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Abstract

We address the problem of evaluating measurements of radionuclide activity
concentration from a robust Bayesian perspective. As shown in previous studies,
Bayesian incorporation of available prior information on the activity levels, together
with the measured values, leads in general to an improvement in the quality of radio-
analytical results. Since the speci�c form of the employed prior is a critical aspect
of the Bayesian framework, in the present paper we distort the prior distribution
in order to evaluate how it in�uences the �nal activity estimate. We applied this
procedure to inter-laboratory pro�ciency test data obtained by the laboratories that
perform radiochemical analysis for the Spanish radioactive monitoring network. We
found that in the present application the Bayesian methodology is indeed robust, as
modifying the speci�c form of the prior has little e�ect on the activity estimate. Sim-
ilar sensitivity analysis could be applied to the Bayesian evaluation of measurements
of other quantities for which prior knowledge is available.

Keywords: Robust Bayesian analysis, Radiation measurement, class of priors, ra-
dionuclide analysis, pro�ciency tests, uncertainty of measurement.



1 Introduction

Bayesian statistics constitutes a powerful methodology to evaluate measurement data.
One of its advantages is that it allows incorporating prior knowledge (prior information)
about the speci�c quantity under study (in our context, the mensurand). The use of this
prior information, together with the experimental value of the measurement performed,
can be used to obtain in general a better estimation of the physical quantity under study,
see for example [20]. In the scope of radionuclide activity measurements of environmental
samples, previous studies [3] have shown the e�ectiveness of the Bayesian methodology;
see also [9], [12], [16], [19], [23], [29], [31] and [32] for related analyses oriented to the cal-
culation characteristic limits such as decision thresholds, detection limits and con�dence
limits. A thorough review of the Bayesian approach can be found in [6], [7], [11], [17],
[18] and [28]; also [10] and [24] provide some guidance on the uncertainty components of
the measurement processes. However, paradoxically, the advantage brought about by the
introduction of prior information is also to some extent a disadvantage of the Bayesian
framework: if using other priors is acceptable, the one selected may appear to be some-
what arbitrary. This is precisely the problem addressed by Robust Bayesian Analysis
[14], also called Bayesian Sensitivity Analysis, which quanti�es and interprets the uncer-
tainty induced by incomplete knowledge about the precise details of the analysis. Thus,
the present work is intended to clarify and to support the Bayesian treatment of prior
information from a robust viewpoint in the context of radioanalytical measurements.

As in [3], the case studied below is the Inter-laboratory Pro�ciency Test periodically
organized among the Spanish environmental radioactivity laboratories that perform ra-
diochemical analysis for the Spanish radioactive monitoring network, see [26]. The scheme
of these exercises consists in the determination of di�erent radionuclide activities in a test
sample distributed to the laboratories of the network. If θ is the parameter that represents
the actual unknown activity of a certain radionuclide, its state of knowledge before any
measurements are taken is encoded by a probability density function (PDF), denoted by
π(θ), which is termed the prior.

Which is the prior in our case? At the beginning of the exercise, when each laboratory
receives the sample, the coordinator that assesses the laboratories' performances provides
them with an interval on the activity level, Θ = [m,M ] (minimum m and maximum
M activity levels for each radionuclide to be determined (the coordinator knows these
intervals since it has prepared the sample). Then, uniform distributions with support on
the corresponding intervals seem to be appropriate priors. The inclusion of such intervals
in the protocol for the Pro�ciency Test is a general policy of the Spanish laboratory
intercomparisons. Its purpose is to assure participants that the sample activity conforms
to their routine analysis for environmental activity levels.

So, after a measurement x is taken, the posterior belief is obtained from Bayes' theorem
and is denoted by πx(θ). This PDF represents a combination between the experimental
observation and the prior knowledge. From it, a Bayesian estimation of the activity
value, xB, is obtained, normally as the expectation of πx(θ). Depending on the amount
of information encoded by the prior, the estimate xB is usually more accurate than the
experimental observation x. In what follows we will distort the �at prior in order to
analyze how such a modi�cation a�ects the estimate xB for the activity of a speci�c
radionuclide. In other words, we will assess the relative invariance or independence of
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the activity estimate when the prior is modi�ed. Roughly speaking, we will compute the
range of the quantity of interest xB when the prior belief π varies in a class of priors Γ
recently published in [2].

The rest of the paper is structured as follows. In Section 2, we recall the de�nition
of distortion band from [2] and we adapt it to our context. In Section 3, we discuss the
model from a Bayesian point of view by considering a uniform prior. In Section 4, we
study the robustness of the model by using some particular functions for distorting the
prior. In Section 5, we apply our method to the results of an Inter-laboratory Pro�ciency
Test. Finally, in Section 6 we present some concluding remarks.

2 The distorted class

In order to introduce the concept of distortion band, let us �rst recall the de�nition of
likelihood ratio order. Let π1 and π2 be two PDFs for the same parameter θ. The former
is said to be smaller than the latter in the likelihood ratio order, if the ratio π2(θ)/π1(θ)
increases over the union of the supports of the two PDFs. We denote this occurrence
by π1 ≤lr π2. Roughly speaking, this means that π2 takes on larger values and more
variability than π1. It is well known that

π1 ≤lr π2 ⇒ Eπ1 [φ(θ)] ≤ Eπ2 [φ(θ)], (1)

for all non-decreasing functions φ : R → R, provided the two expectations Eπ1 and Eπ2

exist. For more details on the concept of likelihood ratio order see [22] and [27].
The distorted band class of priors was recently de�ned in [2] and ful�lls all the require-

ments that [5] discussed about the choice of a class of priors. First, its elicitation and
interpretation is easy. Second, the prior uncertainty can be re�ected by using di�erent
metrics. Finally, the range of quantities of interest can be computed by just looking for
the extremal distributions generating the class.

The distortion band is based on the concept of distortion functions, see Section 2.6 in
[8]. These are non-decreasing continuous functions h : [0, 1] → [0, 1] such that h(0) = 0
and h(1) = 1. If π is a prior with cumulative distribution function (CDF) Fπ, the distorted
CDF is given by

Fπh(θ) = h ◦ Fπ (θ) = h [Fπ (θ)] ,∀θ ∈ Θ. (2)

By just taking derivatives in (2), we can easily compute the density of the distorted
prior, πh, provided the derivatives exist.

Clearly, priors can be distorted according to various distortion functions. The authors
of [2] argue for the use of convex and concave distortion functions based on two arguments.
First, they represent satisfactorily a change in the weighting of the underlying prior. Thus,
a convex [concave] distortion function gives more weight to higher [smaller] events. Second,
they have desirable properties when we compare the original prior with the distorted one.

If h1 is concave and h2 is convex, it follows from Lemma 1 in [2], that:

πh1 ≤lr π ≤lr πh2 . (3)

Clearly based on property (3), the distortion band associated with a speci�c prior
π can now be de�ned as the class of all priors π′ larger and smaller than πh1 and πh2 ,
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respectively, in the likelihood ratio order, i.e.

Γh1,h2,π = {π′ : πh1 ≤lr π′ ≤lr πh2} . (4)

In other words, the distortion band may be regarded as a �neighborhood� of the prior
π.

One interesting property of the distortion band is that the posteriors corresponding to
its lower and upper bounds are also lower and upper bounds for the class of all posteriors
π′x, in the likelihood ratio order sense. Thus, for all π′ ∈ Γh1,h2,π then

πh1,x ≤lr π′x ≤lr πh2,x. (5)

A similar property is that

Eπh1 [θ] ≤ Eπ′ [θ] ≤ Eπh2 [θ] and Eπh1,x [θ] ≤ Eπ′x [θ] ≤ Eπh2,x [θ], (6)

for all priors π′ ∈ Γh1,h2,π.
Expression (6), which follows by just taking the identity function in (1) and using

(4) and (5), means that the expectations and posterior expectations of the lower and
upper bounds of the distortion band are also lower and upper bounds for the expectations
and posterior expectations, respectively, of all priors in Γh1,h2,π. This fact allows us to
evaluate both the amount of uncertainty in the distorted class and the in�uence of a
modi�cation of the speci�c prior, by computing the di�erence between expectations or
posterior expectations of the distorted priors, respectively. Incidentally, in [2], those
di�erences were interpreted in terms of the Kantorevich probability metric. For more
details about probability metrics see [4].

3 The Model: the posterior distribution activity

Every statistical study requires a model for the probabilistic relation between an observa-
tion and the study's object. In our case, the model is quite simple. The laboratory makes
an experimental observation x, which is assumed to be drawn from a Gaussian distribu-
tion centered on the unknown true value of the activity θ. The standard deviation of this
distribution, u (the standard uncertainty), is assumed to have been established from the
laboratory's experience. The likelihood function is then

fN(x,u)(θ) ∝ exp

[
−1

2

(
θ − x
u

)2
]
. (7)

By considering the Principle of Maximum Information Entropy (PME), the Gaussian dis-
tribution described in (7) is neither an approximation nor a probability distribution from
repeated or counting measurements. If no other information is available, the observation
x is taken as the best estimate of the true activity, see [15],[10], [21] and [33] for further
information. However, as explained in the Introduction, the organizer of the Pro�ciency
Test provides the laboratory with a reference activity interval, Θ = [m,M ], within which
the true activity of the radionuclide is assumed to be contained. Therefore, the prior
becomes the uniform PDF
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π(θ) ∝ 1[m,M ](θ), (8)

where 1[m,M ] represents the well-known indicator function:

1[m,M ](x) =

{
0 if x 6∈ [m,M ],
1 if x ∈ [m,M ].

From Bayes' theorem and using expressions (7) and (8), the posterior PDF is a trun-
cated normal distribution that vanishes outside the activity interval with density

πx(θ) ∝ fN(x,u)(θ)1[m,M ](θ).

Its expectation, which we shall denote by xB is given by

xB = Eπx [θ] =

∫ M

m

θ πx(θ) dθ. (9)

We will take this expectation as the Bayesian estimate of the activity. It combines the
experimental data and the prior knowledge, see [3] for further details. Additionally, the
standard uncertainty is summarized by the standard deviation of the posterior distribu-
tion, uB, given by

uB =
√
Eπx [(θ − xB)2] =

√∫ M

m

(θ − xB)2 πx(θ) dθ. (10)

4 Bayesian robustness: the distorted class of priors

Since the particular form of the prior information given in (8) is a critical point of the
Bayesian treatment, it should be interesting to analyze its in�uence on the estimate xB.
For this, consider the class of priors Γh1,h2,π de�ned in (4) where we shall use the classical
power distortion functions given by

h1(x) = 1− (1− x)α and h2(x) = xα, α > 1, (11)

where α is a distortion parameter related to the strength of the perturbation. The concave
distortion function, h1, gives more probability weight to smaller values of the activity, i.e.
to values closer to the left endpoint m of the activity interval. Evidently, the opposite
e�ect holds for the convex distortion function h2. A straightforward computation shows
that the densities of the distorted priors are

πh1(θ) ∝
(
M − θ
M −m

)α−1
1[m,M ](θ) and πh2(θ) ∝

(
x−m
M − θ

)α−1
1[m,M ](θ).

Note that for α = 1 both distortion functions reduce to the uniform density and that,
when α increases, the e�ect of the distortion increases too. This fact can be directly
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observed by computing the di�erences between the expectations of the uniform prior and
the distorted ones. These di�erences are

Eπ(θ)− Eπh1 (θ) =

∫ M

m

θ π(θ) dθ −
∫ M

m

θ πh1(θ) dθ,

=
M +m

2
− Mα +m

α + 1
=

(M −m)(α− 1)

2(α + 1)
. (12)

Eπh2 (θ)− Eπ(θ) =

∫ M

m

θ πh2(θ) dθ −
∫ M

m

θ π(θ) dθ,

=
Mα +m

α + 1
− M +m

2
=

(M −m)(α− 1)

2(α + 1)
. (13)

Both expressions (12) and (13) are equal and strictly increasing in α. Therefore, the
convex and concave distortion functions play a symmetrical role in the perturbation.

The choice of the parameter α depends on how much we want to distort the uniform
prior. We shall determine a value of α such that (12) and (13) represent a given percentage
of deviation from the expectation of the uniform prior, i.e., from the midpoint of the
activity interval. In other words, if σ represents a certain fraction of deviation, then α is
given by the solution of

(M −m)(α− 1)

2(α + 1)
= σ(

M +m

2
) (14)

which is

α =
2(M −m)

(M −m) + (M +m)σ
− 1. (15)

Because the original and distorted priors share the same support -the interval provided-
it is apparent that the right-hand side of equation (14) is bounded by the half length of
the activity interval, (M −m)/2. Therefore, σ cannot be larger than (M −m)/(M +m).

Given the experimental value x of the laboratory and a value for α, the posterior
expectations corresponding to the distorted priors, based on h1 and h2, are given by

xBi
= Eπhi,x [θ] =

∫ M

m

θ πhi,x(θ) dθ, i = 1, 2, (16)

where from Bayes's theorem:

πhi,x(θ) ∝ fN(x,u)(θ)πhi(θ), i = 1, 2.

According to the expression (6) we conclude that xB1 and xB2 are lower and upper bounds
for all posterior expectations based on any prior in Γh1,h2,π, respectively. In particular, we
see that

xB1 ≤ xB ≤ xB2 . (17)

The inequalities (17) will be the key to study the robustness of the technique. We
will use them to determine the relative invariance or independence of the result xB when
a modi�cation of prior information is performed, and also to determine if we are able to
improve the relative performance of the Bayesian �nal result from a more accurate prior
information. Of course, associated with πhi we can also compute the uncertainties

uBi
=
√
Eπhi,x [(θ − xBi

)2] =

√∫ M

m

(θ − xBi
)2 πhi,x(θ) dθ, i = 1, 2. (18)
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5 Application to Pro�ciency Test data CSN/CIEMAT-

04

The preceding theory will now be applied to data from the Inter-laboratory Pro�ciency
Test of environmental radioactivity laboratories CSN/CIEMAT-2004. This test consisted
in the measurement of a synthetically prepared water sample containing plutonium 239
and 240. The measurements were carried out by ten participating laboratories and were
reported in the form of pairs (xi, ui), where xi is the experimental observation obtained
by the ith laboratory and ui is the standard deviation related to its own measurement
experience. These data are shown in Table 1, see [26] for additional details.

Lab No 1 2 3 4 5 6 7 8 9 10

x (Bq m−3) 47.60 34.90 41.20 40.70 53.40 43.05 43.50 42.00 53.60 62.00

u (Bq m−3) 1.10 1.00 4.25 1.62 1.10 1.49 1.75 2.50 4.50 1.50

Table 1: Pairs (x, u) of the activity, 239+240Pu, for each laboratory.

The metrologically certi�ed reference activity, denoted by xRef , was in the character-
istic range of environmental samples. The laboratories did not know that xRef took the
value 49.8 Bq m−3 with relative precision σp = 14% (measured as a percentage of xRef),
see [25]. The precision σp was set by the coordinator of the test ("�tness for purpose"
according to common evaluation protocols, see [30]), in order to determine the z-score of
the laboratories. Based on clause 6.4.7 of Supplement 1 to the GUM, see [15], a Gaussian
distribution is appropriate for characterizing the state of knowledge about the reference
activity.

From expert judgment, the bounds for the activity interval of 239+240Pu informed
to the laboratories were taken as m = 40 Bq m−3 and M = 100 Bq m−3. At �rst
glance, it would appear that these bounds are unreasonable, since the lower one is too
close to the reference activity. It should be mentioned, however, that plutonium is an
arti�cial radioelement introduced into the environment by the bombs of Hiroshima and
Nagasaki, the atmospheric nuclear tests conducted in the 50s and 60s and, more recently,
by the nuclear accidents of Chernobyl and Fukushima, as well as by the satellites carrying
plutonium as fuel that have disintegrated in the atmosphere. Its 239 and 240 isotopes
are determined jointly through the measurement of their alpha emissions. This yields a
very asymmetric frequency distribution (see [1] and [13]), so it is natural that the activity
interval supplied to the laboratories also be asymmetric with respect to xRef . The pairs
(xB, uB) shown in Table 2 resulted from applying the models in Sections 3 and 4 with a
uniform prior supported on this interval.

Lab No 1 2 3 4 5 6 7 8 9 10

xB (Bq m−3) 47.60 40.18 43.87 41.58 53.40 43.12 43.60 42.92 53.62 62.00

uB (Bq m−3) 1.10 0.18 2.79 1.11 1.10 1.41 1.65 1.89 4.47 1.50

Table 2: Pairs (xB, uB) of the activity, 239+240Pu, for each laboratory.
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Consider now a distorted band based on the power functions given in (11) with three
di�erent values for the dispersion parameter, namely α = 1.61, 1.97 and 2.45, which were
computed from (15) using σ = 0.10, 0.14 and 0.18, respectively. Tables 3, 4 and 5 show
the corresponding pairs (xB1 , uB1) and (xB2 , uB2). From the last columns of these tables,
which show the di�erences xB2 − xB1 , we conclude that the Bayesian approach is rather
robust, as these di�erences are small in comparison with the uncertainties u shown in
Table 1 . This is true even for the broadest range observed, 2.91 Bq m−3 at laboratory 3
for α = 2.45, for which u3 = 4.25 Bq m−3. Such robustness indicates that the Bayesian
�nal results are relatively insensitive to the speci�c prior employed. Expectations (9) and
(16) and uncertainties (10) and (18) shown in Table 1 and 2 have been solved numerically
by using Mathematica software.

With respect to the improvement produced by the Bayesian Technique, we will com-
pute the z-score index in order to evaluate the performance based on the metrologically
certi�ed values of the activity. For any measurement v of the activity, the z-score index
is de�ned as

z =
v − xRef√

u2v + (σpxRef)2
=

v − 49.8√
u2v + 6.9722

, (19)

where uv is the uncertainty of the corresponding estimate (i.e., u for the laboratory and
uB1 , uB and uB2 by incorporating the uniform prior and the distorted ones), xRef =
49.8 Bq m−3 and uRef = σpxRef = 6.972 Bq m−3. The z-score is a direct indicator of the
deviation of the measurement v with respect to the reference value xRef expressed in terms
of the established deviation for the di�erence of independent random variables, see [34]
for a very interesting study on how to compare measurement results using the Bayesian
Decision theory.

Lab No xB1 (Bq m−3) uB1 (Bq m−3) xB2 (Bq m−3) uB2 (Bq m−3) xB2 − xB1 (Bq m−3)

1 47.59 1.10 47.70 1.09 0.11

2 40.18 0.18 40.29 0.22 0.11

3 43.78 2.75 45.18 2.91 1.40

4 41.57 1.10 42.09 1.15 0.52

5 53.38 1.10 53.46 1.10 0.07

6 43.10 1.41 43.54 1.35 0.44

7 43.57 1.64 44.09 1.58 0.52

8 42.88 1.88 43.72 1.91 0.84

9 53.36 4.45 54.56 4.32 1.20

10 61.96 1.50 62.06 1.50 0.10

Table 3: Estimates of the activity with distortion parameter α = 1.61.

For each of the three values of α we show in Table 6 the ratios |zB|/|z|, |zB1|/|z|
and |zB2|/|z| of the absolute values of the z-scores, where the denominator |z| is based
on the raw experimental observations and the numerators |zB1|, |zB| and |zB2| are based
on the Bayesian estimates. Since a small value of a z-score represents a more accurate
measurement, ratios smaller than one indicate that the Bayesian activity results are more
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Lab No xB1 (Bq m−3) uB1 (Bq m−3) xB2 (Bq m−3) uB2 (Bq m−3) xB2 − xB1 (Bq m−3)

1 47.58 1.10 47.75 1.09 0.18

2 40.18 0.18 40.35 0.24 0.17

3 43.73 2.72 45.82 2.95 2.09

4 41.56 1.10 42.34 1.16 0.78

5 53.37 1.10 53.49 1.10 0.11

6 43.09 1.41 43.74 1.33 0.65

7 43.55 1.64 44.33 1.56 0.78

8 42.86 1.87 44.11 1.91 1.25

9 53.20 4.44 55.05 4.26 1.85

10 61.94 1.50 62.10 1.50 0.16

Table 4: Estimates of the activity with distortion parameter α = 1.97.

Lab No xB1 (Bq m−3) uB1 (Bq m−3) xB2 (Bq m−3) uB2 (Bq m−3) xB2 − xB1 (Bq m−3)

1 47.57 1.10 47.83 1.08 0.26

2 40.18 0.18 40.43 0.26 0.25

3 43.67 2.69 46.58 2.97 2.91

4 41.55 1.10 42.63 1.16 1.08

5 53.36 1.10 53.53 1.09 0.17

6 43.07 1.40 43.98 1.31 0.91

7 43.53 1.64 44.62 1.53 1.09

8 42.83 1.86 44.56 1.90 1.73

9 53.00 4.43 55.65 4.19 2.65

10 61.91 1.50 62.15 1.49 0.23

Table 5: Estimates of the activity with distortion parameter α = 2.45.

accurate than the values x initially determined. Ratios shown in bold highlight the smaller
values in each line.

Figure 1 summarizes graphically the information contained in Table 6. It can be seen
that the Bayesian approach based on the uniform prior leads in general to an improve-
ment with respect to results produced ignoring prior knowledge. The only exception is
laboratory 9, for which the ratio |zB|/|z| is larger than one for all three values of alpha
(for all other laboratories, this ratio is at most equal to one). It is interesting to note
that a concave distortion of the uniform prior will provide a more accurate result than
the experimental one when the laboratory overestimates the activity (all laboratories ex-
cept 5, 9 and 10). On the contrary, when the laboratory underestimates the activity (all
laboratories except 5, 9 and 10) a convex distortion will lead to better results.

6 Conclusions

In this paper we have used a robust Bayesian approach to evaluate the modi�cation
induced in the results of radionuclide activity measurements when available prior infor-
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Lab No |zB1 |/|z| |zB|/|z| |zB2 |/|z| |zB1 |/|z| |zB|/|z| |zB2 |/|z| |zB1 |/|z| |zB|/|z| |zB2 |/|z|
1 1.006 1.000 0.955 1.013 1.000 0.929 1.013 1.000 0.894

2 0.652 0.652 0.644 0.652 0.652 0.640 0.652 0.652 0.635

3 0.763 0.750 0.581 0.780 0.750 0.500 0.780 0.750 0.404

4 0.917 0.916 0.858 0.920 0.916 0.831 0.920 0.916 0.798

5 0.996 1.000 1.016 0.990 1.000 1.024 0.990 1.000 1.037

6 0.995 0.990 0.930 0.999 0.990 0.901 0.999 0.990 0.866

7 0.993 0.989 0.911 1.000 0.989 0.873 1.000 0.989 0.829

8 0.910 0.905 0.799 0.917 0.905 0.747 0.917 0.905 0.689

9 0.939 1.007 1.266 0.845 1.007 1.404 0.845 1.007 1.570

10 0.997 1.000 1.005 0.993 1.000 1.008 0.993 1.000 1.012

α 1.61 1.97 2.45

Table 6: Quotient |zB1|/|z|, |zB|/|z| and |zB2|/|z| for the di�erent values of α.

2 4 6 8 10

0
.4
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1 2 3 4 5 6 7 8 9 10
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Figure 1: Quotient |zB1|/|z|, |zB|/|z| and |zB2|/|z| (Bayesian z-score with respect to the
classic one) for the 239+240Pu analysis in the INTER/CSN-2004 Pro�ciency Test.
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mation is taken into account. For this purpose, we have developed a methodology based
on a class of priors instead of considering only a uniform speci�c prior. This class of priors,
recently published in the literature, is intended to overcome the common criticism about
the arbitrariness and bias implied by choosing a single prior to represent the available
information. In particular, it allows us to assess both the uncertainty contained in such
information and the in�uence produced by distorting the chosen prior in the �nal value
of the activity.

We applied this methodology to an example involving inter-laboratory pro�ciency test
data obtained by the laboratories that perform radiochemical analysis for the Spanish
radioactive monitoring network. We have shown that, in our example, perturbing the
prior information does not cause a signi�cant change in the �nal Bayesian result of the
activity, even for the largest distortions. Therefore, the model can be considered robust
from a Bayesian point of view. Moreover, with respect to the performance of the Bayesian
approach itself, we have shown that in general the results of each laboratory improve when
the available prior information is incorporated. In particular, the use of a �at (uniform)
prior distribution based on knowing the minimum and maximum activity levels is then
justi�ed. The choice of a di�erent and more sophisticated prior distribution would lead
basically to the same (improved) �nal results.
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