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Abstract

Co-risk measures and risk contributions measures are used in portfolio
risk analysis to assess and quantify the risk of contagion, given that
one or more assets in the portfolio are in distress. In this paper, given
two random vectors X and Y that represent two portfolios of n assets
(n ≥ 2) and exhibit some kind of positive dependence, we give sufficient
conditions based on stochastic orders to compare the risk of contagion
of the portfolios. The measures of risk contagion that we consider are
the conditional value at risk (CoVaR), the conditional expected shortfall
(CoES) and the recently introduced marginal mean excess (MME).

JEL: G220

Keywords: risk measure, contagion risk, stochastic orders, CoVaR, CoES.
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1 Introduction and background

In the last decades, especially since the 2007-2009 financial crisis, there
has been an increasing interest in modelling the contagion risk (also re-
ferred to as systemic risk) caused by interconnections among financial
institutions, markets or services. In portfolio risk analysis, the risk of
contagion appears when the collapse of one or more components of the
portfolio can eventually cause the collapse of other components, putting
the entire portfolio at risk. From the point of view of risk measure-
ment, the risk of contagion puts the focus on conditional rather than
unconditional risk distributions. This makes it necessary to adapt the
risk measures typically used in the financial industry, such as the value-
at-risk (VaR) and the expected shortfall, to incorporate the effect of
interaction.

Recall that, given a risk X with continuous distribution function F ,
its value at risk (or VaR) at level p (or p-quantile) is defined by

VaRp [X] = F−1(p) = inf {x : F (x) ≥ p} , p ∈ (0, 1)

and its corresponding expected shortfall is defined by

ESp [X] = E [X|X > VaRp [X]] .

The expected shortfall is a coherent risk measure in the sense of Artzner
er al. (1999). Due to the continuity of F , the following identity holds:

ESp [X] =
1

1− p

∫ 1

p

VaRt [X] dt, p ∈ (0, 1) .

Let X = (X1, ..., Xn) be a portfolio of risks (or random vector) with joint
distribution function F and respective marginal distribution functions
F1, F2, ...Fn, which we assume to be continuous with finite expectations.
The joint distribution function F can be expressed as

F (x1, ..., xn) = C (F1 (x1) , ..., Fn (xn)) ,

where C is the copula of X, that is, the joint distribution function of
the vector-copula (F1 (X1) , ..., Fn (Xn)) (see Nelsen, 1999). The copula
contains the information about the dependence of the random vector
(X1, ..., Xn) apart from the behavior of the marginal distributions. We
denote by C the joint tail function for n uniform random variables whose
joint distribution function is the copula C, that is,

C (p1, ..., pn) = P
[
X1 > F−11 (p1) , ..., Xn > F−1n (pn)

]
.

We also use the notation C (p) , where p = (p1, ...pn) ∈ (0, 1)n.
In this framework, we adopt the following dependence-adjusted ver-
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Definition 1 For p = (p1, ...pn) ∈ (0, 1)n we set

CoVaRp [X1|X2, ..., Xn] = VaRp1

[
X1|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
]
. (1)

Sometimes, to avoid ambiguity, we shall denote the CoVaR in Def-
inition 1 by CoVaRp1,...,pn [X1|X2, ..., Xn]. In words, (1) is the VaR
at level p1 of the conditional distribution of X1 given the joint event
{X2 > VaRp2 [X2] , ..., Xn > VaRpn [Xn]}. Therefore, fixed p∗ = (p2, ...pn)
∈ (0, 1)n−1, (1) is increasing1 in p1. Fixed p1, however, the monotonicity
of (1) with respect to p∗ = (p2, ...pn) ∈ (0, 1)n−1 reveals a structure of
dependence between X1 and (X2, ..., Xn) known as right-tail increasing
(decreasing). The formal definition of this notion is the following, see
Joe (1997, page 22).

Definition 2 Let X = (X1, ..., Xn) be a random vector with tail function
F̄. We say that Xi, i ∈ Ac, is right-tail increasing (decreasing) or RTI
(RTD) in Xj, j ∈ A, if

P (Xi > xi, i ∈ Ac|Xj > xj, j ∈ A)

increases (decreases) in xk, k ∈ A, where A is a non-empty subset of
{1, ..., n} and Ac is the complementary set of A.

The risk contribution measure

∆ CoVaRp[X1 | X2, ..., Xn] = CoVaRp[X1 | X2, ..., Xn]− VaRp1 [X1]

quantifies how a joint stress situation for the components X2, ..., Xn af-
fects X1 by comparing CoVaRp[X1 | X2, ..., Xn], which represents the
risk of X1 when is affected by the joint behavior of (X2, ..., Xn), with
VaRp1 [X1], which is the risk of X1 when considered in isolation.

The expected shortfall is also generalized to incorporate dependence
(see Mainik and Schaanning, 2014).

Definition 3 For p = (p1, ...pn) ∈ (0, 1)n we set

CoESp [X1|X2, ..., Xn]

=
1

1− p1

∫ 1

p1

CoVaRt,p2,...,pn [X1|X2, ..., Xn] dt (2)

1Here and throughout the paper, increasing stands for non-decreasing.
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Clearly, fixed p∗ = (p2, ...pn) ∈ (0, 1)n−1, (2) is increasing with respect to
p1 and fixed p1, (2) inherits the monotonicity of CoVaR. Therefore, fixed
p1, if X1 is RTI (RTD) in (X2, ..., Xn), then (2) increases (decreases) with
respect to p∗ = (p2, ...pn) ∈ (0, 1)n−1.

Risk contributions can be measured in terms of CoES by using

∆ CoESp[X1 | X2, ..., Xn] = CoESp[X1 | X2, ..., Xn]− ESp1 [X1].

Other dependence-adjusted extensions of VaR and ES can be found
in Adrian and Brunnermeier (2016). Some other measures have been
recently introduced to manage and quantify the impact of risk contagion.
We consider in this paper the marginal mean excess (MME) measure
introduced by Das and Fasen-Hartmann (2018a).

Definition 4 Assume E |X1| < ∞. For p∗ = (p2, ...pn) ∈ (0, 1)n−1 we
set

MMEp∗ [X1|X2, ..., Xn] = E

[
(X1 − AX,p∗)+|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
]

with AX,p∗ = a1VaRp2(X2) + ...+ an−1VaRpn(Xn), where a1, ..., an−1 are
given positive constants, such that

∑n−1
i=1 ai = 1.

For n = 2 and p ∈ (0, 1), the MME given in Definition 4 reduces to

MMEp [X1|X2] = E [(X1 − VaRp(X2))+|X2 > VaRp(X2)] , p ∈ (0, 1),

as defined originally by Das and Fasen-Hartmann (2018a). In this case,
we interpret the MME as the expected excess of the risk X1 over the VaR
of X2 at level p, given that X2 is greater than its VaR. The extension
given in Definition 4 to the case n > 2, which is taken from Hashorva
(2019), represents the expected excess of the risk X1 over a linear com-
bination of the values at risks VaRp2(X2), ...,VaRpn(Xn) under a stress
scenario for the other risks, given by

{X2 > VaRp2(X2), ..., Xn > VaRpn(Xn)} .

The contribution of (X2, ..., Xn) to the expected excess of X1 over the
linear combination AX,p∗ can be quantified by:

∆MMEp∗ [X1|X2, ..., Xn] (3)

= E

[
(X1 − AX,p∗)+|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
]
− E [(X1 − AX,p∗)+] .

Jo
ur

na
l P

re
-p

ro
of
3



Journal Pre-proof
The study of CoVaR, CoES and MME has attracted growing atten-
tion among researchers, specially in the copula framework. To mention
only some of the most recent works: Bernardi et al. (2017) provide
a directory of CoVaR values for different families of copulas, Jaworski
(2017) deals with CoVaR for copulas with tail dependence, Karimalis
and Nomikos (2017) use dynamic copula models to estimate the Co-
VaR and the CoES, Choi and Shin (2019) propose a new method for
estimation of CoVaR, and Bernardi et al. (2018) and Bernardi and
Catania (2019) provide applications in different contexts. Regarding the
marginal mean excess, Das and Fasen-Hartmann (2018a,2018b) study
its asymptotic behavior under hidden regular variation assumptions and
Hashorva (2019) provides approximations for Gaussian random vectors.
Some generalizations of MME can be found in Ling (2019).

An important reason for measuring the risk of contagion is to make
comparisons and express preferences among different portfolios. How-
ever, given two portfolios X and Y, there are several issues that compli-
cate the process of decision-making based on the direct comparisons of
CoVaR, CoES and MME. One issue is that, in general, these measures
cannot be calculated explicitly since they depend on quantiles which
sometimes do not have closed forms. Another issue is the frequent lack
of consensus about the vector p of probabilities that defines the stress
scenario. One possibility to overcome these issues is to find conditions
(that do not require the explicit expression of the underlying measures)
to ensure that

Φp [X1|X2, ..., Xn] ≤ Φp [Y1|Y2, ..., Yn] , for all p ∈ Ω, (4)

where Φ stands for CoVaR, CoES and MME and Ω = (0, 1)n (in the
case of CoVaR and CoES) or Ω = (0, 1)n−1 (in the case of MME). In
this paper, we give sufficient conditions on the vectors X and Y, in
terms of well-known stochastic orders and dependence notions, under
which (4) holds. Regarding CoVaR and CoES, our results complement
and extend those obtained by Sordo et al. (2018), who derived sufficient
conditions for (4) in the bivariate case. The results connecting MME
with stochastic orders are novel and offer an alternative to the approach
of Hashorva (2019) and Das and Fasen-Hartmann (2018a, 2018b), who
derived approximations of MME under different asymptotic conditions.
Other recent works that provide sufficient conditions based on stochastic
orders for the comparisons of random vectors under different co-risk
measures include Fang and Li (2018), Navarro and Sordo (2018), Dhaene
et al. (2019) and Longobardi and Pellerey (2019).

We recall the definitions of the univariate stochastic orders considered
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Definition 5 Let X and Y be two random variables with respective dis-
tribution functions FX and FY and tail functions FX = 1 − FX and
F Y = 1− FY , respectively. Then, X is said to be smaller than Y :
(i) in the usual stochastic order (denoted by X ≤st Y ) if F̄ (t) ≤ Ḡ (t) ,
for all t.
(ii) in the hazard rate order (denoted by X ≤hr Y ) if F Y (t)/FX(t) in-
creases in t,
(iii) in the increasing convex order (denoted by X ≤icx Y ) if

∫∞
t
FX(x)dx

≤
∫∞
t
F Y (x)dx, ∀t,

(iv) in the increasing concave order (denoted by X ≤icv Y ) if
∫ t
−∞ FX(x)dx

≥
∫ t
−∞ FY (x)dx, ∀t,

(v) in the dispersive order (denoted by X ≤disp Y ) if F−1(p) − F−1(q)
≤ G−1(p)−G−1(q) for all 0 ≤ q < p ≤ 1.
(vi) in the excess wealth order (denoted by X ≤ew Y ) if

∫∞
F−1
X (p)

FX(x)dx

≤
∫∞
F−1
Y (p)

F Y (x)dx, ∀p ∈ (0, 1).

It is well-known (see Shaked and Shanthikumar (2007)) that

X ≤hr Y =⇒ X ≤st Y =⇒ X ≤icx(icv) Y (5)

and
X ≤disp Y =⇒ X ≤ew Y

but the converses are false. It is also well-known (see Lemma 2.1 in
Sordo and Ramos, 2007) that

X ≤icx Y if and only if ESp [X] ≤ ESp [Y ] , ∀p ∈ (0, 1) , (6)

where ESp(X) is the expected shortfall. Classical references for these
orders are the books by Müller and Stoyan (2002) and Shaked and Shan-
thikumar (2007).

The following multivariate stochastic order introduced by Hu et al.
(2003) plays an important role in this paper.

Definition 6 Let X = (X1, ..., Xn) and Y = (Y1, ..., Yn) be two random
vectors with respective joint survival functions F̄ and Ḡ, defined, respec-
tively, by F̄ (x) = P [X > x] and Ḡ(x) = P [Y > x], for x ∈ Rn. We
say that X is smaller than Y in the weak multivariate hazard rate order
(denoted by X ≤whr Y) if

Ḡ(x)

F̄ (x)
is increasing in x ∈

{
x : F̄(x) > 0

}
.
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In the literature on stochastic orders, given two random vectors X
and Y ordered stochastically by certain order ≤∗, one uses equivalently
the notations X ≤∗ Y and F ≤∗ G, where F and G are the respective
distribution functions of X and Y. In this paper, we will use the latter
notation, for consistency with the literature, when we compare copulas.
We recall the definition of concordance order (Definition 2.8.1 in Nelsen,
1999).

Definition 7 Given two n-dimensional copulas C and C ′, we say that
C is smaller than C ′ in the concordance order (and write C ≤c C ′) if
C (p) ≤ C ′ (p) for all p ∈ (0, 1)n.

According to Definition 6, we will write C ≤whr C ′ if

C̄ ′(p)

C̄(p)
is increasing in p ∈

{
p ∈ [0, 1]n : C̄(p) > 0

}
.

It is easy to see, see section 3 in Hu et al. (2003), that

C ≤whr C ′ implies C ≤c C ′.

These orders are partial orders because not every pair of copulas are
comparable (in fact, all the stochastic orders considered in this paper
are partial orders).

Besides RTI, we will use other notions that formalize the idea of
positive dependence of random vectors, which intuitively means that
large values of one component are associated with large values for the
others (see Barlow and Proschan (1975), Block et al. (1985) and Joe
(1997) for properties and applications).

Definition 8 Let X = (X1, ..., Xn) be a random vector with tail func-
tion F̄.
(i) If X has a density function f , X is said to be multivariate totally
positive of order 2 (or MTP2) if f(x ∨ y)f(x ∧ y) ≥ f(x)f(y) for all
x,y ∈ Rn where ∨ represents the maximum and ∧ the minimum.
(ii) (X1, ..., Xi−1, Xi+1, .., Xn) is said to be stochastically increasing in Xi

(denoted (X1, ..., Xi−1, Xi+1, .., Xn) ↑SI Xi) if the conditional distribution
{(X1, ..., Xi−1, Xi+1, .., Xn|Xi = xi)} is stochastically increasing as xi in-
creases.
(iii) X is said to be positive dependent through the stochastic order (or
PDS) if (X1, ..., Xi−1, Xi+1, .., Xn) ↑SI Xi for i = 1, .., n.

It is well-known that a continuous random vector X has the property
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(see Theorem 3.10.19 in Müller and Stoyan (2002) and the discussion on
this issue in Cai and Wei (2012)).

The rest of the paper is organized as follows. In sections 2, we give
sufficient conditions for comparisons of CoVaR, CoES and their associ-
ated risk contribution measures. The results in this section extend to
the multivariate setting those obtained by Sordo et al. (2018) for the bi-
variate case. Given the random vectors X and Y, under the hypothesis
that at least one of the vectors satisfies a particular property of posi-
tive dependence, the conditions are either given in terms of the order
≤whr of the vectors or in terms of the order ≤whr of their copulas and
the order ≤icx or ≤st of their components. In Section 3, we give suffi-
cient conditions for comparisons of the form (4), where Φ is MME or
its associated risk contribution measure (4). In this case, the conditions
are given in terms of the order ≤whr of their copulas and a particular
variability order of their components. Sections 2 and 3 contain several
examples based on multivariate parametric families that are relevant in
actuarial science. In Section 4 we provide an empirical illustration in
the context of Spanish banking sector. Section 5 contains conclusions.

2 Sufficient conditions for the comparisons of Co-
VaRs and CoESs

In the remainder, we will make repeatedly use of the following assump-
tion, which, to improve the readability of the paper, will be referred as
(A).

Assumption (A): X = (X1, ..., Xn) and Y = (Y1, ..., Yn) are two ran-
dom vectors with absolutely continuous joint distribution functions F
and G, marginal distribution functions F1, F2, ..., Fn and G1, G2, ..., Gn

and copulas C and C ′ respectively.

Given two random vectors, our first result shows the relationships
between the orderings of their respective CoVaRs, CoESs and MMEs.

Theorem 9 Let X and Y be two random vectors satisfying (A) and let
p = (p1, p2, .., pn) ∈ [0, 1]n and p∗ = (p2, p3, .., pn) ∈ [0, 1]n−1.
(i) If

CoVaRp [X1|X2, ..., Xn] ≤ CoVaRp [Y1|Y2, ..., Yn] (7)

then
CoESp [X1|X2, ..., Xn] ≤ CoESp [Y1|Y2, ..., Yn] . (8)

(ii) If (8) holds and Xi ≥st Yi for all i = 2, .., n (in particular, if X and
Y have the same marginals) then
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MMEp∗ [X1|X2, ..., Xn] ≤ MMEp∗ [Y1|Y2, ..., Yn] . (9)
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Proof. Part (i) is obvious from Definition 3. In order two prove (ii), note
that CoESp [X1|X2, ..., Xn] is the expected shortfall of the conditional

random variable
{
X1|

⋂
j 6=1

{
Xj > F−1j (pj)

}}
. Therefore, it follows from

(6) that (8) is the same as

{
X1|

n⋂

i=2

{
Xj > F−1j (pj)

}
}
≤icx

{
Y1|

n⋂

i=2

{
Yj > G−1j (pj)

}
}
. (10)

Now observe that the assumption Xi ≥st Yi for all i = 2, .., n implies
AX,p∗ ≥ AY,p∗ (see Definition 4). Therefore, using that Z ≤icx Z+k for
any random variable Z and for all k > 0, we have

{
Y1|

n⋂

i=2

{
Yi > G−1i (pi)

}
}
≤icx

{
Y1 + AX,p∗ − AY,p∗|

n⋂

i=2

{
Yi > G−1i (pi)

}
}

(11)
From (10), (11) and the transitivity of the increasing convex order we
get

{
X1|

n⋂

i=2

{
Xi > F−1i (pi)

}
}
≤icx

{
Y1 + AX,p∗ − AY,p∗ |

n⋂

i=2

{
Yi > G−1i (pi)

}
}

(12)
Since Z1 ≤icx Z2 implies E[φ(Z1)] ≤ E[φ(Z2)] for all increasing and con-
vex function φ : R −→ R (see Chapter 4 in Shaked and Shanthikumar,
2007) (9) follows from (12) by taking φ(x) = (x− AX,p∗)

+.
Given two bivariate random vectors with the same marginals, Mainik

and Schaaning (2014) prove that the concordance order is a sufficient
condition for the ordering of the respective CoVaRs. The following the-
orem is an extension of this result to the case of multivariate random
vectors with possibly different marginals.

Theorem 10 Let X and Y be two random vectors satisfying (A). If
X ≤whrY and X1 is RTI in Xj (or Y1 is RTI in Yj) j = 2, ..., n, then
(7) holds for all p ∈ (0, 1)n.

Proof. Let X ≤whrY be and assume that X1 is RTI in Xj, j = 2, ..., n.
On the one hand, it follows from Theorem 2.5 of Hu et al. (2001) and
from the relationship (5) between the hazard rate order and the usual
stochastic order, that

{
X1|

n⋂
{Xj > xj}

}
≤st

{
Y1|

n⋂
{Yj > xj}

}
, xj ∈ R, j = 2, ..., n,
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or, equivalently,
{
X1|

n⋂

j=2

{
Xj > G−1j (pj)

}
}
≤st

{
Y1|

n⋂

j=2

{
Yj > G−1j (pj)

}
}
, 0 ≤ pj ≤ 1.

(13)
On the other hand, X ≤whrY implies Xi ≤st Yi for i = 1, ..., n (Hu et
al., 2001) or, equivalently, F−1j (pj) ≤ G−1j (pj) for 0 ≤ pj ≤ 1. Using
that X1 is RTI in Xj, j = 2, ..., n, it follows
{
X1|

n⋂

j=2

{
Xj > F−1j (pj)

}
}
≤st

{
X1|

n⋂

j=2

{
Xj > G−1j (pj)

}
}
, 0 ≤ pj ≤ 1.

(14)
Combining (13) and (14) we get
{
X1|

n⋂

j=2

{
Xj > F−1j (pj)

}
}
≤st

{
Y1|

n⋂

j=2

{
Yj > G−1j (pj)

}
}
, 0 ≤ pj ≤ 1,

which is equivalent to (7) for all p ∈ (0, 1)n. The proof is similar when
Y1 is RTI in Yj, j = 2, ..., n,.

Regarding marginal risk contributions, we have the following result,
which extends Theorem 15 in Sordo et al. (2018).

Theorem 11 Let X and Y be two random vectors satisfying (A) such
that C ≤whr C ′, (X2, ..., Xn) ↑SI X1, (or (Y2, ..., Yn) ↑SI Y1) and X1 ≤disp
Y1 then

∆ CoVaRp[X1 | X2, ..., Xn] ≤ ∆ CoVaRp[Y1 | Y2, ..., Yn]

holds for all p = (p1, ..., pn) ∈ (0, 1)n.

Proof. The proof is similar to the proof of Theorem 15 in Sordo et al.
(2008) with the difference that we must use the distortion function

hC(u) =
C̄(1− u, p2, ..., pn)

C̄(0, p2, ..., pn)
, u ∈ [0, 1]. (15)

Looking again at the proof of Theorem 10, we easily see that, under
equal marginals, the RTI condition is no longer necessary since F−1i (pi) =
G−1i (pi) for i = 1, ..., n. Moreover, in this case, (13) is equivalent to

C̄(p1, ..., pn)

C̄(0, p2, ..., pn)
≤ C̄ ′(p1, ..., pn)

C̄ ′(0, p2, ..., pn)
, pi ∈ [0, 1],

which is implied by the stronger condition C ≤whr C ′. This observation
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together with Theorem 9 proves the following result.
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Corollary 12 Let X and Y be two random vectors satisfying (A) such
that Xi =st Yi for all i = 1, .., n. If X ≤whr Y or C ≤whr C ′, then (7)
and (8) hold for all p ∈ (0, 1)n and (9) holds for all p∗ ∈ (0, 1)n−1.

In the case of bivariate random vectors, the condition C ≤whr C ′ in
Corollary 12 can be weakened to the concordance order of the corre-
sponding copulas since, under the the assumption of equally distributed
components, C(p1, p2) ≤ C ′(p1, p2) is equivalent to

CoVaRp [X1|X2] ≤ CoVaRp [Y1|Y2] , p = (p1, p2).

We illustrate the above results by providing several examples based on
parametric families of distributions.

Example 13 (Multivariate Pareto Distribution) A random vector
X = (X1, ..., Xn) follows a multivariate Pareto distribution Pn(α, a), with
α > 0, a > 0, if its joint tail function is given by

F̄ (x1, .., xn) =

(
n∑

i=1

xi
α
− (n− 1)

)−a
, xi ≥ α > 0, a > 0.

It can be checked that X has identically distributed Pareto marginals
(that is, F̄1(xi) = (α/xi)

a, i = 1, ..., n) linked by a Clayton-Oakes survival
copula (see Arias-Nicolas et al., 2009). Since, given x = (x1, ..., xn) ∈
Rn, the conditional tail function

F̄{X1|
⋂n

j=2{Xj>xj}}(x1) =

(∑n
i=2

xi
α
− (n− 1)∑n

i=1
xi
α
− (n− 1)

)a

=

(
1−

x1
α∑n

i=1
xi
α
− (n− 1)

)a

is increasing in xi for i = 2, 3.., n, X1 is RTI in {Xj, j = 2, .., n}. Let
Y = (Y1, ..., Yn) be another random vector that follows a multivariate
Pareto distribution Pn(γ, b) with γ > 0, b > 0. Now it will be shown that
if α ≤ γ and a ≥ b, then X ≤whr Y. In order to prove it, we consider a
third random vector Z = (Z1, ..., Zn) ∼ Pn(α, b), with joint tail function
H̄. Then,

H̄(x1, .., xn)

F̄ (x1, .., xn)
=

(∑n
i=1

xi
α
− (n− 1)

)−b
(∑n

i=1
xi
α
− (n− 1)

)−a =

(
n∑

i=1

xi
α
− (n− 1)

)a−b

which is increasing in xi, for i = 2, 3.., n, that is, X ≤whr Z. Similarly,

Ḡ(x1, .., xn)

H̄(x1, .., xn)
=

(∑n
i=1

xi
γ
− (n− 1)

)−b

(∑n
i=1

xi
α
− (n− 1)

)−b =

(∑n
i=1

xi
γ
− (n− 1)

∑n
i=1

xi
α
− (n− 1)

)−b
.
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To study the monotony of (16) we write, for i = 2, ..., n,

d

dxi

(
Ḡ(x1, .., xn)

H̄(x1, .., xn)

)
= −b · f(x1, .., xn)−b−1 · df(x1, .., xn)

dxi
(17)

where

f(x1, .., xn) =

(∑n
i=1

xi
γ
− (n− 1)

∑n
i=1

xi
α
− (n− 1)

)
.

It can be checked that

df(x1, .., xn)

dxi
=

(α− γ)(n− 1)

α γ
(∑n

i=1
xi
α
− (n− 1)

)2

which is negative if and only if α ≤ γ. From this fact and (17 ) it
follows that (16) is increasing, that is, Z ≤whr Y. By the transitivity of
the order ≤whr, we have that if α ≤ γ and b ≤ a, then X ≤whr Y. It
follows from Theorem 10 that (7) holds for all p ∈ (0, 1)n. This example
is illustrated in the bivariate case in Figure 1.

Figure 1: CoVaRp1,p2 [X1|X2] as function of p1 and p2. The orange surface
corresponds to the CoVaR of (X1, X2) ∼ P2(1, 6). The blue one corresponds
to the CoVaR of (Y1, Y2) ∼ P2(3, 4). Here X ≤whr Y.

Example 14 (Multivariate Gumbel Exponential Distributions)
Given λ = {λI : I ⊆ {1, .., n} , λI ≥ 0, I 6= ∅}, a random vector Xλ =
(X1, ..., Xn) follows a multivariate Gumbel Exponential distribution (see
Kotz et al., 2000) if its joint tail function is given by

F̄λ(x1, x2, ..., xn) = exp

{
−
∑

I

λI
∏

i∈I
xi

}
, xi ≥ 0, i = 1, ..., n.

Let Xλ = (X1, ..., Xn) and Yλ∗ = (Y1, ..., Yn) be two multivariate Gumbel
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Exponential vectors such that Xi =st Yi for all i = 1, .., n (that is, λi =
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λ∗i ). Under this assumption, Khaledi and Kochar (2005) show that λ ≥
λ∗ implies X ≤whr Y. It follows from Corollary 12 that (7) and (8) hold
for all p ∈ (0, 1)n and (9) holds for all p∗ ∈ (0, 1)n−1. This example is
illustrated in Figure 2.

Figure 2: MME(p2,p3) [X1|X2, X3] as function of p2 and p3. The green surface
corresponds to the MME of (X1, X2, X3) a multivariate Gumbel Exponen-
tial Distribution with parameters λ = {λI = 10, I ⊆ {1, .., n} , I 6= ∅}. The
blue one corresponds to the MME(p2,p3) [Y1|Y2, Y3], where Y = (Y1, Y2, Y3)
is a multivariate Gumbel Exponential Distribution with parameters λ∗ =
{λ∗i = 10 for i = 1, 2, 3, and λ∗12 = λ∗13 = λ∗23 = λ∗123 = 100}.

Intuitively, a random vector X = (X1, ..., Xn) with a positive depen-
dence structure among the components exhibits more risk of contagion
when compared to a random vector with the same marginals but inde-
pendent components. The following example formalizes this intuition.

Example 15 (MTP2 Distributions) Hu et al. (2003) proved that if
X = (X1, ..., Xn) is MTP2 and Y = (Y1, ..., Yn) is a random vector with
independent components such that Xi =st Yi for all i = 1, .., n, then
Y ≤whr X. It follows from Corollary 12 that (7) and (8) hold for all
p ∈ (0, 1)n and (9) holds for all p∗ ∈ (0, 1)n−1.

Let X and Y be two random vectors satisfying (A). For n = 2,
Sordo et al. (2018) showed that under SI dependence, the conditions
X1 ≤icx Y1 and C ≤c C ′ imply CoESp1,p2 [X1|X2] ≤ CoESp1,p2 [Y1|Y2] for
0 ≤ pi ≤ 1, i = 1, 2. The next result is an extension (under the stronger
assumption C ≤whr C ′) to the general multivariate case. In order to
prove it, we recall the notion of distortion function. A distortion function
h is a non-decreasing function from [0, 1] to [0, 1] such that h(0) = 0
and h(1) = 1. Given a random variable Z with tail function FZ and a
continuous distortion function h, the transformation h

(
FZ (x)

)
= h ◦

FZ (x) defines a new tail function associated to certain random variable
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Zh, which is called distorted random variable.
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Theorem 16 Let X and Y be two random vectors satisfying (A). If
X1 ≤icx Y1, C ≤whr C ′ and (X2, ..., Xn) ↑SI X1, (or (Y2, ..., Yn) ↑SI Y1)
then (8) holds for all p ∈ (0, 1)n.

Proof. Suppose (X2, ..., Xn) ↑SI X1 (the proof of the case (Y2, ..., Yn) ↑SI
Y1 is similar). It follows from theorems 2 and 4 in Sordo et al. (2015)
that

X1,hC =

{
X1|

n⋂

i=2

{
Xi > F−1i (pi)

}
}
, 0 ≤ pi ≤ 1,

is a distorted random variable induced from X1 by the concave distortion
function

hC(u) =
C̄(1− u, p2, ..., pn)

C̄(0, p2, ..., pn)
, u ∈ [0, 1]. (18)

Similarly, given a random vector Ŷ = (Ŷ1, ..., Ŷn) with copula C and
such that Ŷi =st Yi, i = 1, ..., n, we have that

Ŷ1,hC =

{
Ŷ1|

n⋂

i=2

{
Ŷi > G−1i (pi)

}}
, 0 ≤ pi ≤ 1,

is a distorted random variable induced from Ŷ1 (or by Y1, because Ŷ1 and
Y1 have the same distribution function) by the distortion function (18).
Therefore, since X1 ≤icx Ŷ1 and hC is concave, it follows from Theorem
13 in Sordo et al. (2015) that

X1,hC ≤icx Ŷ1,hC . (19)

Now consider the conditional random variable

Y1,hC′ =

{
Y1|

n⋂

i=2

{
Yi > G−1i (pi)

}
}
, 0 ≤ pi ≤ 1,

which is a distorted random variable induced from Y1 by the (non-
necessarily concave) distortion function

hC′(u) =
C̄ ′(1− u, p2, ..., pn)

C̄ ′(0, p2, ..., pn)
, u ∈ [0, 1].

Since C ≤whr C ′, we have hC(u) ≤ hC′(u) for all u ∈ (0, 1). In particular,
hC(F 1(x)) ≤ hC′(F 1(x)) for all x, which means that

Ŷ1,hC ≤st Y1,hC′ . (20)

Since the stochastic order is stronger than the increasing convex order,
it follows from (19) and (20) that X1,hC ≤icx Y1,hC′ , which is equivalent

n
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Remark 17 Observe, using the same argument as in Example 15, that
if Ĉ is any MTP2 copula and ĈI is the independence copula, then Ĉ ≤whr
ĈI . Examples of MTP2 copulas can be found in Müller and Scarsini
(2005). For instance, if Ĉψ is a survival Archimedean copula with a gen-

erator function ψ such that (−1)nψ(n) is log-convex, then Ĉψ is MTP2.

As mentioned before, for n = 2, the condition C ≤whr C ′ in Theorem
16 can be weakened to the condition C ≤c C ′. This is shown in Theorem
12 of Sordo et al. (2018). Now, making use of Theorem 9(ii), this result
can also be used to compare the respective MMEs. This is illustrated in
the following example.

Example 18 (Gumbel copulas) Let (X1, X2) and (Y1, Y2) have Gum-
bel copulas with dependence parameters θ < θ′, which implies C ≤ C ′.
Let X1 ∼ G (αX1, βX1), X2 ∼ G (αX2, βX2), Y1 ∼ G (αY 1, βY 1) and
Y2 ∼ G (αY 2, βY 2), with αX1 > αY 1, αX1βX1 ≤ αY 1βY 1 (which implies
X1 ≤icx Y1), and αX2 ≥ αY 2, βX2 ≥ βY 2 (which implies X2 ≥st Y2). It
follows from Theorem 12 of Sordo et al. (2018) and Theorem 9(ii) that
MMEp [X1|X2] ≤ MMEp [Y1|Y2] for all 0 < p < 1 (see Figure 3).

Figure 3: MMEp [X1|X2] as a function of p. The blue line corresponds to
a Gumbel copula C with dependence parameter ρ = 1.05 and marginals
X1 ∼ G(1.1, 1) and X2 ∼ G(2, 2). The red one corresponds to a Gumbel
copula C ′ with dependence parameter ρ = 1.1 and marginals Y1 ∼ G(1, 1.5)
and Y2 ∼ G(2, 1). Here X1 ≤icx Y1, X2 ≥st Y2 and C ≤ C ′.

Theorem 16 admits a variant for the case of stochastically decreasing
dependence between X1 and (X2, ..., Xn). Recall that, given a random
vector (X1, ..., Xn), we say that (X1, ..., Xi−1, Xi+1, .., Xn) is stochasti-
cally decreasing in Xi (denoted (X1, ..., Xi−1, Xi+1, .., Xn) ↓SD Xi) if the
conditional distribution {(X1, ..., Xi−1, Xi+1, .., Xn|Xi = xi)} is stochas-
tically decreasing as xi increases. We have the following result (observe
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that the order ≤icx is replaced by the order ≤icv and the CoES is replaced
by a kind of dual conditional measure).

Theorem 19 Let X and Y be two random vectors satisfying (A). If
X1 ≤icv Y1, C ≤whr C ′ and (X2, ..., Xn) ↓SD X1, (or (Y2, ..., Yn) ↓SD Y1)
then

∫ p1

0

VaRp1

[
X1|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
]
dt (21)

≤
∫ p1

0

VaRp1

[
Y1|

n⋂

j=2

{
Yj > VaRpj(Yj)

}
]
dt

for all (p1, ...pn) ∈ (0, 1)n.

Proof. The proof is similar to the proof of Theorem 16, with the fol-
lowing differences. Under the assumption (X2, ..., Xn) ↓SD X1, the dis-
tortion function hC(u) in (18) is convex. Recall that Ŷ = (Ŷ1, ..., Ŷn) is
a random vector with copula C, such that Ŷi =st Yi, i = 1, ..., n. Then,
since the increasing concave order is preserved by convex distortion func-
tions, the assumption X1 ≤icv Ŷ1 implies X1,hC ≤icv Ŷ1,hC . This, together
with (20) implies X1,hC ≤icv Y1,hC′ , which is equivalent to (21).

To interpret the result, note that the risk measure in the left hand
of inequality (21) represents (up to the scale factor 1/p1), the expected
value of the conditional random variable{
X1|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
, X1 ≤ VaRp1

[
X1|

n⋂

j=2

{
Xj > VaRpj(Xj)

}
]}

which intuitively describes the behavior of small values of X1 given that
X2, ..., Xn jointly take on large values (taking into account interactions
between X1 and (X2, ..., Xn)).

The following result compares marginal risk contributions based on
CoES and extends Theorem 23 in Sordo et al. (2018).

Theorem 20 Let X and Y be two random vectors satisfying (A) such
that C ≤whr C ′, (X2, ..., Xn) ↑SI X1, (or (Y2, ..., Yn) ↑SI Y1) and X1 ≤ew
Y1. Then,

∆ CoESp[X1 | X2, ..., Xn] ≤ ∆ CoESp[Y1 | Y2, ..., Yn]

holds for all p = (p1, ..., pn) ∈ (0, 1)n.

Proof. The proof is similar to the proof of Theorem 23 in Sordo et al.
(2018) by using the convex distortion function

Ap(t) = max

{
1− C̄(1− u, p2, ..., pn)

(1− p1)C̄(0, p2, ..., pn)
, 0

}
.
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3 Sufficient conditions for the comparisons of MMEs

In this section, we provide sufficient conditions for the comparisons of
MMEs in the general multivariate case. As in Theorem 16, the copulas
C and C ′ are required to verify C ≤whr C ′. However, while in Theorem
16 the first components are required to be ordered in the increasing
convex order (X1 ≤icx Y1), in the following results they are required
to be ordered according to how much they exceed a threshold given by
a linear combination of the VaRs of the other n − 1 components. We
recall from Definition 4 that, given a random vector X satisfying (A)
and p∗ = (p2, p3, .., pn) ∈ [0, 1]n−1, this threshold is given by

AX,p∗ = a1VaRp2(X2) + ...+ an−1VaRpn(Xn),

where a1, ..., an−1 are given positive constants, such that
∑n−1

i=1 ai = 1.
We start by providing an integral representation for the marginal mean
excess.

Lemma 21 Let X be a random vector satisfying (A) and let (U1, ..., Un)
be the corresponding vector-copula, where Ui = Fi (Xi) , i = 1, , , , .n.
Given p∗ = (p2, p3, .., pn) ∈ [0, 1]n−1, we have

MMEp∗ [X1|X2, ..., Xn] =

∫ 1

F1(AX,p∗ )
(F−11 (u)−AX,p∗)dFU1|

⋂n
j=2{Uj>pj}(u).

(22)

Proof. Let Y =
{

(X1 − AX,p∗)+ |
⋂n
j=2

{
Xj > F−1j (pj)

}}
be and de-

note by FY the distribution function of Y . Clearly, FY (x) = 0 for x < 0.
For x > 0, we have

FY (x) =
C̄(0, p2, .., pn)− C̄(F1(AX,p∗ + x), p2, .., pn)

C̄(0, p2, .., pn)
.

Since E [Y ] = MMEp∗ [X1|X2, ..., Xn] and

dFY (x) = −∂1C̄(F1(Ap∗ + x), p2, .., pn) · f1(Ap∗ + x)

C̄(0, p2, .., pn)
,

we see that MMEp∗ [X1|X2, ..., Xn] can be written as

∫ ∞

0

x

(−∂1C̄(F1(Ap∗ + x), p2, .., pn) · f1(Ap∗ + x)

C̄(0, p2, .., pn)

)
dx.
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The change of variable u = F1(x+ Ap∗) yields

MMEp∗ [X1|X2, ..., Xn] =

∫ 1

F1(Ap∗ )
(F−1(u)− Ap∗)

−∂1C̄(u, p2, .., pn)

C̄(0, p2, .., pn)
du.

(23)
By taking into account that

FU1|
⋂n

j=2{Uj>pj}(u) =
C̄(0, p2, .., pn)− C̄(u, p2, .., pn)

C̄(0, p2, .., pn)
,

we see that (23) is the same as (22).

Now we can prove the announced results.

Theorem 22 Let X and Y be two random vectors satisfying (A) and
let p∗ = (p2, .., pn) ∈ [0, 1]n−1. If C ≤whr C ′ and (X1 − AX,p∗)

+ ≤st
(Y1 − AY,p∗)

+ then (9) holds.

Proof. Let Z = (Z1, ..., Zn) be a random vector with the same copula
C as X such that Zi =st Yi, i = 1, ..., n. Since (X1 − AX,p∗)

+ ≤st (Y1 −
AY,p∗)

+ and AY,p∗ = AZ,p∗ , we have F−1(X1−AX,p∗ )+
(u) ≤ F−1(Z1−AZ,p∗ )+

(u)

for all u ∈ (0, 1). It follows, by using (22), that MMEp∗ [X1|X2, ..., Xn] ≤
MMEp∗ [Z1|Z2, ..., Zn] . Since Z and Y have the same marginals and
C ≤whr C ′, it follows from Corollary 12 that MMEp∗ [Z1|Z2, ..., Zn] ≤
MMEp∗ [Y1|Y2, ..., Yn] . The result follows by transitivity.

A particularly interesting corollary is the following statement con-
cerning the dispersive order.

Corollary 23 Let X and Y be two random vectors satisfying (A) such
that Xi =st X1 and Yi =st Y1 for i = 2, ..., n. If C ≤whr C ′ and X1 ≤disp
Y1 then (9) holds for all p∗ = (p, ..., p) ∈ (0, 1)n−1.

Proof. If X has identically distributed components and p∗ = (p, ..., p),
then AX,p∗ = F−11 (p), where F1 is the common distribution function of
X1, ..., Xn.. If, in addition, Y has identically distributed components,
then AY,p∗ = G−11 (p), where G1 is the common distribution function of
Y1, ..., Yn. Then, the condition (X1 − AX,p∗)

+ ≤st (Y1 − AY,p∗)
+ can be

rewritten as (X1−F−11 (p))+ ≤st (Y1−G−11 (p))+. Taking into account that
X1 ≤disp Y1 if and only if (X1−F−11 (p))+ ≤st (Y1−G−11 (p))+ for all p ∈
(0, 1) (Muñoz-Pérez, 1990), the result follows by applying Theorem 22.

This result can be interpreted as follows: given a portfolio of identi-
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(in the sense of the order ≤disp) and the stronger the dependence struc-
ture of the vector (in the sense of the order ≤whr), the greater the risk
of contagion (as measured by MME).

Example 24 Let X and Y be two random vectors satisfying (A) with
multivariate Pareto distributions PX,n(α, a) and PY,n(β, a) respectively,
with 0 < α ≤ β and a > 0. Then X has identically distributed Pareto
marginals P(α, a) and Y has identically distributed Pareto marginals
P(α, b). Moreover, C = C ′ and Xi ≤disp Yi for i = 1, .., n (see Arias-
Nicolas et al., 2009). It follows from Corollary 23 that (9) holds for all
p∗ = (p, ..., p) ∈ (0, 1)n−1. This example is illustrated in Figure 4.

Figure 4: MME(p2,p3) [X1|X2, X3] as function of p2 and p3. The purple sur-
face corresponds to the MME of (X1, X2, X3) ∼ P(1, 1, 1, 5). The green one
corresponds to the MME of (Y1, Y2, Y3) ∼ P(10, 10, 10, 5). Here Xi ≤disp Yi
for i = 1, 2, 3.

Given two random vectors with the same marginals, comparisons of
marginal risk contributions of the form (4) are equivalent to comparisons
of MME . The following result follows directly from Corollary 23.

Theorem 25 Let X and Y be two random vectors satisfying (A) such
that Xi =st Yi for all i = 1, .., n. If X ≤whr Y or C ≤whr C ′, then

∆MMEp∗ [X1|X2, ..., Xn] ≤ ∆MMEp∗ [Y1|Y2, ..., Yn]

holds for all p∗ ∈ (0, 1)n−1.

By using the same argument as in Corollary 12, for n = 2 the condition
C ≤whr C ′ can be weakened to the concordance order of the correspond-
ing copulas.

The following result says that if (X2, ..., Xn) ↑SI X1, then the condi-
tion (X1 − AX,p∗)

+ ≤st (Y1 − AY,p∗)
+ in Theorem 22 can be weakened
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Theorem 26 Let X and Y be two random vectors satisfying (A) and let
p∗ = (p2, .., pn) ∈ [0, 1]n−1. If (X2, ..., Xn) ↑SI X1 (or (Y2, ..., Yn) ↑SI Y1),
C ≤whr C ′ and (X1 − AX,p∗)

+ ≤icx (Y1 − AY,p∗)
+ then (9) holds.

Proof. As in the proof of Theorem 22, let Z = (Z1, ..., Zn) be a random
vector with the same copula C as X such that Zi =st Yi, i = 1, ..., n.
Since (X1 − AX,p∗)

+ ≤icx (Y1 − AY,p∗)
+ and AY,p∗ = AZ,p∗ , it follows

from Theorem 2.1 in Sordo and Ramos (2007) that

∫ 1

0

F−1(X1−AX,p∗ )+
(u)dg(u) ≤

∫ 1

0

F−1(Z1−AZ,p∗ )+
(u)dg(u) (24)

for all increasing and convex function g. Now observe that (22) can be
rewritten as

MMEp∗ [X1|X2, ..., Xn] =

∫ 1

0

F−1(X1−Ap∗ )+
(u)dFU1|

⋂n
j=2{Uj>pj}(u), (25)

where (U1, ..., Un) is the corresponding vector-copula of X. From the as-
sumption (X1, ..., Xi−1, Xi+1, ...., Xn) ↑SI Xi and Theorem 4(i) of Sordo
et al. (2015) it follows that FU1|

⋂n
j=2{Uj>pj}(u) is an increasing and con-

vex function of u. Then, by taking g(u) = FU1|
⋂n

j=2{Uj>pj}(u) in (24)

and using (25), we have MMEp∗ [X1|X2, ..., Xn]≤ MMEp∗ [Z1|Z2, ..., Zn] .
Reasoning again as in the proof of Theorem 22, since Z and Y have
the same marginals and C ≤whr C ′, it follows from Corollary 12 that
MMEp∗ [Z1|Z2, ..., Zn] ≤ MMEp∗ [Y1|Y2, ..., Yn] . The result follows by
transitivity. The proof is similar if we assume (Y1, ..., Yi−1, Yi+1, ...., Yn) ↑SI
Yi.

A corollary similar to Corollary 23 can be stated in terms of the
excess wealth order.

Corollary 27 Let X and Y be two random vectors satisfying (A) such
that Xi =st X1 and Yi =st Y1 for i = 2, ..., n. If (X2, ..., Xn) ↑SI X1

(or (Y2, ..., Yn) ↑SI Y1), C ≤whr C ′ and X1 ≤ew Y1 then (9) holds for all
p∗ = (p, ..., p) ∈ (0, 1)n−1

Proof. The proof follows from Theorem 26 in the same manner as
the proof of Corollary 23 follows from Theorem 22. The only dif-
ference is that now, instead of using the characterization of the dis-
persive order, we use X1 ≤ew Y1 if and only if (X1 − F−11 (p))+ ≤icx
(Y1 −G−11 (p))+ for all p ∈ (0, 1) (Belzunce, 1999).

The interpretation of this result is similar to that of Corollary 23
with the difference that when (X2, ..., Xn) is positive dependent on X1

in the sense SI (or when (Y2, ..., Yn) is positive dependent on Y1), we can
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Remark 28 It follows from the comment below Corollary 12 that, in the
case of bivariate random vectors, the condition C ≤whr C ′ in corollaries
23 and 27 can be weakened to the condition C ≤c C ′.

4 A real numerical example

As an empirical illustration, we apply the methodology based on stochas-
tic orders to compare the risk of contagion in the context of Spanish
banking sector. We consider three of the largest banks operating in
Spain, namely, the Santander bank, the BBVA and Bankinter. At the
end of March, 2019, the Santander bank is the largest one in terms of
assets2 , deposits, loans, number of branches and employers. It is also
one of the seven banks in the euro area labelled by the Financial Sta-
bility Board as global systemically important banks. This means that
distress of this bank could have a significant impact on economic ac-
tivity and financial system. The BBVA is the second largest bank in
Spain in terms of assets and Bankinter is the sixth one. Our aim is to
compare how larger positions of Santander affect the behavior of BBVA
and Bankinter.

We follow the common approach of testing for contagion based on
the analysis of interaction among asset log returns, which are weekly
logarithm price differentials. If we denote as pt the price of an asset at
week t, the log return at week t is defined by rt = log(pt/pt−1). Our
model considers two vectors of log returns, X = (XBV , XS), where XBV

and XS represent the log returns of BBVA and Santander, respectively
and Y = (YBK , YS) where XBK and YS represent the log returns of
Bankinter and Santander, with the assumption XS = YS. We have
used samples of size n = 209 for each financial institution, measuring
the share value from June 2015 until June 2019. Data were gathered
from the public website http://es.finance.yahoo.com and they are also
available from authors upon request. In order to eliminate the time
dependent effect, data are related to the weekly close of trading.

Figure 5 plots the sample marginal mean excess of BBVA on San-
tander (blue curve) and the sample marginal mean excess of Bankinter
on Santander (green curve) as a function of the p-level. The empirical
measures generated from the samples suggest that MMEp [XBK |XS] ≤
MMEp [XBV |XS] for p ≥ p0, where p0 is close to 0.3, whereas for p-levels
lower than p0 the curves cross each other slightly, experiencing very small
differences that could be due to sampling variability. Consequently, we

2Data drawn from the website https://www.advratings.com/europe/top-banks-
in-spain.
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use statistical inference to check the hypothesis

MMEp [XBK |XS] ≤ MMEp [XBV |XS] , for all 0 < p < 1. (26)

We first perform some tests to study the marginal distributions of
XS, XBV and YBK . For the classical runs test for randomness, the p-
values are 0.6276, 0.6272 and 0.945, respectively. For the Kolmogorov-
Smirnof test for normality, the p-values are 0.7431, 0.9804 and 0.6482,
respectively. We conclude that there is not significant evidence to re-
ject the hypothesis that the three log return distributions are random,
symmetric and normal.

Next, we compare means and standard deviations of XBV and YBK .
An unilateral F-test for paired data performed for testing the hypothesis
of equality of variances against σBK < σBV gives a p-value of 0.000014,
showing significant evidence that σBK < σBV . The p-value of the t-test
for testing µBV = µBK against µBV 6= µBK is 0.8593, so we can not reject
the equality of means. From the assumptions of normality, µBV = µBK
and σBK < σBV , it follows YBK ≤icx XBV (see Table 2.2 in Belzunce et
al., 2015).

Finally, we adjust the copulas C and C ′ of the vectors X and Y,
respectively, by using the goodness of fit test based on the Rosenblatt
transformation (see Genest et al., 2009). This test compares the empiri-
cal copula with a parametric estimation of a given copula. The elliptical
family of copulas is one of the most extensively applied models in finance
(see, for example, Owen and Rabinovitch, 1983) and the normal distri-
bution is the archetype of this family. By considering a bivariate normal
(BN) copula we obtain p-values 0.6079 and 0.9196, respectively, so there
is not statistical evidence to reject the null hypothesis. For a bivariate
random vector X the BN copula parameter is the Pearson correlation
coefficient ρX. We perform the Williams’s Test (unilateral) (Steigner
(1980) and Williams (1959)) for testing the hypothesis of equality of
these coefficients against ρX < ρY when the vectors share one compo-
nent (XS = YS). A p-value of 0.010 was obtained, so there is significant
evidence that ρX < ρY. This implies that C ≤c C ′ (see Example 3.8.6 in
Müller and Stoyan, 2002). Reasoning as in Example 18, it follows from
Theorem 12 of Sordo et al. (2018) and Theorem 9(ii) that (26) is sup-
ported by statistical significance, which indicates that higger positions
of Santander affect more to BBVA than to Bankinter.Jo
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Figure 5: Marginal mean excess in function of the p-level. The blue curve
corresponds to X = (XBV , XS) and the green curve to Y = (YBk, YS).

4.1 CONCLUSIONS

Conditional risk measures (or co-risk measures) and risk contributions
measures are used in portfolio risk analysis to quantify the risk of con-
tagion given that one or more assets in the portfolio are in distress.
Although these measures can be used directly to compare the systemic
risk among different portfolios, there are several issues that hinder the
process. One issue is that, sometimes, these measures cannot be cal-
culated explicitly. Another is that different stress scenarios may pro-
duce different conclusions, something that happens, for example, when
CoVaRp [X1|X2] and CoVaRp [Y1|Y2] produce different orderings for dif-
ferent choices of p ∈ [0, 1]2.

To overcome these issues, given the vectors X and Y, we have pro-
vided sufficient conditions, in terms of well-known stochastic orders and
dependence notions, under which the multivariate CoVaRs, CoESs and
MMEs are ordered whatever the probability level used to define the
stress scenario. While some results concerning CoVaR and CoES have
extended to a multivariate setting the bivariate results obtained by Sordo
et al. (2018), all results concerning MMEs are new even for the bivariate
case. The results have been illustrated with examples based on paramet-
ric families of multivariate distributions and with real data.
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