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ABSTRACT 

This paper presents an efficient technique for evaluating Green’s functions 
associated to layered media, when cast in the space domain as Sommerfeld 
integrals. The theoretical developments needed to set up the numerical algorithm 
throw a new light on the asymptotic behavior of these Green’s functions for large 
transverse source-observer distances 

1. INTRODUCTION 

Printed antennas and associated circuits have been extensively investigated in the 
last decades. Among the currently used models, methods based on integral 
equations techniques, both in the spectral and in the space domain, have become 
specially attractive since they provide excellent accuracy and good computational 
speed. Details of space domain integral equations techniques applied to the analysis 
of infinite multilayered printed structures can be found for instance in [l]. Of 
paramount relevance in this formulation is the concept of Green’s function, defined 
as the fields or potentials created by a point unit source embedded in a layered 
medium (fig.1). 
The developments in this paper are based on previous work by one of the authors 
[2,3,4]. In this work, the relevant spatial domain Green’s functions were 
formulated as Sommerfeld integrals of the corresponding spectral domain 
counterparts and the accurate numerical evaluation of these Sommerfeld integrals 
was shown to be a critical point. 
Traditionally, integration through the real axis combined with pole extraction 
techniques and averaging methods has been employed, leading to very efficient 
algorithms [3]. Fig.2 shows the modulus of the function to be integrated on the 
real axis for a typical Green’s function evaluated at a transverse source-observer 
distance kop=5. 
It is clear that abrupt variations and oscillating behavior make the numerical 
evaluation very time consuming. Moreover, the situation worsens for higher values 
of the transverse distance. However, many current practical problems involve 
distances of several tens or even hundreds of wavelengths. This is the case when 
computing mutual coupling inside large arrays or when modeling cavity backed 
antennas by using space images respect to the cavity’s lateral walls. 
In this paper a new, accurate and efficient technique is developed for the 
computation of Sommerfeld integrals for large values of kop. The technique is 
based on a new choice of the integration contour which is closed through the 
imaginary axis of the spectral plane. This idea was first proposed by one of the 
present authors in [2], and its potentialities were already outlined. However, the 
imaginary axis integration algorithm developed in [2] is only valid for lossless 
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layers and the mathematical procedure must be modified and generalized when the 
layers are lossy. 

2. THEORY 

A general form for a Green's function (Sommerfeld integral) associated to the 
problem of figure 1 is: 

Gn (P) = jomJn (kpp)g(kp dkp (1) 
where Jn is a Bessel function and g(k,,) the spectral Green's function, which can 
be obtained analytically for a layered medium [3]. 
Multilayered spectral domain Green's functions are functions of the complex 
spectral variable k,, . For a lossless configuration, they exhibit poles laying on the 

real axis Re[ kp], in the interval ko < kp < k o d m ) .  When a real lossy 
geometry is considered, the poles, originally in the real axis, migrate to the lower- 
half complex plane as shown in fig.3. In addition to the complex poles, 
multilayered spectral domain Green's functions also exhibit branch cuts in the 
complex k,, plane due to the appearance of the multivalued function 

U0 = Jm 
Care must be exerted when selecting the proper branch of this function, and the 

final choice must be both mathematically convenient and physically sound. Here, 
we propose to introduce a branch cut as (fig. 3) : -l<ReFp/ko]<+l . 
Then by integrating around the contours of fig.3, we can generalize the procedure 
described in [2] and obtain the result: 
G,(p)=S,, ko Hn (2) (xp)[gi(x)-g2(X)]xn+' 

with k,, = n + j y  . The first term Ti is an integral over the bounded interval [O,ko] 
of a function without singularities in the integration interval. The term T2 
corresponds to an improper integral, extended to the unbounded interval [O,-] of a 
function involving the fast decaying modified Bessel function Kn. We can clearly 
see that the absolute value of the integrand decreases exponentially and the 
decreasing rate is proportional to p. Indeed, the main impact of the new technique 
from a numerical point of view resides in this term T2. Finally, the T3 term 
corresponds clearly to a sum of surface wave contributions directly linked with the 
poles of the spectral Green's function. 
It is clear that numerical evaluation of integrals in Ti, T2 will be competitive for 
large values of source-observer distances. 
The point that remains to be discussed, before ascertaining the potential validity of 
this technique as an useful numerical tool, is the relative difficulty to exactly locate 
the poles of the spectral Green's function. Fortunately, this is not a problem for 
real life substrates with small losses, since a numerical search is easily performed 
in the lossless case, where the number and bound values of the poles are known. 
Then, for a lossy situation, a tracking procedure will converge in a few iterations to 
the locations of the poles in the complex plane. 
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3. ASYMPTOTIC BEHAVIOR 

In addition to provide an interesting way for numerically computing the Green’s 
functions, the decomposition of any Sommerfeld integral into the three terms of 
equation (3) gives us some useful theoretical insights concerning the behavior of 
Green’s functions in the near and far field regions. 
As it has been pointed out in reference [2] ,  the term Ti, given by the integral of the 
modified Bessel function, represents the quasistatic term. Therefore, this term is 
dominant in the near field and the behavior of Green’s functions for vanishing 
source-observer distances can be inferred from the study of this term alone. 
Moreover, for a lossless case Ti becomes a pure real quantity decreasing 
exponentially as the source-observer distance decreases. 
The term T2 corresponds essentially to the branch point contribution and can be 
viewed as the space wave term. Alone (lossless case) or combined with T1 (lossy 
case) it provides an asymptotic behavior of free space type. Thus a scalar potential 
will behave as l/p2 for high values of p- 
Finally, the sum referred as T3 corresponds to the set of surface waves generated 
by the multilayered medium. Their propagation constants are directly given by the 
values of the poles in the spectral plane and they can interfere given rise to sharp 
oscillations in the value of the Green’s functions as a function of the distance. It is 
currently said that surface waves are the dominant contribution in the far field 
region. This is only true for strictly lossless structures. A non zero loss tangent, 
will push the poles away from the real axis and will introduce a small exponentially 
decreasing behavior in the Hankel functions appearing in T3. 
As a result, the surface wave behavior dominates only till a given distance. Then 
the terms devoid of exponential attenuation take over and the overall Green’s 
function behaves as a Zenneck wave, for instance decreasing like in the case of a 
scalar potential. 
All these phenomena are clearly seen in fig. 4 where the modulus of a typical 
multilayered Green’s function for the scalar potential is depicted as a function of the 
radial distance, together with the partial contributions T1+T2 and T3. 
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Figure 1: General multilayered structure 
analyzed in this paper. 
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Figure 2: Typical function to be integra- 
ted if the real axis is chosen to evaluate 
Sommerfeld integral. 

Lossless Situation. Lossy Situation. 

Figure 3: Complex spectral plane sho- 
wing the alternative integration contours 
proposed in this paper, leading to the 
new formulation. 
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Figure 4: Example of a spatial domain 
Green’s function obtained using the new 
approach, showing surface and Zenneck 
wave interactions. 

419 


