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Abstract Fuzzy numbers have been applied on decision and optimization problems
in uncertain or imprecise environments. In these problems, the necessity to define
optimal notions for decision-maker’s preferences as well as to prove necessary and
sufficient optimality conditions for these optima are essential steps in the resolution
process of the problem. The theoretical developments are illustrated and motivated
with several numerical examples.

Keywords Fuzzy numbers · Crisp order relation · Interval order relation ·
Differentiable fuzzy mappings · Stationary fuzzy point · Fuzzy optimization

The research in this paper has been supported by MTM2015-66185 (MINECO/FEDER, UE) and
Fondecyt-Chile, Project 1151154.

B R. Osuna-Gómez
rafaela@us.es

B. Hernández-Jiménez
mbherjim@upo.es

Y. Chalco-Cano
ychalco@uta.cl

G. Ruiz-Garzón
gabriel.ruiz@uca.es

1 Dpto. Estadística e I.O. Fac. Matemáticas, Universidad de Sevilla, C/Tarfia s/n, 41012 Seville,
Spain

2 Dpto. Economía, Métodos Cuantitativos e H. Económica. Área de Estadística e I.O., Universidad
Pablo de Olavide, Seville, Spain

3 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile

4 Dpto de Estadística e I.O., Universidad de Cádiz, Campus de Jerez, 11405 Cádiz, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-017-9269-9&domain=pdf


178 R. Osuna-Gómez et al.

1 Introduction

In conventional mathematical programming, the problem coefficients are assumed to
be deterministic andfixed in value.But there aremany situationswhere this assumption
is not valid because of uncertain or imprecise environments. Fuzzy sets theory, and par-
ticularly the concept of fuzzy number, provides an appropriate theoretical framework
to model quantities that are imprecise because of their own nature or measurement
errors.

Fuzzy numbers have been applied on decision and optimization problems. In these,
the procedures to rank fuzzy numbers are necessary. Ranking fuzzy numbers is a
complex issue. All the proposed methods can be classified as corresponding to two
different approaches:

1. Ranking fuzzy numbers using crisp relations (see Yager 1981; Campos-Ibáñez and
González-Muñoz 1989). These procedures are based on a ranking function and
they provide a crisp total order relation between fuzzy numbers.

2. Using ordering relations between compact intervals in R, using fuzzy numbers
characterization by their level sets (see Ishibuchi and Tanaka 1990; Wu 2007a, b).

Since comparing results in real problems affect implicated individuals, their subjec-
tivity should be reflected in the method for ranking. When one is faced with deciding
whether a fuzzy number is greater than, equal to or less than another, one introduces
a subjective element set that needs to be considered in the mathematical model of
decision process.

We present the optimum definitions for fuzzy functions using the different ordering
relations defined; and we present and relate the optimality conditions for the different
optimum definitions given. This allows us to interpret the ranking process and make
a comparative study.

2 Preliminaries

A fuzzy set on R
n is a mapping defined as u : R

n → [0, 1]. For each fuzzy set u, we
denote its α-level set as [u]α = {x ∈ R

n|u(x) ≥ α} for any α ∈ (0, 1]. We denote
the support of u by supp(u) where supp(u) = {x ∈ R

n| u(x) > 0}. The closure of
supp(u) defines the 0-level set of u, i.e. [u]0 = {x ∈ Rn| u(x) > 0}.
Definition 1 A fuzzy interval or fuzzy number is a fuzzy set, u, defined onR satisfying
the following conditions:

1. u is normal, i.e. there exists x0 ∈ R such that u(x0) = 1;
2. u(λx + (1 − λ)y) ≥ min{u(x), u(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1];
3. u is upper semicontinuous, i.e., {x : u(x) ≥ α} is a closed set for all α ∈ [0, 1];
4. [u]0 is compact.

Let FC denotes the family of all fuzzy numbers or fuzzy intervals. By definition
the α-level sets of a fuzzy number are closed real intervals. LetKC denotes the family
of all bounded closed intervals in R.

u ∈ FC ⇒ [u]α ∈ KC
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Different optimum notions for fuzzy functions… 179

Theorem 1 (Goestschel and Voxman (1986) and Stefanini and Bede (2009)) A fuzzy
interval is completely determined by any pair u = (u, u) of functions u, u : [0, 1] →
R, defining the endpoints of the α-level sets,

[u]α = [u(α), u(α)] = [uα, uα]

satisfying the following three conditions:

• u(α) = uα ∈ R is a bounded nondecreasing left-continuous function in (0, 1] and
it is right-continuous at 0;

• u(α) = uα ∈ R is a bounded nonincreasing left-continuous function in (0, 1] and
it is right-continuous at 0;

• u(α) ≤ u(α), for all α ∈ [0, 1].
We denote by FC

C the all level-continuous fuzzy intervals family. Thus u ∈ FC
C if

the application α �→ [u]α is continuous (Román-Flores and Rojas-Medar 2002).

Proposition 1 (Chalco-Cano et al. (2013)) Let u = (u, u) ∈ FC
C be a fuzzy interval.

Then, u ∈ FC
C if and only if u and u are continuous functions with respect to α.

This paper is organized as follows. In Sect. 3 we present ordering relations based
on average functions and in Sect. 4 we propose order relations between alternatives
which represent the decision-maker’s preference when the cost of each alternative is
known only to lie in an interval. In Sect. 5, associated with the average index ordering
relation and intervals ordering relation, we give the minimum definitions for fuzzy
mappings. In Sect. 6, we give necessary and sufficient optimality conditions based on
appropriate stationary point definitions for minimum concepts defined in the previous
section. In Sect. 7 we include numerical examples to illustrate the results obtained and
main conclusions are presented in Sect. 8.

3 Ordering relations based on average functions

In Campos-Ibáñez and González-Muñoz (1989) a ranking function is defined to com-
pare fuzzy numbers. This function was called “average index” because it can be
interpreted as a weighted average in the following way: first, the decision-maker
chooses a subset Y of the unit interval, so that the associated level sets contain the
information which is considered outstanding about the imprecise quantity. Next, he
assigns a weight, represented by a probability distribution P , to the different elements
or measurable subsets of Y . Also, the decision-maker determines a position function,
fu(α) giving to each associated level set a real number. Finally, the index is defined as
an average of level set positions in Y using P (Campos-Ibáñez and González-Muñoz
1989). Some well-known indexes are included in this schema (Campos and Gonzalez
1994; Fachinetti et al. 2002).

Definition 2 Let u be a fuzzy number, Y a subset of [0, 1], P a probability distribution
on Y and fu : [0, 1] → R. The real number
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180 R. Osuna-Gómez et al.

VP (u) =
∫
Y
fu(α)dP(α)

is called average index of u.

The average index for every fuzzy number is defined by means of a integration
process of a function representing the position of every α-cut in R, and through a
subjective assignation of weights related to the relative importance of levels α sets.
The average index represents a mean value of the different α-cut positions through a
measure P in Y . In fact, average index represents a mean value of the fuzzy number.
In González (1990) the definition of the mean value of a fuzzy number (Dubois and
Prade 1987) is interpreted as a particular case of the average index. The average index
maps fuzzy numbers set into R in such a manner that resulting numbers give us a
meaningful manner for ordering the original fuzzy numbers.

By means of VP (·) a comparison relation on FC is built:

Definition 3 For all u, v ∈ FC

• u 	V v ⇔ VP (u) ≤ VP (v),
• u ≺V v if u ≤V v and VP (u) �= VP (v).

This ranking function has been studied by many authors as a method for ordering
fuzzy numbers. In Campos and Gonzalez (1994), authors study and interpret different
parameters used to define the average index and the authors showhow these parameters
can be adapted to the decision-maker’s preferences. For example, let us suppose the
case in what the decision maker’s preference is that all membership degrees have
relevant information, then Y = [0, 1]. Each level set is represented by its midpoint,
so fu(α) = (u(α)+u(α))

2 and we may use the following preferences:

– P(α) = α2 gives more weight to the high α,

VP (u) =
∫ 1

0
α(u(α) + u(α))dα.

– P(α) = α
1
2 gives more weight to the low α,

VP (u) = 1

4

∫ 1

0

1√
α

(u(α) + u(α))dα.

– P(α) = α gives equal weight to all α values,

VP (u) =
∫ 1

0
(u(α) + u(α))dα.

In Campos-Ibáñez and González-Muñoz (1989) the authors propose to choose one
point included in each level set of u as the value for fu :

f λ
u : Y → R

f λ
u (α) = λu(α) + (1 − λ)u(α)
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Different optimum notions for fuzzy functions… 181

where λ ∈ [0, 1] is an optimism-pessimism degree, which must be selected by the
decision maker: when the most advantageous decision is to choose the greatest quan-
tity, an optimistic personwould think about the upper extreme of the interval u (λ = 1),
which reflects the greatest profit. To the contrary, a pessimistic person would prefer
the lower extreme of the interval u (λ = 0), which represents the least he can win.

When the most advantageous decision is to choose the least quantity, the interpre-
tation is the opposite, with λ = 0 for the optimism and λ = 1 for pessimism. Thus, if
the optimism-pessimism degree of the decision-maker is μ ∈ [0, 1], the parameter λ

for the function f λ
u is

λ =
{

μ if the “best” is the “greatest”,
1 − μ if the “best” is the “least”.

Between the two extreme values λ = 0 and λ = 1 there is an attitude scale for the
uncertainty for each decision-maker.

In general, the definition fu(α) could be made arbitrarily by the decision-maker.
However the use of f λ

u (α) presents the following advantages: First, its easy construc-
tion since u(α) and u(α) are known and then λ allows us to use the decision-maker’s
subjectivity. In Campos-Ibáñez and González-Muñoz (1989) the authors prove that
f λ
u (α) has good properties and it generalizes some well-known procedures.
When fu(α) = f λ

u (α), we denote the average index by V λ
P (u). If we consider

u ∈ FC
C then the integral V λ

P (u) is well defined.

4 Ordering relations based on intervals

In Ishibuchi andTanaka (1990) the authors propose order relations between alternatives
which represent the decision-maker’s preference when the cost of each alternative is
known only to lie in an interval.

Definition 4 Let A = [a, a], B = [b, b] be two closed intervals in R. The center and
the width of an interval may be calculated as AC = (a + a)/2, AW = a − a. Let us
define the following order relations 	LW , 	LR and 	CW :

1. • A	LW B ⇒ a ≤ b and AW ≤ BW ,
• A 	LW B ⇒ A	LW B and A �= B, i.e., a ≤ b and AW ≤ BW , with some

strict inequality.
2. • A	LR B ⇒ a ≤ b and ā ≤ b̄,

• A 	LR B ⇒ A	LR B and A �= B, i.e., a ≤ b and ā ≤ b̄, with some strict
inequality.

3. • A	CW B ⇒ AC ≤ BC and AW ≤ BW ,

• A 	CW B ⇒ A	CW B and A �= B, i.e., AC ≤ BC and AW ≤ BW , with some
strict inequality.

Based on Theorem 1, we can order fuzzy numbers using the previous definition.
We denote 	∗ any of the orders defined.
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182 R. Osuna-Gómez et al.

Definition 5 For u, v ∈ FC

• u	∗v if [u]α	∗[v]α, ∀α ∈ [0, 1],
• u 	∗ v if [u]α	∗[v]α,∀α ∈ [0, 1] and ∃α0/[u]α0 	∗ [v]α0 ,
• u ≺∗ v if [u]α 	∗ [v]α ∀α ∈ [0, 1].
The order ≺LR represents the decision-maker’s preference for the alternative with

lower minimum cost and maximum cost. The order ≺LW represents the decision-
maker’s preference for the alternative with lower minimum cost and less uncertainty
since the width of an interval can be regarded as an uncertainty risk or a type of
variance. And ≺CW represents the preference for the alternative with lower expected
value and less uncertainty.

Now we establish relationships between the different orders.

Proposition 2 Let u, v ∈ FC , if

u 	LW (	LW ,≺LW ) v

then

u 	LR(	LR,≺LR) v.

Proof If u	LW v then u(α) ≤ v(α) and u(α) − u(α) ≤ v(α) − v(α), ∀α ∈ [0, 1].
Summing, u(α) ≤ v(α), then [u]α	LR[v]α, ∀α ∈ [0, 1] and so u	LRv.

Similarly it would be proved for 	LW and ≺LW orders. ��
The reciprocal of the previous result is not true, in general.

Example 1 Let u and v be fuzzy intervals defined by their level-sets, such that u	LRv.

[u]α = [−1, 1 − α], α ∈ [0, 1],
[v]α =

[α

2
, 1

]
, α ∈ [0, 1].

It holds that u(α) = −1 ≤ α
2 = v(α) and u(α)−u(α) ∈ [1, 2] ≥ v(α)−v(α) ∈ [ 12 , 1].

Therefore u	LW v does not hold.

Proposition 3 Let u, v ∈ FC , if

u 	LW (	LW ,≺LW ) v

then

u 	CW (	CW ,≺CW ) v.

Proof If u	LW v then u(α) ≤ v(α) and u(α) − u(α) ≤ v(α) − v(α), ∀α ∈ [0, 1].
Summing, u(α) ≤ v(α) and so

u(α) + u(α)

2
≤ v(α) + v(α)

2
.
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Different optimum notions for fuzzy functions… 183

Therefore [u]α	CW [v]α, ∀α ∈ [0, 1] and so u	CW v. Similarly it would be proved
for 	CW and ≺CW orders. ��

The reciprocal of the previous proposition is not true, in general.

Example 2 Let u and v be fuzzy intervals defined by their level-sets,

[u]α = [−1, 1 − α], α ∈ [0, 1],
[v]α = [−2, 4 − α], α ∈ [0, 1].

Then

u(α) + u(α)

2
= −α

2
∈

[
−1

2
, 0

]
,

v(α) + v(α)

2
= 2 − α

2
∈

[
1

2
, 1

]
.

and

u(α) − u(α) = 2 − α ∈ [1, 2],
v(α) − v(α) = 6 − α ∈ [5, 6].

We have that u	CW v, but u(α) ≥ v(α), ∀α, then u�
LW

v and u�
LR

v.

And the following example proves that in general, u	LRv does not imply u	CW v

either.

Example 3 Let u and v be fuzzy intervals defined by their level-sets,

[u]α = [0, 1 − α], α ∈ [0, 1],
[v]α =

[
2,

5

2

]
, α ∈ [0, 1].

Then u	LRv but u(0) − u(0) = 1 > v(0) − v(0) = 1
2 , so u�

CW
v.

Proposition 4 Let u, v ∈ FC
C , if u	LRv then u 	V v ∀λ ∈ [0, 1], ∀P.

Proof If u	LRv then u(α) ≤ v(α) and u(α) ≤ v(α), ∀α ∈ [0, 1]. Then

(1 − λ)u(α) + λu(α) ≤ (1 − λ)v(α) + λv(α), ∀α ∈ Y, ∀λ ∈ [0, 1].
f λ
u (α) ≤ f λ

v (α), ∀α ∈ Y, ∀λ ∈ [0, 1].

Hence

V λ
P (u) ≤ V λ

P (v), ∀λ ∈ [0, 1], ∀P ⇒ u 	V v, ∀λ ∈ [0, 1], ∀P.

��
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184 R. Osuna-Gómez et al.

Proposition 5 Let u, v ∈ FC
C , if u ≺LR v then u ≺V v, ∀λ ∈ (0, 1), ∀P.

Proof If u ≺LR v then u(α) ≤ v(α) and u(α) ≤ v(α), with any strict inequality
∀α ∈ [0, 1]. Then

(1 − λ)u(α) + λu(α) < (1 − λ)v(α) + λv(α), ∀α ∈ Y, ∀λ ∈ (0, 1).

f λ
u (α) < f λ

v (α), ∀α ∈ Y, ∀λ ∈ (0, 1).

Therefore

V λ
P (u) < V λ

P (v), ∀λ ∈ (0, 1), ∀P ⇒ u ≺V v, ∀λ ∈ (0, 1), ∀P.

��
Corollary 1 Let u, v ∈ FC

C , then u	LW v (≺LW ) and then u 	V v (≺V ), ∀λ ∈ [0, 1]
(∀λ ∈ (0, 1)), ∀P.
Proof This proof is immediate using Propositions 2 and 4 (Propositions 2 and 5). ��
Example 4 If λ = 1

2 , P(α) = α2 and Y = [0, 1], we obtain the following ranking
value function:

VP (u) =
∫ 1

0
α(u(α) + u(α))dα.

For the Example 2, VP (u) = − 1
3 and VP (v) = 2

3 , so u 	V v, but it is not true that
u	LW v.

Proposition 6 Let u, v ∈ FC
C , if u	CW v then u 	V v, ∀λ ∈ [1/2, 1], ∀P.

Proof It holds that

f λ
u (α) = u(α) + u(α)

2
+

(
λ − 1

2

)
(u(α) − u(α)).

So, ifu	CW v andλ ∈ [1/2, 1] then f λ
u (α) ≤ f λ

v (α),∀P .And theproof is completed.��
Corollary 2 Let u, v ∈ FC

C , if u ≺CW v then u ≺V v, ∀λ ∈ (1/2, 1].

5 Fuzzy optimization: minimum definitions

A mapping G : K ⊂ R
n → FC is said to be a fuzzy mapping, and so G(x) is a fuzzy

interval, that is uniquely determined by two functions such that

[G(x)]α = [g
α
(x), ḡα(x)] = [g(α, x), ḡ(α, x)], ∀α ∈ [0, 1], ∀x ∈ K .

Then forG, we define the interval-valued functions familyGα : K → KC given by
Gα(x) = [G(x)]α , for any α ∈ [0, 1], where KC is the family of all bounded closed
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Different optimum notions for fuzzy functions… 185

real intervals. Here, for each α ∈ [0, 1], the endpoint functions g
α
, gα : K → R

are called lower and upper functions of G, respectively. Let us consider the fuzzy
functions G : K ⊆ R → FC

C and so VP (G(x)) is well defined.
Associated with the average index ordering relation and intervals ordering relation

we give the followingminimum definitions for fuzzymappings considering that Nδ(x̄)
denotes a δ-neighborhood of x̄ .

Definition 6 Let G : K ⊆ R
n → FC

C be a fuzzy mapping:

• x̄ belonging to K is a (local) minimumV for G if (there exists Nδ(x̄) such that)
G(x̄) 	V G(x) (∀x ∈ K ∩ Nδ(x̄)) ∀x ∈ K ,

• x̄ belonging to K is a (local) strict minimumV for G if (there exists Nδ(x̄) such
that) G(x̄) ≺V G(x) (∀x ∈ K ∩ Nδ(x̄)) ∀x ∈ K .

Remark 1 It is clear that if x̄ belonging to K is a (strict) minimumV for G then it is a
local (strict) minimumV .

Moreover if x̄ belonging to K is a (local) strict minimumV it is a (local) minimumV

for G.

Definition 7 Let G : K ⊆ R
n → FC be a fuzzy mapping:

• x̄ belonging to K is a (local) minimum∗ for G if there does not exist (x ∈ K ∩
Nδ(x̄))) x ∈ K such that G(x) 	∗ G(x̄),

• x̄ belonging to K is a (local) strict minimum∗ for G if there does not exist (x ∈
K ∩ Nδ(x̄))) x ∈ K such that G(x)	∗G(x̄),

• x̄ belonging to K is a (local) weak minimum∗ for G if there does not exist (x ∈
K ∩ Nδ(x̄))) x ∈ K such that G(x) ≺∗ G(x̄).

Remark 2 It is clear that if x̄ belonging to K is a (weak, strict) minimun∗ for G then
it is a local (weak, strict) minimum∗ for G.

Moreover if x̄ belonging to K is a (local) strict minimum∗ for G then it is a (local)
minimum∗ ⇒ (local) weak minimum∗ for G.

Theorem 2 If x̄ belonging to K is a strict minimumV for G for any λ ∈ [0, 1] and
any P, then x̄ is a strict minimumLR for G and then it is a strict minimumLW for G.

Proof Let us suppose that x̄ is a strict minimumV and now let us suppose that x̄ is not
a strict minimumLR , then there exists another x ∈ K such that G(x)	LRG(x̄). From
Proposition 4, G(x) 	V G(x̄), and this is a contradiction.

If we suppose that there exists another x ∈ K such that G(x)	LWG(x̄), then from
Proposition 2, G(x)	LRG(x̄) and this is a contradiction. So, the proof is completed.

��

Similarly to previous proof and from Propositions 2, 3, 4, 5, 6, Corollaries 1, 2 and
Remarks 1, 2, we establish the relations among the different minimum types (Figs. 1).
Above results are also true if we consider the local nature of the minima.
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Fig. 1 Relationships between minimum concepts

6 Necessary and sufficient fuzzy optimality conditions

In classical optimization methods, it is well known that the stationary point concept
(the one that cancels the derivative) plays a crucial role as a necessary optimality
condition for problems defined by differentiable functions, since it allows to iden-
tify the potential candidates to be optimal solutions. Different fuzzy stationary point
definitions (Panigrahi et al. 2008; Wu 2007a, b, 2009a, b) can be found in literature.

In previous works, either necessary optimality conditions are not proved, or they are
proved under restrictive conditions (comparable functions), or they are complicated
conditions to check (Panigrahi et al. 2008; Wu 2007a, b, 2009a, b). So, it is important
to prove more adequate necessary optimality conditions for fuzzy functions. The nec-
essary optimality conditions are based on a stationary point notion. So far, in literature
there are different definitions for fuzzy functions that generalize the stationary point
definition given in classical mathematical programming. The stationary point notion
that we define is clearly different from that studied until now in the literature or it is
more general (Chalco-Cano et al. 2013).Alsowe establish relationships between them.
They present conceptual and specially computational checking advantages, since we
demonstrate that they are equivalent to simply check that zero belongs to an interval
or they are valid for modelling more general decision-maker’s preferences than those
found in previous works.

In this section, firstly we give necessary optimality conditions based on appropriate
stationary point definitions for minimum concepts defined in the previous section.
We establish more efficient conditions from computational point of view than those
found in previous works on the subject. In Chalco-Cano et al. (2013) optimality con-
ditions are studied for a particular case of ranking function; and (Osuna-Gómez et al.
2016) stationary point notion is defined adequately for a fuzzy function on R. So far,
optimality conditions had not been studied jointly for both orders.
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Different optimum notions for fuzzy functions… 187

Let us consider hereafter fuzzy functions G : S ⊆ R
n → FC

C where S is an open
set and we suppose that G is a level-wise differentiable fuzzy mapping, (Wu 2007a, b)

and we will assume that
∂ f λ

G(x)
∂xi

(α) are continuous on Y for all x ∈ S and i = 1, . . . , n
when it is necessary.

Definition 8 A fuzzy function G : S ⊆ R
n → FC

C defined on an open set S, is
said to be a level-wise differentiable fuzzy function if and only the endpoint functions
associated are differentiable and

[
∂G

∂xi
(x0)

]α

=
[
min

{
∂g

α

∂xi
(x0),

∂gα

∂xi
(x0)

}
,max

{
∂g

α

∂xi
(x0),

∂gα

∂xi
(x0)

}]
.

And so,

∇G(x0) =
(

∂G

∂x1
(x0), . . . ,

∂G

∂xn
(x0)

)
∈ (FC )n .

Remark 3 In order to guarantee that ∇V λ
P (G(·)) exists we suppose that ∇ f λ

G(·)(α) is
continuous with respect to α, and together with P monotonicity we can ensure the
existence of the integral.

On the other hand, if λ = 1
2 we can relax the hypotheses considering gH-

differentiable fuzzy functions (Chalco-Cano et al. 2016), to ensure the differentiability

of f
1
2
G(·)(α).

Associated with average functions we define:

Definition 9 It is said that x̄ ∈ S is a stationary pointV for G if ∇V λ
P (G(x̄)) = 0 for

some λ and P .

Theorem 3 If x̄ is a local minimumV for G then it is a stationary pointV for G.

Proof As a consequence of Definition 3, G(x̄) 	V G(x) ⇔ V λ
P (G(x)) ≤ V λ

P (G(x̄)),
then x̄ ∈ S is a local minimumV if and only if x̄ is a local minimun for V λ

P (G(·))
and from necessary optimality condition for real functions, x̄ is a stationary point for
V λ
P (G(·)), i.e. ∇V λ

P (G(x̄)) = 0 for some λ and P . ��
Associated with the intervals ordering relation we give the following definition for

fuzzy functions:

Definition 10 It is said that x̄ ∈ S is a stationary pointLR for G if (0)n ∈ [∇G(x̄)]0.
Theorem 4 If x̄ is a local weak minimumLR for G then it is a stationary pointLR for
G.

Proof Arguing by contradiction, let us suppose that (0)n /∈ [∇G(x̄)]0, then there

exists i such that 0 /∈
[

∂G
∂xi

(x̄)
]0

and then 0 /∈
[

∂G
∂xi

(x̄)
]α

for any α. Hence two cases

are possible:
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(i)
[

∂G
∂xi

(x̄)
]α ⊂ R

+ for all α ∈ [0, 1], or
(ii)

[
∂G
∂xi

(x̄)
]α ⊂ R

− for all α ∈ [0, 1].
In any case, there exists yi ∈ R such that

yi

[
∂G

∂xi
(x̄)

]α

≺ [0, 0], ∀α ∈ [0, 1]. (1)

From Definition 8

[
∂G

∂xi
(x0)

]α

=
[
min

{
∂g

α

∂xi
(x0),

∂gα

∂xi
(x0)

}
,max

{
∂g

α

∂xi
(x0),

∂gα

∂xi
(x0)

}]
. (2)

Above (1) and (2) implies that ∀α ∈ [0, 1]

yi
∂g

α

∂xi
(x̄) < 0 and

yi
∂gα

∂xi
(x̄) < 0.

Then

yi
∂g

α

∂xi
(x̄) = lim

h→0

g
α
(x̄1, . . . , x̄i + yi h, . . . , x̄n) − g

α
(x̄)

h
< 0, ∀α ∈ [0, 1],

yi
∂gα

∂xi
(x̄) = lim

h→0

gα(x̄1, . . . , x̄i + yi h, . . . , x̄n) − gα(x̄)

h
< 0, ∀α ∈ [0, 1].

implies that ∃εi > 0 such that ∀|h| < εi holds

g
α
(x̄1, . . . , x̄i + yi h, . . . , x̄n) − g

α
(x̄) < 0, ∀α ∈ [0, 1]. (3)

And ∃εi > 0 such that ∀|h| < εi holds

gα(x̄1, . . . , x̄i + yi h, . . . , x̄n) − gα(x̄) < 0, ∀ ∈ [0, 1]. (4)

Then, if ε = min{εi , εi , δ, i = 1, . . . , n} , |h| < ε and called x = (x̄1, . . . , x̄i +
yi h, . . . , x̄n), from (3), (4), we have that

g
α
(x) − g

α
(x̄) < 0,

gα(x) − gα(x̄) < 0, ∀α ∈ [0, 1].

So, x ∈ Nδ(x̄)∩ S and G(x) ≺LR G(x̄) contradict that x̄ is a local weak minimumLR

and the proof is completed. ��
Now we give the relations between the stationary point definitions:
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Theorem 5 x̄ is a stationary pointV for any λ ∈ [0, 1] and P, then x̄ is a stationary
pointLR.

Proof If ∇V λ
P (G(x̄) = 0 then for each i = 1, . . . , n

(1 − λ)
∂g

∂xi
(x̄, α) + λ

∂g

∂xi
(x̄, α) = 0 for some α.

If not,

(1 − λ)
∂g

∂xi
(x̄, α) + λ

∂g

∂xi
(x̄, α) > 0, ∀α ⇒ ∂V λ

P (G)

∂xi
(x̄) > 0.

Or

(1 − λ)
∂g

∂xi
(x̄, α) + λ

∂g

∂xi
(x̄, α) < 0, ∀α ⇒ ∂V λ

P (G)

∂xi
(x̄) < 0.

Then, if there exists αi , for each i , such that (1− λ)
∂g
∂xi

(x̄, αi ) + λ
∂g
∂xi

(x̄, αi ) = 0, we

have that 0 ∈
[

∂G
∂xi

(x̄)
]αi

⊆
[

∂G
∂xi

(x̄)
]0
. Then (0)n ∈ [∇G(x̄)]0. ��

Example 5 The reciprocal of the above theorem is not true in general. In fact, let
G(x) be a given function by [G(x)]α = [α, 2 − α] · x2 and S = (0,+∞). Then, G
is level-wise differentiable on S and [∇G(x)]α = 2 · [α, 2 − α] · x . Now ∀x ∈ S,
[∇G(x)]0 = [0, 2x] and 0 ∈ [∇G(x)]0, therefore, any value of S is a stationary
pointLR .

On the other hand, f λ
G(x)(α) = (1 − λ)αx2 + λ(2 − α)x2 and ( f λ

G(x))
′(α) =

2(1 − λ)αx + 2λ(2 − α)x .
It is verified that in x = 1, ( f λ

(G(1)))
′(α) = 2α + 4λ − 4λα and for P(α) = α and

Y = [0, 1] [index proposed by Tsumura et al. (1981)]

V λ
P (G(1)) = 1 + 3λ �= 0 ∀λ ∈ [0, 1].

Another main part in optimization theory is establishing sufficient optimality con-
ditions. It is also known that not all stationary points are optimal, so it is necessary
to use some problem intrinsic properties for eliminating the non-optimal candidates.
Convexity or generalized convexity hypotheses made on the functions that define the
problem are some of these properties.

Hanson (1981) defined a new class of functions.

Definition 11 Let φ(x) be a real differentiable function defined on a set C ⊆ R
n ,

then φ(x) is called invex if

φ(x1) − φ(x2) ≥ ηT (x1, x2)∇φ(x2) for all x1, x2,∈ C, (5)

for some arbitrary given vector function η(x1, x2) defined on C × C .
If the inequality (5) is strict, then we say that φ is a strictly invex function on C .
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Theorem 6 If g
α
and gα are invex functions with respect to the same η and x̄ is a

stationary pointV , then x̄ is a minimumV for G,.

Proof If g
α
and gα are invex with respect to η then f λ

G(·) is a invex function with

respect to η, and so V λ
P (G(·)) is invex with respect to η also, due to the linearity and

monotonicity of integral R-S because P is non-decreasing.
If x̄ is a stationary pointV , then x̄ is a stationary point for V λ

P (G(·)) also, and
as V λ

P (G(·)) is an invex function, hence x̄ is a minimum for V λ
P (G(·)), then it is a

minimumV for G. ��

Theorem 7 If g
α
and gα are strictly invex functions for all α with respect to the same

η, then all stationary pointLR is a weak minimumLR for G.

Proof Let us suppose that there exists x ∈ S such that G(x) ≺LR G(x̄) then, ∀α ∈
[0, 1]

0 ≥ g
α
(x) − g

α
(x̄) > η(x, x̄)T∇g

α
(x̄)

0 ≥ gα(x) − gα(x̄) > η(x, x̄)T∇gα(x̄)

}
.

Therefore, there exists η(x, x̄) ∈ R
n such that η(x, x̄)T [∇G(x̄]α ≺LR [0, 0],

∀α ∈ [0, 1]. Particularly for α = 0, and thus 0 /∈ [∇G(x̄]0 and so x̄ is not a stationary
pointLR , that it is a contradiction. ��

Example 6 If we consider Example 5, it is immediate to check that all points are
stationary pointsLR , however there is no weak minimumLR , because g and g are not
strictly invex for all α (g(0, x) = 0, and this is not a strictly invex function).

On the other hand, there is no stationary pointV because there is no minimumV .

Figure 2 shows the relationships between stationary points and minima proved in
the previous theorems.

Fig. 2 Relationships between stationary points and minima
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7 Numerical examples

In this section we present some examples to illustrate the importance of our results.
In addition, through these examples we show that the results are very useful.

Example 7 Let G : (0,∞) → FC
C represents the reproduction rate of some germ:

G(x)(t) =

⎧⎪⎨
⎪⎩

1
x2

, t ∈ [0, x2];
1 − t−x2

x2
, t ∈ (x2, 2x2];

0, t /∈ [0, 2x2].

where x represents the predicted quantity and t represents the actual reproduction
quantity.

Then [G(x)]α = [αx2, (2 − α)x2], α ∈ [0, 1] and for Y = [0, 1] and P(α) = α2

(index based on measure Stieltjes Campos and Gonzalez (1994)),

V λ
P (G(x)) = 2 − λ

3
x2.

Thus, there does not exist localweakminimaLR , weakminimaLW , weakminimaCW

and local minimaV either.
Furthermore, [∇G(x)]0 = [0, 4x], so for all x ∈ (0,+∞) is a stationary pointLR .

On the other hand, g
α

= αx2 is not a strictly invex function for α = 0, and as

∇V λ
P (G(x)) = 4(1 − α)x , there does not exist any stationary pointV .

Example 8 Let the fuzzy mapping G : (0,+∞) → FC
C represent a variable degree of

temperature in a wellbore during injection, which is used in the drilling of petroleum

G(x)(t) =
⎧⎨
⎩

−1 + t
x , t ∈ [x, 2x];

2 − t x
2x , t ∈ [2x, 4x];

0, t /∈ [x, 4x],

where x represents the earth temperature and t represents the temperature at injection.
For each α ∈ [0, 1] we have

[G(x)]α = [(1 + α)x, 2(2 − α)x].

Then

[∇G(x)]α = [1 + α, 2(2 − α)].

Thus, by Theorem 4 we can affirm that local weak minimaLR do not exist. And by
Theorems 5 and 3, local minimaV do not exist also for any λ and any P .
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8 Conclusions

In decision and optimization problems, the necessity of the procedures to rank fuzzy
numbers is obvious but it is a complex issue. In this work, we present the optimum
definitions for fuzzy functions using the different ordering relations defined which
represent decision-maker’s preferences and we provide relations between them. Also,
we present and relate the necessary and sufficient optimality conditions for the different
optimum definitions given. The examples given show the advantages of the results
proved in this paperwhich relate optima according to the decision-maker’s preferences.

Constrained optimization problems involving fuzzy functions are an interesting
field for futher researchs. For example, finance represents a good field to implement
models for sensitive analysis through fuzzy mathematics. The fuzzy representation
of the parameters has to answer a fundamental demand: the possibility of a flexible
shape of fuzzy number in order to capture all the stylized facts of financial markets.
For example, Guerra et al. (2011) introduced the so-called LU-representation of fuzzy
numbers, based on the use of parametrized lower and upper monotonic functions and
generalizing the LR-fuzzy setting in the direction of the shape preservation and they
also allow easy error-controlled approximations. Several authors are working hard to
shape sources of uncertainty: prices, interest rates, volatilities, etc. (see Guerra et al.
2011; Buckley 1987). The idea is to advance in this field. Therefore, extending ideas
developed in this paper to constrained fuzzy optimization problems is a very interesting
issue. However, the authors find serious difficulties mainly with the formulation of the
feasible set based on fuzzy functions and the use of the alternative theorems in the
presence of fuzzy constraints.
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