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Blockchain technologies have been widely re-
searched in the last decade, mainly because of
the revolution they propose for different use cases.
Moving away from centralized solutions that abuse
their capabilities, blockchain looks like a great
solution for integrity, transparency, and decentral-
ization. However, there are still some problems to
be solved, lack of privacy being one of the main
ones. In this paper, we focus on a subset of the
privacy area, which is confidentiality. Although
users are increasingly aware of the importance
of confidentiality, blockchain poses a barrier to
the confidential treatment of data. We initiate
the study of cryptographic confidential computing
tools and focus on how these technologies can
endow the blockchain with better capabilities, i.e.,
enable rich and versatile applications while pro-
tecting users’ data. We identify Zero Knowledge
Proofs, Fully Homomorphic Encryption, and Se-
cure Multiparty Computation as good candidates
to achieve this.

Palabras Clave—blockchain, privacy, confidentiality, se-
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I. INTRODUCTION
Blockchain technologies have emerged as a great so-

lution for integrity, transparency, and decentralization.
Broadly speaking, a blockchain network is a set of nodes
with a P2P topology, which collaboratively maintain a
unified ledger. Despite being conceived to manage cryp-
tocurrency transactions (Bitcoin), other solutions have
built a secure and distributed computing platform on top
of the network, e.g., Ethereum. The key technology that
has made such a secure ledger possible is Byzantine Fault
Tolerant Consensus, in which a set of distributed and
distrusted nodes can agree on what data is recorded in
the ledger each time, resulting in a unified view of the
ledger.

Since its conception, many use cases have been pro-
posed [1], [2], e.g., financial, health, supply chain, or
government.

Despite the benefits of blockchain, the lack of privacy
hinders its adoption. Although it provides pseudonymity,
it has been shown that users can be deanonymized [3].
Private connections, e.g., TOR [4], are recommended to
mitigate this, at the expense of losing usability. Accessing
blockchain data can also be a problem, because the most of
the end-users do not own a blockchain node but delegate
the access to a node provider1, making them to become
trusted third parties that can cheat on data provided,
because end-users do not store all the blockchain data and
cannot verify correctness. Also, the provider can perform a
profiling attack, tracking all the activity by the user. Such
issues directly ballast a real decentralization, which is the
main contribution of blockchain.

Another issue is the lack of confidentiality. The evo-
lution of blockchain has drifted towards programmable
platforms, e.g., the Ethereum’s Virtual Machine, which al-
lows secure general-purpose computations. However, this
approach loses its meaning when dealing with confidential
data, as data must be decrypted to contribute to an on-
chain computation. Different use cases, e.g., financial,
or biometric data computation do not fit well with this
public model. Finally, regulations such as GDPR can also
contribute to restricting use cases.

Although blockchain’s lack of confidentiality has been
partially addressed, there are some misconceptions. One of
the most trendy confidential computing technologies are
Non-Interactive Zero Knowledge Proofs (NI-ZKP), which
allow verifying that a computation has been performed
correctly using specific data, without exposing them. How-
ever, NI-ZKP are mainly used in the blockchain ecosystem
to achieve succinctness, e.g., in Layer 2 solutions [5].
While they can really help to acquire more capabilities
while retaining more confidentiality, it is important to
note that NI-ZKP must be computed directly on the
plaintext data somewhere. This implies an overhead on

1https://www.infura.io/
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the data owner’s side, or a delegation to a trusted party
to compute the proof if there are many data providers
involved. There are other cryptographic solutions, e.g.,
Secure Multi-Party Computation (MPC) and Fully Homo-
morphic Encryption (FHE), that allow distrusted parties to
compute on confidential data without exposing it. Unlike
NI-ZKP, these technologies enable delegated computations
on confidential data, as will be discussed in next sections.

In this paper we initiate research on blockchain’s con-
fidentiality problem, where our main contribution is a
gathering of different technologies that can contribute to
solve it. We briefly discuss their main features and argue
to what extent they can actually achieve a confidentiality-
preserving blockchain.

The rest of the paper is organized as follows: Section II
gathers some surveys on blockchain privacy. Next, Section
III analyzes three key characteristics of blockchain and
their relation to confidentiality. The main technologies
available for confidential blockchain solutions are briefly
described in Section IV, and later discussed in Section V,
emphasizing their relations and caveats w.r.t. blockchain.
Finally, some conclusions and future work are presented
in Section VI.

II. RELATED WORK

Blockchain privacy has been addressed in different
works [6], [7], [8], mainly distinguishing between pri-
vate payments and confidential computations ([8] also
covers function privacy). However, private payments have
been much more covered than confidential computations,
mainly due to the maturity of the solutions. In addition,
[8] states that confidential computations are much more
difficult to achieve than private payments.

To achieve confidential computations in blockchain,
the three works above claim NI-ZKP, FHE and Trusted
Execution Environments (TEE) as the most extended
building blocks, but [7], [8] also consider (briefly) MPC.
In fact, [8] is the only work that deeply covers usability
and interoperability of these techniques, identifying as
open problems the handling of multi-user inputs (partially
solved by MPC or multi-key FHE) and the development
of case-specific cryptographic primitives to achieve more
efficient solutions.

III. BLOCKCHAIN AND PRIVACY

This Section introduces some concepts that provide an
understanding of how a standard blockchain (with public
data) works and how confidential data can be related to it.

A. Blockchain state model

Roughly speaking, each node (or most of them) in a
blockchain maintains a state S, which is computed from
all recorded data. Each time new data x arrives on the
blockchain, the state is re-computed using a state transition
function S′ ← Transition(S, x). This is typically imple-
mented in batches (a set of transactions forms a block)
and the “checkpoints” of the state are computed using hash
functions, which also link the blocks together. The specific
details vary from blockchain to blockchain (in Bitcoin

hashing transactions is enough, while Ethereum also main-
tains accounts and smart contracts). Although chaining
blocks by hashing is the classic and most widespread
option, there are new solutions that compact the whole
state to constant size thanks to recursive ZKP2.

S1 S2 S3

New data

Wrong data

Verify = 1

Verify = 0

Fig. 1. The blockchain state model

Figure 1 depicts how the blockchain state evolves when
new data is stored. More precisely, the new data (a block)
triggers the transit from S1 state to S2 state. Any node
in possession of S1, S2, and the block data can verify
the correctness of the transition. In contrast, an incorrect
block (due to an error or a modification attack) does not
pass verification.

As for confidential data, the way the blockchain state
is computed presents a first barrier, since every piece of
data included in a state transition phase must be available
in the verification process. Given a confidential value,
including it locally in the owner’s state leads to a different
state from the rest of the network, losing the sense of
consensus, while making it available to everyone means
losing confidentiality. Confidential data can be added to the
state using ciphertexts, however it is interesting to consider
what value that actually adds versus storing data off-chain.

B. Blockchain storage model

Blockchain storage is problematic by nature, due to its
high cost, as the ledger view must be the same for each
node (data replication enables availability and eliminates
deletion). Figure 2 compares a centralized storage system
with a decentralized one. The centralized system allows
deploying a central computer with a large amount of
memory (in contrast to constrained clients) more cheaply
than the decentralized one, where each node must store
the same amount of information.

Storage in a centralized system

Storage in a decentralized system

data data data

datadata' data'

Fig. 2. Storage model in a centralized and decentralized system

In practice, different types of nodes can be deployed
depending on the amount of data they store, e.g., Ethereum
distinguishes between full nodes (which store all data and

2https://minaprotocol.com/
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can verify states) and light nodes (which only store block
headers and have to request data from full nodes).

Sharding [9] is a recent idea that aims to minimize
the problem of replicated storage by dividing the network
into logical subnets with independent data and validators,
which are synchronized through a main network.

Despite sharding minimizes the exposure of data to
network nodes, it does not really aim at confidentiality,
but at performance, as specific data fragments can be
requested if needed. In fact, the replicated storage does
not pose a problem for confidentiality when using, e.g.,
ciphertexts, despite they will be publicly available as long
as the blockchain lives, which increases the attack surface.

C. Blockchain computation model

Ethereum introduced a computational model that allows
the use of data on the blockchain. Roughly speaking, its
virtual machine accepts data and smart contract opcodes
that enable general-purpose computations. The main dif-
ference with the centralized model is that data, contracts,
and computation must be managed by each node, i.e., a
node must re-compute a function to verify its correctness,
leading to a secure, reliable, and expensive system.

In general, there exist two models (see Figure 3) regard-
ing how a computation is executed in a blockchain:

On-chain. The computation is executed by
the blockchain, i.e., any node executes two
phases: (1) result ← Compute(x), and
(2) {0, 1} ← V erify(result, state).

Off-chain. The computation is not replicated, i.e., inputs
and outputs can be stored on-chain, but the computation
cannot be verified by the blockchain nodes.

y=comp(x) y=comp(x)

y=comp(x)y=comp(x)
store(x)

y=comp(x)
get(x)

store(y)

Blockchain

Fig. 3. On-chain (solid) vs off-chain (dashed) computation

It is easy to realize that on-chain computations are
more expensive, but very secure, since to alter the result
a malicious adversary must corrupt most of nodes. On the
other hand, the off-chain computation model implicitly
assumes a trust relation in the delegated computational
party, but is cheaper. It is this area that NI-ZKP has
contributed most, by storing publicly verifiable proofs of
correctness on the chain.

Finally, as far as confidential computing is concerned,
the on-chain model does not allow data to be protected
by default, as it must be publicly available to allow
verification of correctness. The only option available is to
perform the computation on the user side, or to delegate
it to a trusted third party, assuming they will not expose
the data.

IV. TECHNOLOGIES FOR CONFIDENTIAL
BLOCKCHAIN

In this Section, we gather a set of technologies that
enable confidential computing and can be deployed in
blockchain scenarios.

A. NI-ZKP

A NI-ZKP [10] allows a prover to convince a verifier
(with one message) that a statement is true using some
confidential data and without exposing it. These protocols
can be formalized as follows:

π ← Prove(setup, st, x, w) : the prover generates
a proof π using public data x and private data w that
computes the statement st.
{0, 1} ← V erify(st, x, π) : the verifier checks whether

the statement is true when computed on x and w.

B. MPC and Proactive-MPC

MPC protocols allow a set of distrustful parties
{P1, ..., PN} to compute a function f on some private data
{w0, ..., wN} without exposing wi to a party Pj with j ̸=
i. At the end, the computation outputs y ← f(w0, ..., wN )
as if it had been computed in clear. There exist different
approaches for MPC, e.g., Garbled Circuits [11] for 2-
party and Secret Sharing Schemes [12] for N -party, where
security relies on the adversary inability to corrupt t < N
nodes. We remark that FHE (explained below) is typically
understood as a specific form of MPC.

Proactive-MPC [13] is a variation in which every m
operations of the computation the secret-shares are moved
from a committee of holders C1 to C2 using a handover
and re-sharing protocol. This approach limits the adversary
time to corrupt parties, as secrets will not always reside
in the same place.

MPC solutions for blockchain [14], [15], [16] tend to
coordinate the computation on-chain and execute it off-
chain, using a pool of designated nodes.

C. FHE

Roughly speaking, an FHE scheme allows to compute
on ciphertexts as if it was computed on plaintexts, i.e.,
given c1 = Enck(m1) and c2 = Enck(m2), it is
possible to compute cadd = Enck(m1 + m2) or cmul =
Enck(m1 ·m2). FHE was inefficiently introduced in [17],
but it has been largely improved [18]. The most extended
FHE settings work on public key cryptography and allow
multiple clients to delegate the computation to a single
server.

FHE solutions for blockchain [19] enable on-chain
computations on encrypted data, however they struggle
with multi-user inputs.

D. Multi-prover NI-ZKP

A multi-prover NI-ZKP [20] allows a set of parties
{P1, ..., Pn}, each with a private witness wi, to compute
a NI-ZKP in a collaborative way. More specifically, they
run an MPC to compute π ← Prove(st, x, {w1, ..., wn}),
where no party other than Pi learns wi.

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0)
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E. Threshold-key FHE and Multi-key FHE

Threshold-key FHE (Th-FHE) [21] is similar to public
key-based FHE, but the secret key sk is secret-shared
to a set of holders. The decryption process is computed
interactively through an MPC, where t ≤ n key shares are
needed to recover the plaintext. On its part, in multi-key
FHE (Mk-FHE) [22] each party holds a different key pair
and decryption is also done interactively using MPC.

V. DISCUSSION

The main difference between blockchain and cloud
computing is that the former enables public verifiability,
so achieving verifiable confidential computations should
be considered. Verifiable computation is still novel, but
NI-ZKP and its multi-prover version seem to be useful
to add public verifiability to MPC and FHE. As for how
confidential computations relate to state, we note that
fully on-chain computations [19] are possible, however
their difference from publicly available ciphertexts that
are computed off-chain lies in additional issues, e.g.,
control and verification of computation steps (also input
commitment and output disclosure). Th-FHE and Mk-
FHE, e.g., rely on MPC for output disclosure, and key
handling is not straightforward ([19] leads the blockchain
to handle the decryption key, so security relies on majority
honesty, i.e., FHE is reduced to MPC). On the other
hand, in solutions like [15], [16], the on-chain overhead is
avoided, but relating computation to state is more difficult
and the benefit of replicated storage is lost.

As a summary of this discussion, we could offer an
informal definition of what confidential data means in the
context of blockchain: confidential blockchain data is only
accessible by designated parties, linked to the blockchain
state, and verifiable by publicly available mechanisms in
relation to the computation executed. We note that this is
a broad definition, difficult to achieve in its entirety and
highly dependent on the specific technologies used.

VI. CONCLUSIONS

In this work, we have reviewed the blockchain model
with respect to confidential data, and outlined the main
lines of research and barriers to bring closer these two
scenarios, which seem opposed by design. We have pre-
sented the main technologies for blockchain confidential
computations (NI-ZKP, MPC, FHE, and some advanced
variations), and briefly discussed their pros and cons.

As future work, we focus on providing a formal model
for confidential computing in blockchain that gathers the
main requirements and links them with the specific en-
abling technologies. We envision that it will be necessary
to combine different cryptographic tools to provide suffi-
ciently secure and usable solutions.
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