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Abstract

Context: Mutation testing is considered to be a powerful approach to as-
sess and improve the quality of test suites. However, this technique is expen-
sive mainly because some mutants are semantically equivalent to the original
program; in general, equivalent mutants require manual revision to differenti-
ate them from useful ones, which is known as the Equivalent Mutant Problem
(EMP). Objective: In the past, several authors have proposed different tech-
niques to individually identify certain equivalent mutants, with notable advances
in the last years. In our work, by contrast, we address the EMP from a global
perspective. Namely, we wonder the extent to which equivalent mutants are
connected (i.e., whether they share mutation operators and code areas) as well
as the extent to which the knowledge of that connection can benefit the mutant
selection process. Such a study could allow going beyond the implicit limit in
the traditional individual detection of equivalent mutants. Method: We use an
evolutionary algorithm to select the mutants, an approach called Evolutionary
Mutation Testing (EMT). We propose a new derived version, Equivalence-Aware
EMT (EA-EMT), which penalizes the fitness of known equivalent mutants so
that they do not transfer their features to the next generations of mutants.
Results: In our experiments applying EMT to well-known C++ programs, we
found that (i) equivalent mutants often originate from other equivalent mutants
(over 60% on average); (ii) EA-EMT’s approach of penalizing known equivalent
mutants provides better results than the original EMT in most of the cases (no-
tably, the more equivalent mutants are detected, the better); and (iii) we can
combine EA-EMT with Trivial Compiler Equivalence as a way to automatically
identify equivalent mutants in a real situation, reaching a more stable version
of EMT. Conclusions: This novel approach opens the way for improvement in
other related areas that deal with equivalent versions.

Keywords: mutation testing, equivalent mutant problem, search-based
software engineering, evolutionary algorithm

∗Corresponding author: pedro.delgado@uca.es

Preprint submitted to Information and Software Technology April 11, 2020



1. Introduction

Mutation testing [1, 2] has gradually spread over the last decades as a power-
ful method to assess and improve the ability of test suites to detect faults. This
testing technique is based on the artificial injection of different faults in the
system under test (SUT), modeled by mutation operators. Mutant is the term
commonly used to refer to the new program resulting from the fault injection.
The execution of a mutant and the unmodified version of our program against
the test suite produces an output; when there is no difference in the outputs,
we say that the mutant is alive. Otherwise, the mutant is killed. This process
allows for the detection of deficiencies in the designed test suite, represented
by the surviving mutants. Live mutants, in turn, give us the opportunity to
enhance its fault detection capability —we can add new test cases to kill them.

There are two key drawbacks when applying mutation testing: the high
number of mutants generated and the need to identify equivalent mutants (i.e.,
mutants that are semantically identical to the original program and for which the
same output as the original program is obtained). Especially, the latter problem,
known as the Equivalent Mutant Problem, represents the major stumbling block
to the widespread adoption of mutation testing in industrial software projects.
Fortunately, much work has been done in the past to automatically reveal a
portion of the set of equivalent mutants, especially in the last years [3, 4, 5, 6].
However, the detection of equivalent mutants is an undecidable problem [7],
so this task has to be ultimately done in a manual way. This fact suggests a
theoretical limit to the number of equivalent mutants that can be automatically
detected. Given that situation, the following question arises: is there something
else we could do to deal with equivalent mutants?

As far as we know, there are no studies in the literature evaluating or lever-
aging a possible connection among equivalent mutants. With connection, we
mean whether the set of equivalent mutants (or some subsets within that set)
share some features. Two similarities among mutants to be considered are the
areas of the code in which they appear and the group of mutation operators
that generate them. Such a study is relevant because if the connection exists,
we could seize that knowledge to reveal some new equivalent mutants that are
similar to other equivalent mutants previously identified —or even better, we
could avoid their generation.

In recent years, search-based techniques have been proposed to alleviate the
problems of mutation testing [8]. A good example is the technique commonly
known as Evolutionary Mutation Testing (EMT from now on) [9, 10]. The
rationale behind EMT is that most of the useful mutants (i.e., those that can
induce the enhancement of the test suite) have interrelated features. As a result,
a subset of those useful mutants can guide an evolutionary algorithm towards
the selection of other valuable mutants. Indeed, experimental results applying
EMT support this assumption because the evolutionary technique shows ability
to quickly find subgroups of valuable mutants. Notably, EMT required to select
less than 50% of the mutants in most cases to reach up to 80% of the size of a
mutant-adequate test suite (that is, one that kills all non-equivalent mutants in
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a program) [10].
While experiments using EMT show that useful mutants can lead to the gen-

eration of new useful mutants, it is currently unclear whether the same holds for
equivalent mutants. In this paper, we aim to shed light on a possible equivalent
mutant connection following an evolutionary approach. The intention of this
study making use of EMT is twofold: (1) we seek to clarify whether equivalent
mutants selected by EMT often originate from other equivalent mutants, and
(2) we want to know if we can improve the original version of EMT by means
of that information, that is, if we can reach a more refined subset of mutants
with a view to generating new test cases. We propose a new version of EMT,
called Equivalence-Aware EMT (EA-EMT), to penalize mutants known to be
equivalent when they are selected during the search. The idea of penalizing
mutants identified as equivalent during the search was suggested in a previous
paper [11], but neither an experimental nor practical analysis was done regard-
ing that proposal. The unique contributions of this paper are:

1. We give evidence, through the application of EMT to six widely-
used C++ programs, that equivalent mutants are often con-
nected in most of these SUTs. This is a novel study that suggests
that we could still go a step beyond a hypothetical limit to the automated
detection of equivalent mutants.

2. We perform an experimental study of Equivalence-Aware EMT
that shows that we can take advantage of a plausible equivalent
mutant connection. The study reveals that the existing link helps guide
the evolutionary search towards useful mutants when compared to the
original version of EMT. We observe this in most of the programs with
statistical significance, even with few mutants cataloged as equivalent.
Noticeably, the best results for EA-EMT were achieved when the subsets
of known equivalent mutants were large, which supports the analyzed
connection.

3. We also conduct a practical study by applying EMT in combi-
nation with Trivial Compiler Equivalence (TCE), called TCE-
Aware EMT or simply TCE-EMT . The use of TCE [5], a well-
established technique to determine a subset of equivalent mutants, con-
firms that the previous experimental analysis also translates into improved
results in practice, especially in terms of stability —the new information
narrows the search, preventing great differences among different execu-
tions of the evolutionary algorithm.

The remainder of this paper is structured as follows. Section 2 presents ap-
proaches that tackle the equivalence detection problem, and explains how EMT
operates. Section 3 describes the goals of the study and presents the research
questions. Section 4 details the techniques proposed to study the equivalent
mutant connection, and Section 5 shows the configuration of the experiments.
The results of the experimental and practical study are presented and discussed
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in Section 6 and 7, respectively. Finally, the threats to validity and conclusions
are shown in Section 8 and 9.

2. Background

2.1. Equivalence determination problem
Equivalent mutant detection is known to be an undecidable problem [7]. This

means that there is an implicit limit in the detection power of techniques seeking
to determine the equivalence of mutants. As such, deciding which mutants are
equivalent requires human effort, which is costly for companies and tedious for
testers. To ease that problem, several solutions have been proposed in the past,
with a growing emphasis in the last years [6, 12].

According to the review by Madeyski et al. [6], existing approaches either
suggest the likelihood that mutants will be equivalent, avoid their generation or
detect equivalent mutants directly. Among the suggest methods, we can cite sev-
eral studies analyzing the impact of mutations on the code coverage (the lower
the change in coverage, the more likely is that a mutant is equivalent) [4, 13, 14]
and, more recently, the use of automata language equivalence for models [15].
As for avoid, several authors have devised different methods, such as the ap-
plication of higher-order mutation to isolate equivalent mutants [3, 6], selective
mutation [16] or the use of a genetic algorithm to co-evolve both test cases and
mutants [17, 18].

Most of the studies fall on the previous two categories. However, the number
of studies on detect approaches has increased in the last years, such as those
related to constraint solving [19] or data-flow analysis [20]. The most remark-
able advance in this area is the technique called Trivial Compiler Equivalence
(TCE) [5, 21]. Based on the transformations performed by compiler optimiza-
tions, TCE can detect equivalent mutants that produce the same binary files as
those of the original version of the program. In those studies, TCE showed the
ability to detect around 30% and 50% of all equivalent mutants respectively in
C and Java programs. Apart from the application of TCE to traditional C [21]
and Java mutants [5, 22], this technique has also been assessed with memory
mutants [23] and class mutants for C++ [24], being able to discard 5.5% and
27% of the set of equivalent mutants, respectively.

All previous approaches aim at individually identifying equivalent mutants.
In a recent related study, Ayad et al. [25] proposed some metrics to estimate
the number of equivalent mutants in a program rather than identifying them
one by one. By contrast, our approach focuses on the features that equivalent
mutants share from a global perspective to benefit the whole process of mutant
selection. Nonetheless, EA-EMT, the evolutionary approach presented in this
paper, has to rely upon one of the aforementioned techniques for the identifica-
tion of individual equivalent mutants. In this paper, TCE will be used as the
underlying technique (i.e., TCE-Aware EMT) because of its character of direct
indication of equivalent mutants.
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2.2. Evolutionary Mutation Testing
Evolutionary Mutation Testing (EMT) is a cost reduction technique that

transforms the problem of mutant selection into a search problem. EMT uses
an evolutionary algorithm to search for a subset of mutants with great poten-
tial to assist the tester in improving the fault detection ability of an existing
test suite. This can be achieved by favoring the generation of mutants that
originate from other seemingly useful mutants: EMT promotes the application
of the most effective mutation operators throughout the execution of a genetic
algorithm (GA) [26]; similarly, the technique focuses on areas of code requiring
more attention, such as those that have been barely exercised by the test suite
or when significant combinations of input values are lacking, which results in
mutants remaining alive. The information on useful operators and the worst-
covered areas is known by executing the mutants selected by the algorithm so
far; then, each mutant is assigned a fitness value proportional to the test cases
that kill them. When none of the test cases in our current test suite is able to
detect a mutant, that mutant becomes a candidate to help us enhance the test
suite.

This technique was first proposed by Domínguez-Jiménez et al. [9] to test
Web Services compositions in WS-BPEL with the tool GAmera [27]. They
showed that EMT could find a greater number of strong mutants (i.e., mutants
that can potentially help improve the initial test suite) than random selection
(RS). In the last years, EMT has been extrapolated to other contexts, support-
ing the technique as a useful method to reduce the cost of mutation testing.
Delgado-Pérez et al. conducted new experiments on C++ applications, and
reported that EMT not only found a greater number of strong mutants [28] but
also induced a greater improvement of the test suite than RS with the same
number of mutants [10, 29]. Recently, Gutiérrez-Madroñal et al. applied EMT
to EPL queries for IoT systems [30], and proposed a refinement over the origi-
nal version of EMT following the guided mutation approach. Finally, a multi-
objective approach based on EMT was proposed for the selection of mutants to
improve performance tests [31].

In the following subsections, we summarize the main components of the
underlying GA. In-depth information on the technical details of this algorithm
can be found in a previous paper [10].

2.2.1. Individual’s encoding
EMT addresses the problem of mutant selection; accordingly, mutants are

the individuals or solutions for the GA. Those individuals require to be encoded
to be uniquely identified. The GA solution encoding in EMT considers the two
main features of a mutant: the mutation operator that generates it and the
location where the mutation is injected:

• Operator: each mutation operator is assigned a unique code (an integer
number).

5



• Location: the mutants produced by a mutation operator are listed in
sequential order from beginning to end of the code, and are assigned a
location identifier based on the position in that list.

As an example, consider the mutation operator IOD [32], which is assigned
the code 05. If IOD injects two mutations in the code in lines 10 and 12, the GA
will encode those two mutants asmutant_05_1 andmutant_05_2 respectively.

2.2.2. Fitness function
Broadly speaking, a mutant killed by many test cases is unlikely to help

design a missing test case. On the contrary, a mutant surviving the current test
suite execution represents a good opportunity to reveal a deficiency in that test
suite and ultimately help to fix that weakness. On the basis of the above:

• Live mutants: they are assigned the maximum fitness.

• Rest of the mutants: their fitness decrease with an increase in the
number of test cases that kill them. The fitness also decreases with the
number of mutants killed by the test cases that kill the mutant evaluated:
this serves the purpose of representing how difficult is to select other mu-
tants that cover the same functionality as that mutant.

Equation (1) reflects the previously discussed reasoning, where I is the mu-
tant under evaluation, M and T are the numbers of mutants and test cases
respectively, and mij can take the value 1 or 0 depending on whether mutant
i is killed by test case j or not, respectively (therefore, mIj is a special case
focused on mutant I). Note that the fitness of a mutant can vary depending on
the initial test suite (TS).

Fitness(I, TS) = M × T −
T∑

j=1

(
mIj ×

M∑
i=1

mij

)
. (1)

As expected, this formula attaches the maximum fitness to live mutants (M×
T ) and the rest of the mutants achieve a lower value in the range [0,M× T − 1].
The more test cases kill I (then mIj is 1), the lower the fitness; also, the more
mutants those test cases kill (

∑M
i=1 mij), the lower the fitness. For instance,

consider the following execution matrix containing which of the test cases (T =
4) in our test suite detect which of the mutants selected by EMT (M = 4). In
this case, the highest fitness belongs to the live mutant mutant2: 4 × 4 = 16;
on the contrary, the lowest fitness is assigned to mutant1: (4 × 4) − 1 (test1
kills mutant1) −3 (test4 kills mutants 1, 3 and 4) = 12. As such, mutant1
and mutant2 have the lowest and the highest chances of being selected for
reproduction, respectively.
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test1 test2 test3 test4

mutant1 1 0 0 1
mutant2 0 0 0 0
mutant3 0 0 0 1
mutant4 0 0 0 1


0: alive, 1: killed

By using this fitness function, the GA runs in the hope that the strongest
mutants are selected and give birth to new live mutants in successive generations.
In this way, the algorithm will tend to focus on promising mutation operators
and poorly-covered functionalities.

2.2.3. Population
The GA has to form a new population of individuals with size PS (popu-

lation size) in each new generation. These individuals are selected from all the
mutants that can potentially be generated in the SUT. We have to distinguish
between the first and the rest of the generations:

• In the first generation, PS individuals are selected completely at random.

• In the succeeding generations, PS individuals are selected as follows:

– N individuals are again randomly generated, allowing the GA to
focus on other relatively unexplored areas.

– PS −N individuals are generated by means of variation operators.

The GA produces new generations of mutants until a termination condition
is satisfied (e.g., when reaching a percentage of the total number of possible
mutants).

2.2.4. Parent selection and variation operators
The process to generate new individuals from the previous generation of

mutants involves two steps:

• Parent selection: This step seeks to select potentially useful mutants;
the features of these mutants will be partially inherited by new mutants
in the next generation. To this aim, the GA in EMT assigns a fitness
to each mutant and makes use of fitness proportionate selection. Apply-
ing this selection method, the probability for a mutant to be selected is
proportional to its fitness value.

• Application of variation operators: Once parents have been selected,
they undergo a process of mutation and recombination. The mutation
operator produces a change in one of the two features of the mutant en-
coding (operator or location), where the integer is increased or decreased
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by a small value to produce new nearby mutants. Regarding the crossover
operator, two parent mutants exchange their genes, resulting in two new
mutants with half of the information from each parent. pm and pc rep-
resent the probability that mutation or crossover operators are applied
respectively.

3. Goals of the study

3.1. Description
As far as the authors know, there are no studies in the literature that di-

rectly analyze the level of mutant connection. In particular, it remains unclear
whether equivalent mutants share some features, making it possible to establish
a connection among them. This study is interesting because such a link among
equivalent mutants would allow moving from an individual perspective of equiv-
alent mutant identification to a global perspective that could benefit the whole
mutation testing process.

Figure 1 serves to illustrate the reasons why equivalent mutants can be often
linked among them. The figure shows four equivalent mutants generated by two
different mutation operators in two functions of the original code. In this paper,
we argue that these mutants are connected (and form a subgroup of equivalent
mutants) in the sense that they have been produced by a subset of operators
and they are located in close lines of the code in two adjacent functions. Indeed,
the mutation operator inserting the post-increment operator could generate two
additional equivalent mutants in these functions (b++ in line 3, a++ in line 8).
In this particular case, other mutation operators, such as the one replacing the
arithmetic operators in lines 3 and 8, would not produce equivalent mutants;
also, the operator swapping the parameters would not generate an equivalent
mutant in similar functions like the one to divide two integers. The connection
of these mutants has to do with both a syntactic and a semantic aspect; there
is a syntactic relation because mutations 1, 3 and 2, 4 model a similar change
within the structure of both functions, but there is also a semantic relation
because these mutants affect two functions sharing similar characteristics (in-
cluding the commutative property in this example), which is commonplace in
most programs. The existence of equivalent mutants that present a syntactic
and a semantic similarity has been assessed in the past [33].

In this work we propose the application of EMT as the method to gain insight
into a plausible connection among equivalent mutants. As previously stated,
EMT works on the basis that useful mutants can lead to new useful mutants.
This strategy has empirically shown to reduce the cost of mutation testing [10].
In this paper we make use of EMT to better understand the extent to which
equivalent mutants can also lead to other equivalent mutants. Moreover, this
method allows us to put into practice and take advantage of a hypothetical
connection among these mutants.

We have to note that the evolutionary algorithm has not directly addressed
the Equivalent Mutant Problem up to now. Currently, its fitness function is
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1 //Function sum Mutant 1: Mutant 2:
2 int sum( int a , int b){ int sum( int a , int b){ int sum( int b , int a){
3 return a + b ; return a++ + b ; return a + b ;
4 } } }
5
6 //Function mul t ip ly Mutant 3: Mutant 4:
7 int mul ( int a , int b){ int mul ( int a , int b){ int mul ( int b , int a){
8 return a ∗ b ; return a ∗ b++ ; return a ∗ b ;
9 } } }

Figure 1: Example of “linked” equivalent mutants. The mutants are generated inserting the
post-increment operator and swapping the parameters.

not able to distinguish between mutations not detected yet (live mutants) and
mutations that cannot actually be detected (equivalent mutants). Indeed, the
fitness function in EMT could have unintentionally been degrading its perfor-
mance: the algorithm can misleadingly be breeding new mutants derived from
equivalent mutants instead of useful mutants. If that is the case, EMT could be
combined with state-of-the-art techniques to identify equivalent mutants, like
Trivial Compiler Equivalence (TCE) [5, 21], thereby being able to distinguish
live mutants from equivalent ones in a real situation.

3.2. Study on the equivalent mutant connection
In this paper we propose a study on the connection among equivalent mu-

tants from two different perspectives: an experimental study, where we conduct
experiments in a controlled environment using equivalence information that is
not available in a real setting, and a practical study, where we simulate a real
scenario using mechanisms that provide that information at runtime.

• Experimental study: The goal of this study is to analyze our approach
in depth, evaluating different configurations to increase our knowledge
of mutant connection. Such experiments are suitable on account of the
uncertainty regarding the available information on equivalent mutants,
their distribution in each subject under test and how the GA selects them.
In connection with this, we will follow a twofold analysis:

1. Equivalence family tree: This tree represents each equivalent mu-
tant together with its ancestors, showing which mutants are derived
from which mutants by means of the application of variation oper-
ators. Figure 2 shows an example of equivalence family tree. The
analysis of the inheritance relationships between equivalent mutants
is useful to know about the origin of these mutants.

2. Equivalence-Aware EMT (EA-EMT): This is a modified version
of the original EMT in which information of known equivalent mu-
tants is injected. Unlike the original EMT, the incorporation of this
new information enables the selection method to distinguish between
useful and non-useful individuals. To do so, this technique penalizes
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Initial Generation

M1

M2

M3

M4

Generation 1

M5

M7

M8

M6

Generation 2

M9

M11

M12

M10

Generation 3

M13

M15

M16

M14

Figure 2: Example of equivalence family tree, where dotted boxes represent equivalent mu-
tants. Among the four equivalent mutants generated with variation operators after the initial
generation, only M15 and M11 have equivalent ancestors (M11 and M4 respectively).

the fitness of mutants identified as equivalent as they appear dur-
ing the search. This modification could eventually bias the search in
favor of the generation of valuable mutants.

• Practical study: This study seeks to assess the practical applicability
of the approach through the combination of EMT with TCE [5]. TCE
allows the automated detection of equivalent mutants by means of the
transformations performed by compiler optimizations: if the application
of these optimizations in a mutant and the original code results in identical
binary files, the mutant can be determined as equivalent. Based on this
idea we propose the following technique:

1. TCE-Aware EMT (TCE-EMT): This is a specialized version of
EA-EMT where the source of information on equivalent mutants is
provided by the application of TCE to the mutants in each genera-
tion. This is a convenient technique since, as claimed by the authors
of the technique [21], mutants identified by TCE can be safely tagged
as equivalent; moreover, its application comes ‘almost for free’ once
mutants have been compiled, that is, its impact on the efficiency is
marginal when compared to the need of manual review.

Details on the internals of the aforementioned methods are later provided in
Section 4.
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3.3. Research questions
The first research question seeks to know whether there exists a connection

among equivalent mutants. To that end, we will apply EMT and will generate
an equivalence family tree. An analysis of the equivalent mutants that have
other equivalent mutants as descendants or ancestors can shed light on this.

Research question 1: Are the equivalent mutants in the equivalence
family tree connected among them?

In connection with the previous question, it is possible to analyze in more
depth the reasons behind a possible link. More specifically, we want to know
whether the linked equivalent mutants share their mutation operator.

Research question 2: Do the linked equivalent mutants originate from
the same mutation operators?

In case that such a connection among generations of mutants exists, we want
to know whether the evolutionary approach can benefit from that information.
This can be assessed by applying EA-EMT to punish equivalent mutants so
that they are not selected to give birth new mutants. This is the aim of the
third research question:

Research question 3: Can the proposed equivalence-aware approach
further reduce the number of mutants selected by EMT?

Related to the previous question, it is equally interesting to know if we can
seize that connection to improve the effectiveness of the evolutionary approach
in different contexts. For example, with different subsets of equivalent mutants
of varying size, or as the level of demand of test suite improvement increases.
To that end, we include the following research question:

Research question 4: Does the equivalent-aware approach adapt to
different scenarios?

Finally, we want to know if the proposed approach can be useful in prac-
tice. By combining EA-EMT with TCE as an automated method to identify
equivalent mutants at execution time (i.e., TCE-EMT ), we could assess if we
can take advantage of that connection in real scenarios. To study the practical
applicability of this approach, we add the following research question:

Research question 5: Can TCE-EMT be applied in practice to take
advantage of the equivalent mutant connection?
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4. Methodology

In this section, we detail the working principles of the equivalence family
tree and the new proposed version of EMT. These techniques first require a set
of mutation operators and an initial test suite, which EMT will try to improve
by means of the selected mutants. Then, both require information on the set
of equivalent mutants in the SUT. In our experimental study, the set of equiva-
lent mutants can be recorded thanks to a previous execution and inspection of
mutants; in our practical study, TCE provides the equivalence information.

4.1. Equivalence family tree
This tree, which collects the ancestors of equivalent mutants, is generated

while the GA is in progress. Below, we enumerate the steps to generate and
analyze the tree (we use the tree in Figure 2 as a running example):

1. Starting from the second generation1, those mutants derived from other
mutants of the previous generation are processed.

2. Each processed mutant is then registered in the tree together with its
parent mutant/s —one or two parents depending on the variation operator:
mutation or recombination (see Parent selection and variation operators
in Section 2.2). Therefore, the parent of M5 is M1 and the parents of M7
are M3 and M4.

3. After the execution, each mutant contained in the tree is analyzed. When a
mutant belongs to the set of equivalent mutants, its ancestors are traversed
recursively, seeking for equivalent ancestors. In this way, we can know that
the equivalent mutant M11 has M4 as an equivalent ancestor.

4. Finally, the percentage of equivalent mutants selected by the GA descend-
ing from other equivalent mutants is calculated. In our example, 50% of
the selected equivalent mutants have been derived (directly or indirectly)
from other equivalent mutants.

We also repeat steps 3 and 4 but observing the number of equivalent and
non-equivalent mutants with equivalent descendants.

4.2. Equivalence-Aware EMT
Making EMT aware of equivalence information involves adding a new step

to the conventional application of EMT [10]. This step (marked in bold) distin-
guishes between equivalent and non-equivalent mutants, when possible:

1Note that mutants in the first generation and those selected at random to maintain the
diversity in the rest of generations (N ) are skipped as they have no ancestors (see Population
in Section 2.2). Therefore, in our example, M1–M4 and M6, M12 and M14 respectively are
not processed.
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1. The first generation of mutants is created at random.

2. Mutants in the current generation are run against the test suite TS.

3. The fitness function is computed for each of the mutants in the generation,
based on the execution results in the previous step (i.e., which test cases
detect which mutants).

4. For each live mutant I, then:

(a) If the mutant is known to be equivalent, it is applied the
death penalty [34]. This means that we attach the lowest fitness
to the mutant:

Fitness(I, TS) = 0 (2)

(b) Otherwise, the mutant maintains the maximum value:

Fitness(I, TS) = M × T (3)

5. The parent selection method selects the mutants on the basis of the com-
puted fitnesses in the two previous steps. The mutants for the next gen-
eration are then produced by means of the predefined variation operators.

6. If the stopping point is not reached, the algorithm goes back to step 2.

7. The algorithm returns the set of mutants generated.

As a result of the new step (step 4 above), mutants known to be equivalent
are assigned the worst possible fitness. In this way, those mutants will not be
selected for reproduction (unless all eligible mutants are equivalent). The afore-
mentioned process resembles to constrained optimization problems, where only
a subset of all solutions satisfy the constraints (feasible solutions) and the fitness
function penalizes unfeasible solutions. In our particular case, non-equivalent
mutants and equivalent mutants play the role of feasible and unfeasible solutions
respectively —only the former are useful for the improvement of the test suite.

4.3. TCE-Aware EMT or TCE-EMT
The combination of EMT and TCE leads to a specialized version of EA-

EMT, TCE-EMT, where the application of TCE becomes the source of equiv-
alence information. To that end, the previous step 4.a is modified as follows
(marked in bold):

4. For each live mutant I, then:

(a) If the binary files of mutant I and the original program after
applying compiler optimizations are identical, it is applied the
death penalty.
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5. Experimental Setup

In this section, we first describe general aspects related to the experiments
performed in our study, such as the stopping condition, case studies, mutation
operators and tools. The two last subsections provide details on the particular
configurations for the experimental and practical study.

5.1. Termination condition
As the first step for our evaluation, we need to define a proper termination

condition for the GA. It is important to note that different criteria can be used
depending on whether the algorithm is applied in practice or is under evaluation
in a controlled experiment:

• In a real situation, we have no information on useful mutants or what
is the level of improvement required by the current test suite. Our options
to stop the algorithm narrow down to a number of epochs or mutants
generated.

• In an experimental procedure, in contrast, we can count with broader
information; we can perform an analysis of the mutants and the test suite
prior to the GA execution. We can even enhance the test suite based
on the inspection of live mutants, thereby reaching a mutant-adequate
test suite. This test suite can serve as a reference to know how close the
GA execution is to achieve certain improvement on the initial test suite.
Therefore, as presented in previous papers [10, 28], it can be used to make
an informed decision on the point to stop the algorithm.

Since our study is essentially experimental, we focus on the second case. As
an example, imagine that our previously generated mutant-adequate test suite
is composed of 20 test cases, and that we want to stop the GA execution when
reaching 75% of the size of the mutant-adequate test suite (denoted with P),
that is, 15 test cases; in this way, the GA will only stop when the mutants
selected so far could induce the design of 15 out of those 20 test cases. This
measurement is based on the execution results of the mutant-adequate test suite
on the selected mutants. With that information, we can map which test cases
in the mutant-adequate test suite are required to detect each of the mutants
selected by the algorithm.

In our case, the computation of the minimal mutant-adequate test suite
offers improved accuracy of the test suite enhancement that would be achieved;
in a minimal test suite we cannot remove any test cases without reducing the
number of mutants detected, and therefore we can be sure that all its test cases
are really necessary.

Taking the level of test suite improvement as a reference is convenient in
this study. This measurement allows determining whether the refinement in
EA-EMT is accompanied by a more effective selection of mutants —therefore,
reaching the expected level of test suite enhancement P more quickly than the
original EMT.
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Table 1: Features of the SUT: number of mutants, number of mutants remaining alive after
the execution of the original test suite (TSOri), percentage of mutants manually identified as
equivalent and size of the augmented mutant-adequate test suite (TSMA).

TCL DPH TXM RPC SQL DOM

Mutants 137 219 614 191 683 1,146
Alive 45 103 159 76 446 348
Equivalent (%) 15% 32% 15% 14% 39% 21%

|TS Ori| 17 61 57 26 271 46
|TS MA| 24 70 62 34 294 56

5.2. Case studies, mutation operators and tools
In the experiments, we make use of six open source C++ programs. Namely,

Matrix TCL Pro (TCL) [35], Dolphin (DPH) [36], TinyXML2 (TXM) [37],
XmlRPC++ (RPC) [38], MySQL Server (SQL) [39] and QtDOM (DOM) [40].
Table 1 shows the number of mutants in those SUTs, live mutants with the
initial test suite (the one distributed with the programs) and the percentage
of equivalent mutants. We separated out useful and equivalent mutants manu-
ally, which act as ground truth in our experiments. This table also shows the
size of the mutant-adequate test suite once we augmented the initial test suite
with manually-generated test cases to kill non-equivalent mutants in these pro-
grams —as described in the previous section, this enables the application of the
termination condition.

We apply the tool MuCPP to produce the mutants, focusing on class muta-
tion operators for this language [32]. Table 2 details the mutation operators
that generate some mutants for these programs in our study. A similar list of
class mutation operators is implemented in other widely-used tools for object-
oriented languages, like MuJava for Java [41], and class-level operators have
been extensively evaluated in previous research papers [32, 42, 43, 44, 45].

The tool GiGAn [29] runs EMT, allowing the execution of the GA presented
in Section 2.2 in connection with the mutation tool. For this work, GiGAn was
parameterized to be able to select between the original EMT or the new EA-
EMT. In the case of EA-EMT, we additionally modified the tool to:

• Implement step 4 presented in Section 4.2 and change the fitness of known
equivalent mutants.

• Incorporate information on equivalence from an external source. In these
experiments, we set the source as a text file where the names of manually-
identified equivalent mutants are listed.

As for the configuration parameters of the GA (see Section 2.2), we use the
set of optimized values applied in previous experiments [10, 29]:

• Population size (PS): 5% of the total number of mutants.

• Mutants generated randomly in each generation (N): 10% of the population
size —the rest are generated with variation operators.
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Table 2: List of mutation operators
Constructors/Destructors Polymorphism
CTD this keyword deletion PCD Type cast operator deletion
CTI this keyword insertion PCI Type cast operator insertion
CDC Default constructor creation PCC Type cast operator change
CDD Destructor method deletion PNC New method call with child class type
CID Member variable initialization PPD Parameter variable declaration with

deletion child class type
CCA Copy constructor and assignment PMD Member variable declaration with

operator overloading deletion parent class type
Inheritance Overloading
IHI Hiding variable insertion OMD Overloading method deletion
ISD Base keyword deletion OMR Overloading method contents replace
ISI Base keyword insertion OAN Argument number change
IOD Overriding method deletion Exceptions
IOP Overriding method calling EHC Exception handling change

position change
IOR Overriding method rename Object replacement
IPC Explicit call of a parent’s MCO Member call from another object

constructor deletion MCI Member call from another inherited class

• Mutation and crossover probability (pm and pc): 30% and 70% respec-
tively.

Finally, this study counts with a number of independent and dependent
variables. The SUTs, the initial and mutant-adequate test suites, the list of mu-
tation operators, the configuration of the GA and the set of equivalent mutants,
constitute the independent variables. Notice that the set (or sets) of equivalent
mutants used in the experimental and the practical study will be detailed in the
following subsections. The used cost-effectiveness measurements depend on the
applied technique:

• Family tree: To answer RQ1, equivalent mutants in the tree with equiva-
lent ancestors, and equivalent and non-equivalent mutants with equivalent
descendants; to answer RQ2, pairs of ancestor-descendant equivalent mu-
tants sharing the same mutation operator.

• EA-EMT and TCE-EMT: mutants generated until reaching the termi-
nation condition, i.e., a percentage of the size of the minimal mutant-
adequate test suite (see the previous subsection). This measure will be
used to answer RQ3, RQ4 and RQ5.

5.3. Configurations for the experimental study
In this subsection, we present specific configurations to properly analyze

EA-EMT and the equivalence family tree:
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Figure 3: Example of subsets of equivalent mutants for the experiments with EA-EMT. As
it can be seen, the subset with size EQ = 70% contains the equivalent mutants in the subset
with EQ = 40%, which in turn contains the subset with EQ = 10%. These subsets are used
to evaluate the behavior of the GA with the 3 stopping conditions (P = 60%, 75% and 90%).

EA-EMT. We have to configure the following parameters for the experiments
applying EA-EMT:

EQ → Size of the subset of equivalent mutants of which the GA is aware,
measured as a percentage of the whole set of known equivalent mutants.
Setting fixed instead of random sizes for EQ allows us to observe the
evolution of the results with small and large subsets of equivalent mutants.

S → Number of different subsets of equivalent mutants for each size EQ.
By preparing different subsets, we reduce the potential bias associated
with just assessing a single random subset.

R → Number of independent runs with each subset of equivalent mutants.

P → Stopping condition or level of test suite improvement required. We
take this parameter into account because the GA can behave differently
with varying levels of demand.

Notice that the lower EQ (size of the subset of equivalent mutants), the
more similar the behavior of EA-EMT will be to the one of the original EMT. In
contrast, with EQ = 100%, EA-EMT becomes aware of all available information
on equivalence. Also note that, for each percentage set as EQ, S subsets of
equivalent mutants are selected; for each of these subsets, R executions are
performed. Therefore, we derive |EQ| × S × R × |P | results from each case
study. As a consequence, we have selected a limited set of options to avoid an
exponential explosion of executions. Namely:
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• EQ = {10%, 40%, 70%}.

• S = 5 subsets.

• R = 30 executions.

• P = {60%, 75%, 90%}.

Therefore, on the basis of the previous formula, we have 3×5 = 15 available
subsets and 3 × 5 × 30 × 3 = 1, 350 results with each program. Figure 3
illustrates the selection mode of subsets of equivalent mutants in relation to the
parameters EQ and P . In this example, there are 10 known equivalent mutants;
therefore, a subset with size EQ = 10% contains only one mutant randomly
selected, M7 in this case. Note now that the process is incremental: the subset
with size EQ = 10% is contained in the subset with EQ = 40% and again the
subset with EQ = 40% is contained in the subset with EQ = 70%. This allows
us to observe the evolution of EA-EMT when new equivalent mutants are added
to the subset. We should also remark that the same subsets are used to evaluate
the different stopping points (P ), which allows assessing EA-EMT’s evolution
over time. The same process depicted in Figure 3 is carried out S times.

Finally, the results of EA-EMT with these parameters are compared with the
results of 30 executions of the original EMT in order to contrast the performance
of both techniques, including a statistical test of the significance of the results.

Equivalence family tree. In the analysis of the tree, we also apply R = 30
independent runs and the same three values for P .

5.4. Configurations for the practical study
In this subsection, we present specific configurations for the experiments ap-

plying TCE-EMT. In order to detect some equivalent mutants, mutants selected
by TCE-EMT in each generation undergo a TCE test. The application of TCE
in our study relies on several software systems (further information can be found
in [24]):

• First, the mutants and the original program are compiled with g++ using
the same optimization option. The output is a set of binary files.

• Second, MuCPP generates the mutants as branches of the version control
system git [32]. As such, the option diff provided by git is used to
compare the same binary files in the program and in the mutants. As an
example, we compare binaryfile in mutant1 with the one in the original
program (represented by branch master) through the following command:

git diff --binary master mutant1 binaryfile

When the output of that command is empty, there is no difference between
both branches and, therefore, the mutant is flagged as equivalent.
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Table 3: Number and percentage of equivalent mutants detected by TCE with -O2 (Mutants
and % Equivalent), and percentage of detected to the total number of mutants (% Total).

TCL DPH TXM RPC SQL DOM

Mutants 9 19 30 4 11 20
Equivalent (%) 45.0 27.5 33.0 14.8 4.1 8.5
Total (%) 6.6 8.7 4.9 2.1 1.6 1.7

Table 3 presents the results of the application of TCE in the programs using
the popular optimization option -O2. As shown, there is a varied range of
percentages of known equivalent mutants, from 4.1% in SQL to 45% in TCL.
Depending on the total number of equivalent mutants in each program, this
translates into subsets of equivalent mutants of a different size. Also, these
subsets represent a different portion with respect to the total number of mutants,
e.g., 19 out of 219 mutants (8.7%) are identified as equivalent with TCE in DPH.

As in the experimental study, results are based on 30 independent runs of
TCE-EMT, and we measure the mean percentage of selected mutants and the
standard deviation as indicators of its performance.

6. Experimental Study on the Equivalent Mutant Connection

This section is dedicated to the first part of our analysis (experimental
study). Hereafter, we present and discuss the results of the equivalence family
tree and EA-EMT.

6.1. Results of the equivalence family tree
Table 4 presents the results of the analysis of the equivalence family tree

in the SUTs. This table shows average percentages of equivalent mutants —
selected in 30 executions of the original EMT— that had another equivalent
mutant as an ancestor.

Table 4: Average percentage of equivalent mutants with equivalence ancestors in the equiva-
lence family tree, divided by program and stopping condition P . The average percentage of
all programs is also shown.

Program
P

60% 75% 90%

TCL 44.3 46.4 47.3
DPH 51.7 52.6 54.9
TXM 69.8 77.3 76.3
RPC 36.8 42.8 46.7
SQL 78.4 75.0 68.8
DOM 83.0 80.0 77.7

Average 60.7 62.3 61.9

Based on these results, we can say that there is a notable percentage of
equivalent mutants with equivalent ancestors (over 60% on average for all values
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of P , 62.3% with P = 75%). The percentage was quite relevant in the cases
of TXM, SQL and especially DOM (83% with P = 60%). In contrast, the
percentage is not as high in TCL and RPC, the programs with the lowest number
of mutants and a low percentage of equivalent mutants in total (see Table 1).
Analyzing the variation among executions when P = 90%, we observe that the
standard deviation ranges between 9-10% (TXM, SQL and DOM ) and 22-24%
(RPC and TCL); this measure partially explains the results in the table, given
that the executions in the two latter programs are not as stable as in the rest.
Interestingly, in most cases there is an increase in that percentage from P = 60%
to P = 75% (e.g., from 36.8% to 42.8% in RPC ); probably, the GA required a
longer execution time to be able to find more subgroups of equivalent mutants.

At this point, we also wondered whether the probability of an equivalent
mutant to have an equivalent descendant was higher than the probability of a
non-equivalent mutant to have an equivalent descendant. Table 5 shows the
results of this analysis (percentage of equivalent and non-equivalent mutants
with equivalent descendants) over the generated family trees. In all the cases,
there were more pairs <equivalent ancestor, equivalent descendant> than <non-
equivalent ancestor, equivalent descendant>. We also performed a hypothesis
statistical test, where the null hypothesis (H0) states that there is not a statis-
tical difference between these pairs and the alternative hypothesis (H1) states
that the difference in favor of pairs of equivalent mutants is statistically signif-
icant. The test provides a p-value in the range [0,1]. We take as reference the
widely-used level of significance 0.05; p-values under that level are considered
to be sufficient to reject H0. According to the p-values in this table, we can
reject H0 in 5 out of 6 programs. Although there are several factors influencing
the outcome (e.g., how mutants are spread across the program and mutation
operators), all these results support the assumption of the equivalent mutant
connection.

Table 5: Percentage of equivalent (Equiv.) and non-equivalent (Non-Equiv.) mutants with
an equivalent mutant as a descendant in the family tree. The table also shows the p-value of
a Wilcoxon signed-rank test between the results of both variables in 30 executions.

Program
P = 90%

Equiv. Non-Equiv. p-value

TCL 24.26 17.14 0.0087
DPH 42.63 37.11 0.0003
TXM 25.26 21.01 0.0008
RPC 19.93 18.35 0.1267
SQL 40.86 38.33 0.0003
DOM 29.31 25.64 1.95e-05
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Answering RQ1, the percentage of equivalent mutants descending from
other equivalent mutants when running EMT was over 60% on average.
The minimum and maximum percentage was 36.8% (RPC) and 83%
(DOM) respectively. From the other perspective, we also found that it is
more likely that an equivalent mutant gives rise to an equivalent mutant
when compared to the probability of a non-equivalent one. Given these
results, it is reasonable to think that equivalent mutants can lead to other
equivalent mutants, that is, equivalent mutants (or some subsets within
that set) are connected because they are produced in certain areas by
certain mutation operators.

Figure 4 analyzes in detail the mutation operators of the connected equiv-
alent mutants in the tree. First, it shows the percentage of those pairs of
ancestor-descendant equivalent mutants that share the same mutation operator
in each program. As it can be seen, in four of the programs the percentage is
between 39% and 47%. As in Table 4, the programs TCL and RPC do not
adhere to this trend probably because of the few mutants generated by each
operator. Second, the figure shows those shared mutation operators as a per-
centage of all the equivalent mutants sharing the mutation operator. Up to 17
out of 25 operators participate in the detected connection between equivalent
mutants, ranging from 0.2% (ISI) to 27.3% (IHI). In general, these percentages
are in line with the number of equivalent mutants produced by each mutation
operator.

Figure 4: Percentage of all the equivalent mutants in the family tree with an equivalent
ancestor that share the mutation operator in each of the six programs (left). Shared mutation
operators in percentage (right).
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Answering RQ2, a considerable number of the connected equivalent
mutants (37% on average) originate from the same mutation operator,
distributed among a broad set of operators (17 out of 25). While signif-
icant, the mutation operator is not the only reason behind the detected
connection and the link is not directly related to a few particular trans-
formations. These results suggest that the equivalent mutant connection
deserves to be explored from a global perspective.

6.2. Results of EA-EMT
Table 6 furnishes the comparative study between the application of the orig-

inal EMT and the specialized version EA-EMT. The figures in this table repre-
sent the average percentage of mutants returned by the GA once the execution
ends. In the case of EA-EMT, the table divides the results by the parameters P
and EQ. As an example taking the program TCL and the stopping condition
P = 60%, the average percentage of mutants selected by the original EMT (Ori.)
in 30 executions was 25.4%; in the same program and P , and being EQ = 40%,
the average percentage of EA-EMT in 150 executions (S = 5, R = 30) was
24.9%. Since the lower the percentage, the more effective the technique, in
this case, EA-EMT surpassed the performance of the original version of EMT.
The table also shows the best result obtained among the 15 different subsets of
equivalent mutants (average of 30 executions with each subset). Thus, the best
average percentage obtained with one of the formed subsets was 23.5%, whose
size was EQ = 70%.

Table 6: Results of the comparative study between the original EMT (Ori.) and EA-EMT.
The table shows the average percentage of mutants generated by the GA (Avg) until reaching
the three stopping points (P ) per program. Results of EA-EMT are in turn divided by the
three sizes for the subsets of known equivalent mutants (EQ). The average of Ori. is based
on R = 30 executions; the average of EA-EMT is based on 30 runs of each of the five subsets
generated (S), that is, 150 executions. It also shows the best average result (B) of EA-EMT
with one of those subsets (the row in which the result appears represents its size EQ). The
cases where EA-EMT outperformed Ori. are highlighted in bold.

P EQ
TCL DPH TXM RPC SQL DOM

Avg B Avg B Avg B Avg B Avg B Avg B

60

Ori. 25.4 36.1 13.2 31.0 19.6 8.8

10 25.2 36.2 13.6 30.9 30.7 19.9 8.6
40 24.9 35.0 34.2 13.8 12.9 31.8 19.6 18.7 8.4 8.0
70 24.6 23.5 35.6 13.8 31.7 19.4 8.5

75

Ori. 37.2 49.7 19.3 45.2 35.6 13.3

10 36.4 49.0 19.4 44.5 37.0 12.8
40 35.3 48.3 47.0 18.9 18.1 44.5 36.3 12.6
70 35.3 33.3 48.6 18.7 43.3 42.7 35.2 33.6 12.4 11.8

90

Ori. 49.2 66.3 31.9 59.4 58.2 21.4

10 50.4 66.5 33.0 58.7 56.8 20.7
40 50.3 47.6 65.7 32.4 58.6 55.9 20.7 20.2
70 50.0 65.7 63.9 32.0 30.8 59.3 56.9 55.8 55.0 20.6
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Figure 5: Number of subsets of equivalent mutants in which EA-EMT outperformed the
original EMT on average. Results are divided by the 3 stopping points (P = 60%, 75% and
90%), the 6 programs and the 3 percentages of known equivalent mutants (EQ = 10%, 40%
and 70%). Since the number of different subsets with each EQ is S = 5, each fragment of a
bar is in the range [0,5].

Figure 5 complements the information provided by Table 6 by depicting how
many of those 15 subsets allowed EA-EMT to achieve a better outcome when
compared to that of the unmodified version of EMT. Results are again divided
by P , EQ and program. Analyzing these data in depth, we can remark the
following findings:

• Original EMT vs EA-EMT: In most cases, EA-EMT performed better
than EMT in its original state. The best result was found in DOM (the
average percentage was reduced for all values of P and EQ). Furthermore,
all the 15 subsets provided a better result regardless of P (see Figure 5).
On the contrary, the injection of equivalence information in TXM did not
offer improvements in general. In quantitative terms, the largest difference
between both techniques was reported in <SQL,P90,EQ70> (55.8% vs
58.2%). Regarding the best result, EA-EMT decreased the percentage of
mutants generated by EMT in almost 4% in <TCL,P75,EQ70> (33.3%
vs 37.2%). Still, note that the differences among SUTs and values of P
are not completely comparable since the margin for improvement is not
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the same in all cases.

• Influence of EQ: Overall, the percentage of mutants selected by EA-
EMT decreased as the number of known equivalent mutants (EQ) in-
creased, becoming this especially clear in the case of TCL. This situation
is not particularly surprising, as counting with more equivalence informa-
tion should have a greater impact on the result. However, this is not a
rule of thumb; sometimes providing more information had detrimental ef-
fects on the search, such as in <RPC,P90> when moving from EQ = 40%
to EQ = 70% (58.6% and 59.3%, respectively). An interesting observa-
tion is that the best result was always obtained with a subset of size 40%
(8 times) or 70% (9 times), except in <RPC,P60>.

To deepen in the influence of EQ, Table 7 shows the results of EA-EMT
when EQ = 100%, that is, when all equivalent mutants are known.
In general, EA-EMT outperforms EMT and, in many cases, it keeps
showing an improving tendency as the equivalence information increases.
For instance, the performance of EA-EMT improves when moving from
EQ = 70% to EQ = 100% in <TCL,P75> (35.3% and 34.2% respec-
tively). This means that, even though we were able to detect all equivalent
mutants, EA-EMT would further improve the mutant selection process in
most cases.

• Results in relation to P: As it can be seen from Table 6 and Figure 5,
the best results were obtained when P = 75%. As an example, the execu-
tions of EA-EMT with all 15 subsets outperformed EMT in up to three
of the programs (TCL, RPC, and DOM ) with this stopping point. This
seems to indicate that P = 75% is the point of the execution when the GA
maximizes the contribution of the equivalence information. Again, this is
not always true, as in the case of SQL, where EA-EMT required a longer
execution time (P = 90%) to reach its best performance.

Table 7: Results of the comparative study between the original EMT (Ori.) and EA-EMT
when EQ = 100%. The table shows the average percentage of mutants generated by the GA
(30 executions) until reaching the 3 stopping points (P ) per program.

P
TCL DPH TXY RPC SQL DOM

Ori. EQ100 Ori. EQ100 Ori. EQ100 Ori. EQ100 Ori. EQ100 Ori. EQ100

60 25.39 24.52 36.14 35.99 13.21 14.23 30.97 32.07 19.62 19.38 8.79 8.31
75 37.24 34.23 49.75 47.97 19.26 19.24 45.29 43.22 35.61 35.89 13.33 12.18
90 49.24 49.73 66.33 65.18 31.93 31.57 59.42 61.74 58.19 56.37 21.41 19.92

Finally, we performed a statistical test to compare the executions of the
original EMT and EA-EMT for P = 75%. In this case, H0 states that the
difference between the percentage of mutants generated by EMT and EA-EMT
is not significant in statistical terms; H1 contrarily states that the percentage
of mutants generated by EA-EMT is statistically lower compared with that of
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the original EMT. Table 8 shows the results of the Wilcoxon signed-rank test
executed in each combination of SUT and value of EQ. As can be seen from the
p-values in this table, in most cases we can reject the null hypothesis that no
variation exists between both techniques with two different levels of significance
(0.05 and 0.1).

Table 8: Results of the Wilcoxon signed-rank test (p-value) based on the results of the original
EMT and EA-EMT for P = 75% in each program and value of EQ. The cases where EMT
obtained better results (see Table 6) are not computed (-). Favorable results for EA-EMT are
highlighted in gray and boldface at 0.1 and 0.05 level of significance, respectively.

TCL DPH TXM RPC SQL DOM

EQ10 0.019 0.434 - 0.002 - 0.117
EQ40 0.013 0.144 0.093 0.024 - 0.012
EQ70 0.023 0.083 0.059 <0.001 0.491 0.009

Answering RQ3, EA-EMT did reduce the number of mutants generated
by the original version of EMT in most of the programs. In all cases,
we could find at least one subset of equivalent mutants which improved
the execution of the evolutionary approach, with a reduction of 4% in the
percentage of mutants selected in the best case.

Answering RQ4, EA-EMT performed better than EMT in most of
the combinations of EQ and P . Still, the results were more relevant
with subsets of equivalent mutants that contained 40% or more of all
equivalent mutants, and when 75% of the mutant-adequate test suite was
required before stopping the GA (with statistical significance).

6.3. Discussion
The search performed by EA-EMT is affected by several factors. We should

take into account these factors to properly assess the full extent of the results
offered by the experiments:

Selection frequency of known equivalent mutants. In the end, not all known
equivalent mutants will have an influence on the search. Actually, that depends
on how many of those equivalent mutants the GA selects throughout its exe-
cution. To illustrate the implications of this fact, imagine that our subset of
known equivalent mutants contains 40% of all equivalent mutants (e.g., 10 out
of 25), and that the GA stops when 30% of all mutants have been selected
(e.g., 90 out of 300). In our example, we can expect the GA to generate around
30% of our subset of equivalent mutants: it turns out that, probably, only 3 of
those 10 known equivalent mutants would affect the search. This means that
the lower the percentage of mutants generated and the lower the percentage of
known equivalent mutants, the less is the expected influence of the equivalence
information on the search.
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Side effects. The GA is only aware of a subset of equivalent mutants; the rest are
unknown and remain indistinguishable from useful mutants. As a consequence,
by punishing known equivalent mutants, we may be causing the GA to focus
even more on other mutants that are not useful in the end. These include
unknown equivalent mutants and mutants not leading to new test cases, which
have no effect on the measure of test suite improvement for the termination
condition. As a consequence, we cannot expect a proportional effect of the
equivalence information on the performance of the evolutionary strategy.

Limited search space. EMT has shown to provide positive results in the past,
being more effective than random selection and selective mutation in most
cases [10]. However, as in the rest of cost reduction techniques, the space is
limited by the available mutants in a program. This implies that we cannot
avoid that the algorithm generates the mutants we want to avoid by other
means. Namely:

• In EA-EMT, the number of selected equivalent mutants with other equiv-
alent ancestors is reduced. However, those equivalent mutants can now
descend from non-equivalent mutants instead.

• N mutants in a generation are randomly selected to maintain diversity.

To improve EA-EMT’s performance in the future, we should investigate how
to cope with those aspects over which we have no control to date.

7. Practical Study

This section focuses on the second part of the analysis (practical study). In
the following subsections, we present and discuss the execution results of the
application of TCE-EMT.

7.1. Results and discussion
Table 9 presents the results (average and standard deviation) of the perfor-

mance of TCE-EMT in our SUTs. If we focus on the cases where EA-EMT
performed better than EMT on average (those surrounded by a box), we can
observe that the results of TCE-EMT are quite similar to those of EA-EMT
(see Table 6), that is, in most of those cases TCE-EMT offers a better outcome
than EMT. Remarkably, the results were also improved in RPC, even though
TCE-EMT only counted with the knowledge of four equivalent mutants (see
Table 3).

An important point to be considered is that the execution of TCE-EMT was
accompanied by a decrease in the standard deviation in almost all cases. For
instance, the standard deviation decreased from 5.00 to 3.89 in <DOM,P90>
with the equivalence information. This means that the GA increases its stability
among the 30 executions, which is a positive aspect given the stochastic nature
of the technique. Interestingly, in all the cases where the original EMT gave a
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(a) Average

P
TCL DPH TXY RPC SQL DOM

Ori. TCE Ori. TCE Ori. TCE Ori. TCE Ori. TCE Ori. TCE

60% 25.39 24.98 36.14 35.79 13.21 14.57 30.97 31.25 19.62 19.77 8.79 8.67

75% 37.24 36.56 49.75 49.63 19.26 19.69 45.25 45.18 35.60 36.24 13.33 12.89

90% 49.24 49.72 66.33 65.22 31.93 33.29 59.42 59.07 58.19 56.60 21.41 21.36

(b) Standard deviation

P
TCL DPH TXY RPC SQL DOM

Ori. TCE Ori. TCE Ori. TCE Ori. TCE Ori. TCE Ori. TCE

60% 6.63 6.25 6.72 6.54 2.89 2.69 7.40 7.28 2.92 2.74 1.61 1.89
75% 10.77 10.00 8.51 9.93 4.38 4.25 9.59 8.24 7.07 5.26 3.35 3.15
90% 13.41 12.46 8.61 12.30 7.13 7.12 9.11 8.66 8.49 8.21 5.00 3.89

Table 9: Comparison of results (average and standard deviation) between the original EMT
(Ori.) and TCE-EMT (TCE), grouped by SUT and P . Favorable results for TCE-EMT are
highlighted in boldface. Additionally, the cases where EA-EMT obtained a better average
percentage than Ori. in the experimental study (see Table 6) are surrounded by a box.

better average result than TCE-EMT (like in <TCL,P90>), the standard de-
viation of TCE-EMT turned out to be lower. On the contrary, the standard
deviation in DPH increased when P = 75% and P = 90% despite the improve-
ment in the average percentage. This indicates that occasionally the equivalence
information can notably guide but also misdirect the search depending on the
execution.

In order to confirm these results, we run an automated configuration al-
gorithm with the possibility to select between the original version of EMT and
TCE-EMT. More specifically, we made use of the well-known irace package [46],
which performs an iterated racing procedure to find the most appropriate pa-
rameter settings for optimization algorithms. In that procedure, the algorithm
iteratively undertakes a race among different candidate configurations to de-
termine which configurations show a good performance in a set of instances;
otherwise, the rest of the configurations can be discarded. The sampled config-
urations are based on the results of the candidate configurations in the previous
iterations; in this way, the algorithm pays more attention to those values that
present a better performance over time. In our experiments, we applied irace
to sample a number of configurations that select between EMT and TCE-EMT
and a range of values for the rest of the configuration parameters of the GA
(see Section 5.2); we used our set of programs as instances with P = 75% and
a budget of 1,500 executions. As a result, 53 out of the 78 sampled candi-
date configurations enabled TCE-EMT, and, more importantly, the four best
configurations found by the algorithm belonged to TCE-EMT.

Finally, we could not find any clear relation between TCE-EMT’s effective-
ness and the ratio of detected to the number of equivalent mutants, or the ratio
of detected equivalent mutants to the total number of mutants. For instance,
the improvements achieved in DPH and DOM are similar, but the aforemen-
tioned ratios are quite different in those programs (Equivalent: 27.5% vs 8.5%;
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Total: 8.7% vs 1.7%). This suggests that the results depend on other aspects,
such as how those mutants are distributed or the size of the GA population,
which would merit further investigation.

In either case, TCE was able to detect a few of the equivalent mutants in
these programs (between 4% in SQL and 45% in TCL). Had we complemented
TCE with other equivalence detection techniques, it is likely that the impact
of the equivalence information would have been greater, in line with the results
of the experimental study when the percentage of known equivalent mutants is
higher. A more effective working scenario would be the one replacing TCE by
a tester who revises the mutants remaining alive in each generation. However,
putting a human-in-the-loop is costly and can lead to errors in the classification.
In contrast, the alternative proposed in this paper partially transfers this burden
from the user to TCE, guaranteeing that the mutants marked as equivalent are
actually equivalent ones.

Answering RQ5, the injection of equivalence information offered by
TCE can benefit the execution of EMT, not only in terms of the av-
erage of mutants generated but also in terms of the variability among
executions. The penalization of known equivalent mutants restricts the
alternatives in the search, which results in a more stable version of EMT.
The preference of TCE-EMT over the original version of EMT was sup-
ported by an automated configuration algorithm.

8. Threats to validity

Below we present the main threats to the validity of the experimental pro-
cedures:

EA-EMT and TCE-EMT
The most evident threat in our experiments is the stochastic nature of the

genetic algorithm. Even though the GA has been refined to boost the selection
of useful mutants, it is possible that the outcomes are the result of a random
phenomenon. To counter this threat, we have executed 30 independent runs
with each of the configurations to minimize the probability that the observed
performance is a matter of chance. For the same reason, we have used S = 5
different subsets of equivalent mutants for each of the three sizes for EQ. In
total, we have executed EA-EMT 1,350 times per program.

In this study, we have applied the death penalty as the unique method to
penalize known equivalent mutants so that they were not selected to produce
new mutants in the next generation. In the same line, we have focused on TCE,
as it allows identifying equivalent mutants with certainty. However, we could
have opted for other more complex kinds of penalties [34, 47]. For instance,
a static penalty depending on how likely is that each mutation operator will
generate an equivalent mutant (based on past experience [16]), or even adaptive
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penalties based on the feedback from the last generations [48]. Likewise, there
are other methods that address the Equivalent Mutant Problem by avoiding
or suggesting likely equivalent mutants [6] (see Section 2). For instance, we
could have added penalties which were proportional to the changes in coverage
produced by each mutation [4, 14].

The death penalty is quite simple to implement as it only implies assigning a
zero to the fitness of mutants revealed as equivalent. We should note, however,
that the extra step in EA-EMT adds an overhead to the GA, which depends on
the method used to determine equivalence. However, given that all the mutants
generated by the algorithm are returned in the end, this step avoids the manual
review of equivalent mutants at a later stage. In the case of TCE, it increases
the compilation time of mutants but it clearly compensates the effort required
to manually identify equivalent mutants [5, 21].

Equivalence
We may have failed to classify equivalent mutants since this process was

carried out entirely by hand. The fact that all the mutants determined as
equivalent by TCE were contained in our set of manually-identified equivalent
mutants gives us confidence in our classification. If we had missed some equiv-
alent mutants, the results would probably have been even better: EA-EMT
reported the best results with high values for EQ; contrarily, we do not think
that killable mutants mistakenly tagged as equivalent would have had a strong
influence on the experiments: the results were derived from several executions
with different subsets, and it is unlikely that those mutants would have been
selected in many of those executions —as discussed earlier in Section 6.3, only
a portion of the known equivalent mutants will be selected and will affect the
search in the end.

Generalization of results
In the hope that our experiments are representative, we have selected six

well-known C++ programs and libraries of different domains, sizes, percentages
of equivalence and initial mutant coverage of the test suites. In this work, we
have focused on a particular domain: mutation operators at the class level for
C++ applications. Thus, it is currently unknown how EA-EMT and TCE-EMT
will behave in other contexts, such as with traditional operators for procedural
programming languages like C. However, we have reasons to believe that these
results will extrapolate to that domain. On the one hand, class-level operators
are known to generate fewer mutants than traditional operators [32, 43], and
previous experiments on EMT suggested that the technique performs better in
programs with a high number of mutants [9, 10]. On the other hand, TCE was
more effective detecting C traditional mutants than C++ class-level mutants,
accounting for 30% of all existing equivalent mutants on average [5, 21] —as
shown in this study, EA-EMT improves its effectiveness with large subsets of
known equivalent mutants—. We selected -O2 as the optimization option for
the experiments with TCE-EMT. Previous experiments with these mutation
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operators [24] revealed no differences with other popular optimization settings
(-O and -O3 ). Regarding the initial mutant coverage, a previous study discussed
that relatively weak test suites may affect EMT’s performance due to the large
number of mutants remaining alive [10]. Even though EMT still showed better
results than random and selective mutation in those cases, the maturity of the
initial test suite constitutes another threat to the generalization of the results
of the proposed approach.

9. Conclusion and future work

This paper serves to present evidence on the connection between equivalent
mutants and on the use that can be made of that connection for the first time.
We have followed an evolutionary approach to benefit from equivalence infor-
mation in the selection of mutants for test suite improvement. However, this
study opens the way to look for new domains where this link can be exploited
differently in the future. For instance, recent papers have proposed the use of
equivalent mutations to produce more efficient versions of the program [49, 50]
and remove static anomalies [51]. Hence, equivalent mutant connection can hint
at operators and code areas that can help in code refactoring.

In the future we could opt for a midway solution between the original version
of EMT (without penalties) and EA-EMT using the death penalty, especially in
those domains where TCE could not be applied or was not particularly effective.
If we could accurately measure how likely is that a live mutant will turn out to
be equivalent, we could make the penalty proportional to that. A challenge for
the future will be to add a penalty to the objective function that wisely combines
past experience, the information provided by other techniques for the detection
of equivalent mutants and feedback from the own execution. This would allow
for fairer fitnesses, which could result in improved performance. Additionally,
a recent study points out that a more challenging objective is selecting fault
revealing mutants instead of just killable ones [52]. As such, knowing the fault
revealing ability of EMT, or even devising a new fitness function to this end,
should guide the future research direction. That study applies a machine learn-
ing approach to build a model based on the static analysis of the features of
known fault revealing mutants, which is later used to drive the mutant selec-
tion. The interaction possibilities of machine learning and search methods have
been scarcely investigated up to now in this area, so exploring the adoption of
data-driven search-based approaches would be equally interesting.
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