃 MATRIX 

The force:length assignation performed by the relation given by Eq. (2) assures the matrix 𝐃 rank 

deficiency of 4 to get a 3D tensegrity structure. By observing Eq. (1), the solutions 𝐱, 𝐲, and 𝐳 are vectors 

which belong to the null space of matrix 𝐃. Therefore, any linear combination of the vectors composing 

(a) (b) (c) (d) 

Strut 
Cable 



 
 

a basis of the null space of 𝐃 will provide a possible spatial realization of the tensegrity structure. If 𝐞𝑖 ∈

ℝ𝑛, with 𝑖 = I, . . . , IV, compose a basis of ker(𝐃), then the nodal coordinates of the structure are given 

by: 

𝐣 =  ∑ 𝛼𝑗
𝑖 · 𝐞𝑖

IV

𝑖=I
 (2) 

 

with 𝑗 = 𝑥, 𝑦, 𝑧, and 𝛼𝑗
𝑖 are twelve arbitrary real values chosen so that the vectors 𝐱, 𝐲, 𝐳 are linearly 

independent. Different values of 𝛼𝑗
𝑖 will provide different geometries of the tensegrity structure.  

 
Figure 2. Bars overlapping in the octahedron family when 𝑝 ≥ 4: (a) 3-expanded octahedron (𝑝 = 4), (b) 

detail of overlapped bars, (c) 4-expanded octahedron (𝑝 = 5), (d) 5-expanded octahedron (𝑝 = 6).. 

4. BARS OVERLAPPING AND LINEAR COMBINATION OF BASE OF NULL SPACE OF 𝐃 MATRIX 

By observation of the resulting structures when 𝑝 ≥ 4 and 𝐗 = (𝐱, 𝐲, 𝐳) = (𝐞𝑖, 𝐞𝑘 , 𝐞𝑙), with 𝑖 = I, … , IV, 

𝑘 = I,… , IV, 𝑙 = I,… , IV, and 𝑖 ≠ 𝑘 ≠ 𝑙 it can be concluded that some bars in the structure are collinear 

and they overlap at some extent (Figure 2). Let us pay attention at to two of those overlapped bars, 

joining, say, nodes 𝐴 and 𝐵 and 𝐶 and 𝐷. The parametric expression of the line defined by nodes 𝐴 and 

𝐵 is: 

𝑥 = 𝑥𝐴 + 𝛾(𝑥𝐵 − 𝑥𝐴) = 𝑒𝐴
𝑖 + 𝛾(𝑒𝐵

𝑖 − 𝑒𝐴
𝑖 ) = 𝑒𝐴

𝑖 + 𝛾Δ𝑒𝐴𝐵
𝑖

𝑦 = 𝑦𝐴 + 𝛾(𝑦𝐵 − 𝑦𝐴) = 𝑒𝐴
𝑘 + 𝛾(𝑒𝐵

𝑘 − 𝑒𝐴
𝑘) = 𝑒𝐴

𝑘 + 𝛾Δ𝑒𝐴𝐵
𝑘

𝑧 = 𝑧𝐴 + 𝛾(𝑧𝐵 − 𝑧𝐴) = 𝑒𝐴
𝑙 + 𝛾(𝑒𝐵

𝑙 − 𝑒𝐴
𝑙) = 𝑒𝐴

𝑙 + 𝛾Δ𝑒𝐴𝐵
𝑙

 (3) 

 

with 𝛾 ∈ ℝ. As the extremal node 𝐶 of the other overlapped bar is on that line, then: 

𝑥𝐶 = 𝑒𝐶
𝑖 = 𝑒𝐴

𝑖 + 𝛾𝐶Δ𝑒𝐴𝐵
𝑖

𝑦𝐶 = 𝑒𝐶
𝑘 = 𝑒𝐴

𝑘 + 𝛾𝐶Δ𝑒𝐴𝐵
𝑘

𝑧𝐶 = 𝑒𝐶
𝑙 = 𝑒𝐴

𝑙 + 𝛾𝐶Δ𝑒𝐴𝐵
𝑙

⟺ 𝛾𝐶 =
Δ𝑒𝐴𝐶

𝑖

Δ𝑒𝐴𝐵
𝑖
=
Δ𝑒𝐴𝐶

𝑘

Δ𝑒𝐴𝐵
𝑘 =

Δ𝑒𝐴𝐶
𝑙

Δ𝑒𝐴𝐵
𝑙  (4) 

 

The question now is: is there any combination of 𝛼𝑗
𝑖 so that (𝐱, 𝐲, 𝐳) ≠ (𝐞𝑖, 𝐞𝑘 , 𝐞𝑙) and node 𝐶 of the 

overlapped bar changes its relative position to 𝐴 and 𝐵 and the overlapping disappears? If the nodal 

coordinates are given as a linear combination of a base of ker(𝐃), Eq. (2), now the line 𝐴𝐵 remains: 

𝑗 =∑ 𝛼𝑗
𝑖 · 𝑒𝐴

𝑖
IV

𝑖=I
+ 𝛾∑ 𝛼𝑗

𝑖 · Δ𝑒𝐴𝐵
𝑖

IV

𝑖=I
 (5) 

 

with 𝑗 = 𝑥, 𝑦, 𝑧. Let us assume that the coordinates of the extremal node 𝐶 of the other bar can be 

written as: 

(a) (c) (d) (b) 



 
 

𝑗𝐶 =∑ 𝛼𝑗
𝑖 · 𝑒𝐶

𝑖
IV

𝑖=I
=∑ 𝛼𝑗

𝑖 · 𝑒𝐴
𝑖

IV

𝑖=I
+ 𝛾𝑗∑ 𝛼𝑗

𝑖 · Δ𝑒𝐴𝐵
𝑖

IV

𝑖=I
 (6) 

 

with 𝑗 = 𝑥, 𝑦, 𝑧. Therefore, if the extremal node 𝐶 of the other bar is not on line 𝐴𝐵, then 𝛾𝑥 ≠ 𝛾𝑦 ≠ 𝛾𝑧. 

Rearranging Eq. (6) and considering that 𝛾𝐶 =
Δ𝑒𝐴𝐶

𝑖

Δ𝑒𝐴𝐵
𝑖  (Eq. (4)): 

∑ 𝛼𝑗
𝑖 · Δ𝑒𝐴𝐶

𝑖
IV

𝑖=I
= 𝛾𝑗∑ 𝛼𝑗

𝑖 · Δ𝑒𝐴𝐵
𝑖

IV

𝑖=I
⇔ 𝛾𝐶∑ 𝛼𝑗

𝑖 · Δ𝑒𝐴𝐵
𝑖

IV

𝑖=I
= 𝛾𝑗∑ 𝛼𝑗

𝑖 · Δ𝑒𝐴𝐵
𝑖

IV

𝑖=I
 (6) 

 

Therefore 𝛾𝐶 = 𝛾𝑥 = 𝛾𝑦 = 𝛾𝑧 and it can be concluded that for any linear combination of vectors 

composing a basis of ker(𝐃), node 𝐶 is always on line 𝐴𝐵 and retains its relative position with respect 
to the 𝐴𝐵 nodes. The same fact can be stated for the other extremal node 𝐷. So, the answer to the 
previously stated question is clear: no, bars AB and CD will always overlap no matter the chosen linear 
combination of basis of ker(𝐃). 

5. CONCLUSIONS 

The form-finding process of tensegrity structures by means of FDM implies nodal coordinates of the 

structure to be calculated as a linear combination of vectors composing a basis of null space of the force 

density matrix 𝐃. It has been shown that, although the Octahedron family is a very interesting source 

of tensegrity structures, a problem arises when dealing with high order members of the family: some 

bars overlap each other. It has been proven that no matter the chosen real coefficients to calculate the 

referred linear combination, the overlapping cannot be avoided, hindering the real materialization of 

the structure beyond the double-expanded octahedron. 
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