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ABSTRACT

We study the propagation of uncertainty from a class of priors introduced by4
Arias-Nicolás et al. [(2016) Bayesian Analysis, 11(4), 1107–1136] to the pre-5
miums (both the collective and the Bayesian), for a wide family of premium6
principles (specifically, those that preserve the likelihood ratio order). The7
class under study reflects the prior uncertainty using distortion functions and8
fulfills some desirable requirements: elicitation is easy, the prior uncertainty9
can be measured by different metrics, and the range of quantities of interest10
is easily obtained from the extremal members of the class. We illustrate the11
methodology with several examples based on different claim counts models.12
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1. INTRODUCTION AND MOTIVATION17

Given a risk X , a premium principle is a functional H[X ] that maps X to18
a non-negative real number, which is the premium charged to the policy-19
holder to compensate the insurer for bearing the risk X . From the simplest20
net premium (which is the expected claim amount) to other more sophisticated21
ones based on utility and economic theories, such as the Esscher premium22
principle (Bühlmann, 1980; Gerber, 1980) or the distortion premium princi-23
ple (Denneberg, 1990; Wang, 1996), the actuarial literature offers a number24
of premium principles that differ from each other by the properties that they25
satisfy. For an overview on this topic, the reader is referred to Young (2004)26
and Chapter 2 in Denuit et al. (2005).27
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Let X be a risk with density function f (x|θ), where θ is a risk parame-28
ter belonging to the parameter space �. Under the Bayesian approach, prior29
beliefs about parameters are combined with sample information to update the30
model and determine the future premium (see, e.g., Eichenauer et al., 1988;31
Heilmann, 1989; Makov et al., 1996; Klugman et al., 1998). For example,32
third-party liability motor insurance claims (which are rare events that occur33
randomly) are often modeled as Poisson random variables. However, experi-34
ence from data suggests that the expected claim frequency is not equal for all35
policies in the same cell. Consequently, the actuary incorporates heterogene-36
ity into the model using a prior distribution on the parameter to determine37
the cell tariff. A similar procedure is often followed in other branches of38
insurance.39

In this framework, we first define, over the set of states �, a prior belief40
or structure function π that incorporates our beliefs about the parameter θ .41
Then we consider the conditional random variable [X |� = θ ], denoted by Xθ .42
Finally, based on the experience from a sample x= (x1, . . . , xn), the marginal43
density,m(x), and the likelihood function, l(θ |x), we obtain, via Bayes theorem,44
the posterior belief density function πx, given by πx(θ)= l(θ |x)π(θ)/m(x). At45
this point, we must distinguish the following three premiums. The first one46
is H[Xθ ], which is known as the true individual premium or the risk premium47
based onH. We will denoteH[Xθ ]=PR,H(π) to make explicit that the premium48
depends on the prior belief. Since, from the Bayesian perspective, PR,H(π) is49
again a random risk, given a premium principle H∗ (not necessarily equal to50
H), we can consider the premiumH∗[PR,H(π)]=PC,H,H∗(π), which is called the51
collective premium. A similar argument, using the posterior belief πx instead52
of π , produces the Bayes or individual premium, denoted by H∗[PR,H(πx)]=53
PB,H,H∗(πx) (see Gómez-Déniz, 2009, for further information). We remark that54
H andH∗ are not necessarily equal: the collective and the Bayes premiums can55
be computed using first, for example, the net premium,H, and then the Esscher56
premium, H∗, or any other combination, such as Esscher–Esscher, Esscher–57
net, exponential–net, etc.58

A key issue in this approach is the elicitation of an appropriate prior distri-59
bution for the parameter θ when there is not enough information to identify it60
(see, e.g., Eichenauer et al., 1988). One possibility to avoid an arbitrary choice61
is to use robust methods that involve an entire class or family of prior dis-62
tributions rather than a single one. In the literature, these classes have been63
specified taking the form of parametric families, contamination classes, densi-64
ties with a few determined percentiles or distribution bands, among others. A65
question of natural interest is to study the propagation of uncertainty from the66
class of prior distributions to the premium. References on this topic include67
Heilmann and Schroter (1987), Eichenauer et al. (1988), Makov (1995), Young68
(1999), Gómez-Déniz et al. (1999, 2000, 2002), Schnieper (2004), Calderín and69
Gómez-Déniz (2007), Chan et al. (2008), and Boratyńska (2017).70

The aim of this paper is to study the propagation of uncertainty from a class71
of priors recently introduced by Arias-Nicolás et al. (2016), called the distorted72
band of priors, to the premiums (both the collective and the Bayesian). The73
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distorted band of priors fulfills some desirable requirements: elicitation is easy,74
the prior uncertainty can be measured by different metrics, and the range of75
quantities of interest is easily obtained from the extremal members of the class.76
Moreover, this class possesses a characteristic that makes it particularly inter-77
esting for actuarial applications: it quantifies the prior uncertainty in terms78
of distortion functions and stochastic orders, tools often used to evaluate and79
compare risks. The research is conducted by considering the propagation of80
uncertainty on a wide family of combinations of premium principles (unlike81
other studies on the same topic1 that only consider a single premium principle).82

The rest of the paper is structured as follows. Section 2 contains a back-83
ground about some stochastic orders and metrics, distortion functions, and84
the distorted band class of priors. Section 3 shows how the uncertainty of this85
class of priors propagates to the premiums. Section 4 contains some actuarial86
applications. Finally, Section 5 contains conclusions.87

2. THE DISTORTED CLASS88

We start by recalling the definition of the stochastic orders that appear in this89
paper.90

Definition 1. Let X and Y be two random variables with distribution functions91
F and G, densities [discrete densities] fX and fY , and supports supp( fX ) and92
supp( fY ), respectively.93

(a) X is said to be smaller than Y in the stochastic order, the increasing con-94
vex order, and the increasing concave order (denoted by X ≤st Y, X ≤icx Y95
and X ≤icv Y, respectively), if E[φ(X )]≤E[φ(Y )], for all non-decreasing,96
non-decreasing convex, and non-decreasing concave functions φ :R→R,97
respectively, provided these expectations exist.98

(b) X is said to be smaller than Y in the likelihood ratio order, denoted by X ≤lr99
Y, if the ratio fY (t)/fX (t) increases over the union of the supports of X and100
Y (here a/0 is taken to be equal to ∞ whenever a> 0).101

(c) X is said to be smaller than Y in the uniform conditional variability order,102
denoted by X ≤uv Y, if supp( fX )⊆ supp( fY ) and the ratio fX (t)/fY (t), t ∈103
supp( fY ), is unimodal (where the mode is a supremum) but fX and fY are not104
stochastically ordered.105

The following chains of implications are well known (see Whitt, 1985; Müller106
and Stoyan, 2002; Shaked and Shanthikumar, 2007):107

X ≤lr Y ⇒ X ≤st Y ⇒X ≤icx Y ⇒E[X ]≤E[Y ]
⇓

X ≤icv Y ⇒E[X ]≤E[Y ], (2.1)
X ≤uv Y and E[X ]≤E[Y ] ⇒ X ≤icx Y ,
X ≤uv Y and E[X ]≥E[Y ] ⇒ X ≥icv Y . (2.2)
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The class of priors considered in this paper is based on the notion of dis-108
tortion function. A distortion function h is a non-decreasing continuous109
function from [0, 1] to [0, 1] such that h(0)= 0 and h(1)= 1. Distortion func-110
tions were introduced in actuarial science by Denneberg (1990) and have been111
applied to a wide variety of insurance problems, in particular to construct pre-112
mium principles and risk measures (see, e.g., Wang, 1996; Sordo et al., 2016,113
2018).114

To our purposes, given a prior belief π with distribution function Fπ and a115
distortion function h, the transformation of Fπ , given by116

Fπh(x)= h ◦ Fπ (x)= h [Fπ (x)], (2.3)

represents a perturbation of the accumulated probability that is used to quan-117
tify the uncertainty about the specification of the prior belief (a similar idea118
was used in Furman and Landsman (2006) in the context of some tail-based119
risk measures). Note that Fπh(x) is again a distribution function for a particu-120
lar distorted random variable, denoted by Xπh , with density function πh. The121
following lemma, given in Arias-Nicolás et al. (2016), formalizes the idea, in122
terms of the likelihood ratio order, thatXπh gives more weight to higher (lower)123
risk events when h is convex (respectively, concave). The result is also a refor-124
mulation of Theorem 1 of Blazej (2008), which is a more general result stated125
in terms of weighted distributions for absolutely continuous distributions.126

Lemma 2. Let π be a specific prior belief with distribution function Fπ (abso-127
lutely continuous or discrete) and let h be a convex (concave) distortion function128
in [0, 1]. Then π ≤lr (≥lr )πh.129

Now suppose that, instead of requiring a complete specification of the130
prior belief, the actuary assumes that any distribution close enough to π is131
a good representation of it. One possibility to perturbate π , giving more (or132
less) weight to extreme events, is to consider two distortion functions: one con-133
cave, h1, and one convex, h2. From Lemma 2, we have πh1 ≤lr π ≤lr πh2 . This led134
Arias-Nicolás et al. (2016) to define the following class of priors.135

Definition 3. Given a concave distortion function h1 and a convex distortion func-136
tion h2, the distorted band associated with a specific prior π , denoted by �h1,h2,π ,137
is defined as138

�h1,h2,π = {
π ′ : πh1 ≤lr π

′ ≤lr πh2

}
. (2.4)

Since π ∈ �h1,h2,π , the distorted band can be seen as a particular “neighbor-139
hood” band of π , where the lower and upper bounds are its distortions by h1140
and h2, respectively. Examples of distortion functions that can be used to define141
the band include the power families:142

h1(x)= 1− (1− x)α1 and h2(x)= xα2 , αi > 1, i= 1, 2.
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By making αi = n ∈N, n> 1, i= 1, 2, then Fπh1
(θ)= 1− (1− Fπ (θ))

n and143

Fπh2
(θ)= (Fπ (θ))

n correspond to the distribution functions of the minimum144

and the maximum, respectively, of an i.i.d. random sample of size n from the145
baseline prior distribution π , which seem to be reasonable bounds for the con-146
fidence band. Other examples are given in Arias-Nicolás et al. (2016) where147
distortions plays different roles. The distorted band satisfies some nice proper-148
ties (see Arias-Nicolás et al., 2016). For example, (1− ε)π + επ ′ ∈ �h1,h2,π , for149
all π ′ ∈ �h1,h2,π and for all 0≤ ε ≤ 1 (which is related to the ε-contamination150
classes). Additionally, posterior distributions inherit the likelihood ratio order,151
that is, for all π ′ ∈ �h1,h2,π we obtain that152

πh1,x ≤lr π
′
x ≤lr πh2,x. (2.5)

Another good property of the distorted band is that the prior uncertainty can153
be measured by the Kantorovich (or Wasserstein) metric. Given two random154
variables X and Y , this metric is defined by155

KW (X ,Y )=
∫ ∞

−∞
|FX (x)− FY (x)|dx. (2.6)

The tractability of Kantorovich metric between a distribution function F156
and its distortion Fh has been used to study the variability of F (López-157
Díaz et al., 2012). As pointed out in Arias-Nicolás et al. (2016), if πh1 ≤lr πh2 ,158
the Kantorovich metric between πh1 and πh2 is simply the difference of their159
expectations, that is,160

KW (πh1 , πh2 ) = Eπh2 (θ)−Eπh1 (θ),
KW (π , πh1 ) = Eπ (θ)−Eπh1 (θ),
KW (π , πh2 ) = Eπh2 (θ)−Eπ (θ),

KW (πx, πh1,x) = Eπx(θ)−Eπh1,x(θ),
KW (πx, πh2,x) = Eπh2,x(θ)−Eπx(θ),

KW (πh1,x, πh2,x) = Eπh2,x(θ)−Eπh1,x(θ). (2.7)

Given two distortions h1 and h2, since KW (πh1 , πh2 )=KW (π , πh2 )+161
KW (π , πh1 ), we can study which one contributes more to the uncertainty162
measure.163

3. THE MAIN CONTRIBUTIONS164

Let X be a random variable such that the conditional random variable Xθ =165
[X |� = θ ] represents a random risk depending on a parameter θ . Let π be a166
prior belief in the parameter space �. We are interested in situations where167
the risk is a non-decreasing function of the parameter θ . For example, when168
the number of claims is modeled by a Poisson distribution, the risk is an169
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increasing function of the parameter, which is the expected number of claims.170
This motivates the following definition.171

Definition 4. Given a premium principle H, we say that Xθ is increasing in risk172
for H, in short IRH, if the risk premium PR,H(θ) is non-decreasing in θ ∈ �.173

Premium principles are usually required to preserve some stochastic order-174
ings, such as the usual stochastic order and the increasing convex order (see175
Young, 2004). Given X and Y two random risks, we denote by Hst and Hicx176
the classes of premium principles preserving these orders, respectively,177

Hst = {H : If X ≤st Y , then H[X ]≤H[Y ]}
and178

Hicx = {H : If X ≤icx Y , then H[X ]≤H[Y ]}.
As a direct consequence of the implications in Equation (2.1), a wider class of179
premium principles can be defined in terms of the likelihood ratio order:180

Hlr = {H : If X ≤lr Y , then H[X ]≤H[Y ]}.
It is apparent that Hicx ⊂Hst ⊂Hlr. A remarkable example of a class of pre-181
mium principles that belongs to Hlr and possesses some members that do not182
belong to the other two classes is the family of weighted premium principles,183
which includes, among others, the Esscher premium, the modified variance184
premium, and the Kamp premium (see Bartoszewicz and Skolimowska, 2006;185
Furman and Zitikis, 2008, for the relation between weighted distributions186
and the likelihood ratio order). As pointed out in Young (2004), the Esscher187
premium does not belong toHst.188

The following Lemma is immediate.189

Lemma 5. Given θ1 < θ2, if Xθ1 ≤∗ Xθ2 (where ∗ means icx, st or lr), then Xθ is190
IRH for all H ∈H∗.191

Example 6. Let suppose that the number of claims (risk) follows a binomial192
distribution with success probability parameter p and a fixed and known number193
of clients n, denoted by Xp ∼B(n, p). From Table 2.5 in Belzunce et al. (2016),194
fixed n, the binomial distribution is ordered in the likelihood ratio order, that is,195
if p1 < p2 we obtain that B(n, p1)≤lr B(n, p2). Then, using Lemma 5, the random196
risk Xp is IRH for all H ∈Hlr.197

Now we present the main result. Theorem 7 allows us to quantify and inter-198
pret the uncertainty induced by the partial knowledge of the prior for a large199
number of premium principles. Note that the range of quantities of interest200
can be computed just looking for the extremal distributions generating the201
distorted class.202
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Theorem 7. Let Xθ be a random risk depending on a parameter θ and let π be a203
prior belief in the parameter space�. Let �h1,h2,π be the distorted band associated204
with π based on the concave and convex distortions h1 and h2, respectively. Then205

(a) PC,H,H∗(πh1 )≤PC,H,H∗(π ′)≤PC,H,H∗(πh2 ),206
(b) PB,H,H∗(πh1,x)≤PB,H,H∗(π ′

x)≤PB,H,H∗(πh2,x),207

for all premium principle H such that Xθ is IRH, for all H∗ ∈Hlr and for all208
π ′ ∈ �h1,h2,π .209

Proof. We only prove part (b) (part (a) follows a similar argument). By210
hypothesis, the risk premium PR,H(θ) is a non-decreasing function of θ . From211
(2.5) and using that the likelihood ratio order is preserved by non-decreasing212
functions (see Belzunce et al., 2016), we obtain that213

PR,H(πh1,x)≤lr PR,H(π ′
x)≤lr PR,H(πh2,x),

for all π ′ ∈ �h1,h2,π . The proof follows using that H∗ ∈Hlr. �214

Remark 8. We know, from Remark 4 in Arias-Nicolás et al. (2016), that all215
priors of the form πε = (1− ε)πhα1

+ επhα2
(obtained as a mixture of πhα1

and216
πhα2

) belong to the class �h1,h2,π , for all 0≤ ε ≤ 1. Since �h1,h2,π is a convex class of217
distributions and πε is continuous (see Lemma 3.1 in Ríos et al., 1995), it follows218
that any value in the interval

[
PB,H,H∗(πhα1 ,x

),PB,H,H∗(πhα2 ,x
)
]
can be expressed as219

PB,H,H∗(πε,x) for some ε. In particular, the posterior regret Bayesian premium (see220
Ríos et al., 1995; Gómez-Déniz, 2009) given by221

1
2

[
PB,H,H∗(πhα1 ,x

)+PB,H,H∗(πhα2 ,x
)
]

is also a Bayes action (premium).222

To end this section, we provide a result that connects the prior and pos-223
terior distributions using the uniform conditional variability order given in224
Definition 1. Proposition 9 will help to interpret the premiums in a bonus–malus225
system.226

Proposition 9. Let Xθ be a random risk depending on a parameter θ and let π227
be a prior belief in the parameter space �. Let πx be the corresponding posterior228
distribution. If the likelihood function l(θ |x), θ ∈ supp(πx) is unimodal, where the229
mode is a supremum, then230

(a) If E[πx]≤E[π ], then πx ≤icx π ,231
(b) If E[πx]≥E[π ], then πx ≥icv π .232

Proof. Since supp(πx)⊆ supp(π), it is easy to see that πx(θ)/π(θ)=233
l(θ |x)/m(x). Then, from the unimodality of l(θ |x), it follows πx ≤uv π . The rest234
of the proof follows directly from the chain of implications given in Equation235
(2.2). �236
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Remark 10. When l(θ |x) is strictly decreasing (respectively, increasing), then the237
supremum is reached at the minimum (or the maximum) of the union of the sup-238
ports of π and πx. In this case, πx ≤lr π (respectively, πx ≥lr π) and the relation239
πx ≤icx π (respectively, πx ≥icv π) follows directly from the chain of implications240
given in Equation (2.1).241

4. APPLICATIONS242

This section illustrates, with three examples, the methods described in this243
paper. In the three examples, uncertainty about the prior is incorporated by244
means of a distorted band class based on the power distortion functions hα1 (x)245
(concave) and hα2 (x) (convex), given by246

hα1 (x)= 1− (1− x)α1 and hα2 (x)= xα2 , αi > 1, i= 1, 2. (4.1)

The aim is to study the propagation of the uncertainty to the Bayesian247
premiums. We focus on the case where the likelihood belongs to the expo-248
nential family of distributions, that is, it can be expressed as l(θ |x)= a(x) exp249
(− θx)/c(θ) for the continuous or discrete case and the natural conjugate250
prior density is given by π(θ)= [c(θ)]−n0 exp (− x0θ)/d(n0, x0) (see Jewell, 1974,251
for details). From Equations (2.3) and (4.1), the prior distorted densities are252
given by253

πhα1
(θ)= d

dθ

{
1− [1− Fπ (θ)]

α1
}
,

πhα2
(θ)= d

dθ
[Fπ (θ)]

α2 .

In the first two examples, we consider a distorted class such that the collec-254
tive premiums associated with the priors in the band are close among them255
according to the epsilon distance. In the third one, uncertainty is induced256
directly from the baseline prior.257

Remark 11. In the exponential family, a reparametrization often leads to obtain258
PR,H(θ)= θ , for H the net premium. If H∗ is also the net premium, in the contin-259
uous case we have PC,H,H∗(πhα1

)= ∫
[1− Fπ (θ)]1/p dθ . This is simply the premium260

based on the risk-adjusted premium, where p= 1/α1 < 1 is the risk index (see261
Drozdenko, 2008, for details about the risk-adjusted premium). This transfor-262
mation gives more weight to large claims (sizes) and reduces the probability of263
obtaining small claims (sizes). Similar arguments apply when the prior is πhα2

(θ),264
which gives more weight to small claims (sizes) and reduces, therefore, the prob-265
ability of obtaining large claims (sizes). Therefore, the prior distribution in the266
band acts as a mechanism to balance the collective and Bayes premiums based on267
the initial prior distribution, giving more prominence to small or large claims.268
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TABLE 1

FITTED DATA TO A PORTFOLIO OF AUTOMOBILE INSURANCE IN GERMANY (1969).

No. of claims Observed Geometric fitted

0 20,592 20,615.80
1 2651 2598.46
2 297 327.51
3 41 41.28
4 7 5.20
5 0 0.65
6 1 0.08

Total 23,589 23,589

4.1. Example 1 [real data set]269

We consider a portfolio of automobile insurance policies fromGermany (1960)270
(see Table 1 and Willmot, 1987, for details)). The number of claims is sup-271
posed to follow a Poisson distribution with parameter θ > 0, denoted by Xθ ∼272
P(θ), and π is supposed to be an exponential distribution with rate param-273
eter b> 0, that is, the baseline prior density is given by π(θ)= b exp (− bθ).274
The corresponding posterior distribution is a gamma distribution with shape275
parameter equal to nx̄+ 1 and rate parameter equal to b+ n, denoted by276
πx ∼G(nx̄+ 1, b+ n).277

We compute H and H∗ using the net premiums. It is easy to see that the278
individual, collective, and Bayesian premiums are given by279

PR,H(θ)= θ , PC,H,H∗(π)= 1
b
, and PB,H,H∗(πx)= nx̄+ 1

b+ n
. (4.2)

The marginal (unconditional) distribution of the risk X is a geometric distribu-280
tion with parameter b/(b+ 1). Using this distribution, the maximum likelihood281
(ml) estimate of b is b̂= 6.934 with a standard error of 0.127.282

Now, we introduce a perturbation scheme on the prior distribution by con-283
sidering the distorted band �hα1 ,hα2 ,π

, where hα1 and hα2 are defined by Equation284
(4.1). Then,285

πhα1
(θ) = α1b exp (− α1bθ),

πhα2
(θ) = α2b exp (− bθ)(1− exp (− bθ))α2−1. (4.3)

It is easy to see that Poisson distributions are ordered in the likelihood ratio286
order in terms of their parameters. Specifically, θ1 < θ2 implies P(θ1)≤lr P(θ2).287
Hence, using Lemma 5, Xθ =P(θ) is IRH for all H ∈Hlr. In particular, Xθ =288
P(θ) is IRH when H is the net premium.289
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After some computations we get290

PC,H,H∗(πhα1
) = (α1b)−1,

PC,H,H∗(πhα2
) = Hα2

b
, (4.4)

where Hz represents the zth harmonic number. From Theorem 7 (a) it follows291
that292

PC,H,H∗(πhα1
)≤PC,H,H∗(π)≤PC,H,H∗(πhα2

). (4.5)

A natural question is how to choose the distortion parameters α1 and α2. One293
possibility is to require that the resulting collective premiums are close enough294
to the premium associated to the prior distribution π . This can be done taking295
α1 and α2 such that296

PC,H,H∗(πhα1
)+ ε =PC,H,H∗(π)=PC,H,H∗(πhα2

)− ε (4.6)

for some ε > 0 small enough (a similar argument has been used in Eichenauer297
et al. (1988) and Gómez-Déniz et al. (2002)). Combining Equations (4.2), (4.4),298

and (4.6) and replacing b by b̂, we get299

(α1̂b)−1 + ε = 1

b̂
,

Hα2

b̂
− ε = 1

b̂
. (4.7)

The equations system (4.7) has been solved numerically using Wolfram300
Mathematica software for ε = 0.05, 0.1, and 0.14. The solutions for α1 and α2301
are 1.53067, 3.26143, 34.1772, and 1.63976, 2.53965, and 3.51876, respectively.302

From Theorem 7 (b), the Bayes premiums satisfy303

PB,H,H∗(πhα1 ,x
)≤PB,H,H∗(π ′

x)≤PB,H,H∗(πhα2 ,x
), ∀π ′ ∈ �hα1 ,hα2 ,π

.

Since the posterior distorted distributions do not have closed-form expres-304
sions, the bounds in these inequalities have been computed numerically by305
using Wolfram Mathematica software. Figure 1 shows the effect of the distor-306
tion functions on the Bayesian premiums combining some values of the sample307
mean, x̄ (with sample sizes n= 1, n= 5, and n= 10). At first glance, as usual,308
uncertainty decreases when the sample size increases.309

As expected, the range of Bayesian premiums is larger when the uncer-310
tainty about the baseline prior π increases, that is, when α1 and α2 increase.311
Moreover, the range decreases when the sample size increases and/or the sam-312

ple mean of the number of claims is close to 1/b̂= 0.1442. It is also worth313
mentioning that the contribution to uncertainty of concave (respectively, con-314
vex) distortions is bigger when the sample mean of the number of claims is315
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FIGURE 1: Range of the Bayesian premiums based on the net premium against x̄, for ε = 0.05, 0.1, and 0.14,
α1 = 1.53067, 3.26143, and 34.1772, α2 = 1.63976, 2.53965, and 3.51876, and n= 1, 5, and 10, for the

Poisson–exponential model.

smaller (respectively, larger) than 1/b̂= 0.1442. This is coherent with the fact316
that the likelihood, given by317

l(θ |x)= enθ θ
∑n

i=1 xi∏n
i=1 xi

, θ ∈ (0,∞),
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is unimodal and the supremum is achieved at the maximum likelihood esti-318

mator (mls) of θ , given by the sample mean θ̂mls = x̄. From Proposition 9,319
we see that πx ≤icx (≥icv)π if and only if E[πx]≤ (≥)E[π ] or equivalently if320
and only if x̄≤ (≥)1/b. Therefore, the Bayesian premiums PB,H,H∗(πhα1 ,x

) and321
PB,H,H∗(πhα2 ,x

) can be seen as a competitive value of the premium and a prudent322
one, respectively, in a bonus–malus system.323

Finally, note that since the Kantorovich metric between the lower and324
upper distorted priors is given by KW (πhα1

, πhα2
)= 2ε, the uncertainty induced325

in the collective premium increases with the “size” of the distorted band.326

4.1.1. Connections with credibility theory.327
From Equation (4.3), it is apparent that the Bayesian premium associated with328
the lower bound of the distorted band can be rewritten as329

PB,H,H∗(πhα1 ,x
)= nx̄+ 1

α1b+ n
=Zα1

h1
(n)x̄+ (

1−Zα1
h1
(n)

)
PC,H,H∗(πhα1

),

that is, as a credibility expression, where330

Zα1
h1
(n)= n

α1b+ n
(4.8)

is the credibility factor varying between 0 and 1. Straightforward com-331
putations provide that this credibility factor obeys the expression of the332
classical Bühlmann credibility factor. That is, Z= n/(n+K), where K =333
Eπα1

[Var[Xθ ]]/Varπα1
[E[Xθ ]] (see Bühlmann, 1967; Bühlmann and Gisler, 2005,334

for further details).335
On the other hand, given α2 a positive integer and making use of the336

Newton binomial, the density of the upper bound of the distorted band can337
be rewritten as338

πhα2
(θ)= α2b exp (− bθ)

α2−1∑
j=0

(− 1)α2−1−j
(

α2 − 1
j

)
exp [−bθ(α2 − 1− j)].

Therefore, the posterior distribution can be expressed as a convex sum of α339
terms of gamma random variables:340

πhα2 ,x
=d

1∑α−1
j=0 κ( j)

α−1∑
j=0

κ( j)G(nx̄+ 1, n+ b(α2 − j)),

where341

κ( j)= (− 1)α2−1−j
(

α2 − 1
j

)
1

[n+ b(α2 − j)]nx̄+1
.
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Consequently,342

PB,H,H∗(πhα2 ,x
) = 1∑α2−1

j=0 κ( j)

α2−1∑
j=0

κ( j)
nx̄+ 1

n+ b(α2 − j)

= 1∑α2−1
j=0 κ( j)

α2−1∑
j=0

κ( j)
[
Zα2
h2
(n)x̄+ (

1−Zα2
h2
(n)

) 1
b(α2 − j)

]
,

where343

Zα2
h2
(n)= n

n+ b(α2 − j)
. (4.9)

Therefore, the premium is a sum of α2 terms, where each term presents a factor344
of credibility given by Equation (4.9). Observe that the higher α1 and α2 are,345
the smaller the credibility factors in Equations (4.8) and (4.9), respectively, are.346
In other words, higher α1 and α2 give more weight to the collective compared347
to the sample data through the upper and lower bounds of the premium.348

4.2. Example 2 [real data set]349

This example is taken from Lau et al. (2006). The prior distribution of the risk350
parameter θ is supposed to be uniform on (0, 10), denoted by π ∼U(0, 10).351
The distribution of claims size is a Pareto distribution with shape parameter352
b> 0 and mode parameter θ > 0, denoted by Xθ ∼Pa(b, θ), with density func-353
tion f (x|θ)= bθ b/xb+1, x≥ θ . From Bayes theorem, the posterior distribution354
is given by355

πx(θ)= θ nb(nb+ 1)
min [x(1), 10]nb+1

= fB(nb+1,1)(θ/10)
10FB(nb+1,1)( min [x(1), 10]/10)

,

where θ ∈ (0, min [x(1), 10]) and fB(a1,a2)(x) and FB(a1,a2)(x) represent the density356
and the distribution functions, respectively, of a classical beta distribution with357
shape parameters a1 and a2 in the interval (0, 1). It is remarkable that the poste-358
rior distribution results from a change of scale, equal to 10, of a right-truncated359
beta distribution, truncated at min [x(1), 10]. By considering the net premium360
principle forH andH∗, a straightforward computation provides the individual,361
the collective, and the Bayesian premiums as362

PR,H(θ)= bθ
b− 1

, PC,H,H∗(π)= 5b
b− 1

, PB,H,H∗(πx)= b(nb+ 1) min [x(1), 10]
(b− 1)(nb+ 2)

,

(4.10)
where x(1) is the sample minimum. Lau et al. (2006) suggest to take b= 3.363

We consider again a perturbation scheme on the prior distribution by using364
the distorted band �hα1 ,hα2 ,π

, where hα1 and hα2 are defined by Equation (4.1). In365
this case, the bounds are given by366
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πhα1
(θ) = α1

10

(
1− θ

10

)α1−1

= fB(1,α1)(θ/10)
10

, θ ∈ (0, 10),

πhα2
(θ) = α2

10

(
θ

10

)α2−1

= fB(α2,1)(θ/10)
10

, θ ∈ (0, 10). (4.11)

It is well known (see, e.g., Table 2.1 in Belzunce et al., 2016) that Pareto367
distributions are ordered in the likelihood ratio order according to their loca-368
tion parameters. Specifically, θ1 < θ2 implies Pa(b, θ1)≤lr Pa(b, θ2). It follows369
from Lemma 5 that the random risk Xθ =Pa(b, θ) is IRH for all H ∈Hlr (in370
particular, Xθ is IRH for the net premium).371

Some computation yields to372

PC,H,H∗(πhα1
) = 10b

(b− 1)(1+ α1)
,

PC,H,H∗(πhα2
) = 10α2b

(b− 1)(1+ α2)
. (4.12)

As in Section 4.1 (Example 1), α1 and α2 must verify Equation (4.6) for a373
fixed ε > 0. Combining Equations (4.6), (4.10), and (4.12), we need to solve374
the following equation system with b= 3:375

10b
(b− 1)(1+ α1)

+ ε = 5b
b− 1

,

10α2b
(b− 1)(1+ α2)

− ε = 5b
b− 1

.

The solution satisfies α = α1 = α2. Of course, this is coherent with the fact that376
both distortions produce a symmetric effect in the uniform prior distribution.377
For ε = 3, 5, and 6 we obtain α = 2.33, 5, and 9, respectively. The distorted378
posterior distributions are given by379

πhα1 ,x
(θ) = fB(nb+1,α1)(θ/10)

10FB(nb+1,α1)( min [x(1), 10]/10)
,

πhα2 ,x
(θ) = θ nb+α2−1(nb+ α2)

min (x(1), 10)nb+α2
= fB(nb+α2,1)(θ/10)

10FB(nb+α2,1)( min [x(1), 10]/10)
, (4.13)

where θ ∈ (0, min [x(1), 10]). From Equation (4.13), it is easy to compute a380
closed-form expression for the distorted Bayesian premiums:381

PB,H,H∗(πhα1 ,x
) = 10

nb+ 1
nb+ α1 + 1

FBeta(nb+2,α1)

(
min (x(1),10)

10

)
FBeta(nb+1,α1)

(
min (x(1),10)

10

) ,
PB,H,H∗(πhα2 ,x

) = nb+ α2

nb+ α2 + 1
min (x(1), 10). (4.14)
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FIGURE 2: Range of the Bayesian premiums based on the net premium against x(1), for ε = 0.2, 0.6, and 1,
α1 = α2 = 1.05479, 1.17391, and 1.30769, and n= 1 and 5 for the pareto–uniform model.

From Theorem 7 (b), the Bayesian premiums in Equations (4.10) and (4.14)382
satisfy383

PB,H,H∗(πhα1 ,x
)≤PB,H,H∗(π ′

x)≤PB,H,H∗(πhα1 ,x
), ∀π ′ ∈ �hα1 ,hα2 ,π

.

We show in Figure 2 the effect of the distortion functions on the Bayesian pre-384
miums combining several values of the minimum sample x(1) with two sample385
sizes, n= 1 and n= 5. At first sight, uncertainty decreases when the sample size386
increases, as expected.387

As in Section 4.1 (Example 1), the range of Bayesian premiums is larger388
when α increases. Likewise, the range decreases when the sample size increases389
and/or the sample minimum decreases. Recall that the sample minimum is a390
biased estimator of θ with a positive bias. Observe that the convex distortion391
contributes more to the uncertainty when the sample minimum increases and392
the concave distortion contributes more when the sample minimum decreases.393
This property is again coherent with the behavior of the likelihood, given by394

l(θ |x)= bnθ nb∏n
i=1 x

b+1
i

, θ ∈ (0, x(1)),
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TABLE 2

VALUES FOR THE PREMIUMS DEPENDING ON THE PREMIUM PRINCIPLES.

H–H∗ Net–Net Esscher–Net Esscher–Esscher Exponential utility–Net

Collective premium a
b eβ a

b
eβa

b−βeβ (eβ − 1) a
b2

Bayesian premium a+nx̄
b+n eβ a+nx̄

b+n eβ a+nx̄
(b+n)−βeβ (eβ − 1) a+nx̄

b(b+n)

which is strictly increasing and unimodal, with the supremum achieved at the395

mls, given by θ̂mls = x(1). Then, from Proposition 9, πx ≤icx (≥icv )π holds if396
and only if E[πx]≤ (≥ )E[π ] or, equivalently, if and only if min (x(1), 10)≤397
(≥ )5(nb+ 2)/(nb+ 1). If x(1) ≥ 10, it follows from Remark 10 that π ≤lr πx.398

The Kantorovich distance between the lower and upper distorted priors is399
given by400

KW (πhα2
, πhα1

)= b
(b− 1)

10(α − 1)
(1+ α)

= b
(b− 1)

2ε. (4.15)

As in Section 4.1 (Example 1), the Kantorovich distance is proportional to ε;401
therefore, it can be used to control the effect of the distortions in the collective402
premium.403

4.3. Example 3404

In Gómez-Déniz et al. (1999), the uncertainty with regard to the prior dis-405
tribution is represented by the assumption that π belongs to the classical406
contamination class of priors. Starting from this class, the authors make a407
Bayesian robustness analysis to measure the sensitivity with respect to the408
prior of the Bayesian premium for the Esscher principle in the Poisson-gamma409
model. Now we extend the study by considering different premium principles410
and the distorted band class.411

Let suppose that the number of claims follows a Poisson distribution with412
parameter θ > 0, Xθ ∼P(θ), and let π be a gamma distribution with shape413
parameter a> 0 and scale parameter, b> 0, denoted by π ∼G(a, b), with414
density function415

π(θ)= ba

�(a)
θ a−1e−bθ .

The posterior distribution is also a gamma distribution with shape parameter416
nx̄+ a and scale parameter b+ n, denoted by πx ∼G(nx̄+ a, b+ n).417

Table 2 shows the collective and Bayesian premiums for different combina-418
tions of H and H∗.419

We consider again a perturbation scheme on the prior distribution by using420
the distorted band �hα1 ,hα2 ,π

, where hα1 and hα2 are given by Equation (4.1).421
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TABLE 3

KW METRIC DEPENDING ON THE DISTORTION PARAMETERS.

KW metric α1 = α2 = 1.05 α1 = α2 = 1.11 α1 = α2 = 1.15 α1 = α2 = 2

KW (πhα2
, πhα1

) 0.03406 0.06697 0.09875 0.12945

KW (πhα2 ,x
, πhα1 ,x

) 0.01577 0.02494 0.04352 0.05654

In this case, there are no closed-form expressions for the bounds, neither422
for the prior bounds πhα1

(θ) and πhα2
(θ) nor for the posterior ones πhα1 ,x

(θ)423

and πhα2 ,x
(θ). As in Section 4.1 (Example 1), Xθ =P(θ) is IRH for all H ∈Hlr424

(in particular, for the net, the Esscher and the exponential utility premium425
principles). Therefore, it follows from Theorem 7 (b) that426

PB,H,H∗(πhα1 ,x
)≤PB,H,H∗(π ′

x)≤PB,H,H∗(πhα1 ,x
), ∀π ′ ∈ �hα1 ,hα2 ,π

,

for any combination of the principles H and H∗ considered in Table 2. This427
band is illustrated in Figures 3 and 4 for different scenarios. As in Gómez-428
Déniz et al. (1999), we have assumed a fixed expected amount of claims, c= 100429
monetary units, and a prior gamma distribution with shape and scale parame-430
ters equal to 5 and 2, respectively, G(5, 2). We have fixed the sample size n= 10431
under two scenarios: the first one with sample mean x= 2 and the second one432
with sample mean x= 5. We have considered different distortion parameters433
(namely α1 = α2 = 1.05, 1.11, 1.15, and 1.2).434

To obtain the risk aversion constant β in the Esscher premium, we have435
supposed that the Esscher premium differs from the net premium in a σ%,436
that is, θeβ = (1+ σ%)θ . Taking σ = 10 we obtain β = 0.0953. The same risk437
aversion constant has been considered for the exponential utility principle. The438
Bayesian premiums PB,H,H∗(πhα1 ,x

) and PB,H,H∗(πhα2 ,x
) have been estimated by439

simulation using the algorithms described in Arias-Nicolás et al. (2016).440
On one hand, observe that the range of the Bayesian premiums is larger441

when the uncertainty about the baseline prior π increases, that is, when α442
increases. On the other hand, the range decreases when the sample mean443
of the number of claims is close to a/b= 2.5. Concave distortions con-444
tribute more to the uncertainty when the sample mean of the number of445
claim is smaller than a/b= 2.5, while convex distortions contribute more446
when it is larger. As in Section 4.1 (Example 1), this is coherent with the447
fact that the likelihood is unimodal and the supremum is achieved at the448

mls of θ , given by the sample mean θ̂mls = x̄. Then, from Proposition 9,449
πx ≤icx (≥icv)π if and only if E[πx]≤ (≥)E[π ] or, equivalently, if and only450
if x̄≤ (≥)a/b.451

Table 3 provides the Kantorovich metrics for the different α’s used in this452
study.453



18 M. SÁNCHEZ-SÁNCHEZ, M.A. SORDO, A. SUÁREZ-LLORENS AND E. GÓMEZ-DÉNIZ

FIGURE 3: Range of the Bayesian premiums based on the different premiums in Table 2 with x= 2, for
α1 = α2 = 1.05, 1.1, 1.15, and 1.2 and n= 10 for the gamma–gamma model.

5. CONCLUDING REMARKS454

Given a random risk that depends on a parameter, we have addressed the prob-455
lem of computing collective and Bayesian premiums from a robust approach.456
We have focused on a class of priors, recently introduced in the literature, that457
fulfills the requirements described in Berger (1994) and reflects accurately the458
prior uncertainty using distortion functions.We have illustrated how the uncer-459
tainty propagates from this class of priors to collective and Bayesian premiums460
for a wide family of premium principles, specifically those that preserve the461
likelihood ratio order. One strength of this approach is that the sensitivity mea-462
sures based on ranges of the premiums are easy to compute from the extremal463
distributions of the class.464

An anonymous reviewer pointed out, in the light of Theorem 7, that465
weighted distributions also provide a natural framework for the ideas devel-466
oped in this paper. In fact, if we restrict to absolutely continuous random467
variables, weighted distributions are more general objects than distorted dis-468
tributions. For a non-negative random variable X with density function f and469
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FIGURE 4: Range of the Bayesian premiums based on the different premiums in Table 2 with x= 5, for
α1 = α2 = 1.05, 1.1, 1.15, and 1.2 and n= 10 for the gamma–gamma model.

for a non-negative function ω such that E [ω(X )] is strictly positive and finite,470
a weighted random variable Xω is a random variable with density function471

f ω(x)= ω(x)
E [ω(X )]

f (x), x> 0. (5.1)

A distorted distribution h(F(x)) is a particular case of weighted distribution472
by taking the weight function w(x)= h′(F(x)) (this is noted, e.g., in Furman473
and Zitikis, 2008). Moreover, the distortion h is convex (resp. concave) if and474
only if the weight function ω is increasing (resp. decreasing). In this new frame-475
work, we can perturbate the prior belief π by considering two weight functions:476
ω1 (decreasing) and ω2 (increasing). Then we have πω1 ≤lr π ≤lr π

ω2 and we477
can define a class of priors based on weighted distributions. In this paper,478
we have adopted the distortion approach for several reasons. First, this work479
was motivated by the paper of Arias-Nicolás et al. (2016), which perturbated480
the prior belief π by using distortions. The second reason is that the distorted481
distribution approach enables to consider, at least from a theoretical point of482
view, more general random variables (not necessarily absolutely continuous).483
Finally, the literature provides some useful preservation results for distorted484
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distributions that cannot be stated, in general, in terms of weighted distribu-485
tions. For example, consider two prior beliefs π and π and two distortion486
functions h1, concave, and h2, convex. It follows from Theorem 7(a) in Sordo487
(2008) that if π is less disperse than π in the sense of Bickel and Lehmann488
(1979), then KW

(
πh1 , πh2

) ≤KW
(
π h1 , π h2

)
, where KW is the Kantorovich489

metric. This is a very reasonable result: the more disperse prior belief, the wider490
uncertainty band. Unfortunately, we do not have a similar result for general491
weighted distributions.492

In this paper, we have considered three classical claim counts models:493
exponential–Poisson, uniform–Pareto, and gamma–Poisson. Our future work494
will be addressed to the multivariate case, when the risk depends on more than495
one parameter.496
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NOTES

1. For example, Gómez-Déniz et al. (1999) study the propagation of uncertainty from certain502
class of priors to the Bayesian premium, which is computed using twice the Esscher premium.503
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