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ABSTRACT

Context. Ground-based observing time is precious in the era of exoplanet follow-up and characterization, especially in high-precision
radial velocity instruments. Blind-search radial velocity surveys thus require a dedicated observational strategy in order to optimize the
observing time, which is particularly crucial for the detection of small rocky worlds at large orbital periods.
Aims. We developed an algorithm with the purpose of improving the efficiency of radial velocity observations in the context of exo-
planet searches, and we applied it to the K-dwarfs Orbited By habitable Exoplanets experiment. Our aim is to accelerate exoplanet
confirmations or, alternatively, reject false signals as early as possible in order to save telescope time and increase the efficiency of
both blind-search surveys and follow-up of transiting candidates.
Methods. Once a minimum initial number of radial velocity datapoints is reached in such a way that a periodicity starts to emerge
according to generalized Lomb-Scargle periodograms, that period is targeted with the proposed algorithm, named KOBEsim. The algo-
rithm selects the next observing date that maximizes the Bayesian evidence for this periodicity in comparison with a model with no
Keplerian orbits.
Results. By means of simulated data, we proved that the algorithm accelerates the exoplanet detection, needing 29–33% fewer obser-
vations and a 41–47% smaller time span of the full dataset for low-mass planets (mp < 10 M⊕) in comparison with a conventional
monotonic cadence strategy. For 20 M⊕ planets we found a 16% enhancement in the number of datapoints. We also tested KOBEsim
with real data for a particular KOBE target and for the confirmed planet HD 102365 b. These two tests demonstrate that the strategy is
capable of speeding up the detection by up to a factor of 2 (i.e., reducing both the time span and number of observations by half).

Key words. planets and satellites: detection – methods: statistical – techniques: radial velocities – stars: solar-type

1. Introduction

Over the last three decades numerous exoplanets have been
detected (more than 5000 confirmed according to the NASA
Exoplanet Archive1, Akeson et al. 2013). Ever since the first hot
Jupiters were discovered (Mayor & Queloz 1995; Butler et al.
1997) the instrumentation has improved, thus making it pos-
sible to detect less massive worlds. Specifically in the radial
velocity (RV) method, the development of highly stabilized spec-
trographs, from CORALIE (Queloz et al. 2000) to ESPRESSO
(Pepe et al. 2021), have allowed the detection of lighter planets
located farther away from the host star (e.g., Damasso et al. 2020;
Demangeon et al. 2021; Lillo-Box et al. 2021; Faria et al. 2022).

⋆ Based on observations collected at Centro Astronómico Hispano
en Andalucía (CAHA) at Calar Alto, operated jointly by Instituto de
Astrofísica de Andalucía (CSIC) and Junta de Andalucía.
1 https://exoplanetarchive.ipac.caltech.edu/

However, detection and characterization are still challenging,
especially in non-transiting planetary systems since they require
many observations distributed over long periods of time. When
searching for potentially habitable worlds, this becomes crucial
as they orbit at larger periods than those typically detected. That
is why the improvement in the efficiency of observations is deci-
sive. It saves valuable telescope time and allows us to find a
type of planet that would otherwise be undetectable throughout
conventional observing programs.

To address the problem of observational efficiency, it is
increasingly common that observatories and scientific programs
develop their own tools to avoid wasting telescope time through
a good scheduling strategy. Some of these approaches have
been presented, such as for ALMA (Espada et al. 2014), JWST
(Giuliano et al. 2007), and the CARMENES Guaranteed Time
Observation (GTO) survey (Garcia-Piquer et al. 2017). In the
context of RV searches, Cabona et al. (2021) proposed that
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b)

c)

Fig. 1. KOBEsim workflow scheme. It starts by gathering RV data until it finds a dominant period (step 1), from which the KOBEsim algorithm
provides the next optimum observing date (step 2).

uniformly distributed data along the phase-folded RV diagram
favors efficiency. As a consequence, observing in an already
explored orbital phase (ϕ) does not significantly increase the
information in hand. In this paper we present KOBEsim2, a
Bayesian algorithm to improve the efficiency of planet detections
in RV-blind searches through optimizing the scheduling of obser-
vations. It is an open source code written in Python language
available to the community. Bayesian adaptative scheduling
algorithms have been already demonstrated to be powerful in
previous works (e.g., Loredo 2004; Ford 2008; Loredo et al.
2011). They propose improving observational efficiency on-the-
fly by developing algorithms composed of two steps: inference
and decision. The former quantifies the knowledge acquired
with the available data and the latter chooses the optimum date
depending on the scientific goal (more information in Sect. 2.3)
and based on the predictions. Particularly, Ford (2008) shows
through simulations that their algorithm has the potential not
only to increase planet detections, but also to increase the
sensitivity compared to conventional strategies.
KOBEsim was developed to enhance the planet detection in

the K-dwarfs Orbited By habitable Exoplanets (KOBE) exper-
iment3, a blind-search RV survey devoted to the hunt for
rocky and potentially habitable exoplanets around K-dwarf stars
(Lillo-Box et al. 2022). KOBE is a legacy program of the
Calar Alto Observatory (CAHA; Almería, Spain), making use
of the Calar Alto high-Resolution search for M dwarfs with
Exoearths with Near-infrared and optical Echelle Spectrographs
(CARMENES), a fiber-fed échelle spectrograph (Quirrenbach
et al. 2020) at the 3.5 m telescope. KOBE observations began in
January 2021 and will be monitoring 50 late K-dwarf stars over
five consecutive semesters. The main goal of this experiment is
to bridge the gap between G and M dwarfs in the search for plan-
ets within the habitable zone (HZ), a parameter space that has
been barely explored (see Fig. 1 in Lillo-Box et al. 2022).

This paper is organized as follows. In Sect. 2 we describe the
methodology, and provide a description of the architecture of the

2 The code is publicly available at the following link: https://
github.com/olgabalsa/KOBEsim
3 https://kobe.caha.es/

KOBEsim code. In Sect. 3 we show the results of testing the strat-
egy by applying the algorithm to simulated and real datasets.
We also briefly illustrate how the data simulation is performed,
we show the efficiency of KOBEsim in detecting planets of dif-
ferent masses by comparison with monotonic cadence strategies,
and we study the case of targeting false positive periodicities.
Finally, in Sect. 4 we summarize the results and present our
conclusions.

2. Methodology

The proposed observational strategy consists of two steps (see
Fig. 1). First, the star is monitored with the usual survey strategy;
for example, in the KOBE experiment the targets are observed
with a cadence of ∼10% with respect to the orbital period that
a planet would have in the middle of the HZ. This step lasts
until there are enough RV data gathered (n) to see an emerging
peak in the periodogram. Second, that period (Ppeak) is pursued
by the KOBEsim algorithm. By ranking all the possible observ-
ing dates, the algorithm proposes the optimum next observing
night. In Sect. 3 we show that this turns out to be faster than a
monotonic cadence strategy (i.e., continuing to use the strategy
followed in the first step) to determine whether Ppeak is due to a
strictly periodic signal (induced by the presence of a planet).

2.1. Statistical framework

In this work we assume the concept of planet detection based
on a Bayes factor threshold for two competing models: the null
hypothesis H0 where the parameters (θ) do not include any
Keplerian orbit, against the alternative H1, where the parameters
include a Keplerian orbit. In statistical notation we write

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, (1)

where Θi represents a restricted range of values where the model
includes a planet or not. In the first step of KOBEsim, we infer
the parameters that describe these competing models (detailed
in Sect. 2.2). For this purpose we model the jth RV observation
as

v j(t j) = Vsys +K(t j) + E j, (2)
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where Vsys is the systemic RV, K(t j) is the equation of RV cor-
responding to a Keplerian signal depending on the time of the
measurement t j, and E j is the noise contribution obtained from
a Gaussian distribution with zero mean and variance σ2

j + S 2
j .

The value σ2
j is the uncertainty associated with the j-th measure-

ment due to the photon noise, and S 2
j are variances of unmodeled

sources of noise. In the particular case of a RV signal induced by
one planet (H1), K(t j) can be written as

K(t j) = K
[
cos

(
ν(t j, e, P, t0) + ω

)
+ e cosω

]
, (3)

where K is the RV semi-amplitude, ν is the true anomaly of
the planet (angle between the periastron and the position of the
planet in the elliptical orbit measured from the central star), e is
its eccentricity (degree of deviation of the elliptical orbit from a
circle), P is the orbital period of the planet, t0 is the inferior con-
junction time, and ω is the argument of the periastron (angular
distance between the line of nodes and the periastron). Thus, v j
depends on the following parameters:

Θ1 = (Vsys, K, P, t0, e, ω, S j). (4)

Meanwhile, K(t j) is zero for the null hypothesis H0, thus the
parameters are

Θ0 = (Vsys, S j). (5)

We estimate the posterior probability of each hypothesis using
the Bayes relation

P(Hi|D) =
P(Hi)Zi

P(Hi)Zi + P(H j)Z j
, (6)

where Zi is the evidence (i.e., marginal likelihood) under the
hypothesis i, and D is an array of datapoints. Thus, the ratio for
the competing models (the posterior odds) is

P(H1|D)
P(H0|D)

=
P(H1)
P(H0)

B10, (7)

where B10 is the evidence (or marginal likelihood) ratio, called
the Bayes factor. Assuming the same prior probability of a star
hosting one or no planets (i.e., P(H1)/P(H0) = 1), we can use
B10 as a metric to analyze how significant one model is com-
pared to another for a given dataset. An intrinsic feature of this
mathematical construction is Occam’s razor (e.g., Mackay 2003;
Thrane & Talbot 2019), which penalizes the most complex mod-
els (i.e., those with more parameters). In this work we set the
limit to consider a planet detection at ln (B10) > 6, which is
a conservative criterion since it is four times greater than the
evidence Jeffreys (1961) proposed as decisive.

2.2. Estimating the evidence of the models

Once we have a predominant signal (Ppeak) we are ready to run
KOBEsim. First, it derives the set of parameters from the data for
both the null (H0) and planet (H1) hypotheses (corresponding to
Fig. 1 panel a). We explore the parameter space and sample the
posterior distribution by using the Markov chain Monte Carlo
(MCMC) affine invariant ensemble sampler emcee (Foreman-
Mackey et al. 2013). To compute the Keplerian in the H1 model,
Eq. (3), we use the python module RadVel (Fulton et al. 2018).
Considering normally distributed data around the theoretical

Table 1. Prior distributions to perform the MCMC fit.

Parameter Prior Units
Vsys U

(
−105, 105

)
m s−1

K U
(
0, 104

)
m s−1

P G(Ppeak, 4) d
t0 G(t0,input, 4) orU

(
t1, t1 + Ppeak

)
d

√
e cosω Gt (0, 0.3) –
√

e sinω Gt (0, 0.3) –
S j U

(
0, 102

)
m s−1

value of the model, our selection of likelihood function is a
Gaussian-noise

−2 lnL(D|θ) = Q +
n∑

j=1

ln
(
σ2

j + S 2
j

)
+

n∑
j=1

[
Vsys +K(t j) − v j

]2

σ2
j + S 2

j

,

(8)

where D is our RV measurement and its associated uncertain-
ties (D = {(v j, σ j)}nj=1), and Q is a constant. We assume the
prior distributions to be uniform, except for those parameters
we are more informed about, for which we select a narrow nor-
mal distribution (e.g., Ppeak). The prior distributions used for
each parameter are shown in Table 1, where t0,input is the value
of t0 that can be optionally given as input, t1 is the first day
that the target was observed, and Gt corresponds to a truncated
Gaussian between −1 and 1. To sample the parameter space, we
employ four times the number of parameters of the model and
2 × 104 steps in each of them4. To speed up the convergence,
we start new chains in a ball around the best solutions from the
previous sampling with half the number of steps. Following the
criterion suggested in the documentation of emcee5, we consider
our sampling to be successful when the chains are longer than 50
times the autocorrelation time.

To calculate the Bayes factor metric we employ the bayev
code (Díaz et al. 2016), which uses the estimator defined in
Perrakis et al. (2014). Giving as input a representative fraction
of the marginalized posterior distributions provided by emcee,
the likelihood function, and the priors, we obtain the ln(Z)
distribution. The authors of the bayev code estimate the
uncertainty of this distribution repeatedly reshuffling the joint
posterior sample to produce new samples. In our case we opt
for just one fraction of the distributions for computational time
reasons since we checked that the chosen fraction (15% of the
iterations) is representative enough and the standard deviation of
the resulting distributions does not change significantly (around
20 %). Carrying out this procedure for the two competing
models, and considering a priori the same probability for each
hypothesis, P(H1) = P(H0), we obtain an estimation of ln(B10)
with its associated uncertainty.

2.3. Forecasting the optimum observing date

In the second step of the code we use the existing data to
select the future date that most (or more optimally) increases the
4 Both the number of walkers and steps can be customized by the user;
see Table A.1.
5 https://emcee.readthedocs.io/en/stable/tutorials/
autocorr/
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evidence of the planet model at the targeted periodicity. For this
purpose, we predict and compare the expected increase in the
ln(B10) for each candidate date in our schedule. The Bayes factor
is our metric for measuring the gain, which in decision theory
is called the utility function. This quantity is commonly used in
RV datasets to test different hypotheses, and thus can be used
to claim a planet candidate (e.g., Lillo-Box et al. 2020; Mortier
et al. 2020; Faria et al. 2022). Previous works on Bayesian adap-
tative schedulers adopt other utility functions based on their
goals. For instance, Loredo et al. (2011) opt for the Shannon
entropy as they aim to improve the efficiency in constraining the
parameter inference, and this utility function is used to reduce
the posterior uncertainties.

The prediction is the stage illustrated in Fig. 1 panel b. To
find the candidate dates we divide the period into a total of
Nphases orbital sub-phases (i.e., spliting the orbital phase Nphases
times). We choose the next assigned date from the schedule at
the telescope that matches each sub-phase. In this selection of
the candidate dates, we take into account twilights, altitude of the
target, and exposure time (see Sect. 3.1 for further details). Next,
using the whole posterior probability distributions inferred for
our model parameters through the MCMC algorithm (obtained
in the stage shown in Fig. 1 panel a), we sample the posterior pre-
dictive distribution for the RVs at each potential observing date
by using Eq. (2). We take the uncertainty of the predicted RV
from the quadratic sum of the standard deviation of the predictive
distribution (uncertainty due to the parameter inference) and a
random value from a normal distribution of same mean and stan-
dard deviation as the uncertainities (σ j) of the n RV datapoints
already gathered (simulating the expected photon noise).

Running again emcee and bayev over each of the datasets
(including one additional datapoint corresponding to each pre-
dicted RV at a proposed date), we end up with an estimation of
∆ ln(B10) for each of the proposed future dates. KOBEsim sorts
the tested dates according to the utility function, giving the max-
imum priority to the highest ∆ ln(B10) (stage illustrated in Fig. 1
panel c).

For long targeted periodicities, the largest ln(B10) increase
may occur at a very distant date, which is against the efficiency
of the observations. Consequently, the detection using KOBEsim
could require a long time span despite needing a lower number of
measurements. To prevent this situation, we introduce a weight
to the utility function with the shape of a density function of a
beta distribution, such that

∆ ln (B10) = β(∆t, a, b)
[
ln (B10,n+1) − ln (B10,n)

]
, (9)

where ∆t is the difference in days between the new proposed
observation and the current date (normalized on all candidate
dates), and n denotes the number of gathered datapoints at the
moment of running KOBEsim. We choose the arguments of the
beta distribution in such a way that in order to end up with a
time gap (i.e., time between the last observation and the next
one) greater than 40% of the targeted periodicity, the increase in
the ln(B10) should be at least five times greater than for the next
date in the priority list (a = 1 and b = 5). The beta distribution
weight is an optional parameter of KOBEsim and it is activated
by default.

3. Results

In this section, we show different analyses to test the algorithm
against simulated (Sect. 3.1) and real (Sect. 3.2) datasets.

Table 2. Values of the orbital parameters used for the RV simulation.

Parameter Value for the simulation Units

Vsys U (−10, 10) m s−1

P U (50, 120) d
t0 U (t1, t1 + P) d
M⋆ 0.5 M⊙
mp (5, 10, 20, 60) M⊕
i 90 deg
e 0 –

3.1. Testing KOBEsim on simulated datasets

3.1.1. Simulated data

To generate synthetic data we first had to simulate the observ-
ing dates. The observing time must be between the astronomical
twilights from the observatory location (i.e., when the Sun is at
18 degrees below the horizon) and the elevation of the target over
the horizon must be greater than a given minimum altitude dur-
ing the exposure time to avoid large chromatic distortions and
extinction due to the atmosphere (e.g., Dumusque et al. 2011).
Through the following examples, we consider a probability of
55% for a night to be assigned to the project, and we assume
that 70% of the nights meet the appropriate weather conditions
to perform the observations.

Second, we simulated the RV measurements. The Vsys, P,
and t0 were drawn from uniform distributions. For this example,
we decided the boundary values for P to cover the properties
of the KOBE sample (orbital periods inside the HZ of late-type
K dwarfs calculated as defined by Kopparapu et al. 2014). We
calculated the RV semi-amplitude as

K =
1

√
1 − e2

mp sin i
(mp + M⋆)2/3

(
2πG

P

)1/3

, (10)

which requires four more parameters: the planetary mass (mp),
the orbital inclination (i), the eccentricity (e), and the stellar
mass (M⋆). We note that G represents the gravitational con-
stant. We assume M⋆ to be equal to 0.5 M⊙ since it is the mean
value of the KOBE sample (spectral types from K5 to M0). For
mp we explore different scientific cases (5, 10, 20, and 60 M⊕).
Finally, to simplify the problem, we assume an edge-on system
(i = 90◦) and a circular orbit (e = 0). In Table 2 we show the
parameter selection used for this test. In this case Vsys, P, and
t0 has a value within the indicated range, while the mp value is
selected from the four given options. We add white noise to the
mock RVs through a normal distribution with a mean of 0 m s−1

and a standard deviation of 3 m s−1 mimicking the instrumental
noise (conservative values for the CARMENES instrument). We
consider a Gaussian uncertainty associated with the simulated
RV data, with a mean of 3 m s−1 and a standard deviation of
0.3 m s−1. Since the aim of KOBEsim is to improve the efficiency
of Keplerian modulation detection, we work under the assump-
tion of a well-characterized stellar activity (e.g., Dumusque et al.
2011; Oshagh et al. 2017). Therefore, we do not include red
noise in our simulated data, and it is a caveat the user must bear
in mind.

3.1.2. Running KOBEsim

KOBEsim should always be executed after obtaining a new dat-
apoint for a given target. In this way the state of knowledge
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Fig. 2. Simulation of ten RV datapoints to test KOBEsim. Left: GLS periodogram showing an emerging period at Ppeak = 62.6 d nearly reaching
a false alarm probability (FAP) of 0.1 (y-axis equal to 1). The lighter green region corresponds to the optimistic HZ, the darker region to the
conservative HZ as defined in Kopparapu et al. (2014). Right: Fit of the simulated RV data. The solid black line is the fit for one-planet hypothesis
(H1); the dash-dotted line is fit for the null hypothesis (H0); and the dotted line is the true model used to simulate the datapoints (in red). The shaded
region shows the confidence interval at 1σ (dark gray) and 2σ (light gray) for the hypothesis with a planet. The lower panel shows the residuals for
the one-planet hypothesis fit.

Fig. 3. KOBEsim output figure. The y-axis shows the logarithm of the expected Bayes factor and the x-axis shows the orbital phase. The vertical
dashed line gives the phase selected as the optimal option, and gives its corresponding date. The horizontal dashed lines indicate the initial ln(B10)
(lower line) and the expected value at the selected phase (upper line). The increment is shown with a gray arrow. The color-coding shows the
priority order for selecting the next observing date.

is updated and provides a list of the next possible observing
dates ordered by priority as detailed in Sect. 2. We use the
above-described simulation tool to generate simulated observa-
tions taking into account the visibility from CAHA for one of the
KOBE targets. We generated the first ten observations assuming
a model in which mp = 20 M⊕ and P = 59 d. In Fig. 2 we show the
GLS periodogram (left panel) and the phase-folded RV curve
after the parameter inference is performed for both competing
models (right panel). Thus, Ppeak = 62.6 d is our target period-
icity to test with KOBEsim (compatible with the true period P
used in the model as the prior is Gaussian with a σ= 4 d; see
Table 1). The goal now is to predict the best observing date for
the next datapoint (the 11th in the time series) in order to speed
up a possible planet detection at that periodicity.

The two models we employ to fit the data allow us to
quantify how well supported the planet model is against the
null hypothesis with the available data. In this case we obtain
ln (B10,initial) = –3.74± 0.05. KOBEsim now generates a new syn-
thetic datapoint based on the inferred planetary orbital and physi-
cal parameters and adds it to the previous datapoints, calculating
the increase in ln(B10). This process is repeated independently

for different orbital phases. Here we compare a total of 20 candi-
date orbital phases (Nphases = 20), which for this simulated planet
is equivalent to comparing dates around three days apart from
each other. In this particular simulation, we imposed the con-
straint that if the next matching date is more than three months
away from the current date, that sub-phase is discarded6: since
the KOBE program monitors 50 targets and it was awarded with
∼55% of the nights, the chances of observing the target are high,
and waiting that long would imply a waste of telescope time.
Once all of the candidate dates are calculated, KOBEsim com-
putes which is the best given the current data and assuming the
input periodicity. The execution of the code takes ∼32 s/phase
and is repeated Nphases + 1 times, which leads to a total runtime
of ∼15 min.

In Fig. 3 we show the output plot returned by the algo-
rithm. The difference in ln(B10) of the one-planet model against
the null hypothesis is shown for each orbital phase. The fig-
ure shows that the algorithm generated fewer than 20 candidate

6 The maximum days apart parameter can be set by the user; see
Table A.1.
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points. This is caused by the impossibility of observing the target
over the next three months, either because the corresponding
dates are not assigned to the program or because the star has
already set. As in this example, we use the beta distribution,
meaning that the criterion for selecting the best observing date
is not the one that maximizes the increase in ln(B10). Instead,
KOBEsim maximizes the weighted ∆ ln(B10) given by Eq. (9),
thus finding a trade-off between efficiency and the time we
have to wait until the next observation. In this example, we
find out that this occurs for an orbital phase around ϕ= 0.17,
reaching ∆ ln (B10) = +0.35± 0.06. In Appendix A we show the
corresponding csv output (Table A.2). In view of Fig. 3, every
candidate observation will lead to a positive increase in ln(B10)
or it will be maintained at the initial value. This may not occur if
we are targeting the wrong period, as we discuss in Sect. 3.1.4.

3.1.3. Efficiency

To study the efficiency of KOBEsim, we estimate how long it
would take to detect planets of different masses within the HZ
for the particular case of the KOBE experiment. We compare this
with the time and the number of observations that a monotonic
cadence approach (i.e., obtaining observations every N days)
would require. For this purpose, we simulate the future obser-
vations for a given target, cumulatively, until we obtain enough
evidence from the one-planet model over the null hypothesis
to claim the detection. We set this limit at ln (B10) > 6. We
performed this procedure for both KOBEsim modes (with and
without the beta distribution), and spacing the observations with
the cadence assigned to our testing target (6± 2 d) as long as that
day meets good weather conditions and if it is a date granted
for the project (see Sect. 3.1.1), otherwise it is postponed to the
next plausible day. Hereafter, we refer to the strategies as K (for
KOBEsim), Kβ (KOBEsim beta), and MC (monotonic cadence).
We note that the simulations of new observations (correspond-
ing to the right circle in Fig. 1) are computed independently from
KOBEsim and with the sole idea of testing the efficiency of our
methodology. Thus, after deciding the optimum next date, we
predicted again the RV value at the corresponding orbital phase.
Contrary to the KOBEsim simulation stage (Fig. 1 panel b), in this
case we included white noise, as explained in Sect. 3.1.1, but we
did not include in the associated uncertainty the component due
to the inference (the standard deviation from the RV predictive
distribution) since the sources of uncertainty in real observations
are only the jitter (E j) and the photon noise (σ j).

In Fig. 4 we show the results for planets of 5, 10, 20, and
60 M⊕ using P = 59 d and Ppeak = 62.6 d. In this section we do
not update Ppeak; we keep it fixed to run KOBEsim at each iter-
ation. For all of these planetary masses except for 5 M⊕, we
considered the visibility of our testing target. As the precision
of CARMENES in its optical arm is around 1 m s−1, a planet of
5 M⊕ corresponds to the detectability limit case for the KOBE
experiment (RV semi-amplitude within the HZ of late K dwarfs
between 0.72 and 1.15 m s−1). Since such a detection is very
demanding, we simulated these measurements considering a cir-
cumpolar star, and thus every night of the year can be used to
collect data if the weather conditions are favorable. In addition,
to achieve a detection of this kind in the time that the KOBE
program lasts, it would be necessary to increase the exposure
time (thereby increasing the signal-to-noise ratio to reduce the
uncertainty). In practice, this would only be feasible with the
brightest targets as the maximum exposure time allowed by the
CARMENES instrument is 1800 s. For this reason for 10, 20,
and 60 M⊕ (see Fig. 4), we considered a conservative uncertainty

Table 3. Improvement achieved using KOBEsim beta (Kβ) in comparison
with a monotonic cadence (MC) strategy for simulated datasets.

KOBEsim beta improvement

mp (M⊕) Datapoints Time span

5 33% 47%
10 29% 41%
20 16% 38%
60 0% 61%

following a normal distribution with a mean of 3 m s−1, whereas
for 5 M⊕ we reduced the mean to 1.5 m s−1. We started with
ten initial datapoints. In every planetary mass case, we see the
gradual increase in ln (B10) that each strategy follows as new
observations are added. We checked that different initial sets of
simulated data (i.e., varying the white noise in the RV, the first
observing date, and phase coverage, but keeping the same time
span and number of measurements) did not significantly change
the results. Particularly, in Fig. 4 the standard deviation in the
y-axis (ln (B10)) is below 1 for every number of observations
and the relative error in the corresponding slopes are 6%. At
first glance, it is clear that the number of observations needed
to confirm the planetary signal is greatly reduced when using
the KOBEsim approach, especially for the less massive planets.
Furthermore, the number of days invested in these observations
is also greatly reduced even for the most massive planets when
using Kβ.

The large time span required for detecting the two most mas-
sive simulated planets when applying the K strategy (147 d for
the 60 M⊕ simulation) in comparison with both Kβ (48 d) and
MC (124 d) strategies, can be explained by the altitude of the
testing star. This target sets over three months after starting
the simulations. Therefore, the detection in the former strat-
egy, unlike the other two, is postponed until after the target
rises again. This example highlights the importance of using the
beta distribution since the efficiency of the observations requires
finding a compromise between time span and number of mea-
surements. These four simulations show that Kβ greatly reduces
the time span, and the gain in terms of number of observations
is nearly as good as in K.

The efficiency gain by means of Kβ in comparison with MC
strategy is shown in Table 3. It collects the key information to
support the strength of this algorithm in the context of blind-
search surveys. In terms of the number of observations, the
improvement varies from 16% for the heavy planets (20 M⊕) to
29–33% for the light planets (5–10 M⊕). Furthermore, regard-
ing the improvement in the number of days, KOBEsim can be
decisive even for the high-mass planets mentioned above since
in this particular case we achieved an improvement of 38–61%
(20–61 M⊕). Finally, the most impressive improvement is related
to the number of days for low-mass planets, reducing the time
span by 41–47% (5–10 M⊕). This could increase the speed of
detection of rocky planets within the HZ of the parent star by
nearly a factor of 2, provided the RV modulations due to stellar
activity are well known.

3.1.4. False detections

We test the behavior of KOBEsim when pursuing spurious peri-
odicities caused by signals either behaving stochastically or not
induced by Keplerian sources. If we have very few datapoints at
the time of period selection, it may occur that the period pursued

A18, page 6 of 14



O. Balsalobre-Ruza et al.: KOBEsim

Fig. 4. Prediction in the evolution of the logarithm of the Bayes factor for simulated planets of 5, 10, 20, and 60 M⊕ at P = 59 d. The period targeted
with KOBEsim is Ppeak = 57.54 d. The number of observations and the time it would take to detect the planet are compared using three different
strategies: KOBEsim (K), KOBEsim beta (Kβ), and spacing the observations at a fixed cadence (MC) of 6 d.

does not correspond to a planet signal. It is also possible that we
select a periodicity resulting from stellar activity mimicking the
wobble of the star when it has an orbiting planet (e.g., Queloz
et al. 2001; Figueira et al. 2010; Santos et al. 2014). These possi-
ble scenarios raise the question of how KOBEsim behaves against
a spurious period.

To test this, we now focus on a given periodicity that max-
imizes the GLS periodogram, Ppeak, and we base our strategy
on it. However, there is a planet orbiting the star at a different
period, Pplanet. To illustrate this scenario, we start by simulat-
ing the first ten datapoints as a signal with the spurious period
(Ppeak), constraining it to be compatible within 1σ with the RV
that would be induced by a planet at the true period (Pplanet).
In this way we ensure that the preliminary GLS periodogram

proposes Ppeak. The next observations are generated using the
true period, thus the GLS periodogram will start showing Pplanet
instead of Ppeak. We perform this test for four random periods
and the corresponding planetary masses that induce the same
RV semi-amplitude in all cases (K = 6 m s−1 in this example). In
Fig. 5 we show the evolution of the Bayesian evidence. The solid
lines indicate the cases in which KOBEsim is targeting the correct
orbital period. Also in Fig. 5, we show a toy model for the active
star case. We consider that after the first ten observations sim-
ulated with the spurious period Ppeak, the activity ceases, and
thus the next datapoints follow a constant model (K = 0 case,
corresponding to a RV = Vsys + E j).

From this simulation, we find that when targeting false peri-
ods with KOBEsim, the Bayes factor can be reduced in contrast

A18, page 7 of 14



A&A 669, A18 (2023)

Fig. 5. Prediction in the evolution of the logarithm of the Bayes factor when targeting with KOBEsim a period Ppeak (each chart), but the signal is
induced by a planet at Pplanet (see legend for colors). All the cases induce a signal of semi-amplitude K = 6 m s−1. The solid lines are the cases in
which KOBEsim is pursuing the correct period (Ppeak = Pplanet). The black line corresponds to the active-star case. After the first ten observations it
is assumed that the signal is turned off (K = 0).

with a successful case (when targeting a correct period all
the candidate dates increase the Bayes factor, or are at least
compatible with no variation; see Sect. 3.1.2 and Fig. 3). Specif-
ically, in the case where we test a signal produced by stellar
activity that disappears (K = 0), it is quickly visible that the
period is incorrect. Surprisingly, some spurious periods reach
the planet detection according to the ln(B10) > 6 criterion. From
the periodogram, we check that generally even selecting the opti-
mum observing dates for a wrong period, the RV curve is well
sampled and the GLS periodogram reveals the correct period
(higher power for the true period than the targeted). Nonethe-
less, we find particular cases where this does not occur. As the
semi-amplitude of this example is considerably high, the planet
detection is reached too soon (with few datapoints) to sample
the whole RV curve if Ppeak < Pplanet. To illustrate this situation,

Fig. 6 shows the RV curves in phase for the case of Ppeak = 81.47 d
and Pplanet = 107.57 d. In the top panel of Fig. 6 we show the
correct RV phase-folded curve (i.e., phase-folded with the true
periodicity). In view of this curve, there are not enough data to
claim a detection since the orbital phase has not yet been cov-
ered. When looking at the periodogram shown in Fig. 7, we find
that there is a whole family of periods.

In practice, this weak point can be easily circumvented by
looking at the periodogram daily. KOBEsim is the strategy to
decide when to observe, but in any case it can replace our anal-
ysis. The user must be responsible for testing all the periods
appearing in the GLS periodogram to check which is most favor-
able (e.g., calculating the Bayes factor for those competing planet
hypotheses at different periods instead of using the null hypoth-
esis). For this reason, the period chosen to be targeted with our
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Fig. 6. Phase-folded RV curve of simulated data. Top: Assuming the
true orbital period (Pplanet). In red are indicated the first observations,
generated with Ppeak constrained to be compatible with the true signal
within 1σ. Bottom: Assuming the incorrect period, the one used to per-
form KOBEsim, Ppeak.

Fig. 7. Periodogram for the studying case of Pplanet = 107.57 d and
Ppeak = 81.47 d, with data gathered at the time of achieving the threshold
ln(B10) > 6.

strategy is not immutable, instead it must be updated as we gather
additional data, as we indicate in the workflow scheme in Fig. 1.

3.2. Application to real data

3.2.1. KOBE target

We use the 21 first observed measurements from a particular
KOBE target as a test bench. At this point a periodicity is vis-
ible inside the HZ (Ppeak = 94.13 d). By taking this periodicity
as our prior knowledge to run KOBEsim (i.e., assuming the RV
is induced by an orbiting planet at Ppeak), we infer the parame-
ters Θ1 (see Eq. (4)). In Fig. 8, we show the RV time series (red

dots), and the inferred model (solid line). With these inferred
parameters, the lower limit for the planetary mass is mp sin
i = (27.62± 8.05) M⊕.

We subsequently use these parameters to simulate the
expected future RVs by making use of Eq. (2). In such a way,
after the 21st observation we estimate the evolution of ln (B10)
and we compare the prediction for the three different observ-
ing strategies that we consider in the efficiency test explained
in Sect. 3.1.3 (i.e., K, Kβ, and MC). This can be seen in Fig. 9,
where the ln (B10) obtained from the observed data is shown
(magenta line).

Based on the results of this analysis, and as long as the same
trend on the RV data continues, we can detect a planet within the
HZ of this star in less than a year. The expected improvement in
the case of purely following the Kβ instead of a MC is higher than
26% in terms of the number of observations, and around 41% in
terms of time span. This improvement means, if this hypothetical
planet actually exists in the system, that we could detect it a year
earlier thanks to this approach.

3.2.2. HD 102365

We take the RV data measured by Tinney et al. (2011) to test the
algorithm with a target from a different program and instrument.
The goal is to evaluate the time that would have been saved if our
strategy had been applied. We chose the system HD 102365 since
it has a relatively low-mass (mp sin i = 16 M⊕) isolated planet at
a large period (P = 122.1 d), inducing a RV semi-amplitude of
∼ 3 m s−1 while orbiting a G-dwarf star. Thus, it required a vast
number of observations over a long time span to be detected.
Additionally, the star is known to be chromospherically inactive
with a value of −4.99 for R′HK (Meunier et al. 2017; Boro Saikia
et al. 2018), which corresponds to an induced RV semi-amplitude
of ∼41 cm s−1 (Suárez Mascareño et al. 2017) and has a very slow
rotation velocity (v sin i = 0.7 km s−1), thus in this case activity
does not play a relevant role. These observations were done with
the UCLES échelle spectrograph (Diego et al. 1992) as part of
the Anglo-Australian Planet Search (AAPS) program (Tinney
et al. 2001; Wittenmyer et al. 2020).

We started testing the Kβ strategy with the first ten real
datapoints. The optimum date was chosen according to the
algorithm, which simulates the RV at 20 sub-phases from the
parameter inference of this reduced sample. In this case we
considered that all the nights were available.

Once the date was decided, a new RV datapoint was added
using the parameter inference from the whole sample (149 data-
points). To this new observation, we applied a Gaussian noise
of mean and standard deviation of the median and standard
deviation of the residuals. We took the same associated RV
uncertainty as the corresponding real datapoint for the sake of
being more fair with the comparison. Then, the process was
repeated until the planet was detected according to the Bayes
factor. The target period, Ppeak, was updated at the beginning of
each iteration by means of the GLS periodogram.

In the upper panel of Fig. 10 we show the evolution of the
Bayes factor as a function of number of observations and time
span, comparing our strategy with the real observations. We find
that the number of measurements would be reduced by around
16% (from 105 to 88 observations), and the time span by ∼41%
(from 3318 to 1964 d). Since the exposure time varies from 200
to 400 s, 1–2 h of telescope time would be saved. In the lower
panel of Fig. 10 we display the evolution of the maximum period
in the GLS periodogram for both cases. It is remarkable that
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Fig. 8. RV observed data (red dots) vs. time. The inferred model is shown as a solid line, using as prior Ppeak = 94.13 d. The parameters resulting
from the MCMC inference, as well as the corresponding mass lower limit, are collected in the bottom left box. The shaded region shows the
confidence interval at 1σ (dark gray) and 2σ (light gray) for the hypothesis with a planet.

Fig. 9. Prediction in the evolution of the logarithm of the Bayes fac-
tor in a real case of the KOBE experiment, assuming a planet at
Ppeak = 94.13 d. The number of observations and the time it takes to
detect the planet are compared using three different strategies: KOBEsim
(K), KOBEsim beta (Kβ), and spacing the observations in a fixed cadence
(MC) of 6 d. Planet detection criterion: ln(B10) > 6.

it converges more quickly toward the true period of the planet
using Kβ.

4. Conclusions

In this paper we present KOBEsim, an algorithm designed to
improve the efficiency in the process of gathering new RV
measurements in blind-search surveys. This new observational
strategy is developed aspiring to maximize the chances of suc-
cess of the KOBE experiment (Lillo-Box et al. 2022). It is a
Bayesian approach using the Bayes factor as a metric to measure
how well supported the planet hypothesis is at a given orbital
period (H1) compared to the null hypothesis where there is no
planet in the system (H0). Given the previous RV data and an
orbital period to target, KOBEsim proposes a priority calendar to
observe the star again according to the expected increase in this
quantity. By weighting the increment in the Bayes factor with a
beta distribution, we find a trade-off between number of mea-
surements and time span necessary to claim a planet detection.
We demonstrate its effectiveness in speeding up the planet detec-
tion when stellar activity is well characterized, being especially
useful in lighter planets for which the improvement is nearly 50%
in comparison with monotonic cadence strategies. This improve-
ment can be decisive to detect rocky planets within the HZ in
reasonable time spans.

These results show the importance of a continuous moni-
toring of the measurements in RV studies of planet searches
and demonstrates that simple monotonic cadence strategies are
not efficient, wasting more telescope time than required to con-
firm or characterize a given planet. It should be noted that, even
though designed for blind-search surveys, it can also be highly
useful in the follow-up of transiting candidates since the orbital
period is clear. The approach described in this paper can be
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Fig. 10. KOBEsim test with real HD 102365 RV data. Upper panel: Number of measurements (left) and time span (right) required to detect the
planet comparing the real observations and the simulation for the KOBEsim beta strategy. Lower panel: Ppeak evolution for both strategies.

easily implemented for any instrument. High-resolution spectro-
graphs able to detect planetary signals and installed in observa-
tories offering service mode observations (e.g., ESO/Paranal or
CAHA) should have the capability to adapt the observing strat-
egy to improve their efficiency, which nowadays is difficult to
achieve due to how observing time of the different programs is
allocated. Offering the user the flexibility to adapt the cadence
of the observations on a daily basis is a benefit to the community
and to the observatories. In this regard, GTO programs can be
highly benefited as they enjoy wider freedom in their schedules;
it is an opportunity to save time and to favor the detection of the
most elusive planets for the upcoming generation of instruments,
such as HARPS3 (Thompson et al. 2016) or NIRPS (Wildi et al.
2017).

Throughout the manuscript we have mentioned some caveats
to bear in mind when using KOBEsim. First of all, the user has to
take care of the preprocessing of the data in order to mitigate
any RV signal induced by activity. The RV time series should
be corrected from activity before running KOBEsim, for instance
subtracting linear and quadratic trends. The use of activity indi-
cators such as line-bisector or the chromospheric contribution
of the H and K Ca lines are also useful to disentangle the plan-
etary and activity component in the signal (e.g., Queloz et al.
2001). Second, as concluded in Sect. 3.1.4, the period to be tar-
geted must always be updated after a new observation is added

to the dataset. Third, the implementation in the code of a multi-
planetary system model (hypothesis Hn planets) is straightforward.
We are conscious of the scientific value of this utility; KOBEsim
is not only a tool to boost planet detection in single planet sys-
tems or in multi-planetary systems where no planets have been
yet detected, but it can enable us to determine more quickly
whether there is more than one planet inducing the signal. In
the same regard, it would also be interesting not to always com-
pare the evidence of the model with the null hypothesis, but
with another planet hypothesis orbiting at other period to deal
with aliasing. These implementations would make our algorithm
more powerful, but are yet to be tested and are beyond the scope
of the present work.
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Ginsburg, A., Sipőcz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98

Giuliano, M. E., Rager, R., & Ferdous, N. 2007, in Proceedings of The Interna-
tional Conference on Automated Planning and Scheduling (AAAI), 160

Hara, N. C., Boué, G., Laskar, J., & Correia, A. C. M. 2017, MNRAS, 464, 1220
Jeffreys, H. 1961, Theory of Probability. 3rd Edition, (Oxford: Clarendon Press)
Kopparapu, R. K., Ramirez, R. M., SchottelKotte, J., et al. 2014, ApJ, 787, L29
Lillo-Box, J., Figueira, P., Leleu, A., et al. 2020, A&A, 642, A121
Lillo-Box, J., Faria, J. P., Mascareño, A. S., et al. 2021, A&A, 654, A60
Lillo-Box, J., Santos, N. C., Santerne, A., et al. 2022, A&A, 667, A102
Loredo, T. J. 2004, AIP Conf. Ser., 707, 330
Loredo, T. J., Berger, J. O., Chernoff, D. F., Clyde, M. A., & Liu, B. 2012, Stat.

Methodol., 9, 101
Mackay, D. J. C. 2003, Information Theory, Inference and Learning Algorithms

(Cambridge: Cambridge University Press)
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Meunier, N., Mignon, L., & Lagrange, A. M. 2017, A&A, 607, A124
Mortier, A., Zapatero Osorio, M. R., Malavolta, L., et al. 2020, MNRAS, 499,

5004
Oshagh, M., Santos, N. C., Figueira, P., et al. 2017, A&A, 606, A107
Pepe, F., Cristiani, S., Rebolo, R., et al. 2021, A&A, 645, A96
Perrakis, K., Ntzoufras, I., & Tsionas, E. G. 2014, Comput. Stat. Data Anal., 77,

54
Queloz, D., Mayor, M., Weber, L., et al. 2000, A&A, 354, 99
Queloz, D., Henry, G. W., Sivan, J. P., et al. 2001, A&A, 379, 279
Quirrenbach, A., CARMENES Consortium, Amado, P. J., et al. 2020, SPIE Conf.

Ser., 11447, 114473C
Santos, N. C., Mortier, A., Faria, J. P., et al. 2014, A&A, 566, A35
Suárez Mascareño, A., Rebolo, R., González Hernández, J. I., & Esposito, M.

2017, MNRAS, 468, 4772
Thompson, S. J., Queloz, D., Baraffe, I., et al. 2016, SPIE Conf. Ser., 9908,

99086F
Thrane, E., & Talbot, C. 2019, PASA, 36, e010
Tinney, C. G., Butler, R. P., Marcy, G. W., et al. 2001, ApJ, 551, 507
Tinney, C. G., Butler, R. P., Jones, H. R. A., et al. 2011, ApJ, 727, 103
Wildi, F., Blind, N., Reshetov, V., et al. 2017, SPIE Conf. Ser., 10400, 1040018
Wittenmyer, R. A., Wang, S., Horner, J., et al. 2020, MNRAS, 492, 377

A18, page 12 of 14

http://linker.aanda.org/10.1051/0004-6361/202243938/1
http://linker.aanda.org/10.1051/0004-6361/202243938/2
http://linker.aanda.org/10.1051/0004-6361/202243938/3
http://linker.aanda.org/10.1051/0004-6361/202243938/3
http://linker.aanda.org/10.1051/0004-6361/202243938/4
http://linker.aanda.org/10.1051/0004-6361/202243938/5
http://linker.aanda.org/10.1051/0004-6361/202243938/6
http://linker.aanda.org/10.1051/0004-6361/202243938/6
http://linker.aanda.org/10.1051/0004-6361/202243938/7
http://linker.aanda.org/10.1051/0004-6361/202243938/8
http://linker.aanda.org/10.1051/0004-6361/202243938/8
http://linker.aanda.org/10.1051/0004-6361/202243938/9
http://linker.aanda.org/10.1051/0004-6361/202243938/10
http://linker.aanda.org/10.1051/0004-6361/202243938/10
http://linker.aanda.org/10.1051/0004-6361/202243938/11
http://linker.aanda.org/10.1051/0004-6361/202243938/12
http://linker.aanda.org/10.1051/0004-6361/202243938/13
http://www.ascl.net/1303.002
http://linker.aanda.org/10.1051/0004-6361/202243938/15
http://linker.aanda.org/10.1051/0004-6361/202243938/15
http://linker.aanda.org/10.1051/0004-6361/202243938/16
http://linker.aanda.org/10.1051/0004-6361/202243938/17
http://linker.aanda.org/10.1051/0004-6361/202243938/18
http://linker.aanda.org/10.1051/0004-6361/202243938/18
http://linker.aanda.org/10.1051/0004-6361/202243938/19
http://linker.aanda.org/10.1051/0004-6361/202243938/20
http://linker.aanda.org/10.1051/0004-6361/202243938/21
http://linker.aanda.org/10.1051/0004-6361/202243938/22
http://linker.aanda.org/10.1051/0004-6361/202243938/23
http://linker.aanda.org/10.1051/0004-6361/202243938/24
http://linker.aanda.org/10.1051/0004-6361/202243938/25
http://linker.aanda.org/10.1051/0004-6361/202243938/26
http://linker.aanda.org/10.1051/0004-6361/202243938/26
http://linker.aanda.org/10.1051/0004-6361/202243938/27
http://linker.aanda.org/10.1051/0004-6361/202243938/28
http://linker.aanda.org/10.1051/0004-6361/202243938/29
http://linker.aanda.org/10.1051/0004-6361/202243938/30
http://linker.aanda.org/10.1051/0004-6361/202243938/30
http://linker.aanda.org/10.1051/0004-6361/202243938/31
http://linker.aanda.org/10.1051/0004-6361/202243938/32
http://linker.aanda.org/10.1051/0004-6361/202243938/33
http://linker.aanda.org/10.1051/0004-6361/202243938/33
http://linker.aanda.org/10.1051/0004-6361/202243938/34
http://linker.aanda.org/10.1051/0004-6361/202243938/35
http://linker.aanda.org/10.1051/0004-6361/202243938/36
http://linker.aanda.org/10.1051/0004-6361/202243938/36
http://linker.aanda.org/10.1051/0004-6361/202243938/37
http://linker.aanda.org/10.1051/0004-6361/202243938/38
http://linker.aanda.org/10.1051/0004-6361/202243938/39
http://linker.aanda.org/10.1051/0004-6361/202243938/39
http://linker.aanda.org/10.1051/0004-6361/202243938/40
http://linker.aanda.org/10.1051/0004-6361/202243938/41
http://linker.aanda.org/10.1051/0004-6361/202243938/42
http://linker.aanda.org/10.1051/0004-6361/202243938/43
http://linker.aanda.org/10.1051/0004-6361/202243938/44


O. Balsalobre-Ruza et al.: KOBEsim

Appendix A: KOBEsim inputs and outputs

There are 12 fields accepted as input; they are all found in
Table A.1. The observatory coordinates, the star name, and the
file containing the RV time series are mandatory. As the orbital
period is an input of the code, we highly recommend that the user
perform a careful study of the period to be targeted, for instance
using the ℓ1 periodogram (Hara et al. 2017) as a complementary
method to the GLS periodogram.

As a result of running KOBEsim, a prioritized list of calendar
dates is delivered in the form of an ascii file in csv format. Each
row corresponds to a candidate future observing date ranked
by preference: from highest to lowest weighted ∆ ln(B10). The
columns from left to right are calendar date (format year-month-
day), JD, the corresponding orbital phase, the expected ln(B10)
and its associated uncertainty, and the increase in ∆ ln(B10)
and its uncertainty. An example of this output file is shown in
Table A.2 for the simulated case of Sect. 3.1.2. For a more illus-
trative inspection of the results, KOBEsim also returns a plot of
ln (B10,n+1) versus the orbital phase. See Sect. 3.1.2 for details.
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Table A.1. Inputs of the KOBEsim code: obs (or obs_n), star, and file are mandatory.

Symbol Parameter Default Description
obs Observatory coordinates - Observatory coordinates (deg) and altitude (m)
obs_n Observatory name - Observatory name to obtain the coordinates
star Star name - To search for its coordinates with SIMBAD (Ginsburg et al. 2019)
file RV data file - FITS or ascii format with columns: JD, RV and ∆RV (m s−1)
sch Schedule None Ascii file with the program asigned JD. If None, all dates are considered
P Period GLS periodogram peak Proposed period (d) to be targeted with KOBEsim
t0 Inferior conjunction time None If provided, it is used as prior in the MCMC inference

minalt Minimum altitude 20 deg Minimum altitude (deg) constraint to observe the target
texp Exposure time 700 s Exposure time (s) for the target
Nph Number of sub-phases 20 Number of splits of the orbital phase (Nphases)
beta Beta distribution True To reduce the time between observations through a beta distribution
ab Beta parameters a = 1, b = 5 Parameters of the beta distribution, β(a, b)
wh Pre-whitening False To substract a linear and a quadratic contribution in the RV data

max_da Maximum days apart 90 d Maximum days apart to search for the next optimum observing date
n Number of steps 20 000 Number of steps per walker for the emcee warm-up phase
nw Multiple number of walkers 4 Multiple of the number of parameters for the number of walkers

Table A.2. Output csv file of KOBEsim for the testing target with simulated data.

Calendar_day JD phase lBF sigma_lBF delta_lBF sigma_delta_lBF
2021-04-06 2459311 0.170 -3.393 0.028 0.348 0.055
2021-04-16 2459321 0.339 -3.157 0.037 0.584 0.061
2021-04-17 2459322 0.356 -3.200 0.043 0.541 0.064
2021-04-03 2459308 0.119 -3.520 0.039 0.221 0.062
2021-03-28 2459302 0.107 -3.578 0.038 0.163 0.061
2021-04-20 2459325 0.407 -3.249 0.037 0.492 0.061
2021-03-31 2459305 0.068 -3.576 0.030 0.166 0.057
2021-05-04 2459339 0.645 -3.567 0.077 0.174 0.091
2021-05-08 2459343 0.712 -3.503 0.049 0.238 0.069
2021-05-05 2459340 0.662 -3.566 0.036 0.175 0.060
2021-05-17 2459352 0.865 -3.413 0.093 0.328 0.105
2021-05-20 2459355 0.916 -3.506 0.043 0.235 0.065
2021-05-23 2459358 0.967 -3.616 0.046 0.125 0.066
2021-06-06 2459372 0.204 -3.297 0.035 0.444 0.060
2021-06-21 2459387 0.459 -3.527 0.057 0.214 0.075
2021-06-24 2459390 0.510 -3.682 0.050 0.059 0.069
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