
Received September 20, 2016, accepted October 22, 2016, date of publication October 26, 2016, date of current
version November 18, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2621718

Complex Event Processing Modeling by
Prioritized Colored Petri Nets
HERMENEGILDA MACIÀ1, VALENTÍN VALERO1, GREGORIO DÍAZ1,
JUAN BOUBETA-PUIG2, AND GUADALUPE ORTIZ2
1School of Computer Science, University of Castilla-La Mancha 02071, Albacete, Spain
2Department of Computer Science and Engineering, University of Cádiz, 11519 Puerto Real, Cádiz, Spain

Corresponding author: G. Díaz (gregorio.diazg@uclm.es)

This work was supported in part by the Spanish Ministry of Science and Innovation and the European Union FEDER Funds with the
Project DArDOS entitled Formal development and analysis of complex systems in distributed contexts: foundations, tools and applications
under Grant TIN2015-65845-C3, subprojects 2-R and 3-R, and the Research Network on Services Science and Engineering under
Grant TIN2014-53986-REDT, and in part by the University of Cádiz under Project PR2016-032.

ABSTRACT Complex event processing (CEP) is a technology that allows us to process and correlate large
volumes of data by using event patterns, aiming at promptly detecting specific situations that could require
special treatment. The event types and event patterns for a particular application domain are implemented
by using an event processing language (EPL). Although some current model-driven tools allow end users to
easily define these patterns, which are then transformed automatically into a particular EPL, the generated
code is syntactically but not semantically validated. To deal with this problem, a prioritized colored Petri
net (PCPN) model for CEP is proposed and conducted in this paper. This well-known graphical formalism
together with CPNTools makes possible the modeling, simulation, analysis, and semantic validation of
complex event-based systems. To illustrate this approach, a case study is presented, as well as a discussion
on the benefits from using PCPN for modeling CEP-based systems.

INDEX TERMS Formal modeling, Petri nets, CEP, EPL, services for big data, data mining.

I. INTRODUCTION
Complex Event Processing (CEP) [1], [2] is a cutting-edge
technology that allows us to process and analyze large vol-
umes of data in the form of events with the aim of detecting
relevant or critical situations for a particular domain in real
time. For that purpose, the conditions describing situations
to be detected must be specified by using the so-called event
patterns. These patterns are implemented using specific lan-
guages developed for this purpose, known as event processing
languages (EPLs) [3], and then are added into a CEP engine.

Even though a diversity of domains can currently benefit
from CEP technology, the main handicap for subject matter
experts is the need to define the event patterns for a particular
domain in the EPL syntax provided by the CEP engine to be
used in the system in question.

To solve this problem, we already proposed
MEdit4CEP [4], a model-driven solution for real-time deci-
sion making in Event-Driven Service-Oriented Architec-
ture (SOA 2.0) [5]. This solution allows domain experts to
easily define the event patterns by using a graphical modeling
editor [6], hiding all implementation details from them.

These modeled patterns are then transformed automatically
into a particular EPL, making use of Model-Driven Develop-
ment (MDD) techniques [7]. Thus, we have the following
consequent advantages: EPL technical aspects are hidden
from end users and productivity is improved since models
are easier to maintain. Furthermore, the automatic generated
code will be syntactic error-free.
Nevertheless, this approach does not check the occurrence

of semantic errors in the event pattern definition done by
end users. It would be quite convenient that the designed
event pattern models were formally verified before being
implemented and deployed into the CEP engine. To address
this issue, in this paper we propose to extend our event
pattern models validation with a Prioritized Colored Petri
Net model (PCPN) [8] and we use CPNTools [9] to support
the semantic analysis of such event patterns, as illustrated in
Figure 1. More specifically, the phases to be followed for
defining event patterns with our approach including PCPN
are detailed below:

1) Event Pattern Model Definition: the domain expert is
responsible for graphically defining the event patterns

VOLUME 4, 2016
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7425

H. Macià et al.: CEP Modeling by PCPNs

FIGURE 1. A model-driven approach for CEP modeling by PCPN.

to be detected in a specific application domain, such as
health care, home automation and network security.

2) Event Pattern Model Validation: once an event pattern
is modeled, the editor will syntactically validate it,
showing the errors that should be fixed before going on.
From this phase we can accomplish a semantic valida-
tion by PCPNs (phases 3 and 4) or we can proceed with
phase 5 in order to transform the model into EPL code.

3) Event Pattern Model Transformation to PCPN Model:
the event pattern model will be transformed into a
PCPN model. This is currently done manually, but we
expect to integrate the automatic transformation with
MEdit4CEP in the near future.

4) PCPN Model Validation: the PCPN obtained from the
previous phase can be semantically validated. We can
feed the model with an arbitrary number of initial
markings (stream of events), so as to check if the model
is semantically correct. In the case that an error is
discovered we will return to phase 1.

5) Event Pattern Model Transformation to EPL Code: the
event pattern model will be automatically transformed
into EPL code. This code will depend on the specific
EPL provided by the chosen CEP engine.

6) Automated Insertion of EPL Code in CEP Engine:
the EPL code of the modeled event pattern will be
automatically inserted into the CEP engine at runtime
should it be necessary.

7) Automated Event Pattern Detection: the engine will
be able to detect the critical or relevant situations
described by the deployed EPL event pattern in real
time.

8) Decision Making (Actions): upon detecting the new
situations of interest, their associated actions will be
carried out at runtime.

The main contribution of this paper is the one described
in phase 3 of this methodology: the procedure to be fol-
lowed to convert the event pattern model to PCPNs with
accuracy, starting from a particular set of patterns modeled
with the MEdit4CEP tool. Once we have the PCPN capturing
the EPL behavior we can accomplish the model validation

phase (phase 4), in which the CPNTools framework is used
in order to check if the event patterns are correct. Model
validation looks for design errors in the event patterns, so
the output produced by the execution of the obtained PCPN
is analyzed by using some tests, which are included after
the PCPN model has been obtained. How these tests are
included depends on the specific application domain area,
but the final intention is that they will be a PCPN extension
of the PCPN obtained by the transformation. In this paper
we focus our attention in the procedure required to transform
the event patterns to PCPNs in order to facilitate the future
automatization of the transformation and its integration with
MEdit4CEP, so validation is only done at the level of the CEP
engine, checking that the PCPN is correct, i.e. it generates the
same output (complex events) as the CEP engine. With the
PCPNs thus obtained we will have the ability to make further
analysis of the defined event patterns, either quantitative or
qualitative, once this transformation has been implemented
in the MEdit4CEP tool.

The rest of the paper is organized as follows. In Section II,
we describe the required background to facilitate the under-
standing of this paper. The PCPN models for a set of relevant
event patterns elements are presented in Section III, and a
case study illustrating the applicability of this approach is
presented in Section IV. Some relevant related works are
presented in Section V and finally, Section VI presents some
conclusions and the lines of future work.

II. BACKGROUND
In this section we explain the background for the CEP tech-
nology together with the MEdit4CEP tool, and the PCPN
formalism that we use for modeling complex event based
systems.

A. COMPLEX EVENT PROCESSING
CEP is an emerging technology that allows us to analyze and
correlate enormous amounts of data in the form of events
with the purpose of detecting relevant or critical situations
(complex events) in real time. A situation is an event occur-
rence or an event sequence that requires an immediate

7426 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

reaction [10]. Events can be classified into two main cate-
gories: a simple event is indivisible and happens at a point
in time, a complex event contains more semantic meaning,
which summarizes a set of other events [11]. Events can
be derived from other events by applying or matching event
patterns, i.e. templates where the conditions describing sit-
uations to be detected are specified. A CEP engine is the
software used to match these patterns over continuous and
heterogeneous event streams, and to raise real-time alerts
after detecting them.

These event patterns are implemented by using EPLs.
It is noteworthy that we have chosen Esper EPL [12] as EPL
in this work, since this rich high level processing language
is more complete than others are, providing more temporal
and pattern operators for defining the situations of interest.
In addition, its open-source CEP engine is very efficient:
it can process over 500,000 events/s [12]. For the sake of
brevity, we refer to the particular language Esper EPL simply
as EPL through the rest of the paper.

FIGURE 2. Complex event processing stages.

CEP is performed in 3 stages, as depicted in Figure 2:
1) Event capture–it receives events to be analyzed by CEP

technology,
2) Analysis–based on the event patterns previously

defined in the CEP engine, the latest will process and
correlate the information in the form of events in order
to detect critical or relevant situations in real time,

3) Response–after detecting a particular situation, it will
be notified to the system, software or device in
question.

The main advantage of using this technology is that such
relevant or critical situations can be identified and reported
in real time; thus reducing latency in decision making, unlike
the methods used in traditional software for event analysis.
Moreover, CEP presents other benefits [13]: decision quality
improvement, faster and (semi-)automatic reply, information
overload prevention and human workload reduction.

B. MEdit4CEP
MEdit4CEP [4] is a model-driven solution for real-
time decision making in SOA 2.0. Its main aim is to
make easier domain experts’ tasks of defining both event
patterns –situations of interest to be detected– and alerts for

real time notification, hiding all implementation details from
them.

More specifically, this solution is composed of a model-
driven approach for CEP in SOA 2.0 together with both a
graphical modeling editor for CEP domain definition and a
graphical modeling editor for event pattern and action defini-
tion as well as code generation.

The main purpose of this model-driven approach is
the definition of high-level models, which are approach-
able and understandable to any user. These models are
created by using ModeL4CEP [14] —graphical Domain-
Specific Modeling Languages (DSMLs) for CEP domains
and event patterns— whose definition consists of three dis-
tinct parts: (1) the abstract syntax that consists of both a
meta-model –model describing language concepts and rela-
tionships between them– and validation rules to check
whether a model is well formed –the model conforms
to its meta-model—, (2) the concrete syntax or DSML
notation –the set of useful graphical symbols for drawing
model diagrams—, and (3) model-to-code transformations
for generating automatically the code that can be executed in
CEP engines and Enterprise Service Buses (ESBs). A detailed
explanation about these parts can be found at [14].

Table 1 summarizes all the language concepts supported
by MEdit4CEP to define event patterns in a user-friendly and
graphical way.

The key feature of the event pattern editor is its ability
to reconfigure itself for different CEP domains, modeled by
domain experts. The fact that the editor can reconfigure the
tool palette—Simple Events and Complex Events categories,
see Table 1— dynamically from different CEP domain mod-
els allows users to enjoy a graphical interface adapted to the
specific context required.

This is a novel solution for bringing CEP technology closer
to any user, positively impacting on the decision making
process.

C. PRIORITIZED COLORED PETRI NETS
We use prioritized colored Petri nets, which are a prioritized
extension of colored Petri nets [8], [15], [16], the well-known
model supported by CPN Tools [9], developed by the CPN
group at the University of Aarhus, Denmark.

A Petri Net (PN) is a directed graph, which consists
of places (circles), transitions (rectangles) and arcs connect-
ing places and transitions and viceversa. In colored PN (CPN)
places have an associated color set (a data type), which
specifies the set of allowed token colors at this place. Each
token then has an attached data value, a color, which belongs
to the corresponding place color set.

Arcs can have inscriptions (arc expressions), constructed
using variables, constants, operators and functions. To eval-
uate an arc expression we need to bind the variables, which
consists of assigning a value to the variables that appear in
the arc inscription. These values are then used to select the
token colors that must be removed or added when firing the
corresponding transition.

VOLUME 4, 2016 7427

H. Macià et al.: CEP Modeling by PCPNs

TABLE 1. MEdit4CEP palette tools.

Transitions can also have guards and priorities. Guards
are predicates constructed by using the variables, constants,
operators and functions of the model, and they must evaluate

to true with the selected binding for the transition to be
fireable. Furthermore, priorities can be used to establish an
order of firing. Specifically, we use the following priorities:

7428 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

P_HIGH, P_NORMAL, P_LOW and P_LOW2, following
this decreasing ordering of priority.
Definition 1 (Multisets):
• Multisets are defined as functions C : X → N, pro-
viding us with the number of instances of each element
x ∈ X . As usual, we will enumerate the elements of a
multiset C as follows: C = {r1.x1, . . . , rn.xn}, meaning
that C(xi) = ri, for all i = 1, . . . , n, and C(x) = 0, for
all x 6= xi, i = 1, . . . , n.
The set of multisets over a setX will be denoted byB(X).
For any x ∈ X and C ∈ B(X) we say that x ∈ C if and
only if C(x) > 0.

• For any C1,C2 ∈ B(X), we define:
– C1 + C2 ∈ B(X), where ∀x ∈ X , (C1 + C2)(x) =
C1(x)+ C2(x).

– C1 ⊆ C2 if and only if ∀x ∈ X , C1(x) ≤ C2(x).
– If C1 ⊆ C2 we can define the subtraction C2 −

C1 ∈ B(X), where ∀x ∈ X , (C2 − C1)(x) =
C2(x)− C1(x).

Definition 2 (Prioritized Colored Petri Nets): We define
a prioritized colored Petri net (PCPN) as a tuple
(P,T ,A,V ,G,E, π), where1:
• P is a finite set of places, with colors in a set 6.
• T is a finite set of transitions (P ∩ T = ∅).
• A ⊆ (P× T) ∪ (T × P) is a set of directed arcs.
• V is a finite set of typed variables in6, i.e. Type(v) ∈ 6,
for all v ∈ V .

• G : T −→ EXPRV is the guard function,
which assigns a Boolean expression to each transition,
i.e. Type(G(t)) = Bool.

• E : A −→ EXPRV is the arc expression function,
which assigns an expression to each arc, constructed
using variables, constants, operators and functions.

• π : T −→ IN is the priority function, which assigns a
priority level to each transition, where low values corre-
spond to high priorities. We take 1 as the priority level of
a transition with priority P_HIGH, 2 for P_NORMAL,
3 for P_LOW and 4 for P_LOW2

A marking on a place is defined as a multiset of colored
tokens on it, and the marking of the Colored Petri Net is
defined by the marking of all its places.
Definition 3 (Markings): Given a PCPNN = (P,T ,A,V ,

G,E, π), a marking M is defined as a function
M : P −→ B(6), which assigns a multiset of colors to
each place (which can be empty). The corresponding marked
PCPN is denoted by (N ,M).

We define the semantics for MPCPNs (Marked PCPNs)
in a similar way as in [8], now taking into account that
transitions have associated priorities. We first introduce the
notion of binding, then the enabling condition and finally the
firing rule for MPCPNs.

1We use the classical notation on Petri nets to denote the precondition and
postcondition of both places and transitions:

∀x ∈ P ∪ T : • = {y | (y, x) ∈ A} x• = {y | (x, y) ∈ A}

Informally, a transition binding is just a function that
assigns values to the variables that appear in a transition or
in the arcs connected with it.
Definition 4 (Bindings): Let N = (P,T ,A,V ,G,E, π)

be a PCPN. A binding of a transition t ∈ T is a function b that
maps each variable v ∈ Var(t) into a value b(v) ∈ 6, where
Var(t) is defined as the set of variables that appear both in the
guard of t and in the arc expressions of the arcs connected
to t . We will denote by B(t) the set of all possible bindings
for t ∈ T .
Given an expression e ∈ EXPRV , we will denote by e〈b〉

the evaluation of e for the binding b. A binding element is
then defined as a pair (t, b), where t ∈ T and b ∈ B(t). The
set of all binding elements is denoted by BE . �

Given a marking M and a transition t , we say that a
transition binding of t is enabled at (N ,M) when G(t) is true
under this binding, for every p ∈ • we have enough tokens in
M (p) with colors matching with the indicated in E(p, t) and
no other transition t ′ has a binding fulfilling these conditions
with π (t ′) < π(t).
Definition 5 (Enabling Condition): Let (N ,M) where

N = (P,T ,A,V ,G,E, π) is a PCPN andM a marking of it.
We say that a binding element (t, b) ∈ BE is enabled if and
only if the following conditions are fulfilled:

1) G(t)〈b〉 = true.
2) For all p ∈ •,E(p, t)〈b〉 ⊆ M (p).
3) There is no other binding element (t ′, b′) ∈ BE fulfill-

ing the previous conditions such that π (t ′) < π(t). �

Hence, the following conditions must be satisfied for a
transition to be fireable: it must be binding enabled (for
some specific binding), its guard must evaluate to true with
the selected binding and there cannot be another transition
with a greater priority fulfilling these conditions (with this or
another binding). The firing of an enabled transition binding
is non-deterministic (according to the possible bindings), and
a new marking is obtained from the associated binding: for
every place p ∈ • we remove the selected tokens matching
with E(p, t) and we add new colored tokens on the places
p′ ∈ t•, according to the expression E(t, p′).
Definition 6 (Firing Rule): Let (N ,M) where N = (P,T ,

A,V ,G,E, π) is a PCPN, and M a marking of N , and an
enabled binding element (t, b) ∈ BE . The firing of (t, b) is
possible obtaining a new marking M ′ as follows: ∀p ∈ P :
M ′(p) = M (p)− E(p, t)〈b〉 + E(t, p)〈b〉
The following example illustrates the above definitions.
Example 1: Let us consider the marked PCPN depicted in

Figure 3, obtained from CPN Tools. Tokens in CPN Tools
are drawn using the notation n‘v, meaning that we have n
instances of a token with color value v. Besides, the symbol
‘++’ is used to represent the union ofmultisets in CPNTools.

All places in the example have as color set INT (int),
and the variables x, y, z,w are integers. Transitions are
labeled with their associated guard and priority information,
and arcs are labeled with the corresponding expressions.

VOLUME 4, 2016 7429

H. Macià et al.: CEP Modeling by PCPNs

FIGURE 3. Graphical view of a PCPN.

Empty guards are always evaluated to true and empty priori-
ties are considered as P_NORMAL.

From the initial marking shown in Figure 3 we can see that
only transition t1 can be fired, and any token of those in p1
can be used for its firing (the binding can be either x = 3 or
x = 5). Taking the binding x = 5, which fulfills the transition
guard (x < 7), we can fire t1 which removes the token 5 from
p1 and produces a new token on p2 with value 10. The only
transition that can now be fired is t2 because the guard of t3
is not satisfied and the priority of t1 is lower than the priority
of t2.

As a result, the token on p3 changes its value to 11, a new
token with value 0 appears on p4 and two tokens with value 3
remain in p1. From this marking the sequence t1; t3; t1; t3
can be fired, thus reaching the final marking (p1 and p2
empty, 11 in p3, 0 in p4 and two tokens with value 1 in p5).

III. PCPN MODELING OF COMPLEX EVENT PROCESSING
In this section, we present the PCPN models for some of
the most relevant elements supported by MEdit4CEP, such as
events (simple and complex), pattern operators and actions.
Let us see first an overview of how these elements are repre-
sented by using PCPNs:

• Event capture: For each type of event we will have a
place whose tokens represent the specific events of this
type that are used to feed the model. The color set of this
place will be defined according to the properties of the
specific event type.

• Complex events: These are generated by the application
of the event patterns, and they are represented by specific
places, whose color sets are defined according to the
pattern schema that specifies the specific complex event.

• Event patterns: Each pattern will be modeled by a sep-
arate PCPN, in which we basically have a transition
representing the pattern application and possibly other
control transitions and control places that allow us to
apply the specific filters the pattern requires. Thus, these
transitions will have as input places the event capture
places and/or the complex event places that they require

FIGURE 4. Event Place for the THevent Event Type.

to select the appropriate events, and they have as output
places the complex event places corresponding to the
events they produce. Guards and priorities will then be
used in these transitions in order to enforce the correct
pattern behavior.

• Actions: These are modeled by specific transitions that
are associated to the different response actions. Their
precondition places will be the complex event places
related to their execution, and they have guards that
specify the conditions under which their specific action
must be performed.

A. CEP DOMAIN: EVENTS AND EVENT PROPERTIES
As mentioned before, according to MEdit4CEP, each type of
event in the CEP domain is represented by a corresponding
place, whose name will be the type of event. These places
will be called event places and can be replicated as needed in
the different patterns. Each event property has either a basic
data type (integer, string, boolean, etc) which is represented
in CPNTools by a corresponding basic color set (int, string,
bool, etc) or a structured data type (a product color set in
CPNTools). Furthermore, we have an ordered sequence of
timed events, so tokens always have both a sequence number
and a timestamp associated. Thus, the first two fields of all
color sets for event places will be used to represent, respec-
tively, the sequence number (seqnumber) and the instant at
which the event was produced (eventtime). It is important to
notice that we are annotating the event timestamp as a field
in the place color set, instead of using the timed capabilities
of PCPNs (timed color sets), since the use of timed tokens
entangles the translations unnecessarily, because we can only
use timed tokens when they are available, and some patterns
require a double processing of the input event sequence.
Following these two fields we will have the data fields repre-
senting the event properties. Furthermore, all event properties
are declared as variables in CPNTools, according to their
respective data types.
Example 2: A simple type of event THevent is declared in

EPL as follows:
create schema

THevent(sensor string,temperature integer,
humidity integer);

The corresponding declarations in CPNTools are:
colset TH = product INT*INT*STRING*INT*INT;
var sensor:STRING;
var seqnumber,eventtime,temperature,

humidity:INT;

Figure 4 illustrates the previous declaration in CPNTools,
where the place THevent is shown with a marking
of 5 tokens (event instances) and the initial timestamp is 1.

7430 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

The EPL event sequence declaration for the initial marking
of THevent follows:
t=t.plus(1 seconds)
THevent={sensor=’s1’, temperature=24, humidity=32}
THevent={sensor=’s2’, temperature=31, humidity=20}
t=t.plus(1 seconds)
THevent={sensor=’s1’, temperature=26, humidity=30}
THevent={sensor=’s2’, temperature=29, humidity=25}
t=t.plus(1 seconds)
THevent={sensor=’s1’, temperature=27, humidity=29}

�

B. EVENT PATTERNS
According to MEdit4CEP, event patterns are defined by
means of pattern operators and expressions constructed using
condition operators (arithmetic, comparison and logical) on
values, properties or events. Besides, an event pattern can
be applied on a bounded set of events from an event stream
(Data Window) and time conditions can also be considered
in a pattern. In this paper, in order to gain readability and
not to be repetitive, we only present a subset of the most
relevant operators supported by MEdit4CEP for detecting
situations of interest, but illustrating the guidelines that we
should follow for the translation of the other patterns.

In this paper, therefore, we only deal with the pattern
operators every, followed by and two combinations of them.
We also include the Sliding Time Interval Data Windows,
as illustration of the four types of Data Windows supported
byMEdit4CEP. Thus,MEdit4CEP’s operatorsEveryDistinct,
Range, Repeat, Until and While are not considered in this
paper, but they can be obtained following the same principles
that we use for the patterns here presented. Pattern times are
not considered either. Their translations to PCPNs are also
obtained by applying the same techniques.

Conditional expressions will be translated to CPN-ML
expressions in CPNTools. CPN-ML is a functional program-
ming language based on Standard ML [17], and the condi-
tional expressions are then constructed using the variables
declared for events and properties.

1) PATTERN OPERATORS
Let us start with a pattern that only selects the first event that
fulfills a certain condition:

@Name(’HighTemp’)
insert into HighTemp
select a1.sensor as sensor,

a1.temperature as temperature
from THevent a1 where a1.temperature > 30

Which takes the first event of type THevent with a tempera-
ture greater than 30 and produces a complex event of typeHT,
with two properties (sensor identification and temperature)
and the corresponding sequence number and event time. The
PCPN for this pattern is shown in Figure 5.a. Transition
pattern_high_temp has a CPN-ML guard selecting the tokens
on the place THevent that fulfill the indicated condition, but
this transition can only be fired once, since there is only one
token on the place out_seqn. The place in_seqn is initially
marked with one token of value 0, which is increased

FIGURE 5. PCPNs for Patterns high_temp and temp_humid. (a) PCPN for
high_temp. (b) PCPN for temp-humid.

progressively by transition incr_seq. Due to its low prior-
ity, transition incr_seq can only be fired when the pattern
transition is not fireable, so the latter is only fired for the
first event in the sequence fulfilling the conditions. Taking
the initial marking of Example 2 we have obtained the token
(1, 1, ‘‘s2‘‘, 31) on the place HighTemp.

The pattern operator every selects every event belonging
to the specified type that fulfills the indicated condition
(if a condition has been defined). The following pattern
temp_humid selects all events for which the temperature is
between 23 and 27 and the humidity is less than or equal to
30 which are acceptable ranges of temperature and relative
humidity for comfort in summer.

@Name(’temp_humid’)
insert into temp_humid
select a1.* from pattern
[(every a1 = THevent(a1.temperature >= 23
and a1.temperature <=27 and a1.humidity <= 30))]

VOLUME 4, 2016 7431

H. Macià et al.: CEP Modeling by PCPNs

The PCPN for this pattern is shown in Figure 5.b.
Transition pattern_temp_humid has again a CPN-ML guard
that selects the tokens on the place THevent that fulfill the
indicated conditions. These tokens are removed from the
place THevent and they are inserted into the event place
Temp_Humid, extended with their new output sequence num-
ber and time (color set TH2). Taking again the initial marking
of Example 2 we have obtained the following tokens on
Temp_Humid:

{(1, 2, (3, 2, ‘‘s1‘‘, 26, 30)), (2, 3, (5, 3, ‘‘s1‘‘, 27, 29))}.

The pattern operator followed by (->) determines a pattern
expression that must be followed by another. Let us see first
the use of this pattern only using conditional expressions in
both sides:

@Name(’greater_temp’)
insert into greater_temp
select a2.sensor as sensor,

a1.temperature as temp1,
a2.temperature as temp2

from pattern [(a1 = THevent ->
a2 = THevent((a2.sensor = a1.sensor
and a2.temperature > a1.temperature)))]

FIGURE 6. PCPN for the ‘‘greater_temp’’ Pattern.

This pattern takes the first event of the input sequence a1,
and then it looks for the first event a2 in the sequence such
that a1 precedes a2, they come from the same sensor and the
temperature of a2 is greater than that of a1. The PCPN is
shown in Figure 6, where the initial place THevent has been
cloned (THevent1 for a1 events and THevent2 for a2 events).
The place in_seqn is again used to represent an increasing
sequence number, so as to fire the pattern transition for the
first event a1 and the first event a2 of the sequence fulfilling
the conditions.

The firing of transition pattern_greater_temp produces
a new token on the place Greater_Temp, with sequence
number 1, time of a2, sensor identification and both
temperature values of a1 and a2. Taking the initial

marking of Example 2 for both places THevent1 and
THevent2 we have obtained the token (1, 2, ‘‘s1‘‘, 24, 26) on
Greater_Temp.

Let us consider now two relevant combinations of the
patterns every and followed by, namely, every (A -> B) and
every A -> B, whose translations are depicted in Figure 7.
Without loss of generality we have considered in these fig-
ures, respectively, the following EPL declarations:

create schema ME(id string,k integer);
@Name(’every1’)
insert into every1
from pattern [every (a1 = ME(a1.id="A") ->

a2 = ME(a2.id = "B"))];
@Name(’every2’)
insert into every2
select a1.id as a1id, a1.k as k1,

a2.id as a2id, a2.k as k2
from pattern [every a1 = ME(a1.id="A") ->

a2 = ME(a2.id = "B")];

The PCPN structure for a different event type and/or dif-
ferent conditions A,B would be exactly the same; only the
color sets on the event places and the guards on the next_A
and pattern transitions would need an adjustment.

In both PCPNs the initial place has been replicated
(Ev1, Ev2), so they contain the same initial marking (event
sequence). For the pattern every1 (every (A -> B)) let us
observe that transition next_A takes the next A event from
the input sequence, always starting with the sequence num-
ber stored on the token on in_seqn, which is progressively
increased by transition incr_seq. The A event token taken
from Ev1 is then stored on the place Ev1A. Transition
incr_seq has a low priority, so it will increase the sequence
number on the token of in_seqn until the pattern transition can
be fired. Once the pattern transition is fired the token on the
place control is recovered, which allows the transition next_A
to find the next A after the found B.

For illustration, let us consider the following input
sequence:

t=t.plus(1 seconds)
ME={id="A", k=1} ME={id="B", k=1} ME={id="C", k=1}
ME={id="B", k=2} ME={id="A", k=2} ME={id="D", k=1}
ME={id="A", k=3} ME={id="B", k=3} ME={id="E", k=1}
ME={id="A", k=4} ME={id="F", k=1} ME={id="B", k=4}

For which the corresponding initial marking on
Ev1, Ev2 is

M = {(1, 1, ‘‘A‘‘, 1), (2, 1, ‘‘B‘‘, 1), (3, 1, ‘‘C‘‘, 1),

(4, 1, ‘‘B‘‘, 2), (5, 1, ‘‘A‘‘, 2), (6, 1, ‘‘D‘‘, 1),

(7, 1, ‘‘A‘‘, 3), (8, 1, ‘‘B‘‘, 3), (9, 1, ‘‘E‘‘, 1),

(10, 1, ‘‘A‘‘, 4), (11, 1, ‘‘F‘‘, 1), (12, 1, ‘‘B‘‘, 4) }

The resulting final marking on the place every (A -> B) is

M ′ = {(1, 1, (1, 1, ‘‘A‘‘, 1), (2, 1, ‘‘B‘‘, 1)),

(2, 1, (5, 1, ‘‘A‘‘, 2), (8, 1, ‘‘B‘‘, 3)),

(3, 1, (10, 1, ‘‘A‘‘, 4), (12, 1, ‘‘B‘‘, 4))}

Regarding the pattern every A -> B (Figure 7.b), the place
count_A is now used to count the number of A events

7432 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

FIGURE 7. PCPNs for ‘‘every-followed by’’ Patterns. (a) CPN for
every(A -> B). (b) CPN for every A -> B.

processed from the input sequence (Ev1). These A events
are written again in Ev1A, and we annotate its number of
A event (k) and its sequence number (n1) into a token on

the place out_seqn. Sequence numbers are increased again
progressively by transition incr_seqn, until the pattern transi-
tion is fired or a new A event is found on the input sequence.
When a B event is found, the pattern transition fires (possibly
several times) and the corresponding matches are written into
the output place every A -> B.

For the same initial marking considered above we have
now obtained the following final marking:

M ′ = {(1, 2, (1, 1, ‘‘A‘‘, 1), (2, 2, ‘‘B‘‘, 1)),

(2, 8, (5, 2, ‘‘A‘‘, 2), (8, 8, ‘‘B‘‘, 3)),

(3, 8, (7, 3, ‘‘A‘‘, 3), (8, 8, ‘‘B‘‘, 3)),

(4, 12, (10, 4, ‘‘A‘‘, 4), (12, 12, ‘‘B‘‘, 4)) }

FIGURE 8. PCPN Model for the Sliding Time Interval Data Windows.

2) DATA WINDOWS
Asmentioned before, we only describe the PCPN transforma-
tion for Sliding Time Interval Data Windows (Figure 8). The
otherData Windows, namely Batching Event Interval, Batch-
ing Time Interval and Sliding Event Interval Data Windows
can be obtained in a similar way.

In this case, a place time with one token representing the
current time is now included, as well as a transition tick
that increases the time until reaching the time for the next
event in the input sequence. The current sequence number
under processing is captured again by the token on the place
in_seqn, as in the previous translations. Place DW_Ev (Data
Window Event Place) will contain at each instant the events
corresponding to the current time slide.

Let us see how this PCPN works at each cycle (time
instant). Transition tick is fired to advance the current
time, which can be followed by several firings of transition
clear_DW_Ev in order to remove the tokens that are too
old to remain in this time slide. The high priority of this
transition enforces its firing if it is enabled. In the case that
there is no event in the input sequence with a time equal to
the current time the only enabled transition will be c_tick,
which allows a new firing of tick to advance the current
time and start a new cycle. Otherwise, when the following

VOLUME 4, 2016 7433

H. Macià et al.: CEP Modeling by PCPNs

event in the sequence has an event time equal to the current
time, transition incr_seqn is fired to increase the sequence
number on the place in_seq so as to advance in the input
event sequence. Transition enter is then fired, writing the
corresponding event token into the place DW_Ev. Should we
have more events in the input sequence with the same event
time, transition incr_seqn is fired again followed by enter
to deposit these event tokens into the place DW_Ev. Notice
that incr_seqn has a P_LOW priority, so we only advance
in the sequence after entering the previous event token into
DW_Ev and we only advance to the following event when
its event time is the current time, as mentioned above. Once
there are no other events in the sequence with their event
time equal to the current time, then it follows that the only
enabled transition is c_tick, which has the lowest priority in
the PCPN (P_LOW2), allowing a newfiring of tick to advance
the current time and start a new cycle.

The specific application of a Sliding Time Interval Data
Window varies depending on the defined pattern. The actions
to be performed must be included just before tick fires. In the
following section we illustrate the applicability of a Sliding
Time Interval Data Window by using a particular case study.

IV. CASE STUDY
In this section we analyze a health care case study concerning
the monitoring of uterine contractions of pregnant women in
a hospital. Obviously, in this case, the end users could not
be experts in CEP, EPL or CPN, so our intention is to show,
through this case study, how our work could contribute to
improve current health care information systems.

As we said before, we focus on the events produced previ-
ously to the process of childbirth by considering the monitor-
ing of uterine contractions. Specifically, we only consider the
duration —beginning to end of one contraction (seconds)—
and the frequency —beginning of one contraction to begin-
ning of the next (minutes).

The patterns of interest are related to the number of times
that frequency and/or duration exceeds a predetermined value
in a given period of time. Thus, for each patient we only
need to indicate her name and the duration of each uterine
contraction, with its corresponding timestamp.

In order to define these event patterns for this applica-
tion domain, the first task to be done by the domain expert
is the CEP domain definition making use of MEdit4CEP.
As can been seen in Figure 9, this domain contains the Patient
event type along with its event properties: ts (event timestamp
in minutes), id (patient id) and contrDuration (contraction
duration in seconds). Moreover, the domain name has been
set to pregnancy, a textual description has been indicated for
the domain and a customized icon has been assigned to the
event type, improving usability.

This CEP domain model is automatically validated and
stored, and can be transformed into EPL syntax as follows:

create schema
Patient(ts integer, id string,

contrDuration integer);

FIGURE 9. Pregnancy domain modeled using MEdit4CEP.

Once designed the pregnancy domain, the event pat-
tern editor has been automatically reconfigured for this
domain, i.e. the Patient event type has been added as a
tool in the Simple Events category of the editor palette
(see Figures 10 and 11). This means that end users do not have
to worry about how to define event types and their properties,
since these are graphically represented when dragging and
dropping the tool. In addition, they cannot modify given event
types, avoiding the creation of incorrect event patterns for the
same domain.

FIGURE 10. Counter event pattern modeled using MEdit4CEP.

Figure 10 shows the Counter event pattern modeled using
MEdit4CEP. This pattern will counter the number of events
with a contraction duration greater than 20 seconds in time
slides of 10 minutes. Once the pattern has been designed, it
has to be automatically validated and stored after checking
that the model is correct and well formed —by using the val-
idation rules. Afterwards, the editor has been automatically
reconfigured adding the new complex event type Counter as
a tool in the Complex Events category of the editor palette.
This allows end users to be able to graphically define an event
pattern hierarchy by dragging and dropping previously added
tools from the Complex Events category into a new event

7434 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

FIGURE 11. Duration event pattern modeled using MEdit4CEP.

pattern model. The EPL code automatically generated for this
pattern is as follows:

@Name(’Counter’)
insert into Counter
select count(a1.contrDuration) as numContr
from pattern [(every a1 = Patient(a1.contrDuration

>= 20))].win:time(10 minutes)

Figure 11 illustrates the event pattern Duration mod-
eled by the end user. This pattern looks for patients who
have had at least two contractions with a duration greater
than 35 seconds within a period of 5 minutes. The complex
event type Duration is then added to the Complex Events
category of the editor palette. The EPL code generated for
this pattern is as follows:

@Name(’Duration’)
insert into Duration
select a1.id as patientId,

(a2.ts - a1.ts) as delay
from pattern [((every a1 = Patient(a1.contr

Duration > 35)) -> a2 = Patient((a2.id = a1.id
and a2.contrDuration > 35 and (a2.ts - a1.ts)
<= 5)))]

For the PCPN transformation the following color sets,
variables and values are declared in CPNTools:

colset C=product INT*INT*STRING*INT;
colset INT2=product INT*INT;
var n,t,n1,t1,k1:INT;
var s1:STRING;
val time_interval=10;

Then, the corresponding PCPNs for the two modeled event
patterns are shown in Figures 12 and 13. The first one is
a Sliding Time Interval Data Window, in which we have
now included the corresponding event processing, which is to
count the events on the place DW_Ev fulfilling the indicated

FIGURE 12. PCPN for the Pattern Counter.

condition (contraction duration greater than 20) at each time
slide. A transition cond has been included to select the event
tokens fulfilling this condition, which are written into the
place out. Once all of these event tokens have been trans-
ferred to place out the transition c_tick is fired and then the
transition return is fired (due to its high priority) to recover
all these tokens to the place DW_Ev and counter the tokens

VOLUME 4, 2016 7435

H. Macià et al.: CEP Modeling by PCPNs

FIGURE 13. PCPN for Pattern Duration.

on the current times slide (t). After recovering the tokens on
DW_Ev the transition tick becomes enabled, so as to start a
new cycle. Figure 13, the second pattern, corresponds to a
‘‘every A -> B‘‘ case.
Taking, for instance, the following EPL specification as

event data:

t=t.plus(1 min)
Patient={id =’Alice’, contrDuration =10 , ts=1}
Patient={id =’Barbara’, contrDuration =20, ts=1}
t=t.plus(8 min)
Patient={id =’Alice’, contrDuration =20, ts=9}
Patient={id =’Barbara’, contrDuration =36, ts=9}
t=t.plus(3 min)
Patient={id =’Alice’, contrDuration =38, ts=12}
t=t.plus(2 min)
Patient={id =’Barbara’, contrDuration =39, ts=14}
t=t.plus(2 min)
Patient={id =’Alice’, contrDuration =40,ts=16}
t=t.plus(8 min)
Patient={id =’Barbara’, contrDuration =42,ts=24}
Patient={id =’Carla’, contrDuration =10,ts=24}
t=t.plus(1 min)
Patient={id =’Alice’, contrDuration =45,ts=25}
t=t.plus(4 min)
Patient={id =’Alice’, contrDuration =36, ts=29}
t=t.plus(2 min)
Patient={id =’Barbara’, contrDuration =20, ts=31}

which corresponds to the initial marking:

M = { (1, 1, "Alice", 10), (2, 1, "Barbara", 20),
(3, 9, "Alice", 20), (4, 9, "Barbara", 36),
(5, 12, "Alice", 38), (6, 14, "Barbara", 39),
(7, 16, "Alice", 40), (8, 24, "Barbara", 42),
(9, 24, "Carla", 10), (10, 25, "Alice", 45),
(11, 29, "Alice", 36), (12, 31, "Barbara", 20)}

meaning a woman ‘‘Alice’’ with a contraction duration
of 10 seconds at instant 1, a woman ‘‘Barbara’’ with a contrac-
tion duration of 20 seconds at instant 1 too, woman ‘‘Alice’’
again with a contraction duration of 20 seconds at instant 9
and so on.

The final marking obtained for the first pattern at the place
Duration follows is

M ′ = { (1, 14, "Barbara", 5), (2, 16, "Alice", 4),

(3, 29, "Alice", 4) }

This marking corresponds to patient ‘‘Barbara’’ who has
had two contractions longer than 35 seconds in a period
of 5 minutes, where the last contraction has been at time 14
and the previous one 5 minutes before, that is, at time 9; and
to patient ‘‘Alice’’, who has as well matched the pattern in
two occasions, but in these cases the last contractions have
been at times 16 and 29, respectively, and both in a period
of 4 minutes.

The final marking obtained for the second pattern at the
place Counter follows:

M ′= {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1),

(9, 3), (10, 3), (11, 2), (12, 3), (13, 3), (14, 4), (15, 4),

(16, 5), (17, 5), (18, 5), (19, 3), (20, 3), (21, 3), (22, 2),

(23, 2), (24, 2), (25, 3), (26, 2), (27, 2), (28, 2), (29, 3),

(30, 3), (31, 4)}

Therefore, at the time slides of instants 1 to 8 we have
only one event fulfilling the condition, at times 9 and 10 we
have two, at times 11 to 18 one event and so on. Notice that
we have not stored the specific events on an output place,
but the inclusion of such a place would be immediate, as
an output place of transition return. Since we have used a
10-min sliding window in the pattern Counter, 31 complex
events have been created as a result of analyzing the events
coming from instant 1 until 31. It is noteworthy that if the end
user had graphically modeled by mistake this pattern with
a batch windows, a unique complex event had been created
after finishing every 10-min window, i.e. only 4 events. Thus,
this output validation would be an appropriate mechanism to
detect semantic errors in event patterns and notify them to end
users by using MEdit4CEP.

In this case study the initial marking of the obtained PCPN
has been introduced manually, and the interpretation of the
final marking has also been done by hand. It is evident that the
end user who defines the event patterns will not likely be an
expert in Petri nets models and EPL, so he would not be able
to simulate the Petri net model and translate back the found
errors, so we plan to integrate in the MEdit4CEP tool some
new features to allow him to define specific initial situations
or generic conditions that should hold in general, so as to
translate them into initial markings and/or PCPN extensions
to check that the designed event patterns are correct. All of
this corresponds to phase 4 of the methodology indicated in
the Introduction, and will be the matter of further research in
this area.

7436 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

V. RELATED WORK
The most related work is [18], in which Weidlich et al. have
defined a model of event processing networks using colored
Petri nets (CPN) with priorities and time (PTCPNs). In that
paper, the EPN (Event Processing Networks) architecture is
shown as the overall system and therefore they propose a
general translation of this concept. Besides, in that paper no
formal translation is defined for each specific pattern nor for
their combination. An only example, which is implemented
in the ETALIS framework [19], is provided to illustrate the
technique they use, but no explanations are provided about
the way in which the combination ‘‘every + followed by’’
expressed in its equivalent ETALIS pattern is translated. The
‘‘every+ followed by’’ is one of the patterns that will produce
problems with timestamps in the tokens used in TCPNs, but
this is not covered by that paper. For that reason, we have
not considered Timed Colored Petri Nets (Timed CPNs),
although the use of timestamps can make it easier the trans-
lation for the patterns isolated. For instance the translation of
Time Interval Data Windows using the timed model is clearly
easier. In this way, the most important difference with respect
to that paper is that we provide a framework able to com-
pound several patterns together in a compositional way, thus
allowing the automatization of a CEP formalization as well as
the integration of this framework in the MEdit4CEP tool, so
that users can analyze the behavior of compositional patterns
using a bottom-up approach. Our aims are then focused on a
specific set of patterns used in the CEP engine, which might
be graphically modeled by non-experts on EPLs, since this is
the idea followed by theMEdit4CEP tool. The PCPN can then
be obtained from this graphical specification, so that it can be
immediately used in CPNTools for the validation phase.

In [20] we can also find a methodology to model CEP
using Timed Net Condition Event System (TNCES) [21]
and its Application to a Manufacturing Line is shown as
an example. NCES is another Petri Net derived formalism,
based on Condition Event Systems which provide a modular
modeling formalism for discrete event dynamic systems. The
modules of each of the devices are interconnected by means
of their input/output behavior to form the uncontrolled system
model. TNCES is the timed extension of NCES based on arc-
timed Petri nets. The main differences with respect to our
paper is that we use a different formalism of Petri Nets and
that we plan the integration of the complete framework in the
MEdit4CEP tool.

Another formal approach for the modeling of complex
event systems has been proposed by Hinze and Voisard [22],
in which a parameterized event algebra (EVA) is defined
to support adaptable event composition, including temporal
restriction, by the notion of relative time. A temporal logic,
the TESLA language [23], has been defined by Cugola and
Margara. TESLA is a highly expressive and flexible language
in a rigorous framework, by offering content and temporal
filters, negations, timers, aggregates, and fully customiz-
able policies for event selection and consumption. A timed

automata formalization of complex event systems can be
found in [24] and [25], where the Sase+ pattern language is
introduced. Sase + defines a precise semantics in terms of
timed automata with similar results to the work introduced
in TESLA. Another formalization using timed automata is
presented by Ericsson et al. in [26], in which the events and
rules specified for CEP applications are analyzed for design
errors using the tool REX [27], implemented by Ericsson and
Brendtsson. The paradigm used in this case for CEP patterns
is the event condition action (ECA) [28]. REX asMEdit4CEP
aims at aiding final user to define the CEP systems but with
the difference that REX targets at helping non-experts in
formal methods to define the properties that a pattern should
satisfy, whereasMEdit4CEP assumes the non-expertise in the
CEP pattern language itself, thus targeting a wider group.

There are also many other languages for processing
real-time data, such as CQL [24], [29], ESL [30] and
streaQuel [31]. These EPLs can be classified into the follow-
ing language styles [10]: stream-oriented, rule-oriented and
imperative. Further information about existing EPLs can be
found in the survey by Cugola and Margara [3].

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a PCPN model that together
with CPNTools makes possible the modeling, simulation,
analysis and semantic validation of the situations of interest
needed to be detected in a CEP-based system for a particular
application domain by using event patterns. By extending
MEdit4CEP, a model-driven solution for real-time decision
making in SOA 2.0, with this PCPN model we allow end
users not only to easily and graphically define these patterns
and validate them syntactically but also semantically, before
transforming them automatically into a particular EPL.

Summarizing, we have not only an event pattern graphical
representation, but also the capability to perform formal anal-
ysis, and therefore semantic analysis, by means of the PCPN
model obtained and the CPN Tools. This formal analysis is
twofold. On the one hand, users can interact with the model
itself by performing a step by step debugging, since the tool
allows to simulate the model. With this in mind, users can
specify a concrete scenario by providing the initial marking
to check whether the model works as expected. By doing this,
users can observe the results of the individual steps of the
simulation, which represent the different EPL operators, as
we can observe at the end of the case study where a user can
detect whether the preferred operator has been used, that is,
if the specified pattern behaves as expected.

On the other hand, there are certain advantages of perform-
ing automatic simulations. An automatic simulation allows us
to actually execute the EPL code and compare the obtained
output, that is, we can compare whether the results obtained
from a given input are the same when we execute the EPL
code in the Esper EPL online tool and in CPN Tools.

As future works, firstly we intend to extend the trans-
formations to more event patterns elements provided by

VOLUME 4, 2016 7437

H. Macià et al.: CEP Modeling by PCPNs

MEdit4CEP. Secondly, regarding the use of the technique by
non-experts, we are planning an automatic translation from
the models created by using the graphical tool MEdit4CEP,
which does allows the user to easily define patterns, to PCPNs
following the methodology described in this paper. This auto-
matic translation will be integrated in MEdit4CEP, and this
extension will also consider the validation of certain desired
behaviors only using the interface.

Furthermore, the results obtained should be provided to the
designer in a comprehensive form, so he can interpret them
easily. Moreover, there are other aspects to be also considered
using the advantages offered by the PCPN formalism. For
instance, taking the same ideas as we used in [32] and via an
automatic generation of initial markings we could accomplish
a quantitative analysis of the model, so as to predict the
system behavior and discover potential problems.

Finally, we can also profit from the verification capabilities
offered by CPNTools, using the state space generated to
check certain properties of interest. This final goal has an
important limitation, which is the state space explosion, as
a consequence of the enormous amount of events that we
usually have in these systems.

Other possibilities can also be explored, like discovery of
data-flow errors, using similar ideas as Trcka et al. [33], with
questions expressed in terms of a temporal logic, or the use
of unfolding techniques of Petri nets in order to prove the
PCPN soundness, as Liu et al. [34] have done in the context
of workflow nets.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions which allowed them
to improve the paper. Boubeta-Puig thanks the hospitality
received by the Real-Time and Concurrent Systems Research
Group at the University of Castilla-La Mancha, Spain, when
visiting them, where part of this work was developed.

REFERENCES
[1] D. Luckham, The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Reading, MA, USA:
Addison-Wesley, 2002.

[2] D. C. Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise. Hoboken, NJ, USA: Wiley, 2012.

[3] G. Cugola and A. Margara, ‘‘Processing flows of information: From data
stream to complex event processing,’’ ACM Comput. Surv., vol. 44, no. 3,
Jun. 2012, Art. no. 15.

[4] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, ‘‘MEdit4CEP: A model-
driven solution for real-time decision making in SOA 2.0,’’ Knowl.-Based
Syst., vol. 89, pp. 97–112, Nov. 2015.

[5] M. Papazoglou,Web Services and SOA: Principles and Technology, 2nd ed.
Essex, U.K.: Pearson Education, 2012.

[6] J. Boubeta-Puig. (2016). MEdit4CEP Tool, accessed on Nov. 3, 2016.
[Online]. Available: https://ucase.uca.es/medit4cep/

[7] T. Stahl, M. Völter, and K. Czarnecki, Model-Driven Software Develop-
ment: Technology, Engineering, Management. Hoboken, NJ, USA: Wiley,
2006.

[8] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Vali-
dation of Concurrent Systems. Berlin, Germany: Springer-Verlag, 2009.

[9] CPN Tools. (2016). CPNTools Homepage, accessed on Nov. 3, 2016.
[Online]. Available: http://www.cpntools.org/

[10] O. Etzion and P. Niblett, Event Processing in Action. Greenwich, CT, USA:
Manning Publications Co., 2010.

[11] EPTS. Event Processing Technical Society, Event Pro-
cessing Glossary-Version 2.0, accessed on Nov. 3, 2016.
[Online]. Available: http://www.complexevents.com/wp-
content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf

[12] EsperTech. (2016). Esper—Complex Event Processing, accessed on
Nov. 3, 2016. [Online]. Available: http://www.espertech.com/esper/

[13] K. M. Chandy, Event Processing: Designing IT Systems for Agile Compa-
nies, 1st ed. New York, NY, USA: McGraw-Hill, 2010.

[14] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, ‘‘ModeL4CEP: Graphical
domain-specificmodeling languages for CEP domains and event patterns,’’
Expert Syst. Appl., vol. 42, no. 21, pp. 8095–8110, Nov. 2015.

[15] W. M. P. van der Aalst and C. Stahl, Modeling Business Processes: A
Petri Net-Oriented Approach (Cooperative Information Systems Series).
Cambridge, MA, USA: MIT Press, 2011.

[16] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use (Monographs in Theoretical Computer Science). Berlin,
Germany: Springer-Verlag, 1997.

[17] J. D. Ullman, Elements of ML Programming. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1998.

[18] M. Weidlich, J. Mendling, and A. Gal, ‘‘Net-based analysis of event
processing networks—The fast flower delivery case,’’ in Proc. 34th Int.
Conf. Appl. Theory Petri Nets Concurrency, 2013, pp. 270–290.

[19] Etalis. Event-driven Transaction Logic Inference Sys-
tem, accessed on Nov. 3, 2016. [Online]. Available:
https://code.google.com/archive/p/etalis/

[20] W. Ahmad, A. Lobov, and J. L. M. Lastra, ‘‘Formal modelling of complex
event processing: A generic algorithm and its application to a manufac-
turing line,’’ in Proc. 10th IEEE Int. Conf. Ind. Informat. (INDIN), 2012,
pp. 380–385.

[21] M. Rausch and H.-M. Hanisch, ‘‘Net condition/event systems with mul-
tiple condition outputs,’’ in Proc. IEEE Symp. Emerg. Technol. Factory
Autom., Oct. 1995, pp. 592–600.

[22] A. Hinze and A. Voisard, ‘‘EVA: An event algebra supporting complex
event specification,’’ Inf. Syst., vol. 48, pp. 1–25, Mar. 2015.

[23] G. Cugola and A. Margara, ‘‘TESLA: A formally defined event spec-
ification language,’’ in Proc. 4th ACM Int. Conf. Distrib. Event-Based
Syst. (DEBS), 2010, pp. 50–61.

[24] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, ‘‘Efficient pattern
matching over event streams,’’ in Proc. ACM-SIGMOD, New York, NY,
USA, 2008, pp. 147–160.

[25] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman, ‘‘On sup-
porting Kleene closure over event streams,’’ in Proc. ICDE, 2008,
pp. 1391–1393.

[26] A. Ericsson, P. Pettersson,M. Berndtsson, andM. Seiriö, ‘‘Seamless formal
verification of complex event processing applications,’’ in Proc. Inaugural
Int. Conf. Distrib. Event-Based Syst. (DEBS), 2007, pp. 50–61.

[27] A. Ericsson and M. Berndtsson, ‘‘REX, the rule and event eXplorer,’’
in Proc. Inaugural Int. Conf. Distrib. Event-Based Syst. (DEBS), 2007,
pp. 71–74.

[28] K. R. Dittrich, S. Gatziu, and A. Geppert, ‘‘The active database man-
agement system manifesto: A rulebase of ADBMS features,’’ in Rules in
Database Systems (Lecture Notes in Computer Science), vol. 985. Berlin,
Germany: Springer-Verlag, 1995, pp. 3–20.

[29] A. Arasu, S. Babu, and J. Widom, ‘‘The CQL continuous query language:
Semantic foundations and query execution,’’ VLDB J., vol. 15, no. 2,
pp. 121–142, Jun. 2006.

[30] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo, ‘‘A data stream
language and system designed for power and extensibility,’’ in Proc. 15th
ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2006, pp. 337–346.

[31] S. Chandrasekaran et al., ‘‘TelegraphCQ: Continuous dataflow process-
ing,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2003,
p. 668.

[32] V. Valero, H. Macià, and G. Dıaz, ‘‘Quantitative analysis of the pub-
lish/subscribe paradigm in the context ofWeb service resources with timed
colored Petri nets,’’ in Proc. 29th Eur. Simulation Modeling Conf. (ESM),
2015, pp. 73–80.

[33] N. Trčka, W. M. P. van der Aalst, and N. Sidorova, ‘‘Data-flow anti-
patterns: Discovering data-flow errors in workflows,’’ in Proc. 21st Int.
Conf. Adv. Inf. Syst. Eng. (CAiSE), 2009, pp. 425–439.

[34] G. Liu, W. Reisig, C. Jiang, and M. Zhou, ‘‘A branching-process-based
method to check soundness of workflow systems,’’ IEEE Access, vol. 4,
pp. 4104–4118, 2016.

7438 VOLUME 4, 2016

H. Macià et al.: CEP Modeling by PCPNs

HERMENEGILDA MACIÀ received the degree
in mathematics from the University of Valencia
and the Ph.D. degree in computer science from
the University of Castilla-La Mancha in 2003.
She is currently an Associate Professor with the
Department of Mathematics, Computer Science
School of Albacete, University of Castilla-La
Mancha, Spain. She has authored research articles
in reputed journals of mathematics and computer
science. Her main research interests include the

theoretical study and applications of formal methods, such as process alge-
bras and Petri nets, considering timed, probabilistic, and stochastic exten-
sions.

VALENTÍN VALERO received the degree in math-
ematics from the Complutense University of
Madrid in 1987, and the Ph.D. degree in mathe-
matics from the Department of Computer Science,
Complutense University of Madrid, in 1993. He is
currently a Full Professor of Distributed Systems
and Operating Systems with the Computer Sci-
ence School of Albacete, University of Castilla-La
Mancha, Spain. Since 1987, he has been a member
of the Computer Science Department, University

of Castilla-La Mancha. His current research areas are in the field of concur-
rency, specifically in formal models for analysis and design of concurrent
systems, and real-time systems.

GREGORIO DÍAZ received the Ph.D. degree
in 2006. He was an Assistant Professor for several
years with the same university. Since 2009, he has
been an Associate Professor of Computer Science
with the University of Castilla-LaMancha, obtain-
ing the tenure distinction in 2011. His research
goals are aimed to make software more reliable,
more secure, and easier to design. His primary
technical interests include software engineering
and related areas, including contract specification,

program monitoring, testing, and verification. His research combines strong
theoretical foundations with realistic experimentation in the area of Web
services and cloud computing.

JUAN BOUBETA-PUIG received the degree in
computer systems management and the B.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Cádiz (UCA), Spain, in 2007, 2010, and
2014, respectively. Since 2009, he has been an
Assistant Professor with the Department of Com-
puter Science and Engineering, UCA. His research
focuses on the integration of complex event pro-
cessing in event-driven service-oriented architec-
tures, the Internet of Things, and model-driven

development of advanced user interfaces. He received the extraordinary
Ph.D. Award from UCA and the Best Ph.D. Thesis Award from the Spanish
Society of Software Engineering and Software Development Technologies.

GUADALUPE ORTIZ received the Ph.D. degree
in computer science from the University of
Extremadura, Spain, in 2007. From 2001 to 2009,
she was an Assistant Professor and a Research
Engineer with the Computer Science Department,
University of Extremadura. In 2009, she joined the
Department of Computer Science and Engineer-
ing, University of Cádiz, as a Professor. She has
authored numerous peer-reviewed papers in inter-
national journals, workshops, and conferences.

Her research interests embrace aspect-oriented techniques as a way to
improveWeb service development, with an emphasis on model-driven extra-
functional properties and quality of service, and service context-awareness
and their adaptation to mobile devices. Her research focuses on trending
topics, such as the complex event processing integration in service-oriented
architectures. She has been a member of various program and organization
committees of scientific workshops and conferences over the last years and
acts as a Reviewer for several journals.

VOLUME 4, 2016 7439

