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Highlights

• A new technique to compute the system reliability under minimal repair at the system level.

• A distributional (copula) approach to manage both systems with dependent and independent
components.

• Applications to relevant replacement policies.

• Applications to determine the best repair policy for specific systems.

• Illustrative examples.
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Minimal repair of failed components in coherent systems

Jorge Navarroa,1, Antonio Arriazab and Alfonso Suárez-Llorensb
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bUniversidad de Cádiz, Cádiz, Spain.

Abstract

The minimal repair replacement is a reasonable assumption in many practical systems. Under this
assumption a failed component is replaced by another one whose reliability is the same as that of
the component just before the failure, i.e., a used component with the same age. In this paper
we study the minimal repair in coherent systems. We consider both the cases of independent and
dependent components. Three replacement policies are studied. In the first one, the first failed
component in the system is minimally repaired while, in the second one, we repair the component
which causes the system failure. A new technique based on the relevation transform is used to
compute the reliability of the systems obtained under these replacement policies. In the third
case, we consider the replacement policy which assigns the minimal repair to a fixed component
in the system. We compare these three options under different stochastic criteria and for different
system structures. In particular, we provide the optimal strategy for all the coherent systems with
1-4 independent and identically distributed components.

Keywords: Coherent systems, minimal repair, distorted distributions, copula, stochastic orders.
2000 MSC: 62K10, 60E15, 90B25.

1. Introduction

Nowadays, people demand more and more reliable systems. Several techniques have been de-
veloped to model and improve the reliability of a system. The basic concepts used in Reliability
Theory were introduced in the classic book by Barlow and Proschan [12]. Recent developments
can be seen, for example, in [9, 30]. A good way to improve the reliability of a system is to consider
some redundancy or maintenance actions. These actions can be performed in different ways as, for
example, by planning some replacement strategies, minimal repairs, imperfect repairs, redundan-
cies, etc. On the one hand, it is addressed in literature the concept of active or hot redundancy,
where some additional components are included in the system by using parallel structures, see
[46, 50, 51, 52] and [14, 49] for systems having independent and dependent components, respec-
tively. On the other hand, it is addressed the concept of standby or cold redundancy, where a
component is replaced or repaired when it fails. Among the standby policies, many papers study
the case of perfect repairs when the broken unit is replaced by a new and identical unit, see, e.g.,
[26, 44, 47]. Nevertheless, there exist many options of replacement for a failed component. A nice
summary of these cases is described in Aven [6]. In this paper we focus on minimal repairs as
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a particular case of cold redundancy. Under this assumption a failed component is repaired to
be just as it was before its failure. This is equivalent to replace this unit by another one whose
reliability is the same as that of the component just before the failure, that is, it is replaced by a
used component with the same distribution and the same age. This concept allows us to describe
many repairs in real cases where it is not unrealistic to think that repairs basically bring the
system to the same condition it was just before the failure.

The basic minimal repair model was introduced in Barlow and Hunter [11]. To formalize this
idea, the basic model assumes that the repair time is negligible and the number of failures that
occur in the interval (0, t] follows a nonhomogeneous Poisson process (NHPP) with an intensity
function λ(t). Since then, many works have been published attempting to extend the minimal
repair concept. For example, Brown and Proschan [18] examined the case of imperfect repair
which uses a perfect repair with probability p and a minimal repair with probability 1− p. This
model was generalized by Block et al. [17] by considering that the probability of perfect repair
depends on the system’s state and by Shaked and Shanthikumar [42] for the multivariate case.
Phelps [41] obtained an optimal policy for the replacement problem with minimal repair, under
the assumption of an increasing failure rate. Stadje and Zuckerman [45] studied a maintenance
model in which the degree of repair is a decision variable determined by a controller and it varies
between minimal and perfect repairs. Beichelt [13] proposed a new common framework, based on
a general failure model, to include different replacement policies under minimal repair. Finkelstein
[24] generalized the notion of minimal repair to the case when the lifetime distribution function
is a continuous or a discrete mixture of distributions, that is, a heterogeneous population. Aven
and Castro [7] and Zequeira and Berenguer [48] analysed an optimal strategy of maintenance from
two types of failures in the system and the associated repair costs. More recently, Balakrishnan
et al. [10] introduced minimal repair processes under a simple step-stress test in the context of
life-testing reliability experiments. Some authors split minimal repairs into two cases: physical
minimal repairs and statistical minimal repairs. The former is used when a component of the
system is repaired and the latter, also called black box minimal repair, when the system is repaired,
see Aven [6] and Aven and Jensen [8, 9] for further details and illustrative examples. As it is nicely
discussed in Aven [6], the need to be precise with the level of information leads to some author to
frame their works in the theory of point processes by taking into account the history of the system.
Some valuables contributions in this sense are given by Arjas and Norros [1], Aven [3, 4, 5], Aven
and Jensen [8, 9], Bergman [16], Gåsemyr and Natvig [25] and Natvig [28, 29].

In the literature there exist alternative approaches not based in processes as well. For example,
some stochastic comparisons of repairable coherent systems with independent components were
obtained in [15, 20, 23] and some preservation results and aging properties of repairable systems
under minimal repair were established in [19]. Recently, a new representation for the reliability
function of a coherent system with possibly dependent components was obtained by using copulas,
see, e.g., [27, 36] or expression (2.4) below. This expression is very useful since the distortion (or
aggregation) function Q̄ contains all the information about the structure of the system and the
dependency between the components (its survival copula). This representation was used in [2] to
compare different replacement policies under minimal repairs when we have a limited maximum
number k of repairs and they are assigned to fixed components in the system.

In this paper we use expression (2.4) as an alternative approach to model and compare the
lifetimes of the repaired systems. Our approach could be considered as a good alternative to
the classical approach based on processes and, in our opinion, satisfies some advantages. Firstly,
the representation of the system reliability function in terms of distortion functions leads to sim-
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plify the complex algebraic expressions derived from the computation of the system’s reliability.
Secondly, our results can be applied to systems with independent or dependent components. Fur-
thermore, this approach can be used to deal with systems having heterogeneous components.
Finally, the main results allow us to get distribution-free comparisons (i.e. comparisons that do
not depend on the distributions of the components) of the repaired systems. We study different
repair policies based on minimal repairs of the failed components in the system. We will focus on
comparing three different repair policies. The first policy, denoted by case I, consists in a minimal
repair of the component that fails first. The second one, denoted by case II, consists in a minimal
repair of the component that causes the system failure. The last one, denoted by case III, consists
in assigning a minimal repair to a fixed component in the system. This last case is the one studied
in [2] when k = 1. In all these cases we will consider only one repair and we will compare the
resulting systems under different stochastic criteria. Moreover, we show that the same technique
can be applied to study k replacements and other replacement policies. In particular, we prove
that the replacement policy of case II is better than that of case I under the assumption of inde-
pendent and identically distributed (IID) components. However, some examples prove that they
are not ordered with case III. We also apply this procedure to determine the best replacement
policy in terms of the usual stochastic order for all the systems with 1-4 IID components.

The rest of the paper is organized as follows. In Section 2 we introduce the notation and the
tools needed in the paper including the basic properties on the relevation transform and on coherent
systems. The main results are given in Section 3, where we give a procedure to determine the
reliability functions of the systems obtained with the replacement policies of the cases mentioned
above. The expressions obtained are based on distortion functions. These representations are used
in Section 4 to compare the different replacement policies. There we also provide some general
results for systems with IID components. The conclusions are placed in Section 5.

Throughout the paper, we say that a function g is increasing (resp. decreasing) if g(x) ≤ g(y)
(≥) for all x ≤ y. If G : [0, 1]n → [0, 1], then ∂iG represents the partial derivative of G with
respect to the ith variable.

2. Notation and preliminary results

2.1. Relevation transform
Let X and Y be two nonnegative independent random variables with absolutely continuous

reliability (survival) functions F̄ and Ḡ. Then the reliability function of X + Y (convolution) is

F̄ ∗ Ḡ(t) = Pr(X + Y > t) =

∫ ∞

t

f(x)dx+

∫ t

0

∫ ∞

t−x
g(y)f(x)dydx = F̄ (t) +

∫ t

0

Ḡ(t− x)f(x)dx,

where f and g are the respective probability density functions. Under a perfect repair in a cold
standby procedure, the unit X is replaced when failed by an independent unit Y having the same
distribution as X (when new). Then the resulting reliability is

F̄ ∗ F̄ (t) = F̄ (t) +

∫ t

0

F̄ (t− x)f(x)dx.

If X and Y are dependent, we obtain the expression included in the following definition.
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Definition 2.1. If X and Y are two nonnegative dependent random variables with reliability func-
tions F̄ and Ḡ, then the relevation transform (or conditional convolution) F̄#Ḡ is the reliability
of X + Y given by

F̄#Ḡ(t) = F̄ (t) +

∫ t

0

Ḡx(t− x)f(x)dx, (2.1)

where f is the probability density function of X and Ḡx is the reliability function of (Y |X = x).

Under a classic relevation transform, the unit X is replaced when it fails at a time x by a unit
having reliability Ḡ but with the same age as X, that is, by Yx = (Y − x|Y > x) with reliability

Ḡx(y) = Pr(Y − x > y|Y > x) =
Ḡ(x+ y)

Ḡ(x)

for y ≥ 0. Hence,

F̄#Ḡ(t) = Pr(X + YX > t) = F̄ (t) +

∫ t

0

Ḡ(t)

Ḡ(x)
f(x)dx. (2.2)

Under a minimal repair, the failed unit X is replaced by a unit having the same reliability as
X and with the same age (that is, it is repaired to be as it was just before its failure). Then, from
(2.2), the resulting reliability is

F̄#F̄ (t) = F̄ (t) +

∫ t

0

F̄ (t)

F̄ (x)
f(x)dx = F̄ (t)− F̄ (t) ln F̄ (t).

After k replacements, the resulting reliability is

F̄#kF̄ (t) = F̄ (t)
k∑

i=0

1

i!
[− ln F̄ (t)]i,

where F̄#0F̄ = F̄ , F̄#1F̄ = F̄#F̄ , F̄#2F̄ = (F̄#F̄ )#F̄ and so on. Note that (F̄#F̄ )#F̄ 6=
F̄#(F̄#F̄ ). We shall write it as F̄#kF̄ (t) = q̄k(F̄ (t)) with

q̄k(u) = u
k∑

i=0

1

i!
(− lnu)i. (2.3)

The distributions that can be written in this way are called distorted distributions (see, e.g.,
[33, 38] and the references therein). Thus, we say that a distribution function Fq is a distortion
of another distribution F if Fq(t) = q(F (t)) for a distortion function q : [0, 1]→ [0, 1] increasing,
continuous and such that q(0) = 0 and q(1) = 1. A similar representation holds for the respective
reliability functions, that is, F̄q(t) = q̄(F̄ (t)), where q̄(u) = 1− q(1− u) for u ∈ [0, 1]. It is also a
distortion function, that is, it is an increasing continuous function in [0, 1] such that q̄(0) = 0 and
q̄(1) = 1 (see, e.g., (2.3)). It is called the dual distortion function associated to q.
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2.2. Coherent systems
Let T be the lifetime of a coherent system with component lifetimes X1, . . . , Xn. In the general

case, the components can be dependent and this possible dependency will be represented by the
joint reliability of the components lifetimes which can be written as

F̄ (x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn) = K(F̄1(x1), . . . , F̄n(xn)),

whereK is the survival copula and F̄i is the reliability function of the ith component for i = 1, . . . , n
(see, e.g., [22, p. 33]). Note that the case of independent components is included here and that it is
represented by the product copula K = Π, where Π(u1, . . . , un) = u1 . . . un for u1, . . . , un ∈ [0, 1].
From now on we assume that F̄ is absolutely continuous with joint probability density function

f(x1, . . . , xn) = k(F̄1(x1), . . . , F̄n(xn))f1(x1) . . . fn(xn),

where fi is the probability density function of Xi and

k(u1, . . . , un) = ∂1 . . . ∂nK(u1, . . . , un) =
∂n

∂u1 . . . ∂un
K(u1, . . . , un)

is the probability density function associated to K.
Then it is well known (see, e.g., [27, 36]) that the system reliability can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)), (2.4)

where Q̄ is a distortion function, that is, a continuous increasing function Q̄ : [0, 1]n → [0, 1]
such that Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1 which depends on the system structure and on
K (the dependence structure). In particular, if the components are identically distributed (ID),
then (2.4) reduces to F̄T (t) = q̄(F̄ (t)) (see, e.g., [38]) where F̄ is the common reliability function
of the components and q̄(u) = Q̄(u, . . . , u) (i.e., T has a distorted distribution from the common
distribution of the components). If the components are just independent, then Q̄ is a multinomial
expression (see [12, p. 21]). Finally, if they are independent and identically distributed (IID), then
q̄(u) =

∑n
i=1 aiu

i, where (a1, . . . , an) is called the minimal signature of the system (see, e.g., [37]).
For example, if n = 2, the reliability function of the parallel system X2:2 = max(X1, X2) is

F̄2:2(t) = Pr({X1 > t} ∪ {X2 > t}) = F̄1(t) + F̄2(t)− Pr(X1 > t,X2 > t) = Q̄2:2(F̄1(t), F̄2(t)),

where Q̄2:2(u, v) = u+ v −K(u, v) and, in the IID case, q̄2:2(u) = Q̄2:2(u, u) = 2u− u2.

2.3. Reliability of systems using the relevation transform
Let us see how the relevation transform can also be used to compute the system’s reliability.

This new technique will be used in the following sections to compute the reliability of systems
with minimal repairs on failed components. As in the preceding section we consider the simple
case of a two-component parallel system.

Example 2.2. Let us consider X2:2 = max(X1, X2). If the component lifetimes X1, X2 are IID
with a common reliability F̄ , then

F̄2:2(t) = F̄1:2#F̄ (t) = F̄1:2(t) +

∫ t

0

F̄ (t)

F̄ (x)
f1:2(x)dx

5
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and, as F̄1:2(t) = F̄ 2(t) and f1:2(t) = 2F̄ (t)f(t), we have

F̄2:2(t) = F̄ 2(t) +

∫ t

0

F̄ (t)

F̄ (x)
2F̄ (x)f(x)dx = F̄ 2(t) + 2F̄ (t)F (t) = 2F̄ (t)− F̄ 2(t).

Let us assume now that both components can be dependent with a survival copula K. Then

F̄2:2(t) = Pr(X1 < X2) Pr(X2:2 > t|X1 < X2) + Pr(X2 < X1) Pr(X2:2 > t|X2 < X1)

= Pr(X1 < X2)F̄
(X1<X2)
1 #Ḡ1(t) + Pr(X2 < X1)F̄

(X2<X1)
2 #Ḡ2(t),

where F̄
(X1<X2)
1 (t) = Pr(X1 > t|X1 < X2), F̄

(X2<X1)
2 (t) = Pr(X2 > t|X2 < X1), Ḡ1,x(y) =

Pr(X2 − x > y|X1 = x,X2 > x) and Ḡ2,x(y) = Pr(X1 − x > y|X2 = x,X1 > x). Note that

p1 = Pr(X1 < X2) =

∫ ∞

0

∫ ∞

x

f1(x)f2(y)∂1,2K(F̄1(x), F̄2(y))dydx =

∫ ∞

0

f1(x)∂1K(F̄1(x), F̄2(x))dx

when limu→0+ ∂1K(F̄1(x), u) = 0 (see [40]). Analogously,

p2 = Pr(X2 < X1) = 1− p1 =

∫ ∞

0

f2(x)∂2K(F̄1(x), F̄2(x))dx

when limu→0+ ∂2K(u, F̄2(y)) = 0. The joint density of (X1, X2|X1 < X2) is h(x, y) = f(x, y)/p1

for all x ≤ y (0 otherwise). Then the marginal density of (X1|X1 < X2) is

h1(x) =
1

p1

∫ ∞

x

f(x, y)dy =
1

p1

∫ ∞

x

f1(x)f2(y)∂1,2K(F̄1(x), F̄2(y))dy =
1

p1

f1(x)∂1K(F̄1(x), F̄2(x)).

Hence, the conditional density of (X2|X1 = x,X2 > x) is

h2|1(y|x) =
h(x, y)

h1(x)
=
f2(y)∂1,2K(F̄1(x), F̄2(y))

∂1K(F̄1(x), F̄2(x))

and then the reliability function Ḡ1,x is given by

Ḡ1,x(y) =

∫ ∞

x+y

h2|1(z|x)dz =

∫ ∞

x+y

f2(z)∂1,2K(F̄1(x), F̄2(z))

∂1K(F̄1(x), F̄2(x))
dz =

∂1K(F̄1(x), F̄2(x+ y))

∂1K(F̄1(x), F̄2(x))
. (2.5)

In a similar way (by the symmetry), we get

Ḡ2,x(y) =
∂2K(F̄1(x+ y), F̄2(x))

∂2K(F̄1(x), F̄2(x))
. (2.6)

Therefore, from (2.1), we obtain

F̄
(X1<X2)
1 #Ḡ1(t) = F̄

(X1<X2)
1 (t) +

∫ t

0

Ḡ1,x(t− x)h1(x)dx

= F̄
(X1<X2)
1 (t) +

1

p1

∫ t

0

f1(x)∂1K(F̄1(x), F̄2(t))dx

= F̄
(X1<X2)
1 (t) +

1

p1

[
F̄2(t)−K(F̄1(t), F̄2(t))

]
.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Analogously, we have F̄ (X2<X1)
2 #Ḡ2(t) = F̄

(X2<X1)
2 (t) + 1

p2

[
F̄1(t)−K(F̄1(t), F̄2(t))

]
. Then

F̄2:2(t) = p1F̄
(X1<X2)
1 #Ḡ1(t) + p2F̄

(X2<X1)
2 #Ḡ2(t)

= p1F̄
(X1<X2)
1 (t) + p2F̄

(X2<X1)
2 (t) + F̄1(t) + F̄2(t)− 2K(F̄1(t), F̄2(t))

= p1 Pr(X1:2 > t|X1 < X2) + p2 Pr(X1:2 > t|X2 < X1) + F̄1(t) + F̄2(t)− 2K(F̄1(t), F̄2(t))

= Pr(X1:2 > t) + F̄1(t) + F̄2(t)− 2K(F̄1(t), F̄2(t))

= F̄1(t) + F̄2(t)−K(F̄1(t), F̄2(t)).

These expressions can be simplified if F is exchangeable (EXC), that is, K is permutation
invariant and the components are ID. In this case we have F̄2:2 = F̄1:2#Ḡ, where

Ḡx(y) = Pr(X2 − x > y|X1 = x,X2 > x) =
Pr(X2 > x+ y|X1 = x)

Pr(X2 > x|X1 = x)
.

Then, from (2.5), we get Ḡx(y) =
∂1K(F̄ (x), F̄ (x+ y))

∂1K(F̄ (x), F̄ (x))
. Hence, from (2.1), we have

F̄1:2#Ḡ(t) = F̄1:2(t) +

∫ t

0

Ḡx(t− x)f1:2(x)dx = F̄1:2(t) +

∫ t

0

∂1K(F̄ (x), F̄ (t))

∂1K(F̄ (x), F̄ (x))
f1:2(x)dx,

where F̄1:2(x) = K(F̄ (x), F̄ (x)) and f1:2(x) = 2f(x)∂1K(F̄ (x), F̄ (x)).Therefore,

F̄1:2#Ḡ(t) = F̄1:2(t) + 2

∫ t

0

∂1K(F̄ (x), F̄ (t))f(x)dx

= K(F̄ (t), F̄ (t))− 2K(F̄ (t), F̄ (t)) + 2K(1, F̄ (t))

= 2F̄ (t)−K(F̄ (t), F̄ (t)).

Another approach for the general case is

F̄2:2 = F̄1:2#Ḡ, (2.7)

where

Ḡx(y) = p1(x) Pr(X2 − x > y|X1 = x,X2 > x) + p2(x) Pr(X1 − x > y|X2 = x,X1 > x)

= p1(x)
Pr(X2 > x+ y|X1 = x)

Pr(X2 > x|X1 = x)
+ p2(x)

Pr(X1 > x+ y|X2 = x)

Pr(X1 > x|X2 = x)
,

p1(x) = Pr(X1 < X2|X1:2 = x) and p2(x) = Pr(X2 < X1|X1:2 = x).

Similar expressions can be obtained for other order statistics (k-out-of-n systems), that is,
for Xi:n, i = 1, . . . , n. For example, in the IID case, the reliability of X2:3 can be written as
F̄2:3 = F̄1:3#F̄1:2 or that of X3:3 as F̄3:3 = (F̄1:3#F̄1:2)#F̄ . Analogous (but more complicated)
expressions hold for general coherent systems.
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3. Main results

With the notation introduced in the preceding section, let us assume that we have a coherent
system with lifetime T based on n components with lifetimes X1, . . . , Xn. If we apply a single
minimal repair to the system then the main options are:

Case I: To repair the component which fails first.
Case II: To repair the component which leads to the system failure.
Case III: To repair a fixed component (e.g., to repair the ith component).
Other options will be considered later. If we can choose among these options (this is not always

the case in practice), we need to determine which one is the best one under some stochastic criteria.
To do this, we need to obtain the reliability of the resulting systems after these replacement policies.

From now on, we will denote by TI and TII the lifetimes associated to the resulting system
under the policy I and II, respectively. In the third option, if we repair the ith component, the
resulting system lifetime will be represented by T (i)

III . If the dependence structure does not change
after the replacement, then the reliability of T (i)

III is

F̄
T

(i)
III

(t) = Q̄(F̄1(t), . . . , F̄i−1(t), q̄1(F̄i(t)), F̄i+1(t), . . . , F̄n(t)),

where q̄1 is given in (2.3). If the components are ID, then F̄
T

(i)
III

(t) = q̄
(i)
III(F̄ (t)), where

q̄
(i)
III(u) = Q̄(u, . . . , u, q̄1(u), u, . . . , u) (3.1)

and q̄1 is placed at the ith position. Comparison results for these kinds of replacements were given
in [2]. Let us study the other two cases.

3.1. Case I
In this case we repair the component which fails first. Its lifetime is X = X1:n. Then the

broken component is minimally repaired and the resulting system has the same structure as T
but we know that all the components are working and have age X. Hence its reliability is

F̄TI (t) = F̄1:n#Ḡ(t), (3.2)

where

Ḡx(y) = Pr(T − x > y|X1 > x, . . . , Xn > x) =
Pr(T > x+ y,X1 > x, . . . , Xn > x)

Pr(X1 > x, . . . , Xn > x)

when X = x. In Proposition 3 of [31] is proved that this reliability can be written as Ḡx(t) =
Q̄x(F̄1,x(t), . . . , F̄n,x(t)), where F̄i,x(t) = Pr(Xi − x > t|Xi > x) = F̄i(t + x)/F̄i(x) for i = 1, . . . , n
and Q̄x is a distortion function (see Section 2). Hence, from (2.1), we have,

F̄TI (t) = F̄1:n(t) +

∫ t

0

Ḡx(t− x)f1:n(x)dx = F̄1:n(t) +

∫ t

0

Q̄x(F̄1,x(t− x), . . . , F̄n,x(t− x))f1:n(x)dx.

(3.3)
Let us see an example.
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Example 3.1. If T = X2:2 (a parallel system with two components), then

Ḡx(y) = Pr(T − x > y|X1 > x,X2 > x)

=
Pr(T > x+ y,X1 > x,X2 > x)

Pr(X1 > x,X2 > x)

=
Pr(X1 > x+ y,X2 > x) + Pr(X2 > x+ y,X1 > x)− Pr(X1 > x+ y,X2 > x+ y)

Pr(X1 > x,X2 > x)

=
K(F̄1(x+ y), F̄2(x)) +K(F̄1(x), F̄2(x+ y))−K(F̄1(x+ y), F̄2(x+ y))

K(F̄1(x), F̄2(x))

= Q̄x(F̄1,x(y), F̄2,x(y))

for y ≥ 0, with F̄1,x(y) = F̄1(x+ y)/F̄1(x), F̄2,x(y) = F̄2(x+ y)/F̄2(x) and

Q̄x(u1, u2) =
K(u1F̄1(x), F̄2(x)) +K(F̄1(x), u2F̄2(x))−K(u1F̄1(x), u2F̄2(x))

K(F̄1(x), F̄2(x))

whenever K(F̄1(x), F̄2(x)) > 0. Hence, from (2.1) and (3.2),

F̄TI (t) = F̄1:2(t) +

∫ t

0

Q̄x(F̄1,x(t− x), F̄2,x(t− x))f1:2(x)dx

= F̄1:2(t) + F̄1:2(t) ln(F̄1:2(t)) +

∫ t

0

K(F̄1(t), F̄2(x)) +K(F̄1(x), F̄2(t))

F̄1:2(x)
f1:2(x)dx (3.4)

holds. In particular, if the components are IID, then

F̄TI (t) = F̄ 2(t) + 2F̄ 2(t) ln(F̄ (t)) +

∫ t

0

F̄ (t)F̄ (x) + F̄ (x)F̄ (t)

F̄ 2(x)
2f(x)F̄ (x)dx

= F̄ 2(t) + 2F̄ 2(t) ln(F̄ (t)) + 4F̄ (t)F (t).

Therefore, F̄TI (t) = q̄I(F̄ (t)) with q̄I(u) = 4u−3u2 +2u2 ln(u). A straightforward calculation shows
that q̄(i)

III(u) = 2u− u2− u lnu+ u2 lnu and q̄I ≤ q̄
(i)
III for i = 1, 2. So, TI ≤ST T (i)

III holds for all F ,
that is, in this system, it is better to replace a fixed component than to replace the first failure.

If the components are just ID, from (3.4), we get

F̄TI (t) = F̄1:2(t) + F̄1:2(t) ln(F̄1:2(t)) +

∫ t

0

K(F̄ (t), F̄ (x)) +K(F̄ (x), F̄ (t))

F̄1:2(x)
f1:2(x)dx

= F̄1:2(t) + F̄1:2(t) ln(F̄1:2(t))

+

∫ t

0

K(F̄ (t), F̄ (x)) +K(F̄ (x), F̄ (t))

K(F̄ (x), F̄ (x))
[∂1K(F̄ (x), F̄ (x)) + ∂2K(F̄ (x), F̄ (x))]f(x)dx,

where F̄1:2(t) = K(F̄ (t), F̄ (t)). Now, if we do the change v = F̄ (x), then

F̄TI (t) = δK(F̄ (t)) + δK(F̄ (t)) ln(δK(F̄ (t))) +

∫ 1

F̄ (t)

K(F̄ (t), v) +K(v, F̄ (t))

δK(v, v)
δ′K(v)dv,

where δK(v) = K(v, v) is the diagonal section of the copula K and δ′K(v) = ∂1K(v, v) + ∂2K(v, v)
for v ∈ (0, 1). Therefore F̄TI (t) = q̄I(F̄ (t)) with

q̄I(u) = δK(u) + δK(u) ln(δK(u)) +

∫ 1

u

K(u, v) +K(v, u)

δK(v)
δ′K(v)dv.
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A similar representation is obtained in the following theorem for an arbitrary coherent system.

Theorem 3.2. Let T be the lifetime of a coherent system with ID components having a common
reliability F̄ . Then the reliability function of TI can be written as

F̄TI (t) = q̄I(F̄ (t)) (3.5)

for all t ≥ 0 and a distortion function q̄I which does not depend on F̄ .

Proof. In the ID case, the general representation obtained in (3.3), can be written as

F̄TI (t) = F̄1:n(t) +

∫ t

0

Ḡx(t− x)f1:n(x)dx = F̄1:n(t) +

∫ t

0

q̄x(F̄x(t− x))f1:n(x)dx, (3.6)

where q̄x(u) = Q̄x(u, . . . , u) and F̄x(t) = Pr(Xi − x > t|Xi > x) = F̄ (t+ x)/F̄ (x) for i = 1, . . . , n.
Even more, in this case, Ḡx can be written as Ḡx(y) = q̄(F̄ (x+ y); F̄ (x)), see [31]. Hence

F̄TI (t) = F̄1:n(t) +

∫ t

0

q̄(F̄ (t); F̄ (x))f1:n(x)dx

where F̄1:n(t) = δK(F̄ (t)), δK(u) = K(u, . . . , u) and f1:n(t) = f(t)δ′K(F̄ (t)). Then

F̄TI (t) = δK(F̄ (t)) +

∫ t

0

q̄(F̄ (t); F̄ (x))δ′K(F̄ (x))f(x)dx.

Finally, if we do the change u = F̄ (x), then

F̄TI (t) = δK(F̄ (t)) +

∫ 1

F̄ (t)

q̄(F̄ (t);u)δ′K(u)du (3.7)

and therefore (3.5) holds.

The dual distortion function q̄I in (3.5) depends on the structure of the system and on the
underlying survival copula K. In the next sections we will show how to compute it. However, we
must say that, sometimes, it is not easy to get an explicit expression for it (since we have to solve
the integral in (3.7)). In the IID case, the preceding theorem can be simplified as follows.

Theorem 3.3. Let T be the lifetime of a coherent system with IID components having a common
reliability F̄ . Then the reliability function of TI can be written as F̄TI (t) = q̄I(F̄ (t)) where

q̄I(u) = n
n−1∑

i=1

ai
n− iu

i +

(
1− n

n−1∑

i=1

ai
n− i

)
un − nanun lnu (3.8)

and (a1, . . . , an) is the minimal signature of the system.

Proof. If the components are independent, then Ḡx(t) = Q̄(F̄1,x(t), . . . , F̄n,x(t)) holds from Propo-
sition 5 in [31], that is, Q̄x = Q̄, where Q̄ is the distortion function in (2.4). Then, if they are

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

IID, we have Ḡx(t) = q̄(F̄x(t)), where F̄x(t) = F̄ (t + x)/F̄ (x) and q̄(u) =
∑n

i=1 aiu
i (see Section

2). Hence, from (3.6), we have

F̄TI (t) = F̄1:n(t) +

∫ t

0

q̄(F̄x(t− x))f1:n(x)dx

= F̄ n(t) +

∫ t

0

q̄

(
F̄ (t)

F̄ (x)

)
nF̄ n−1(x)f(x)dx

= F̄ n(t) + n
n∑

i=1

aiF̄
i(t)

∫ t

0

F̄ n−i−1(x)f(x)dx

= F̄ n(t) + n
n−1∑

i=1

ai
n− i F̄

i(t)(1− F̄ n−i(t)) + nanF̄
n(t)(− ln F̄ (t))

which concludes the proof.

The minimal signatures of all the coherent systems with 1-5 IID components were obtained in
[37]. Hence, from the preceding theorem, we have explicit expressions for q̄I for all these systems.

3.2. Case II
Let us assume now that we repair the component which is critical for the system. We may

expect that this option leads to a better performance since the most relevant components for the
system have higher probabilities of being repaired. Note that, in case I, we just repair the first
failure and so, for example, if the components are exchangeable, then all the components have the
same probability of being repaired. However, we must note that case II is not always available in
practice for all systems.

In this case it is not easy to obtain the reliability F̄TII of the resulting system lifetime TII . Let
us see a simple example. If the system is a series system, then cases I and II coincide since the
first failure is always critical for the system. So let us consider again a parallel system.

Example 3.4. If T = X2:2 and the components are IID, then, from (2.1), we have

F̄TII (t) = F̄T#F̄ (t) = F̄T (t) +

∫ t

0

F̄ (t)

F̄ (x)
fT (x)dx,

where F̄T (t) = 2F̄ (t)− F̄ 2(t) and fT (t) = 2(1− F̄ (t))f(t). Hence

F̄TII (t) = 2F̄ (t)− F̄ 2(t) + 2F̄ (t)

∫ t

0

1− F̄ (x)

F̄ (x)
f(x)dx = F̄ 2(t)− 2F̄ (t) ln F̄ (t) = q̄II(F̄ (t))

with q̄II(u) = u2 − 2u lnu. So TII also has a distorted distribution from F . Hence it is easy
to compare the three replacement policies for this system just by comparing the three distortion
functions. Thus a straightforward calculation leads to q̄ ≤ q̄I ≤ q̄

(i)
III ≤ q̄II and so T ≤ST TI ≤ST

T
(i)
III ≤ST TII for all F̄ and i = 1, 2, that is, the best option in this system is to repair the component

which is critical for the system. The second best option is to replace a fixed component and, of
course, the three options are better than the original system T . They are also better than a parallel
system with three components (active redundancy) with q̄3:3(u) = 3u− 3u2 + u3.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Let us assume now that the component lifetimes are just exchangeable. Then, proceeding as in
Section 2, we have F̄TII (t) = F̄T#Ḡ(t), where

Ḡx(y) = Pr(X2 − x > y|X1 ≤ x,X2 > x)

=
Pr(X1 ≤ x,X2 > x+ y)

Pr(X1 ≤ x,X2 > x)

=
Pr(X2 > x+ y)− Pr(X1 > x,X2 > x+ y)

Pr(X2 > x)− Pr(X1 > x,X2 > x)

=
F̄ (x+ y)−K(F̄ (x), F̄ (x+ y))

F̄ (x)−K(F̄ (x), F̄ (x))

for x, y ≥ 0. Hence, from (2.1), we have

F̄TII (t) = F̄T (t) +

∫ t

0

Ḡx(t− x)fT (x)dx = F̄T (t) +

∫ t

0

F̄ (t)−K(F̄ (x), F̄ (t))

F̄ (x)−K(F̄ (x), F̄ (x))
fT (x)dx,

where F̄T (t) = 2F̄ (t)−K(F̄ (t), F̄ (t)) and fT (t) = 2(1− ∂1K(F̄ (t), F̄ (t)))f(t). Therefore

F̄TII (t) = 2F̄ (t)−K(F̄ (t), F̄ (t)) + 2

∫ t

0

F̄ (t)−K(F̄ (x), F̄ (t))

F̄ (x)−K(F̄ (x), F̄ (x))
(1− ∂1K(F̄ (x), F̄ (x)))f(x)dx

= 2F̄ (t)−K(F̄ (t), F̄ (t)) + 2

∫ 1

F̄ (t)

F̄ (t)−K(v, F̄ (t))

v −K(v, v)
(1− ∂1K(v, v))dv = q̄II(F̄ (t))

with

q̄II(u) = 2u−K(u, u) + 2

∫ 1

u

u−K(v, u)

v −K(v, v)
(1− ∂1K(v, v))dv. (3.9)

Note that we need K (and to solve this integral) to get an explicit expression for q̄II . Of course,
if K(u, v) = uv, then we obtain the expression obtained above for the IID case.

Finally, in the general case, proceeding as in (2.7), we get F̄TII (t) = F̄T#Ḡ(t), where

Ḡx(y) = p1(x) Pr(X2 − x > y|X1 ≤ x,X2 > x) + p2(x) Pr(X1 − x > y|X2 ≤ x,X1 > x)

= p1(x)
Pr(X1 ≤ x,X2 > x+ y)

Pr(X1 ≤ x,X2 > x)
+ p2(x)

Pr(X2 ≤ x,X1 > x+ y)

Pr(X2 ≤ x,X1 > x)

= p1(x)
Pr(X2 > x+ y)− Pr(X1 > x,X2 > x+ y)

Pr(X2 > x)− Pr(X1 > x,X2 > x)

+ p2(x)
Pr(X1 > x+ y)− Pr(X1 > x+ y,X2 > x)

Pr(X1 > x)− Pr(X1 > x,X2 > x)

= p1(x)
F̄2(x+ y)−K(F̄1(x), F̄2(x+ y))

F̄2(x)−K(F̄1(x), F̄2(x))
+ p2(x)

F̄1(x+ y)−K(F̄1(x+ y), F̄2(x))

F̄1(x)−K(F̄1(x), F̄2(x))
, (3.10)

p1(x) := Pr(X1 < X2|T = x) and p2(x) := Pr(X2 < X1|T = x) = 1 − p1(x) for x, y ≥ 0. To
compute p1(x), we need the joint reliability of (X1, X2:2) given by

H̄(x, y) = Pr(X1 > x,X2:2 > y)

= Pr(X1 > x,X1 > y) + Pr(X1 > x,X2 > y)− Pr(X1 > x,X1 > y,X2 > y)

= F̄1(y) +K(F̄1(x), F̄2(y))−K(F̄1(y), F̄2(y))
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for all x ≤ y. Hence, its joint density is h(x, y) = f1(x)f2(y)∂1,2K(F̄1(x), F̄2(y)) for all x ≤ y (0
otherwise) and the conditional density function of (X1|X2:2 = y) is

h1|2(x|y) =
f1(x)f2(y)∂1,2K(F̄1(x), F̄2(y))

fT (y)

for 0 ≤ x ≤ y. Therefore

p1(y) = Pr(X1 < X2|T = y) = Pr(X1 < X2:2|T = y) =

∫ y

0

h1|2(x|y)dx

=

∫ y

0

f1(x)f2(y)∂1,2K(F̄1(x), F̄2(y))

fT (y)
dx =

f2(y)− f2(y)∂2K(F̄1(y), F̄2(y))

fT (y)
(3.11)

when limu→1− ∂2K(u, F̄2(y)) = 1 (see [40]). Analogously, we get

p2(y) = Pr(X2 < X1|T = y) =
f1(y)− f1(y)∂1K(F̄1(y), F̄2(y))

fT (y)
. (3.12)

Hence, from (2.1), (3.10), (3.11) and (3.12), we have

F̄TII (t) = F̄T (t) +

∫ t

0

Ḡx(t− x)fT (x)dx

= F̄1(t) + F̄2(t)−K(F̄1(t), F̄2(t))

+

∫ t

0

[1− ∂2K(F̄1(x), F̄2(x))]
F̄2(t)−K(F̄1(x), F̄2(t))

F̄2(x)−K(F̄1(x), F̄2(x))
f2(x)dx

+

∫ t

0

[1− ∂1K(F̄1(x), F̄2(x))]
F̄1(t)−K(F̄1(t), F̄2(x))

F̄1(x)−K(F̄1(x), F̄2(x))
f1(x)dx.

In the exchangeable case, we have Pr(X1 < X2|T = y) = Pr(X2 < X1|T = y) = 1/2 and (3.9).

The preceding example shows that it is not easy to get an expression for the reliability in the
general case. So, we are going to try to solve the case of exchangeable components. In this case,
we know that the system’s reliability can be written as

F̄T (t) =
n∑

i=1

siF̄i:n(t), (3.13)

where s = (s1, . . . , sn) is the signature of the system and si = Pr(T = Xi:n) for i = 1, . . . , n. We
can use this representation to obtain the following result.

Theorem 3.5. Let T be the lifetime of a coherent system with components having an absolutely
continuous exchangeable joint reliability. Then the reliability function of TII can be written as

F̄TII (t) = q̄II(F̄ (t)) (3.14)

for all t ≥ 0 and for a distortion function q̄II which does not depend on F̄ .
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Proof. Let us consider the events Eσ = {Xσ(1) < · · · < Xσ(n)} for σ in the set Pn of all the
permutations of order n. If the components are exchangeable, then Pr(Eσ) = 1/n!. Let us divide
the set Pn in the disjoint subsets A1, . . . , Ak where Aj contains all the permutations which lead
to T = Xij :n and to a fixed repaired system Tj. Let Hj = ∪σ∈Aj

Eσ. Then pj := Pr(Hj) = |Aj|/n!,
where |Aj| is the cardinal of the set Aj for j = 1, . . . , k. Hence

F̄TII (t) = Pr(TII > t) =
k∑

j=1

pj Pr(TII > t|Hj). (3.15)

Note that under Hj, we know which component failure causes the system failure. Moreover
(T |Hj) =ST (Xij :n|Hj). Also note that Xij :n =ST (Xij :n|Hj) due to the assumption about ex-
changeable components. Proceeding as in Section 2, we get Pr(TII > t|Hj) = F̄ij :n#Ḡj(t), where

Ḡj,x(y) = Pr(Tj − x > y|Xij :n = x,Hj) (3.16)

and Tj is the system obtained after a minimal repair of the component broken in the ijth position
and at a given time x under Hj. Note that the structure of this system is completely determined
by Hj. This event also determines which components are working and which have failed at time
x. Hence, from (2.1),

F̄TII (t) =
k∑

j=1

pj

[
F̄ij :n(t) +

∫ t

0

Ḡj,x(t− x)fij :n(x)dx

]
(3.17)

holds. Note that the semi-coherent system Tj has n− ij + 1 working components (some of them
can be irrelevant for the system). These components are exchangeable and the corresponding joint
reliability function H̄(y1, . . . , yn−ij+1) is given by

Pr(Xij − x > y1, . . . , Xn − x > yn−ij+1|X1 ≤ x, . . . , Xij−1 ≤ x,Xij > x, . . . , Xn > x).

Proceeding as in case I, this joint reliability can be written as

H̄(y1, . . . , yn−ij+1) = Q̄x(F̄x(y1), . . . , F̄x(yn−ij+1)) (3.18)

for a distortion function Q̄x which depends on F̄ (x), where F̄x(y) = F̄ (x + y)/F̄ (x). Let
H̄j

1:n, . . . , H̄
j
n−ij+1:n be the reliability functions of the order statistics obtained from these exchange-

able components and let (sj1, . . . , s
j
n−ij+1) be the signature (of order n− ij + 1) of Tj. Then

F̄TII (t) =
k∑

j=1

pj

[
F̄ij :n(t) +

n−ij+1∑

`=1

sj`

∫ t

0

H̄j
`:n(t− x)fij :n(x)dx

]
.

It is well known (see, e.g., [33]) that F̄ij :n(t) can be written as F̄ij :n(t) = q̄ij :n(F̄ (t)) where q̄ij :n

depends onK. Analogously, from (3.18), we know that H̄j
`:n can be written as H̄j

`:n(y) = q̄ji:n(F̄ (x+
y); F̄ (x)) where q̄ji:n depends on K. Therefore

F̄TII (t) =
k∑

j=1

pj

[
q̄ij :n(F̄ (t)) +

n−ij+1∑

`=1

sj`

∫ t

0

q̄ji:n(F̄ (t); F̄ (x))q̄′ij :n(F̄ (x))f(x)dx

]
(3.19)

and by doing the change v = F̄ (x) we get (3.14).
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The coefficients in the signature used in (3.13) can also be computed as sk = |Bk|/n!, where
Bk is the subset of Pn with the permutations which lead to T = Xk:n, that is, Bk = ∪j:ij=kAj.
Hence (3.19) can also be written as

F̄TII (t) = F̄T (t) +
k∑

j=1

pj

n−ij+1∑

`=1

sj`

∫ t

0

q̄ji:n(F̄ (t); F̄ (x))q̄′ij :n(F̄ (x))f(x)dx, (3.20)

where F̄T (t) = q̄T (F̄ (t)). These general expressions can be simplified in the IID case as follows.

Theorem 3.6. Let T be the lifetime of a coherent system with IID components having a common
absolutely continuous reliability F̄ . Then the reliability function of TII can be expressed as F̄TII (t) =
q̄II(F̄ (t)) for all t ≥ 0, where

q̄II(u) =
n∑

i=1

ciu
i +

n∑

i=1

diu
i lnu (3.21)

for some coefficients ci, di, i = 1, . . . , n which only depend on the structure of the system.

Proof. Let aj = (aj1, . . . , a
j
n−ij+1) be the minimal signature the system Tj considered in the proof

of the preceding theorem for j = 1, . . . , k. In the IID case, this semi-coherent system has n− ij +1
IID components with the common reliability F̄x(y) = F̄ (x + y)/F̄ (x). Hence the reliability in
(3.16) is

Ḡj,x(y) =

n−ij+1∑

`=1

aj`

(
F̄ (x+ y)

F̄ (x)

)`
.

Therefore, from (3.17) and (3.20), we have

F̄TII (t) = F̄T (t) +
k∑

j=1

pj

n−ij+1∑

`=1

aj`

∫ t

0

F̄ `(t)

F̄ `(x)
q̄′ij :n(F̄ (x))f(x)dx

where F̄i:n(t) = q̄i:n(F̄ (t)) for a polynomial

q̄i:n(u) =
n∑

r=n−i+1

(−1)r−n+i−1

(
n

r

)(
r − 1

n− i

)
ur

(see, e.g., [21, p. 46]). So

fi:n(t) = f(t)q̄′i:n(F̄ (t)) = f(t)
n∑

r=n−i+1

(−1)r−n+i−1r

(
n

r

)(
r − 1

n− i

)
F̄ r−1(t).

Therefore, if (a1, . . . , an) is the minimal signature of T , then

F̄TII (t) = F̄T (t) +
k∑

j=1

pj

n−ij+1∑

`=1

aj`F̄
`(t)

n∑

r=n−ij+1

r(−1)r−n+ij−1

(
n

r

)(
r − 1

n− ij

)∫ t

0

F̄ r−`−1(x)f(x)dx

=
n∑

j=1

ajF̄
j(t) +

k∑

j=1

pj

n−ij+1∑

`=1

aj`F̄
`(t)

n∑

r=n−ij+1

r(−1)r−n+ij−1

(
n

r

)(
r − 1

n− ij

)
φr−`(t),

where φs(t) = (1− F̄ s(t))/s if s > 0 and φs(t) = − ln F̄ (t) if s = 0. This concludes the proof.
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Example 4.4 shows how to apply the preceding theorem. In [32] we provide an R-script to
compute the coefficients ci and di for a given coherent system with IID components.

In general it is not easy to compute the reliability function associated to the case II of a coherent
system with dependent components. However, the reliability function of k-out-of-n systems can
be obtained by assuming exchangeable components. Thus, if T = Xi:n for a fixed i ∈ {2, . . . , n}
and the components are exchangeable, then F̄TII (t) = F̄i:n#Ḡ(t), where

Ḡx(y) = Pr(Xi > x+ y, . . . , Xn > x+ y|X1 ≤ x, . . . , Xi−1 ≤ x,Xi > x, . . . , Xn > x)

=
Pr(X1 ≤ x, . . . , Xi−1 ≤ x,Xi > x+ y, . . . , Xn > x+ y)

Pr(X1 ≤ x, . . . , Xi−1 ≤ x,Xi > x, . . . , Xn > x)
=
Hi(F̄ (x), F̄ (x+ y))

Hi(F̄ (x), F̄ (x))
,

with a function Hi such that Pr(X1 ≤ x, . . . , Xi−1 ≤ x,Xi > t, . . . , Xn > t) = Hi(F̄ (x), F̄ (t)) for
all 0 ≤ x ≤ t. Note that Hi only depends on K. Therefore, from (2.1), we have

Pr(TII > t) = F̄i:n(t) +

∫ t

0

Hi(F̄ (x), F̄ (t))

H̄i(F̄ (x), F̄ (x))
fi:n(x)dx. (3.22)

If the components are IID, then the following result provide an explicit expression for (3.22).

Proposition 3.7. Given an i-out-of-n system with IID components and lifetime T = Xi:n for a
fixed i ∈ {2, . . . , n}, then F̄TII (t) = q̄II(F̄ (t)), where

q̄II(u) =

(
n

n− i+ 1

)
un−i+1 + un−i+1

n∑

k=n−i+2

(−1)k−n+i−1 k

k − n+ i− 1

(
n

k

)(
k − 1

n− i

)

+
n∑

k=n−i+2

(−1)k−n+i n− i+ 1

k − n+ i− 1

(
n

k

)(
k − 1

n− i

)
uk − i

(
n

i

)
un−i+1 lnu.

Proof. If the components are IID, then

Ḡx(y) = Pr(Xi > x+ y, . . . , Xn > x+ y|X1 ≤ x, . . . , Xi−1 ≤ x,Xi > x, . . . , Xn > x)

= Pr(Xi > x+ y|Xi > x) . . .Pr(Xn > x+ y|Xn > x) =
F̄ n−i+1(x+ y)

F̄ n−i+1(x)
.

Moreover, as F̄i:n(t) =
∑n

k=n−i+1(−1)k−n+i−1
(
n
k

)(
k−1
n−i
)
F̄ k(t) (see, e.g., [21, p. 46]), we have

Pr(TII > t) = F̄i:n(t) +

∫ t

0

F̄ n−i+1(t)

F̄ n−i+1(x)
fi:n(x)dx

= F̄i:n(t) + F̄ n−i+1(t)
n∑

k=n−i+1

(−1)k−n+i−1k

(
n

k

)(
k − 1

n− i

)∫ t

0

F̄ k−n+i−2(x)f(x)dx

= F̄i:n(t) +
n∑

k=n−i+2

(−1)k−n+i−1k

(
n

k

)(
k − 1

n− i

)
F̄ n−i+1(t)− F̄ k(t)

k − n+ i− 1
− i
(
n

i

)
F̄ n−i+1(t) ln F̄ (t)

=

(
n

n− i+ 1

)
F̄ n−i+1(t)−

n∑

k=n−i+2

(−1)k−n+i−1 n− i+ 1

k − n+ i− 1

(
n

k

)(
k − 1

n− i

)
F̄ k(t)

+ F̄ n−i+1(t)
n∑

k=n−i+2

(−1)k−n+i−1 k

k − n+ i− 1

(
n

k

)(
k − 1

n− i

)
− i
(
n

i

)
F̄ n−i+1(t) ln F̄ (t)

which concludes the proof.
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3.3. Other cases
The purpose of this section is to show that we can study other cases following the procedures

used above in cases I and II. For example, if we know that the system does not fail with the first
component failure, we can consider to repair the system at the second component failure with a
minimal repair of the broken component at this point. Then, if the components are exchangeable,
the reliability function of the repaired system is F̄(2)(t) = F̄2:n#Ḡ(t), where

Ḡx(y) =
1

n

n∑

i=1

Pr(Ti − x > y|Xi ≤ x,Xj > t for all j 6= i)

and Ti is the lifetime of the semi-coherent system obtained from T when we know that the ith
component is broken. A similar expression can be obtained if the system is repaired at the jth
failure for j = 3, 4, . . . .

In all the options studied above, we just repair one component. We can of course consider
k replacements. For example, if k = 2 and, in case III, we repair components i and j (for fixed
i < j), then the reliability of the repaired system is

F̄
T

(i,j)
III

(t) = Q̄(F̄1(t), . . . , F̄i−1(t), q̄1(F̄i(t)), F̄i+1(t), . . . , F̄j−1(t), q̄1(F̄j(t)), F̄j+1(t), . . . , F̄n(t)),

where q̄1 is given in (2.3). If the components are ID, then this representation can be reduced
to F̄

T
(i,j)
III

(t) = q̄
(i,j)
III (F̄ (t)), where q̄(i,j)

III (u) = Q̄(u, . . . , u, q̄1(u), u, . . . , u, q̄1(u), u, . . . , u) and q̄1(u) is
placed at the ith and jth positions. Analogously, if we repair the ith component twice, then

F̄
T

(i,i)
III

(t) = Q̄(F̄1(t), . . . , F̄i−1(t), q̄2(F̄i(t)), F̄i+1(t), . . . , F̄n(t)),

where q̄2 is given in (2.3). If the components are ID, we get F̄
T

(i,i)
III

(t) = q̄
(i,i)
III (F̄ (t)), where

q̄
(i,i)
III (u) = Q̄(u, . . . , u, q̄2(u), u, . . . , u)

and q̄2 is placed at the ith position. Other options with fixed repairs were studied in [2].
We could consider other options with k = 2 minimal repairs. For example, we can repair the

two first broken components. In this case, if X1, . . . , Xn are IID, the resulting reliability is

F̄
(2)
I (t) = (F̄1:n#Ḡ1:n)#Ḡ(t),

where F̄1:n(t) = F̄ n(t) is the reliability function of X1:n = min(X1, . . . , Xn),

(Ḡ1:n)x(y) = F̄ n
x (y) =

F̄ n(x+ y)

F̄ n(x)

is the reliability function of Y1:n = min(Y1, . . . , Yn) (a series system with n IID components and a
common reliability F̄x(y) = F̄ (x + y)/F̄ (x)) and Ḡy(z) = q̄T (F̄y(z)) is the reliability of a system
with the same structure as T , having n IID components with reliability F̄y when Y1:n = y. The
reliability H̄ = F̄1:n#Ḡ1:n can be computed from (2.1) as

H̄(t) = F̄ n(t) +

∫ t

0

F̄ n(t)

F̄ n(x)
nF̄ n−1(x)f(x)dx = F̄ n(t)− nF̄ n(t) ln F̄ (t).
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Its density is h(t) = −n2F̄ n−1(t)f(t) ln F̄ (t). Then, by using (2.1) again, the system’s reliability is

F̄
(2)
I (t) = H̄(t) +

∫ t

0

Ḡy(t− y)h(y)dy

= H̄(t)− n2

∫ t

0

q̄T

(
F̄ (t)

F̄ (y)

)
F̄ n−1(y)f(y) ln F̄ (y)dy

= H̄(t)− n2

n∑

i=1

aiF̄
i(t)

∫ t

0

F̄ n−i−1(y) ln F̄ (y)f(y)dy,

where (a1, . . . , an) is the minimal signature of the system T . Then

F̄
(2)
I (t) = H̄(t)− n2anF̄

n(t)

∫ t

0

F̄−1(y) ln F̄ (y)f(y)dy − n2

n−1∑

i=1

aiF̄
i(t)

∫ t

0

F̄ n−i−1(y) ln F̄ (y)f(y)dy

= H̄(t) + n2an
2
F̄ n(t) ln2 F̄ (t)− n2

n−1∑

i=1

aiF̄
i(t)

∫ t

0

F̄ n−i−1(y) ln F̄ (y)f(y)dy.

Finally, by doing the change x = − ln F̄ (y), in Ii(t) =
∫ t

0
F̄ n−i−1(y) ln F̄ (y)f(y)dy, we get

Ii(t) =

∫ − ln F̄ (t)

0

xe−(n−i)xdx =
F̄ n−i(t) ln F̄ (t)

n− i +
1− F̄ n−i(t)

(n− i)2
.

Therefore

F̄
(2)
I (t) = q̄1(F n(t)) +

n2an
2

F̄ n(t) ln2 F̄ (t) + n2

n−1∑

i=1

ai
F̄ n(t) ln F̄ (t)

n− i + n2

n−1∑

i=1

ai
F̄ i(t)− F̄ n(t)

(n− i)2
.

Note that the reliability can be written as F̄ (2)
I (t) = q̄

(2)
I (F̄ (t)) for a distortion function q̄(2)

I . For
example, for T = X1:n, we obtain q̄(2)

I (u) = un − nun lnu+ (n2/2)un(lnu)2. For this system, if we
repair the first k broken components, then we get q̄(k)

I (u) =
∑k

i=0 n
iun(− lnu)i/i!.

Other similar replacement policies can be studied in a similar way. However, in the follow-
ing section we restrict ourselves to the cases with k = 1 to develop fair comparisons, that is
comparisons of replacement policies with the same number of repairs (i.e. with the same cost).

4. Comparison results

The representations obtained in the preceding section can be used jointly with the ordering
results for distorted distributions given in [33, 35] to compare the different replacement policies.
For sake of completeness we include some of these ordering results in the following theorem. We
shall consider the following (well known) stochastic orders.

The main order is the usual stochastic order, denoted by X ≤ST Y , that compares the respec-
tive reliability functions F̄X(t) ≤ F̄Y (t) for any time t. This ordering implies that E(X) ≤ E(Y )
(if these expectations exist). An alternative (stronger) order is the hazard rate order, denoted by
X ≤HR Y , that compares the respective residual lifetimes (X − t|X > t) ≤ST (Y − t|Y > t) for
any time t. While the ST order compares new units, the HR order compares (in the ST order)
used units with the same age t. Analogously, the mean residual life order, denoted by X ≤MRL Y ,
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compares the respective mean (expected) residual lifetimes E(X − t|X > t) ≤ E(Y − t|Y > t)
for any time t. The HR order implies the MRL order. An order similar to the HR order is
the reversed hazard rate order, denoted by X ≤RHR Y , that compares the inactivity times
(t − X|X < t) ≥ST (t − Y |Y < t) for any time t. Finally, the likelihood ratio order, denoted
by X ≤LR Y , holds if the ratio of their densities fY /fX is increasing in the union of their sup-
ports. This order implies all the preceding orders. For basic properties and applications of these
orders we refer the reader to [12, 43].

Theorem 4.1. Let X1 and X2 be two random variables with distribution functions Fq1 = q1(F )
and Fq2 = q2(F ) obtained as distorted distributions from the same distribution function F and
from the distortion functions q1 and q2, respectively. Let q̄1 and q̄2 be the respective dual distortion
functions. Then:

(i) X1 ≤ST X2 for all F ⇐⇒ q̄1(u) ≤ q̄2(u) [or q1(u) ≥ q2(u)] for all u ∈ (0, 1).
(ii) X1 ≤HR X2 for all F ⇐⇒ q̄2(u)/q̄1(u) is decreasing in (0, 1).
(iii) X1 ≤RHR X2 for all F ⇐⇒ q2(u)/q1(u) is increasing in (0, 1).
(iv) X1 ≤LR X2 for all F ⇐⇒ q̄′2(u)/q̄′1(u) is decreasing in (0, 1).
(v) X1 ≤MRL X2 for all F ⇐= q̄2(u)/q̄1(u) is bathtub in (0, 1) and E(X1) ≤ E(X2).

We apply these ordering results in the following theorems and examples comparing the different
replacement policies. In the first main result we prove that, for any system with IID components,
the replacement policy of case II is always ST-better than that of case I.

Theorem 4.2. Let T be the lifetime of a coherent system with IID components having a com-
mon absolutely continuous reliability F̄ . Let TI and TII be the system lifetimes obtained with the
replacement policies of cases I and II, respectively. Then TI ≤ST TII for all F̄ .

Proof. If we assume that the component lifetimes X1, . . . , Xn are IID, then the system’s reliability
can be written as F̄T (t) = q̄(F̄ (t)) for a polynomial q̄(u). From Theorems 3.3 and 3.6, we also
know that the reliability functions of TI and TII can be written as Pr(TI > t) = q̄I(F̄ (t)) and
Pr(TII > t) = q̄II(F̄ (t)). So we just need to prove that q̄I(u) ≤ q̄II(u) for all u ∈ [0, 1].

From the proof of Theorem 3.3, we know that TI = X1:n +Y I , where X1:n = min(X1, . . . , Xn),

Pr(Y I − x > y|X1:n = x) = Pr(T ∗ > y)

and T ∗ is the lifetime of a system with the same structure as T and having IID components with
the common reliability function F̄x(y) = F̄ (x+ y)/F̄ (x) for y ≥ 0. Hence

Pr(Y I − x > y|X1:n = x) = Pr(T ∗ > y) = q̄(F̄x(y)).

On the other hand, from the proof of Theorem 3.6, we know that TII = T + Y II , where

Pr(Y II − x > y|T = x) = Pr(T ∗∗ > y)

and T ∗∗ is a mixture of different semi-coherent systems with n (or less) IID components with the
common reliability function F̄x.

Now let assume that the IID components are exponential with mean 1, that is, F̄ (t) = e−t for
t ≥ 0. This model has the lack of memory property and so F̄x(y) = F̄ (y) for all y ≥ 0. Hence

Pr(Y I − x > y|X1:n = x) = q̄(F̄ (y)) = Pr(T > y)
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for all x, y ≥ 0, that is, (Y I − x|X1:n = x) =ST T . So X1:n and Y I are independent. Analogously,
T ∗∗ is a mixture of different semi-coherent systems with n (or less) components and having IID
components with the common reliability function F̄ . Hence T and Y II are independent. More-
over, as all these semi-coherent systems are ST-better than X1:n (because they have n or less
components), then X1:n ≤ST T ∗∗. Finally, from Theorem 1.A.3, b, in [43, p. 6], we get

TI =ST X1:n + T ∗ ≤ST T + T ∗∗ =ST TII

for F̄ (t) = e−t, where T ∗ =ST T . Hence q̄I(e−t) ≤ q̄II(e
−t) for all t ≥ 0. So q̄I(u) ≤ q̄II(u) for all

u ∈ [0, 1] and the proof is completed.

In the second theorem we prove that this property can be extended to the hazard rate order
for the systems which preserve the IFR (increasing failure rate) aging property. A similar result
can be stated for the likelihood ratio order from Theorem 1.C.9 in [43, p. 46] and the preservation
results for the ILR class of logconcave densities given in Proposition 2.2 of [34].

Theorem 4.3. Let T be the lifetime of a coherent system with IID components having a common
absolutely continuous reliability F̄ . Let TI and TII be the system lifetimes obtained with the re-
placement policies of cases I and II, respectively. Let q̄ be the dual distortion function of T . If
α(u) = uq̄′(u)/q̄(u) is decreasing in (0, 1), then TI ≤HR TII for all F̄ .

Proof. As in the preceding theorem, we have Pr(TI > t) = q̄I(F̄ (t)) and Pr(TII > t) = q̄II(F̄ (t)).
So, from Theorem 4.1, (ii), we need to prove that q̄II/q̄I is decreasing in (0, 1). With the notation
used in the proof of the preceding theorem, if we assume that F̄ (t) = e−t for t ≥ 0 (exponential
components), we have TI =ST X1:n + T ∗ and TII =ST T + T ∗∗, where T ∗ =ST T and T ∗∗ is a
mixture of semi-coherent systems of order n. Then its reliability can be written as

Pr(T ∗∗ > t) = s∗∗1 F̄1:n(t) + · · ·+ s∗∗n F̄n:n(t)

for all t ≥ 0. The vector (s∗∗1 , . . . , s
∗∗
n ) is called the signature (of order n) of T ∗∗ (see, e.g., [39]).

The signature of X1:n is (1, 0, . . . , 0). Hence, as (1, 0, . . . , 0) ≤HR (s∗∗1 , . . . , s
∗∗
n ), from Theorem 4.4

in [39], we get X1:n ≤HR T ∗∗ for F̄ (t) = e−t. Moreover, we know that T ∗ is independent of X1:n

and T ∗∗ is independent of T . Then we can apply Lemma 1.B.3 in [43, p. 18] obtaining

TI =ST X1:n + T ∗ ≤HR T + T ∗∗ =ST TII

for F̄ (t) = e−t whenever T is IFR. Now we note that, from the results given in [34, p. 447], if the
function α defined above is decreasing, then the system preserves the IFR property. So, as the
exponential distribution is IFR, then T is also IFR and TI ≤HR TII holds for F̄ (t) = e−t, that is,

Pr(TII > t)

Pr(TI > t)
=
q̄II(F̄ (t))

q̄I(F̄ (t))
=
q̄II(e

−t)

q̄I(e−t)

is increasing for t ≥ 0. Therefore, q̄II(u)/q̄I(u) is decreasing in (0, 1) and the proof is completed.

The following example shows that, sometimes, to repair a fixed component (case III) is better
than to repair the critical component of the system (case II).
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j Aj Hj |Aj| T ij Tj
1 (1, i2, i3) X1 < Xi2 < Xi3 2 T = Xi2 2 min(X2, X3)
2 (i1, 1, i3) Xi1 < X1 < Xi3 2 T = X1 2 X1

3 (i1, i2, 1) Xi1 < Xi2 < X1 2 T = X1 3 X1

Table 1: Repairing options for the system in Example 4.4.

Example 4.4. Let us consider a coherent system with three IID components and lifetime T =
max(X1,min(X2, X3)). Then the distortion functions of the system are Q̄(u1, u2, u3) = u1 +u2u3−
u1u2u3 and q̄(u) = Q̄(u, u, u) = u+u2−u3. Furthermore, the dual distortion functions associated
to the lifetimes obtained after the minimal repair of the components 1, 2 and 3 are given by

q̄
(1)
III(u) = Q̄(q̄1(u), u, u) = u+ u2 − u3 − (u− u3) lnu

and
q̄

(2)
III(u) = q̄

(3)
III(u) = Q̄(u, q̄1(u), u) = u+ u2 − u3 − (u2 − u3) lnu.

On the other hand, the distortion function for case I can be obtained from (3.8) as

q̄I(u) =
3

2
u+ 3u2 − 7

2
u3 + 3u3 lnu.

Finally, we compute q̄II from (3.21). The signature of the system is (0, 2/3, 1/3). It can
be computed from the permutations given in Table 1. This table also contains the numbers ij
of component failures which cause the system failure and the expressions of the repaired system
lifetimes Tj for each j = 1, 2, 3. Hence, from (3.15), we get

Pr(TII > t) =
1

3

3∑

j=1

Pr(TII > t|Hj)

for the events Hj given in Table 1. The first probability can be computed as

Pr(TII > t|H1) = F̄i1:3#Ḡ1(t) = F̄2:3#Ḡ1(t),

where if X2:3 = x, then

Ḡ1,x(y) = Pr(T1 − x > y|X2:3 = x,H1) = Pr(min(X2, X3)− x > y|X1 < x < X2 < X3) =
F̄ 2(x+ y)

F̄ 2(x)

since the components are IID. Therefore, from (2.1), we have

Pr(TII > t|H1) = F̄2:3(t) +

∫ t

0

F̄ 2(t)

F̄ 2(x)
f2:3(x)dx,

where F̄2:3(t) = 3F̄ 2(t)− 2F̄ 3(t) and f2:3(t) = 6(F̄ (t)− F̄ 2(t))f(t). Hence

Pr(TII > t|H1) = F̄2:3(t) + 6F̄ 2(t)

∫ t

0

F̄ (x)− F̄ 2(x)

F̄ 2(x)
f(x)dx

= F̄2:3(t) + 6F̄ 2(t)

∫ t

0

(
1

F̄ (x)
− 1

)
f(x)dx

= F̄2:3(t) + 6F̄ 2(t)
(
− log F̄ (t)− F (t)

)

= −3F̄ 2(t) + 4F̄ 3(t)− 6F̄ 2(t) log F̄ (t).
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TFigure 1: Plots of the dual distortion functions for the cases: I, II, III ((1) and (2)) and for the system given in
Example 4.4 (left). Ratio q̄

(1)
III/q̄II in the interval (0,1) (right).

A straightforward (analogous) calculation for H2 and H3 leads us to

Pr(TII > t|H2) = 3F̄ (t)− 3F̄ 2(t) + F̄ 3(t)

and

Pr(TII > t|H3) = −3

2
F̄ (t) + 3F̄ 2(t)− 1

2
F̄ 3(t)− 3F̄ (t) log F̄ (t).

Hence

Pr(TII > t) =
1

3
Pr(TII > t|H1) +

1

3
Pr(TII > t|H2) +

1

3
Pr(TII > t|H3)

=
1

2
F̄ (t)− F̄ 2(t) +

3

2
F̄ 3(t)− F̄ (t) log F̄ (t)− 2F̄ 2(t) log F̄ (t)

= q̄II(F̄ (t)),

where q̄II(u) = u/2− u2 + (3/2)u3 − u log u− 2u2 log u for u ∈ (0, 1).
In Figure 1 (left) we compare the distortion functions of the three cases. From these plots we

conclude that T ≤ST T (2)
III ≤ST TI ≤ST TII ≤ST T

(1)
III . In order to clarify the last inequality, we plot

the ratio q̄(1)
III/q̄II in the interval (0,1) (see Figure 1, right). This quotient is always above the line

y = 1. However it is not decreasing and therefore TII and T (1)
III are not HR-ordered. Hence, we

can state that against the expected, the replacement policy of case II is not always the best strategy
in the case of IID components.

The following example shows that Theorem 4.2 is not true when the components are dependent.

Example 4.5. Let us consider a parallel system with 2 exchangeable components having a common
absolutely continuous reliability function F̄ . Let us assume that both components are dependent
and have the following Clayton-Oakes survival copula

K(u, v) =
u v

u+ v − u v .

Taking into account that both components are ID and have survival copula K, we get

F̄1:2(t) = K(F̄ (t), F̄ (t)) =
F̄ (t)

2− F̄ (t)
and f1:2(t) =

2 f(t)

(2− F̄ (t))2
,
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TFigure 2: Plots of the dual distortion functions for the system in Example 4.5 for cases I, II, III and without repairs
(left) and plots of the ratios q̄(1)III/q̄II , q̄I/q̄II and q̄I/q̄

(1)
III in the interval (0.3,1) (right).

where f represents the common density function of both components. Hence, the reliability function
associated to TI can be obtained from (3.4) as follows

F̄TI (t) = F̄1:2(t) + F̄1:2(t) ln(F̄1:2(t)) + 2

∫ t

0

K(F̄ (t), F̄ (x))

F̄1:2(x)
f1:2(x)dx

=
F̄ (t)

2− F̄ (t)

(
1− 3 ln F̄ (t)− ln(2− F̄ (t))

)
= q̄I(F̄ (t)),

where q̄I(u) = (u− 3u lnu− u ln(2− u))/(2− u) represents the dual distortion associated to TI .
On the other hand, we can obtain immediately the expression for the dual distortion associated

to TII just by replacing K(u, v) in (3.9) as follows

q̄II(u) = 2u−K(u, u) + 2

∫ 1

u

u−K(v, u)

v −K(v, v)
(1− ∂1K(v, v))dv

=
u(3− 2u)

2− u +
u (3− u)

1− u ln(2− u) +
u2 (5− 3u)

(2− u)(1− u)
lnu.

Finally, we obtain the dual distortion functions for the case III. Firstly, we note that both
distortions must be the same because we are considering exchangeable components. Moreover,
Q̄(u, v) = u+ v −K(u, v). Hence, the dual distortion function of T (1)

III can be obtained as follows

F̄
T

(1)
III

(t) = Q̄(q̄1(F̄ (t)), F̄ (t)) = q̄1(F̄ (t)) + F̄ (t)− q̄1(F̄ (t)) F̄ (t)

q̄1(F̄ (t)) + F̄ (t)− q̄1(F̄ (t)) F̄ (t)
= q̄

(1)
III(F̄ (t)),

where
q̄

(1)
III(u) = 2u− u lnu− u− u lnu

1 + (1− u)(1− lnu)
.

We compare q̄I , q̄II and q̄
(1)
III in Figure 2 (left) along with the dual distortion function associated

to the system without repairs. We observe that T ≤ST TII ≤ST TI and TII ≤ST T (1)
III . In Figure

2 (right) we represent the quotients q̄(1)
III/q̄II , q̄I/q̄II and q̄I/q̄

(1)
III . The first and second ratios are

above the line y = 1 and they are decreasing, therefore TII ≤HR T (1)
III and TII ≤HR TI . However,

q̄I/q̄
(1)
III crosses the line y = 1 at the value u0 = 0.5862 and thereby TI and T

(1)
III are not comparable

in the ST order. As the ratio is bathtub, we have T (1)
III ≤MRL TI whenever E(T

(1)
III) ≤ E(TI).

Proceeding as in the examples above, we can obtain the stochastic comparisons among the
three policies considered in this paper for any coherent system. In particular, Table 2 provides the
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best replacement policy in terms of the usual stochastic order for all the coherent systems with
1-4 IID components. The coefficients ci and dj, associated to the distortion function q̄II are given
for each system as well. As one would expect in the case of IID components, the policy II induces
a more reliable system in most of cases (see Theorem 4.2). However, there exist some systems
where repairing a fix component is better than repairing the component which causes the failure
of the system. In particular, the systems 7 and 24 in Table 2 satisfy that the system’s reliability
is improved in a higher level if we apply the policy III rather than the policies I or II. For both
systems the first component is the most important component and its functioning implies the
system functioning. Furthermore, the policies II and III are better than policy I for the systems
25 and 26 and both policies are not ordered. In this case, the optimal policy depends on if the
decision maker is interested in improving the reliability of the system in an advanced or early age.

5. Conclusions

In the present paper we give a procedure to determine the reliability functions of coherent
systems under a minimal repair maintenance and three different replacement policies. The com-
ponents can be dependent or independent. In the first replacement policy, the first broken compo-
nent is repaired. In the second case, a minimal repair is applied to the component which produces
the failure of the system. In the third one, a fixed component is repaired in case of failure. Note
that in the two first cases we do not know a priori which component will be repaired. In this
context, we have proved that if the components are ID, then the reliability function associated
to the lifetime of the repaired system in case I can be expressed as a distortion of the common
component reliability function (see Theorem 3.2). This distortion depends on the structure of the
system and on the underlying survival copula. We provide an explicit expression of this distortion
in Theorem 3.3 for IID components. Analogously, we have proved that the reliability function for
the case II can also be expressed using a distortion function when the components are exchange-
able. This distortion is simplified for the IID case in Theorem 3.6. The new technique developed
here can also be used to study other replacement policies. As an example, we provide an explicit
expression for the dual distortion functions associated to the case of repairing the two first broken
components in a general system or the k first broken components in a series system.

These representation results are used to compare the three replacement policies using the main
stochastic orders. In this sense, our first comparison result shows that, for any coherent system
with IID components, the case II is always a better strategy of replacement than the case I in the
stochastic order (see Theorem 4.2). We prove with an example that this property is not true when
the components are dependent. Furthermore, the previous result holds for the hazard rate order
when we consider systems which preserve the IFR property (see Theorem 4.3). Unfortunately,
the case III is not ST-ordered with neither case I nor case II, even assuming IID components. We
provide both counterexamples as well as some interesting examples including the comparisons of
all the coherent systems with 1-4 IID components (see Table 2).
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Table 2: Coefficients ci and di associated to the dual distortion function q̄II (see Theorem 3.6) for all the coherent
systems with 1-4 IID components and the best replacement policy in the stochastic order. Cases I, II and III (i)

are denoted by CI , CII and C
(i)
III , respectively.

N T = φ(X1, X2, X3, X4) c d Best ST-policy

1 X1:1 = X1 (1) (-1) CI ≡ CII ≡ C
(1)
III

2 X1:2 = min(X1, X2) (0,1) (0,-2) CI ≡ CII
3 X2:2 = max(X1, X2) (0,1) (-2,0) CII
4 X1:3 = min(X1, X2, X3) (0,0,1) (0,0,-3) CI ≡ CII
5 min(X1,max(X2, X3)) (0,0,1) (0,-4,1) CII
6 X2:3 (2-out-of-3:F) (0,-3,4) (0,-6,0) CII
7 max(X1,min(X2, X3)) (1/2,-1,3/2) (-1,-2,0) C

(1)
III

8 X3:3 = max(X1, X2, X3) (-3/2,3,-1/2) (-3,0,0) CII
9 X1:4 = min(X1, X2, X3, X4) (0,0,0,1) (0,0,0,-4) CI ≡ CII
10 max(min(X1, X2, X3), (0,0,0,1) (0,0,-6,2) CII

min(X2, X3, X4))

11 min(X2:3, X4) (0,0,-3,4) (0,0,-9,2) CII
12 min(X1,max(X2, X3),max(X2, X4)) (0, 1/2, -1, 3/2) (0, -2, -3, 1) CII
13 min(X1,max(X2, X3, X4)) (0,-3/2,3,-1/2) (0,-6,3,-1) CII
14 X2:4 (2-out-of-4:F) (0,0,-8,9) (0,0,-12,0) CII
15 max(min(X1, X2),min(X1, X3, X4), (0,0,-4,5) (0,-2,-6,0) CII

min(X2, X3, X4))

16 max(min(X1, X2),min(X3, X4)) (0,0,0,1) (0,-4,0,0) CII
17 max(min(X1, X2),min(X1, X3), (0,-1,0,2) (0,-4,-2,0) CII

min(X2, X3, X4))

18 max(min(X1, X2),min(X2, X3), (0,-2,4,-1) (0,-6,2,0) CII
min(X3, X4))

19 max(min(X1,max(X2, X3, X4)), (0,-3,4,0) (0,-6,0,0) CII
min(X2, X3, X4))

20 min(max(X1, X2),max(X1, X3), (0,-5,8,-2) (0,-8,2,0) CII
max(X2, X3, X4))

21 min(max(X1, X2),max(X3, X4)) (0,-4,8,-3) (0,-8,4,0) CII
22 min(max(X1, X2),max(X1, X3, X4), (0,-8,12,-3) (0,-10,2,0) CII

max(X2, X3, X4))

23 X3:4 (3-out-of-4:F) (0,-12,16,-3) (0,-12,0,0) CII
24 max(X1,min(X2, X3, X4)) (2/3,0,-2,7/3) (-1,0,-3,0) C

(1)
III

25 max(X1,min(X2, X3),min(X2, X4)) (1/3,-3,5,-4/3) (-1,-4,1,0) CII , C
(1)
III

26 max(X2:3, X4) (5/6,-5,13/2,-4/3) (-1,-4,0,0) CII , C
(4)
III

27 max(X1, X2,min(X3, X4)) (1/3,0,1,-1/3) (-2,0,0,0) CII
28 X4:4 = max(X1, X2, X3, X4) (-10/3,6,-2,1/3) (-4,0,0,0) CII
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