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Abstract—In this contribution, the Ewald method has effi-
ciently been applied to accelerate the computation of the rectan-
gular waveguide Green’s functions derivatives. Based on previous
works, we have outlined new approximation formulae that avoid
the evaluation of computationally expensive complementary error
functions of complex argument, needed by the Ewald method.
This is possible when the internal medium of the rectangular
waveguide is homogeneous and lossless. On the other hand,
different convergence numerical studies have been carried out,
showing a similar convergence rate for computing the original
Green’s functions and their derivatives. Moreover, we have
checked that the computational time is only slightly increased
for obtaining the derivatives as compared to the original Green’s
functions, after the application of these new techniques. The new
derived expressions are useful for the evaluation of electromag-
netic fields, the characterization of dielectric materials and step
discontinuities between rectangular waveguides, and the analysis
of rectangular cavities using integral equation formulations. For
validation, the electric field produced by a surface electric current
density with a rectangular pulse distribution has been evaluated,
using the new proposed expressions. These results have been
compared to simulations provided by a full-wave finite elements
commercial software to verify their correctness, exhibiting a good
agreement.

Index Terms—Electric field evaluation, Ewald method, Green’s
function, integral equation, rectangular waveguide, splitting pa-
rameter (E).
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I. INTRODUCTION

AVAST number of waveguide technology devices used in
communication systems [1], has encouraged the develop-

ment of efficient numerical techniques to obtain their electrical
responses along with their internal electromagnetic field dis-
tributions. In addition, these devices can be composed of a
given number of arbitrarily shaped metallic and/or dielectric
elements [2], [3]. Integral equation techniques [4] are one of
the most numerically efficient alternatives for the analysis of
this kind of structures, since they can significantly reduce the
number of unknowns required to obtain accurate results. This
advantage is mainly due to the use of Green’s functions in
the integral equation kernel, that effectively take into account
the boundary conditions on the waveguide walls, and limit the
numerical solution to cope with the internal discontinuities.
On the other hand, the presence of homogeneous material
objects, such as dielectric resonators or metal posts, can
conveniently be modelled by the Surface Equivalence Principle
[5]. Moreover, arbitrarily shaped step discontinuities between
rectangular waveguides can be modelled by equivalent mag-
netic current densities defined on their connecting boundary
after enforcing the continuity of the tangent magnetic field
[4]. These features, along with the need to compute the
electromagnetic fields distribution for design purposes, or to
model some important physical phenomena (e.g. multipactor
and corona, [7], [8]), associated with power handling capabil-
ities of microwave devices, require the evaluation of Green’s
functions derivatives in the integral equation framework.

Most Green’s functions are expressed mathematically as
slowly converging series, either in the spectral domain or
in the spatial domain. In these cases, it is necessary to
apply series acceleration techniques. A review of different
acceleration techniques for Green’s functions corresponding to
two-dimensional (2-D) and three-dimensional (3-D) problems
with 1-D and 2-D spatial periodicities is presented in [9].
These techniques include commonly used procedures such as
the Kummer decomposition, the Shanks transformation or the
Ewald method [10], the latter being the most advantageous for
this type of structures. On the other hand, the Kummer trans-
form is a simple and rather generic technique, which allows to
accelerate a slowly converging series by decomposing it into
two parts, which can be evaluated analytically or computed
efficienly [11], [12]. Nevertheless, in previous works we could
see some of the drawbacks of the Kummer’s transformation,
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mixed with the Shanks’ transform [13]. In fact, when the
distance to the source is very small the method starts to lose
accuracy.

Ewald method is based on splitting the original series into
two parts, one in the spatial domain and the other in the
spectral domain. Ewald method can be used to accelerate
different types of Green’s functions, as in [14], where it
was applied to the Green’s function of a 2-D periodically
distributed matrix of 2-D linear sources, and in [15], where
Ewald method is shown for the evaluation of the Green’s
functions of 2-D rectangular cavities in a very efficient way.
For the analysis of more complex 3-D problems, other works
can be found such as the one shown in [16], where the
Ewald method is used to accelerate the Green’s functions
corresponding to a rectangular cavity. Another more elaborate
example can be found in [17], where authors have used hybrid
strategies to accelerate the evalution of the rectangular cavity
Green’s functions. Depending on whether the distance between
the source and the observation points is small or sufficiently
large, in [17] they used respectively the Ewald method or a
direct summation in the spectral domain. One can also look at
the case of [18], where the Ewald method is combined with
the Boundary Integral - Resonant Mode Expansion (BI-RME)
technique to evaluate the Green’s function of the rectangular
cavity. In that work, the Ewald method was applied to the
Coulomb gauge static Green’s function of the rectangular
cavity using the BI-RME method. Another option to accelerate
the Green’s functions, but this time specifically applied to
rectangular waveguides, is to try to exploit a combination
of the Kummer’s transformation and the Ewald method as
done in [19]. For this purpose, the Green’s functions are split
into a frequency-independent static part, evaluated efficiently
with the Ewald Method, along with a dynamic counterpart
computed accurately with the Kummer’s transformation, ex-
cept for distant source and observation points which require a
summation by parts technique to mantain the precision [20].
As far as we know, the evaluation of the rectangular waveguide
Green’s functions was not discussed in any of these previous
works.

In this work, we focus on the extension of the Ewald method
[21] to the efficient evaluation of the rectangular waveguide
Green’s functions derivatives. As a starting point, the formu-
lation presented in [22], which discusses the application of
the Ewald method to accelarate the non-derivative rectangular
waveguide Green’s functions, will be used as reference. An
important contribution in [21] was the development of useful
approximations that do not depend on the evaluation of in-
efficient complementary error functions of complex argument
for computing the Green’s functions. In this sense, we have
found new especially suited expressions that permit calculating
the Green’s functions derivates with only fast real argument
complementary error functions. The formulation uses some
function transformations and series expansions reported in
[22]. Moreover, we have dinamically chosen the optimum
Ewald Method spliiting parameter (Eopt), that is key for its
convergence performance, as in [23], [24].

This work is organized as follows. First, in Section II the
spectral and spatial domain forms of the rectangular waveguide

3-D Green’s function derivatives are presented. Moreover, the
Ewald method is applied to accelerate the calculation of both,
where some convenient expressions have been found to avoid
the evaluation of numerically expensive complementary error
functions of complex argument. Some convergence studies
have also been carried out, in order to show the performance
of Ewald method for evaluating derivatives for different con-
figurations. In Section III, we will describe how to evaluate
the electric field using a mixed-potential formulation combined
with the outlined Green’s functions [21] and their derivatives
The results are validated with commercial software ANSYS
HFSS [25]. Finally, Section IV presents the main conclusions
and some further research work in this area.

II. GREEN’S FUNCTIONS DERIVATIVES

In this section, the procedure to efficiently compute the
rectangular waveguide Green’s functions derivatives by using
the Ewald method will be outlined. It should be recalled that
these derivatives are of great importance in the evaluation
of electromagnetic fields to study high-power phenomena,
and also for the analysis of waveguides with metallic and/or
dielectric elements of arbitrary shape by means of the surface
equivalence principle [5], [26]–[28]. On the other hand, as
discussed in the introduction, and as will be seen throughout
this section, the direct evaluation of these derivatives after
the application of the Ewald method is not computationally
efficient due to complementary error functions of complex
argument, required in the formulation. One of the motivations
of this contribution will be the extension of some of the ideas
presented in [21] to the evaluation of the rectangular waveg-
uide Green’s functions derivatives. Additionally, in this work,
it will also be shown how to choose the optimal values of the
Splitting Parameter (E) from the work developed in [23], [24].
Finally, to conclude this section, some convergence analyses
will be carried out to validate the developed formulation, and
to verify its computational efficiency with respect to the non-
derivatives functions presented in [21].

A. Evaluation of Rectangular Waveguide Green’s Functions
Derivatives by the Ewald Method

Starting from the original expressions presented in [21],
and following the methodology used in [29] to evaluate the
derivatives of the Green’s function of a rectangular waveguide
as shown in Fig. 1, it is not difficult to obtain the derivatives of
all potentials. This derivatives can be written in two different
ways. The first form corresponds to an infinite series of modal
functions in the spectral domain, whereas the second is defined
as a two-dimensional distribution of discrete images in the
spatial domain.

The generic expression in the spectral domain can be written
as follows,

∂Gspec

∂p
=

ϑ

2ab

∞∑
m,n=0

νp
εmεn
γmn

e−γmn|z−z
′|

·gm(kxx)rm(kxx
′)qn(kyy)sn(kyy

′),

(1)

where gm, rm, qn and sn are trigonometric functions, ϑ is a
constant related to the material medium filling the rectangular
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TABLE I
SOME TERMS OF THE RECTANGULAR WAVEGUIDE GREEN’S FUNCTIONS DERIVATIVES IN THE SPECTRAL DOMAIN FOR THE MAGNETIC VECTOR

POTENTIAL
(
GA

)
AND ELECTRIC SCALAR POTENTIAL (GV ).

ϑ νp gm(kxx) rm(kxx′) qn(kyy) sn(kyy′)

∂Gzz
A

∂x
, ∂GV

∂x
µ, 1

ε
kx cos(kxx) sin(kxx′) sin(kyy) sin(kyy′)

∂Gzz
A

∂y
, ∂GV

∂y
µ, 1

ε
ky sin(kxx) sin(kxx′) cos(kyy) sin(kyy′)

∂Gzz
A

∂z
, ∂GV

∂z
−µ, 1

ε
γmn sgn(z − z′) sin(kxx) sin(kxx′) sin(kyy) sin(kyy′)

a

b
z-z'

(Source Point)

(Observation Point)

x

yz

(x',y',z')

(x,y,z)

Fig. 1. Sketch of a rectangular waveguide, with dimensions a × b in the
(x,y) plane, for source and observation points that are separated by a distance
|z − z′| along the propagation axis.

waveguide (see Table I) and p = x, y or z. Moreover, γ2mn,
kx, ky and εm are defined as:

γ2mn = k2x + k2y − k2 ;

k2x =
(mπ
a

)2
; k2y =

(nπ
b

)2
;

εm =

{
1, m = 0

2, m 6= 0
.

(2)

On the other hand, the spatial domain expressions can be
written as:

∂Gspat

∂p
=
−ϑ
4π

∞∑
m,n=−∞

3∑
i=0

Aααi
Bpe−jkRi,mn

R2
i,mn

(
1

Ri,mn
+ jk

)
,

(3)

where Bp and Ri,mn have the following form:

Bx = Xi + 2ma, By = Yi + 2nb, Bz = z − z′

Ri,mn =
√
(Xi + 2ma)2 + (Yi + 2nb)2 + (z − z′)2

Xi =

{
x− x′, i = 0, 1

x+ x′, i = 2, 3

Yi =

{
y − y′, i = 0, 2

y + y′, i = 1, 3

(4)

In the previous equations, k = ω
√
µε is the medium wave

number, a and b are respectively the width and height of
the rectangular waveguide, whereas ν and Aα,αi are shown
in Table II. In addition, α can take x, y or z values.

The rectangular waveguide Green’s functions and their
derivatives can efficiently be evaluated by means of the Ewald
method, which is based on the sum of two different contri-
butions, namely the spatial and spectral terms. These terms,

TABLE II
TERMS OF RECTANGULAR WAVEGUIDE GREEN’S FUNCTIONS

DERIVATIVES IN THE SPATIAL DOMAIN FOR THE MAGNETIC VECTOR
POTENTIAL

(
GA

)
, ELECTRIC VECTOR POTENTIAL

(
GF

)
, ELECTRIC

SCALAR POTENTIAL (GV ) AND MAGNETIC SCALAR POTENTIAL (GW ),
WHERE p = x, y OR z.

ϑ Axx
i Ayy

i Azz
i

∂GααA
∂p

µ
{

+1, i=0,2
−1, i=1,3

{
+1, i=0,1
−1, i=2,3

{
+1, i=0,3
−1, i=1,2

∂GααF
∂p

ε
{

+1, i=0,1
−1, i=2,3

{
+1, i=0,2
−1, i=1,3

+1 = 0, 1, 2, 3

ϑ Ai

∂GV
∂p

1
ε

{
+1, i=0,3
−1, i=1,2

∂GW
∂p

1
µ

+1 = 0, 1, 2, 3

which are conveniently weighted by the so called “Splitting
Parameter” (E) [23], are shown below:

∂GEwald

∂p
=
∂Gspec

Ewald

∂p
+
∂Gspat

Ewald

∂p
(5)

The first term
(
∂Gspec

Ewald

dp

)
is related to the spectral domain

modal expansion, whereas the second
(
∂Gspat

Ewald

dp

)
relates to

the spatial domain images expansion of the Green’s function
derivatives in a rectangular waveguide.

The spectral domain derivatives, corresponding to the first
term, can be written as follows:

∂Gspec
Ewald

∂p
=

ϑ

4ab

∞∑
m,n=0

νp ·
εmεn
γmn

· gewald(z, z′, E)

· gm(kxx)pn(kxx
′)qm(kyy)sn(kyy

′),

(6)

where νp and gewald(z, z′, E) depend on the partial derivative
to be evaluated.

For the evaluation of the partial derivatives with respect to
p = x and p = y, the constants and functions in (6) are
particularized as follows,

νx = kx,

νy = ky,

gewald(z, z
′, E) = g(|z − z′|, γmn, E),

(7)
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where g(|z − z′|, γmn, E) can be expressed as follows,

g(|z − z′|, γmn, E)

≡eγmn(z−z
′) erfc

(γmn
2E

+ (z − z′)E
)

+e−γmn(z−z
′) erfc

(γmn
2E
− (z − z′)E

)
,

(8)

and erfc is the complementary error function of complex
argument.

On the other hand, for the derivatives with respect to the
longitudinal direction p = z, and applying the properties of
error functions shown in [22], these terms take the next form:

νz = 1,

gewald(z, z
′, E) = g′(|z − z′|, γmn, E),

(9)

where, in turn, g′(|z − z′|, γmn, E) is expressed as follows:

g′(|z − z′|, γmn, E)

≡γmneγmn(z−z
′) erfc

(γmn
2E

+ (z − z′)E
)

−γmne−γmn(z−z
′) erfc

(γmn
2E
− (z − z′)E

)
+

(
2E√
π

)
e−γmn(z−z

′)−(γmn/(2E)−(z−z′)E)2

−
(
2E√
π

)
eγmn(z−z

′)−(γmn/(2E)+(z−z′)E)2 .

(10)

Moreover, the spatial domain contribution derivatives can
be expressed as shown next:

∂Gspat
Ewald

∂p
=
ϑ

8π

∞∑
m,n=−∞

3∑
i=0

Aααi

[
f ′p(Ri,mn, E, k)

Ri,mn

− f(Ri,mn, E, k)

R2
i,mn

∂Ri,mn
∂p

]
,

(11)

being f(Ri,mn, E, k), f ′p(Ri,mn, E, k) and ∂Ri,mn/∂p:

f(Ri,mn, E, k) ≡ e−jkRi,mn erfc
(
Ri,mnE −

jk

2E

)
+ ejkRi,mn erfc

(
Ri,mnE +

jk

2E

)
,

(12)

f ′p(Ri,mn, E, k)

≡ −jk ∂Ri,mn
∂p

e−jkRi,mn erfc
(
Ri,mnE −

jk

2E

)
+jk

∂Ri,mn
∂p

ejkRi,mn erfc
(
Ri,mnE +

jk

2E

)
−
(
4E√
π

)
∂Ri,mn
∂p

e(
k
2E )

2−(Ri,mnE)2 ,

(13)

∂Ri,mn
∂x

=
Xi + 2ma

Ri,mn
,
∂Ri,mn
∂y

=
Yi + 2nb

Ri,mn
,

∂Ri,mn
∂z

=
z − z′

Ri,mn
.

(14)

In most practical situations, the medium filling the rect-
angular waveguide can be modelled as homogeneous and
lossless. Consequently, the previously outlined expressions

can be simplified to reduce the computational cost associ-
ated to complementary error functions of complex argument.
Therefore, as in [21], the complex conjugate property is
employed. This property is only applied for the derivatives of
the spatial domain expansion, and for the propagative modes
in the derivatives of the spectral domain counterpart, since the
evaluation of the remaining terms below cutoff in expressions
(8) and (10) is computationally efficient. This is because the
argument of the complementary error functions is real. There-
fore, the only change in the expressions with respect to the
derivatives presented above will come in g′(|z − z′|, γmn, E)
when the derivative is with respect to z and in f ′p(Ri,mn, E, k),
thus leading to the next results:

g′(|z−z′|, γmn, E) = 2jkzmn

{
− ejkzmn(z−z

′)+

R
[
ejkzmn(z−z

′) erfc

(
jkzmn
2E

+ (z − z′)E
)]}

− 2E√
π
ejkzmn(z−z

′)−( jkzmn2E +(z−z′)E)
2

+
2E√
π
e−jkzmn(z−z

′)−( jkzmn2E −(z−z′)E)
2

,

(15)

f ′p(Ri,mn, E, k) = −2k
∂Ri,mn
∂p

I
[
ejkRi,mn

· erfc
(
Ri,mnE +

jk

2E

)]
− 2E√

π

∂Ri,mn
∂p

·
[
e−jkRi,mn−(Ri,mnE−

jk
2E )

2

+ ejkRi,mn−(Ri,mnE+ jk
2E )

2
]
,

(16)

where R[A] designates the real part of a complex number A,
and I[A] represents its imaginary part.

These simplifications reduce the number of error functions
with complex arguments to be evaluated by a factor of two.
However, as explained in [21], the computational cost of
calculating the remaining complex argument error functions
is still high. Therefore, we propose new approximations of
the complex argument error function by means of infinite
series (see [22, (7.1.29)]), which depend only on the com-
plementary real argument error functions. With the help of
these infinite series, we obtain for R

{
ej2xy erfc(x+ jy)

}
and

I
{
ej2xy erfc(x+ jy)

}
the same expressions as in [21, (10,

11)]). The detailed procedure for obtaining these expressions
can be found in Appendix. It is also worth mentioning that
tests have been made with the complex argument complemen-
tary error function in order to quantify the difference between
the expressions developed in this work and the unaccelerated
function. The result we have been obtained for an analysis in
which we had one source point and 121 observation points is
6 times slower than in the accelerated function. Another con-
clusion obtained in these tests is that the difference between
the two functions grows as the number of times it has to be
evaluated increases. The time degradation is not proportional,
which is why this form of acceleration of the complementary
error functions of complex argument is so advantageous.
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B. Calculation of the Optimum Splitting Parameter (E)

The Splitting Parameter (E) used in the Ewald method
is chosen dynamically (see [24, (34)]). The expressions that
allow to obtain the optimum E value for each case depend
on the rectangular waveguide geometry, frequency and other
numerical parameters, as can be seen next:

Eopt =max{E0, E1, E2}

=max

{√
π

ab
,
kz10
2H

,
k

2(ζQ!)
1

2Q

}
,

(17)

where kz10 is the propagation constant of the first propagating
mode, k is the medium wave number, H is the maximum
allowed exponent that avoids numerical instabilities, whose
value, for our specific cases after a series of tests, is 3 [24], ζ
is the desired error, and Q is the number of terms needed to
achieve convergence.

C. Green’s Functions Derivatives: Convergence and Compu-
tational Time

In order to test the numerical performance of the proposed
Ewald method acceleration technique, for evaluating the rect-
angular waveguide Green’s functions derivatives, we have used
as benchmark a standard WR-90 (a = 22.86 mm × b = 10.16
mm) rectangular waveguide at f = 10.2 GHz in X-band (see
Fig. 1). Furthermore, the computational times were obtained
on a computer with an Intel Core i5 processor @2.3 GHz and
a RAM memory of 8 GB. For all the convergence analyses
that will be shown in this subsection, the reference value,
in order to calculate the relative error, has been obtained
with a very large number of terms included in the relevant
series. For each of the examples, the number of terms needed
to obtain the reference value will be shown in captions of
Fig. 2 to Fig. 5. Figure 2 shows the convergence of the
derivative with respect to the propagation direction z of the
electrical scalar potential Green’s function (GV ), using the
direct modal expansion (1). As can be seen in Fig. 2, the
convergence is seriously degraded for short electrical distances
between source and observation points along the propagation
axis |z − z′|. This is due to the exponential term in (1) that
strongly influences the convergence rate depending on |z−z′|.
For the x and y variables, the convergence pattern is very
similar. For this reason, these derivatives with respect to these
variables are not included in the graph.

In the case of the derivatives computed by using the direct
spatial image expansion, the result is considerably worse, as
the denominator terms (3) degrade the convergent effect of
the exponential factor. As a consequence, the results of the
summation of this spatial image series never achieve adequate
accuracy to be practically usable for the evaluation of these
Green’s functions. For this reason, the computational cost of
using these spatial domain expressions would be unfeasible
for the analysis of practical circuits.

Next, we have studied the numerical convergence of the
electric scalar potential derivative ∂GV /∂z, as a function of
the number of terms used in (6) for evaluating the spectral
domain Ewald method counterpart (see Fig. 3). As can be seen,

0 2000 4000 6000 8000
Number of terms

10−14

10−11

10−8

10−5

10−2

101

Re
la
tiv

e 
Er
ro
r

|z-z'| = 0
|z-z'| = 0.01a
|z-z'| = 0.1a
|z-z'| = 0.5a

Fig. 2. Convergence of the derivative of the electric scalar potential Green’s
function in the spectral domain (∂GV /∂z) using (1), where the abscises
represent the number of summed modal terms, being each curve provided for
a different |z− z′| distance (x′ = 13 mm, y′ = 5.5 mm; x = 9 mm, y = 5
mm). The dimensions of the rectangular waveguide are (a = 22.86 mm × b
= 10.16 mm) and the test frequency is f = 10.2 GHz. The number of terms
used for the reference value is 30000.

for a given source (x’,y’) and observation (x,y) locations in
the cross-section and for different distances |z− z′| along the
propagation axis, only 12 terms lead to a relative error lower
than 10−6. On the other hand, we have also checked that only
one image layer is needed to achieve convergent results for
the spatial domain Ewald method contribution (11). Moreover,
the convergence rate exhibits very small dependence with
the longitudinal distance from source to observation points
|z− z′|. With regard to the selection of the optimum splitting
parameter Eopt, the criteria presented in Section II-B have
been followed. Therefore, we can state that using Ewald
method, convergence can be achieved for any distance |z−z′|
with a low computational cost.

In the next numerical example (see Fig. 4), we have com-
pared the number of terms required by the Ewald method and
the original spectral domain Green’s functions (GFs) deriva-
tives to achieve convergent results (relative error < 10−6),
for a configuration of source and observation points located
at a relatively far distance along the propagation direction
(|z − z′| = 0.5a). In this situaltion, for a relative error of
10−6, 57 terms are needed by the original GF spectral domain
representation, whereas the Ewald method meets the same
relative error with only 12 terms. On the other hand, only
for very large |z − z′| distances, the original spectral domain
GF representation is more efficient than its Ewald method
equivalence, due to its simpler expression (0.25 ms vs 0.84
ms, respectively; see equations (1) and (2), that avoids the
evaluation of computationally expensive complementary error
functions as required in (5)-(13).

In the last numerical test (see Fig. 5), we have studied the
convergence performance of GV and its different derivatives
∂GV /∂p, for a particular location of source and observation
points. As can be observed in Fig. 5, the convergence rate of
GV and its derivatives is very similar. Nevertheless, the time
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Fig. 3. Convergence of the derivative of the electric scalar potential Green’s
Function (∂GV /∂z) evaluated by the Ewald summation, where the abscises
stand for the number of modal terms. Each curve is computed for a different
|z − z′| distance. The coordinates of the source and observation point are
x′ = 13 mm, y′ = 5.5 mm; x = 9 mm, y = 5 mm, and the dimensions
of the rectangular waveguide are (a = 22.86 mm × b = 10.16 mm) and the
test frequency is f = 10.2 GHz. The number of terms used for the reference
value is 200.
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Fig. 4. Convergence of the original modal expansion of the electric scalar
potential Green’s function derivatives with respect to x, y and z, versus the
results provided by the Ewald summation technique (∂GV /∂x, ∂GV /∂y,
∂GV /∂z). The coordinates of the source and observation point are x′ = 13
mm, y′ = 5.5 mm, x = 9 mm, y = 5 mm; |z − z′| = 0.5a, and the
dimensions of the rectangular waveguide are (a = 22.86 mm × b = 10.16
mm) and the test frequency is f = 10.2 GHz. The number of terms used for
the reference value is 200 for the Ewald method and 5000 for the spectral
summation.

needed for GV (0.29 ms) is around four times lower than
the time required by its derivatives (0.84 ms), due to more
complex mathematical expressions involved in the calculations
for the last case.

Finally, we have collected in Table III the computational
time needed to achieve a relative error less than 10−6 during
the calculation of 25 observer points equispaced in a cross-
section XY plane. The two last columns correspond to two
different distances from the source to the observation plane,
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Fig. 5. Convergence of the derivatives of the electric scalar potential Green’s
Function (∂GV /∂p), versus the electric scalar potential Green’s Function
(GV ), both evaluated by the Ewald method as a function of the number of
terms summed in the spectral domain counterpart (x′ = 13 mm, y′ = 5.5
mm; x = 9 mm, y = 5 mm; |z − z′| = 0.5a). The dimensions of the
rectangular waveguide are (a = 22.86 mm × b = 10.16 mm) and the test
frequency is f = 10.2 GHz. The number of terms used for the reference
value is 200.

close (|z − z′| = 0.01a) and far (|z − z′| = 0.5a) from
each other along the propagation axis. As can be seen, the
evaluation time needed by the derivatives ∂GV is higher than
that spent computing GV . However, this difference is small
and does not represent a significant overhead for integral
equation techniques where these Green’s functions are used.
Green’s functions derivatives are usually needed in the evalua-
tion of the electromagnetic field distributions, in the analysis of
dielectric objects by the Surface Equivalence Principle, as well
as in the analysis of step discontinuities between rectangular
waveguides.

TABLE III
COMPUTATION TIME FOR THE ELECTRIC SCALAR POTENTIAL GREEN’S

FUNCTION (GV ) AND ITS DERIVATIVE WITH RESPECT TO THE VARIABLE z
(∂GV /∂z) WITH A SOURCE POINT AT x′= 13 MM, y′ = 5 MM AND 25
OBSERVATION POINTS EQUISPACED IN A CROSS-SECTION XY PLANE.

RESULTS ARE GIVEN FOR A RELATIVE ERROR < 10−6 . THE DIMENSIONS
OF THE RECTANGULAR WAVEGUIDE ARE (a = 22.86 MM × b = 10.16 MM)

AND f = 10.2 GHZ.

|z − z′| = 0.01a |z − z′| = 0.5a

GspectralV 1.103× 10−2 s 1.420× 10−4 s

∂GspectralV 1.346× 10−2 s 1.859× 10−4 s

GEwaldV 2.937× 10−4 s 2.901× 10−4 s

∂GEwaldV 8.168× 10−4 s 8.251× 10−4 s

III. ELECTRIC FIELD COMPUTATION

A. Development of the Electric Field Expressions Generated
by a Surface Electric Current Density with a Rectangular
Pulse Distribution inside a Rectangular Waveguide.

First, we will study how to evaluate the electric field in a
given region within the rectangular waveguide. For this, we
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will use the expression for the evaluation of the electric field
in terms of mixed potentials [26], as follows,

~E = −jω ~A−∇φe, (18)

where ω is the angular frequency, ~A is the magnetic vector
potential and φe is the electric scalar potential.

We then write in more detail (18), where we have to
make use of the dyadic magnetic vector potential Green’s
function of the rectangular waveguide

(
GA

)
and the scalar

electric potential Green’s function (GV ), thus obtaining an
expression to calculate the electric field for an arbitrary surface
current density distribution. Therefore, taking into account
such Green’s functions, and also the continuity equation for
expressing the charge in terms of a single source of electric
current density, we obtain the following expression,

~E =− jω
∫∫

GA(~r, ~r ′) ~Js(~r ′) dS′

+
1

jω

∫∫
∇GV (~r, ~r ′)∇′ · ~Js(~r ′) dS′,

(19)

where, ~r and ~r′ are, respectively, the observation and source
position vectors.

In our particular analysis, the excitation will be a constant
electric current density within the pulse that can have different
orientations, as will be discussed in Section III-B below. It
is also possible to use other types of excitations, but in this
case we will use the excitation described above for the sake
of simplicity in its definition and easiness in comparison to
results provided by ANSYS HFSS with an equivalent model.
Continuing with the development, it is important to note that
when the rectangular current pulse is oriented along the XZ
plane (taking into account the model depicted in Fig. 6) the
distance along the propagation axis between the source and
the observation plane will vary. On the other hand, in the
case where the pulse is oriented in the XZ plane, the current
density within the pulse may be in the X or Z direction, as it
is important to differentiate that the orientation of the current
pulse and the direction of the current density within the pulse
are two different things.

In this particular example, the excitation will be a rect-
angular pulse of surface electric current density ~Js(~r

′) of
dimensions lx × ly , oriented along the y-axis and located at
z′c = 0 as shown in Fig. 6,

~Js(~r
′) =

∏(
x′ − x′c
lx

)∏(
y′ − y′c
ly

)
ŷ (A/m), (20)

where x′c and y′c stands for the midpoint of the pulse on each
axis, ŷ represents the orientation of the current and the Greek
alphabet symbol Pi refers to the rectangular current pulse.

The electric field will be evaluated at a set of points located
in the XY plane corresponding to the rectangular cross-section
of the waveguide, separated from the source by a distance
|z − z′| along the propagation axis, as shown in Fig. 6. As
can be observed in (19), when the divergence of the current
pulse is evaluated, what we obtain are two line integrals. These
integrals are defined on the axis perpendicular to the current
orientation and on which the pulse is defined. Actually, these

a

b

z-z'

x

y
zlx

ly
(x1,y1)

(x2,y2)(x1,y2)
x'c

y'c

(x2,y1)

Observation
plane

Fig. 6. Sketch of a WR-90 rectangular waveguide (a = 22.86 mm× b = 10.16
mm), where a y-oriented surface electric current density with a rectangular
pulse distribution in the XY-plane is depicted. The observation plane is
separeted from the source pulse a distance |z − z′| along the propagation
axis.

line integrals correspond to a distribution of spatial deltas
defined along the integration line. For the particular case
depicted in Fig. 6 (y-oriented electric current pulse defined
on XY plane), the resulting line integrals will be evaluated
along the x-axis.

To continue, we split the electric field by components and
establish the limits of the integrals, which will be determined
by the electric current pulse geometry. In this way, the final
expression for the electric field components can be written as
follows,

Ep = −jωAp

∫ x2

x1

∫ y2

y1

Gyy
A (~r, ~r ′) dy′dx′

+
1

jω

∫ x2

x1

∂GV (~r, x
′, y′ = y1, z

′ = z′c)

∂p
dx′

− 1

jω

∫ x2

x1

∂GV (~r, x
′, y′ = y2, z

′ = z′c)

∂p
dx′,

(21)

where z′ = z′c = 0 represents the location of the current pulse
on the propagation axis, x′c and y′c represent the centre point
of the current pulse along the x and y axes respectively, and
x1 = x′c − lx

2 , x2 = x′c +
lx
2 , y1 = y′c −

ly
2 , y2 = y′c +

ly
2 . On

the other hand the subscript p = x, y or z and Ap will have a
value of 1 for p = y and 0 in the other cases.

It should be noted that, if the orientation of the pulse were
different, these line integrals would be defined on a different
axis. Some of these possible variations of this initial example
are explored next in the results Section III-B. Furthermore,
with this mixed-potential formulation the magnetic field has
also been evaluated, nevertheless for the sake of space the
detailed procedure has not been included in this paper.

B. Evaluation of the Electric Field Pattern in a Rectangular
Waveguide from a Surface Electric Current Density Pulse
Distribution.

In this section, we will evaluate the electric field pattern
in a determined observation plane within the rectangular
waveguide, produced by a rectangular pulse of surface electric
current density as outlined in Section III-A. Furthermore,
to verify that the electric field evaluation results obtained
in the examples below are correct, they will be compared
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to simulated data provided by the full-wave ANSYS HFSS
commercial software [25]. On the other hand, the measured
computational cost for some of the analyses in this subsec-
tion correspond to a computer with an Intel Core i7-6700K
processor @4.00 GHz and 40 GB RAM In this evaluation,
we will have to adjust the amplitude of the current used by
HFSS, to be equivalent to the pulse current used in our mixed
potentials method [30]. To do this we will have to calculate
the total current flow along the pulse, so the result obtained
is the value by which we have to multiply the current in
the ANSYS HFSS excitation model to make it comparable
to the method of mixed-potential proposed in this paper. In
these examples, it would be more illustrative to check the
components of the electric field separately, as there will be
components with evanescent behaviour. For example, in the
case of Fig. 7, the direction of the current inside the pulse
is oriented along the y-axis, so the components Ex and Ez
will have an evanescent behavior. In the examples below,
the working frequency is f = 17 GHz, where we have 4
propagating modes and the distance |z − z′| = 0.5 mm.
Therefore, following the example of Fig. 7, Ey will have a
propagative behaviour, since, as seen in (21), it is the only
component with a non-zero contribution from the magnetic
vector potential. To make the validation more general, Fig. 8
shows the Ey component radiated by a current pulse, but this
time with the surface current density oriented along the x-axis.
In this case the contribution of the magnetic vector potential
will be zero, so Ey and Ez will have evanescent behavior. Due
to the propagation of higher-order modes, this component-by-
component evaluation will allow us to prove that each and
every one of the components of the electric field evaluated
by using the outlined Green’s functions and their derivatives
are correct. In fact, in the comparisons shown in Fig. 7 and
8, it can be seen that this mixed potentials method correctly
compares the results with those provided by ANSYS HFSS.
Moreover, all the aforementioned evanescent components are
of great importance in this work, since, as shown in Section
III-A, close to the source their main contribution comes from
the derivatives of the electric scalar potencial Green’s function.
This shows the importance of this work, since the derived
theory allows a fast solution for the scalar Green’s function
derivatives.

On the other hand, to show the accuracy of the method
used to evaluate the electric field, we will calculate the relative
root mean square error of the total field, for a set of points
uniformly distributed in a given XY plane located at a distance
“z” along the propagation axis, between the results obtained
by our method and those provided by the commercial software
based on finite elements ANSYS HFSS [25]. Tables IV, V and
VI show how the relative root mean squared error of the total
electric field ( ~Etotal) varies, if the accuracy of the ANSYS
HFSS simulations is increased, if the distance between source
and observation plane is modified or if the working frequency
is altered, respectively. In Table IV to increase the accuracy,
we will make use of the ANSYS HFSS “Lambda Refinement”
parameter (λtarget) [25]. The size of the tetrahedra will depend
on the parameter λtarget and the working frequency selected
to obtain the solution. To improve accuracy, we decrease the

Fig. 7. Comparison between data retrieved from ANSYS HFSS (first) and the
mixed-potential evaluation (second), of the Ey component of the E-field for an
XY-plane surface electric current density with a rectangular pulse distribution
oriented along the y-axis ( ~Js =Jy ŷ). The third image refers to the relative
error distribution between both electric field distributions shown in this same
figure. The ANSYS HFSS result taken as a reference has been calculated for
a λtarget = 0.1. The operation frequency is f = 17 GHz. The rectangular
waveguide is a WR-90 (a = 22.86 mm × b = 10.16 mm).

λtarget value, so that in the final mesh the electrical size of the
finite elements mesh tetrahedra is smaller. This procedure will
be carried out until the machine’s computational resources are
pushed to the limit, so that the result obtained for this limit
example will be considered as the optimum for calculating the
relative error in the subsequent examples.

TABLE IV
RELATIVE ERROR OF THE TOTAL ELECTRIC FIELD ( ~Etotal) FOR

DIFFERENT ACCURACY VALUES IN HFSS (λtarget). IN THIS EXAMPLE,
THE PULSE IS DEFINED IN THE XY PLANE, WITH A SURFACE CURRENT

DENSITY DIRECTION ON THE y-AXIS ( ~Js =Jy ŷ AND lx = 4 MM × ly = 2
MM). THE WORKING FREQUENCY IS f = 17 GHZ AND THE DISTANCE

BETWEEN SOURCE AND OBSERVATION ALONG THE PROPAGATION AXIS
|z − z′| = 5 MM.

λtarget 0.3 0.25 0.2 0.15 0.1

Relative Error 0.35 0.22 0.20 0.16 0.14

In Table IV, it can be seen that decreasing the λtarget value
results in a smaller relative error, due to a higher number of
tetrahedra, which allows a more accurate analysis in HFSS.
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Fig. 8. Comparison between results provided by ANSYS HFSS and the
mixed-potential evaluation, of the Ey component of the E-field for an XY-
plane surface current density pulse oriented along the x-axis ( ~Js =Jxx̂). The
third image refers to the relative error distribution between the two electric
field distributions shown in this same figure. The ANSYS HFSS result taken
as a reference has been calculated for a λtarget = 0.1. The working frequency
is f = 17 GHz. The rectangular waveguide is a WR-90 (a = 22.86 mm × b =
10.16 mm). We remark that in this calculation only derivaties of the electric
scalar potential Green functions are involved.

However, it is important to note that increasing the accuracy
of these analyses in this type of commercial software is very
computationally expensive. On the other hand, in Table V,
taking a fixed value of frequency and a λtarget = 0.1 (which
is the value we take as the precision reference), we can see
how the relative error varies when the observation plane moves
away along the propagation axis. In this Table, the relative
error grows for closer distances because of the worse accuracy
for a given mesh of ANSYS HFSS nearby the source. In
fact, the fields have a singular behaviour near the source,
which is an additional reason for the worse accuracy achieved.
Continuing with the analyses, in Table VI, the variation has
been made with respect to frequency. In this case, it can
be seen that by choosing a λtarget = 0.1 and being at a
relatively far distance from the source, the relative errors
remain reasonably low over a wide range of frequencies. For
these examples, the number of summed terms in the Ewald
method has been increased to maintain good accuracy in
the mixed-potential calculations. Likewise, by maintaining a
λtarget = 0.1 in ANSYS HFSS, the number of mesh tetrahedra

is automatically recalculated as the frequency is increased.

TABLE V
RELATIVE ERROR OF THE TOTAL ELECTRIC FIELD ( ~Etotal) FOR

DIFFERENT DISTANCES BETWEEN SOURCE AND OBSERVATION ALONG THE
PROPAGACTION AXIS OF |z − z′|. IN THIS EXAMPLE THE PULSE IS IN THE

XY PLANE, WITH A SURFACE CURRENT DENSITY DIRECTION ON THE
y-AXIS ( ~Js =Jy ŷ AND lx = 4 MM × ly = 2 MM). THE CALCULATION IN
HFSS FOR λtarget = 0.1 IS TAKEN AS THE REFERENCE SOLUTION TO

CALCULATE THE RELATIVE ERRORS. THE WORKING FREQUENCY IS f =
12 GHZ

|z − z′| (mm) 1 3 5 10 20

Relative Error 0.45 0.26 0.11 0.064 0.026

TABLE VI
RELATIVE ERROR OF THE TOTAL ELECTRIC FIELD ( ~Etotal) FOR

DIFFERENT FREQUENCIES (f ). IN THIS EXAMPLE THE PULSE IS IN THE XY
PLANE, WITH A SURFACE CURRENT DENSITY DIRECTION ON THE y-AXIS

( ~Js =Jy ŷ AND lx = 4 MM × ly = 2 MM). THE DISTANCE BETWEEN
SOURCE AND OBSERVATION ALONG THE PROPAGACTION AXIS |z − z′| = 5

MM. THE CALCULATION IN HFSS FOR λtarget = 0.1 IS TAKEN AS THE
REFERENCE SOLUTION TO CALCULATE THE RELATIVE ERRORS.

f (GHz) 7 12 20 30 50

Relative Error 0.075 0.11 0.079 0.12 0.10

As it can be seen, to obtain good results in ANSYS HFSS
the observation has to be at a somewhat large distance from
the source, due to the singularity of the fields near the source.

In the last example included in Table VII, we show the
computational times for the analyses in Table VI with the
mixed-potential (MP) formulation and with the ANSYS HFSS
software.

TABLE VII
COMPUTATIONAL TIME CORRESPONDING TO THE MIXED-POTENTIAL
(tMP ) FORMULATION AND ANSYS HFSS (tHFSS ) FOR DIFFERENT

FREQUENCIES (f ). IN THIS EXAMPLE THE SURFACE CURRENT DENSITY
PULSE IS DEFINED IN THE XY PLANE AND ORIENTED ALONG THE y-AXIS

( ~Js =Jy ŷ AND lx × ly = 4 MM × 2 MM). THE DISTANCE BETWEEN
SOURCE AND OBSERVATION ALONG THE PROPAGATION AXIS IS |z − z′| =

5 MM. THE NUMBER OF POINTS USED IN THIS TEST IS 23331 AND THE
CALCULATION IN HFSS FOR λtarget = 0.1 IS TAKEN AS THE REFERENCE

SOLUTION TO CALCULATE THE RELATIVE ERRORS.

f (GHz) 7 12 20 30 50

tMP 15.73 s 15.92 s 16.44 s 16.32 s 17.90 s

tHFSS 32.16 s 52.54 s 1 m 25 s 6 m 12 s 29 m 46 s

It can be seen in Table VII that the computation time
increases slightly as the analysis increases in frequency, due to
the appearance of more propagative modes. This requires the
use of the approximations outlined in the Green’s functions
a greater number of times during the analysis. At this point,
it should be remembered that these approximations served to
accelerate those complementary error functions of complex
argument that appeared for the propagative modes. However,
it should be noted that the number of propagating modes
appearing in these analyses is not very large, so this is
another reason why the computational time does not increase
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significantly. On the contrary, when these comparisons are per-
formed with ANSYS HFSS, the computational time increases
exponentially, due to the increase in the number of tetrahedra
that are recalculated for each frequency. The latter makes
the use of ANSYS HFSS very computationally intensive as
compared to the technique proposed in this paper.

IV. CONCLUSION

In this work, the 3D dynamic Lorentz gauge potential
Green’s functions derivatives inside a rectangular waveguide
have been efficiently evaluated by using the Ewald method.
To do so, infinite series approximations have been used to
reduce the computational cost associated to complementary
error functions of complex arguments. This approximation
technique leads to a quite competitive computational cost for
the accurate evaluation of the rectangular waveguide Green’s
functions derivatives. On the other hand, we have also found
a similar convergence pattern for evaluating the direct Green’s
functions and their derivatives, once the Ewald method is
applied. Therefore, the results presented in this contribution
could be useful in subsequent research on integral equation
formulations, focused on the evaluation of electromagnetic
fields, the characterization of dielectric materials inside rect-
angular waveguides, and the analysis of step discontinuities
between rectangular waveguides and cavities. To validate the
new formulation, a calculation of the electric field produced by
surface current density pulses, using these Green’s functions,
has also been carried out. A reasonable agreement with results
provided by commercial software tools, such as HFSS, has
been shown.

APPENDIX
COMPLEMENTARY COMPLEX ARGUMENT ERROR

FUNCTIONS

This appendix shows how to evaluate complementary
complex argument error functions, using infinite series,
which will only depend on complementary real argument
error functions [21, (10, 11)]). Using these expansions,
R
{
ej2xy erfc(x+ jy)

}
and I

{
ej2xy erfc(x+ jy)

}
can be

written as,

R
{
ej2xy erfc(x+ jy)

}
= erfc(x) cos(2xy)

+
4x

π
e−x

2

·
∞∑
n=1

e
−n2

4

n2 + 4x2
(cosh(ny)− cos(2xy))

+
e−x

2

2πx
(1− cos(2xy)) + ε(x, y),

x = (z − z′)E, y = kz/2E

(22)

I
{
ej2xy erfc(x+ jy)

}
= erfc(x) sin(2xy)

− 2

π
e−x

2

·
∞∑
n=1

e
−n2

4

n2 + 4x2
(n sinh(ny) + 2x sin(2xy))

− e−x
2

2πx
sin(2xy) + ε(x, y),

x = Ri,mnE, y = k/2E

(23)

where ε(x, y) is a bounded error term. On the other hand,
recall that the values of x and y in (24) and (25) are the
arguments of the complementary error function of complex
argument shown in (15) and (16).

In (24) and (25), it will be necessary to verify the optimum
number of terms used in the summations to achieve the
necessary accuracy, but at a much lower computational cost
as compared to using the complex-argument complementary
error functions. In general, we have verified that good accuracy
is obtained with just ten terms in these expansions.
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A. Melcón, and V. E. Boria Esbert, “Integral equation analysis of multi-
port H-plane microwave circuits by using 2D rectangular cavity Green’s
functions accelerated by the Ewald method,” IET Microw.,Antennas
Propag., vol. 17, no. 1, pp. 13–25, 2023.

This article has been accepted for publication in IEEE Transactions on Microwave Theory and Techniques. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMTT.2023.3276445

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



11

[16] Myun-Joo Park, Jongkuk Park and Sangwook Nam, “Efficient cal-
culation of the Green’s function for the rectangular cavity,” in IEEE
Microw. Guided Wave Lett., vol. 8, no. 3, pp. 124-126, March 1998,
doi: 10.1109/75.661136.

[17] M. E. Gruber and T. F. Eibert, “A hybrid Ewald-spectral represen-
tation of the rectangular cavity Green’s function,” 2014 Int. Symp.
Electromagn. Compatibility, 2014, pp. 906-909, doi: 10.1109/EMCEu-
rope.2014.6931032

[18] M. Bressan, S. Battistutta, M. Bozzi and L. Perregrini, “Modeling of
inhomogeneous and lossy waveguide components by the segmentation
technique combined with the calculation of Green’s function by Ewald’s
method,” in IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 633-
642, Feb. 2018, doi: 10.1109/TMTT.2017.2787587.

[19] F. J. Perez Soler, F. D. Quesada Pereira, D. Cañete Rebenaque, A.
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