
Improving the Reliability of Network Intrusion
Detection Systems Through Dataset Integration

ROBERTOMAG�AN-CARRI�ON , DANIEL URDA , IGNACIO DIAZ-CANO , AND BERNAB�E DORRONSORO

CORRESPONDING AUTHOR: ROBERTO MAG�AN-CARRI�ON (rmagan@ugr.es)

This work was supported in part by Spanish Ministerio de Ciencia, Innovaci�on y Universidades and the ERDF under Grants RTI2018-100754-B-I00 (iSUN), RTI2018-
098160-B-I00 (DEEPAPFORE) and PID2020-114495RB-I00 (SICRAC), in part by ERDF under Grant FEDER-UCA18-108393 (OPTIMALE), and in part by Junta de

Andalucı́a and ERDF under Grant GENIUS – P18-2399.

ABSTRACT This work presents Reliable-NIDS (R-NIDS), a novel methodology for Machine Learning
(ML) based Network Intrusion Detection Systems (NIDSs) that allows ML models to work on integrated
datasets, empowering the learning process with diverse information from different datasets. We also propose
a new dataset, called UNK22. It is built from three of the most well-known network datasets (UGR’16,
USNW-NB15 and NLS-KDD), each one gathered from its own network environment, with different features
and classes, by using a data aggregation approach present in R-NIDS . Therefore, R-NIDS targets the design
of more robust models that generalize better than traditional approaches. Following R-NIDS, in this work we
propose to build two well-known ML models for reliable predictions thanks to the meaningful information
integrated in UNK22. The results show how these models benefit from the proposed approach, being able to
generalize better when using UNK22 in the training process, in comparison to individually using the datasets
composing it. Furthermore, these results are carefully analyzed with statistical tools that provide high confi-
dence on our conclusions. Finally, the proposed solution is feasible to be deployed in network production
environments, not usually taken into account in the literature.

INDEX TERMS Robust network intrusion detection systems, NIDS, network security, machine learning,
data aggregation, data integration

I. INTRODUCTION

Several technical reports announce the notable growing of
the devices connected to Internet Protocol (IP) networks
nowadays and in a near future. For instance, the Cisco
Annual Internet Report (2018–2023) [1] forecasts that its
number will exceed 29 billions, > 3 times the global popula-
tion. This fact can be motivated by the advent of the real
deployment of communications technologies like 5G, pro-
viding easy and affordable Internet access for a huge number
of heterogeneous devices from IoT (Internet of Things) eco-
systems. Such an (inter-) connectivity allows to develop new
applications and to offer new services inconceivable before.
However, both the security risk and the attack surface grow
as the number of connected devices, communications and
services increase. Consequently, malicious actors have many

ways and exposed entry points to perform and execute
attacks. According to the ENISA Threat Landscape 2020
report (ETL) [2], the sophistication of threat capabilities seri-
ously increased in 2019, having detected over 200,000 daily
new variants of malware targeting diverse objectives.
In this scenario, there is an major need for novel methods

and techniques for an early attack detection, which is of
upmost importance to reduce the impact of the attacks on the
target system or communication network. These new solu-
tions must be robust, resilient, and adaptable to highly
dynamic scenarios. According to the ETL report [2], the
detection of an attack takes around 6 months in average thus,
a short detection time reduces the attack’s impact.
IDSs (Intrusion Detection Systems) have been widely used

to address this problem in general, being the NIDSs (Network

Roberto Mag�an-Carri�on is with the Network Engineering and Security Group (NESG), Department of Signal Theory, Telematics and Communications, School of
Computer Engineering and Telecommunications, University of Granada, 18071 Granada, Spain

Daniel Urda is with the Grupo de Inteligencia Computacional Aplicada (GICAP), Departamento de Ingenierı́a Inform�atica, Escuela Polit�ecnica Superior, Universidad
de Burgos, 09001 Burgos, Spain

Ignacio Diaz-Cano and Bernab�e Dorronsoro are with the Superior Engineering School, University of Cadiz, 11519 C�adiz, Spain

Received 28 October 2021; revised 18 March 2022; accepted 20 May 2022.
Date of publication 2 June 2022; date of current version 6 December 2022.

Digital Object Identifier 10.1109/TETC.2022.3178283

VOLUME 10, NO. 4, OCT.-DEC. 2022

2168-6750 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

permission. See ht_tps://www.ieee.org/publications/rights/index.html for more information. 1717Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7744-7308
https://orcid.org/0000-0002-7744-7308
https://orcid.org/0000-0002-7744-7308
https://orcid.org/0000-0002-7744-7308
https://orcid.org/0000-0002-7744-7308
https://orcid.org/0000-0003-2662-798X
https://orcid.org/0000-0003-2662-798X
https://orcid.org/0000-0003-2662-798X
https://orcid.org/0000-0003-2662-798X
https://orcid.org/0000-0003-2662-798X
https://orcid.org/0000-0002-5353-6760
https://orcid.org/0000-0002-5353-6760
https://orcid.org/0000-0002-5353-6760
https://orcid.org/0000-0002-5353-6760
https://orcid.org/0000-0002-5353-6760
https://orcid.org/0000-0003-0481-790X
https://orcid.org/0000-0003-0481-790X
https://orcid.org/0000-0003-0481-790X
https://orcid.org/0000-0003-0481-790X
https://orcid.org/0000-0003-0481-790X

IDSs) used for monitoring and detecting malicious actions in
communications networks. A large number of Machine
Learning (ML)-based solutions have been proposed in the lit-
erature for NIDSs [3]–[7]. These methods are generally
trained and validated on one single dataset. However, despite
the fact that some of the existing datasets were carefully built
with realistic network traffic and attacks, such kind of studies
does not allow providing generic conclusions about the per-
formance of the proposed methods on other network datasets.
Indeed, the trustworthiness of a method that is trained and val-
idated on a single dataset is seriously compromised, and this
is a major issue nowadays in the literature of ML-based NIDS
methods. Besides, this is a critical concern in the topic,
because these methods must detect network attacks (ideally,
including new attacks) in any scenario.
More reliable solutions could be designed if several net-

work datasets are jointly considered during the training pro-
cess of the ML model. In principle, this may allow capturing
the fundamentals of heterogeneous attacks observed and/or
artificially generated in different network environments
where each single network dataset was created. Unfortu-
nately, integrating data from several datasets is a difficult
task, given that all existing ones in the literature present
important differences. For instance they differ in the number
of features, their values, the annotated attacks, whether they
include timestamp or not in the observations, etc. This makes
it unfeasible to apply a given solution on different datasets
with no additional methods or techniques.
Besides, ML-based techniques typically require the nor-

malization of input data to avoid any undesirable bias due to
existing differences in the magnitudes of the variables’ val-
ues. In this sense, samples fed to ML methods must be nor-
malized in order to achieve an acceptable generalization
performance under the assumption of both the development
and test sets having the same distribution. However, this
assumption does not always hold since the data used to train
a ML model may differ from the one present in the testing
scenario, a well-known issue in ML-based approaches com-
monly known as data shift [8], [9] (e.g., differences on the
class labels definition —shift on the output—, differences on
the distribution of input features —shift on the input—). In
fact, this issue is more likely to be present in network datasets
for NIDSs since each of them are built on different network
environments and under different experimental settings (e.g.,
real or synthetic network traffic, variety of attacks samples
both real or manually generated, etc.). Consequently, one
needs to solve the challenge of normalizing data belonging
to different network datasets in order to put ML models that
generalize well into production, in terms of accurately classi-
fying the traffic of a real network.
Camacho et al. proposed in [10] a data aggregation tech-

nique for network datasets, called Feature as a Counter
(FaaC). It aggregates a batch of raw network traffic observa-
tions into one single sample by translating the dataset fea-
tures into a new set of features that represent counters of
the previous ones. FaaC was later successfully applied to

NIDS in [5], [11]–[13], and the authors applied it to the
UGR’16 dataset [14], a timestamp-based network dataset
built from real network traffic. It is reasonable to think that
time distribution (i.e., network flows within a certain time
slot) might contain relevant information to detect attacks
and, consequently, aggregating raw information by time
intervals is relevant in this field. However, its applicability
to other well-known previous network datasets, such as
USNW-NB15 [15] or NLS-KDD [16], the latter with no
timestamp information, is not a priory possible, or at least
as the FaaC technique was conceived.
In this sense, a novel methodology to apply FaaC to time-

stamp-less datasets was recently proposed in [17]. The paper
shows that there are no major differences between the perfor-
mance of ML models trained on UGR’16 dataset and two
timestamp-less versions. Based on this result, we propose in
this work a novel methodology that allows using and com-
bining several network datasets (with and without timestamp
information), each one with its own set of input features, to
train reliable ML-based NIDSs solutions that generalize bet-
ter across different network environments, in contrast to the
single dataset-based solution that is typically found in the lit-
erature. This combination of heterogenous datasets is possi-
ble thanks to the use of FaaC.
Additionally, this novel methodology allows normalizing

the derived datasets in an easy and flexible way (no matter
the number of samples, the values in their variables nor the
network environment used to build the raw dataset), a key
feature that makes feasible the use of the previously built ML
models in a production scenario [18], in comparison to other
existing ML-based NIDSs solutions. Our main hypothesis is
that the resulting ML model developed using this novel
methodology may benefit from the overall attacks informa-
tion contained across different datasets, which gives hope to
achieve ML-based NIDSs solutions that outperform classical
approaches that are only trained in one single dataset. The
proposed methodology also considers all the steps required
for a correct practice when using ML [5], including data nor-
malization, feature engineering and selection, hyper-parame-
ters selection (we use Least Absolute Shrinkage and
Selection Operator, LASSO for short) within a cross-valida-
tion approach for model classification assessment. Although
this methodology allows adopting many different ML mod-
els, it is not the scope of this work to perform such a large
comparison (an interesting future work). Instead, we chose
two of the most representative models of the main ML cate-
gories, namely linear and non-linear methods, to compare
their performance. They are Linear Regression [19] and Ran-
dom Forest [20], respectively. Altogether, the proposed
methodology supposes the first step towards the design of a
new generation of reliable ML-based NIDSs that can perform
accurately in generic network scenarios.
The main contributions of this work are:
� The deployment of a complete methodology, called

Reliable-NIDS (R-NIDS), that allows building trust-
worthy ML models for NIDSs, as well as evaluating

1718 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

the results in a reliable way, including steps for (i) pre-
processing and transforming raw network datasets, (ii)
performing data integration of different network data-
sets, (iii) training robust ML models —feature selec-
tion, hyper-parameter selection, evaluation strategy,
performance metrics—, and (iv) testing statistical sig-
nificance. Besides, R-NIDS methodology allows to
design, implement and make fair and honest compari-
sons of ML-based solutions for NIDSs which is not
commonly seen in the literature.

� The introduction of a novel data integration approach,
that allows to jointly consider different network data-
sets through a row-wise aggregation step. A new data-
set, UNK22, is proposed combining network traffic
from 3 previous and well-known network datasets:
UGR’16, UNSW-NB15 and NSL-KDD.

� The implementation of a reliable ML-based solution
using the new UNK22 dataset for NIDS, which is
shown to considerably generalize better than previous
existing ones that were based on one single network
dataset. Particularly, this solution can be used in pro-
duction in generic network scenarios thanks to the data
aggregation and normalization approach presented in
this paper. Furthermore, it can analyze network com-
munication flows regardless of the aggregation strategy
employed for the FaaC technique, i.e., analyzing traffic
within a certain frequency (timestamp-based) or within
a set of a certain size of consecutive network flows
(batch-based).

� The study of how ML models generalize using valida-
tion datasets different from those used for training. This
is, to the best of our knowledge, the first attempt to ana-
lyze the reliability of ML-based NIDSs.

The rest of the paper is organized as follows. In Section II,
the most relevant works carried out to date regarding the eval-
uation of NIDS are studied. In Section III, the datasets that
have been used in this study are introduced (UGR’16,
USNW-NB15 and NSL-KDD). The proposed framework,
called R-NIDS, is introduced and described in detail in
Section IV. Next, the experimental design employed in this
work to develop and evaluate reliable ML-based solutions for
NIDSs is presented in Section V. Finally, Section VI presents
and discusses the results obtained in the analysis, and the con-
clusions and future work are shown in Section VII.

II. BACKGROUND

Throughout this section, we present and discuss some of the
most interesting articles dealing with the detection of net-
work attacks using ML-based techniques. Table 1 provides
an overview and comparison of these works. It mainly shows
information about key factors involved when implementing
ML-based NIDSs solutions which are, among other, the data-
sets they work with and the stages that should be found in a
work pipeline to train and test ML modes as recommended
in [5]. They are the Feature Engineering (FE), the Data Pre-
processing (DP), the Feature Selection (FS), the Hyper-
parameters Selection (HS), the Machine Learning (ML)
model and the Performance Metrics (PM) used. Additionally,

TABLE 1. Methodology comparison for NIDS evaluation.

Work Dataset Methodology

FEFS DP HS ML PM* SSA

Hajisalem et al. [6] NSL-KDD, UNSW-NB15 – ✓ – – other A, TFR –

Kabir et al. [7] KDDCup’99 – ✓ – – classic F1, R, P –

Sharafaldin et al.
[21]

CICIDS2017 ✓ ✓ – – classic F1, R, P –

Siddiqi et al. [22] NLS-KDD, ISCX12 ✓ ✓ mean – classic A, F1 –

Kumar et al. [23] UNSW-NB15 ✓ ✓ normalization – other A, R, P –

Tian et al. [24] UNSW-NB15, NSL-KDD ✓ ✓ normalization – deep learning R, O –

Verma et al. [25] CIDDS-001, UNSW-NB15, NSL-KDD ✓ – – ✓ classic, deep
learning

A, TFP, AUC Friedman,
Nemenyi

Riyaz et al. [26] KDDCup’99 – ✓ numerical
values

– deep learning A –

Aleesa et al. [27] UNSW-NB15 ✓ ✓ normalization ✓ deep learning A, P, ROC,
AUC

–

Toldinas et al. [28] UNSW-NB15 ✓ ✓ normalization – deep learning A –

Pooja et al. [29] KDD’99, UNSW-NB15 – – normalization – classic, deep
learning

A –

Zoppi et al. [4] NLS-KDD, UGR16, CICIDS17, UNSW-NB15 ✓ ✓ normalization ✓ deep learning A, TFR, F1, R,
P

–

Sarhan et al. [30] USNW-NB15, BoT-IoT, ToN-IoT, CSE-CIC-IDS2018, NF-
UQ-NIDS

✓ – normalization – classic AUC, F1, TFR –

Injadat et al. [31] CICIDS17, UNSW-NB15 ✓ ✓ normalization ✓ classic A, FP, R, P –

Mag�an-Carri�on et al.
[5]

UGR’16 ✓ ✓ normalization ✓ classic F1, R, P, AUC Friedman,
Wilcoxon

* A (Accuracy), TFR (TP –True Positive Rate–, FP –False Positive Rate–, TN –True Negative Rate–, or FN –False Negative Rate–), F1 (F1-score), R (Recall),
P (Precision), ROC (Receiver Operating Characteristic curve), AUC (Area Under the Curve), O (Others).

VOLUME 10, NO. 4, OCT.-DEC. 2022 1719

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

we consider a new and relevant stage for the Significance
Statistical Analysis (SSA). The ‘✓’ indicates that the corre-
sponding work is considering a specific stage (existing or
proposed by the authors) within their approach while the ‘–’
shows right the opposite (i.e., the stage is not included within
the work or the authors miss or omit to mention it). Rest of
values in the table are self-explanatory.
A considerable amount of works have been recently pub-

lished related to ML-based NIDSs. For instance, in [6] the
authors proposed a NIDS solution for anomaly detection that
relies on the joint use of swarm-intelligence-based optimiza-
tion heuristics: Artificial Fish Swarm (AFS) and Bee Colony
Optimization (BCO). This hybrid algorithm, is able to detect
anomalies using a reduced subset of characteristics. The pro-
posed system implements an adequate feature selection pro-
cedure, though it does not introduce any of the other what we
consider recommended steps. Finally, this study does not
provide details about the method used, thus making it diffi-
cult to compare it against other solutions.
The authors in [7] proposed a Least Squares Support Vec-

tor Machine (LS-SVM)-based NIDS. In this work, they used
the Optimal Allocation technique to efficiently handle large
datasets through the selection of the most representative sam-
ples, organized according to the number of samples and the
confidence interval to be achieved. Despite the LS-SVM
model is not often used for intrusion detection, the authors
considered this technique interesting to define the entire pop-
ulation from a series of representative examples.
In [21], the authors introduce and highlight the existing

problems caused by the increasing number and variety of net-
work attacks. They are in turn worsened due to the lack of
appropriate datasets for training ML-based NIDSs. There-
fore, they review a significant amount of network datasets
from recent years, listing the problems that each one contains
like: freshness, insufficient number of attacks, etc. As a
result, they proposed a new dataset that solves, or at least
mitigates these problems. They tested several classical ML
models to corroborate it. Similarly, authors in [22] addressed
this issue by remarking the importance of making an effec-
tive feature selection for an efficient training and testing of
ML models. For this purpose, they proposed to implement
and evaluate the effects of normalizing samples before per-
forming feature selection, concluding that this strategy pro-
vides better results than the existing ones.
In [23] the authors proposed a system to detect five con-

ventional attacks. The author built a new dataset that is after-
wards compared with the USNW-NB15 dataset. In this
sense, they employed the gain information technique over
the set of features on the original USNW-NB15 dataset and
used a misuse-based approach to create this new dataset.
Such dataset was used to train ML models making them to
perform better in terms of precision, attack detection rate,
false positive rate, among other performance metrics.
The authors of [24] addressed a well-known problem in

ML classification tasks: the overfitting problem. To over-
come this problem, they proposed an approach based on

improved Deep Belief Network (DBN) composed of multiple
hidden layers and connections. Together with DBN, the data-
set used was pre-processed using the Probabilistic Mass
Function (PMF) and the Min-Max normalization technique
that simplifies this procedure. Both techniques allowed to
achieve a small improvement in the performance compared
to other studies compared in this work. The authors consid-
ered all the stages we recommend here for a correct ML mod-
els training and testing except the hyper-parameter selection
and the significance statistical analysis stages.
NIDS solutions are also being applied in IoT ecosystems,

such as the one reported by the authors in [25]. This work
proposes the use of classification algorithms to detect DoS
attacks, one of the most damaging attacks for IoT platforms.
The performance tests were made on ML popular datasets
and using a Multi-Layer Perceptron (MLP). Although
authors perform a hyper-parameter selection, other important
phases, such as feature selection, were ignored. Additionally,
they employed significance tests, specifically Friedman and
Nemenyi, to statistically analyze the performance obtained,
which should be a mandatory step in order to have confi-
dence in the results obtained [32].
A Convolutional Neural Network (CNN) is used in [26]

for intrusion detection in wireless networks. They use
KDD’99 Cup dataset, whose non-numerical features have
been transformed into numerical values. The work proposes
an interesting feature selection mechanism, called condi-
tional random field and linear correlation coefficient-based
feature selection. The model is evaluated and compared
against others from the literature according to their accuracy.
A Deep Learning (DL)-based NIDS is featured in [27].

The authors proposed using a popular dataset, the USNW-
NB15 to perform a binary and multi-class classification. In
the stages of their methodology, they included all the steps
suggested in our proposal except the significance statistical
analysis. Subsequently, they compared the performance of
the trained models with other published works, obtaining a
performance rate close to 100%. Similarly, the authors
in [28] proposed a DL-based NIDS using the same dataset.
This work tried to enhance state of the art NIDSs by using of
image recognition techniques through different stages. How-
ever, they did not mention anything about hyper-parameters
selection. With respect to the dataset, they transformed it into
four-channel images (red, green, blue, and alpha), which
were subsequently used to train and validate the proposed
model. Another DL-based system using bidirectional LSTM
(Long Short-Term Memory) is introduced by the authors
in [29]. The experiments are carried out on classic datasets,
and data normalization is only applied within the data pre-
processing stage. The remaining stages were not contem-
plated by the authors, where only a performance study based
on the considered activation function within the DL model
was included.
In [4] the authors noted that supervised learning has been

very effective for known threats, although it does not work
well at detecting unknown attacks that are commonly called

1720 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

zero-day attacks. In the study, the authors proposed a semi-
supervised learning system, combining two layers, to detect
known and unknown threats, and they address all the recom-
mended steps for an adequate methodology in the study of
network attacks, except the use of SSA.
A methodology for ML-based NIDS is proposed in [31]. It

compares several methods for feature and hyper-parameter
selection. The results of two classic ML models (KNN and
RF) are analyzed for CICIDS17 and UNSW-NB15 datasets
using different performance metrics, and no statistical signifi-
cance analysis was performed. The work emphasizes an
important limitation found in the literature, where all papers
use the same dataset for training and testing, while the gener-
alization capability of the models on other datasets (different
dataset from the one used for training) should be analyzed.
However, they do not perform this study either. Our work is
pioneer in this sense, and we prove that ML models trained
in one dataset are not able to generalize to different situa-
tions, a desirable feature for a ready-production NIDS
system.
Another interesting study about the need of building net-

work datasets comprising a standard feature set for NIDS
evaluation is introduced in [30]. The authors transform 4
state-of-the-art network datasets into NetFlow-based versions
where a common feature space is shared for fair NIDS com-
parison. Moreover, it allows to merge datasets for improving,
potentially, how NIDSs generalize, which is a desired charac-
teristic to deploy them in real network environments different
from the ones used for training. In fact, the authors built a new
dataset named NF-UQ-NIDS which merges all the previous
ones. For assessing the suitability of the datasets for NIDS
classification, they use a classic ML-model (ExtraTree) fol-
lowing a traditional one-single dataset approach i.e., training
and testing with the same dataset. However, first, they forgot
or elude to mention what we consider relevant steps for a fair
NIDS evaluation and, in the end, for a fair comparison. They
are the FS, HS and SSA steps. Second, though it is a really
nice approach for training robust NIDSs ready to be used in
production network environments, the authors fail in validat-
ing it following a one-single dataset evaluation approach.
Conversely, our work carries out a deep analysis of how clas-
sic ML-models, both linear and non-linear, generalize. We
conclude that training ML-models with an aggregated dataset
comprising single and heterogeneous ones outperform signifi-
cantly their classification performance than in the case of
following a classic one-single-dataset approach for training
and testing them.
Therefore, considering Table 1 and the guidelines pro-

posed in [5], we can conclude that most of the works still fail
in the use of HS and SSA stages, two of the most important
steps for a reliable and honest design and comparison of
NIDS solutions. It is also worth noting the recurrent use of
the KDD-related datasets for validating NIDSs still nowa-
days, even though it is undoubtedly outdated (created almost
20 years ago in a field that significantly evolves within a year
time). Moreover, authors tend to use the accuracy measure to

validate their models, although it is widely known as a non-
fair performance metric for highly imbalanced classification
problems, such as the context of the problem addressed here.
Finally, no works can still be found in the literature compris-
ing the issue of making reliable ML-based NIDSs, aiming at
performing well in generic network environments. In this
work, we test our main hypothesis based on the idea that inte-
grating network datasets would empower the learning pro-
cess with diverse information from different datasets, at the
same time that ML-based systems would be more adaptable
in order to put them in production in generic network
environments.

III. NETWORK DATASETS

Network security researchers continuously deal with a well-
known issue concerning the existence of an adequate number
of datasets to evaluate NIDS. Thus, several efforts have been
made in recent years in order to obtain good enough network
datasets in some sense. For instance, some datasets stand out
and differ from others in terms of the data format used (net-
work flows or packets), the way in which the data is recorded
(real or synthetic), the duration of the data recordings used in
the dataset and their freshness [14], [33].
Therefore, building the perfect dataset is not a trivial task,

as stated in [33], [34] and which is mainly supported by two
compelling reasons: 1) new attacks samples are continuously
observed [2], [35], [36], which makes it hard to have a per-
manently up-to-date dataset; and 2) the fact that specific
applications context of ML-based models need specific
datasets [4].
Even in the case that no perfect dataset exists, in this study

we hypothesized that ML-based solutions trained using a
combination of datasets, could perform better than classic
solutions involving only one dataset for training and testing.
Moreover, this approach is more likely to be suitable for its
implementation in real and generic production environments
than others built using only one dataset.
Next, we briefly introduce the three network datasets used

in this work, to be afterwards combined into a single one
called UNK22 (see Section V). They are the UGR’16,
USNW-NB15 and NSL-KDD, and were gathered in different
network scenarios and also including a variety of attack sam-
ples generated with different tools.

A. UGR-16

The UGR’16 [14] dataset contains anonymized network traf-
fic flows (NetFlow) collected during 4 months at the facilities
of an Internet service provider (ISP) in Spain. Thus, the
authors of this dataset have divided its content into two dif-
ferent parts: CAL, which refers to data obtained from March
to June 2016, containing inbound and outbound ISP network
traffic; and TEST, corresponding to traffic obtained from
July to August 2016 mostly with attack streams that were
either synthetically generated or found by detectors.
To guarantee the correct functioning of the ISP and not

adulterate the netflows with the synthetic attacks, they were

VOLUME 10, NO. 4, OCT.-DEC. 2022 1721

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

launched under a controlled environment. Most of these
attacks were created using updated tools that cover diffi-
cult to detect harmful attacks, like DoS (both low and
high rate), Scan (Port Scanning) or Botnet. However,
UGR’16 does not include only synthetic attacks but also
real attacks, which are detected and labeled by the
authors. These detected attacks are UDP port scan, SSH
scan and Spam campaigns. Finally, and not less relevant,
those streams generated by IP addresses in open blacklist
sources were tagged as Blacklist.
The dataset is composed by 23 files, one per week. From

them, 17 were selected for CAL subset and the other 6 for
TEST. The size of each file is around 14 GB (compressed)
and they can be downloaded in nfcapd or CSV formats.1

We summarize in Table S1 of the supplementary mate-
rial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TETC.2022.3178283 the class distribution of the TEST
part, together with the number of flows in each class. As
it could be expected, the number of attack traffic flows is
notably unbalanced with respect to normal traffic (Back-
ground). Among the attacks, Spam is the one with the
highest number of flows, representing only 1:96% of the
flows in TEST. In addition, TEST contains flows of all
mentioned attacks, both synthetically generated and dis-
covered from anomalous behaviors. For the mentioned
reasons, we decided to use this part of the UGR’16 data-
set in this work.

B. USNW-NB15

UNSW-NB15 [15] is a public dataset that collects raw net-
work traffic using the IXIA tool “PerfectStorm” in the Cyber-
Range laboratory of the Australian Center for Cybersecurity
(CASS). This set up consist of several network devices (fire-
walls and routers) connecting servers and hosts. In concrete,
servers are in charge of generating both normal and mali-
cious network traffic, from end to end devices, traversing a
firewall.
After using the IXIA tool under this set-up, 47 characteris-

tics were obtained from the data. The TCPdump tool was
installed on one of the routers to capture the PCAP files
where a total of 2,540,044 records (traffic flows) were
recorded an stored in four CSV files.2 Nine different classes
of attacks were identified: Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic, Reconnaissance (Port Scanning),
Shellcode, and Worms. For this study, the four CSV files of
traffic flow records have been merged, and the number of
samples that exist of each class have been counted, as shown
in Table S2 of the supplementary material, available online.
Similarly to the UGR’16 dataset, there is a large percentage
of background traffic in comparison to the other classes, fol-
lowed by the the Generic attack. Other attack samples have a
lower presence in the datasets.

C. NLS-KDD

NSL-KDD is a dataset built from the KDDCup’99 dataset. It
was conceived to solve some of the well-kown flaws it raises
e.g., the duplicity on the records [16]. However, this new ver-
sion of the KDD dataset still inherits some of the problems of
the original one and it may not be considered a good repre-
sentation of real traffic in communication networks. It is con-
sidered in this study to analyze its influence with respect to
the other two involved datasets that are, in principle, more
suitable according to their characteristics.
The NLS-KDD dataset comprises two CSV files3 for train-

ing and testing purposes. In our case, we have merged the
two files into only one. Table S3 shows the number of flows
of each class category. Probe (Port Scanning) class com-
prises the following kind of attacks: psweep, nmap, ports-
weep, satan, saint, mscan. Similarly, for the DoS class, it
comprises back, land, neptune, pod, smurf, teardrop,
apache2, mailbomb, udpstorm, processtable attacks. R2L
(Remote to Local) attacks which tries to get local access to
remote target by exploiting certain vulnerabilities comprise
the following type of attacks: ftp_write, guess_passwd, multi-
hop, phf, imap, spy, warezclient, warezmaster, named,
xsnoop, xlock, sendmail, worm, snmpgetattack, snmpguess.
Finally, the U2R (User to Root) class comprises the follow-
ing privilege escalation attacks: perl, rootkit, loadmodule,
buffer_overflow, httptunnel, ps, sqlattack, xterm. Besides,
Table S3 of the supplementary material, available online,
shows that NSL-KDD notably differs from the other net-
works datasets in terms of the attacks and normal traffic dis-
tributions, representing a more balanced problem than these
other datasets, as opposite to what one observes in a real net-
work environment.

IV. RELIABLE NETWORK IDS (R-NIDS) METHODOLOGY

Due to the continuous growing of security threats, more
sophisticated methods and ways need to be devised to coun-
teract against new samples of malicious security attacks,
specially in the detection stage. Reliable-NIDS (R-NIDS)
proposes a new methodology to achieve trustworthy and reli-
able NIDS solutions. On one hand, it provides a flexible and
adaptable framework for a fair evaluation and comparison of
NIDS solutions. On the other hand, and thanks to the new
data integration approach proposed, makes it suitable to built
enhanced ML models that perform correctly in network pro-
duction environments. Modules and stages of R-NIDS are
shown in Figure 1.
On the right part of the figure, the main modules and

stages to evaluate and compare NIDSs are shown. They are:
the Feature Engineering (FE), the Feature Selection (FS), the
Data Preprocessing (DP), the Hyper-parameter Selection
(HP), the Machine Learning model (ML), the Performance
Metric (PM) used and the Significance Statistical Analysis
(SSA) performed. As it is emphasized in [5], almost all the

1The UGR’16 dataset: https://nesg.ugr.es/nesg-ugr16/
2UNSW-NB15: https://researchdata.edu.au/unsw-nb15-dataset 3The NSL-KDD dataset: https://www.unb.ca/cic/datasets/nsl.html

1722 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TETC.2022.3178283
http://doi.ieeecomputersociety.org/10.1109/TETC.2022.3178283
https://nesg.ugr.es/nesg-ugr16/
https://researchdata.edu.au/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/nsl.html

analyzed previous works either missed to include some of
them or elude mentioning them, making it difficult to com-
pare different NIDS solutions.

A. BATCH-BASED FE FOR MULTIPURPOSE DATA

AGGREGATION AND INTEGRATION: A ROW-WISE

APPROACH

As depicted in the left-hand side of Figure 1, R-NIDS is able
to manage heterogeneous network datasets to perform a data
aggregation and to integrate them into only one overall NIDSs
dataset. This is achieved thanks to the Feature as a Counter
(FaaC) method [10] applied in the FE module. FaaC converts
the dataset into a derived dataset with completely new varia-
bles, which are counters (P0 in the figure) on the values of the
variables in the original dataset (P1;P2; . . . ;Px in the figure)
for any given batch of raw network flows (e.g., a batch con-
sisting of input flows withing each minute, or a batch consist-
ing of a set of consecutive input flows). FaaC outputs data
matrices ofMx � P0 dimension where the number of observa-
tions depends on the Mx parameter but the number of derived
variables, P0, remains equals no matter the raw dataset used.
Mx will consequently determine the batch size, Bx, of raw net-
work flows that are aggregated using the FaaC technique in
order to obtain a derived dataset ofMx observations. Thus, the
higher the values of Mx, the smaller the size of the batch, and
vice versa [17]. Furthermore, each feature P0 in the derived
dataset is normalized by the corresponding batch size used to
process the raw dataset in order to guarantee that each new
feature now lies in the [0,1] range.
For a given classification task in supervised learning, the

main goal is to accurately classify as many classes as the
dataset has, which is the context of application in the current
work. Concerning the dependent variable or output class in

the derived dataset, the aggregation performed by the FaaC
technique on a given batch of raw observations needs to
account for specific situations, since the batch is likely to
comprise more than one raw observations of different classes
and, consequently, not making it trivial how to choose the
class that the aggregated observation belongs to. In this
work, we performed a simple procedure that consists of
choosing the most predominant attack class counted from the
raw observations within a batch. If no attack is present at all,
then the aggregated observation is labeled as normal or back-
ground traffic. This solution penalizes those raw network
datasets with balanced classes which, in fact, is not realistic
since network traffic communications are imbalanced by
nature (i.e., there should be much more normal or back-
ground traffic than attacks). It is the case of the NLS-KDD
dataset. Instead, this procedure inherently balances positive
(attacks) and negative (background) observations as we will
see in the next section.
All previous methods allow having a rectangular matrix

per dataset where the variables’ values are normalized coun-
ters in the [0,1] range, making them easy to be managed as
input by any ML model. Besides, this procedure provides the
opportunity of customizing the way of integrating all the
derived datasets into one joint dataset. The latter key func-
tionality allows us to somehow mix different and heteroge-
neous network datasets to achieve reliable ML-based
solutions. In this work, a simple row-wise data integration
approach was employed as a case study, although any other
way of combining different datasets could be set up thanks to
the data aggregation and integration capabilities of the R-
NIDS framework. In this way, one can think in to apply a
column-wise approach or to smartly re-arrange and combine
both, features and observations [37].

FIGURE 1. R-NIDS framework and their main stages. FE: Feature Engineering, FS: Feature Selection, DP: Data Preprocessing, HS:

Hyperparameters Selecion, ML:Machine Learning model, PM: Performance Metric and SSA: Statistical Significance Analysis.

VOLUME 10, NO. 4, OCT.-DEC. 2022 1723

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

B. FEATURE SELECTION

This is an important module to take into account when devel-
oping ML-based solutions in which training samples consist
of a high number of input features, as it is already known in
the AI/ML community that irrelevant features may introduce
noise and cause a negative impact in the predictor perfor-
mance. For this purpose, there exist many different methods
in the literature which classify into one of the three well-
known families of feature selection techniques: filter, wrap-
per and embedded methods. Since the main goal of this work
is not the comparison and evaluation of different feature
selection methods on the given task, authors propose the use
of the Least Absolute Shrinkage and Selection Operator
(LASSO) to deal with high dimensional settings based on
their previous experience [38], [39]. Moreover, LASSO is an
embedded feature selection method which exploits the main
benefit of filtering methods (they have less computational
costs) and the benefit of wrapper ones (they are supervised
methods which take into account the existing relationship
between inputs and output features to perform the selection).
Therefore, LASSO is used in this work as a FS method in

order to reduce the dimensionality of the datasets employed
to train the classifiers, where only input features that the
method considers relevant for the target outcome are
retained. For this purpose, as a linear model the LASSO [40]
adds an l1-penalty term to the minimization problem solved
in a logistic regression model, as Equation (1) defines

b̂̂b� ¼ argmin
bb

jjyy� f ðbbXTÞjj22 þ �jjbbjj1 ; (1)

where � is a hyper-parameter of the model which controls the
strength of the regularization, i.e., the bigger the value of �,
the stronger the regularization and, consequently, less input
variables would be retained, and vice versa.

C. DATA PRE-PROCESSING

In this work, a standard normalization procedure is applied to
each numeric feature, as shown in Equation (2), in such a
way that normalized features have zero mean and unit vari-
ance

zzjj ¼
xxjj � mj

sj
8j 2 ½1;P� ; (2)

where xxjj is a raw input variable, mj and su are the mean and
standard deviation of the given variable, and zzjj is the stan-
dardized feature.

D. HYPER-PARAMETER SELECTION

Depending on the ML model used, the process of fitting a
fairly optimized set of values for every model’s hyper-param-
eters is not a trivial task. Traditionally, two well-known strat-
egies have been used for this purpose: Grid Search [41], [42]
and Random Search [43]. Both approaches have some draw-
backs in relation to computation efficiency and the limited
exploration of the hyper-parameters search space. Therefore,

they are not really suitable for real problems where accurate
and efficient solutions are needed.
To overcome the limitations of the above strategies, the

Bayesian hyper-parameter optimization [44] is used in this
work. In this strategy, hyper-parameters search is modeled
by an underlying Gaussian process in such a way that, on
each step of the iterative search, the next hyper-parameters
setting to be tested is the one with more uncertainty (higher
variance) defined by this Gaussian process. Therefore, this
strategy ensures that a pseudo-optimal hyper-parameters set-
ting will be achieved in a few number iterations.
Hyper-parameters optimization must be done before train-

ing the corresponding ML model, and the results depend on
the dataset used in the training process. Therefore, in the con-
text of R-NIDS methodology, this Bayesian hyper-parameter
optimization algorithm is applied in each training fold of the
cross-validation process, in order to get the most accurate
model in each case. The hyper-parameters of the considered
models are given in the following section.

E. MACHINE LEARNING MODELS

Given a set of n observations and p variables describing each
observation, in supervised ML, and more specifically in any
classification task, the goal of a model is to learn in the best
possible way the existing relationship between the dependent
variable or output class yðiÞ, and the independent variables
xðiÞ1 ; . . . ; xðiÞp , for any ith sample. In the context of this work,
yðiÞ corresponds to the label or class associated to the ith
observation, thus resulting in a multi-classification problem
where yðiÞ 2 ½0; . . . ; k� (i.e, background or normal traffic is
mapped to 0, and each attack is mapped to consecutive num-
bers starting from 1). In this work, we chose two well-known
classifiers representing a linear and a non-linear model. They
are described next.

1) MULTINOMIAL LOGISTIC REGRESSION (LR)

It is the simplest linear model [19] possible, in which labels
are obtained from a linear combination of the input features
and the vector bb of parameters, i.e., the dependent variable is
modeled as yi ¼ b0 þ

Pp
j¼1 bjxj. This model does not really

have any critical hyper-parameter to tune, thus the training of
the model is straightforward and consists of estimating the bb
coefficients through a common technique such as Ordinary
Least Squares (OLS). In a binary classification task, this
parameter vector is learned by solving the minimization
problem depicted in Equation (3), which aims at estimating
the optimal bb coefficients that minimize the error of the
model across the training samples

b̂̂b ¼ argmin
bb

jjyy� f ðbbXTÞjj22 ; (3)

where f ðbbXTÞ is the logistic or sigmoid function. In order to
deal with the multi-classification setting, the well-known
One-vs-All approach is employed in such a way that k þ 1
LR models (although slightly abusing with the notation, let

1724 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

us consider Z LR models in such a way that Z ¼ k þ 1) are
fitted to data, each one focusing on a specific instance of the
data that corresponds to a binary classification problem (e.g.,
one LR model to distinguish background or normal traffic
from everything else, another one to distinguish a port scan-
ning attack from the rest, etc.). Since each of these Z LR
models provides as output a probability Prz 2 ½0; 1�, one
needs to employ the softmax function depicted in Equa-
tion (4) in order to normalize these probabilities and, there-
fore, ensure that the final output of the model is still a
probability in the [0,1] range and

PZ
z¼1 Prz ¼ 1.

PrðyðiÞ ¼ kjXÞ ¼ PrðyðiÞ ¼ kjXÞPk
z¼0 PrðyðiÞ ¼ zjXÞ ; (4)

2) RANDOM FOREST (RF)

It is a classification algorithm which consists of an ensemble
of multiple decision trees that are fitted to different instances
of the data (i.e, a random sample of the training observations
and the set of predictors) [20]. In RF, each individual deci-
sion tree outputs a class prediction, thus the class or label pre-
dicted by RF for any new unseen observation is the class
with the majority of the votes (i.e., the class most predicted
by the individual decision trees).
One important characteristic of any ensemble method is

the diversification of the models that compose the ensemble.
RF ensures it in two ways: first, by using a bagging strategy
in which each individual decision tree is trained over a
slightly different set of training samples (e.g., by sampling
with replacement or by randomly sampling a subset of
instances from the training set) which can result in signifi-
cantly different tree structures; and second, by considering
feature randomness at the time of splitting a node in any of
the individual decision trees, which forces even more varia-
tion amongst the trees in the model, resulting in lower corre-
lation across trees and more diversification.
Although RF has several hyper-parameters to tune, in this

work authors focus only on two of them which are more criti-
cal when training this model: the maximum number of pre-
dictors from which to choose and split each node of any
individual decision tree (mtry), and the maximum size of
each node in any individual decision tree (nodesize). The for-
mer is linked to the feature randomness strategy previously
mentioned and, on each node, it randomly chooses a subset
of input features from which to pick the one that maximizes
the entropy, i.e., that produces the largest separation between
the observations in the left node versus the ones in the right
node. The latter is a hyper-parameter which controls how
much each individual decision specializes on the training
data, thus being used to prevent overfitting: the lower the
value of this hyper-parameter, the more we force the model
to continue splitting nodes within individual decision trees
and the more likely they will overfit the data.
In this work, the R package randomForest was used to

train a RF model and these two hyper-parameters (mtry and

nodesize) are tuned following the strategy described in
Section D. The number of individual decision trees (ntree)
that composes the ensemble is fixed to 500, and the rest of
the hyper-parameters of RF were set to their default values.

F. PERFORMANCE METRICS

Evaluating and comparing a ML-based NIDS solution relies
on the use of performance metrics. However, the suitability
of a metric depends on the application context. In this case,
we are addressing a problem with a clear imbalance in the
data. In fact, this is particularly the case of realistic network
datasets which have great differences among the number of
the positive classes (attacks) in comparison with the negative
one (normal traffic or background). In such scenarios, it is
highly not recommended to employ metrics like the accu-
racy, since a model may achieve high performance rates but
is only capable of classifying correctly the class that is over-
represented, thus not being able to correctly classify the
minority class which is typically the most interesting one
(i.e., any of the attacks in this work). Instead, it is better to
employ performance metrics that are more suitable when
dealing with imbalanced data. Therefore, in this work we
chose the Area Under the Curve (AUC) to evaluate ML-
based NIDSs, as this metric meets the requisite previously
mentioned and it has been previously and successfully used
in similar works [11], [13], [18], [45], [46].
The AUC measures the area under the Receiver Operating

Characteristic (ROC) [47], which draws the evolution of the
TP (True Positive) rate versus the FP (False Positive) rate for
different values of the classifying threshold. Thus, AUC=1
means that the solution is able to correctly classify all the
observations while AUC � 0.5 means that the classifier per-
forms randomly.
Besides, an AUC weighted average is computed as fol-

lows: for each class i ¼ 0; . . . ; k, the weighted avgðAUCiÞ
computes the weighted average of AUCi times qi (the number
of true observations of each class), with Q being the total
number of observations. Equation (5) introduces the AUC
weighted average. Note that this equation can be easily
extended to other performance metrics.

weighted avgðAUCiÞ ¼
Pk

i¼0 AUCi � qi
Q

: (5)

G. SIGNIFICANCE ANALYSIS

In this work, a statistical study on the obtained results was
performed to assess statistical certainty on our conclusions,
at 95% confidence level. To correctly address it, we followed
the recommendations given in [32] for the fair experimental
evaluation of classifiers. In particular, we performed the Wil-
coxon Signed-Rank Test [48] in the pairwise comparisons of
the accuracy of the two studied classifiers on all classes. Wil-
coxon Signed-Rank Test is a non-parametric version of the
paired T-test. In this sense, statistically significantly better
results with respect to the compared classifier, at 95%

VOLUME 10, NO. 4, OCT.-DEC. 2022 1725

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

confidence level, are highlighted in bold font in all tables
included in Section VI.

V. EXPERIMENTAL DESIGN

This sections describes the set-up of the R-NIDS framework
introduced in Section IV at the same time that provides a
detailed description of the evaluation strategy employed to
test the performance of the R-NIDS we propose.

A. R-NIDS SET-UP

As the proposed R-NIDS methodology establishes, we first
apply the FaaC feature engineering method on the original
network datasets to obtain the derived ones. The applica-
tion of FaaC requires building batches of observations,
wherein the counters on the values of the variables are
applied. With the aim of making a fair comparison on the
performance of the ML-based solutions built in this study,
authors decided to go for two versions of the derived data-
sets in such a way that the generated number of observa-
tions (M1; . . . ;Mx) is fixed: either 10,000 or 20,000
observations. Since the number of samples in the raw net-
work datasets is different, the batch sizes —(B1; . . . ;Bx)—
used to aggregate the raw observation into new ones, that
are counters of these ones, differ. These batch sizes are
summarized as follows:

� 10,000 observations derived datasets: the batch size
used to generate this derived dataset was {395.082,
254, 14} for the UGR’16, UNSW-NB15 and NSL-
KDD raw datasets, respectively.

� 20,000 observations derived datasets: the batch size
used to generate this derived dataset was {197.541,
127, 7} for the UGR’16, UNSW-NB15 and NSL-KDD
raw datasets, respectively.

Although the number of derived observations (Mx) differ
from dataset to dataset, the number of derived features (P0)
remains equal having M1 � P0; . . . ;Mx � P0 j x ¼ 1; 2; 3 dif-
ferent derived datasets. This is a direct consequence of using
FaaC, which makes feature homogenization among heteroge-
neous datasets. Table 2 shows the relationships among
selected raw features and derived features (counters). Last
column in the table first shows how many derived features
are extracted from one specific raw variable and, second, the

derived features. The latter count the values (which are the
ones within brakes in the table) they found within a batch of
raw observations from the specific raw feature. For instance,
the derived feature dport_http will contain how many
network HTTP connections have been performed to a web
server. A total of 134 derived features are created from the
original ones. It is worth mentioning that this method and the
chosen set of derived features have been demonstrated to be
useful for NIDS [5], [10]–[13], [18], and it has been adopted
here too. Further details can be found in [5].
Furthermore, the application of the FaaC technique

using the setting described on each network dataset will
also modify the class distribution within each dataset (see
Section A). In this sense, Figures 2(a), 2(b), and 2(c) visu-
alize the class distribution on both derived datasets for
each of the three raw datasets. We can see how FaaC tends
to balance them for the corresponding derived datasets of
the UGR’16 and UNSW-NB15, that is, the percentages of
all positive (attacks) classes and the negative (background)
one are similar. However, we find the opposite behavior
for the NSL-KDD dataset, mainly represented by observa-
tions of DoS attack and almost no background or normal
traffic. This may be an indication which supports the pro-
cedure used to create this dataset using synthetic, i.e.,
unrealistic network flows.
Next, the R-NIDS framework aims at creating one single

derived dataset that combines all the derived datasets gen-
erated by using the FaaC technique. For this purpose, only
observations that correspond to Background, DoS or Port
Scanning classes (i.e., the ones in common among the
three datasets) are considered during the aggregation pro-
cess. Then, and thanks to the variables homogenization
achieved with the application of the FaaC technique, a
simple row-wise aggregation procedure is used to merge
all the observations of these three derived datasets, which
met the criteria mentioned before, onto a single new inte-
grated dataset that is hereafter called UNK22,4 taking its
name from the capital letters of the three involved network
datasets. Two versions of this dataset are obtained depend-
ing on the number of observations that the derived datasets
have. Thus, a UNK22 �20,000 observations dataset was
built by following a row-wise data aggregation of the
10,000 observations derived datasets. Similarly, for the
UNK22 �40,000 observations—note that only classes that
are present in the three datasets are considered to generate
UNK22—. The class distribution in UNK22 is shown in
Figure 2(d). There is a balanced representation of the
Background and DoS classes, although the Port scanning
class is still underrepresented.
Finally, a last and key normalization step is performed in

such a way that each variable of any observation within the
UNK22 dataset is normalized by the batch size used to gener-
ate it according to the original raw network dataset. This

TABLE 2. Raw and derived features relationships.

Raw features Derived

Features

Src. IP 3 srcip_{private, public, default}

Dst. IP 3 dstip_{private, public, default}

Src. port 52 sport_{http, smtp, ..., reserved}

Dst. port 52 dport_{http, smtp, ..., reserved}

Protocol 5 protocol_{tcp, udp, ..., other}

Flags 6 tcpflags_{ACK, SYN, ..., URG}

ToS 3 tos_{0, 192, other}

packets 5 npckts_{verylow, low, ..., veryhigh}

bytes 5 nbytes_{verylow, low, ..., veryhigh}

4The UNK22 dataset will be available for downloading at https://github.com/
ucadatalab/ff4ml/tree/master/data/unk22.

1726 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ucadatalab/ff4ml/tree/master/data/unk22
https://github.com/ucadatalab/ff4ml/tree/master/data/unk22

procedure is performed as shown in Equation (6)

normðxxÞ ¼
xx

BUGR016
; if xx 2 UGR'16 dataset

xx
BUNSW�NB15

; if xx 2 UNSW-NB15 dataset
xx

BNSL�KDD
; if xx 2 NSK-KDD dataset

8><
>:

;

(6)
where xx ¼ x1; . . . ; xp corresponds with the derived variables
(counters) to be normalized and the Bdataset is the batch size
used to normalize them.
The presented normalization step guarantees that varia-

bles’ values of all the observations within the UNK22 dataset
are normalized counters in the [0,1] range, regardless their
dataset of origin. Consequently, the ML-based solution build
on this UNK22 dataset could be a more robust and reliable
NIDS than others using the classic one-single-dataset
approach. Moreover, this system will be ready to use in pro-
duction and for generic network environments, since the
application of this normalization procedure ensures that vari-
ables within new unseen observations will also lie in the
same range as the expected by the trained models (i.e., in the
[0,1] range), essential for their correct performance.

B. EVALUATION STRATEGY

In this study, two evaluation settings were considered
� Analysis of one single dataset: in this setting where

ML-based solutions for NIDSs are built and tested on a
single network dataset, the entire analysis was carried
out using a 5-fold cross-validation strategy (k ¼ 5 in

Figure 1), where the complete dataset is divided into 5
folds of equal sizes, assuring that the class distribution
remains the same within each fold. This strategy trains
the ML models proposed as classifiers (which includes
a feature selection through LASSO and a z-score data
normalization steps before fitting the model to the data)
in 4 out of the 5 folds and finally evaluates its perfor-
mance on the test fold (the fifth one) left apart. Then,
this procedure is repeated iteratively by rotating the
folds used to train and test the classifiers. Furthermore,
the fold partitioning process is repeated 20 times
(r ¼ 20 in Figure 1) in order to guarantee the random-
ness of this process.

� Analysis across datasets: the analysis carried out in this
setting is much more simple, since it aims at training
the ML models proposed as classifiers in one out of the
three network datasets considered, and evaluate their
performance in the remaining two datasets, not used to
train the models. This procedure is repeated iteratively
by rotating the complete dataset used to train the
classifiers.

The former setting aims at performing the classical ML-
based NIDS evaluation that is typically found in the litera-
ture, where the community focuses on developing ML-based
solutions using one single network dataset, thus forgetting to
double-check how well the ML-based solution generalizes
with different datasets (i.e., gathered in a different network
environments). The latter setting tries to complete the big
picture by showing the performance of these kind of ML-

FIGURE 2. Class distribution on the derived datasets obtained by applying the FaaC method to the raw datasets included in Section III

—see (a), (b) and (c)— and on the UNK22 row-wise aggregated dataset proposed in this paper —see (d)—.

VOLUME 10, NO. 4, OCT.-DEC. 2022 1727

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

based solutions when these models are used to predict attacks
on a different network environment than the one used to train
them. In both of these settings, the feature and hyper-parame-
ter selection were carried out following the methods intro-
duced in Sections B and D, respectively. The former relying
on LASSO technique while the latter through Bayesian opti-
mization both in the training set. Finally, the AUC previously
introduced in Section F is chosen as a performance metric
because it is found suitable when dealing with imbalanced
network datasets for comparing and evaluating NIDSs.

VI. RESULTS AND DISCUSSION

This section summarizes the results of the analysis and dis-
cusses the main findings. We first compare the performance
of LR and RF classifiers when they are individually built on
one of the above introduced network datasets: UGR’16,
USNW-NB15, and NSL-KDD. The results are given in the
cells with gray background color in Table 3 for the common
attacks in the three datasets, and more detailed results are
provided in Section S.II of the supplementary material, avail-
able online.
In order to verify the behaviour of these kind of ML-based

solutions in generic network environments, another analysis
across network datasets was performed. In this sense, Table 3
shows the AUC performance results when ML models (LR
and RF) are fully trained using one of the previously men-
tioned datasets (train data column in the table) and fully
tested on the other NIDS datasets (test data field in the table).
This crossed analysis was carried out only for the common
classes in the three datasets (i.e., Background, DoS and Port
Scanning). Gray cells in this table correspond to the perfor-
mance presented in Tables S4-S6 of the supplementary mate-
rial, available online, —i.e., analysis on one single dataset,
which in the R-NIDS framework would occur when x ¼ 1 in
Figure 1—. Cells without numeric values means that no con-
fident results were obtained mainly due to the low number of
samples available to train the model for that specific class.

These results clearly expose the issues of ML-based NIDS
solutions when they are built exclusively on one single data-
set expecting them to perform well in generic network envi-
ronments (i.e., in observations belonging to other network
datasets not used to train the models). In fact, the perfor-
mance of ML-based solutions drastically drops in this more
realistic scenario, since the aim of this kind of solutions is to
put them in production to detect possible attacks in generic
network environments. In other words, we can safely con-
clude that the classic approach employed to build ML-based
NIDS using one single dataset tend to overfit to observations
of the network environment used to create that specific data-
set, but results will very rarely generalize to other network
environments.
We computed some statistics on the results in Table 3 to

support the previous conclusion. Particularly, the percentage
of the mentioned accuracy loss of the models was calculated
as an average for the three attacks. The highest loss was a
116:6% decay in the performance of RF when trained with
UGR’16 and tested on NSL-KDD, for 20,000 observations.
In average, the models offered a 67:7% accuracy loss when
tested in other datasets different than the one used for train-
ing. The average accuracy of the models for all classes when
trained and tested on the same dataset is 0.905, while it wor-
sens to 0.533 when a different dataset is used for testing.
For a better understanding of these results, an additional

combined Principal Component Analysis (PCA) study was
carried out to unveil hidden behaviors of the involved classes
and that, otherwise, it would be difficult to observe. The
graphical analysis (score plots) performed on the derived
datasets of 20,000 observations is shown in Figure 3. Since
the equivalent analysis for the 10,000 observations version
of the derived datasets is very similar, authors decided to
omit it. Focusing on the three plots on the left of Figure 3,
one can clearly distinguish two clusters independently of the
class analyzed (Background, DoS or Port Scanning). This
result points out that UGR’16 observations are behaving
completely different from the ones in the other two datasets.

TABLE 3. AUC performance for the models trained on every dataset and evaluated on the others.

Results with gray background are obtained on the same dataset used for trainig, following the cross-validation setting shown in Section S.II, available online.

1728 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

In fact, this also stands out in the results included in Table 3,
where the performance of the ML-based solutions trained on
the UGR’16 dataset drastically drops when they are tested on
any of the other two datasets.
Moreover, on the three plots on the right of Figure 3 we

zoomed the graphical analysis of the corresponding score
plots on the left side to show some details within the cluster.
On these three plots, one can see two clusters of slightly sep-
arated observations corresponding to the USNW-NB15 and
NSL-KDD datasets. Besides, trend differences are also visi-
ble, specially for the Background and Port Scanning classes.
However, this is not the case for the DoS class where obser-
vations behave similarly in both datasets. Thus, one could
expect a better performance in the DoS class than in the
others when training or testing with USNW-NB15 and NSL-
KDD datasets which is, in general, observed in Table 3.
One last analysis was carried out on the UNK22 dataset in

order to measure the benefits of using the R-NIDS frame-
work when combining several network datasets. In this
sense, the results included in column “Overall” in Table 4

show how ML-based models perform when using the whole
UNK22 for training and testing. As it can be seen in the
table, models achieve, on average, an AUC � 0.8 for the
Port Scanning attack, AUC � 0.95 for the DoS attack and
AUC � 0.995 for the Background traffic. In comparison
with the values in Tables S4-S6, available online, the
UNK22 slightly degrades the obtained performance for DoS
and Port Scanning attacks in general. It can be motivated by
the influence of the NSL-KDD dataset that pollutes, in some
sense, the UNK22 dataset: almost the half part of the DoS
and Port Scanning observations are added by the NLS-KDD
(see Figure 2). This fact, together with the nature of the
NSL-KDD dataset, makes the models to perform slightly
worse. Nevertheless, the most interesting results arise when
we focus on analysing the performance of these ML-based
models on observations of only one of the network datasets,
i.e., training them with the UNK22 dataset and testing only
with samples corresponding to the specific network datasets
used to build UNK22. These results can be seen in columns
“Only UGR’16”, “Only UNSW-NB15” and “Only NSL-

FIGURE 3. Results of the PCA analysis of the three NIDS datasets (UGR’16, UNSW-NB15, NSL-KDD), for each class.

VOLUME 10, NO. 4, OCT.-DEC. 2022 1729

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

KDD” in Table 4. Overall, a high AUC of any of the ML
models in these three columns would imply a better generali-
zation, thus a better performance, on heterogeneous network
environments. In concrete, the homogenization and aggrega-
tion of network datasets provided by the R-NIDS framework
allowed to obtain reliable ML-based solutions that perform
better in generic network environments than those built using
the classic one-single-dataset approach. For instance, a RF
model trained on the 20,000 observations version of the
UNK22 dataset achieves an AUC of {0.983, 0.892, 0.676}
for the Background class in the UGR’16, UNSW-NB15 and
NSL-KDD datasets, respectively. However, in Table 3 the
best results obtained for exactly the same setting were
{0.508, 0.814, 0.712}, which is a significant improvement in
two out of the three datasets. Similarly, a RF model trained
on the 40,000 observations version of the UNK22 dataset
achieves an AUC of {0.991, 0.780, 0.607} for the Port Scan-
ning class in the UGR’16, UNSW-NB15 and NSL-KDD
datasets, respectively, while in Table 3 the best results
obtained for exactly the same setting were {0.398, 0.562,
0.562}, which in this case is a significant improvement in all
the datasets. This pattern is generally observed in Table 4
regardless the ML model and network dataset in which one
wants to focus on.
Finally, though far from the main aim of the work, we ana-

lyzed the most relevant features in the datasets, concluding
that those related to network services (source and destination
ports) play a relevant role in training the ML-models, fol-
lowed by those associated to the protocol and the number of
packets sent in the communications. All the details are given
in Section S.III of the supplementary material, available
online.

VII. CONCLUSION

This work has presented a novel methodology for the design
of Machine Learning (ML) based solutions for trustworthy
and reliable Network Intrusion Detection Systems (NIDS),

called Reliable-NIDS (or R-NIDS for short). In contrast to
the existing methods, the ML models designed following the
R-NIDS methodology achieve more accurate predictions in
different network scenarios. Thus, they arise as more suitable
tools for being deployed in a real environment, compared to
previously existing ones.
There is a large number of works in the literature address-

ing this problem with ML-based methods, and also several
network datasets have been proposed. All these works use
the same dataset for training and validating their models, and
unsurprisingly highly accurate results are published in most
of the cases. However, this approach leads to models which
overfit data from the given network environment used to train
them, thus not being able to generalize to new data that can
be present in generic scenarios or under different conditions.
Therefore, these existing methods are not suitable to be
deployed in real environments.
Through an extensive experimentation, this work has dem-

onstrated how two well-known ML models (selected as
widely used linear and non-linear methods), commonly used
for NIDS, suffer from the mentioned overfitting problem
when trained on one network dataset and validated on a dif-
ferent one. Indeed, the obtained performance loss was up to
116:6% when validating the model on a different dataset. For
this study, we chose three well accepted datasets, namely
UGR’16, USNW-NB15, and NSL-KDD. Although these
datasets have different features and making a joint analysis
was a priory unfeasible, it turned out to be possible thanks to
the use of the FaaC feature engineering method present in R-
NIDS. This technique makes the homogenization of different
network datasets possible, creating different derived datasets
from them (all having the same variables), thus being a key
driver to perform data aggregation over several heteroge-
neous datasets.
Additionally, this work has introduced a novel dataset,

called UNK22. It was built from the samples contained in
three of the most studied datasets in the literature (UGR’16,

TABLE 4. Average AUC performance for UNK22 dataset using a 20 repetitions of 5-fold cross-validation evaluation strategy.

1730 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

USNW-NB15, and NSL-KDD), that could be integrated using
the R-NIDS methodology proposed. Last but not least, by
using the UNK22 dataset this paper has shown how the two
MLmodels considered in this work were able to avoid overfit-
ting, thus leading to more reliable ML-based NIDS solutions
compared to those trained on just one single network dataset.
The global performance of the models trained on UNK22 is
on average 90.67% when testing on unseen samples of
UNK22, and its accuracy decreases by only 9.05% when sep-
arately tested on each of the three datasets taken from the liter-
ature. This accuracy error rises up to 39.15% when the models
are trained on one of the three datasets and tested on the
others. This result proves how it is possible to generate more
reliable models thanks to the integration of the datasets and
the methodology proposed in this work.
Finally, this work opens interesting research lines in

the field. In general, we are interested in extending the
study with other state-of-the-art ML methods from the lit-
erature, as well as with other existing relevant datasets.
Besides, and given the importance of integrating different
datasets for building generic methods as it has been
shown in this paper, the authors consider interesting to
work towards the design and exploration of other general-
ization mechanisms based on different ways of integrating
the main network datasets in the field with minimum
information loss.

REFERENCES

[1] Cisco Annual Internet Report (2018–2023), White Paper, 2020. Accessed:
May 27, 2022. [Online]. Available: https://bit.ly/3jpAgNx

[2] Enisa Threat Landscape Report, 2020. Accessed: May 27, 2022. [Online].
Available: https://bit.ly/3mbH56U

[3] D. Chou and M. Jiang, “A survey on data-driven network intrusion detec-
tion,” ACM Comput. Surv., vol. 54, no. 9, pp. 182:1–182:36, 2021.

[4] T. Zoppi and A. Ceccarelli, “Prepare for trouble and make it double!
Supervised – Unsupervised stacking for anomaly-based intrusion detec-
tion,” J. Netw. Comput. Appl., vol. 189, pp. 103–106, 2021.

[5] R. Mag�an-Carri�on, D. Urda, I. Diaz-Cano, and B. Dorronsoro, “Towards a
reliable comparison and evaluation of network intrusion detection systems
based on machine learning approaches,” Appl. Sci.-Basel, vol. 10, no. 5,
2020, Art. no. 1775.

[6] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based on
ABC-AFS algorithm for misuse and anomaly detection,” Comput. Netw.,
vol. 136, pp. 37–50, 2018.

[7] E. Kabir, J. Hu, H. Wang, and G. Zhuo, “A novel statistical technique for
intrusion detection systems,” Future Gener. Comput. Syst., vol. 79,
pp. 303–318, 2018.

[8] J. Qui~nonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Law-
rence, Dataset Shift in Machine Learning. Cambridge, MA, USA: MIT
Press, 2009.

[9] T. J. T. Heiser, M.-L. Allikivi, and M. Kull, “Shift happens: Adjusting
classifiers,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Data-
bases, 2019, pp. 55–70.

[10] J. Camacho, G. Mac�ıa-Fern�andez, J. D�ıaz-Verdejo, and P. Garc�ıa-Teodoro,
“Tackling the Big Data 4 vs for anomaly detection,” in Proc. IEEE Conf.
Comput. Commun. Workshops, 2014, pp. 500–505.

[11] J. Camacho, A. P�erez-Villegas, P. Garc�ıa-Teodoro, and G. Maci�a-Fern�an-
dez, “PCA-based multivariate statistical network monitoring for anomaly
detection,” Comput. Secur., vol. 59, pp. 118–137, 2016.

[12] J. Camacho, J. M. Garc�ıa-Gim�enez, N. M. Fuentes-Garc�ıa, and G. Maci�a-
Fern�andez, “Multivariate Big Data Analysis for intrusion detection: 5 steps
from the haystack to the needle,” Comput. Secur., vol. 87, 2019,
Art. no. 101603.

[13] J. Camacho, G. Maci�a-Fern�andez, N. M. Fuentes-Garc�ıa, and E. Saccenti,
“Semi-supervised multivariate statistical network monitoring for learning
security threats,” IEEE Trans. Inf. Forensic Security, vol. 14, no. 8,
pp. 2179–2189, Aug. 2019.

[14] G. Maci�a-Fern�andez, J. Camacho, R. Mag�an-Carri�on, P. Garc�ıa-Teodoro,
and R. Ther�on, “UGR’16: A new dataset for the evaluation of cyclostatio-
narity-based network IDSs,” Comput. Secur., vol. 73, pp. 411–424, 2018.

[15] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
Proc. Mil. Commun. Inf. Syst. Conf., 2015, pp. 1–6.

[16] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the KDD CUP 99 data set,” in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., 2009, pp. 1–6.

[17] R. Mag�an-Carri�on, D. Urda, I. Diaz-Cano, and B. Dorronsoro, “Assessing
the impact of batch-based data aggregation techniques for feature engineer-
ing on machine learning-based network IDSs,” in Proc. 14th Int. Conf.
Comput. Intell. Secur. Inf. Syst., 2022, pp. 116–125.

[18] R. Mag�an-Carri�on, J. Camacho, G. Maci�a-Fern�andez, and A. Ru�ız-Zafra,
“Multivariate statistical network monitoring–Sensor: An effective tool
for real-time monitoring and anomaly detection in complex networks
and systems,” Int. J. Distrib. Sensor Netw., vol. 16, no. 5, 2020,
Art. no. 155014772092130.

[19] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[20] L. Breiman, “Random forests,”Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.
[21] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a

new intrusion detection dataset and intrusion traffic characterization,” in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2019, pp. 108–116.

[22] M. Siddiqi and W. Pak, “Efficient filter based feature selection flow for
intrusion detection system,” in Proc. Int. Workshop Emerg. ICT, 2020,
pp. 1–3.

[23] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and R. T. Goswami, “An
integrated rule based intrusion detection system: Analysis on UNSW-
NB15 data set and the real time online dataset,” Cluster Comput., vol. 23,
pp. 1397–1418, 2020.

[24] Q. Tian, D. Han, K.-C. Li, X. Liu, L. Duan, and A. Castiglione, “An intru-
sion detection approach based on improved deep belief network,” Appl.
Intell., vol. 50, pp. 3162–3178, 2020.

[25] A. Verma and V. Ranga, “Machine learning based intrusion detection
systems for IoT applications,” Wireless Pers. Commun., vol. 111, no. 4,
pp. 2287–2310, 2020.

[26] B. Riyaz and S. Ganapathy, “A deep learning approach for effective intru-
sion detection in wireless networks using CNN,” Soft Comput., vol. 24,
pp. 17265–17278, 2020.

[27] A. M. Aleesa, M. Younis, A. A.Mohammed, and N.M. Sahar, “Deep-intru-
sion detection system with enhanced UNSW-NB15 dataset based on deep
learning techniques,” J. Eng. Sci. Technol., vol. 16, no. 1, pp. 711–727,
2021.

[28] J. Toldinas, A. Ven�ckauskas, R. Dama�sevi�cius, �S. Grigaliunas, N. Morke-
vi�cius, and E. Baranauskas, “A novel approach for network intrusion
detection using multistage deep learning image recognition,” MDPI-
Electron., vol. 10, no. 15, 2021, Art. no. 1854.

[29] T. S. Pooja and S. Purohit, “Evaluating neural networks using bi-
directional LSTM for network IDS (intrusion detection systems) in cyber
security,” Glob. Transitions Proc., vol. 2, pp. 448–454, 2021.

[30] M. Sarhan, S. Layeghy, and M. Portmann, “Towards a standard feature set
for network intrusion detection system datasets,” Mobile Netw. Appl.,
vol. 27, pp. 357–370, 2022.

[31] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-stage opti-
mized machine learning framework for network intrusion detection,” IEEE
Trans. Netw. Service Manage., vol. 18, no. 2, pp. 1803–1816, Jun. 2021.

[32] K. Stapor, P. Ksieniewicz, S. Garc�ıa, and M. Wo�zniak, “How to design the
fair experimental classifier evaluation,” Appl. Soft. Comput., vol. 104,
2021, Art. no. 107219.

[33] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A sur-
vey of network-based intrusion detection data sets,” Comput. Secur.,
vol. 86, pp. 147–167, 2019.

[34] A. Kenyon, L. Deka, and D. Elizondo, “Are public intrusion datasets fit for
purpose characterising the state of the art in intrusion event datasets,”
Comput. Secur., vol. 99, 2020, Art. no. 102022.

[35] Enisa Threat Landscape Report, 2017. Accessed: May 27, 2022. [Online].
Available: https://bit.ly/3KLBIV8

[36] Enisa Threat Landscape Report, 2018. Accessed: May 27, 2022. [Online].
Available: https://bit.ly/3q629gi

VOLUME 10, NO. 4, OCT.-DEC. 2022 1731

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/3jpAgNx
https://bit.ly/3mbH56U
https://bit.ly/3KLBIV8
https://bit.ly/3q629gi

[37] R. Mag�an-Carri�on, J. Camacho, and P. Garc�ıa-Teodoro, “Multivariate sta-
tistical approach for anomaly detection and lost data recovery in wireless
sensor networks,” Int. J. Distrib. Sens. Netw., vol. 11, no. 6, 2015,
Art. no. 672124.

[38] D. Urda, J. Montes-Torres, F. Moreno, L. Franco, and J. M. Jerez, “Deep
learning to analyze RNA-seq gene expression data,” in Proc. Int. Work-
Conf. Artif. Neural Netw., 2017, pp. 50–59.

[39] D. Urda et al., “BLASSO: Integration of biological knowledge into a regu-
larized linear model,” BMC Syst. Biol., vol. 12, 2018, Art. no. 94.

[40] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for gener-
alized linear models via coordinate descent,” J. Statist. Softw., vol. 33,
no. 1, pp. 1–22, 2010.

[41] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole, “Benchmark-
ing datasets for anomaly-based network intrusion detection: KDD CUP 99
alternatives,” in Proc. IEEE 3rd Int. Conf. Comput. Commun. Secur.,
2018, pp. 1–8.

[42] C. Chio and D. Freeman, Machine Learning and Security: Protecting Sys-
tems With Data and Algorithms. Sebastopol, CA, USA: O’Reilly Media,
2018.

[43] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimiza-
tion,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[44] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 2951–2959.

[45] S. Soufiane, R. Mag�an-Carri�on, I. Medina-Bulo, and H. Bouden, “Preserv-
ing authentication and availability security services through multivariate
statistical network monitoring,” J. Inf. Secur. Appl., vol. 58, 2021,
Art. no. 102785.

[46] F. P�erez-Bueno, L. Garc�ıa, G. Maci�a-Fern�andez, and R. Molina, “Leveraging
a probabilistic PCA model to understand the multivariate statistical network
monitoring framework for network security anomaly detection,” IEEE-ACM
Trans. Netw., 2022, pp. 1–13, doi: 10.1109/TNET.2021.3138536.

[47] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, “Data mining
techniques in intrusion detection systems: A systematic literature review,”
IEEE Access, vol. 6, pp. 56 046–56 058, 2018.

[48] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical
Methods. Hoboken, NJ, USA: Wiley, 2013.

ROBERTO MAG�AN-CARRI�ON received the
PhD degree in ICT from the University of Granada
with a Cum Laude grade, in 2016. He is currently an
assistant professor with the Department of Signal
Theory, Telematics and Communications with the
University of Granada, Spain, and member of “Net-
work Engineering and Security Group (NESG)”
research group. He also worked as a postdoctoral fel-
lowwith the University of C�adiz, as part of a research
talent attraction international program promoted by
this university. His research interests include security

in heterogeneous communications networks and systems, specifically on anom-
aly detection and classification, response, and resilient solutions.

DANIEL URDA received the PhD degree in com-
puter science from the University of M�alaga, Spain,
and is currently an assistant professor with the Uni-
versity of Burgos, Spain. His research mainly invo-
lves the development and application of machine
learning methods for several domains such as bio-
informatics, cybersecurity, air pollution, logistics
and transportation and industry. He has a strong
publication record in relevant journals and interna-
tional conferences (more than 50 papers) and has
been guest editor of several special issues in well-

known journals related to Computer Science. He is responsible for teaching
several courses of bachelor’s and master’s degree in computer science like
artificial intelligence or neural computing, among others.

IGNACIO DIAZ-CANO is a predoctoral researcher
with the Department of Automatic, Electronic, Com-
puter Architecture and Communication Networks
Engineering from the University of C�adiz, Spain. His
research mainly involves two main areas of kno-
wledge: cybersecurity and industrial robotics, with
some publications and conferences in both areas.

BERNAB�E DORRONSORO received the PhD
degree in computer science from the University of
M�alaga, Spain, in 2007. He worked for more than
seven years in Luxembourg and Lille Universities,
and he currently serves as an Associate Professor
with the University of C�adiz, Spain, where he
leads the GOAL research group. His main research
interests include green computing, sustainable
transportation, grid and cloud computing, smart cit-
ies, complex problems optimization, and machine
learning. He has published more than 50 journal

papers and six books. He is associate editor of the International Journal of
Metaheuristics, and member of the editorial board of several journals: Engi-
neering Applications of Artificial Intelligence, Applied Sciences, Interna-
tional Journal of High Performance Systems Architecture, International
Journal of Innovative Computing and Applications, and Progress in Artifi-
cial Intelligence.

1732 VOLUME 10, NO. 4, OCT.-DEC. 2022

Mag�an-Carri�on et al.: Improving the Reliability of Network Intrusion Detection Systems Through Dataset Integration

Authorized licensed use limited to: UNIVERSIDAD DE CADIZ. Downloaded on November 22,2023 at 10:06:38 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2021.3138536

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

