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Abstract

The minimal repair replacement is a reasonable assumption in many practical systems. Under this
assumption a failed component is replaced by another one whose reliability is*the same as that of
the component just before the failure, i.e., a used component with/the same age. In this paper
we study the minimal repair in coherent systems. We consider both the cases of independent and
dependent components. Three replacement policies are studiedsdmnthe first one, the first failed
component in the system is minimally repaired while, in the seecond ene, we repair the component
which causes the system failure. A new technique based omn the relevation transform is used to
compute the reliability of the systems obtained under these réplacement policies. In the third
case, we consider the replacement policy which assigns the minimal repair to a fixed component
in the system. We compare these three options under different stochastic criteria and for different
system structures. In particular, we provide the optimal strategy for all the coherent systems with
1-4 independent and identically distributed components.

Keywords: Coherent systems, minimal repair, distorted distributions, copula, stochastic orders.
2000 MSC: 62K10, 60E15, 90B25.

1. Introduction

Nowadays, people demandimorée and more reliable systems. Several techniques have been de-
veloped to model and improve the reliability of a system. The basic concepts used in Reliability
Theory were introduced in, the classic book by Barlow and Proschan [12]. Recent developments
can be seen, for exdmple, in'|9, 30]. A good way to improve the reliability of a system is to consider
some redundangy or maintenance actions. These actions can be performed in different ways as, for
example, by_planning some replacement strategies, minimal repairs, imperfect repairs, redundan-
cies, etc. @On the one hand, it is addressed in literature the concept of active or hot redundancy,
where somejadditional components are included in the system by using parallel structures, see
[46, 505 515.52] and [14, 49] for systems having independent and dependent components, respec-
tively. @On the other hand, it is addressed the concept of standby or cold redundancy, where a
component is replaced or repaired when it fails. Among the standby policies, many papers study
the case of perfect repairs when the broken unit is replaced by a new and identical unit, see, e.g.,
[26, 44, 47]. Nevertheless, there exist many options of replacement for a failed component. A nice
summary of these cases is described in Aven [6]. In this paper we focus on minimal repairs as
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a particular case of cold redundancy. Under this assumption a failed component is repaired to
be just as it was before its failure. This is equivalent to replace this unit by another one whose
reliability is the same as that of the component just before the failure, that is, it is replaced by a
used component with the same distribution and the same age. This concept allows us to describe
many repairs in real cases where it is not unrealistic to think that repairs basically bring the
system to the same condition it was just before the failure.

The basic minimal repair model was introduced in Barlow and Hunter [11|. To formalize this
idea, the basic model assumes that the repair time is negligible and the number of failures that
occur in the interval (0,t] follows a nonhomogeneous Poisson process (NHPP) with am intensity
function A(t). Since then, many works have been published attempting to eXtend the minimal
repair concept. For example, Brown and Proschan [18| examined the casenof imperfect repair
which uses a perfect repair with probability p and a minimal repair with™probability 1 — p. This
model was generalized by Block et al. [17] by considering that the probability of perfect repair
depends on the system’s state and by Shaked and Shanthikumar [42] for the multivariate case.
Phelps [41]| obtained an optimal policy for the replacement problemywith minimal repair, under
the assumption of an increasing failure rate. Stadje and Zuckerm@n, [45] studied a maintenance
model in which the degree of repair is a decision variable determined by a controller and it varies
between minimal and perfect repairs. Beichelt [13] propesedya new common framework, based on
a general failure model, to include different replacement policies under minimal repair. Finkelstein
[24] generalized the notion of minimal repair to the case when the lifetime distribution function
is a continuous or a discrete mixture of distributions, that is, a heterogeneous population. Aven
and Castro [7| and Zequeira and Berenguer [48) analysed an optimal strategy of maintenance from
two types of failures in the system and the assoeiatéd repair costs. More recently, Balakrishnan
et al. [10] introduced minimal repair processesiunder a simple step-stress test in the context of
life-testing reliability experiments. Some authors split minimal repairs into two cases: physical
minimal repairs and statistical minimal repairs. The former is used when a component of the
system is repaired and the latter dlso called black box minimal repair, when the system is repaired,
see Aven [6] and Aven and Jenseny[8, 9) for further details and illustrative examples. As it is nicely
discussed in Aven [6], the neéd to be/precise with the level of information leads to some author to
frame their works in the theory of point processes by taking into account the history of the system.
Some valuables contributions in this sense are given by Arjas and Norros [1], Aven [3, 4, 5], Aven
and Jensen [8, 9], Bérgmany|16|, Gasemyr and Natvig [25] and Natvig |28, 29].

In the literature there exist alternative approaches not based in processes as well. For example,
some stochasti¢ comparisons of repairable coherent systems with independent components were
obtained inA15,20,.23| and some preservation results and aging properties of repairable systems
under minimal répair were established in [19]. Recently, a new representation for the reliability
function of a'eeherent system with possibly dependent components was obtained by using copulas,
see, e.g\ [27736| or expression (2.4) below. This expression is very useful since the distortion (or
aggregation) function ) contains all the information about the structure of the system and the
dependency between the components (its survival copula). This representation was used in [2] to
compare different replacement policies under minimal repairs when we have a limited maximum
number k of repairs and they are assigned to fixed components in the system.

In this paper we use expression (2.4) as an alternative approach to model and compare the
lifetimes of the repaired systems. Our approach could be considered as a good alternative to
the classical approach based on processes and, in our opinion, satisfies some advantages. Firstly,
the representation of the system reliability function in terms of distortion functions leads to sim-



plify the complex algebraic expressions derived from the computation of the system’s reliability.
Secondly, our results can be applied to systems with independent or dependent components. Fur-
thermore, this approach can be used to deal with systems having heterogeneous components.
Finally, the main results allow us to get distribution-free comparisons (i.e. comparisons that do
not depend on the distributions of the components) of the repaired systems. We study different
repair policies based on minimal repairs of the failed components in the system. We will focus on
comparing three different repair policies. The first policy, denoted by case I, consists in a minimal
repair of the component that fails first. The second one, denoted by case II, consists.in a minimal
repair of the component that causes the system failure. The last one, denoted by.case T, consists
in assigning a minimal repair to a fixed component in the system. This last caséiis the one studied
in [2] when £ = 1. In all these cases we will consider only one repair and we will compare the
resulting systems under different stochastic criteria. Moreover, we show that the-same technique
can be applied to study k replacements and other replacement policies. WIn“particular, we prove
that the replacement policy of case II is better than that of case I under the assumption of inde-
pendent and identically distributed (IID) components. Howeverssome examples prove that they
are not ordered with case III. We also apply this procedure_ tosdétermine the best replacement
policy in terms of the usual stochastic order for all the systems.with’1-4 IID components.

The rest of the paper is organized as follows. In Sectiony2 we introduce the notation and the
tools needed in the paper including the basic properties on the relevation transform and on coherent
systems. The main results are given in Section 3, where we give a procedure to determine the
reliability functions of the systems obtained with the,replacement policies of the cases mentioned
above. The expressions obtained are based on distortion functions. These representations are used
in Section 4 to compare the different replacement policies. There we also provide some general
results for systems with IID components.” Thésconclusions are placed in Section 5.

Throughout the paper, we say that.a function g is increasing (resp. decreasing) if g(z) < g(y)
(>) for all x < y. If G :[0,1]" =£[0,1}; then 0;G represents the partial derivative of G with
respect to the ith variable.

2. Notation and preliminary results

2.1. Relevation transform

Let X and Y b¢ two nonnegative independent random variables with absolutely continuous
reliability (survival) fanctions F' and G. Then the reliability function of X + Y (convolution) is

FxGt) ZPr( XY >t) = /too f(x)dx—i—/o /:O g() f(z)dydr = F(t) —i—/o G(t — x)f(x)dz,

where | and.g are the respective probability density functions. Under a perfect repair in a cold
standby procedure, the unit X is replaced when failed by an independent unit Y having the same
distribution as X (when new). Then the resulting reliability is

S|

Fx (t):F(t)—i-/OtF(t—x)f(x)dw.

If X and Y are dependent, we obtain the expression included in the following definition.



Definition 2.1. If X and Y are two nonnegative dependent random variables with reliability func-
tions F' and G, then the relevation transform (or conditional convolution) F#G is the reliability
of X +Y given by

F#G(®) /G (t — 2)f(x)do (2.1)
where f is the probability density function of X and G, is the reliability function of (Y|X = x).

Under a classic relevation transform, the unit X is replaced when it fails at a time = by a unit
having reliability G' but with the same age as X, that is, by Y, = (Y — z|Y > z)awith xeliability

e Gz +
G:(y) =Pr(Y —x>ylY >z) = %
for y > 0. Hence,
F#G() = Pr(X + Yy > 1) (& ; (2.2)

Under a minimal repair, the failed unit X is replaced . by‘a unit having the same reliability as
X and with the same age (that is, it is repaired to beas.it.was just before its failure). Then, from
(2.2), the resulting reliability is

FHF(t) = F(t) + /0 e f(a)de = F(t) — F(t)In F(2).

After k replacements, the resulting reliability is

i 1 _
FHkR( Z He
= (F#F)#F and so on. Note that (F#F)#F #
qr(F(t)) with

ZZ— —Inw)’ (2.3)

The distributions that can be written in this way are called distorted distributions (see, e.g.,
[33, 38]wand the references therein). Thus, we say that a distribution function Fj is a distortion
of anothet distribution F' if F,(t) = q(F(t)) for a distortion function g : [0,1] — [0, 1] increasing,
continuous and such that ¢(0) = 0 and ¢(1) = 1. A similar representation holds for the respective
reliability functions, that is, F,(t) = g(F(t)), where q(u) = 1 — (1 — u) for u € [0,1]. It is also a
distortion function, that is, it is an increasing continuous function in [0, 1] such that g(0) = 0 and
q(1) =1 (see, e.g., (2.3)). It is called the dual distortion function associated to gq.

where FHF = F, F4Mdl = F#F, F#°F
F#(F#F). We shall write it as F#MF(t) =

)—l



2.2. Coherent systems

Let T be the lifetime of a coherent system with component lifetimes X1, ..., X,,. In the general
case, the components can be dependent and this possible dependency will be represented by the
joint reliability of the components lifetimes which can be written as

F(xy,...,2,) =Pr(Xy > 21,..., X, > 2,) = K(Fy(71),..., F(x,)),

where K is the survival copula and F; is the reliability function of the ith component fori =1,...,n
(see, e.g., |22, p. 33]). Note that the case of independent components is included here and that it is
represented by the product copula K = II, where II(uy, ..., u,) = uy ... u, foréu;,. .., u, € [0,1].
From now on we assume that F' is absolutely continuous with joint probability density function

f<$1, e ,xn) = ]C(Fl(.’lfl), . ,Fn(a:n))fl(xl) e fn(xn)a
where f; is the probability density function of X; and

6”

k(ul,...,un):81...8HK(U1,...,un):m
1. >

K(up, ... up)
is the probability density function associated to K.
Then it is well known (see, e.g., |27, 36]) that the systemrreliability can be written as

Fr(t) = QUE()\ 759, (1)), (2.4)

where Q is a distortion function, that isga contimuous increasing function @ : [0,1]" — [0,1]
such that Q(0,...,0) = 0 and Q(1,...,1) = T'which depends on the system structure and on
K (the dependence structure). In partieular, if the components are identically distributed (ID),
then (2.4) reduces to Fr(t) = G(F (). (see, e.g., [38]) where F' is the common reliability function
of the components and ¢(u) = @Q(uy. .. 3af) (i.e., T has a distorted distribution from the common
distribution of the components). If the components are just independent, then @ is a multinomial
expression (see [12, p. 21]).(Finally,if they are independent and identically distributed (IID), then

q(u) =" a;u’, whereAay, . .. ya,) is called the minimal signature of the system (see, e.g., [37]).
For example, if n = 23the reliability function of the parallel system Xs., = max(X;, X5) is

FQ;Q(t) = PI"({Xl > t} v {X2 > t}) = Fl(t) + Fg(t) — Pl"(Xl > t,XQ > t) = QQ:Q(Fl(t), Fg(t)),
where Q.0 (t,v) = u’ v — K(u,v) and, in the IID case, go.(u) = Qaa(u, u) = 2u — u?.

2.3. Reliability-of systems using the relevation transform
Let us' see how the relevation transform can also be used to compute the system’s reliability.
This new. technique will be used in the following sections to compute the reliability of systems

with minimal repairs on failed components. As in the preceding section we consider the simple
case of a two-component parallel system.

Example 2.2. Let us congider Xoo = max(Xy, Xy). If the component lifetimes X1, Xo are 11D
with a common reliability F', then

Fas(t) = FratoF(t) — Frat) + / %fm(w)dx

5



and, as Fi.o(t) = F2(t) and fi.5(t) = 2F(t) f(t), we have

Fao(t) = F2(t) + / I 27 (2) f(x)dx = F2(t) + 2F (1) F(t) = 2F(t) — F2(1).

Let us assume now that both components can be dependent with a survival copula K. Then

FQ:Q(t) = PI‘(Xl < XQ) Pr(XQ:Q > t|X1 < X2> + PI'(XQ < Xl) Pr(X2;2 > t|X2 < Xl)
= Pr(X; < Xo) P LG (1) 4 Pr(X, < X1)FS2 4G, (1),

where F{X (1) = Pr(X, > t|X, < Xp), By (1) = Pr(Xe > t|Xg X)), Gra(y) =
Pr(Xo —z > y|Xy =2, Xo > ) and G, (y) = Pr(Xy — 2 > y| Xy = 2, X1 > z)y Note that

~Pi(Xi < Xo) = [ [T A@R0)DK (P, Fa)dyde = K)o K (). a(o)da
when lim, o+ 01 K (Fy(z),u) =0 (see [40]). Analogously,
pr = Pr(Xy < X)) = 1 — py — /OOO Fo@ K (B (), Fy(x))da

when lim,_,o+ 02K (u, F5(y)) = 0. The joint density of (X1, Xo| X1 < Xo) is h(x,y) = f(z,y)/p1
for all x <y (0 otherwise). Then the marginal denSity.of (X1|X1 < Xs) is

1 [ 1 [ A _ 1 _ _
— [ tewt = [ A@MQIE @), By = A0 K (Fio), Fao).
Hence, the conditional density of (Xao|Xt= 2z, Xy > ) is

Mady) _ LW)ooK(Fi(x), B (y))
ha () K (Fi(z), F5(x))

and then the reliability functiomG . is given by

hon (yl&s) =

. _ gy [T RRLERE), B(z) 0K (F(@), B+ y)
Gl,gc(y)—/w+ PRER / O K (Fo(a). () d SR B (2.5)

In a similar way (by the symmetry), we get

0K (Fy(x + y), Fy(x))
@)

V) = K (B (), Fa(w)

(2.6)

Therefore, from (2.1), we obtain



Analogously, we have FS> "V #Gy(t) = FY< (1) + L [Fi(t) — K(Fi(t), F5(t))] . Then

p2

Fyo(t) = plprKXQ)#Gﬂt) + p2F2(X2<X1)#GQ<t)
= p P (@) + pp B (8) + Ry () + Fa(t) — 2K (Fi(1), Fa(t))
=p Pr(Xio > t|X1 < Xo) + po Pr(Xp2 > | Xo < X)) + Fl(t) + FQ(t) — 2K(F1(t), F2(t))
=Pr(Xyo > t) + Fi(t) + Fy(t) — 2K(Fi(t), F5(t))
= Fi(t) + Fy(t) — K(Fy(t), Fy(1)).

These expressions can be simplified if F' is exchangeable (EXQ’), that is{"K s permutation
invariant and the components are ID. In this case we have Fy.o = F.o0#G, where

Pr(Xy > =z +9y[Xp=1)
Pr(X, ¥ z| X, =x)

G.(y) =Pr(Xp—z>ylXi=2,X, > 1) =

)) Hence,“from (2.1), we have

Fro#tG(t) = Fra(t) + /0 Gt — o) fro(2)de = Bra(f)<t /O gjg((?g)) 5(?))) Fro(z)dz,

where Fi.o(z) = K(F(z), F(x)) and fio(z) = 2f ()01 K(F (z), F(z)). Therefore,

t

FroftG(t) = Fra(t) + 2w K (F(2), F (1)) f(z)dz

[«

= 2E(th— K(F(t),F(t)).
Another approach for the/general case is
Py = Flo#tG, (2.7)
where

G.(y) = py(2) Pr( Xy — 2 > y| X1 =2, Xo > 2) + pa(2) Pr(X) — 2 > y|Xo = 2, X > 1)
Pr(Xy, >z 4yl Xy =2) (x)Pr(Xl >z +y| Xy =)
Pr(X,; > x| X; =) b2 Pr(X; > z| X =2)

= p1(v)

pl(.Z') = PI'(Xl < X2|X1:2 = 33) and pg(.’]}') = PI'(XQ < X1|X1:2 = .7))

Similar expressions can be obtained for other order statistics (k-out-of-n systems), that is,
for X;.,, i = 1,...,n. For example, in the IID case, the reliability of Xs.3 can be written as
Fy3 = Fis#Fo or that of X3 as Fiz = (Fls#Fl.o)#F. Analogous (but more complicated)
expressions hold for general coherent systems.



3. Main results

With the notation introduced in the preceding section, let us assume that we have a coherent
system with lifetime 7" based on n components with lifetimes Xi,..., X,,. If we apply a single
minimal repair to the system then the main options are:

Case I: To repair the component which fails first.

Case II: To repair the component which leads to the system failure.

Case III: To repair a fixed component (e.g., to repair the ith component).

Other options will be considered later. If we can choose among these options (this is,not always
the case in practice), we need to determine which one is the best one under somesgtochastic criteria.
To do this, we need to obtain the reliability of the resulting systems after theseaeplacement policies.

From now on, we will denote by 77 and Tj; the lifetimes associated te the resulting system
under the policy I and II, respectively. In the third option, if we repair the.sth component, the
resulting system lifetime will be represented by TI(I 7. If the dependence strugture does not change

after the replacement, then the reliability of T}I T s

Frao () = Q(Fi(t), ..., Fioa (1), a(Fi(t)), Frna (1), ./, Fu(t)),

III

where ¢, is given in (2.3). If the components are ID, then FT(Z) (t) = q‘?}l(ﬁ’(t)), where
117

@ () = Qu, ..., lvguw)lu, . .., u) (3.1)

and @, is placed at the ¢th position. Comparison tesults for these kinds of replacements were given
in [2|. Let us study the other two cases.

3.1. Case I

In this case we repair the component which fails first. Its lifetime is X = X;.,. Then the
broken component is minimallyirepaired and the resulting system has the same structure as T’
but we know that all the components are working and have age X. Hence its reliability is

FTI (t) = Fl:n#é(t)> (32)
where

Pr(T >z+y, Xy >x,...,X, > 1)

Go(p=Pr(T~2>ylXi >z,.... X, >2) = Pr(X, >ux,...,X, > 1)

when X = #wIn Proposition 3 of [31] is proved that this reliability can be written as G,(t) =
Qo (F1 (), 7., Fr.(t)), where F ,(t) = Pr(X; —z > t|X; > 2) = Fy(t +2)/F(z) fori=1,...,n
and Q, is-a dlstortlon function (see Section 2). Hence, from (2.1), we have,

Fry () = Frnlt) + /O Galt — ) fun(z)dz = Fron(t) / OulFralt = 2)s o Fo ot — 1)) fron ()

(3.3)
Let us see an example.



Example 3.1. If T'= Xs.5 (a parallel system with two components), then

G.(y) =Pr(T — x> y| X, >z, Xy > 7)
Pr(T >z 4y, X1 > 2, Xy > 1)
- Pr(X; >z, Xy > x)
PrXi>2+y,Xo>2)+Pr(Xo>a+y, X;>2)—Pr( Xy >2+y, Xo > +y)
Pr(X; >z, Xy > x)
KRz +1), B@) + K(R@), Bl ) - KR @ +y), B +))
K(F\(2), Fy())

= Qu(Fra(y), Foa(y))
fory >0, with Fy .(y) = Fi(z +v)/Fi(z), Fo.(y) = Fa(x +y)/Fy(z) and
K (uy Fy(x), Fy(x)) + K(Fi(2), us Fy(x)) — Kfun Fy () us Fy ()
K(Fy(x), Fy(2))
whenever K (Fy(z), Fy(z)) > 0. Hence, from (2.1) and (3.2),

Qm(ulaUQ) =

Fry(t) = Fraft /Qx Foot — ), Fa(t — 7)) frol)

:Fl:Q(t)+F12 h’l F12 / K Fl F2 F—Z[j(pl(x%p?(t))

fro(z)dz (3.4)

holds. In particular, if the components are IID,\then,

YE@)F(x) + F(x)F(t)

) 2f(z)F(x)dz

Fr,(t) = F*(t) + 2F%(t) In(F ()% /
= F2(t) + 2F*(O)W(F(f)) + 4F(t)F(t).

Therefore, Fr,(t) = q(F(t)) with gr(u) = 4u—3u?+2u?In(u). A straightforward calculation shows

that qH)I( ) = 2u —u? — ulpu+ u? Wy and g5 < q‘f,ij)l fori=1,2. 8o, Ty <gr T\ holds for all F,

that is, in this system, it4s better to replace a fixed component than to replace the first failure.
If the components dre just ID, from (3.4), we get

/ K(F K(F(x), F(t))

FTI(t) = FLQ( )+F12 t hl( 12 t F )
12

(t) Sz (z)de
—F12 +F12(t)ln(712t
K(F(t),F(z)) + K(F(z), F(t)) _ _ _
/ R T S K (@), F(w) + 0K (Fle), Fa)) (@),
where Fin(t) = K(F(t), F(t)). Now, if we do the change v = F(z), then
bOE(F(t),v) + K(v, F(1))
E(t) O (v, v)

where 6x (v) = K(v,v) is the diagonal section of the copula K and 05 (v) = 01K (v,v) + 02K (v, v)
forv € (0,1). Therefore Fr,(t) = qr(F(t)) with

) +
(1))
(
(

Fr,(t) = 0k (F(t)) + 0k (F(t)) In(0x (F(t))) + O (v)dv,

gr(u) = 0k (u) + 0k (u) In(dx (u / Ok 51(( )dv.



A similar representation is obtained in the following theorem for an arbitrary coherent system.

Theorem 3.2. Let T be the lifetime of a coherent system with ID components having a common
reliability F'. Then the reliability function of T; can be written as

Fr,(t) = a(F(1)) (3.5)
for all t > 0 and a distortion function q; which does not depend on F.

Proof. In the ID case, the general representation obtained in (3.3), can be written as

Fr,(t) = Fi(t) + /0 Go(t — 2) frn(2)de = Fi.,(t) + /0 G (Fp(t — ) fis(x)dx, (3.6)

where g, (u) = Qu(u, ..., u) and Fo(t) = Pr(X; — 2z > t|X; > x) = F(t + x)JF (x) fori = 1,...,n.

Even more, in this case, G, can be written as G,(y) = (F(z + y); E(z)), see [31]. Hence

Fr, () = Fonlt) + / QF(t): F(2)) Fo (wl

where Fi.,,(t) = 0 (F(t)), 6k (u) = K(u,...,u) and fig(t)=f(t)d%(F(t)). Then

Fr,(t) = oxc(F (1)) + / G(F(N7F) 3y (F () f(2)da.

Finally, if we do the change u = F(z), then
1
Pry(0) () + [ a(B(0: () (.1)
F(t)
and therefore (3.5) holds. O

The dual distortionfunction’q; in (3.5) depends on the structure of the system and on the
underlying survival copula’ K. In the next sections we will show how to compute it. However, we
must say that, someétimesj it is not easy to get an explicit expression for it (since we have to solve
the integral in (3.7)). In/the IID case, the preceding theorem can be simplified as follows.

Theorem 3.3. Let-1" be the lifetime of a coherent system with IID components having a common
reliability E. Thén the reliability function of T; can be written as Fr,(t) = qr(F(t)) where

_ 1 " pau’l 3.8
nzn_lu—F( nzn_l>u na,u” Inu (3.8)

and (ay,...,a,) is the minimal signature of the system.

Proof. If the components are independent, then G (t) = Q(F1.(t),. .., Fn.(t)) holds from Propo-
sition 5 in [31], that is, Q, = @, where Q is the distortion function in (2.4). Then, if they are

10



1D, we have G, (t) = q(F,(t)), where F,(t) = F(t + z)/F(z) and q(u) = Y., a;u’ (see Section
2). Hence, from (3.6), we have

=1
n—1
= F"(t —F()(1— Ft 2P =In Pt
()Jrn;n_Z (®)( () + nan I (¢ Je=In F(t))
which concludes the proof. O

The minimal signatures of all the coherent systems with 1-5"HD"eomponents were obtained in
[37]. Hence, from the preceding theorem, we have explicit expressions for g; for all these systems.

3.2. Case 11

Let us assume now that we repair the component which is critical for the system. We may
expect that this option leads to a better performanee. sin¢e the most relevant components for the
system have higher probabilities of being repaired.Note that, in case I, we just repair the first
failure and so, for example, if the components areiexchangeable, then all the components have the
same probability of being repaired. However, we must note that case II is not always available in
practice for all systems.

In this case it is not easy to obtain thereliability Fr,, of the resulting system lifetime T;;. Let
us see a simple example. If the system is a series system, then cases I and II coincide since the
first failure is always critical for'the system. So let us consider again a parallel system.

Example 3.4. If T'= X5.5 and. the components are 11D, then, from (2.1), we have

F(t)
F(x)

Bor) = FrtF0 = Fr() + [ £10 pr(ajae

where Fr(t) = 2F(t) = F2(t) and fr(t) =2(1 — F(t))f(t). Hence

Pry(12F(t) - () + 2P(0) | '1-Fla) o

) f(x)de = F2(t) — 2F (t) In F(t) = grr(F(t))

with qry(w) = u? — 2ulnu. So Ty; also has a distorted distribution from F. Hence it is easy
to compare the three replacement policies for this system just by comparing the three distortion
functions. Thus a straightforward calculation leads to ¢ < q; < cj}l}l < g and so T <gr T7 <gr
TI(})[ <gp Tyr for all F andi = 1,2, that is, the best option in this system is to repair the component
which is critical for the system. The second best option is to replace a fized component and, of
course, the three options are better than the original system T'. They are also better than a parallel
system with three components (active redundancy) with gz.3(u) = 3u — 3u? + u3.

11



Let us assume now that the component lifetimes are just exchangeable. Then, proceeding as in

Section 2, we have Fr,,(t) = Fr#G(t), where

G.(y) =Pr(Xy — 2z > y|X; <2,X5 > 1)
CPr(Xy <2, Xo > +y)
a Pr(X; <z, X, > x)
_Pr(Xp>a+y) - r(X1 >, Xo > 1 +Yy)

Pr(Xs > z) — Pr(X) > 2, Xy > 2)
_ Flaty) - K(F@), Fa+y)
Fx) = K(F(z), F(x))

for x,y > 0. Hence, from (2.1), we have

where Fp(t) = 2F(t) — K(F(t), F(t)) and fr(t) = 2(1 — O, K(E(t), F(t)))f(t). Therefore
Fry(0) = 2P(6) = K(P(0). Fo) + 2 [ 70— Sl - ok (Plo), P s
=27 () - KRG, P +2 | OGO oo )i = ()
with ) b K (o)
qrr(u) = 2u — K(u,u) + 2/ U—K—(UU)< — 01 K(v,v))dv. (3.9)

Note that we need K (and to solué this integral) to get an explicit expression for qrr. Of course,
if K(u,v) = uv, then we obtainitherexpyéssion obtained above for the IID case.
Finally, in the general case; proceeding as in (2.7), we get Fr,,(t) = Fr#G(t), where

Go(y) = p1(2) Pr( Xy —2% y| X1 < 2, Xy > 2) + po(2) Pr(X) — 2 > y| Xy < 2, X1 > 1)
B (m)Pr(Xl < Xo >z +vy) N (x)Pr(XQ <z, X;>z+y)
—h Pr(X, <z, Xo > a:) P2 Pr(X; <z, X; > x)
Pr(Xo; >z +y) —Pr(Xy > 2, Xo > 2+ y)
Pr(Xs > ) — Pr(X; >z, Xy > )
Pr(X; >z +4vy) —Pr(X; >z +y, Xy > 1)
02 ()
PI’(Xl >x) — PI‘(X1 >, Xy > IIJ)
Fy(x +y) — K(Fi(z), Fy(z +y)) Fi(z +y) — K(Fi(z +y), F>(x))
. ) pala)
Fy(z) = K(Fi(z), Fy(x)) Fi(z) = K(Fi(z), Fy(x))
pi(z) == Pr(X; < Xo|T = x) and po(z) := Pr(Xe < X4|T = x) = 1 — py(x) for x,y > 0. To
compute py(x), we need the joint reliability of (X1, Xa.) given by

= p1 ()

=pi(z)

, (3.10)

ﬂ(l’,y) = Pr(Xl > x7X2:2 > y)
= PI‘(Xl >z, X, > y) +PI‘(X1 >z, Xo > y) — PI‘(Xl >z, X1 >y, Xo > y)
Fi(y) + K(Fy(2), F(y)) — K(Fi(y), F2(y))

12



for all x < y. Hence, its joint density is h(x,y) = f1(z)f2(y)O12K (Fi(z), Fa(y)) for all x <y (0
otherwise) and the conditional density function of (X;|Xoe =vy) is

fl(x)f2(y>al,2K(Fl(x>v Fz(?J))
fr(y)

hip(zly) =
for 0 < x <wy. Therefore

)
pi(y) = Pr(Xy < Xo|T =y) = Pr(X) < Xoo|T =y) = / hip(z|y)de
0

Y A@) fay) 012K (Fi(x), Fa(y)) oo P2) — fa(y) 9K (Fi(y), Fa(y))
_/0 fr(y) = fr(y) (311)
when lim,_,1- 02K (u, Fy(y)) = 1 (see [40]). Analogously, we get
po(y) = Pr(Xs < X,|T = ) = LW = fl(y)?;ggﬁl (s F2(y)) (3.12)
Hence, from (2.1), (3.10), (3.11) and (3.12), we have
= () + Fa(t) — K(Fi(t)Fa(H)
+ [ 1= (P N = O oy
0= 0 B 5 o e

In the exchangeable case, weshave Pr(X; < Xo|T =y) = Pr(Xy < X4|T =y) = 1/2 and (3.9).

The preceding examplé shows that it is not easy to get an expression for the reliability in the
general case. So, we are going to try to solve the case of exchangeable components. In this case,
we know that the system’s reliability can be written as

Fr(t) =) siFin(t), (3.13)
i=1
where s.= (81, .., s,) is the signature of the system and s; = Pr(T = X;,,,) fori =1,...,n. We

can use ‘this'representation to obtain the following result.

Theorem 3.5. Let T' be the lifetime of a coherent system with components having an absolutely
continuous exchangeable joint reliability. Then the reliability function of Tt can be written as

FTII (t) = QH<F(75>) (3'14)

for allt > 0 and for a distortion function q;; which does not depend on F.

13



Proof. Let us consider the events F, = {X,1) < -+ < Xym} for o in the set P, of all the
permutations of order n. If the components are exchangeable, then Pr(E,) = 1/n!. Let us divide
the set P, in the disjoint subsets A, ..., Ay where A; contains all the permutations which lead
to T'= X;,., and to a fixed repaired system T;. Let Hj = Ugea, Ey. Then p; := Pr(H;) = |Aj]/n!,
where |A; | is the cardinal of the set A; for j =1,. k Hence

k
Fr,, (t) = Pr(Tyy > t) = > p; Pr(Ty > t|Hj). (3.15)

J=1

Note that under H;, we know which component failure causes the system-failure. “Moreover
(T'H;) =sr (Xi;m|Hj). Also note that X ., =sr (Xi;:m|H;) due to the assumption about ex-
changeable components. Proceeding as in Section 2, we get Pr(Ty; > t|Hj)= Fiyn#G,(t), where

Gja(y) = Pr(Tj — 2 > y| X = @, Hj) (3.16)

and 7j is the system obtained after a minimal repair of the component.broken in the i;th position
and at a given time x under H;. Note that the structure of this'system is completely determined
by Hj. This event also determines which components are syvorking“and which have failed at time
x. Hence, from (2.1),

FTH Zp] |: i5: n /0 C_TY]',QC(t - I)fz]n(x)dx (317)

holds. Note that the semi-coherent system 7; has,n'— i; + 1 working components (some of them
can be irrelevant for the system). These components are exchangeable and the corresponding joint
reliability function H (y1, ..., Yn—i,+1)4ds.giveniby

Pr(Xi, —o>y,..., Xp =8>y | X1 <z, . Xy, 1 <20, X;, >0,..., X, >1).
Proceeding as in case I, this jointixeliability can be written as
FI(Z/h S ayn—ij+1> = Q:c(px(yl)> SRR Fx(yn—ij+1>) (3.18)
for a distortion funétionQ, which depends on F(x), where F,(y) = F(z + y)/F(z). Let

i, ... H fh% +1: Pethe reliability functions of the order statistics obtained from these exchange-
able components and let (s7, ... ,sﬁ_ijﬂ) be the signature (of order n —i; 4+ 1) of 7. Then

n— z]+l

FTII ij Z]n 56/ Hgn fZ]Tl< ) ]

It is wellknown (see, e.g., [33]) that Fj,.,(t) can be written as Fj ., (t) = i, (F(t)) here ijn
n

depends on K. Analogously, from (3.18), we know that HJ, can be written as 7, (y) = .., (F(z+
y); F'(x)) where ¢, depends on K. Therefore

FTII Zp]

and by doing the change v = F(z) we get (3.14). ]

iy (F (1 i: 32/ T (F(t); F(2))T, 0 (F(2 ))f(w)d:v] (3.19)
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The coefficients in the signature used in (3.13) can also be computed as sy = |By|/n!, where
By, is the subset of P, with the permutations which lead to T = Xj.,, that is, By = Uj;,=14;.
Hence (3.19) can also be written as

n—ij+1

Froo(t) = Fr(t +sz > o / T (F(1): F(2))d, o (F(2)) f(2)dr (3.20)

where Fr(t) = gr(F(t)). These general expressions can be simplified in the IID casé as follows.

Theorem 3.6. Let T' be the lifetime of a coherent system with IID componentsfaving @ common
absolutely continuous reliability F'. Then the reliability function of Trr can be expressed as Fr, (t) =
qri(F(t)) for allt > 0, where

qrr(u Z ciu' + Z dyu' Inu (3.21)

for some coefficients c¢;,d;, i = 1,...,n which only depend on thesstructure of the system.
Proof. Let o/ = (a{7 e 7azhij +1) be the minimal signature(the system 7 considered in the proof
of the preceding theorem for j = 1,..., k. In the IID casé, this semi-coherent system has n—1; +1

IID components with the common reliability F,(y).==f{xs+ y)/F(x). Hence the reliability in

(3.16) is
n—ij+1 = 14
_ N+ y)
Gia(y) = D \al (W) :
=1
Therefore, from (3.17) and (3.20), we have

k t e
Py (0= B9 Do) 3l [ Ze 0 (Pl fayis

j=1 =1
where Fj.,,(t) = @i, (F(t)) fotha polynomial

bl 55 e ()

r=n—i+1

(see, e.g., [21, pl 46]). S6

Funlf) = FOT(FO) = 1) 3 coen (M) (2,

r=n—i+1 r n—t
Therefore, if (ay, ..., a,) is the minimal signature of 7', then
"t & n\ [(r—1 !
R0 =F0+ Y > af S oy (D)1 [ e

j=1 (=1 r=n—i;+1 r n U 0

nat - n\ [r—1

] r—n+i;—1 -
LR WD SR U ID i e el (9 (g TIC
r=n—ij;

where ¢4(t) = (1 — F*(t))/s if s > 0 and ¢4(t) = —In F(¢) if s = 0. This concludes the proof. [J



Example 4.4 shows how to apply the preceding theorem. In [32] we provide an R-script to
compute the coefficients ¢; and d; for a given coherent system with IID components.

In general it is not easy to compute the reliability function associated to the case II of a coherent
system with dependent components. However, the reliability function of k-out-of-n systems can
be obtained by assuming exchangeable components. Thus, if T = X, for a fixed i € {2,...,n}
and the components are exchangeable, then Fr,,(t) = Fi.,#G(t), where

G.(y)=Pr(X;>z+y,. ... Xp>o+ylXi<z,... . X1 <2, X;>2,..., X, ®0)
_Pr(XlSmu"inflSani>$+y7"'7Xn>x+y> ( (Z‘) (x_i_y))
o PI‘(XlSH?,...,XZ‘,lSHT,XZ'>$,...,Xn>Z') (F( ) ()) ’

with a function H; such that Pr(X; < mz,...,X; 1 <z, X; > t,..., X, > t) =H,;(F(z), F(t)) for
all 0 <z <t. Note that H; only depends on K. Therefore, from (2.1), ave have

Pr (TH >t / H ))>) fzn( ) (322)

If the components are IID, then the following result prov1de an explicit expression for (3.22).

Proposition 3.7. Given an i-out-of-n system with IID components and lifetime T' = X, for a
fized i € {2,...,n}, then Fr, (t) = qi(F(t)), where

= n n—itl |, n—itl - Tenti—1 k n\ (k-1
= 1 8
i) (n—i+1)u o 2 sy k—n—l—i—l(k)(n—i

k=n—i+2
kn-i—z n—i41 ‘C k-1 Y AL n—i+l]
+k;+2 k—nrimal\k ) \n—i)" )¢ L

Proof. 1f the components are 11D, thien
Gx(:u) :Pr(XZ >m+y77Xn>x+y|X1 S‘/L’J"'JXifl Sanl >.I',,Xn >$>

Fn—i—H
=Pr(X; >z #yX; >%)...Pr(X, > 2 +y|X, >z) = (e +y)

Fn—i-i—l(x)
Moreover, as Fi.,(t) = 305, i (—DF L) (E2D) F(2) (see, e.g., [21, p. 46]), we have
_ Fn i+1 (t)
(T > 1) = )y | Frer D (o)
= Fpn(t) - FH0) z”: (—1)kntimlg my (kL /t FFmti=2(0) f(2)d
k=n—i+1
= - : k—1\F" ) — FE(t) (Y 2 _
L I -1 k—n+i—1 n s Fn_H_l InF
Lo+ 3 () () SR () e m)
k=n—i+2
n _ - , n—i+1 n\ (k—1\ =
— Fn—l-‘rl _ -1 k—n4i—1__ "0 T~ Fk
(n—i+1) ®) Z (=1) k:—n—i—i—l(k)(n—i) ®)
k=n—i+2
_ - 4 k n\ ([k—1 n\ - . _
n—i+1 _1\k—n+i—1 s n—i+1
vy $ ok () )
k=n—i+2
which concludes the proof. ]

16



3.3. Other cases

The purpose of this section is to show that we can study other cases following the procedures
used above in cases I and II. For example, if we know that the system does not fail with the first
component failure, we can consider to repair the system at the second component failure with a
minimal repair of the broken component at this point. Then, if the components are exchangeable,
the reliability function of the repaired system is Fio)(t) = Fo., #G(t), where

1 n
:_ZPT(Ti_$>y|Xi§$,Xj > ¢ for all j # 1)
n 4

and T; is the lifetime of the semi-coherent system obtained from 7" when weknow that the ith
component is broken. A similar expression can be obtained if the systein is repaired at the jth
failure for j = 3,4,....

In all the options studied above, we just repair one component. We,can of course consider
k replacements. For example, if £ = 2 and, in case III, we repair-compenents ¢ and j (for fixed
i < j), then the reliability of the repaired system is

Fopn(t) = QF(t), ..., Fia(t), au(Fi(1), Fra(t), . . Fyaa () )1 (F5(1)), Fja (t), -, Fu(t)),

III

where @ is given in (2.3). If the components are IDy then this representation can be reduced

t0 Fyen (£) = i1 (F(1)), where {7 (u) = Q(u, . Sty @ 00), u, . w, @1 (w),u, .. w) and Gy (u) s
placed at the ith and jth positions. Analogously, if{we repair the ith component twice, then

Fpoo®) = QUR (1), .. Foelt) G (1)), o (0), . ()

where @, is given in (2.3). If the comiponents are ID, we get F. e z)( )= cj%})(F(t)), where

ayiu)= Qu, .. u, Go(u),u, .. w)

and @, is placed at the itheposition. Other options with fixed repairs were studied in [2].
We could consider, other options with & = 2 minimal repairs. For example, we can repair the
two first broken components: In this case, if Xi,..., X,, are IID, the resulting reliability is

F](Z)(t) = (Fln#éln)#é(t>a
where Fl.,(t) = F™(t) is the reliability function of X1., = min(X1,...,X,),

- F(z +vy)
Gin)z(y) = F'y) = —=
is the reliability function of Y3, = min(Y7,...,Y}) (a series system with n IID components and a

common reliability F,(y) = F(z +y)/F(x)) and G,(z) = gr(F,(2)) is the reliability of a system
with the same structure as 7', having n IID components with reliability F,, when Y1, = y. The
reliability H = F.,#G1., can be computed from (2.1) as

H(t) = F"(t) —i—/o §:<(i>)npn_l($)f(a:)dx = F"(t) —nE™(t) In F(t).
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Its density is h(t) = —n2F""1(t) f(t)In F(t). Then, by using (2.1) again, the system’s reliability is

FP(t) / G, (t —y)h(y)dy

= H(t)—n /O qr <@> F"=Hy) f(y) In F(y)dy

F(y)
= () Y el 0) [ ) )
i=1 0
where (ay,...,a,) is the minimal signature of the system 7. Then
FP(6) = B0~ na,F0) [ FH0) 0 F) f(0)dy — Y- () Ry n Plo) ()
0 =1 0

= H(t) + 0?2 P (1) F (1) ~ nQZa Fit / Fri=1 () dne () £ (4) .

Finally, by doing the change x = —In F(y), in I;(t) = f FSs L) In F(y) f(y)dy, we get

~nF®) . Fri(yn F(t)  1— Fri(t
Il(t) _/ xe—(n—z)xdx — ( ) 1 ( ) + ( )
0

" ; (n—1)?
Therefore
) n—1 " n—1 i 7n
~(2) = n n-an n F ()th F(t) r <)
PO = a(F(0) + FH P ORGP0t Y 0 0t S e

=1

Note that the reliability can be wfitten as F’ 1(2) (t) = cj?)(F (t)) for a distortion function q( ). For
example, for T' = X, we Obtain q( )( ) =u" —nu"Inu+ (n?/2)u™(Inw)?. For this system, if we
repair the first k broken/componénts, then we get ;" (u) = S i (— Inw)i /il

Other similar replacement policies can be studied in a similar way. However, in the follow-
ing section we restrict’ ourselves to the cases with & = 1 to develop fair comparisons, that is
comparisons of replacemént policies with the same number of repairs (i.e. with the same cost).

4. Comparison, results

Thewrepresentations obtained in the preceding section can be used jointly with the ordering
results for distorted distributions given in [33, 35| to compare the different replacement policies.
For sake of completeness we include some of these ordering results in the following theorem. We
shall consider the following (well known) stochastic orders.

The main order is the usual stochastic order, denoted by X <gr Y, that compares the respec-
tive reliability functions Fx(t) < Fy(t) for any time ¢. This ordering implies that E(X) < E(Y)
(if these expectations exist). An alternative (stronger) order is the hazard rate order, denoted by
X <pr Y, that compares the respective residual lifetimes (X — t|X > t) <gp (Y — t|Y > t) for
any time ¢. While the ST order compares new units, the HR order compares (in the ST order)
used units with the same age t. Analogously, the mean residual life order, denoted by X <u/rr Y,
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compares the respective mean (expected) residual lifetimes E(X —t|X > t) < E(Y —t|Y > )
for any time t. The HR order implies the MRL order. An order similar to the HR order is
the reversed hazard rate order, denoted by X <grpyr Y, that compares the inactivity times
(t—X|X <t) >sr (t =Y]|Y < t) for any time ¢. Finally, the likelihood ratio order, denoted
by X <pr Y, holds if the ratio of their densities fy/fx is increasing in the union of their sup-
ports. This order implies all the preceding orders. For basic properties and applications of these
orders we refer the reader to [12, 43].

Theorem 4.1. Let Xy and X, be two random variables with distribution functions 'k, = q1(F)
and F,, = q(F) obtained as distorted distributions from the same distribution function F and
from the distortion functions ¢, and g, respectively. Let g; and G, be the respective dual distortion
functions. Then:

(i) X1 <sr Xo for all F' <= qi(u) < @2(u) [or qi(u) > ga(u)] for albu/&0;1).

(i) X1 <pr Xa for all F' <= ¢2(u)/q:(u) is decreasing in (0, 1).

(111) X1 <gur X2 for all F <> qa(u)/q:(u) is increasing in (0,1).

(v) X1 <pr Xy for all F <= @,(u)/q;(u) is decreasing in (0,1

(v) X1 <mrp Xo for all F <= ga(u)/q1(u) is bathtub in (0,1) and E(X;) < E(X>).

We apply these ordering results in the following theoréms and.éxamples comparing the different
replacement policies. In the first main result we provesthatyfor any system with IID components,
the replacement policy of case II is always ST-better than that of case I.

Theorem 4.2. Let T be the lifetime_of a coherent’ system with IID components having a com-
mon absolutely continuous reliability F'. Let Th and Ty be the system lifetimes obtained with the
replacement policies of cases I and II, respectively. Then Ty <gr Ti; for all F.

Proof. If we assume that the componeént lifetimes X, ..., X, are IID, then the system’s reliability
can be written as Fr(t) = q(F(t)) for a polynomial g(u). From Theorems 3.3 and 3.6, we also

know that the reliability functions’ef, T; and T;; can be written as Pr(7; > t) = ¢;(F(t)) and

Pr(Tyr > t) = qr(F(t)). Soave just.need to prove that gr(u) < grr(u) for all w € [0, 1].
From the proof of Thedremi3.3, we know that 77 = X1., + Y, where X1.,, = min(X1,..., X,,),

Pr(Y!' — x> y| Xy, = ) = Pr(T* > y)

and T™ is the lifetime of a system with the same structure as T' and having [ID components with
the common reliability function F,(y) = F(z +y)/F(x) for y > 0. Hence

Pr(Y! —a > y|Xy, = 2) = Pr(T" > y) = §(Fa(y))-
On the'other hand, from the proof of Theorem 3.6, we know that T;; = T + Y, where
Pr(Y!" — 2 > y|T = z) = Pr(T* > y)

and 7™ is a mixture of different semi-coherent systems with n (or less) IID components with the
common reliability function F.

Now let assume that the IID components are exponential with mean 1, that is, F'(t) = e~ for
t > 0. This model has the lack of memory property and so F,(y) = F(y) for all y > 0. Hence

Pr(Y! — 2 > y| X1, = 2) = @(F(y)) = Pr(T > y)
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for all z,y > 0, that is, (Y! — 2| X}, = ) =sr T So X1, and Y/ are independent. Analogously,
T** is a mixture of different semi-coherent systems with n (or less) components and having 11D
components with the common reliability function F. Hence T and Y'! are independent. More-
over, as all these semi-coherent systems are ST-better than X, (because they have n or less
components), then Xi., <gr T**. Finally, from Theorem 1.A.3, b, in [43, p. 6], we get

T =s7 Xom + T <gpr T+ T =g7 Ty

for F(t) = e~t, where T* =g7 T. Hence q;(e™) < qrs(e™) for all t > 0. So ¢(u)< gz (u) for all
€ [0,1] and the proof is completed. O

In the second theorem we prove that this property can be extended to the hazeard rate order
for the systems which preserve the IFR (increasing failure rate) aging property. A similar result
can be stated for the likelihood ratio order from Theorem 1.C.9 in [43;'p. 46] and the preservation
results for the ILR class of logconcave densities given in Proposition 2.2 of {34].

Theorem 4.3. Let T be the lifetime of a coherent system with D éemponents having a common
absolutely continuous reliability F. Let Ty and Ty; be the system~lifetimes obtained with the re-
placement policies of cases I and II, respectively. Let q.bethe dual distortion function of T. If
a(u) = ugq (u)/q(u) is decreasing in (0,1), then Ty <gg Trpfor all F.

Proof. As in the preceding theorem, we have Pr(Tp > t)'= ¢;(F(t)) and Pr(Ty; > t) = q;(F(t)).
So, from Theorem 4.1, (ii), we need to prove that ¢y;/q;"is decreasing in (0,1). With the notation
used in the proof of the preceding theorem, if\we assume that F(t) = e~ for t > 0 (exponential
components), we have T; =gr Xy, + T"%and Ty =g T + T**, where T* =gy T and T*" is a
mixture of semi-coherent systems of order n."Then its reliability can be written as

Pr(T™50) =7 Fra(t) + -+ + 57" Frun(t)

for all ¢ > 0. The vector (s7%%.sk*) is called the signature (of order n) of T** (see, e.g., [39]).
The signature of X, is (140.% ) Hence as (1,0,...,0) <pg (s7%,...,s5), from Theorem 4.4
in [39], we get Xy, <pgxg T+ for F (t) = . Moreover, we know that 7™ is independent of X;.,
and T"* is independent of/I". Then we can apply Lemma 1.B.3 in [43, p. 18] obtaining

Tr =57 Xim + T <pgr T +T" =g7 Ty

for F(t) = ¢"*whenever T is IFR. Now we note that, from the results given in [34, p. 447], if the
function o/ defined above is decreasing, then the system preserves the IFR property. So, as the
exponential distribution is IFR, then T is also IFR and T; <gg T;; holds for F(t) = e, that is,

Pr(Ty > 1) _ qu({?(ﬂ) _ qu(e™)
Pr(T; >t)  @(F@) @)

is increasing for ¢ > 0. Therefore, g;;(u)/qr(u) is decreasing in (0, 1) and the proof is completed.
[

The following example shows that, sometimes, to repair a fixed component (case I1I) is better
than to repair the critical component of the system (case II).
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g A ; Al T ] T;
1 (1,ig,i3) X1 < XZ‘2 < Xig 2 T = Xig 2 min(X2,X3)
2 (il,l,ig) Xi1 <X1 <de 2 T:X1 2 X1
3 (il,ig,l) Xil <X2'2 < Xj 2 T=2X; 3 X

Table 1: Repairing options for the system in Example 4.4.

Example 4.4. Let us consider a coherent system with three IID components and lifetime T =
max (X7, min(Xy, X3_>). Then the distortion functions of the system are Q(u1, ug{uz) = ui+usuz—
upusuz and q(u) = Q(u,u, u) = u+u? —u®. Furthermore, the dual distortionfunetions associated
to the lifetimes obtained after the minimal repair of the components 1, 2 and 3sare given by
_(1 =/
Qrrr(u) = Q@ () uyu) = u+ u® —u’ — (u — uIny
and
(2 _(3 o
4 () = gy (w) = Qu. @i (w),u) = ut u® — ud — (=" Inu,
On the other hand, the distortion function for case I can be obtained from (3.8) as

3 7
qr(u) = U + 3u® — §u3 T 3un.

Finally, we compute qrr from (3.21). The signature of the system is (0,2/3,1/3). It can
be computed from the permutations giwen in Table TwyThis table also contains the numbers i,
of component failures which cause the systeni failure and the expressions of the repaired system
lifetimes T} for each j =1,2,3. Hence, from (3.15), we get

3
1
Pr(Tyr =) = 3 > Pr(Ty; > tH))
j=1

for the events H; given in Tablenl/ The first probability can be computed as
Pr(L;; >/t|Hy) = Fy s#Gi(t) = Fas#Gi(2),
where if Xo.3 = x, then
Gi1.(y) = Pr(Ty 5 2% y| Xo3 = 2, H) = Pr(min(Xo, X3) —2 > y|X; <2 < Xy < X3) =

since the compoments are 11D. Therefore, from (2.1), we have

Pr(Typ > t|Hy) = Fas(t) + /o 1];—((3

where Fys(t) = 3F2(t) — 2F3(t) and fo3(t) = 6(F(t) — F? (t))f(t) Hence

f2:3(x)dx7

PI'(T[[ > t’Hl) F23 —|—6F2 / )f(x)dx

= Fy3(t) + 6F°(t) /( Ol )f(x)d:v

= Fo3(t) + 6E7(t) (—log F(t) — F(t))
= —3F2( t) +4F3(t) — 6F2(t) log F(t).
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Figure 1: Plots of the dual distortion functions for the cases: I, II, III ((1) and (2)) and(for the system given in
Example 4.4 (left). Ratio cjpl)l/(jn in the interval (0,1) (right).

A straightforward (analogous) calculation for Hy and Hy leads us to

Pr(Ty; > t|Hy) = 3F(t) — 3F%(t) +F*(t)

and
3 = _ T _ _
Pr(Ty; > t|Hs) = —EF(t) +3F2(t) = 5F?’(t) — 3F(t)log F(t).
Hence
1 1 1
PY(T[[ > t) = g PI‘(T[] > t‘Hl) + g PF(T][ > t’HQ) + g PY(T[[ > t|H3>
1_ _ - _ _ _ _
= SF(H) ~ FX) + ng(t) — F(t)log F(t) — 2F2(t)log F(#)
= qrr(F(t));

where qrr(u) = u/2 —u? + (3/2)u¥’ — wlogu — 2u®logu for u € (0,1).

In Figure 1 (left) we compare the distortion functions of the three cases. From these plots we
conclude that T <gr Tf(?} <sr Tr<sr Ti1 <s71 TI(B In order to clarify the last inequality, we plot
the ratio cjg)l/cjn in the interval (0,1) (see Figure 1, right). This quotient is always above the line

y = 1. However it"is not)decreasing and therefore Tty and TI(}} are not HR-ordered. Hence, we
can state that against the expected, the replacement policy of case II is not always the best strategy
in the case of ILD components.

The following 'example shows that Theorem 4.2 is not true when the components are dependent.

Example4:5. Let us consider a parallel system with 2 exchangeable components having a common
absolutely continuous reliability function F. Let us assume that both components are dependent
and have the following Clayton-Oakes survival copula

K(u,v) = S —
U+v—uv
Taking into account that both components are ID and have survival copula K, we get
2 £(1
(2 F(t)*

Fro(t) = K(F(t), F(t)) = 25—%) and fia(t) =
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Figure 2: Plots of the dual distortion functions for the system in Example 4.5 for cases I, II, III and without repairs
(left) and plots of the ratios (jglI)l/tjU, dr/qrr and (jl/qgll)l in the interval (0.3,1) (right).

where f represents the common density function of both components. Henee, the reliability function
associated to Tt can be obtained from (3.4) as follows
t), B())

Fr,(t) = Fia(t) + Fra(t) In(Fra(t)) + 2 /t =

( xT)axr
F1:2($) f1:2( )d

F(t) _ _ _

=——(1-3InF(t)—In(2—- Ft))) = q(F(t

S (1= 3P0~ n(z - Q)Y G F(0),

where §r(u) = (u — 3ulnu —uln(2 — u)) /(2 — u) represents the dual distortion associated to T;.
On the other hand, we can obtain immediatelysthe expression for the dual distortion associated

to Tyr just by replacing K (u,v) in (3.9) as follows

grr(u) =2u — K(u,u) + 2/ %(1 — O K (v,v))dv
w3 —2u)” u(3 - u) u? (5 — 3u)
-5 + - ln(2—u)+mlnu.

Finally, we obtain the dwal distortion functions for the case III. Firstly, we note that both
distortions must be the saineybecause we are considering exchangeable components. Moreover,
Q(u,v) = u+ v — K(u,v). Hence, the dual distortion function of TI(B can be obtained as follows

F () = QU PGP ) = a(Pl0) + P(0) = e B — gl (1),

where
(1) u—ulnu

= 2u —ul — .
Qrrp(u) = 2u —ulnw = g

We compare qr, qrr and (jﬁ)l in Figure 2 (left) along with the dual distortion function associated
to the system without repairs. We observe that T <gp Tir <7 Tr and T <gsr TI(B In Figure
2 (right) we represent the quotients q’g)l/q’n, 4r/qir and qf/q’g)l. The first and second ratios are
above the line y = 1 and they are decreasing, therefore T <pygr TIB and Tr; <ggr T;. However,
cjf/cjg)f crosses the line y =1 at the value uy = 0.5862 and thereby T and TI(}} are not comparable
in the ST order. As the ratio is bathtub, we have TI(}} <mrr Tr whenever E(TI(B) < E(Ty).

Proceeding as in the examples above, we can obtain the stochastic comparisons among the
three policies considered in this paper for any coherent system. In particular, Table 2 provides the
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best replacement policy in terms of the usual stochastic order for all the coherent systems with
1-4 IID components. The coefficients ¢; and d;, associated to the distortion function g;; are given
for each system as well. As one would expect in the case of IID components, the policy II induces
a more reliable system in most of cases (see Theorem 4.2). However, there exist some systems
where repairing a fix component is better than repairing the component which causes the failure
of the system. In particular, the systems 7 and 24 in Table 2 satisfy that the system’s reliability
is improved in a higher level if we apply the policy III rather than the policies I or II. For both
systems the first component is the most important component and its functioning implies the
system functioning. Furthermore, the policies II and III are better than policy Ifor the systems
25 and 26 and both policies are not ordered. In this case, the optimal policydepends on if the
decision maker is interested in improving the reliability of the system in an advanced or early age.

5. Conclusions

In the present paper we give a procedure to determine the xeliability functions of coherent
systems under a minimal repair maintenance and three different.replacement policies. The com-
ponents can be dependent or independent. In the first replacement.policy, the first broken compo-
nent is repaired. In the second case, a minimal repair is applied to the component which produces
the failure of the system. In the third one, a fixed component'is repaired in case of failure. Note
that in the two first cases we do not know a priori which component will be repaired. In this
context, we have proved that if the components are ID,ythen the reliability function associated
to the lifetime of the repaired system in cased can/be’expressed as a distortion of the common
component reliability function (see Theorem 3.2)y, This distortion depends on the structure of the
system and on the underlying survival copulamWe provide an explicit expression of this distortion
in Theorem 3.3 for IID components. Analogously, we have proved that the reliability function for
the case II can also be expressed using a distortion function when the components are exchange-
able. This distortion is simplified“for the ITD case in Theorem 3.6. The new technique developed
here can also be used to study-other replacement policies. As an example, we provide an explicit
expression for the dual distortion functions associated to the case of repairing the two first broken
components in a general system,or the k first broken components in a series system.

These representatiomresults are used to compare the three replacement policies using the main
stochastic orders. In this sense, our first comparison result shows that, for any coherent system
with IID componentsythe case II is always a better strategy of replacement than the case I in the
stochastic order (see Theorem 4.2). We prove with an example that this property is not true when
the components are dependent. Furthermore, the previous result holds for the hazard rate order
when we consider systems which preserve the IFR property (see Theorem 4.3). Unfortunately,
the case I1THs:not ST-ordered with neither case I nor case II, even assuming IID components. We
provide,both-counterexamples as well as some interesting examples including the comparisons of
all the coherent systems with 1-4 IID components (see Table 2).
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Table 2: Coefficients ¢; and d; associated to the dual distortion function Gy (see Theorem 3.6) for all the coherent
systems with 1-4 IID components and the best replacement policy in the stochastic order. Cases I, II and III (7)

are denoted by C7, Cr; and CI(Z})I, respectively.

N T = o(Xy, Xo, X3, Xy) c d Best ST-policy

1 X1 = X3 (1) (-1) C; =Cy =0%)

2 X1 = min(X), X») (0,1) (0,-2) Cr'= Cur

3 X0 = max(Xy, Xs) (0,1) (-2,0) Crr

4 X1.3 = min(Xy, Xo, X3) (0,0,1) (0,0,-3) Cr = Oy

5 min(X;, max(Xs, X3)) (0,0,1) (0,-4,1) Crr

6 Xs.3 (2-out-of-3:F) (0,-3,4) (0,6,0) Crr

7 max (X1, min(X,, X3)) (1/2,-1,3/2) (41,-2,0) c

8 X3:3 = max(Xl,Xg,Xg) (—3/2,3,-1/2) (-3,0,0) C[]

9 X4 = min(X1, Xa, X3, X3) (0,0,0,1) (0,0,0,-4) Cr =0

10 max(min(X;, Xs, X3), (0,0,0,1) (0,0,-6,2) Crr
min(Xy, X3, X4))

11 min(Xa., X4) (0,0,4374) (0,0,-9,2) Cur

12 min(X;, max(Xs, X3), max(Xo, X4)) (0, 1/2,-1,8/2) (0, -2, -3, 1) Crr

13 min(X,, max(Xa, X3, X4)) (0,-3)28%1/2)  (0-6,3,-1) Cur

14 Xou (2-out-of-4:F) (0,0,-8,9) (0,0,-12,0) Ch

15 max(min(X;, X3), min(X;, X3, Xy), (0,0,-4,5) (0,-2,-6,0) Crr
min(Xs, X3, X4))

16 max(min(Xy, X5), min(X3, X3)) (0,0,0,1) (0,-4,0,0) Crr

17 max(min( Xy, X5), min(Xg; X3), (0,-1,0,2) (0,-4,-2,0) Crr
min(XQ, Xg, 4))

18 max(min(Xy, X5), min( X, X3), (0,-2,4,-1) (0,-6,2,0) Crr

mil’l(Xg, X4))

19 max(min (X7, max(Xs, X3, X4)), (0,-3,4,0) (0,-6,0,0) Crr
min(XQ, Xg, X4)>

20 min(max(X1, X5 ), max(Xy, X3), (0,-5,8,-2) (0,-8,2,0) Crr
maX(XQ, X3, X4))

21 min(max(Xy; X5), max(X3, Xy)) (0,-4,8,-3) (0,-8,4,0) Crr

22 min(max (X7, X5), max(Xy, X3, Xy), (0,-8,12,-3) (0,-10,2,0) Crr
max(Xs, X3, Xy))

23 Xy (3-out-of-4:F) (0-12,16-3)  (0,-12,0,0) Cur

24 max (X1, min(Xs, X3, X4)) (2/3,0,-2,7/3) (-1,0,-3,0) ci)

25 max(Xy, min(X,, X3),min(Xy, X4))  (1/3-3,5-4/3)  (-1-4,1,0) Crr, CY)

26 max(Xa.3, X4) (5/6,-5,13/2,-4/3)  (-1,4,0,0) Cp, CW)

27 max (X1, Xz, min(Xs, X,)) (1/3,0,1,-1/3) (-2,0,0,0) Ch

28 Xs = max(X, Xo, Xg, X2) (-10/3,612,1/3)  (-4,0,0,0) Ch
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