
Knowledge-Based Systems 213 (2021) 106682

U
C

h
M
g
r
l
V
t
g
o
n
i
c
u

1

g
j

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

MEdit4CEP-SP: Amodel-driven solution to improve decision-making
through user-friendlymanagement and real-time processing of
heterogeneous data streams
David Corral-Plaza ∗, Guadalupe Ortiz, Inmaculada Medina-Bulo, Juan Boubeta-Puig
CASE Software Engineering Research Group, Department of Computer Science and Engineering, University of Cadiz, Avda. de la Universidad de
ádiz 10, 11519 Puerto Real, Cádiz, Spain

a r t i c l e i n f o

Article history:
Received 13 April 2020
Received in revised form 10 December 2020
Accepted 11 December 2020
Available online xxxx

Keywords:
Model-Driven Development
Stream Processing
Complex Event Processing
Heterogeneous data
Decision-making

a b s t r a c t

Organisations today are constantly consuming and processing huge amounts of data. Such datasets
are often heterogeneous, making it difficult to work with them quickly and easily due to their format
constraints or their disparate data structures. Therefore, being able to efficiently and intuitively work
with such data to analyse them in real time to detect situations of interest as quickly as possible is
a great competitive advantage for companies. Existing approaches have tried to address this issue by
providing users with analytics or modelling tools in an isolated way, but not combining them as a one-
in-all solution. In order to fill this gap, we present MEdit4CEP-SP, a model-driven system that integrates
Stream Processing (SP) and Complex Event Processing (CEP) technologies for consuming, processing
and analysing heterogeneous data in real time. It provides domain experts with a graphical editor that
allows them to infer and define heterogeneous data domains, while also modelling, in a user-friendly
way, the situations of interest to be detected in such domains. These graphical definitions are then
automatically transformed into code, which is deployed in the processing system at runtime. The alerts
detected by the system, in real-time, allow users to react as quickly as possible, thus improving the
decision-making process. Additionally, MEdit4CEP-SP provides persistence, storing these definitions
in a NoSQL database to permit their reuse by other instances of the system. Further benefits of this
system are evaluated and compared with other existing approaches in this paper.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the past few years, the volume of the data that organisations
ave to store, process and analyse has increased considerably.
oreover, the sources which produce these data are hetero-
eneous, which means that these huge amounts of data are
epresented in a wide range of data structures. These two prob-
ems lead us to the term Big Data, which is grounded in the three
’s [1]: the first, Volume, refers to the amount of data generated;
he second, Velocity, is related to the speed at which the data are
enerated; and the third, Variety, encompasses the heterogeneity
f these data. Being able to work with these large and heteroge-
eous datasets, performing specific domain analytics and reacting
n real time to situations of interest gives a company a notable
ompetitive advantage. Hence, there is a need for any kind of
ser, regardless of their computer science knowledge, to be able

∗ Correspondence to: School of Engineering, Avda. de la Universidad de Cádiz
0, 11519 Puerto Real, Cádiz, Spain.

E-mail addresses: david.corral@uca.es (D. Corral-Plaza),
uadalupe.ortiz@uca.es (G. Ortiz), inmaculada.medina@uca.es (I. Medina-Bulo),
uan.boubeta@uca.es (J. Boubeta-Puig).
ttps://doi.org/10.1016/j.knosys.2020.106682
950-7051/© 2020 Elsevier B.V. All rights reserved.
to operate, in a user-friendly way, with these heterogeneous data,
consuming, processing and analysing them.

In this context, Stream Processing (SP) is a paradigm that al-
lows us to consume streams of data and perform transformations
on them. This means huge amounts of heterogeneous data can be
processed and transformed in order to make them ready for ana-
lytics. Once these large streams of heterogeneous data are ready
to be used, Complex Event Processing (CEP) comes into play. CEP
is a technology that provides the capabilities of analysing data
streams, correlating them and detecting real-time situations of
interest, previously defined using a specific syntax. In a previous
work [2], we demonstrated the benefits of combining these two
technologies, resulting in an SP architecture for heterogeneous
data in the Internet of Things (IoT).

Despite the great advantages of SP combined with CEP, the
complexity of these technologies is a major issue for users who
are not computer scientists. Thus, from our perspective, the users,
who are experts in the domain, should be able to focus on the
definition of the problem and not on the implementation of these
technologies. In order to respond to this challenge, a graphical

tool should be provided that allows such users to ignore the

https://doi.org/10.1016/j.knosys.2020.106682
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106682&domain=pdf
mailto:david.corral@uca.es
mailto:guadalupe.ortiz@uca.es
mailto:inmaculada.medina@uca.es
mailto:juan.boubeta@uca.es
https://doi.org/10.1016/j.knosys.2020.106682

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

t
o
o
a
M
p
C
d
i
d

d
c
w
t
t
t

m
o
s
I
c
d
g
i
s
s
m
t
i
m
o

s
e
d
a
r
w
a
t
s

t
a
n
v
a
e
m
c
s
s
r
o
o
p
e
u
C
u
s
p
t
n

T
i
w
i
t
s
t
a
i
e
w
c
t
h
r

2

e

2

o
T
a
t
t
p

d
d
d
o
s

e
I
m
a
w
a
S
p
e
t

n
s

echnical issues so they can focus on specifying the problems
f the domain in which they are experts. Some of the authors
f this paper already proposed MEdit4CEP [3], a model-driven
pproach which facilitates CEP use for non-technological users.
ore specifically, MEdit4CEP proposes a graphical editor that
rovides non-technological users with the capabilities to define
EP domains and event patterns – situations of interest to be
etected – in a drag and drop canvas. In addition, the graph-
cal editor itself is capable of automatically transforming those
efinitions into deployable code.
We have thus detected three challenges to be addressed. First,

ue to the variety of existing datasets, we have to be able to
onsume and process heterogeneous data in real time. Second,
e have to be able to model these heterogeneous data in order
o detect situations of interest, also in real time. Finally, we have
o provide domain expert users with a set of tools that provides
hem with both functionalities in a friendly and intuitive way.

Let us illustrate these three problems in the smart water
anagement domain. Current water management organisations
ften operate in large areas where smart water metres monitor
everal values of the water currently running through their pipes.
t is worth noting that more than one kind of smart water device
an be found in these areas, so the information generated by these
evices is mostly heterogeneous. In such a scenario, these or-
anisations may wish to analyse large amounts of heterogeneous
nformation in real time, to detect anomalies in their networks,
uch as leaks or disruptive consumption. Thus, companies need a
ystem or tools that allow them: (1) to define the heterogeneous
odels of data to be analysed, and (2) to describe the anomalies

hey aim to detect within their data in real time, in a friendly and
ntuitive way. As a result, companies would see their decision-
aking improved since they would not have to deal with details
f implementation or coding procedures.
The aim of this work is to develop a system capable of con-

uming and processing heterogeneous data in real time, allowing
xperts in the field to graphically design these heterogeneous
ata to detect situations of interest, also in real time, in a friendly
nd intuitive way, thus improving their decision-making when
eacting to these situations. Decision-making is the process by
hich one action is chosen from among others based on the
dditional benefits it can provide [4]. Thus, this paper presents
hree major contributions that address the challenges previously
tated and which lead us to the desired system.
Firstly, we present an improved version of the SP architec-

ure [2], which will allow us not only to consume, process and
nalyse heterogeneous data in IoT domains, but also to include
ew definitions autonomously (without any kind of human inter-
ention). Secondly, MEdit4CEP has also been enhanced in order to
chieve new functionalities, such as persistence of domains and
vent patterns in a database, generation of a new format for do-
ain definitions, inference of existing domains, and detection of
hanges in domains and event patterns, among others. Thirdly, a
eries of adjustments have been also made to these two solutions
o they can be integrated and work with each other. We call the
esult of this integration MEdit4CEP-SP, a novel extension of the
riginal MEdit4CEP editor combined with an updated version of
ur SP architecture for heterogeneous data, resulting in a com-
letely new system which facilitates decision-making for domain
xperts. Thanks to MEdit4CEP-SP, a domain expert can now add,
pdate and remove event types and event patterns from the
EP engine embedded in the SP architecture quickly and easily,
sing the new version of the editor. The evaluation carried out
hows that the combination of MEdit4CEP and the SP architecture
rovides a system that facilitates graphical definition, as well as
he process and analysis of heterogeneous data in real time for
on-technical users.
Finally, we aim to answer the following research questions:
2

• (RQ1) How can organisations model, process and analyse
their heterogeneous data?

• (RQ2) How important is it to provide organisations with
a set of tools that facilitates such tasks and the decision-
making process, and for the proposed integration (SP archi-
tecture + MEdit4CEP) to be able to provide users with such
capabilities?

• (RQ3) Is the proposal more effective and efficient than other
existing alternatives in achieving the modelling and defini-
tion of heterogeneous CEP domains and event patterns in a
friendly and intuitive way, as well as their analytics in real
time?

• (RQ4) How important is it to be able to add, update and
remove existing event types and patterns at runtime and
is the proposed integration able to provide users with such
capabilities?

he remainder of the paper is organised as follows: Section 2
ncludes the background to the technologies involved in this
ork. Section 3 describes the new changes made to the orig-

nal SP architecture in order to improve it. Section 4 shows
he contributions included in the MEdit4CEP editor. Section 5
hows the proposed system, MEdit4CEP-SP, which results from
he integration between the new versions of the SP architecture
nd MEdit4CEP. In Section 6, we illustrate the use of the proposal
n the smart water management domain. Section 7 contains the
valuations of the proposed MEdit4CEP-SP system. In Section 8,
e review the related works that are similar to our approach, and
ompare them to our proposal. Section 9 contains the answer to
he research questions stated at the beginning. Finally, Section 10
ighlights the conclusions achieved in this work and the future
esearch lines.

. Background

The key technologies and paradigms used in this work are
xplained in this section.

.1. Stream processing

For many years, the best solution for sending messages from
ne point to another in architectures was messaging systems.
hese systems allow us to send information as messages in
synchronous or asynchronous way. Over time, the architec-

ures became more complex as did the messaging systems and
he requirements of these architecture, giving rise to the SP
aradigm [5].
SP is a paradigm that allows us to interact with streams of

ata being transmitted over a channel. SP involves computing
ata directly as it is produced or received, i.e. on the fly. It was
esigned to process data in real time. A considerable number of
perations can be accomplished with the data that are processed,
uch as analytics, transformations, MapReduce operations, etc.
Several platforms integrate SP capabilities in their solutions,

.g., WSO2 SI [6], Apache Storm [7] or Apache Kafka Streams [8].
n our proposal, we chose Kafka Streams for several reasons: each
essage is processed exactly once, is easily embedded in Java
nd Scala programming languages, and perfectly suits scenarios
ith low latency requirements. In addition, Kafka Streams works
ppropriately with Apache Avro, which is a Data-Serialisation
ystem (DSS) allowing data to be quickly and compactly trans-
orted. Avro is also compatible with some CEP engines in input
vent format, which makes the integration between SP and CEP
echnologies easier.

Using Kafka Streams, we are thus able to consume heteroge-
eous messages from Kafka topics, perform transformations on
uch data, and prepare them to be used in the analytics stage.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

2

s
c
e
s

t
W
a
p
t
u
u
a
c
s

e
m
A
r
w
E
t
q
F
a

s
i
o

2

p
d
I
t
r
c
w
s
m
h
o
w
b
p

p
r
L
m
t

.2. Complex event processing

CEP is a well-known technology that allows us to perform
tream analytics over events. That is, it processes, analyses, and
orrelates large amounts of information in the form of simple
vents, pursuing the real-time detection of previously defined
ituations of interest.
A simple event is a representation of a change of state in

he real world, i.e., measurements from a temperature sensor,
iFi-transmitted packets, open or closed door sensor, etc. In

ddition, these events are used to feed the CEP engine, while
atterns are provided in order to detect situations from among
he events received. These patterns are specified using a partic-
lar syntax, which depends on the chosen CEP engine. In CEP,
nlike other real-time analytics technologies, the events (data)
re not stored, but are compared with these patterns in order to
heck whether the conditions specified are satisfied, meaning that
torage resources are not required.
In our previous work, from the alternatives that currently

xist for CEP engines, we chose Esper [9]. Esper is one of today’s
ost popular CEP engines on the market since it is open-source.
s commented in the previous subsection, it can analyse data
epresented as Avro events, among others, making integration
ith Kafka Streams almost immediate. Additionally, the Esper
vent Processing Language (EPL) provides a syntax for defining
he event patterns (situations of interest) to be detected that is
uite similar to SQL. More specifically, EPL provides the SELECT,
ROM, WHERE, GROUP BY, HAVING and ORDER BY clauses, which
re well known to SQL developers.
Finally, one of the main advantages of Esper over other CEP

olutions is the capability of adding new configurations and def-
nitions at runtime, without having to stop the whole system in
rder to add, change or remove event types or patterns.

.3. Model-driven development

Model-Driven Development (MDD) is a software development
aradigm that focuses on the main aspects of the system [10],
elaying questions of implementation, which are dealt with later.
n MDD, a model is a simplified representation of a given domain
hat helps us better understand it. These models are graphically
epresented within a canvas and are called diagrams. A model is
reated by using a Domain-Specific Modelling Language (DSML),
hich is composed of four key elements: (1) a meta-model, a
pecial kind of model that specifies the abstract syntax of a
odelling language [11]; (2) the restrictions that these models
ave to accomplish in order to be valid; (3) the specific syntax
f the DSML that is to be used, a set of graphical elements that
ill be used to draw the diagrams; and (4) the transformations
etween models and model to text for the software automation
rocess.
The restrictions and the transformations are the most essential

art in the developing of these automatic systems. Regarding
estrictions, they are typically specified using Object Constraint
anguage (OCL), which are limitations to be satisfied by all the
odels of a given meta-model in order to be valid. Concerning

ransformations, there are two kinds:

• Model to Model transformation (M2M): n source models
will be transformed into m target models. Source and target
models are different.

• Model to Text transformation (M2T): a model is transformed
into text, which mainly represents an output that can be
used by any other tool.
3

Finally, when using a MDD tool, the steps are as follows: a user
draws the model in the canvas according to the domain itself;
the tool validates the model using the restrictions that have
to be satisfied in design time; and, depending on the tool, the
user has the option to transform the defined model into another
model using M2M transformations or into output text, using M2T
transformations.

2.4. MEdit4CEP

MEdit4CEP [3] is a model-driven solution designed to provide
support for real-time decision-making in Service-Oriented Archi-
tectures (SOA) 2.0. Its main goal is to facilitate the definition
of domains and situations of interest for domain experts who
are untrained in the implementation details. This is achieved
through a drag and drop canvas, in which the users graphically
define, first, the structure of the information that their system is
processing and, second, the event patterns that can be detected
from these data.

MEdit4CEP is composed of a model-driven approach for CEP in
SOA 2.0: a graphical modelling editor for CEP domain definition,
in which event types are modelled with their event properties,
a graphical modelling editor for both event pattern and action
definition, and an automatic EPL code generator.

MEdit4CEP allows users to ignore all implementation details,
because once the definitions have been modelled, they are then
transformed into code, using M2T transformations. Thanks to this
approach, programming knowledge is completely unnecessary.

In Fig. 1, we can see how the original proposal works. It is
structured in two layers, design time (on the left of the figure),
which is composed of the MEdit4CEP editor and the users; and
runtime (on the right of the figure), which comprises an Enter-
prise Service Bus (ESB) application integrated with a CEP engine
running inside, and the Data Producers and Data Consumers.

The editor is divided into two parts, one for the domain model
definition and another for the event pattern model definitions. In
the first one, the domain expert will model all the event types
that compose the domain. In the second, the event patterns (situ-
ations to be detected) are modelled by the user with the elements
available in the palette. When a model is saved, the editor checks
whether this model conforms to the ModeL4CEP meta-model
proposed in [12], i.e. whether it is syntactically correct. If there
are no problems within the model, it is automatically transformed
into code using M2T transformations. The result of this process is
EPL code, which is ready to be deployed in the Esper CEP engine. It
is worth mentioning that during the whole process of modelling,
definition and validation, the EPL technical aspects are hidden
from the users and the resulting EPL code is free of syntactic
errors.

This editor was implemented using Eclipse Epsilon [13], which
is a project working out of the box with Eclipse Modelling Frame-
work (EMF). In particular, it provides a family of languages for
model validation (Epsilon Validation Language, EVL), M2M trans-
formation (Epsilon Transformation Language, ETL) and M2T trans-
formation (Epsilon Generation Language, EGL). Additionally, Ep-
silon provides a tool for graphical model editor creation (EuGE-
Nia), which is a front-end for Graphical Modelling Framework
(GMF).

Since MEdit4CEP was designed following the principles of
modularity and adaptability, it has already been appropriately ex-
tended to deal with other paradigms, such as Petri nets and gami-
fication. As an example, MEdit4CEP-CPN [14] extends MEdit4CEP
with a Prioritised Coloured Petri Net formalism to support the
modelling, simulation, analysis and both syntactic and seman-
tic validation of CEP-based systems. In addition, MEdit4CEP-
Gam [15] is an extension of MEdit4CEP for defining gamification
domains as well as designing gamification strategies, monitoring
them, and automatically transforming these strategies into code
to be deployed in CEP-based systems.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

3

t
p
i
p
a
a
c

S
d
t
c
G
a

E
K
t
s
i

t
p
C
t
D
a
o
o
t
o
a
t
o
t
S

Fig. 1. An overview of the MEdit4CEP approach.
. Heterogeneous IoT data stream processing architecture

In [2], we proposed a SP architecture for heterogeneous data
hat can be applied to any kind of domain in the IoT field. As
reviously discussed, the present work enhances this architecture
n order to achieve integration with MEdit4CEP. The primary pur-
ose of the SP architecture is to consume, process, transform and
nalyse heterogeneous data in IoT domains, such as air quality
nd smart water networks. For such a goal, this architecture
ombines the SP paradigm with CEP technology.
On the one hand, to implement the SP paradigm, we use Kafka

treams. Kafka Streams is in charge of consuming heterogeneous
ata from Kafka topics, which are channels through which data
ravels from one point to another. Then, the Kafka Streams Pro-
essors process the heterogeneous data, transforming them into
eneric Avro events, which will be sent to the CEP engine to be
nalysed.
On the other hand, in order to perform CEP analytics, we use

sper. This Esper CEP engine receives the simple events from the
afka Stream Processors as Avro events and analyses them using
he rules that are also included at runtime. Once the conditions
pecified in one pattern are satisfied, this pattern triggers up and
s notified to consumers, who will use this valuable knowledge.

In the previous version of the SP architecture, there were only
wo topics: one for the inputs (heterogeneous data and event
atterns) and another for the output (the alerts detected by the
EP). The main contribution of this new version of the archi-
ecture is three new topics added to the Kafka Cluster: ‘‘Pattern
eployment’’ topic, ‘‘Event Type Deployment’’ topic and ‘‘Pattern
nd Event Type Undeployment’’ topic. Thanks to the introduction
f these three new topics, the Data Processors are now in charge
f managing not only heterogeneous input data and event pat-
erns, but also event type schema definitions and the deployment
r removal of such event types and patterns in real time. The
ddition of these topics, as well as the coded behaviour within
he Data Processors, provides us with the significant advantage
f being able to autonomously deploy, update and remove event
ypes and event patterns from the CEP engine embedded in the

P architecture.

4

The updated architecture is shown in Fig. 2. It maintains the
three-layer structure, one for the Data Producers, other for the
Data Processing and Analytics, and the last one, which encom-
passes the Data Consumers.

3.1. Data sources

The Data Sources layer encompasses any kind of device, means
or user that communicates with the architecture sending infor-
mation to a specific Kafka Topic. In this new version, we can
distinguish between four types of information:

• Heterogeneous data: the data to be processed and analysed
in the whole system. In this case, these data will be sent to
the Input Data Topic.

• EPL definitions: the event patterns to be deployed in the
system in order to detect specific situations. These will be
sent to the Pattern Deployment Topic.

• Schema definitions: the event types definitions to be regis-
tered in the CEP engine. They will be sent to the Event Type
Deployment Topic.

• Deployment IDs: the deployment IDs, which uniquely iden-
tify event types and patterns in the CEP engine, to be re-
moved from the CEP engine at runtime. These will be sent
to the Pattern and Event Type Undeployment Topic.

Only heterogeneous data sources were considered by our pre-
vious version of the architecture. This improved version of the
architecture now includes those previously mentioned data types
(EPL definitions, event type schema definitions and deployment
IDs). As a result of these additions, new EPL patterns and event
type schemas can be automatically deployed within the CEP
engine, and can also be removed using their deployment IDs.
Additionally, such changes facilitate the integration between this
SP architecture and MEdit4CEP.

3.2. Data processing

There are two main components in this layer: a Kafka Cluster,

which is used to receive information in its Kafka Topics, and a

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

K
n
a

3

o
d
n
d
c
i
r
i
t
t
n

m
i
h
T
t
a
s
t
m
c

b
i
T
O
t

Fig. 2. Stream processing architecture.
afka Stream Application in charge of processing the heteroge-
eous data and analysing them thanks to the embedded CEP. Both
re described in more detail below.

.2.1. Kafka Cluster
The Kafka Cluster contains up to five topics, each with its

wn purpose: (1) the input data topic, where the heterogeneous
ata are received; (2) the pattern deployment topic, where the
ew EPL patterns to be deployed are sent; (3) the event type
eployment topic, where the definitions of new event types are
ollected; and, (4) the event type undeployment topic, which
s used to transmit the desired event types and patterns to be
emoved from the CEP engine. Note that, as shown in Fig. 2, there
s a fifth topic, the output topic, where the alerts detected by
he CEP engine are published. Despite this topic being located in
he Data Processing layer (due to the implementation itself), its
ature is to act as Data Consumer.
This Kafka Cluster can be optionally deployed in a different

achine from that we are using for our Kafka Stream Application,
n order to save processing and storage resources. The topics can
ave from 1 to N partitions, which result in 1 to N processors.
hese partitions are used to provide balance and scalability to
he solution. Note that having a unique partition, resulting in
single processor receiving and processing 2000 messages per

econd, is not the same as having two partitions, resulting in
wo processors, with each one receiving and processing 1000
essages per second. More details about this scalability balance
an be found in [16].
In this case, only the input data topic will be partitioned

ecause it will be the one responsible for constantly receiving the
nformation, while the other topics (Pattern deployment, Event
ype deployment, Pattern and Event Type undeployment, and
utput) will be used at very specific moments, so there is no need
o have them partitioned.
5

3.2.2. Kafka Stream Application
The Kafka Stream Application is the main component of this

architecture. Along with the Kafka Processors, we have an em-
bedded Esper CEP engine, which will be responsible for analysing
the heterogeneous data that arrives as Avro Events and detecting
the situations of interest provided to the CEP engine. These alerts
will be published to the output topic and notified to the Data
Consumers.

The following tasks are performed in the components of this
layer:

• The heterogeneous data, as Kafka messages, are consumed
from the input data topic partitions by the Kafka Stream
processors associated with that topic. As mentioned, we will
have a processor for each input data topic partition, so if the
input data topic is partitioned in 8, we will have 8 instances
of the data processor.

• The data processors will perform the homogenisation task
that will transform these heterogeneous messages into
Generic Apache Avro Events.

• The data processors will send the already homogenised in-
formation as Avro Events to the Esper CEP engine.

• The Esper CEP engine will analyse and correlate these events
with the patterns, which can be also added at runtime. If
a pattern triggers up, the complex event detected will be
published to the Kafka output topic.

• The information published in the remaining topics (Pat-
tern deployment, Event Type deployment, Pattern and Event
Type undeployment, and Output) will also be handled by
the data processors in order to deploy new EPL patterns,
to deploy new event type schemas and to remove existing
event types or patterns, respectively, in real time.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

3

a
d
a
i
t
p
a
i
e

4

d
O
i
b
c
o
b

t
d
v
o
f

i
i
a
c
f

t
t
o
i
m
d
A
t
a
t
i
R
s
t
w
s
m
t
o
t

t
g
t
t
d
e
f
a
t

.3. Data consumers

Finally, the Data Consumers layer is in charge of encompassing
ny kind of endpoint that can use the information produced or
etected by the Esper CEP engine. As an example, a smartphone,
database to store information or a web application to display

nformation could be used as endpoints, which can consume
he knowledge generated by the processing layer. Moreover, as
reviously mentioned, the Output topic from the Kafka Cluster is
Data Consumer because the result of the analytics performed

n the CEP engine are sent to that topic to make these complex
vents available for consumption by any other application.

. MEdit4CEP improvements

As mentioned, MEdit4CEP is a graphical tool that allows us to
efine event types and patterns using a drag and drop canvas.
riginally, using M2T transformations, MEdit4CEP had the capac-
ty to transform these model definitions into EPL code that can
e deployed in an Esper CEP engine. Such a deployment process
ould be automatised using an ESB application as proposed in the
riginal work, but the use of a Mule Server [17] is no longer the
est alternative, as we discuss in the related work section.
In order to achieve the integration between MEdit4CEP and

he SP architecture for the previously described heterogeneous
ata, a series of improvements were performed in the original
ersion. These changes did not affect the original meta-models
f the published work, but did impact the source code and the
unctionalities of the editor itself.

This new extension maintains MEdit4CEP’s original capabil-
ties and provides extra functionalities: persistence of the def-
nitions modelled with the editor, definition of Avro schemas,
utodetection of CEP domains from databases, and detection of
hanges in domain and event pattern models, as explained in the
ollowing paragraphs.

Firstly, one of the key contributions in this new version of
he editor is persistence. Several users of the MEdit4CEP original
ool reported that one of the main limitations was the possibility
f persistently storing the models. In this updated version, this
ssue has been resolved: users can now permanently store their
odels in the cloud and these will then be available for other
omain experts interested in reusing them. To this end, a REST
PI with an embedded NoSQL database has been included with
he editor. When a domain or event pattern is saved, it is now
utomatically stored in the NoSQL database to ensure its persis-
ence. Such a NoSQL database, specifically a MongoDB solution, is
n the cloud and available in a NodeJS server that implements a
ESTful API. This then receives the event types and patterns to be
tored, updated, or removed from the database. It should be noted
hat MongoDB is schemaless, i.e. it is perfectly suitable to work
ith heterogeneous domains in which data are not following the
ame structure. In addition, being schemaless means that the
anagement of the relations between these collections within

he database might be struggling, and we thus defined a series
f relations between the collections, which are managed within
he API (see Fig. 3).

Thanks to this REST API, users can now permanently store
heir CEP domains and patterns. They can also reuse them in other
raphical editor instances, using HTTP GET requests to retrieve
hem. From a researcher’s point of view, this feature is highly
ime-saving for users and improves decision-making since they
o not have to waste time on defining the same event types and
vent patterns again. This then saves time that might be useful
or focusing on the data analytics. Moreover, these definitions
re stored in a NoSQL database and accessible for consumption
hrough the REST API, and can therefore be used not only for MDD
6

software but for any other kind of software that might find them
useful.

Regarding Avro Schema definitions, these represent the event
type structure regardless of the data itself. They are represented
in JSON format, so fit perfectly in the MongoDB. These schemas
facilitate the integration of heterogeneous data sources, as they
allow us to extract the schema of the data being transmitted and
transform it into a useable format for the analytics. In order to
ensure that the new version of MEdit4CEP is able to work with
heterogeneous data sources, we extended the editor’s capabilities,
providing the capacity to automatically transform the CEP domain
models (event types with their properties) into Apache Avro code,
which is then registered in the CEP engine. More specifically, we
provided the editor with two new capacities:

• Avro EPL definitions: the editor is now able to generate the
EPL code that we can use to register a new event type as
Avro format in the Esper CEP engine.

• Avro Schema representation: the editor is now able to gen-
erate the Avro Schemas from the event types that comprise
a CEP domain. Furthermore, the editor is able to read these
schemas and transform them into models when retrieving
an already defined schema from the API.

Thanks to these new features, our system is now capable of
consuming, processing, and emitting information as Avro. Addi-
tionally, the latest serialisation strategy and schemas allow for
the transportation of large amounts of data in Big Data environ-
ments [18].

Concerning the capacity to automatically detect a CEP domain,
in the previous version of the editor, event types could be re-
trieved from the ESB app and then automatically drawn on the
canvas. The main drawback was that only event types currently
deployed in the CEP engine could be retrieved, i.e. it was impos-
sible to reuse the event types from a domain that was defined in
previous usages. Since the definitions are now stored in a cloud
database, they can be used by any other instance of MEdit4CEP
at any time, regardless of whether or not they are deployed
in the CEP engine. Hence, other users can benefit from these
stored definitions with just a click in the editor. When clicking
on the Autodetection CEP domain option, the editor now sends an
HTTP GET request to the REST API to retrieve the existing event
types. Such a request will return the Avro Schema representations
stored in the NoSQL database. The benefit of this new feature is
closely related to those described for the first one: persistence in
the NoSQL database.

As mentioned, the editor now has the ability to interpret event
types represented in Avro Schemas, meaning that an Avro Schema
representation can be transformed into a modelled event type
within a CEP domain in the canvas. Thus, the editor will model
these already defined event types in the canvas and users can
choose to use for their own case study.

In order to illustrate these two functionalities, Avro Schema
definitions and CEP Domain Autodetection, we used the editor
to model the Air Quality Management domain. This domain is
formed by one event type, AirMeasurement, shown in Fig. 4. Once
the editor has checked the model is valid, it will generate the Avro
EPL definition in Listing 1 in order to be able to register this event
type as Avro in an Esper CEP engine. At the same time, the editor
will send an HTTP POST request to the REST API to permanently
store this new event type in the database, and, in that request,
the Avro Schema representation (see Listing 2) of the modelled
event type is sent in the payload. All three resources represent
the same event type but in different ways. This same process
could be done upside down; the Avro Schema representation (see
Listing 2) could be retrieved from the database using an HTTP

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

G
t

C
t
e
C
t
e
e
w

n
c
b
w
b
I
v
b
m

d
C
r
i
n
t
n
d
t
M
f
p
c

f
s

Fig. 3. REST API collections relationships.
ET request, thanks to the Autodetect CEP domain option, and
he editor would model it into the canvas, as illustrated in Fig. 4.

Finally, one of the main benefits of Esper compared to other
EP engines is its capability of adding and removing configura-
ions and definitions at runtime. This means that event types and
vent pattern definitions can be deployed and removed from the
EP engine in real time, without having to stop the execution of
he whole system. Thus, the last major contribution added to the
ditor is the capacity to detect changes in the event types and
vent pattern models, so these changes can be applied at runtime
ithin the CEP engine and stored in the database.
In CEP, a pattern uses one or more simple event types and/or

one or more patterns in order to be defined. This means there
ould be dependencies between event types and patterns, and
etween patterns themselves. These dependencies imply that
hen the root event type or pattern changes (a change could
e, for example, that an attribute changes its data type, e.g. from
nteger to String), the patterns that depend on it are no longer
alid, since this event type or event pattern has changed its
ehaviour. Therefore, as these patterns are no longer valid, they
ust be removed from the CEP engine.

In our solution, when an event type or pattern changes, we
o remove them (the original and the dependent ones) from the
EP engine but do not completely remove them from the editor;
ather we turn them into non-valid patterns that the user must fix
n order to make them valid again. Through experience, we have
oticed that users prefer to solve these issues manually rather
han model the pattern again from scratch. Hence, thanks to this
ew feature, researchers will be able to add, update, and remove
efinitions from the CEP engine at runtime, without the having
o stop the entire system and redeploy the new configurations.
oreover, as mentioned, if users wish to remove the pattern

rom the CEP engine but not from the graphical editor, the event
attern will be kept in the editor in a non-valid state, so users
an fix it or export it for futures usages.
To conclude, we would like to highlight that we have per-

ormed several kinds of optimisations to the algorithms and

ource codes of the tool itself. Some of these are related to code

7

Fig. 4. AirMeasurement event type modelled in the graphical editor.

efficiency, factorisation, and the usage of software design patterns
such as the facade pattern. We have also improved the validation
and transformations rules available in the original version, which
were in charge of ensuring that the models were correct and
of transforming the models to deployable EPL code. Now, these
validations and transformations are more efficient and effective,
providing EPL code which is ready to be used in a CEP engine.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

e
M
o
e
b
c
r

5

o
a
h
u
a

5

c
w
t
M
f
w
m
p
f
m
r

i

All these changes were implemented not only to improve the
ditor itself, but also to facilitate the communications between
Edit4CEP and the SP architecture. However, new architectures
r systems, such as the FIWARE-based one proposed in [19], can
asily be integrated with the editor. In this scenario, it would
e necessary to create additional M2T rules for generating the
ode to send the defined event types and patterns through HTTP
equests to FIWARE.

. MEdit4CEP-SP

In this section, we present our proposal, which is the result
f integrating the SP architecture with MEdit4CEP. The former
llows us to consume, process and analyse huge amounts of
eterogeneous information in real time, while the latter allows
s to graphically and intuitively define and model CEP domains
nd event patterns to be detected.

.1. Proposed architecture

In Sections 3 and 4, respectively, we described the modifi-
ations made to the SP architecture and the MEdit4CEP editor,
ith the aim being not only to enhance them but also to in-
egrate them. Fig. 5 illustrates the complete proposed system,
Edit4CEP-SP, in which we combine both. The system has the

ollowing components: the updated version of MEdit4CEP, along
ith the NodeJS REST API and the NoSQL database, and the
odified SP architecture. The integration of such components will
rovide us with unique features that differentiate our proposal
rom the other alternatives analysed in Section 8, such as deploy-
ent, removal and update of event types and event patterns in

eal time.
The interactions between these components are represented

n Fig. 5 and a brief description follows:

(1) All the communications in which the REST API is involved
are HTTP requests and responses that will manage the
information stored in the NoSQL database. In this HTTP,
communications are sent the event types and patterns
8

that the user wishes to store, update or remove from the
database.

(2) The interaction between MEdit4CEP-SP and the SP archi-
tecture manages the submission of event types and pat-
terns definitions to be deployed in the CEP engine, as well
as the removal and updates of those desired by the user.
Such interaction is done through messages received in the
Kafka Topics, which are sent from the editor to the SP
architecture.

(3) The interactions within the SP architecture, which is receiv-
ing the EPL patterns, Event Types definitions and Deploy-
ment IDs from MEdit4CEP-SP in their corresponding Kafka
topics: Note that these messages are consumed by the Data
Processor, processed and sent to the Esper CEP engine.

As mentioned in Section 3, MEdit4CEP-SP keeps all the native
capabilities of MEdit4CEP, but some have been improved and new
ones have been added. Thanks to these new functionalities of the
editor and the changes incorporated in the SP architecture, the
integration of the two systems provides us with unique features
such as real-time deployment, removal and update of event types
and patterns from the CEP engine. Using the proposed system,
MEdit4CEP-SP, the user now has full control of the event types
and patterns currently deployed in the CEP engine. The situations
detected, in real time, by the system allow domain experts to
improve their decision-making since they can react instantly.

Firstly, regarding the capacity to add new event types and pat-
terns in real time, when an event type or event pattern is ready
to be deployed, MEdit4CEP-SP transforms them into deployable
code, which it sends to the SP architecture using the Kafka topics
created for that purpose, at runtime, without the need to stop the
whole system. On the one hand, if a new event type is defined, it
will be transformed into an Avro Schema definition and sent to
the Event Type Deployment Topic. On the other hand, if an event
pattern is modelled, it will be transformed into EPL code and sent
to the Pattern Deployment Topic.

Secondly, in relation to the removal of existing event types
and patterns of events in real time, when the event type or event
pattern is deleted from the model, MEdit4CEP-SP warns the user

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

a
f
s

t
c
u
a
a
a
f
d

l
t
e
e
s
M

5

g
e

Fig. 5. Proposed integrated architecture, MEdit4CEP-SP.
bout the affected event types or patterns that will be removed
rom the CEP engine due to such change. Then, if the user accepts,
uch definitions are automatically removed from the CEP engine.
Thirdly, the updating of event types and patterns is in real

ime. As mentioned, MEdit4CEP-SP is capable of detecting
hanges in the event types and event patterns in real time. If the
ser wishes to apply such changes in the CEP engine of the SP
rchitecture, the editor warns the user that these changes will be
pplied, at runtime, in the CEP engine. Specifically, when updating
definition, whether it is an event type or an event pattern, it

irst has to be removed and the updated definition will then be
eployed in the CEP engine.
Finally, all these changes and functionalities lead us to a col-

aborative architecture. As the SP architecture can be running in
he cloud, several users can be deploying, updating, and removing
vent types and patterns definitions from the same CEP engine
mbedded in a shared SP architecture deployed on a cloud-
erver, with each user using their own instance of the updated
Edit4CEP-SP editor in their own computer.

.2. MEdit4CEP-SP functionalities

In this subsection, the capabilities resulting from the inte-
ration of the SP architecture with the editor MEdit4CEP-SP are
xplained step by step and illustrated using sequence diagrams.
9

Deployment of new Event Types and Event Patterns at Runtime
As shown in Fig. 6, the sequence when creating a new domain

in MEdit4CEP-SP is as follows:

1. The user models all the event types to be included in the
domain.

2. When the user saves the model in the editor, these event
type definitions are automatically transformed into Avro
Schemas using M2T. They are then sent to the database
using POST HTTP requests, so the persistence of that event
types is accomplished.

3. Once the event type definitions are correctly saved and
stored in the database, the user may want to deploy them
into the SP architecture. If so, these event type definitions
will be sent to the Event Type Deployment topic, which
the SP architecture uses to consume these Avro Schemas
and deploy them in the CEP engine. When the event type
is correctly deployed in the CEP, the engine generates a
unique ID that will be used if the event type must be
removed or updated. This unique ID is also saved in the
database using a PUT HTTP request.

At the same time, these steps can be replicated in order to
create a new event pattern:

1. In the section of the editor designed to create a new event
pattern, the user may use the already defined event types

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

A

t
f
e
d
w
t
i
d
h
s
i

Fig. 6. Creating event type or event pattern sequence diagram.
in order to model the situation to be detected by the
engine.

2. When the user saves the event pattern model, they are
validated and sent to be stored in the NoSQL database using
a POST HTTP request.

3. Once the event patterns definitions are correctly saved, the
user may want to deploy them in the SP architecture. If so,
these event patterns will be sent to the Pattern Deployment
Kafka topic, which the SP architecture uses to consume
the EPL patterns to be deployed in the CEP engine. When
the event pattern is correctly deployed, a unique ID is
generated by the CEP engine. This unique ID is also saved
in the database using a PUT HTTP request.

utodetection of CEP domains
Another contribution of MEdit4CEP-SP is that it can autode-

ect a CEP domain. Thanks to this functionality, if other users,
rom completely different computers with another instance of the
ditor, now wish to reuse some of these simple events already
efined by a first user or even by the SP architecture itself, they
ill be able to retrieve them from the database, which is in
he cloud. They can then reuse these already defined domains
n order to customise their own. Note that these event type
efinitions are stored in the database, so they do not necessarily
ave to be deployed in the engine at that exact moment. The
teps to achieve this domain inference are described below and
llustrated in Fig. 7:

1. The user clicks on the option to retrieve an already defined
domain.

2. The editor sends a GET HTTP request to the server in
order to obtain the event type definitions that encompass
a specific domain.

3. The NodeJS server receives the request, processes it and
returns to the editor the Schema definitions of the event
types that are associated to the requested domain.

4. Finally, the editor receives these Schemas, processes them
and automatically models them in the canvas, so the user
can visualise all these event types that already exist. The
user can then choose to deploy these defined event types
or can go to the next step and define new event patterns
using these retrieved event types.
10
Removal of existing Event Types and Event Patterns at Runtime
A further incorporation in MEdit4CEP-SP is the capability of

removing event types and event patterns at runtime. If some of
these definitions are no longer required, they can be removed
from the database and undeployed from the CEP engine using this
capability. Fig. 8 depicts the required steps for such a goal, which
are described below:

1. When an event type or pattern definition is removed from
the model or the editor, it warns the user about it. If the
user wishes to apply such changes to the event type or
event pattern, they have to confirm it in a dialogue.

2. If such changes are accepted, a DELETE HTTP request to
the REST API is sent to remove such definitions from the
database.

3. Once these definitions have been removed from the
database, the HTTP request returns their deployment IDs to
the editor, which uniquely identifies these event types or
patterns in the CEP engine that have to be removed, as well
as the deployment IDs of the event patterns dependent on
those that will be undeployed.

4. The user has the option to create a text backup file with
the EPL code that will be removed from the CEP engine.

5. The editor sends these deployment IDs to the Pattern and
Event Type Undeployment topic in the Kafka Cluster. The
SP architecture consumes these IDs from the topic and
begins to remove the event types or patterns which are
identified by these provided IDs. Note that when an event
type or event pattern is removed, all patterns depending
on the one to be removed are also removed, in cascade,
from the CEP engine. These dependencies are previously
considered and these event types and patterns are removed
in the appropriate order.

Update of existing Event Types and Event Patterns at Runtime
Finally, MEdit4CEP-SP also provides the functionality of de-

tecting changes in the models and applying them at runtime
execution, without the need to stop the whole system. The steps
to achieve this are described below and shown in Fig. 9:

1. When the editor detects a change in an event type or event
pattern model, it warns the user about it. If the user wishes

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682
Fig. 7. Autodetect CEP domain sequence diagram.
Fig. 8. Removing model sequence diagram.
to apply such changes to the event type or event pattern,
they have to confirm it in a dialogue.

2. If the changes are accepted by the user, we first have to
determine whether the changes will affect more than one
definition. If an event type changes and is then used in
an event pattern definition, this pattern is no longer valid
due to the event type it uses having changed. Taking this
into account, the event types and patterns affected by these
changes are removed from the database using a DELETE
HTTP request which returns their unique IDs.

3. The user has the option to create a backup with the EPL
code that will be removed from the CEP engine.

4. The IDs of the event types and patterns affected are sent
from the editor to the SP architecture, for them to be
undeployed from the CEP engine.

5. Once all the previous versions of these affected event types
and patterns have been removed from the CEP engine, the
editor sends the new definitions (the updated ones) to the
database using a POST HTTP request to store them.

6. The editor then also sends these updated definitions to the
SP architecture, which will consume them and deploy them
again in the CEP engine.

7. When the new definitions (simple events types or event
patterns) are correctly deployed in the CEP engine, the
SP architecture sends a PUT HTTP request to the database
11
in order to set the new deployment ID, which uniquely
identifies the updated event type or event pattern.

6. Case study

This section presents the case study in which the proposed
solution was tested.

6.1. Case study description

In order to show the usefulness of our proposal, we have
chosen the smart water network management domain. According
to [20], the main goal of a water network is to supply wa-
ter from sources to consumers. In smart water networks, the
components in charge of such a goal are smart water metres
rather than traditional ones. These smart water metres offer
new features; for example, they can be read remotely and/or
more frequently, while traditional water metres are usually read
monthly or bi-monthly by a metre reader [21].

Water is a vital socioeconomic resource and managing it prop-
erly within these distributing networks is of great importance.
Thanks to the smart water metres that comprise the smart water
networks, the companies now have access to huge amounts of
data related to the water running through these pipes. Being able
to operate with such datasets and to detect currently occurring

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

[
s
s
t
c

w
f

T
u
e
o
t
a

Fig. 9. Updating model sequence diagram.
6

d
e
a
c
t
c

o
a
M
a
s

situations in the water network is essential. One of the most
common situations that all companies need to detect is leaks
within their distribution networks, which cause excessive cus-
tomer billing [22]. Moreover, being able to ensure that the smart
water sensors are working properly would also avoid billing
problems [23].

In [2] we presented Grupo Energético de Puerto Real S.A. (GEN)
24], the local company in charge of the water and electricity
upply in the city of Puerto Real (Spain). In this previous work, we
uccessfully integrated the data produced by their water distribu-
ion network into the SP architecture, with the aim of detecting
ritical situations, following the company’s requirements.
The information provided by GEN is extracted from 111 smart

ater metres. From each water metre reading, we can obtain the
ollowing values:

• serialNumber: the serial number of the water metre.
• dateTime: date and time of the water metre reading.
• volumeM3: the volume of water detected by the water

metre in cubic metres.
• volumeL: the volume of water detected by the water metre

in litres.
• type: the use of the water metre (domestic, industrial, etc.).
• starts: number of times that the water metre has detected

water passing through.
• batteryLevel: battery level of the water metre as Integer.
• batteryLevelStr: battery level of the water metre as String.
• sleepingTime: time in seconds without consumption.
• leakingTime: time in seconds from which the water metre

detects an unusual or low consumption.
• normalTime: time in seconds that the water metre works

without problems.

he CEP domain and event patterns that we manually defined
sing EPL, in the evaluation of the previous work, will be mod-
lled using MEdit4CEP-SP and automatically deployed, removed
r updated in the CEP engine, in order to prove the correctness of
he proposed integrated solution. The purposes of these patterns
re:
12
• Reading errors: these happen when one or more of the
sensors of a specific smart water metre are not working
properly, i.e., negative values in water consumption.

• Water leaks: these happen when the metre detects no start
but there is consumption.

• Unusual consumption: this happens when the consump-
tion value is unusual, i.e., zero consumption over a period
of time.

.2. Case study implementation

In [2] we evaluated the data provided by GEN in order to
etect the three patterns described above. The results of the
xperiments were successful, being able to detect the defined
nomalies in real time. In addition, thanks to this evaluation, the
ompany was able to detect and correct problems in some of
he readings of their water metres. It should be noted that the
ompany was unaware of these problems.
Previously, we manually defined such patterns using EPL in

rder to test the SP architecture. We will now model the domain
nd the event patterns using MEdit4CEP-SP. As mentioned, with
Edit4CEP-SP, the domain experts are able to graphically model
nd design such domains and patterns, without knowing the EPL
yntax.
For this case study, the domain to be modelled is the Water

domain, which encompasses the WaterMeasurement event type,
containing all the properties included by a water-metre reading,
as well as the ReadingErrors, WaterLeaks and UnusualConsumption
event patterns. This event type and the event patterns are mod-
elled using MEdit4CEP-SP and automatically deployed in the CEP
engine running within the SP architecture.

In the following sub-subsections, the implementation of the
case study is presented. First, in Section 6.2.1, the management
of the received data along with the CEP domain definition is
presented. Second, in Section 6.2.2, the CEP domain model is
validated, then stored in the NoSQL database and finally de-
ployed in the SP architecture. Third, in Section 6.2.3, the event
patterns to be detected by the CEP engine are modelled. Fourth,

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

i
t
i
p

6

i
I
a

a
a
t
C
f
d
b
(
n

m
s

s
o
a

6

s
s
e
a
d
p
L
o

n Section 6.2.4, these modelled patterns are validated, sent to
he database and finally deployed in the SP architecture. Finally,
n Section 6.2.5, an example of updating and removing event
atterns in execution time is shown.

.2.1. Data reception and CEP domain definition
Concerning data acquisition, the only requirement is that the

nformation provided by the company must be sent to the Kafka
nput Data topic. Once the data are received in that topic, there
re two alternatives:

• The SP architecture can, at runtime, infer the data structure
of the event types that we are processing and assign an
event type name. This data structure would be automatically
stored in the NoSQL database, so these definitions can be
retrieved in the editor using the Autodetect CEP Domain
option provided for that in the tool menu.

• The domain expert can use MEdit4CEP-SP in order to man-
ually model the event type that we are about to receive, in
this case WaterMeasurement: It will then be deployed in the
CEP engine and stored in the database.

In the first alternative, the SP architecture consumes the data,
infers the schema, registers it in the CEP engine and, finally, sends
it to the REST API in order to store it in the NoSQL database. The
data consumed by the SP architecture could be heterogeneous,
which means there are no restrictions about the data structure,
or could be structured (JSON, XML or CSV) or unstructured (raw
data). As an example, Listing 3 shows a raw data event to be
processed. In this case, the first position indicates the event type
name value, namely, WaterMeasurement.

Once the raw data is processed, registered in the CEP engine
nd stored in the database, the domain experts can reuse these
lready defined schemas in MEdit4CEP-SP through the novel ‘‘Au-
odetect CEP Domain’’ option. When clicking on the ‘‘Autodetect
EP Domain’’ option on the menu, an HTTP GET request is sent
rom the editor to the REST API in order to retrieve the existing
efinitions. Fig. 10(a) shows the modelled event type inferred
y the SP architecture. Note that, as we processed raw data
unstructured without any key/header information), the property
ames are generic (p1, p2, p3, . . .).
In the second alternative, the domain experts may wish to

odel these event types in advance, in this case, the WaterMea-
urement event type. Once the event type has been modelled
and registered in the CEP engine, when the data related to this
event type are received in the SP architecture, the CEP engine
will already know about them, with it thus being unnecessary to
infer its data structure at runtime. The domain manually mod-
elled by the domain expert is shown in Fig. 10(b). The main
differences between these two models are the property names
and the customisation.

In both cases, if the domain expert fits the previously pre-
ented case study description, the domainWater will contain only
ne event type, WaterMeasurement, with 11 properties for the
ttributes water metre readings.

.2.2. CEP domain validation, storage and deployment
Once the CEP domain is modelled, the user may save it. When

aving the model, it is first validated to ensure that all the re-
trictions have been taken into account. If there are no validation
rrors, the CEP domain and the event types that integrate it are
utomatically saved in the NoSQL database and are immediately
eployed in the SP architecture. The SP architecture will consume,
rocess and deploy such event types in to the CEP engine. In
isting 4, the EPL code automatically generated from the model
f Fig. 10(b) is shown.
13
Fig. 10. (a) Water CEP domain automatically inferred by the SP architecture (b)
Water CEP domain definition modelled by a domain expert.

6.2.3. Event pattern model definition
The next step is to model the complex situations that our

CEP engine should detect using the event types available in the
previously defined domain. For this case study, we will model the
three previously mentioned event patterns (AnomalyReadingEr-
rors, AnomalyWaterLeaks and AnomalyUnusualConsumption).
Fig. 11 illustrates the model of the first event pattern; the re-
maining figures of the other two event patterns are available
at [25].

Reading Error pattern definition

• Name: AnomalyReadingErrors.
• Definition: this pattern allows us to detect problems in one

or more of the sensors available within the smart water
metre.

• Pattern conditions: the value of any of the numeric prop-
erties of the event type is negative.

• New complex event: AnomalyReadingErrors. A new complex
event will be created with the same properties of the water
metre that presents the anomaly, as well as the current
timestamp (in order to know the exact moment at which
the anomaly was detected) and a small anomaly message
that describes the alert.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

6

t
t
a
t
r

M
a
t
t
p
t

f
r
t
n
i
d
u
e
p
e

Water Leak pattern definition

• Name: AnomalyWaterLeaks.
• Definition: this pattern allows us to detect when a leak is

happening in a water metre.
• Pattern condition: the value of the leakingTime property of

the event type is positive.
• New complex event: AnomalyWaterLeaks. A new complex

event will be generated with all the details of the affected
water metre, as well as the timestamp at which the leak is
detected and the description of the anomaly.

Unusual Consumption pattern definition

• Name: AnomalyUnusualConsumption.
• Definition: this pattern allows us to detect anomalies re-

lated to the consumption of a smart water-metre.
• Pattern conditions: the value of any of the properties re-

lated to the consumption of the water metre (volumeM3 or
volumeL) is less or equal to 0.

• New complex event: AnomalyUnusualConsumption. A new
complex event will be created with the same properties of
the water metre affected as well as the current timestamp
and a small message describing the anomaly detected.

.2.4. Event pattern validation, storage and deployment
Once each of the patterns have been designed and modelled,

he user may wish to save them. When saving an event pattern,
he editor will automatically check whether the inner restrictions
re satisfied. If so, the editor will refresh the palette in order
o show this new complex event type just created, so it can be
eused by any other event pattern.

At the same time, the pattern is transformed into code using
2T transformations and is stored in the NoSQL database using
n HTTP POST request. The user might also want to deploy it in
he SP architecture, so the EPL generated previously in the M2T
ransformation will be sent to the SP architecture, where this EPL
attern definition will be consumed, processed and deployed in
he CEP engine.

The EPL code generated by the editor using the M2T trans-
ormations, for the very first pattern, is shown in Listing 5; the
est are available in the previously mentioned dataset. First, with
he @public keyword, we ensure that this pattern can be used by
ew event patterns making it public. Second, some information
s added to the pattern, such as the name, using @NAME, the
escription, using @DESCRIPTION, and a tag, using @TAG. Third,
sing the clause INSERT INTO we define the name of the new
vent flow (new complex event) that will be created when the
attern triggers up. Fourth, with the SELECT keyword all the prop-

rties of the new complex event are defined. Finally, the clause

14
FROM is used to declare the event types that will be used by the
pattern, as well as the different conditions that the properties of
these event types have to satisfy to detect this pattern.

6.2.5. Event pattern real time updating and removal
As mentioned in previous sections, another capability of

MEdit4CEP-SP is to detect changes in the event types or patterns
and apply them at runtime within the CEP engine. In order to
illustrate this, we have modified the AnomalyUnusualConsumption
pattern changing the ‘less than or equal to’ comparison operator
for the ‘less than’ comparison operator. When the editor detects
changes in the current model, it notifies that to the user, so if the
changes are accepted, these will be applied to the CEP engine at
runtime.

Additionally, MEdit4CEP-SP is also able to remove existing
event types or event patterns from the CEP engine at runtime. The
possibility of removing event types or patterns already existed
in the editor, but this functionality has now been extended so
the event type or pattern model is not just deleted from the disk,
but also removed from the NoSQL database and the CEP engine.
When the user chooses to delete an event pattern, they can save
a backup of the pattern to be deleted, as well as the dependent
patterns that will also be deleted along with the selected one.
Screenshots of both functionalities (update and remove pattern)
can be visualised in the dataset at [25].

7. Evaluation

In this section, we evaluate the proposed system in order to
prove that the integration and the improvements in the compo-
nents are useful and make it easier to define the heterogeneous
IoT domains and event patterns to be detected. Furthermore,
we aim to demonstrate that MEdit4CEP-SP also facilitates the
deployment of such definitions within the SP architecture, in
order to detect the situations, previously defined by the users, in
real time. We also underline the capability of the system to detect
changes in the definitions and apply them at runtime. Moreover,
we present an evaluation based on technical metrics to show the
effectiveness and scalability of the processing system.

7.1. MEdit4CEP-SP usability

Concerning the graphical editor, the aim is to determine
whether users are able to use and understand the functionalities
of MEdit4CEP-SP without significant difficulties. For that reason, a
group of 28 users, some already experienced in MEdit4CEP, were
asked to use MEdit4CEP-SP to define the CEP domain and the
event patterns described in Section 6, and then to deploy such
definitions.

The steps all these users had to follow to complete the as-
signed task are the following:

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682
Fig. 11. Anomaly reading errors pattern modelled using the pattern editor.
1. Modelling the CEP domain → the users will model the
Water domain, which is composed of a single event type
(WaterMeasurement).

2. Validating, storing and deploying the CEP domain →

once the domain is modelled, the editor will check whether
there are no errors within the domain definition, store
the model in disk, store the event type definition in the
database, and deploy the event type in the SP architecture.

3. Modelling the event patterns → the users will model the
three anomalies detailed in Section 6 (Reading Errors, Water
Leaks, and Unusual Consumption).

4. Validating and storing the event patterns → once each
pattern model is finished, the editor will check whether
15
there are no problems in the model and will store the
pattern in the disk as well as in the database.

5. Deploying the event patterns → after each pattern is
saved, the users will send them to the SP architecture,
where they will be consumed and deployed in the CEP
engine.

6. Updating an existing event pattern → the users will have
to update an existing event pattern in the editor, so this
pattern will be automatically updated in the CEP engine as
well.

7. Removing an existing event pattern → the users will
have to remove an existing event pattern in the editor, so
this pattern will be deleted from the CEP engine as well.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

a
a

T
e
M
s

8. Removing the CEP domain → the users will have to
remove the existing CEP domain, Water, within the editor,
so the event type WaterMeasurement and the remaining
event patterns will be removed from the CEP engine and
the REST API.

After completing all the assigned tasks, the participants were
sked to complete an 18-question survey to assess the function-
lities of MEdit4CEP-SP. These questions were as follows:

• Q1: Do you consider yourself an expert in complex event
processing? (No; Yes)

• Q2: How would you like to define event patterns? (Using
a graphical editor; Coding the pattern using a program-
ming language; Both using a graphical editor and coding the
pattern using a programming language)

• Q3: What type of user is most suitable to use the editor?
(Domain experts — programming knowledge not required;
Domain experts and programmers; do not know; Others)

• Q4: Is the purpose of the editor clear? (No; A little; Moder-
ately; A lot; Completely)

• Q5: In general, has the editor satisfied your expectations?
(No; A little; Moderately; A lot; Completely)

• Q6: Do you consider the functionalities provided by the
editor useful? (No; Yes)

• Q7: Do you consider any functionalities provided by the
editor irrelevant? (No; Yes)

• Q8: Have you been able to successfully create the required
event patterns for a particular domain? (No; A little; Mod-
erately; A lot; Completely)

• Q9: Once the event patterns are graphically defined, is the
purpose of these patterns clear? (No; A little; Moderately; A
lot; Completely)

• Q10: Do you think the editor could reduce the time needed
to define event patterns by using a specific EPL instead of
manually implementing them? (No; A little; Moderately; A
lot; Completely)

• Q11: How long did you need to perform the given task? (in
minutes)

• Q12: How do you rate the speed with which the editor
stores and deploys domains and patterns in the CEP engine?
(Very bad; Bad; Fair; Good; Excellent)

• Q13: How do you rate the performance of the editor in
detecting changes in domains and event patterns that have
already been deployed in the CEP engine? (Very bad; Bad;
Fair; Good; Excellent)

• Q14: How do you rate the ease of deploying and removing
both new and existing domains and event patterns from
the CEP engine at runtime? (No; A little; Moderately; A lot;
Completely)

• Q15: How do you rate the possibility of exporting event
patterns in EPL language when they are removed from the
CEP engine? (Very bad; Bad; Fair; Good; Excellent)

• Q16: How do you rate the possibility of reusing, in other
editors, the domains and event patterns already defined
through a RESTful API? (Very bad; Bad; Fair; Good; Excel-
lent)

• Q17: How do you rate the integration of the editor with the
SP architecture and the RESTful API? (Very bad; Bad; Fair;
Good; Excellent)

• Q18: Do you have any suggestions for improving the editor?
(No; Yes)

he answers of the users were classified into two groups: non-
xperienced users and experienced users who had already used
Edit4CEP, although not MEdit4CEP-SP. The results from the
urvey are shown in Table 1.
16
Analysing the results obtained from the evaluation, it is worth
highlighting that most respondents (61%) prefer to use the editor
to define the domains and event patterns, rather than coding it
using the EPL syntax (see Q2). This is specifically appreciated by
the non-experts users (who have not coded EPL patterns before).
Furthermore, most of the users (82%) believe that a domain expert
is the most suitable profile to make use of the editor (see Q3),
which means that one of the purposes of the editor is quite clear:
it facilitates CEP and SP to the expert users within the companies,
people who know what problems need to be solved but who do
not necessarily know how to implement those solutions.

Regarding the editor itself (see Q4–Q10), its features satisfy
most of the respondents (75%), and all the participants agreed
that the functionalities provided are useful and that none of them
are irrelevant or not of any use. Nevertheless, as some of the users
pointed out in their questionnaires, these functionalities should
be explained within a manual, which is part of our ongoing work.

With regard to the task proposed, almost all respondents (75%)
agreed that using the editor made it easier for them to accomplish
the task in less time than if they had to code it using a pro-
gramming language (see Q10); this is one of the main goals when
using MEdit4CEP-SP. In addition, if we look at the time required
to perform the assignment (see Q11), nearly all the users (97%)
were able to define the domain and implement the event patterns
in less than one hour; this is a very short time considering that
no manual or training was provided prior to the evaluation.

The remaining questions (see Q12–Q17) evaluate the function-
alities provided by MEdit4CEP-SP. All the respondents (an average
of 78%) valued the editor’s capabilities positively, highlighting the
possibility of saving the patterns that to be removed from the CEP
engine and the API, as well as the capacity of reusing the defined
event types and patterns in other editors thanks to the REST API.

Most respondents (75%) were also able to understand the
overall architecture behind the editor as well as the integrations
that comprise it (see Q17). This is highly important to make them
see the work saved by using the proposed architecture instead of
other legacy solutions described in Section 8, which do not allow
definitions to be automatically deployed, edited and removed at
runtime.

Finally, a few improvements (39%) were suggested in the eval-
uation (see Q18), most of which were related to bugs that have
been already corrected; others are in consideration for a future
version of the editor. The most widely requested proposal was the
possibility of providing a manual with the editor, which makes
us think that if the evaluated users were trained before testing
the editor, it would make it much easier for them to understand,
define, implement, and deploy the domains and event patterns.

7.2. Stream processing architecture performance

Concerning the SP architecture from our proposed system
MEdit4CEP-SP, we conducted a thorough evaluation in terms of
technical metrics. These tests aimed to determine the maximum
number of events per second (e/s) that our processing architec-
ture can handle, and to demonstrate its scalability. The following
technical features of the computers used to perform these tests
are as follows: Windows 10 Enterprise, 64 bits, Intel R⃝ CoreTM
i7-4770 CPU, 12 GB RAM, and 115 GB HDD.

We simulated several rates of incoming events to detect the
maximum incoming event rate that our proposal is able to pro-
cess, deployed in one and more machines with the features
previously described, in different scenarios. To address this, we
used Apache JMeter as the data producer for our platform, since
this open source Java application is designed for load testing and
performance evaluation. Since JMeter does not provide official
functionality for publishing events in a Kafka topic, we used it in

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

p
K
h

Table 1
Results obtained from the questionnaire.
Question Answer Group 1 (%) Group 2 (%) Total (%)

Q1 No
Yes

100
0

0
100

75
25

Q2 Using a graphical editor.
Both using a graphical editor and coding the pattern using
a programming language.

36
64

50
50

61
39

Q3 Domain experts — programming knowledge not required
Domain experts and programmers
Do not know

85
5
10

66
17
17

82
8
10

Q4 Moderately
A lot
Completely

32
32
36

0
33
67

25
32
43

Q5 No
Moderately
A lot
Completely

5
23
45
27

0
17
50
33

4
21
46
29

Q6 Yes 100 100 100
Q7 No 100 100 100

Q8 Moderately
A lot
Completely

18
27
55

17
17
66

18
25
57

Q9 Moderately
A lot
Completely

23
36
41

0
33
67

18
36
46

Q10 No
A little
Moderately
A lot
Completely

9
5
14
45
27

0
0
17
33
50

7
4
14
43
32

Q11 10–30 min
30–60 min
60–90 min

63
33
4

50
50
0

68
29
3

Q12 Bad
Fair
Good
Excellent

5
22
23
50

0
33
17
50

4
25
21
50

Q13 Bad
Fair
Good
Excellent

5
23
27
45

0
0
33
67

3
18
29
50

Q14 Fair
Good
Excellent

27
23
50

17
17
66

25
21
54

Q15 Bad
Fair
Good
Excellent

0
14
36
50

17
0
0
83

3
11
29
57

Q16 Bad
Fair
Good
Excellent

4
14
41
41

0
17
17
66

4
14
36
46

Q17 Fair
Good
Excellent

27
41
32

17
33
50

25
39
36

Q18 Yes
No

36
64

50
50

39
61
conjunction with Kafkameter [26], which is an unofficial plugin
developed by the community for this purpose. Furthermore, we
used Throughput Shaping Timer [27], another plugin that facil-
itates customising the number of requests per second we wish
to simulate. Thanks to these plugins, we are able to produce a
certain number of e/s, and send them to a specific partition of a
Kafka Input Data topic.

For these tests, we simulated several scenarios with multi-
le producers sending events to eight or more partitions of the
afka Input Data topic. We configured these producers to send
eterogeneous events.
17
In order to test the scalability and the effectiveness of the
embedded SP architecture, we performed four test scenarios, each
with a different configuration:

• (1) Using 8 partitions, in the Kafka Input Data Topic, de-
ploying the SP architecture in a single computer. We used
7 computers in this test: 2 as JMeter producers, 4 as Kafka
Brokers, and 1 for the SP architecture.

• (2) Using 16 partitions, in the Kafka Input Data Topic, de-
ploying the SP architecture in 2 computers. We used 12
computers in this test: 4 as JMeter producers, 6 as Kafka
Brokers, and 2 for the SP architecture.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

T
A

r
t
I
e
5

t
t
w
c
t
h
r
e
a
8
t
c

p
v
w
s
w
i
d

t
W
t
f
1
e
p
s
o
t
e

c
f

able 2
verage time required by each task to process an event.
Task name Mean time (ns)

Data homogenisation 8183 ns
Schema generation 12966 ns
Creation of the Avro event 2863 ns

• (3) Using 24 partitions, in the Kafka Input Data Topic, de-
ploying the SP architecture in 3 computers. We used 17
computers in this test: 6 as JMeter producers, 8 as Kafka
Brokers, and 3 for the SP architecture.

• (4) Using 32 partitions, in the Kafka Input Data Topic, de-
ploying the SP architecture in 4 computers. We used 18
computers in this test: 6 as JMeter producers, 8 as Kafka
Brokers, and 4 for the SP architecture.

As described above, we use one machine for each set of eight
partitions since the machines used for the testing have eight
threads. In this way, each thread of the CPU can deal with a
partition of the topic. Once the limit of one machine is reached,
we add another one and, at the same time, we incorporate a
further 8 partitions for the new machine. We thus seek to show
that the solution can scale and handle more data if we incorporate
more nodes for processing in a distributed system.

Fig. 12 shows the results of these evaluations. In the x-axis, we
epresent the number of e/s produced by JMeter in the 10 min
est, which starts with 210000 e/s and increases to 870000 e/s.
n the y-axis, we represent the total of events produced during
ach test, which starts with 125532960 events and ends up with
21789558 events.
As we can see, for the first test scenario, the system can handle

he workload without problems until 310000 e/s. If we increase
he e/s rate to 330000 e/s or above, the system suffers a delay
hen processing the events instantly, requiring more time to
omplete the processing. For the second test scenario, we manage
o process up to 470000 e/s, but with higher input rates. As
appened before, the system requires more time to process the
est of events. In the third test scenario, the limit is set at 690000
/s without problems. Finally, in the fourth test scenario, we are
ble to process up to 850000 e/s perfectly; if we increase to
70000 e/s the system needs a few more seconds to process
he remaining events produced, resulting in 511 million events
onsumed out of 521 million generated.
In addition, we performed a large 60-min simulation, using 4

artitions receiving events at a rate of 150000 e/s, in order to
erify that our SP application of MEdit4CEP-SP does not collapse
hen executing the simulation for longer execution periods. The
imulation was successful; a total of 539325935 simple events
ere processed without problems; i.e., the data was processed

n real time without extra time being required to process excess
ata.
Moreover, in order to measure the time the SP architecture

akes to process each event, we performed a further evaluation.
e measured the average time, in nanoseconds (ns), that each

ask takes. In this case, we sought to measure the mean time
or each task, not to overwhelm the system. We therefore used
30000 e/s and 2 partitions. Table 2 shows the results of this
valuation. An approximate time of 24012 ns is required to
rocess each event. Bear in mind that the most expensive task,
chema generation, is only performed once per event type, as
nce you have the schema for an event type, it is not supposed
o change unless it is forced to do so. Thus, the average time each
vent needs to be processed is around 0.011 ms.
In conclusion, the SP architecture embedded in our proposal

an satisfy the requirements of processing large amounts of in-
ormation: consuming, homogenising, and analysing these data.
18
It can perfectly perform long simulations with a high workload
with no latency (such numbers of nanoseconds are insignificant
when processing thousands of events per second). The system, in
the last test scenario (32 partitions within 4 computers), was able
to process up to 509124775 events with an average size of 199 B,
resulting in a total amount of 101 GB of heterogeneous informa-
tion processed within 10 min. The scalability of the solution was
thus successfully tested, being able to process larger numbers of
e/s when we scale our solution, using more partitions with more
machines.

8. Related work

In this section, we present other approaches that combine
some of the technologies used in this work, and conduct a com-
parative analysis of our proposal, MEdit4CEP-SP, and those ap-
proaches.

8.1. Stream processing & complex event processing

We can highlight the following solutions that integrate the SP
paradigm along with CEP to consume, process and analyse data:

First, Carcillo et al. [28] propose an architecture to detect fraud
when using credit cards, SCARFF. In this case, Kafka is used as
fault-tolerant transaction collection to transport the data streams.
The data is then transmitted to the analytics engine which, in this
case, is implemented using the Spark Streaming API. Moreover,
they use Cassandra for storing purposes. The functionality of
the system is as follows: the data, collected in Kafka topics, is
consumed in batches from the Spark application, where the data
pre-processing is done. The data is normalised using the historical
records stored in the database. Next, the data is classified online
using their machine learning (ML) [29] models and then stored in
the database. SCARFF achieves an incoming rate of 240 transac-
tions per second, which is limited compared to our proposal. In
addition, SCARFF, given the nature of its components, processes
the data in batches not in pure real time.

D’Silva et al. [30] also propose an architecture to process real-
time and historic streams of IoT data. Any kind of IoT device is
used as a data source; these devices will be required to send the
generated data to Kafka topics. Then, Spark Streaming is used
to consume batches of these data, from the Kafka topics, and
to process them. The results of the analytics are then passed to
the GraphX module of Spark as operations. Next, the output is
forwarded to be displayed on a dashboard. Its architecture is able
to process not only real-time data, but also historical records that
can be streamed into the Spark application directly. They present
an evaluation with 1000 events, which is a very limited amount,
considering the scope of IoT.

Jung et al. [31] develop UTOPIA, an architecture for processing
real-time streams of information in the cloud from heterogeneous
IoT devices. In this case, Kafka is used to receive the real-time
transmission of a large-capacity data stream. Then, the evalua-
tion of this information is performed with Storm, using a Web
Ontology Language Model. Their architecture is also capable of
performing Distributed Remote Procedure Calls within the Storm
nodes. They present an evaluation, using an average desktop
machine, in which the maximum incoming rate of the platform is
of about 10000 stream data per second, far from the performance
of our proposal.

Zeydan et al. [32] present AlarmAVEA, which is a scalable
application for real-time alarm data analysis. In their work, they
combine the SP paradigm with CEP technology in order to predict
upcoming alarms based on the analysis of current streams of
alarms information. The heterogeneous information is captured in
a first module, which will transform these sources into a common

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

s
A
a
o
f
l
w
b

T
C
s
s
u
s
t
M
o
f
u
p
p
u
w
p
t
d
e
t
e
b
i

s
a
c
s
u
c
S

Fig. 12. Results of the performance tests.
tructure. Then, these data are transmitted and processed using
pache Kafka and Apache Storm. In addition, the alarm data are
nalysed in the CEP engine module. The results are displayed
n a web dashboard. In this proposal, the authors use Kafka
or message transmission and Storm for processing; the main
imitation of using Apache Storm is the necessity of stopping the
hole system in order to update the configurations, which could
e resolved by using Esper as CEP engine, as we propose.
The proposal by Malek et al. [33] deserves special attention.

hey present an architecture in which they combine several IoT,
EP and Big Data technologies. Their architecture aims to process
ensor data in order to develop context-aware applications and
ervices. It is composed of three layers: the first, data acquisition,
ses Kaa in order to gather information from IoT devices; the
econd, data processing, runs an Apache Storm engine in order
o analyse the data; the last, data storage and visualisation, uses
ongoDB to store the data. A web application is also provided in
rder to visualise them. Additionally, in order to transmit the data
rom the collection stage to the processing layer, Apache Flume is
sed. The authors state that these technologies might be able to
rocess up to 10000 e/s, although this is far from the performance
rovided by our proposal, which is 850000 e/s. A drawback when
sing Kaa is the heterogeneity of the data input sources: if you
ish to add another IoT device, you will have to add all the
rocess logic and redeploy it in your architecture. Furthermore,
hey mention nothing about heterogeneous data formats as we
o in our proposal. Finally, they use Apache Storm as analytics
ngine, with an already implemented logic in it, which means
hat if new logics or processing patterns need to be added, the
ntire execution of the system must be stopped. This issue could
e solved using an analytics engine, such as Esper, the one used
n our proposal, that allows updates of definitions at runtime.

Stripelis et al. [34] present an architecture that comprises
everal SP and analytics technologies in order to collect, integrate
nd analyse data for detecting asthma attacks. These data are
ollected from medically-related sources, such as AirNow and
ensors. The data are then streamed through the architecture
sing Kafka. They transform these heterogeneous data into a
ommon harmonised structure within an integration layer using

park SQL. Finally, the data are stored for offline analytics and

19
are also streamed into an online analytics layer, which builds
upon Spark, to build models that can predict asthma attacks.
The analytics, in this case, focus on statistical models and not
on detecting situations in real time. In addition, the author’s
proposal uses Spark as the main technology, which in some cases,
such as processing and integrating data, can be done using Kafka
Streams, as we propose, which is much more efficient due to
its low latency. In others, such as pure analytics, Spark also
presents some disadvantages compared to other stream analytics
technologies like Esper, which allow us to change definitions in
real time without having the whole solution stopped.

Additionally, Estévez-Ayres et al. [35] propose an architecture,
Lostrego, which analyses educational data from heterogeneous
data sources in real time. Students and teachers produce events
when they use educational resources thanks to monitoring agents
that run within these resources. When the user interacts with a
resource, the agents generate an event with the information of
such an interaction, which is sent to the backend using an HTTP
request. The events sent to the analysis layer are stored as a his-
torical record. In the analysis layer, they run services to monitor
how students work in groups and to monitor how students work
on specific assignments. Moreover, they evaluate the proposed
solution that generated 384702 events in two academic years,
each of them processed in less than 13 s. They have plans to apply
ML techniques to detect patterns within the generated data. One
of the main limitations of this proposal is that events can take
up to 13 s to be processed, which is a considerable amount of
time compared to our proposal, in which we process each event
with an average time of 0.024 ms. In addition, the authors use
Ztreamy [36] to stream the information, which they state can
process 25000 events per minute, a much smaller amount of data
than what Esper or Kafka Streams can handle.

In general, if we compare our SP architecture to these pro-
posals, most of them use Kafka as a messaging system between
components in their architecture, while most of their transfor-
mations and processing tasks could be more easily achieved using
Kafka Streams, as we do. Concerning analytics, some of the works
described cannot detect alerts or situations of interest in real time
since they prefer to focus on processing historical records rather

than streams of information in real time. In addition, none of

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

t
o
F
p

8

s
w
w

i
m
t
u
t
r
M
E
e
c
p
u
f
l
e
e
d
u
t
p
w
i
M

b
I
t
p
v
d
T
t
t
w
t
t
a
b
g
p
e
a
F
C
h

p
I
i
M
F
s
A
t

he analysed proposals considers the option of adding, updating
r deleting event definitions and event patterns in real time.
inally, the performance of our architecture far surpasses the
erformance of the systems presented in the cited works.

.2. Model-driven development integrated with stream processing

A few works we can be found in the literature regarding
olutions that integrate MDD and SP for modelling situations that
ill be automatically deployed. Taking this into consideration, we
ould like to highlight the most significant ones.
Although the current work is an improved version, the orig-

nal proposal by Boubeta-Puig et al. [3] must be considered. As
entioned, the authors propose MEdit4CEP, which is a graphical

ool that enables CEP analytics to non-expert users through the
se of a drag and drop canvas. Once the domain, which represents
he event types to be processed, and the complex events, which
epresent the situations to be detected, are defined, a series of
2T transformations are performed in order to generate the
sper EPL code necessary to deploy such event types and complex
vents into an Esper CEP engine. One of the limitations of the
urrent solution was persistence, due to the domains and event
atterns models not being saved in a database, and thus another
ser with another computer could not use these models until the
irst one shared the exported file with the second one. Another
imitation was the online deployment, removal and update of
xisting event types and event patterns within an Esper CEP
ngine. This limitation has been addressed in the new version
eveloped in this paper, allowing the user to deploy, remove and
pdate event types and complex event definitions at runtime,
hanks to the integration of the editor with the SP architecture
roposed in this work. In addition, this integration provides us
ith better performance thanks to the combination of SP and CEP

nstead of deploying the event types and patterns definitions in a
ule ESB.
The proposal by Clemente at al. [37] deserves special attention,

eing the most similar approach found in the current literature.
n their work, the authors propose an approach, OpenData2CEP,
o achieve the integration between MDD and CEP, in order to
ursue the analysis of open data sources. Their solution pro-
ides M2T transformations that enable the deployment of the
efined application in an ESB, which in this case is Mule ESB.
he user will set the open data source, define the event type
o be consumed, and define the EPL patterns with the actions
o be carried out. In their proposal, Esper is used as CEP engine
ithin the ESB application. However, in their tool, it is necessary
o know the Esper EPL syntax in order to define the situations
o be detected, while in MEdit4CEP-SP, a non-expert user will be
ble to graphically define not only the domain to be processed
ut also the complex situations to be detected. In addition, they
enerate the executable code for a Mule ESB application, whose
erformance is somewhat inadequate when a high input rate of
/s has to be consumed, while our proposed SP architecture is
ble to appropriately consume 850000 e/s using four computers.
inally, regarding format limitations, OpenData2CEP only allows
SV data to be processed, while our proposal can manage the
eterogeneity of data in CSV, XML, JSON, as well as raw data itself.
Guerriero et al. [38] present StreamGen, an MDD tool that sim-

lifies the definition and deployment of streaming applications.
n their tool, a user can graphically model the steps required to
mplement the desired streaming application. They then perform
2T transformations in order to generate the code of an Apache
link application, which will contain all the defined operators and
teps. Although their proposal is not focused on performing CEP,
pache Flink could be used for such purpose, and, as they men-
ion, further definitions can be added to the existing meta-model,
20
one of which is Spark. In both cases, using Flink or Spark, these SP
and CEP technologies do not allow us to add new definitions in
real time, so stopping the execution of the system or architecture
will be necessary in order to update existing definitions used
within the processing or analytics stage.

The primary obstacle presented in these proposals is the use
of Mule ESB as a solution to deploy their definitions. Firstly,
according to the Mule Runtime Enterprise Engine Performance
Whitepaper [39], the Throughput or Transactions Per Second
(TPS) when consuming messages and transforming them, using a
Mule Runtime Engine, within a 24-core machine and 36 GB ram,
is of 8 000 processing 20 kb messages payload. This represents
160000 kb/s, resulting in 160 Mb/s, a great distance from the
performance achieved in our SP architecture, which was tested
in a 4-core machine and 12 GB ram, resulting in 135080 Mb/s.
Secondly, the lack of persistence is another major issue addressed
in our solution. Finally, managing heterogeneous input data is
currently a must, so being able to use several data structures
formats, such as JSON, XML and CSV, is required not only in the
definition or processing time but also in the analytics part. That
said, we can affirm that our proposal differs from the others not
only in terms of efficiency but also in terms of functionalities.

8.3. Comparative analysis

In this subsection, we compare our proposal, MEdit4CEP-SP,
against the approaches previously analysed. This work identi-
fies eleven key features that are required when modelling and
analysing heterogeneous data. Some of these features are related
to modelling capacities, while others to processing functionalities.
The key features used to evaluate the proposal are as follows:

• (F1) Scalability: the system must be scalable, allowing grow-
ing amounts of data to be processed.

• (F2) Low latency: the system must provide a low latency
processing strategy that enables it to perform its actions as
fast as possible.

• (F3) Real time analytics: the system must be able to analyse
these data in real time in order to detect situations of
interest.

• (F4) Data Storage: the systemmust be able to provide means
to store the data being processed.

• (F5) Heterogeneous data: the system must be capable of
modelling, consuming, processing and analysing heteroge-
neous data.

• (F6) Predictive Tools: the system should also be able to pro-
vide certain Predictive Technologies to improve the results
and anticipate situations to be detected.

• (F7) Graphical domain and alert definitions: the system
must be able to graphically and intuitively model the event
types to be processed and the situations of interest to be
detected.

• (F8) Runtime actions: the system must be able to add, up-
date and remove such definitions at runtime, without the
execution having to be stopped.

• (F9) Persistence of definitions: the system must be able to
store the domain and alert definitions so anyone can use
them again.

• (F10) Performance evaluation: the system must provide an
evaluation to show its feasibility and correctness.

• (F11) Replicability: the proposal must provide means to be
used by anyone.

In Table 3, the analysed approaches and our proposal are directly
compared using the mentioned features.

Although the previous subsections already noted some of the
differences between our proposal and the related work, Table 3

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

T
C

t
S
p
a
t
l
a
a
p
r
a

a
m
a
i
d
i
v

a
s
d
o
a
a
p
i

p
w
o
i
a
f
a

p
d
o
R
t
o
t

p
e
o

able 3
omparative of analysed proposals.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

Our proposal X X X X X – X X X X X
Carcillo et al. [28] X – – X – X – – – X X
D’Silva et al. [30] X – X X X – – – – X –
Jung et al. [31] X – X – – – – – – X –
Zeydan et al. [32] X – X X X X – – – – –
Malek et al. [33] X – X X – – – – – X –
Stripelis et al. [34] X – X X X X – – – – –
Estévez-Ayres et al. [35] X X X X – – – – – X –
Boubeta-Puig et al. [3] X – X X – – X – – – X
Clemente et al. [37] X – X X – – X – – – –
Guerriero et al. [38] X X X – – X X – – – X

shows the key functionalities provided by each of the approaches
already discussed.

Scalability (F1) can be achieved by all the approaches thanks to
he use of modern technologies, such as Apache Kafka or Apache
torm, in their data transmission layers, which allow them to
rocess huge amounts of data and increase their input rates,
dding more processing nodes. Concerning low latency (F2), only
hose proposals using a software solution implementing a low
atency strategy to process the data (not just to transmit it) can
chieve this essential requirement. Real time analytics (F3) is
lso achieved in most proposals except [28], which is focused on
rocessing historic records of data. Being able to analyse data in
eal time, with the aim of detecting situations of interest as soon
s possible is a must in IoT domains.
Regarding data storage (F4), all the approaches except [31,38]

re capable of storing the processed data or detected alerts, which
ight be useful to perform offline analytics and to keep these
lerts as historical records, among others. It is worth mention-
ng that most of these architectures tend to implement NoSQL
atabases within their architectures, which are especially useful
n heterogeneous IoT domains, where the schema or structure is
ariable, and addition operations are more common than queries.
As for heterogeneous data (F5), the bulk of these proposals

re able to process data from several sources, but these data
ources produce the information in a homogenised or normalised
ata structure. By heterogeneous data, we refer to the capacity
f accepting multiple input data structures for analysis. This is
special feature which, in this case, is achieved in [30,32,34],
nd in our proposal. As mentioned before, being able to consume,
rocess and analyse heterogeneous data formats and data sources
s currently a must in these complex architectures.

Predictive tools (F6) are implemented in a few of these pro-
osals, while it is not currently accomplished in our work, but
e plan to introduce it (see Section 10). As for the definitions
f domains and alerts in a graphical editor (F7), this is achieved
n our approach and in [3,37,38], while the others focus on the
nalytics part and do not provide the users with this essential
unctionality that facilitates the definition of CEP domains and
lerts to be analysed.
The next feature, runtime actions (F8), is only achieved in our

roposal, because most of these approaches use technologies that
o not allow them to perform changes at runtime, while the
nes using Esper do not implement these updates in real time.
egarding the persistence of the definitions (F9) of such models,
his is only achieved in our approach; the rest make no mention
f the possibility of storing the modelled definitions in a database
o be reused in the future.

The following feature to be analysed is the evaluation of the
roposed solution (F10). Most of these proposals perform an
valuation of their solutions presenting a case study with no kind
f benchmark results. Thus, in some cases, it is complicated to
21
compare our proposal against others in terms of technical met-
rics. In [28], the authors manage to process up to 240 transactions
per second. In [30], a simulation is performed, sending only 1000
simple events to the Kafka Cluster. We expect to have larger
number of events in an IoT scenario; this is why we provided
tests with a much higher number of incoming events. In [31], the
authors perform tests with batch sensor data, proving that their
proposed solution can handle around 10000 messages per second
as maximum throughput, which is considerably lower than the
maximum throughput performed by our proposal. Furthermore,
in [33], the authors state that the solutions used in their imple-
mentation would be able to process up to 10000 e/s. In [35],
the authors perform an evaluation with real users consuming
and processing large amounts of information. However, they state
that, in some cases, the system takes up to 13 s to process an
event, which is a considerably long time, which would have to
be improved to be able to react to complex situations as quickly
as possible. The proposals in [3,37] have the CEP embedded in
a Mule ESB application, which is no longer the best alternative
to process large amounts of data in real time. According to the
Mule Runtime Enterprise Engine Performance Whitepaper [39],
the Throughput or TPS when consuming messages and transform-
ing them, using a Mule ESB Runtime Engine, within a 24-core
machine and 36 GB RAM, is of 8 000 processing 20 kb messages
payload. This corresponds to 160000 kb/s, which results in 160
Mb/s, far from the performance achieved in our SP architecture,
which was tested in a cluster of four 4-core machines with 12 GB
RAM resulting in 135080 Mb/s.

Finally, concerning the last key feature, replicability (F11),
beyond Boubeta-Puig et al.’s proposal [3], only two of the remain-
ing proposals have the code of the tools they present publicly
available, which are [27] and [37]. We have downloaded them
to replicate the results presented in their manuscripts. Regarding
Carcillo’s proposal [28], which is available at [40], unfortunately,
we replicated the steps present on their Docker Hub page with
no success. As for Guerriero’s proposal [38], which is available
at [41], we have cloned the repository and installed the required
tools, despite the lack of installation documentation. We have
tried the tool with the examples provided and we have experi-
enced great difficulties to develop a new application within their
tool itself. From our perspective, their tool is not user-friendly
and it would be extremely difficult to be used by a non-expert
user. Our proposal’s components together with the dataset are
online available for replication of the results in the following
GitLab repositories [42–44] along with their detailed instructions
for usage, as well as in our dataset [25].

Therefore, these previously analysed proposals fail to accom-
plish one or more of the required features that are key in any
system for modelling, consuming, processing, transforming and
detecting situations of interest from heterogeneous data in the
IoT. We can affirm that most existing proposals do not benefit
from using Kafka as a SP application, at best creating individual
components to pre-process the information. Our proposal uses
Kafka as a communication module and Kafka Streams to per-
form the transformations, both working as one component, thus
providing additional advantages: on the one hand, the already
well-known advantages provided by Kafka itself, such as fault-
tolerant storage, communications management or durability, and,
on the other, the benefits provided by using Kafka Streams API
when processing streams of data in real time, such as high scal-
ability, exactly-once processing or high throughput rate. This
results in a complete Kafka Stream Application able to consume,
transform and process huge amounts of information in real time,
with a very low latency strategy. While Spark and Storm are com-
monly used for the analysis, our solution uses Esper, providing us

with the advantage of not having to stop the system execution

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682

t
t
i
o
i
t
F
o

9

r

(
h

m
a
3
a
f
w
m
a
M
t
d

(
s
p
M

d
t
d
t
s
s
o
a
t
m
i
S
t
i
m
t
t
t
d

(
e
o
a

k
a
t
d
(
e
p
b
a

o add a new required analysis of events. In addition, some of
hese proposals integrate modules for ML and predictive analysis
n their architecture, which we plan to do as future work. Most
f these proposals provide no way to define, in a friendly and
ntuitive manner, the situations we wish to be detected within
he CEP engine, as we do with our graphical editor MEdit4CEP-SP.
inally, as demonstrated in previous sections, the performance of
ur proposal surpasses all the others.

. Answers to research questions

In Section 1, we presented four RQs to be addressed in this
esearch. The answers to these questions are as follows:

RQ1) How can organisations model, process and analyse their
eterogeneous data?
In order to model or define domains, organisations and users

ay use several existing tools [3,37,38], while for processing and
nalysing heterogeneous data, there are proposals such as [30,32,
4]. These solutions are adequate for providing such function-
lities in an isolated way, but none of them provide all these
unctionalities in an all-in-one integrated solution. In this work,
e have presented MEdit4CEP-SP, designed to model CEP do-
ains and event patterns with an SP architecture, and which
llows us to consume, process and analyse heterogeneous data.
Edit4CEP-SP is a tool that provides organisations with all of

hese capabilities, which are of great value in heterogeneous IoT
omains.

RQ2) How important is it to provide organisations with a
et of tools that facilitates such tasks and the decision-making
rocess, and for the proposed integration (SP architecture +

Edit4CEP) to be able to provide users with such capabilities?
There are employees in companies who are specialists in the

omain itself but who lack programming skills, so it is important
o provide them with the tools that allow them to model such
omains and analyse the information they have. It is also essential
o provide these functionalities in an intuitive and friendly way,
o they can be used without significant difficulties. As a result,
uch a toolkit would help domain experts to avoid spending a lot
f time on defining the domains and situations to be detected,
llowing them to be more efficient in their work and providing
hemwith more valuable knowledge that is essential for decision-
aking. According to the results of the evaluation carried out

n Section 7, users found the proposed integration, MEdit4CEP-
P (MEdit4CEP + SP architecture) to be very useful, allowing
hem to model, process, analyse and detect situations of interest,
n real time, from heterogeneous data in IoT domains. The vast
ajority of respondents agree that using MEdit4CEP-SP facilitates

he definition of domains and event patterns. They also appreciate
he integration with the SP architecture, which enables them
o consume, process and detect situations of interest using the
efinitions previously modelled within the editor.

RQ3) Is the proposal more effective and efficient than other
xisting alternatives in achieving the modelling and definition
f heterogeneous CEP domains and event patterns in a friendly
nd intuitive way, as well as their analytics in real time?
The answer is affirmative. The proposal is divided into two

ey components, one for modelling domains and event patterns,
nd another for processing and analysing such data. Concerning
he editor, the evaluation shows that the users are able to easily
efine domains and event patterns in a very short period of time
less than 30 min). Related to the analytical part, our performance
valuation shows that the SP architecture is able to consume,
rocess and analyse up to 850000 e/s using 4 desktop computers,
eing much more efficient than other alternatives analysed. As

result, the integration of both is a better solution than others

22
integrating MDD solutions with ESB applications, in which the
performance of such ESB applications is not as good as that of
our SP architecture, having a TPS of 160 Mb/s with a high-spec
machine, while our SP architecture is able to achieve a TPS of
135080 Mb/s using an average desktop machine. In addition, of
the functionalities arising from such integration (MEdit4CEP + SP
architecture), it is worth noting the persistence of event types
and event patterns in the database, which is not accomplished
by any of the previously analysed proposals. Such definitions can
be retrieved, updated, and deleted at any time by anyone using
MEdit4CEP-SP. Finally, the deployment, update and removal of
such definitions from the editor to the CEP engine are done at
runtime, without the need to stop the entire system to apply such
changes.

(RQ4) How important is it to be able to add, update and remove
existing event types and patterns at runtime and is the proposed
integration able to provide users with such capabilities?

As mentioned, one of the main advantages of the Esper CEP
engine, compared to other CEP alternatives, is the capability of
adding or removing existing event types and patterns at runtime,
meaning the system does not need to be stopped or paused for
this addition or deletion. Stopping the entire system, for just
a few seconds, can mean the loss of essential information that
needs to be analysed. In MEdit4CEP-SP, it is not necessary to stop
the system to perform such changes. MEdit4CEP-SP allows the
addition, update or removal of event types and event patterns
from the CEP engine at runtime, and, what is more, in a friendly
and intuitive way. According to the results of the questionnaire
from Section 7, all the respondents found it positive to be able to
perform such actions and also found it very useful and easy to do,
by means of the set of tools provided.

10. Conclusions and future work

This paper presents MEdit4CEP-SP, a model-driven system
that integrates CEP and SP technologies for consuming, processing
and analysing heterogeneous data, allowing domain experts to
model these heterogeneous data domains and the situations of
interest to be detected, in a friendly and intuitive way. Since
these situations are detected in real time, domain experts can
react immediately, thus improving the decision-making process
in their organisations.

MEdit4CEP-SP simplifies and brings complex technologies,
such as CEP or SP that require great deal of experience in their
use, to any kind of users, regardless of their knowledge in com-
puter science, in a simple and friendly way. More specifically,
MEdit4CEP-SP provides a graphical editor that allows users to
define the event types and event patterns typical of their domain.
Once such definitions are ready, they are automatically deployed
in the CEP engine of the SP architecture so the incoming het-
erogeneous data can be analysed, at runtime. Moreover, thanks
to MEdit4CEP-SP, users can update and remove these modelled
event types and event patterns that are already deployed in the
CEP engine at runtime, meaning there is no need to stop the
entire system if changes are to be applied.

MEdit4CEP-SP also provides users with persistence thanks to
the inclusion of the REST API with the NoSQL database. When
an event type or event pattern model is saved within the editor,
it is now automatically stored in the database. Such definitions
are available to be reused by other domain experts using other
MEdit4CEP-SP instances from different computers. It is worth
noting that, as the SP architecture can be deployed in the cloud,
different users have the option to share this CEP engine. This
means they can add, remove, and update CEP domains and event
patterns from the same CEP engine using MEdit4CEP-SP, making
the proposed system collaborative.

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682
Regarding evaluation, we tested MEdit4CEP-SP, in terms of
usability and technical metrics. On the one hand, we evaluated
the usability of the system to prove it is user-friendly and allows
users to improve their decision-making. On the other hand, we
evaluated the performance of the system to prove it is capable
of consuming, processing, and analysing huge amounts of het-
erogeneous data in real time. Concerning usability, we tested the
graphical editor with a group of 28 real users. They were asked
to complete a task similar to that presented in Section 6. Subse-
quently, they answered a questionnaire designed to evaluate their
experience with the proposed set of tools. The survey showed
the participants were highly satisfied (75%) with MEdit4CEP-SP.
Regarding technical metrics, we thoroughly evaluated our SP
architecture. The results of the performance tests proved the
scalability of the solution, with it being able to process more data
using more computing nodes. We also found the efficiency of the
SP architecture was superior to others, presenting TPS of 135080
Mb/s in a cluster of 4 machines. Additionally, we compared our
proposal with the other previously analysed approaches, under-
lining that it fulfils almost all the functionalities required by a
system to model, consume, process, and analyse heterogeneous
data domains.

Concerning future work, some of the respondents provided
interesting feedback to improve the usability of the tested editor,
which will be considered in the future version of the editor. They
also suggested new functionalities, such as adding actions to be
performed when a complex event is detected or including a wiz-
ard to guide the user when they first use the editor. Additionally,
we plan to apply the editor to other application domains such
as air pollution, road traffic, e-health and distributed environ-
ments [14,45–47]. Furthermore, we would like to incorporate
predictive analysis techniques to improve the analytics results
and to anticipate the situations to be detected. Finally, we plan
to add new ways to integrate MEdit4CEP-SP with other cloud
platforms, such as FIWARE, so the user will not only be able
to automatically interact with the SP architecture, but also with
other solutions to process and analyse big data in real time.

CRediT authorship contribution statement

David Corral-Plaza: Investigation, Software, Validation, Writ-
ing - original draft. Guadalupe Ortiz: Conceptualization, Writ-
ing - review & editing, Resources, Supervision, Project adminis-
tration, Funding acquisition. Inmaculada Medina-Bulo: Concep-
tualization, Writing - review & editing, Resources, Supervision,
Project administration, Funding acquisition. Juan Boubeta-Puig:
Conceptualization, Methodology, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was partly supported by the Spanish Ministry of
Science and Innovation and the European Regional Development
Fund (ERDF) under project FAME (RTI2018-093608-B-C33), and
also by the pre-doctoral program of the University of Cádiz, Spain

(2017-020/PU/EPIF-FPI-CT/CP).

23
References

[1] S. Nadal, et al., A software reference architecture for semantic-aware Big
Data systems, Inf. Softw. Technol. 90 (2017) 75–92, http://dx.doi.org/10.
1016/j.infsof.2017.06.001.

[2] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, J. Boubeta-Puig, A stream process-
ing architecture for heterogeneous data sources in the Internet of Things,
Comput. Stand. Interfaces 70 (2020) 103426, http://dx.doi.org/10.1016/j.csi.
2020.103426.

[3] J. Boubeta-Puig, G. Ortiz, I. Medina-Bulo, MEdit4CEP: A model-driven
solution for real-time decision making in SOA 2.0, Knowl.-Based Syst. 89
(2015) 97–112, http://dx.doi.org/10.1016/j.knosys.2015.06.021.

[4] J.A. Morente-Molinera, I.J. Pérez, M.R. Ureña, E. Herrera-Viedma, On multi-
granular fuzzy linguistic modeling in group decision making problems: A
systematic review and future trends, Knowl.-Based Syst. 74 (2015) 49–60,
http://dx.doi.org/10.1016/j.knosys.2014.11.001.

[5] SOA Vs EDA: Is not life simply a series of events? | confluent,
2020, https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series
-of-events/(accessed Apr. 06, 2020).

[6] Streaming integrator, 2020, https://wso2.com/integration/streaming-
integrator/ (accessed Apr. 06, 2020).

[7] Apache storm, 2020, http://storm.apache.org/ (accessed Apr. 06, 2020).
[8] Apache kafka streams, 2020, https://kafka.apache.org/documentation/

streams/ (accessed Apr. 06, 2020).
[9] Complex event processing streaming analytics streaming SQL - espertech,

2020, http://www.espertech.com/ (accessed Apr. 06, 2020).
[10] G. Ortiz, J. Hernández, Integrating extra-functional properties in model-

driven web service development, 2007.
[11] Object management group a proposal for an MDA foundation model, 2005.
[12] J. Boubeta-Puig, G. Ortiz, I. Medina-Bulo, ModeL4CEP: Graphical domain-

specific modeling languages for CEP domains and event patterns, Expert
Syst. Appl. 42 (21) (2015) 8095–8110, http://dx.doi.org/10.1016/j.eswa.
2015.06.045.

[13] Epsilon, 2020, https://www.eclipse.org/epsilon/ (accessed Jul. 06, 2020).
[14] J. Boubeta-Puig, G. Díaz, H. Macià, V. Valero, G. Ortiz, MEdit4CEP-CPN: An

approach for complex event processing modeling by prioritized colored
Petri nets, Inf. Syst. 81 (2019) 267–289, http://dx.doi.org/10.1016/j.is.2017.
11.005.

[15] A. Calderón, J. Boubeta-Puig, M. Ruiz, MEdit4CEP-Gam: A model-driven
approach for user-friendly gamification design, monitoring and code gen-
eration in CEP-based systems, Inf. Softw. Technol. 95 (2018) 238–264,
http://dx.doi.org/10.1016/j.infsof.2017.11.009.

[16] Apache kafka streams architecture, 2020, https://kafka.apache.org/24/
documentation/streams/architecture (accessed Apr. 06, 2020).

[17] What is mule esb? | mulesoft, 2020, https://www.mulesoft.com/resources/
esb/what-mule-esb (accessed Apr. 06, 2020).

[18] Why avro for kafka data? - confluent, 2020, https://www.confluent.io/blog/
avro-kafka-data/ (accessed Jul. 06, 2020).

[19] D. Corral-Plaza, J. Boubeta-Puig, G. Ortiz, A. Garcia-de Prado, An internet
of things platform for air station remote sensing and smart monitoring,
Int. J. Comput. Syst. Sci. Eng. 32 (1) (2020).

[20] A. Ostfeld, Water distribution networks, Stud. Comput. Intell. 565 (2015)
101–124, http://dx.doi.org/10.1007/978-3-662-44160-2_4.

[21] Metering and submetering | alliance for water efficiency, 2020, https://
www.allianceforwaterefficiency.org/resources/metering (accessed Apr. 06,
2020).

[22] Toronto water says $2, 500 bill caused by leaking toilet, scarborough man
disagrees, 2020, https://toronto.citynews.ca/2018/05/14/water-bill-leaky-
toilet-scarborough/ (accessed Apr. 06, 2020).

[23] Holly springs family gets $49, 000 water bill - ABC11 raleigh-durham,
2020, https://abc11.com/finance/outrageous-holly-springs-family-gets-
{$}49000-water-bill/5460685/ (accessed Apr. 06, 2020).

[24] Grupo Energético de puerto real s.a, 2020, http://www.grupoenergetico.es/
gen/ (accessed Apr. 06, 2020).

[25] D. Corral-Plaza, G. Ortiz, I. Medina-Bulo, J. Boubeta-Puig, Dataset for
MEdit4CEP-SP: a model-driven solution to improve decision-making
through user-friendly management and real-time processing of heteroge-
neous data streams, Vol. 5, 2020. http://dx.doi.org/10.17632/RYBGTBBHS9.
5.

[26] Brighttag/kafkameter: Kafka jmeter extension, 2020, https://github.com/
BrightTag/kafkameter (accessed Jul. 06, 2020).

[27] Throughput shaping timer, 2020, https://jmeter-plugins.org/wiki/Throughp
utShapingTimer/(accessed Jul. 06, 2020).

[28] F. Carcillo, A. Dal Pozzolo, Y.A. Le Borgne, O. Caelen, Y. Mazzer, G.
Bontempi, SCARFF: A scalable framework for streaming credit card fraud
detection with spark, Inf. Fusion 41 (2018) 182–194, http://dx.doi.org/10.
1016/j.inffus.2017.09.005.
[29] T.M. Mitchell, Machine learning: A guide to current research, 1986.

http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.knosys.2015.06.021
http://dx.doi.org/10.1016/j.knosys.2014.11.001
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://www.confluent.io/blog/soa-vs-eda-is-not-life-simply-a-series-of-events/
https://wso2.com/integration/streaming-integrator/
https://wso2.com/integration/streaming-integrator/
https://wso2.com/integration/streaming-integrator/
http://storm.apache.org/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
http://www.espertech.com/
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb10
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb10
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb10
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb11
http://dx.doi.org/10.1016/j.eswa.2015.06.045
http://dx.doi.org/10.1016/j.eswa.2015.06.045
http://dx.doi.org/10.1016/j.eswa.2015.06.045
https://www.eclipse.org/epsilon/
http://dx.doi.org/10.1016/j.is.2017.11.005
http://dx.doi.org/10.1016/j.is.2017.11.005
http://dx.doi.org/10.1016/j.is.2017.11.005
http://dx.doi.org/10.1016/j.infsof.2017.11.009
https://kafka.apache.org/24/documentation/streams/architecture
https://kafka.apache.org/24/documentation/streams/architecture
https://kafka.apache.org/24/documentation/streams/architecture
https://www.mulesoft.com/resources/esb/what-mule-esb
https://www.mulesoft.com/resources/esb/what-mule-esb
https://www.mulesoft.com/resources/esb/what-mule-esb
https://www.confluent.io/blog/avro-kafka-data/
https://www.confluent.io/blog/avro-kafka-data/
https://www.confluent.io/blog/avro-kafka-data/
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb19
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb19
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb19
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb19
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb19
http://dx.doi.org/10.1007/978-3-662-44160-2_4
https://www.allianceforwaterefficiency.org/resources/metering
https://www.allianceforwaterefficiency.org/resources/metering
https://www.allianceforwaterefficiency.org/resources/metering
https://toronto.citynews.ca/2018/05/14/water-bill-leaky-toilet-scarborough/
https://toronto.citynews.ca/2018/05/14/water-bill-leaky-toilet-scarborough/
https://toronto.citynews.ca/2018/05/14/water-bill-leaky-toilet-scarborough/
https://abc11.com/finance/outrageous-holly-springs-family-gets-{$}49000-water-bill/5460685/
https://abc11.com/finance/outrageous-holly-springs-family-gets-{$}49000-water-bill/5460685/
https://abc11.com/finance/outrageous-holly-springs-family-gets-{$}49000-water-bill/5460685/
http://www.grupoenergetico.es/gen/
http://www.grupoenergetico.es/gen/
http://www.grupoenergetico.es/gen/
http://dx.doi.org/10.17632/RYBGTBBHS9.5
http://dx.doi.org/10.17632/RYBGTBBHS9.5
http://dx.doi.org/10.17632/RYBGTBBHS9.5
https://github.com/BrightTag/kafkameter
https://github.com/BrightTag/kafkameter
https://github.com/BrightTag/kafkameter
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
https://jmeter-plugins.org/wiki/ThroughputShapingTimer/
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://refhub.elsevier.com/S0950-7051(20)30811-X/sb29

D. Corral-Plaza, G. Ortiz, I. Medina-Bulo et al. Knowledge-Based Systems 213 (2021) 106682
[30] G.M. D’Silva, A. Khan, Gaurav, S. Bari, Real-time processing of IoT events
with historic data using apache kafka and apache spark with dashing
framework, in: RTEICT 2017-2nd IEEE International Conference on Recent
Trends in Electronics, Information and Communication Technology, Pro-
ceedings, Jul. 2017, 2018-January, 2017, pp. 1804–1809, http://dx.doi.org/
10.1109/RTEICT.2017.8256910.

[31] H.S. Jung, C.S. Yoon, Y.W. Lee, J.W. Park, C.H. Yun, Cloud comput-
ing platform based real-time processing for stream reasoning, in: 2017
Sixth International Conference on Future Generation Communication
Technologies (FGCT), 2017, http://dx.doi.org/10.1109/FGCT.2017.8103400.

[32] E. Zeydan, U. Yabas, S. Sözüer, Ç. Ö. Etemoǧlu, Streaming alarm data
analytics for mobile service providers, in: Proceedings of the NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Symposium, 2016,
pp. 1021–1022, http://dx.doi.org/10.1109/NOMS.2016.7502953.

[33] Y.N. Malek, et al., On the use of IoT and big data technologies for real-
time monitoring and data processing, Procedia Comput. Sci. 113 (2017)
429–434, http://dx.doi.org/10.1016/j.procs.2017.08.281.

[34] D. Stripelis, J.L. Ambite, Y.Y. Chiang, S.P. Eckel, R. Habre, A scalable data
integration and analysis architecture for sensor data of pediatric asthma,
in: Proceedings - International Conference on Data Engineering, 2017, pp.
1407–1408, http://dx.doi.org/10.1109/ICDE.2017.198.

[35] I. Estévez-Ayres, J. Arias Fisteus, C. Delgado-Kloos, Lostrego: A distributed
stream-based infrastructure for the real-time gathering and analysis of
heterogeneous educational data, J. Netw. Comput. Appl. 100 (2017) 56–68,
http://dx.doi.org/10.1016/j.jnca.2017.10.014.

[36] J.A. Fisteus, N.F. García, L.S. Fernández, D. Fuentes-Lorenzo, Ztreamy: A
middleware for publishing semantic streams on the web, J. Web Semant.
25 (2014) 16–23, http://dx.doi.org/10.1016/j.websem.2013.11.002.

[37] P. Clemente, A. Lozano-Tello, Model driven development applied to com-
plex event processing for near real-time open data, Sensors 18 (12) (2018)
4125, http://dx.doi.org/10.3390/s18124125.
24
[38] M. Guerriero, A. Nesta, E.D.I. Nitto, Streamgen: A UML-based tool for
developing streaming applications, in: MiSE ’18: Proceedings of the 10th
International Workshop on Modelling in Software Engineering, 2018, pp.
57–58, http://dx.doi.org/10.1145/3193954.3193964.

[39] TY - Mule runtime engine enterprise performance | mulesoft, 2020, https:
//www.mulesoft.com/ty/wp/esb-enterprise-performance (accessed Apr. 06,
2020).

[40] Fabriziocarcillo/scarff: SCARFF (scalable real-time frauds finder) is a frame-
work which enables credit card fraud detection, 2020, https://github.com/
fabriziocarcillo/scarff (accessed Dec. 02, 2020).

[41] Micheleguerriero/streamgen, 2020, https://github.com/MicheleGuerriero/
streamgen (accessed Dec. 02, 2020).

[42] UCASE / public / SP-architecture · gitlab, 2020, https://gitlab.com/ucase/
public/sp-architecture (accessed Dec. 02, 2020).

[43] UCASE / public / medit4cep-SP · gitlab, 2020, https://gitlab.com/ucase/
public/MEdit4CEP-SP (accessed Dec. 02, 2020).

[44] UCASE / public / API-medit4cep-SP · gitlab, 2020, https://gitlab.com/ucase/
public/API-MEdit4CEP-SP (accessed Dec. 02, 2020).

[45] G. Díaz, H. Macià, V. Valero, J. Boubeta-Puig, F. Cuartero, An intelligent
transportation system to control air pollution and road traffic in cities
integrating CEP and colored Petri nets, Neural Comput. Appl. 32 (2) (2020)
405–426, http://dx.doi.org/10.1007/s00521-018-3850-1.

[46] I. Calvo, M.G. Merayo, M. Núñez, A methodology to analyze heart data
using fuzzy automata, J. Intell. Fuzzy Systems 37 (6) (2019) 7389–7399,
http://dx.doi.org/10.3233/JIFS-179348.

[47] R.M. Hierons, M.G. Merayo, M. Núñez, Bounded reordering in the dis-
tributed test architecture, IEEE Trans. Reliab. 67 (2) (2018) 522–537, http:
//dx.doi.org/10.1109/TR.2018.2800093.

http://dx.doi.org/10.1109/RTEICT.2017.8256910
http://dx.doi.org/10.1109/RTEICT.2017.8256910
http://dx.doi.org/10.1109/RTEICT.2017.8256910
http://dx.doi.org/10.1109/FGCT.2017.8103400
http://dx.doi.org/10.1109/NOMS.2016.7502953
http://dx.doi.org/10.1016/j.procs.2017.08.281
http://dx.doi.org/10.1109/ICDE.2017.198
http://dx.doi.org/10.1016/j.jnca.2017.10.014
http://dx.doi.org/10.1016/j.websem.2013.11.002
http://dx.doi.org/10.3390/s18124125
http://dx.doi.org/10.1145/3193954.3193964
https://www.mulesoft.com/ty/wp/esb-enterprise-performance
https://www.mulesoft.com/ty/wp/esb-enterprise-performance
https://www.mulesoft.com/ty/wp/esb-enterprise-performance
https://github.com/fabriziocarcillo/scarff
https://github.com/fabriziocarcillo/scarff
https://github.com/fabriziocarcillo/scarff
https://github.com/MicheleGuerriero/streamgen
https://github.com/MicheleGuerriero/streamgen
https://github.com/MicheleGuerriero/streamgen
https://gitlab.com/ucase/public/sp-architecture
https://gitlab.com/ucase/public/sp-architecture
https://gitlab.com/ucase/public/sp-architecture
https://gitlab.com/ucase/public/MEdit4CEP-SP
https://gitlab.com/ucase/public/MEdit4CEP-SP
https://gitlab.com/ucase/public/MEdit4CEP-SP
https://gitlab.com/ucase/public/API-MEdit4CEP-SP
https://gitlab.com/ucase/public/API-MEdit4CEP-SP
https://gitlab.com/ucase/public/API-MEdit4CEP-SP
http://dx.doi.org/10.1007/s00521-018-3850-1
http://dx.doi.org/10.3233/JIFS-179348
http://dx.doi.org/10.1109/TR.2018.2800093
http://dx.doi.org/10.1109/TR.2018.2800093
http://dx.doi.org/10.1109/TR.2018.2800093

	MEdit4CEP-SP: A model-driven solution to improve decision-making through user-friendly management and real-time processing of heterogeneous data streams
	Introduction
	Background
	Stream processing
	Complex event processing
	Model-driven development
	MEdit4CEP

	Heterogeneous IoT data stream processing architecture
	Data sources
	Data processing
	Kafka Cluster
	Kafka Stream Application

	Data consumers

	MEdit4CEP improvements
	MEdit4CEP-SP
	Proposed architecture
	MEdit4CEP-SP functionalities

	Case study
	Case study description
	Case study implementation
	Data reception and CEP domain definition
	CEP domain validation, storage and deployment
	Event pattern model definition
	Event pattern validation, storage and deployment
	Event pattern real time updating and removal

	Evaluation
	MEdit4CEP-SP usability
	Stream processing architecture performance

	Related work
	Stream processing & complex event processing
	Model-driven development integrated with stream processing
	Comparative analysis

	Answers to research questions
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

