
Entrega Contínua de Aplicações em
Ambientes Híbridos

VÍTOR JOÃO FALLÉ CORREIA
outubro de 2023

Continuous Application
Delivery in Hybrid

Environments

Vitor Correia

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Computer Systems

Supervisor: Nuno Bettencourt, PhD

Evaluation Committee:
President:
Isabel Praça, PhD

Members:
Nuno Ferreira, PhD

Porto, October 16, 2023

iii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I have not plagiarised or applied any form of undue use of information or falsifi-
cation of results along the process leading to its elaboration.

Therefore the work presented in this document is original and authored by me,
having not previously been used for any other end.

I further declare that I have fully acknowledged the Code of Ethical Conduct of
P.PORTO.

ISEP, Porto, October 16, 2023

v

Abstract

The use of hybrid deployment models is becoming a standard since it provides many
benefits regarding on-demand scalability, high availability, and reliability. However,
the management of resources (application specifications and infrastructure details)
in a hybrid environment is a complex task since interfaces vary depending on the ven-
dor. Therefore, continuous practices already established must be adjusted whenever
new interfaces are to be supported.

This work aims to explore how a deployment process can be improved regarding the
adoption of hybrid environments at the host organization DevScope, producing a
proof of concept capable of explaining how this improvement can be achieved.

A Components-of-the-Shelf (COTS) approach is followed for developing the solution
that relies on different technologies to achieve the expected results. The proof of
concept consists of deploying the infrastructure that supports the new deployment
process and the orchestration of the components to enable the delivery of applica-
tions to the environments. Terraform is used to define and deploy the infrastructure,
and KubeVela is the technology used for managing applications.

The implementation of the solution made it clear that managing applications in
heterogeneous platforms is not easy. After some experimentation and answers to
a prepared questionnaire regarding the new deployment process, it was possible
to conclude that the solution still has a margin for improvement and that some
technologies are projects still being actively improved. Although KubeVela is not
polished enough, it was possible to verify that it is easily extendable and that more
scenarios for specific applications can be added when needed.

The obtained results are relevant for future studies and will contribute to a better
understanding of how the delivery of multiple applications can be homogenized.
It also helps to address other problems, such as oversimplification of deployments,
losing important infrastructure-based details, and the associated learning curve to
deploy a complex application.

Keywords: Automation, Cloud, DevOps, Kubernetes, OAM, Orchestration

vii

Resumo

A utilização de estratégias híbridas de implantação está a crescer gradualmente, uma
vez que proporciona muitos benefícios em termos de escalabilidade, alta disponibil-
idade e fiabilidade. No entanto, a gestão de recursos (especificações da aplicação
e detalhes da infraestrutura) num ambiente híbrido é uma tarefa complexa, uma
vez que as interfaces variam consoante o fornecedor, pelo que as práticas contínuas
já estabelecidas devem ser ajustadas sempre que novas interfaces necessitam de ser
suportadas.

Este trabalho visa explorar a forma como o processo de implementação pode ser
melhorado relativamente à adoção de ambientes híbridos na DevScope.

Foi adoptada uma abordagem “Components-of-the-Shelf” (COTS) para desenvolver
a solução, que se baseia em diferentes tecnologias para alcançar os resultados esper-
ados. A prova de conceito consistiu na implementação da infraestrutura que suporta
o novo processo de implementação e na preparação dos componentes para permitir
a entrega de aplicações aos ambientes. O Terraform foi utilizado para definir e im-
plementar a infraestrutura e a principal tecnologia utilizada para gerir as aplicações
foi o KubeVela.

A implementação da solução tornou mais claro que a gestão de aplicações em
plataformas heterogéneas não é fácil. Após alguma experimentação e respostas a
um questionário preparado sobre o novo processo de implementação, foi possível
concluir que a solução ainda tem margem para melhorias e que algumas tecnologias
são projectos que estão a ser ainda ativamente melhorados. Embora o KubeVela não
esteja suficientemente polido, foi possível verificar que é facilmente extensível e que
podem ser adicionados mais cenários para aplicações específicas quando necessário.

Os resultados obtidos são relevantes para estudos futuros e contribuirão para uma
melhor compreensão de como a entrega de várias aplicações pode ser homogeneizada.
Também ajudarão a resolver outros problemas, como a simplificação excessiva das
implementações, a perda de alguns pormenores importantes baseados na infraestru-
tura e a curva de aprendizagem associada à implementação de uma aplicação com-
plexa.

ix

Acknowledgement

Firstly, I’d like to thank my family and friends for all the support and unimaginable
motivation they gave me. Also, I’d like to thank my supervisor, Nuno Bettencourt
for accompanying and supporting me in my work. I’d like to thank everyone at
DevScope for all the knowledge, resources, and new friendships provided. Finally,
I’d like to thank Nicole for all the daily support, and motivation, and for not letting
me give up on my dreams.

xi

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

List of Acronyms xxi

1 Introduction 1
1.1 Problem . 2
1.2 Goals . 2
1.3 Research Questions . 3
1.4 Hypothesis . 3
1.5 Research Methodology . 4
1.6 Thesis Structure . 4

2 State Of The Art 7
2.1 Background . 8

2.1.1 Container Orchestration . 8
2.1.2 Cloud Computing . 8
2.1.3 Continuous Practices in Software Engineering 9
2.1.4 Infrastructure-as-code . 10

2.2 Related Work . 10
2.2.1 Combination of Abstraction Models 10
2.2.2 Cloud Application Portability 11
2.2.3 TORCH . 11
2.2.4 Napptive . 12

2.3 Related Technologies . 12
2.3.1 Containers and Orchestration 12
2.3.2 GitOps . 15
2.3.3 Infrastructure Provisioning and Management 17
2.3.4 Application Management . 17

2.4 Value Analysis . 19
2.4.1 Innovation Process . 19
2.4.2 Analytic Hierarchy Process (AHP) 21

2.5 Summary . 21

3 Analysis 23
3.1 Value Analysis . 23

3.1.1 New Concept Development (NCD) 23

xii

3.1.2 Analytic Hierarchy Process (AHP) 28
3.2 Requirements Engineering . 30
3.3 Summary . 32

4 Design 33
4.1 Architecture . 33
4.2 Requirements . 35

4.2.1 Cluster Management . 35
4.2.2 Application Orchestration . 35
4.2.3 Metrics and Logs Collection 36
4.2.4 Artifact State Reconcilement 37
4.2.5 Artifact Backup and Restore 38

4.3 Summary . 38

5 Implementation 39
5.1 Cluster Management . 40

5.1.1 The Hub . 40
5.1.2 The Spokes . 42

5.2 Application Orchestration . 43
5.3 Metrics and Logs Collection . 47

5.3.1 The Hub . 47
5.3.2 The Spokes . 50
5.3.3 Enabling Log Collection . 52

5.4 Artifact State Reconcilement . 53
5.5 Artifact Backup and Restore . 55
5.6 Summary . 56

6 Experiments and Evaluation 59
6.1 Hypothesis . 59
6.2 Indicators . 60
6.3 Methodology . 60
6.4 Results . 62

6.4.1 Usability . 62
6.4.2 Reliability . 62
6.4.3 Performance . 64
6.4.4 Supportability . 65

6.5 Summary . 65

7 Conclusion 67
7.1 Achievements . 67
7.2 Contributions . 68
7.3 Limitations and Future Work . 68
7.4 Final Remarks . 69

Bibliography 71

A Analytic Hierarchy Process Steps 75

B Implementation Assets 79

xiii

C Experimentation Usability Questionnaire 85

D Evaluation and Experimentation Assets 93

xv

List of Figures

2.1 Relationship between Continuous Development Practices 9
2.2 Components of Kubernetes . 13
2.3 Pull-based deployment strategy . 16
2.4 The Innovation process . 20
2.5 The New Concept Development (NCD) Model 20

3.1 Global cloud technology market growth, in billions of dollars 24
3.2 Cloud infrastructure growth by model 24
3.3 Research about IT Decision Makers about Platform-as-a-Service (PaaS),

Containers and Serverless . 26
3.4 Multi-Platform Strategy Market Research 26
3.5 Hierarchical Decision Tree . 28

4.1 Logical view at context level . 33
4.2 Deployment View at container level 34
4.3 Cluster management design (logical view at container level) 35
4.4 Application orchestration design (logical view at container level) . . 36
4.5 Metrics and logs collection design (logical view at container level) . . 36
4.6 Artifact state reconcilement design (logical view at container level) . 37
4.7 Artifact backup and restore design (logical view at container level) . 38

5.1 Infrastructure code folder structure 40
5.2 GitOps folder structure . 54

6.1 Grafana dashboard of KubeVela applications for checking generated
resources . 63

C.1 Number of participants per years of experience 85
C.2 Number of participants per age . 85
C.3 Number of answers per rating (question 1) 86
C.4 Number of answers per rating (question 2) 86
C.5 Number of answers per rating (question 3) 87
C.6 Number of answers per rating (question 4) 87
C.7 Number of answers per rating (question 5) 88
C.8 Number of answers per rating (question 6) 88
C.9 Number of positive and negative answers (question 7) 89
C.10 Experimentation usability questionnaire (page 1) 90
C.11 Experimentation usability questionnaire (page 2) 91

xvii

List of Tables

2.1 Research query results by database (without duplicates) 7

3.1 Benefits and Constraints by Customer Segment 27
3.2 Fundamental Scale - Importance Levels of Comparison 29
3.3 Criteria comparison in pairs . 29
3.4 Priority Vector (priority/weight of each criterion) 30
3.5 Alternative Composite Matrix and associated Priority 30
3.6 Non-Functional Requirements . 31

6.1 Metrics’ related methods and auxiliary tools 61
6.2 Mean Time To Restore (MTTR) metrics 63
6.3 Performance metrics . 64

A.1 Criteria comparison normalized matrix 75
A.2 Alternative comparison considering Extensibility criteria 75
A.3 Alternative comparison considering Ease of Use criteria 76
A.4 Alternative comparison considering Control criteria 76
A.5 Alternative comparison considering Observability criteria 76
A.6 Normalized alternative comparison considering Extensibility criteria 76
A.7 Normalized alternative comparison considering Ease of Use criteria . 76
A.8 Normalized alternative comparison considering Control criteria . . . 76
A.9 Normalized alternative comparison considering Observability criteria 77

xix

List of Source Code

5.1 Kubeconfig output value for Azure Kubernetes Service (AKS) 40
5.2 KubeVela Helm Release . 41
5.3 KubeVela addons specification . 41
5.4 Script template for installing KubeVela addons 42
5.5 Read terraform hub remote state . 42
5.6 Script template for joining hub cluster 43
5.7 Crossplane deployment through helm release 43
5.8 Reading providers’ credentials from Azure Key Vault 44
5.9 Provider configuration and credentials provisionement 44
5.10 Azure provider configuration example 45
5.11 Create new component definition . 45
5.12 Azure SQL server component definition in Configure Unify Execute

(CUE) language . 45
5.13 Trait definition for creating a record in Cloudflare 46
5.14 Generation and storing of Mimir credentials 48
5.15 Mimir basic authentication configuration 48
5.16 Mimir long-term storage configuration output 48
5.17 Mimir long-term storage configuration 49
5.18 Grafana datasources generation (for Mimir and Loki) 49
5.19 Prometheus configuration . 50
5.20 Fluent Bit configured inputs and outputs 50
5.21 Fluent Bit configuration reloader container 51
5.22 Reload mounted inputs configuration files on the fly 51
5.23 Policy definition for collecting logs of applications in a specific cluster

and namespace . 52
5.24 Generation of Kustomization resources 53
5.25 Example of Kustomization for the Operations team 54
5.26 Output of storage configuration for Velero (Azure specific) 55
5.27 Velero backup schedules variable definition and default value 56
5.28 Velero backup schedules template . 56
6.1 Example of scaler trait on application 65
B.1 OpenID Connect resources and variables 79
B.2 OpenID Connect credentials template 80
B.3 Kubernetes Job for joining hub cluster 80
B.4 Azure MSSQL Server component definition 81
D.1 Final stage of the application for usability evaluation 93
D.2 Application used for performance evaluation of the solution 95
D.3 Azure Web Application component definition 109

xxi

List of Acronyms

AHP Analytic Hierarchy Process.
AKS Azure Kubernetes Service.
API Application Programming Interface.
AWS Amazon Web Services.

BPEL Business Process Execution Language.
BPMN Business Process Model and Notation.

CD Continuous Deployment.
CDE Continuous Delivery.
CI Continuous Integration.
CI/CD Continuous Integration and Continuous De-

ployment.
CLI Command-Line Interface.
CNCF Cloud Native Computing Foundation.
COE Container Orchestration Engine.
COTS Components-of-the-Shelf.
CUE Configure Unify Execute.

DNS Domain Name System.
DSR Design Science Research.

FFE Fuzzy Front End.

GCP Google Cloud Platform.
GQM Goal Question Metric.
GUI Graphical User Interface.

HCL HashiCorp Configuration Language.

IaaS Infrastructure-as-a-Service.
IaC Infrastructure-as-code.

JSON JavaScript Object Notation.

K8S Kubernetes.

MTTR Mean Time To Restore.

xxii

NCD New Concept Development.
NIST National Institute of Standards and Technol-

ogy.
NPD New Product Development.

OAM Open Application Model.
OCI Open Container Initiative.
OCM Open Cluster Management.
ODE Orchestration Director Engine.

PaaS Platform-as-a-Service.
POC Proof of Concept.

SaaS Software-as-a-Service.
SMR Systematic Mapping Review.
SQL Structured Query Language.

TOSCA Topology and Orchestration Specification for
Cloud Applications.

TTL Time to live.

VCS Version Control System.
VPN Virtual Private Network.

YAML Yet Another Markup Language.

1

Chapter 1

Introduction

There are more organizations taking advantage of Continuous Integration, Deliv-
ery, and Deployment practices to deploy quickly and reliably their applications and
underlying infrastructure [1]. Deploying an application with a variety of existing
tools is simple. The scenario starts to get complex when dozens or even hundreds
of deployment processes of applications need to be managed, plus the additional
dependencies that have to be provisioned to guarantee the proper functioning of the
software product.

After noticing the exponential growth of the infrastructure due to the high demand
for numerous applications, cloud computing emerges as a new technology and busi-
ness paradigm [2]. It consists of different techniques to provide a large number of
functionalities and operations. Combining continuous practices with cloud comput-
ing leverages automation regarding application deployments. With the help of cloud
computing, continuous practices can be simplified since resources are controlled by
external vendors, and the setup of on-premises infrastructure is reduced.

Adopting cloud computing brings benefits such as reduced costs and high flexibility,
which solves the bottleneck of on-premises infrastructure, reliability, access to ser-
vices over the Internet, and much more. Cloud computing is often referred to by the
term cloud itself, and organizations started adopting these remote environments a
while ago. Thereafter, multiple cloud vendors began to surface, such as AWS (from
Amazon), Azure (from Microsoft), Google Cloud Platform (GCP), and many others
that are expanding their service to serve and compete for that purpose as well.

Having many offers with competitive prices and innovative technologies, a single-
vendor strategy often does not satisfy organizations’ needs [3]. The scenario gets
more complicated, compelling organizations to adopt a multi-cloud approach when
deploying applications, taking advantage of benefits from each vendor to meet orga-
nizations’ and clients’ requirements. Additionally, the hybrid scenarios also behold
the mix of cloud and on-premises infrastructure. Some companies opt for this ap-
proach because of some legacy applications or due to internal applications that must
not be publicly available.

This research addresses the previous inconveniences, focusing on improving the ap-
plication deployment processes in hybrid environments, including multi-cloud plat-
forms and on-premises infrastructure, to reduce overhead and simplify application
deployment management.

2 Chapter 1. Introduction

This chapter describes the identified problem, the respective goals/objectives, and
research questions derived from the goals using the Goal Question Metric (GQM)
approach. Also, it depicts the research methodology used throughout the project and
the considered hypotheses, attending to the research questions to analyse whether
the work is accomplished.

1.1 Problem
A hybrid environment (also referred to as hybrid deployments or scenarios) is a
deployment environment where components are separated among different target
infrastructures, whether on-premises or in the cloud.

The employment of these hybrid scenarios when deploying applications and provi-
sioning infrastructure increases complexity and overhead when managing and main-
taining these processes. More products are developed and deployed by the orga-
nization, which implies an exponential increase in concern regarding these factors.
New employees must be recruited, or existing ones reskilled to manage specific de-
ployment processes. Having specific people to manage these without the whole team
knowing how to manage them is troublesome, causing high dependency on particular
individuals to execute specific tasks.

Also, deploying applications seamlessly between two different platforms (e.g. Kuber-
netes and Virtual Machine) is a difficult task due to disparities in terms of parameters
and specifications that must be declared for the resources to be properly created.

At DevScope, DevOps methodologies are implemented on the first day of the cre-
ation of a software project. Continuous Integration and Continuous Deployment
(CI/CD) pipelines, monitoring and logging solutions, automation, and configura-
tion management strategies, and others are used daily by developer and operation
teams. Cloud technologies and infrastructure are used regularly for the deployment
of applications, secret management and other scenarios.

The developer and operation teams do not have a centralized system where they can
view deployed applications in different environments and check metrics and logs of
applications. More specifically, the operation team works with Kubernetes clusters
daily. There is no solution yet for managing artifacts across multiple clusters.

Although DevScope uses Azure more than any other cloud, the use of other clouds
is inevitable due to cost management, exclusive services, and the flexibility it gives
for having services for backing up the main infrastructure. The learning curve for
other clouds is accentuated [3], and the management of resources in all clouds places
overhead on the operation team.

1.2 Goals
Goals for this project are defined using a GQM [4] approach. It will contribute to
generating research questions in this chapter and later to evaluate the solution using
qualitative and quantitative metrics in Chapter 6.

1.3. Research Questions 3

The GQM paradigm focuses on the creation of a measurement plan that targets
specific issues according to a set of rules for the interpretation of the measurement
data [4]. The data is driven by goals. Therefore, to improve a process, it is necessary
to define measurement goals based on improvement goals and transform them into
activities that can be measured.

The model starts with the definition of measurement goals. These goals are then
refined and converted into several questions that target major components (char-
acteristics of the object of measurement). Therefore, these questions are refined,
producing metrics that provide information to answer the previous questions.

Therefore, according to the described problem, the goal identified is the simplifica-
tion of application deployment and management in hybrid environments. Then, it
was transformed into a measurement goal as the GQM paradigm suggests:

G1. Analyse application deployment and management for the purpose of im-
proving/optimising with respect to simplify from the viewpoint of the
operations team in the context of hybrid environments.

1.3 Research Questions
After refining the improvement goal, various research questions can be derived from
it.

RQ1. Can an application deployment process be simplified when it targets different
platforms?

RQ2. What is the influence of extensibility upon simplification of the deployment
process targeting different platforms?

RQ3. Does the degree of control regarding infrastructure details decrease when the
creation of new deployments across different platforms is facilitated?

1.4 Hypothesis
According to the GQM paradigm, hypotheses are formulated as expected answers.
These hypotheses stimulate thinking about the current situation of a specific process
and/or product triggering a better understanding of them [4]. After the measure-
ment process is complete, these hypotheses will be compared to the actual results
to understand and analyse which reasons could cause the deviation from the defined
expectations. The following hypotheses are defined:

H1. The process of deployment of an application, independently of the target plat-
form, is faster and more reliable compared to the old one.

H2. The increase in support of different platforms or workflows in the deployment
process does not affect the complexity of the deployment process.

H3. Controlling certain characteristics of the underlying infrastructure is possible
through override techniques.

4 Chapter 1. Introduction

1.5 Research Methodology
As referred to in section 1.2, this thesis aims at expanding knowledge and explor-
ing how to improve continuous deployment processes, more specifically, how to or-
chestrate applications and infrastructure across hybrid environments in a simplified
manner.

The Design Science Research (DSR) method is used as a research methodology. DSR
methodology has been evolving, and it consists in a rigorous process that helps in
(i) research contributions (ii) evaluating designs and (iii) communicating the results
to interested parties [5].

The problem and objectives have already been identified in this chapter (sections
1.1 and 1.2), therefore a problem-centred initiation approach was taken. Hypotheses
were also formulated to aid in the evaluation phase, providing comparisons with
actual results. After that, an analysis and design phase are presented in Chapters
3 and 4 respectively, detailing which functional requirements, concerns and possible
alternatives are relevant considering the development of the solution.

Thereafter, the developed artifacts will be used to solve the stated problem, advanc-
ing to the demonstration phase where the process of implementation is detailed, as
well as the technologies used.

An evaluation phase takes place after the demonstration phase, where the solution
will be observed and analysed to ensure the solution’s validity. In the end, it is
expected to share the obtained knowledge throughout this thesis and among the
team members at DevScope.

The DSR methodology was chosen among many others because of its focus on ex-
tending knowledge in a specific area by developing new artifacts and sharing them
with the intent to solve identified problems, creating value or having utility for the
community.

1.6 Thesis Structure
This thesis is organized into different chapters which are:

• Chapter 1 (Introduction) – presents the problem and identified goals of the
work, also describing research questions and adopted methodology, including
hypotheses.

• Chapter 2 (State Of The Art) – introduces basic concepts and presents
related work and technologies useful for the completion of the project.

• Chapter 3 (Analysis) – divided into two parts: requirements engineering
and value analysis. The first gathers and describes the identified functional
and non-functional requirements, and the second focuses on why and how the
project carries business value.

• Chapter 4 (Design) – presents how the solution will be evaluated and how
the results will be validated.

1.6. Thesis Structure 5

• Chapter 5 (Implementation) – details the development process of the so-
lution, including technologies or tools used.

• Chapter 6 (Experiments and Evaluation) – presents how the solution
will be evaluated and how the results will be validated.

• Chapter 7 (Conclusion) – presents achievements and potential contribu-
tions. Limitations and future work are also described.

7

Chapter 2

State Of The Art

This chapter introduces base concepts that support the rest of the document. The
related work is presented mainly linked to topics regarding resource orchestration
and possible abstractions of application orchestration in hybrid scenarios. Lastly, it
presents related technologies in key areas that are relevant to this project, finalizing
with a summary of the whole chapter.

Research of existent work was conducted using a Systematic Mapping Review (SMR)
based on conference papers and journal articles in authentic electronic databases
reviewed by peers. The considered databases were ACM Digital Library, Google
Scholar, and B-On. Considering the research questions in the section 1.3, the selected
keywords for this research were “multi-cloud”, “hybrid-cloud”, “multi-platform”,
“continuous deployment” and synonyms considered relevant for each term. The
search was also restricted to a time frame between 2013 and 2023 to get more recent
results. The main search query developed was:

AllText:(“hybrid cloud” OR “hybrid-cloud” OR “multicloud” OR “multi cloud” OR
“multi-cloud” OR “multi-platform” OR “multiplatform” OR “multi platform”)

AND AllText:(“continuous deployment” OR “continuous practices” OR
“CI/CD” OR “CICD”)

AND PublicationDate:(2013-2023)

Results of the search query in different databases can be viewed in Table (2.1):

Table 2.1: Research query results by database (without duplicates)

Database Results
B-On 94
ACM Digital Library 83
Google Scholar 117
Total 294

The search in the three databases resulted in 294 results, in which abstracts were
read, reducing the pool results to 18. In some articles, the snowballing method was
used to obtain more information regarding the referred topics.

8 Chapter 2. State Of The Art

Additionally, 3 articles were added to the results from a specific query that resulted
after the main search presented above. The strings used were “continuum comput-
ing”, “configuration management” and “kubernetes”.

2.1 Background
This section has the purpose of giving brief insights regarding basic concepts that
support related work and technologies concepts described in the following sections.

2.1.1 Container Orchestration

As the industry kept adopting containerized strategies, other problems emerged
due to the massive increase of containers to manage [6]. The awareness of the
applications’ status itself was another concern since the monitoring, updates without
downtime, scaling, and handling of unexpected errors, among others were core parts
of achieving reliable production environments.

Container Orchestration Engines (COEs) were developed to address the problems
previously described. Thus, these technologies were revolutionary because manag-
ing numerous containers, each one with different purposes and dependencies, was
tedious and time-consuming [7]. These orchestrators also provide insights into the
application that is packaged as a container, which is important to troubleshooting,
where logs and metrics come in very handy.

Typically, all the operations performed regarding containers in an orchestrator target
multiple nodes in a network. The container orchestration engines abstract these
operations but also the computational resources used by each container [6]. There
are many container orchestration engines, however, the most popular and widely
used are Kubernetes, Docker Swarm, Apache Mesos, and OpenShift.

2.1.2 Cloud Computing

According to the National Institute of Standards and Technology (NIST), cloud com-
puting is “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources that can be rapidly provisioned
and released with a minimal management effort or service provider interaction” [8].

It is an evolving paradigm that characterizes relevant comparisons of cloud services
and deployment strategies. The five essential characteristics that cloud computing
leverages are: (i) on-demand self-service; (ii) broad network access; (iii) resource
pooling; (iv) rapid elasticity and (v) measured services.

Concerning service models, multiple have been envisioned lately, but the three core
models are:

• Infrastructure-as-a-Service (IaaS) – the consumer has to manage com-
puting resources, and can deploy any application or software at will.

• Platform-as-a-Service (PaaS) – owned applications by the consumer can
be deployed on-demand independently of the kind of application if the platform
supports it. Infrastructure is not managed by consumers.

2.1. Background 9

• Software-as-a-Service (SaaS) – provides applications running on a cloud
infrastructure accessible from different client interfaces. Consumers cannot
manage or control the underlying infrastructure.

Aside from the service models, four deployment strategies can be adopted when
using cloud computing technologies:

• Private Cloud – infrastructure is provisioned for exclusive use by a single
organization.

• Community Cloud – infrastructure provisioned towards the use of the com-
munity of clients that have shared concerns.

• Public Cloud – the general public can provision infrastructure, and it solely
exists on-premises of the cloud provider.

• Hybrid Cloud – strategy composed of two or more different cloud infrastruc-
tures that are independent but complement each other.

2.1.3 Continuous Practices in Software Engineering

Continuous practices in software engineering refer to an area of research and practice
that provides manners for developing, deploying, and getting constant feedback from
software and the customer systematically and rapidly [1]. The most used and known
deployment activities are:

Figure 2.1: Relationship between Continuous Development Prac-
tices [1]

• Continuous Integration (CI) – development work is merged and integrated
frequently. It forces teams to enter shorter release cycles, which improves
software quality and team productivity. An example of this is the building
and testing of the project and the production of its artifacts.

• Continuous Delivery (CDE) – ensures that application artifacts are always
ready for entering the production state after the previous security/quality
checks and tests in an automated way (the CI workflow represented in Figure
2.1). It has some benefits, such as reduced deployment risk, lower cost, and
continuous feedback.

10 Chapter 2. State Of The Art

• Continuous Deployment (CD) – applications are automatically deployed
after the CI process successfully finishes and typically target production en-
vironments. In CD every change is deployed automatically, without human
intervention.

2.1.4 Infrastructure-as-code

Infrastructure-as-code (IaC) is a DevOps practice in which resources are managed
and provisioned using code [9]. This practice substitutes manual configurations or
low-level developed scripts that attempt to create a new environment.

IaC languages or tools can be categorized as declarative or imperative. In a declar-
ative approach, developers describe the desired state of the environment, and the
tool takes care of interpreting it and executing the proper actions to achieve the
desired outcome. When an imperative or procedural model is used, developers
must describe how to achieve the desired state step-by-step where the order of the
steps is important. Some relevant properties of IaC that turn teams to adopting
it are: (i) on-demand provisioning of computational resources; (ii) abstraction of
APIs exposing them in a software-defined way; (iii) elimination of configuration
drift, ensuring consistency among multiple environments; (iv) actual replacement of
infrastructure when a new version is submitted; (v) rapidly and consistently recreate
environments.

2.2 Related Work
This section presents related work regarding the orchestration of application de-
ployments in hybrid environments and potential concerns. The work can be found
repeatedly using the search queries and electronic databases mentioned in the intro-
duction of this chapter.

2.2.1 Combination of Abstraction Models

Five engineers from Hanyang, Hongik and Changwon universities contributed with
an article [10] that proposes a model-driven cloud application orchestration approach
combining two different standard models.

Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
OASIS standard that pursues the portability specification of cloud applications. For
promoting application interoperability and portability across different providers an
application topology is defined following a platform-agnostic approach. This stan-
dard provides a type of system modeling applications’ components and relationships
to define the topology.

The Open Application Model (OAM) is “a runtime-agnostic modeling and a spec-
ification standard for defining cloud applications”. It focuses on application defi-
nition instead of platform or infrastructure layer details, therefore it is considered
application-centric. OAM was developed in a way that empowers modularity, exten-
sibility, and portability, enabling application delivery to heterogeneous platforms.

2.2. Related Work 11

OAM emphasizes the separation of roles’ concerns when defining applications, and
it is composed of two main reusable sections: the component and the trait. The
component provides the application service and the operational specifications for
that component, describing the runtime environment where the applications run
(e.g. virtual machines, containers, cloud platforms). The trait is a runtime overlay
that adds new operational and optional features (e.g. hostname specification, auto-
scaling).

The solution presented in the article consists of the combination of the two models
to achieve application orchestration. Using this strategy helps cover for the lack of
role awareness and separation of concerns in TOSCA. OAM itself does not have a
solid foundation regarding orchestration in the cloud and topology definition due to
the lack of a robust meta-model. In the end, the two standards complement each
other to build a model-driven, role-based cloud orchestration system.

2.2.2 Cloud Application Portability

T-Systems, Telekom, Innovation Laboratories, and the FZI Research Center for
Information Technology created a team for carrying a Proof of Concept (POC)
project regarding application orchestration among different platforms [11].

The goal of the project is to automate the configuration, coordination, and manage-
ment of software in cloud infrastructures [11]. For this, the solution consists of four
technologies: OpenStack, Chef, and Business Process Execution Language (BPEL)
and Apache Orchestration Director Engine (ODE).

The project participants developed a component named TOSCA2Chef, that would
create an execution environment capable of transforming a TOSCA model into a
running application [11]. The component is responsible for interpreting the TOSCA
file and executing the suitable commands to the Chef Knife client. This client
communicates with the Chef server and the OpenStack infrastructure to orchestrate
the deployment of the application.

2.2.3 TORCH

TORCH is a TOSCA-based framework for deploying and orchestrating applications
on multiple cloud providers [12]. This is possible by transforming the TOSCA
application model into an equivalent Business Process Model and Notation (BPMN)
workflow.

It was built with extensibility in mind, diminishing coding effort by abstracting
generic provisioning scenarios. Connectors are pluggable software into the TORCH
framework that interpret these actions and transform them into a concrete deploy-
ment process [12]. The provisioning scenario consists of three sequential phases:
(i) application specification, where the user submits the application requirements;
(ii) orchestration, where the TOSCA processor transforms the requirements into
a workflow plan; (iii) service binding, where the connectors transform the generic
actions into a concrete deployment process.

12 Chapter 2. State Of The Art

2.2.4 Napptive

Napptive is an organization that developed a platform that allows deploying complex
cloud native applications in a simplified way [13]. It abstracts low-level Kubernetes
entities, consolidating multi-purpose and multi-tenant clusters. Users do not re-
quire any knowledge regarding the infrastructure and how it is provisioned since
the deployment process and orchestration of applications are all performed by the
platform.

The Napptive platform can achieve this level of abstraction due to KubeVela being
its OAM runtime for Kubernetes deployments [13]. The use of KubeVela requires
Kubernetes knowledge besides the abstraction it provides. Napptive is built on top
of it, creating another layer of abstraction at the level of environments. The user
can perform deployments using the web user interface or a Command-Line Interface
(CLI).

Since KubeVela is extensible by design, the deployments are not bound to Kuber-
netes clusters. It is possible to provision and combine other technologies to achieve
more complex deployments across hybrid environments. Therefore, the Napptive
platform can create more complex scenarios to support their customers’ needs.

2.3 Related Technologies
In this section, the technologies that are likely to be mentioned and used in coming
sections are analysed and described to better understand their purpose and scope.

2.3.1 Containers and Orchestration

This subsection presents container-related technologies, namely tools for develop-
ing/shipping containers and container orchestration platforms.

Docker

As containers started to be adopted, the need to define industrial standards ap-
peared. Docker is a project under the Linux Foundation since 2015, denominated
by the Open Container Initiative (OCI) [14]. Although the OCI is just a specifica-
tion, not a concrete implementation, Docker gave its container runtime, runc, to the
OCI project to serve as a reference for future container runtimes. This means that
Docker was and is always OCI-compliant [14].

Docker is an open platform for developing, shipping, and running applications. It
was designed based on the virtualization strategy which adopts containers as men-
tioned before and it promises the fast, consistent delivery of applications, responsive
deployments and scaling, and a low overhead providing running many workloads on
the same infrastructure [15].

It started to act only as a container runtime, and nowadays, it consists of many
components. The relevant components for this work are:

• Registries – where container images are stored. These can be private or
public.

2.3. Related Technologies 13

• Images – a template with instructions for creating a container. Provide ad-
ditional customization and extensibility.

• Containers – an instance of an image. Every container instance is based on
a specific image.

Kubernetes

Kubernetes (originated from a Greek word that means “helmsman, pilot”) is the
most widely used container orchestration technology. It was founded in 2014 by
Google, based on previous attempts at the creation of internal container orchestra-
tion, namely Borg and Omega [16].

Kubernetes (K8S) uses containers as its base for running workloads, taking advan-
tage of immutability, which is one of its key benefits. When a container image is
updated, a new image is built from the beginning with no incremental changes [17].
Therefore, to update an application, the container instance needs to be replaced by
new instances with the new version of the built image. This facilitates rollbacks in
case of failures when updating versions.

Objects or resources are represented declaratively in Kubernetes. The Yet Another
Markup Language (YAML) notation is used for this purpose. Each declarative file
represents the desired state of the system. Kubernetes then ensures that the current
state of the cluster matches the newly declared state.

Kubernetes is considered a self-healing system, which means it will continuously
operate to maintain the current state consistent with the desired one. Beyond this
feature, there are others equally important, such as service discovery, load balancing,
storage orchestration, and secret and configuration management, among others.

In Figure 2.2 are represented the Kubernetes’ components. When a cluster is formed,
machines are divided into two types: node/worker and control plane.

Figure 2.2: Components of Kubernetes [18]

14 Chapter 2. State Of The Art

The control plane is responsible for managing the global state of the cluster, ensuring
worker nodes are working as they should, and reacting to certain cluster events that
can occur [18]. The control plane consists of the following components:

• Application Programming Interface (API) server – exposes the Kuber-
netes API, the front end for the control plane, and is responsible for validating
and configuring data for objects.

• ETCD (Persistent Store) – a high availability and consistent key-value
store for storing all cluster data.

• Scheduler – watches for new unassigned Pods and depending on different
factors decides which node the Pod should be running.

• Controller Manager – runs controller processes each one having well-separated
responsibilities, to manage nodes, jobs, service accounts, etc.

• Cloud Controller Manager – embeds cloud-specific control logic which links
the cluster into the cloud provider’s API for the sake of separation of compo-
nents. If the cluster is hosted on-premises there is no cloud controller manager.

The nodes often referred to as workers, consist of three main components: (i) Kubelet;
(ii) Kube Proxy; (iii) Container Runtime. In general, they maintain pods running
and provide the Kubernetes running environment.

As stated, Kubernetes works with objects that are defined with YAML notation.
The following resources are the most used and considered the core to leverage the
potential of Kubernetes:

• Pod – is the smallest deployable unit in a cluster. It contains a collection of
application containers and volumes running in the same environment, sharing
resources such as IP addresses, ports, and others. Containers in the same Pod
always run in the same node [17].

• Deployment – manages release of new versions. It simplifies rollbacks and
updates, typically referred to as rollouts. The rollout process waits for the
new version of the Pods to be ready to substitute old replicas, ensuring no
downtime.

• Service – abstraction which defines a logical set of Pods and a policy on how
to access them. The set of Pods targeted by a Service is usually determined
by a selector. A service can be one of four types: ClusterIP, NodePort, Load-
Balancer, and ExternalName.

• Ingress – exposes HTTP and HTTPS routes from outside the cluster to ser-
vices within the cluster. Traffic routing is controlled by rules defined on the
Ingress resource. An ingress controller must be deployed for additional func-
tionalities of more recent controllers.

• ConfigMaps/Secrets – a ConfigMap is an API object used to store non-
confidential data in key-value pairs. On the other hand, a Secret contains
sensitive data such as passwords, tokens, keys, etc. A pod can use these
resources as files/folders and environment variables.

2.3. Related Technologies 15

• Namespace – used to organize objects in the cluster. It acts like a folder, but
instead of files, it holds a set of objects (pods, deployments, services, etc).

Rancher

Rancher is a multi-cluster management system that simplifies the management of
multiple Kubernetes clusters anywhere and on any provider [19]. One of the most
important features is the unified multi-cluster application management. It stream-
lines deployments across different clusters with centralized authentication, access
control, and observability.

In addition to importing existing clusters into the system, Rancher also supports the
provisioning of new Kubernetes clusters or even creating compute nodes, proceeding
with the installation and configuration of a new cluster. Other features, such as
backups, CI/CD integration, application catalogation, storage orchestration, policy
enforcement, and others are included and applied to clusters that join the system.

Nomad

Nomad is a schedular and workload orchestrator that lets users deploy and manage
any application type across hybrid environments [20]. The main features of Nomad
are:

• Efficient resource usage – efficiently distributes the workloads across client
nodes through a process known as bin packaging. This process is where the
client is filled with items that maximize the utilization itself.

• Self-healing – monitor events and act according to the problem to bring up
any down resources.

• Zero downtime deployments – it supports different update strategies to
avoid downtime of applications.

• Different workload types – it allows the orchestration of different workload
types. Nomad is extensible by design, and it is possible to add new task driver
plugins for running customized workloads

• Cross platform support – it runs as a single binary and can be installed in
different types of platforms (MacOS, Windows, Linux, etc).

• Single unified and declarative workflow – the workflow for deploying and
maintaining applications is unified in a declarative job that specifies workload
type and configuration, and other relevant attributes.

2.3.2 GitOps

GitOps is a model introduced by Weaveworks for operating cloud-native applica-
tions using the Version Control System (VCS) as a single source of truth [21]. The
management of deployments is done by creating, updating, or deleting declarative
files in a repository, similar to a developer-centric experience. This model leverages
its use cases by adopting paradigms such as IaC and CI/CD practices, previously
described in this chapter.

16 Chapter 2. State Of The Art

There are two different approaches for deployments: push-based and pull-based.
The main difference between the strategies is how they ensure that the state of the
infrastructure is consistent with the declaration present in the repository.

The push-based approach takes advantage of CI/CD tools (Azure DevOps pipelines,
Jenkins, and others), and when changes are detected in the repository (pull request
via merge), it triggers a build pipeline, compiling the software and ensuring the
repository containing deployment artifacts are updated. The CI pipeline triggers a
CD pipeline that will update the environment to the new desired state.

The pull-based strategy (Figure 2.3) relies on an entity often called an operator,
which substitutes the CD pipeline, and this is mainly applicable in container orches-
tration platforms such as Kubernetes.

Figure 2.3: Pull-based deployment strategy [22]

The operator is responsible for constantly checking the repository, where the de-
ployment artifacts reside, and changing the current state of the environment to the
one described in the repository. This approach has several benefits compared to the
previous one:

• Consistency between the desired and current state is always being checked by
the operator, rapidly detecting deviations.

• Alerts can be configured to automatically be triggered when the state is not
in a compliant state.

• Sensitive data exists only in the environment, removing the necessity to have
confidential content in CD pipelines.

Flux

Flux (also known as FluxCD) is an open source, graduated project developed by
the Cloud Native Computing Foundation (CNCF). It is a tool that helps synch
Kubernetes clusters with the desired state, often declared in Git repositories [23].
Since it applies and maintains configurations that reside in places considered the
source of truth, it follows a GitOps approach.

The deployment strategy that Flux adopts is the pull-based deployment thus, it
inherits all benefits of the mentioned strategy, such as detecting deviations in con-
figurations, alerts when such deviations occur, and more. It means an additional

2.3. Related Technologies 17

entity (an operator) must exist within the Kubernetes cluster for analysing cluster
state and pulling configurations whenever changes are detected.

It also integrates with different technologies, such as Prometheus and Grafana for
monitoring deployments and reconciliation cycles, and Helm and Kustomize for de-
ployment templating.

2.3.3 Infrastructure Provisioning and Management

This subsection describes infrastructure provisioning tools, such as infrastructure-
as-code and management tools for Kubernetes multi-cluster orchestration.

Terraform

Terraform is an open source IaC tool that is used to define resources in declarative
configuration files that facilitate the versioning, reusing, and sharing [24]. It was
created and maintained by Hashicorp and developed using the Go programming
language. This utility is responsible for interpreting the developed declarative files –
which is the final state of the infrastructure – making the necessary API calls to one
or more providers such as Amazon Web Services (AWS), Azure, GCP, and others.

Compared to other IaC tools, Terraform is a provisioning tool since it deploys in-
frastructure, but it does not guarantee that it will be fully configured at the end of
the process. It inherits a declarative approach due to the HashiCorp Configuration
Language (HCL) used for declaring resources, and it follows the principle of im-
mutable infrastructure. This means that the state of the infrastructure must match
what is declared in the actual code.

Open Cluster Management

The Open Cluster Management (OCM) is a community-driven platform that offers
Kubernetes multi-cluster orchestration by being extensible and modular by design
[25]. This management tool operates in a decentralized fashion – specifically in a
hub-spoke architecture – where each managed cluster is responsible for its recon-
figuration and policy enforcement. It achieves this by using the operator pattern
in Kubernetes and the hub-spoke architecture used since managed clusters pull and
reconcile needed information from the hub cluster.

The mentioned architecture, when applied with the pull-based strategy, minimizes
the network requirements for registering a new cluster. Any cluster that can reach
the hub cluster can join and be managed by the system. Therefore, private clusters
that do not have their Kubernetes API exposed can be managed as well [26]. The
hub cluster is the only one that must be accessible.

2.3.4 Application Management

This subsection presents technologies that focus on the configuration and manage-
ment of complex applications in orchestration engines, such as Kubernetes.

18 Chapter 2. State Of The Art

Helm

Helm is the first application package manager that ships applications to Kubernetes
[17][23]. This tool operates as other languages that create parameterized configu-
rations. These configurations often receive a template - which hides all the extra
configurations that can be automated - and a parameters file - interpreted by the
template to generate the desired artifacts [17].

The packaging format used by Helm is called a chart, which is a set of files that
describe related Kubernetes resources that compose an application [27]. In Helm,
the concept of release is an instance of a chart associated with a configuration (input
parameters). The release is tied to a specific version, and it is possible to upgrade
or rollback it regarding the defined chart.

Managing applications with Helm offers a repeatable application installation, easy
upgrades with custom hooks, simplified share of charts, and the possibility of roll-
backs.

HyScale

HyScale is an open source application deployment tool that provides app-centric
abstraction capabilities [28]. This technology offers different benefits, such as the
generation of Docker files and images through package code, the generation of Ku-
bernetes declarative files from an abstract specification, and automatically obtaining
and troubleshooting application information and errors.

Although it is built towards a migration solution for applications, the abstraction
layer that HyScale provides helps optimise and automate the management of appli-
cation configurations and the respective deployment in multiple clusters.

This product has open source and enterprise versions. The difference is that the
enterprise solution is built on top of the free version, additionally offering a PaaS
service with multi-cloud management.

Crossplane

Crossplane is another CNCF community-driven project that focuses on automating
application deployment on infrastructure regarding heterogeneous platforms [29].
Underlying managed services can be composed using high-level abstractions, mak-
ing this technology a candidate for standardised deployment and provisioning of
infrastructure across diverse cloud providers. Its backend is highly extensible, which
enables building a control plane to orchestrate applications and infrastructure in a
platform-agnostic way.

The community can contribute with new providers, extending the support of Cross-
plane. It focuses more on facilitating the creation of resources in multiple clouds
but can be used to integrate with many tools such as Terraform, Ansible, Helm,
ArgoCD, etc.

2.4. Value Analysis 19

KubeVela

KubeVela is a cloud platform engine based on OAM specification, designed to lever-
age consistent application delivery on heterogeneous platforms [10]. As it uses Ku-
bernetes as an abstraction layer, deployment artifacts are declarative, permitting
the adoption of GitOps practices. The extension or refactoring of certain behaviours
for components is possible due to the support of Configure Unify Execute (CUE)
[30] language. Hybrid scenarios (multi-cluster, multi-cloud, etc) are supported by
default, including the rollout of environments, canary, blue-green, and continuous
verification strategy deployments.

The architecture of the technology is divided into several components, which are:

• Core Controller – core control of logic about the entire system (orchestrating
deployments, garbage collecting, etc);

• Cluster Gateway Controller – multi-cluster access interface that ensures
authentication and authorization in managed clusters;

• Addons – responsible for registering and managing definitions and Custom
Resource Definition (CRD) controllers for extended functionalities.

OAM is being maintained by KubeVela, and the definition of an application is com-
posed of four different parts: Component, Trait, Policy, and Workflow [31].

The component and trait sections are described in section 2.2. However, policy and
workflow definitions are new to the system. The policy definition enunciates overlays
of configurations, topologies, traffic rules, and more, affecting the application defini-
tion itself. The workflow section describes every step of the delivery process, which
allows the trigger of alerts when a deployment occurs and other possible scenarios.

2.4 Value Analysis
Value Analysis is a process of systematic review used to compare the functionali-
ties/characteristics of a product required by a specific customer, to meet their re-
quirements. This has to be done keeping the lowest cost with the stated performance
and reliability [32].

2.4.1 Innovation Process

The innovation process is composed of three sequential phases: the Fuzzy Front End
(FFE), New Product Development (NPD), and commercialization (represented in
Figure 2.4). Often chaotic, experimental, and unpredictable, the FFE stage is gen-
erally one of the greatest opportunities to improve the innovation process [33]. This
is due to the dynamic nature of the process where new opportunities are identified
and analysed, and from these, ideas are generated and selected.

The FFE was not developed as thoroughly as NPD regarding best practices. This
underdevelopment caused a lack of common terms in the area, thus innovation pro-
cess practices comparison between different companies was complex. With this, the
difficulty of creating new knowledge and comparing different stages of the process

20 Chapter 2. State Of The Art

Figure 2.4: The Innovation Process [33]

increased, leading to the creation of a new model to standardize the insights and
terminology used in the early stages of developing a new product.

The preferred model used for addressing the mentioned issues is the New Concept
Development (NCD) (Figure 2.5). As described, the model was defined due to the
need for a common vocabulary across companies, providing a clear definition of
the market and technical requirements and an objectively defined business plan.
The NCD construct is a relationship model, composed of three major parts: the
engine, five activity elements around it, and influencing factors. Also, the model is
represented in a circular shape highlighting the fact that new ideas are expected to
flow, circulate, and iterate between and among all the five activity elements.

Figure 2.5: The New Concept Development (NCD) Model [33]

The engine is what sets the environment for successful innovation. It is composed
of organization characteristics like leadership, culture, and business strategy that
drive the five key elements that are controllable by the organization (opportunity
identification, opportunity analysis, idea generation and enrichment, idea selection,
and concept definition).

The five activity elements controllable by the organization are:

• Opportunity Identification – the organization identifies opportunities aligned
with its interests, which normally are driven by business goals.

• Opportunity Analysis – the captured opportunity is analysed to confirm it
is worth pursuing.

2.5. Summary 21

• Idea Generation and Enrichment – may be a formal process or not and
concerns the generation and development in depth of a concrete idea.

• Idea Selection – from a pool of generated ideas, selecting the ones that are
the most relevant for increasing business value.

• Concept Definition – the development of an investment case consisting of
qualitative and quantitative information, often referred to as criteria, to sup-
port decisions.

The influencing factors consist of organizational capabilities, (that determine how
opportunities, ideas, and concepts complement and generate each other), customer
and competitor influences, the volatility of the outside world (laws, environmen-
tal regulation, etc), and the development of sciences and technology to regularly
implement them into products.

2.4.2 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a general theory of measurement that
helps quantify weights of decision criteria when comparing alternatives [34]. It seg-
ments the problem using a hierarchy model organized by decision levels, simplifying
decisions and understanding which alternative suits a solution to solve the described
problem.

This hierarchical model starts with the problem/focus and descends to criteria (or
even more in-depth, subcriteria) which are considered relevant, ending at the possible
alternatives where one will be selected. Alternatives may vary depending on the
specified context/scope or criteria.

2.5 Summary
This chapter presents theoretical background about container orchestration, cloud
computing, continuous practices and infrastructure-as-code, which supports ad-
vanced topics in the following chapters.

The SMR methodology is used to search for related work regarding the defined re-
search questions. A total of 21 articles were considered relevant, and the presented
related work describes investigations regarding the orchestration of applications in
hybrid scenarios. The combination and transformation of different abstraction mod-
els (TOSCA and OAM), the creation of abstraction layers on top of other technolo-
gies or the development of a framework based on an abstraction model are some of
the work found.

Finally, related technologies are described, and most are related and used in the
context of the Kubernetes ecosystem. Also, the value analysis theory, including the
innovation process and AHP is presented to support the next chapter’s develop-
ment.

23

Chapter 3

Analysis

In this chapter a value analysis is presented using part of the innovation process and
the AHP to identify and analyse the business value of this project. Thereafter, a
requirement analysis is done, using the FURPS+ method to gather functional and
non-functional requirements that are relevant to develop a new continuous deploy-
ment process to orchestrate applications in hybrid environments.

3.1 Value Analysis
In this section the NCD model will be used to identify and analyse the opportunity
using articles to justify such perspectives, ending with the concept definition, identi-
fying customer segments and associated benefits and inconveniences. Having a clear
and well-defined concept, the AHP method will be applied to identify which tool
is more adequate according to the criteria, to meet most of the company’s business
requirements.

3.1.1 New Concept Development (NCD)

The innovation process briefly consists in producing an idea, thoroughly developing
it, and commercialising it. As previously stated, the start of the process is often
chaotic, which affects its future stages. Therefore, the NCD model aids in this early
phase to gather and structure information, to define concrete concepts.

Opportunity Identification

The delivery of the product in perfect condition is a desired accomplishment for the
customer but also for the entity that developed it. Nowadays, customers want new
versions of products, with advanced functionalities more regularly, which creates a
fast-paced development cycle. The software must be deployed quickly and seam-
lessly, so operations teams prepare, manage and maintain infrastructure to receive
new software products.

Cloud computing surfaced not a long time ago, and many organizations adopted it,
to ease the management of the infrastructure since the service provider is responsible
for managing various aspects of the infrastructure and services, depending on what
model they follow [35]. This implies that the end-user does not have to be concerned
about the hardware, network configuration (to some extent) and other specifications

24 Chapter 3. Analysis

because it is being managed by a third party. Globally, the different cloud providers
have been developing at fast rates [36] as shown in the Figure (3.1).

Figure 3.1: Global cloud technology market growth, in billions of
dollars [36]

Also, compared to traditional IT infrastructure (on-premises or in-house), organiza-
tions prefer using public or private clouds over time, with highlighting on the public
ones. The increase in private cloud use cases is often caused by data security policies
and confidentiality (Figure 3.2).

Figure 3.2: Cloud infrastructure growth by model [36]

However, due to organizational preferences, best practices or Disaster Recovery
Plans, organizations tend to combine more than one service provider, including
their on-premises infrastructure. This is because there are many benefits to adopting
these hybrid models such as control, scalability, security, cost savings and business
continuity [37].

3.1. Value Analysis 25

An improvement of the deployment process using different technologies that are
platform-agnostic could be a possible solution, focusing on interoperability stan-
dardization and federation between different providers [38].

Opportunity Analysis

As the infrastructure keeps scaling and spreading throughout platforms/environ-
ments, technology diversity increases causing difficulties in automating certain pro-
cesses due to some specific challenges when adopting hybrid or multi-cloud strategies
such as system/data backup and disaster recovery, auto scaling, system/data migra-
tion, resource monitoring and management and data protection [38]. In short, there
are difficulties in generalizing infrastructure concepts or definitions, when having
many of them to manage can lead to overwhelming tasks.

According to the information stated previously, the cloud computing market tends
to increase in the next years, although many organizations certainly prefer to fol-
low an hybrid approach due to data confidentiality, country laws regarding personal
information, and other sensitive factors. Existing technology for managing applica-
tions and infrastructure can be integrated in the development of a new improved
process which would, in fact, help operations teams organize and automate work-
flows (and sometimes, delegate tasks to software developers), while getting the most
of the infrastructure regardless of its topology.

Normally, it starts with the customer service, where infrastructure can be a decisive
factor in the quality of the final product [39]. Reliable and quick delivery of products
are decisive criteria for customers committing to a product, including Service Level
Agreements (SLA). By automating processes, IT management time and costs are
greatly reduced, eliminating recurrent tasks that are time-consuming and error-
prone, allowing to achieve a seamlessly and fast delivery of the product as mentioned
previously. Finally, being able to effortlessly recover components or data (being it
customer related or not) gives confidence when managing certain aspects of the
infrastructure.

Although the benefits are huge when using these types of technologies, depending
on the chosen cloud computing model, it can generate different concerns that orga-
nizations must be aware of. Vendor lock-in solutions, interoperability, data security,
operational limitations, extensibility and control are the major concerns [40].

CloudFoundry is an open source PaaS that can be deployed on IaaS systems [41]. In
their website are presented some known brands using their technology and exposed
their user story. Samsung in one of that companies, and the latter event was the
migration of Internet of Things (IoT) Developer Tools to CloudFoundry platform.

The mentioned organization believes that the integration of cloud technology is
undoubtedly the latest wave to take hold in the industry. Most organizations have
reached a point in time where mission-critical apps have been moved to the cloud
[42]. Since they started tracking the topic of mission-critical apps (August 2016),
51% of respondents report that type of applications were running in the cloud and
45% still use legacy environments. After that, another study was issued in April

26 Chapter 3. Analysis

2017, and the organizations running critical applications in cloud increased by a
total of 2%.

Organizations are adapting to different cloud technologies such as PaaS, containers
and serverless workloads in various ways. Another research was done regarding this
topic, and 41% of respondents answered that they are using PaaS, another 38%
were evaluating using it and only 15% were not using technologies in that segment
(Figure 3.3). Containers and Serverless technologies uses keep increasing but do not
reach the community percentages as previously stated.

Figure 3.3: Research about IT Decision Makers about PaaS, Con-
tainers and Serverless [42]

The increase in use of these types of technologies at the same time, forces IT profes-
sionals in seeking tools that complement these models together. The combination of
these concepts generates Multi-Platform Strategies. Almost half of the population
that answered the questionnaire, exactly 48%, reported using a combination of the
technologies previously described (Figure 3.4).

Figure 3.4: Market Research about use of Multi-Platform Strate-
gies [42]

Concept Definition

After identifying and analysing the opportunity, idea generation/enrichment and
selection is the next phase. However, these steps are being skipped because there is
an idea that was previously selected with help of the organization (DevScope) where
this project is to be developed. To determine if it is viable or not, there is a need to
develop an investment case where qualitative and quantitative information [33] are
gathered for sake of a decision.

3.1. Value Analysis 27

Foremost, the analysis of the different customer segments’ benefits and constraints
regarding the possible solution is described on Table 3.1. Identifying the benefits
and sacrifices of the different target segments is important, leveraging discussions
regarding how the benefits can be delivered to the customers and possibly avoid
constraints or difficulties.

Table 3.1: Benefits and Constraints by Customer Segment

Customer
Segment

Benefits Constraints

Software
Developers

Deploy applications easily with less in-
frastructure or workflow details;
Implemented observability out-of-the-
box of deployed software applications
and services.

Having to learn a specific syntax and
semantics of combined specifications.

Operation
Teams

Allow creation of new plugins for sup-
porting new use cases;
Simplified overview and management of
the infrastructure;
Increase component/template reusabil-
ity.

Having to learn a specific syntax and
semantics of combined specifications;
Less control over specific details of the
infrastructure.

Organization Decreases time of delivering applica-
tions continuously;
Less need of systems/infrastructure en-
gineers.

High investment and low return in the
first phases of the project;
New employees have to be introduced
to a newly developed tool.

Regarding the development or improvement of a continuous deployment process, the
first phases of development of a POC, consist in gathering information about the
featured topic using different sources, such as presentations, conferences, articles in
electronic databases (e.g. ACM Digital Library, B-on, Google Scholar) and books.
The use of grey literature will be avoided, however, depending on the source and on
the availability of resources, it will be considered and referenced in the bibliography.

After information gathering, the focus must be switched to the POC itself. Re-
quirements are to be gathered and described in section 3.2 that will affect how the
solution is to be developed. Also, different design or model approaches can be taken,
therefore an analysis must be done and after identifying the pros and cons of each
one, a strategy is to be selected.

The implementation phase will consist of the development of a new improved con-
tinuous deployment process, that will consider the mentioned analysis and design
processes, and also technical specifications that can affect the solution, such as pro-
gramming languages, communication interface types, and supported environments,
among others. The process will be tested by attending to existing scenarios in the
host organization and also other employees, from different teams, will use it to get
potential feedback and improve the POC.

Finally, the produced artifacts must be evaluated to ensure that they meet the ob-
jectives and requirements previously defined. In addition to the qualitative analysis,

28 Chapter 3. Analysis

a quantitative approach can also be taken considering the state of the product and
the relevance of such metrics.

3.1.2 Analytic Hierarchy Process (AHP)

Accordingly, the first phase is the definition of a hierarchical decision tree with the
levels described previously, which is represented in Figure 3.5.

Three main tools can contribute to building a new continuous deployment process,
where each one, consequently, satisfies different needs of the host organization. Hav-
ing said that, the problem is knowing what tool will fulfil the organization’s needs.

Figure 3.5: Hierarchical Decision Tree

The diverse criteria (second level) represent characteristics/requirements that are
most relevant to constitute the product. They will be used to compare each listed
alternative, and these criteria must share the same level of importance. In-depth,
these are:

• Extensibility – easily extendable when comes to adding extra functionality
or supporting new infrastructure, services, etc (e.g. plugins).

• Ease of Use – easy to use and understand without knowing infrastructure
details.

• Control – the possibility of fine-tuning infrastructure details if needed.

• Observability – constantly monitor infrastructure and applications quanti-
tative and qualitative metrics.

Finally, the options/alternatives are represented in the third level. With the help of
this process, one of the listed alternatives will be highlighted as the recommended
choice: (i) KubeVela, (ii) HyScale or (iii) Crossplane.

3.1. Value Analysis 29

Moving on to the next stage starts with the definition of a fundamental scale to
establish a priority among the different hierarchic levels. The scale that will be used
throughout the process, for both criteria and alternatives, is presented on Table 3.2,
as well as their definition and meaning.

Table 3.2: Fundamental Scale - Importance Levels of Comparison
[34]

Rating
Scale

Definition Description

1 Equal importance Two elements contribute equally to the
objective

3 Moderate importance Experience and judgement slightly
favour one element over another

5 Strong importance Experience and judgement strongly
favour one element over another

7 Very strong or demon-
strated importance

An element is favoured very strongly
over another; its dominance demon-
strated in practice

9 Extreme importance The evidence favouring one element
over another is one of the highest pos-
sible order or affirmation

2 4 6 or 8 Intermediate Values When looking for a compromise condi-
tion between two definitions

Defined the rating rules for comparison between priorities, all criteria must be com-
pared to compute the priority vector. Therefore, considering the four criteria of
the hierarchical structure previously presented, the following pairwise comparison
matrix was created (presented on Table 3.3):

Table 3.3: Criteria comparison in pairs

Extensibility Ease of Use Control Observability
Extensibility 1 1/2 1/2 4
Ease of Use 2 1 1 2

Control 2 1 1 3
Observability 1/4 1/2 1/3 1

Sum 21/4 3 17/6 10

After comparing each pair of criteria with the aid of a fundamental scale, it is possi-
ble to compute the weight for each criterion. The comparison matrix is normalized,
by adding up the values of a column and dividing each cell of the same column by the
result of the sum. Thereafter, the average of the values per row is computed, orig-
inating the weight for the given criteria. The obtained results, namely the priority
vector, are presented on Table 3.4.

To ensure the priority vector is valid, it is mandatory to evaluate its consistency.
This is done by calculating the Consistency Index (CI), which is used to compute

30 Chapter 3. Analysis

Table 3.4: Priority Vector (priority/weight of each criterion)

Criteria Weight/Priority
Extensibility 0.233
Ease of Use 0.317

Control 0.342
Observability 0.108

the Consistency Ratio (CR). If the CR is less than the threshold (0.1) defined by
the process, the judgements made in the comparison of the criteria are trustworthy.
The obtained value for the CR was approximately 0.074, which is less than the
enunciated threshold, concluding the calculated priorities are trustable.

The same process is repeated for each alternative considering the different criteria
(excluding the consistency check step). In the end, after obtaining the priority
vector associated with an alternative, these are appended in a matrix as columns,
and it is multiplied with the estimated criteria weights (Table 3.4). These provide
the alternative composite priority, shown on Table 3.5:

Table 3.5: Alternative Composite Matrix and associated Priority

Extensibility Ease of Use Control Observability Priority
KubeVela 0.444 0.608 0.286 0.648 0.464

HyScale 0.111 0.120 0.140 0.122 0.125
Crossplane 0.444 0.272 0.574 0.230 0.411

Each row represents the weight of each criterion per alternative and in the final
column the composite priorities. These values provide an answer to the previously
defined problem. According to the results of the composite priority, one concludes
that the tool to be used to help in the improvement of the process, which can man-
age multi-platform systems, should be KubeVela. In addition to the demonstrated
matrices and vectors, further calculations were done regarding the described process
which can be consulted on Appendix A.

3.2 Requirements Engineering
When developing new products or processes, it is best practice to gather functional
and non-functional requirements. A good requirement analysis phase will positively
impact the analysis, design, and, subsequently the implementation of the solution.
It also helps organise which requirements are important to the stakeholders, what
concerns they have, and constraints imposed by internal and external factors. For
this, the FURPS+ approach is used. The main functional requirements are:

FR-1. Join and manage new Kubernetes clusters
The system must allow the management of new Kubernetes clusters inde-
pendently of network restrictions of such clusters (publicly exposed or not).

3.2. Requirements Engineering 31

This means that on-premises clusters which normally are not publicly exposed
should take workloads from a central entity.

FR-2. Orchestrate application deployments across different platforms
The system must be able to orchestrate application deployments in the sup-
ported platforms (e.g. Kubernetes clusters, cloud resources, etc). One or more
entities must be responsible for reading custom resource objects in Kubernetes
and deploying the components attending to specified policies and workflows.
It must also provide a way to create new resource definitions that will output
one or more resources needed for the good operation of the application.

FR-3. Collect and store metrics/logs of applications
Whenever a new application is deployed within the system, additional con-
figurations must be created to ensure that metrics and logs are collected and
stored in long-term storage. These data must be queriable at all times. Also,
the monitoring and logging of the application can be disabled at any time by
changing the application specification. A centralized system must be respon-
sible for holding metrics and logs and maintaining backups of these.

FR-4. Watch for new and reconcile existing deployment artifacts
The system must be able to read configurations from Git repositories (the
source of truth) and apply them. If there is any configuration drift between
the current state of the application deployments and the desired state described
in the repository, such deployments must be reconciled. It must be possible
to separate different parts of the declaration file - the application specification
from the policies and workflows applied.

FR-5. Backup and restore deployment artifacts
Deployment artifacts, components, policies and workflow definitions must be
backed up remotely. This backup must be restorable at any time and the
backup policy must be configurable.

Functional requirements certainly impact the design and implementation process,
but other variables influence such stages. These factors are non-functional require-
ments, which are extremely important since they provide a certain degree of quality
measurement regarding the software to be developed. Table 3.6 describes and cate-
gorizes the non-functional attributes of the project to be developed.

Table 3.6: Non-Functional Requirements

ID Category Subcategory Description
NFR-1 Usability Learnability Users that intend to deploy an appli-

cation must be able to accomplish it
without any restraint with auxiliary
documentation.

32 Chapter 3. Analysis

NFR-2 Reliability Predictability The result of a deployment intent
without any modifications must al-
ways be the same (assuming the
deployment destinations are func-
tional).

NFR-3 Reliability Availability Despite the conditions that may af-
fect the system, it must always work
stably.

NFR-4 Performance Speed The system must deploy the artifacts
on time (depending on the scale of
the project, should be around 10-20
minutes).

NFR-5 Supportability Extensibility Must be easy to add new function-
alities to the system, considering
the communication with new hetero-
geneous environments (new clouds,
platforms, etc)

NFR-6 Supportability Maintainability The management of multiple declar-
ative files related to applications and
infrastructure must be straightfor-
ward, with a low number of depen-
dencies between files.

NFR-7 + - The use of Kubernetes to manage
and orchestrate resources is manda-
tory.

3.3 Summary
In this chapter, a value analysis was conducted to identify and analyse the value of
the developing project. Identifying and analysing the opportunity and defining the
concept were some important steps of the NCD model that helped structure and
fundament target customer segments, considering their benefits and constraints.

Then, the AHP was used to decide which technology is more adequate to integrate
into the process to be improved by attending to the organization’s needs. KubeVela
was the option with a higher priority, but Crossplane’s priority came close to it,
concluding these two technologies could be combined.

Finally, the functional and non-functional requirements were identified and deeply
described. For this, the FURPS+ methodology was used to categorize each require-
ment that is relevant, as well as constraints and concerns that will limit the options
in the design phase.

33

Chapter 4

Design

Following the steps of the DSR methodology, this chapter covers the design and
development phase. Before the implementation/development phase, a design of the
system artifacts according to the functional and non-functional requirements is done
in this chapter. It contains the system’s architecture, describing how it is structured
and what components will exist within it, including communications with external
systems. For this, the Unified Modelling Language (UML) notation is used, jointly
with the 4+1 architecture view model for describing different perspectives of the
system and the C4 model for adding variation regarding the abstraction level.

4.1 Architecture
The architecture is greatly influenced by functional and non-functional requirements.
These were identified and described in 3.2, which add constraints on how the system
will end up being structured. NFR-7 states that the use of Kubernetes is mandatory
to manage and orchestrate resources. Figure 4.1 presents a proposal of the system’s
architecture in a logical view:

System

Remote Storage Cloud 1..n

Kubernetes Cluster
1..n

VCS

Figure 4.1: Logical view of the system at context level

According to the functional requirements, existing and new Kubernetes clusters must
be managed by a central entity (FR-1). This entity will be another cluster that will
act as a hub. Other clusters will be referred to as spokes. The spoke instances
pull assigned workloads by the hub cluster. Figure 4.2 describes how the system’s
components will be distributed across the clusters according to their type.

34 Chapter 4. Design

Hub Kubernetes
Cluster

Spoke Kubernetes
Cluster(1..n)

«Deployment»
Kubernetes
API Server

«Deployment»
KubeVela

«Deployment»
Flux

Operator

«Deployment»
OCM Hub
Operator

«Deployment»
Mimir

«Deployment»
Grafana

«Deployment»
Loki

«Deployment»
Prometheus

«Deployment»
Crossplane
Operator

«Deployment»
Velero

Operator

«Deployment»
Prometheus

«DaemonSet»
Fluent Bit

«Deployment»
OCM Spoke

Operator

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S)

HTTP(S) TCP/IP

Figure 4.2: Deployment view of the system at container level

The operator/controller pattern [43] can be applied to extend the Kubernetes API.
It also emphasizes the use of microservices, so each component can be considered a
microservice having its responsibilities, following the Single Responsibility Principle
(SRP) [44]. The system is entirely built using a Components-of-the-Shelf (COTS)
strategy which focuses on using as many tools available to satisfy requirements.

The Kubernetes API server and the ETCD are core components of the Kubernetes
system itself and they play an important role in this solution since all the deployment
processes depend on native and custom Kubernetes objects interpreted by operators.

As stated, the topology of the solution will follow a hub-and-spoke strategy. The
hub cluster is a coordinating entity, and the spokes are entities managed by it.
This means the solution is, from a specific perspective, centralized since the hub
orchestrates application deployments, stores and displays long-term metrics and
backs up its state. The benefits of following such an approach are: (i) the hub ensures
that spoke clusters are working towards a common goal, minimizing duplication of
efforts; (ii) computing resources are allocated effectively; (iii) possibility of creating
policies to load balance application traffic between spokes.

4.2. Requirements 35

4.2 Requirements
This section presents the design for each functional requirement to better understand
how the components operate together to satisfy a specific requirement.

4.2.1 Cluster Management

Regarding the cluster management requirement, KubeVela and OCM are essential
components that work together to manage different clusters apart from their location
and network restricions. Figure 4.3 describes how the components are related from
a logical perspective.

System

ETCD
Kubernetes
API Server

KubeVela
OCM Hub
Operator

OCM Spoke
Operator

Figure 4.3: Cluster management design (logical view at container
level)

KubeVela acts as an abstraction and communicates with the OCM hub operator to
join new clusters and manage existing ones. The hub operator will be available to
registrations of new clusters and these can be accepted or rejected.

The OCM spoke operator has the responsibility for pulling configurations from the
hub cluster. This is done using Kubernetes objects, so almost all communication is
done through the Kubernetes API Server. This component is present in all clusters
and communicates with the ETCD, the Kubernetes default database that stores
deployed resources.

4.2.2 Application Orchestration

KubeVela and the Crossplane operators reside in the hub cluster for orchestrating
applications across platforms. Figure 4.4 presents the design regarding this func-
tional requirement.

KubeVela is responsible for abstracting application definitions and interpreting these
for deploying applications successfully. It is extensible, enabling teams to create
new definitions, each having its own behaviour (NFR-5). KubeVela also offers a
graphical user interface for managing deployments as an addon, contributing to
the solution’s usability (NFR-1). Since Kubernetes is a self-healing system and
the KubeVela operator reconciles applications periodically, the system will work as
expected (NFR-3).

36 Chapter 4. Design

System

ETCD
Kubernetes
API Server

CrossplaneKubeVela

Cloud 1..n

Figure 4.4: Application orchestration design (logical view at con-
tainer level)

Combining the extensibility of KubeVela with Crossplane, it is possible to declare
new cloud resources with the same level of abstraction to be deployed. This is
done through templates that will abstract custom resources defined by Crossplane.
KubeVela uses these templates to generate them, and Crossplane will detect new
resources created in the cluster. Then, it will perform the suitable procedures to
create the intended resources in the cloud.

4.2.3 Metrics and Logs Collection

One major concern about the orchestration of applications is the monitoring and
logging solutions. Different technologies are used to ensure metrics and logs are all
collected correctly according to the cluster they reside in. As described in section
4.1, most components will run in the hub cluster, and only collector agents will run
in the spokes. Figure 4.5 describes how the system is logically structured.

System

ETCD
Kubernetes
API Server

Grafana Mimir

Prometheus

Loki

FluentBit Remote Storage

Figure 4.5: Metrics and logs collection design (logical view at con-
tainer level)

4.2. Requirements 37

The components that reside in the hub cluster are:

• Mimir – collects large volumes of metrics sent by Prometheus replicas residing
in multiple clusters. It is also responsible for storing these metrics in an off-site
storage solution (typically, in the cloud).

• Loki – stores and queries logs from applications and infrastructure.

• Grafana – displays dashboards and information about the applications and
respective infrastructure by querying Mimir and Loki instances.

The components that reside in spoke clusters are:

• Prometheus – scrapes application and infrastructure metrics. Prometheus
replicas are deployed across multiple clusters and send collected metrics to a
long-term storage system called Mimir.

• Fluent Bit – collects, parses and writes logs from applications and infrastruc-
ture to Loki, the log aggregation system.

4.2.4 Artifact State Reconcilement

By adopting a GitOps approach, applications’ artifacts will be stored in Git repos-
itories. As mentioned, GitOps methodology can follow different strategies, such as
pull and push-based.

A pull-based strategy is adopted for this requirement to ensure consistency between
the state in the repository and the system’s state (the hub and associated spokes).
This ensures the result of deployment is always the same (NFR-2), also decreasing
deployment time due to the constant verification of differences (NFR-4). Figure 4.6
presents the logical view regarding the communication between the components.

System

ETCD
Kubernetes
API Server

KubeVela

Flux
Operator

VCS

Figure 4.6: Artifact state reconcilement design (logical view at
container level)

Flux is responsible for interpreting what deployment artifacts it must read and ap-
plying them to ensure the state of the repository is reflected on the hub cluster.

38 Chapter 4. Design

Most artifacts will be custom resources from KubeVela therefore, the declared re-
sources will be read from KubeVela and applied as expected in the correct hub
cluster. Applications’ definitions are separated into several files, making the process
of deployment straightforward since the commit of new artifacts in specific folders
triggers new deployments into the platform (NFR-6).

4.2.5 Artifact Backup and Restore

The hub cluster is responsible for holding all the artifacts and dispatching them to
spoke clusters and supported cloud vendors. Artifacts created in spoke clusters have
no risk of loss since the state resides in the hub cluster.

Therefore, the creation of backup policies must be a possibility. Since the solution
follows a GitOps approach, the repositories serve as one layer of backups. In case of
unavailability of this first layer, the state of the hub cluster is backed up and restored
at any time (NFR-3). The design of this functional requirement is demonstrated in
Figure 4.7.

System

ETCD
Kubernetes
API Server

Velero
Operator

Remote Storage

Figure 4.7: Artifact backup and restore design (logical view at
container level)

Velero is the technology used for scheduling backups and restoring the state of
the cluster. This component acts as an operator, changing its behaviour regarding
custom resources configured on the system. A default schedule policy must be
created to guarantee every deployed system has a restore point.

4.3 Summary
An architecture for the solution was presented using different views, namely the
logical and deployment views, for understanding how the system must be structured
to improve the deployment process.

According to the presented diagrams, the components will reside across multiple
Kubernetes clusters. These clusters will have different roles following hub-spoke and
artifact pull-based strategies. A COTS approach is taken, meaning that technologies
and tools that already exist will be preferred. These components combined form a
solution that will satisfy all the requirements stated in Chapter 3.

39

Chapter 5

Implementation

This section is part of the design and development phase of the DSR methodology.
This includes the development of the solution which follows a COTS approach. The
accomplishment of requirements specified in section 3.2 will be described here follow-
ing the proposed architecture and design in Chapter 4. The following technologies
were used for the development of the solution:

• Terraform for the provisioning of the infrastructure that will manage applica-
tions and the setup of new clusters.

• KubeVela for orchestrating application deployments across platforms, extend-
ing the functionality of these using CUE language and the OAM abstraction
model. It allows the visualisation of application deployments and respective
components.

• OCM Hub and Spoke operators are used for dispatching artifacts to multiple
clusters without the need to expose them publicly.

• Flux for reconciling the desired state with the current state in the hub cluster.

• Crossplane for deploying resources in different clouds and platforms using Ku-
bernetes custom resources.

• Prometheus for scraping infrastructure and application metrics.

• Mimir for collecting and aggregating metrics from multiple clusters.

• Loki for storing and querying applications’ logs.

• Fluent Bit for collecting, parsing and exporting logs to Loki.

• Grafana for querying both metrics and logs from the infrastructure and appli-
cations residing in it.

• Velero for backing up the state of the hub cluster and restoring it at any time.

All of the components used in the solution are configured aside from the creation
of new definitions using KubeVela, CUE language and the abstraction model OAM.
The Terraform code present in this chapter was fully developed for this project, and
it is used for provisioning and configuring all the components to make them work
together towards the orchestration of applications.

40 Chapter 5. Implementation

5.1 Cluster Management
As stated, the solution follows a hub-and-spoke strategy to manage multiple clusters
in a centralized manner. Terraform is used for reproducibility of the infrastructure
and maintenance of the latter. The code is separated into modules to increase
reusability across different instances of the infrastructure, also helping to keep them
updated with the new improvements. Updating the state of the infrastructure will
be reflected across all existing instances when adding more components.

Regarding the Terraform code in the repository, the organisation consisted of two
main folders: “infrastructure” and “modules”. The first one contains the desired
state of each hub cluster, and within each hub cluster, many spoke clusters may
exist. The second one contains the modules that are used to achieve reusability
across the different instances of the infrastructure. The “hub” and “spoke” modules
are used to set up clusters according to their role, and the others are used to create
Kubernetes clusters in different clouds that will act as hubs. For now, the only
one that exists is the “kubernetes-azure”. By design, more modules - that provision
clusters in different clouds - can be created without affecting other pieces of code
(hub and spoke specifications). The folder structure described can be analysed in
Figure 5.1.

/
infrastructure

<hub-name>
<spoke-name>

modules
kubernetes-azure
kubernetes-<cloud>
hub
spoke

Figure 5.1: Infrastructure code folder structure

5.1.1 The Hub

The hub is responsible for managing the application deployments across different
platforms and managing joined spoke clusters. This is all possible due to KubeVela,
which provides a new way to define applications and extend capabilities in the
deployment process. The OCM also operates with KubeVela since they both work
to achieve multi-cluster deployments.

By default, a cluster is created in the cloud since a prerequisite of the hub-and-spoke
strategy is that the hub must be accessible by any spoke. By creating new modules
that contain the code to create resources in specific clouds, it is possible to provision
clusters in other clouds. Terraform supports output values, making data available
to other modules or on the command line. Every module, according to the used
provider, must declare the following output for the subsequent modules to work:

1 output " kubeconfig " {
2 value = azurerm_kubernetes_cluster .main. kube_config_raw

5.1. Cluster Management 41

3 sensitive = true
4 }

Listing 5.1: Kubeconfig output value for Azure Kubernetes Service
(AKS)

The hub module ensures the target cluster has at least one ingress controller since
access to the KubeVela dashboard and other applications inside the hub cluster is
required. The installation of KubeVela is done using a helm chart. Some values must
be set aside from the default ones for multi-cluster features to work as expected. The
code listing 5.2 shows how to deploy the helm chart using Terraform.

1 resource " helm_release " " kubevela " {
2 name = " kubevela "
3 repository = " https :// charts . kubevela .net/core"
4 chart = "vela -core"
5 namespace = "vela - system "
6 create_namespace = true
7 wait = true
8
9 set {

10 name = " featureGates . preDispatchDryRun "
11 value = " false "
12 }
13
14 set {
15 name = " multicluster . enabled "
16 value = "true"
17 }
18 }

Listing 5.2: KubeVela Helm Release

KubeVela has the concept of addons. These bring functionality without the need
to install and integrate them manually. Some of them were required to be installed
which is the case of OCM components, Dex for OpenID authentication and the
VelaUX, which is the Graphical User Interface (GUI) for KubeVela. The code listing
5.3 represents how addons can be configured.

1 module "hub" {
2 ...
3 addons = [
4 {
5 name = " velaux ",
6 parameters = [
7 { name = " gatewayDriver ", value = " nginx " },
8 { name = " domain ", value = local . hostname_suffix }
9]

10 },
11 { name = " fluxcd ", version = " 2.3.4 " },
12 { name = "dex" },
13 { name = "ocm -hub -control - plane " },
14 { name = "ocm -gateway -manager - addon " },
15]
16 ...
17 }

Listing 5.3: KubeVela addons specification

For installing the addons, the KubeVela CLI is necessary. Since it is preferred to
avoid the installation of additional tools where commands are executed manually, a
Kubernetes job is created based on a Docker image that has the necessary software.

42 Chapter 5. Implementation

Therefore, a script is generated using a Terraform template created to iterate over
the specified addons and install them using the CLI. The following code listing (5.4)
shows the used template to generate the script, injected into the Kubernetes job.

1 #!/ bin/bash
2 %{ for addon in addons }
3 vela addon enable --yes ${ addon .name }%{ for param in addon . parameters } ${

param .name }=${ param . value }%{ endfor ~}%{ if addon . version != "" } --
version ${ addon . version }%{ endif ~}

4 %{ endfor ~}

Listing 5.4: Script template for installing KubeVela addons

Dex is also configured for adding authentication and authorization to VelaUX using
OpenID connect. To achieve this, another template is used to create a configuration
in Kubernetes. Also, an application registration is created by code in Azure to fill
that template. The described code is present on Appendix B.

5.1.2 The Spokes

Spoke clusters are responsible for pulling workloads assigned to them from the hub
cluster. As mentioned, this is possible due to OCM capabilities, from registration
of multiple clusters to workload distribution.

The benefit of using OCM is that managed clusters can be private - their Kuber-
netes API is not exposed to the Internet - and can join the hub cluster if they can
reach it. This also implies that the hub cluster has its API exposed. For running
this Terraform code against private clusters the user needs to ensure that he has
connectivity to that cluster (e.g. connect to Virtual Private Network (VPN)).

Since KubeVela uses OCM to manage multiple clusters, the registration of new ones
must be issued to the KubeVela operator. Therefore, similar to the hub setup, the
spoke will also use the KubeVela CLI through the developed Docker image to join
the cluster. Once again, a Kubernetes job is created in the target cluster to perform
the join operation. Both hub and spoke kubeconfig (instructions and credentials to
communicate with the Kubernetes API) must be available within the job. The hub
kubeconfig is obtained using the output value defined in code listing 5.1 but since
the spoke infrastructure has its state, the output is not available directly. For this,
the output must be read from the remote stored state of the hub infrastructure (see
code listing 5.5).

1 data " terraform_remote_state " "hub" {
2 backend = " azurerm "
3 config = {
4 tenant_id = "<my -tenant -id >"
5 subscription_id = "<my - subscription -id >"
6 resource_group_name = "<my -resource -group >"
7 storage_account_name = "<my -storage -account >"
8 container_name = " canaveral "
9 key = " infrastructure /hub/<hub -name >/ terraform . tfstate "

10 }
11 }
12
13 module " spoke " {
14 ...
15 hub_kubeconfig = data. terraform_remote_state .hub. outputs . kubeconfig
16 }

5.2. Application Orchestration 43

Listing 5.5: Read terraform hub remote state

An example of a complete manifest of the Kubernetes job can be viewed on Appendix
B. The script template mounted in the job used for joining the hub cluster is shown
in the code listing 5.6.

1 #!/ bin/bash
2 export KUBECONFIG =/ root /. kube/hub.yaml
3 vela cluster join /root /. kube/${ spoke_cluster_name }. yaml \
4 -t ocm --in -cluster - boostrap = false \
5 --name ${ spoke_cluster_name } \
6 --yes

Listing 5.6: Script template for joining hub cluster

The command must be run against the hub cluster therefore, the “KUBECONFIG”
environment variable is set to the hub kubeconfig. Also, a specific flag is added,
demanding the use of the OCM as the multi-clustering engine.

5.2 Application Orchestration
KubeVela was chosen due to its nature of orchestrating applications. By design, it is
also extensible, which means that combined with other technologies, it can satisfy a
variety of scenarios. This is due to the use of CUE language, which helps KubeVela
encapsulate and abstract the capabilities of Kubernetes.

In this case, KubeVela was combined with Crossplane to orchestrate applications
and infrastructure independently of the platform. Crossplane takes advantage of
the extensible Kubernetes API to define custom resources and make it possible to
provision infrastructure in any cloud through declarative YAML files. The deploy-
ment of Crossplane is done using a helm release resource (see code listing 5.7).

1 resource " helm_release " " crossplane " {
2 name = " crossplane "
3 repository = " https :// charts . crossplane .io/ stable "
4 chart = " crossplane "
5 namespace = " crossplane - system "
6 create_namespace = true
7 wait = true
8
9 dynamic "set" {

10 for_each = var. crossplane_provider_packages
11
12 content {
13 name = " provider . packages [${ count . index }]"
14 value = each. value
15 }
16 }
17 }

Listing 5.7: Crossplane deployment through helm release

The hub cluster is responsible for holding the Crossplane operator, and therefore,
responsible for provisioning cloud infrastructure. Multiple provider packages can be
installed at deployment time if passed as variables to the hub module. A dynamic

44 Chapter 5. Implementation

block in Terraform allows it to span multiple blocks or parameters using a loop. In
this case, it is used to set an array of packages to be installed.

Although providers’ packages are installed, they must be configured since they re-
quire credentials and other settings to build a provider config. Creating these settings
manually and replicating them across instances would lead to prone-error configu-
rations. These provider configurations can be provisioned in a consistent and secure
way, using an Azure Key Vault to store the credentials. Terraform data blocks are
used to fetch these credentials as shown in code listing 5.8.

1 data " azurerm_key_vault " "main" {
2 name = " devscopekeys "
3 resource_group_name = data. azurerm_resource_group .main.name
4 }
5
6 data " azurerm_key_vault_secret " " crossplane_providers " {
7 for_each = toset (var. crossplane_providers)
8
9 name = " crossplane -${each. value }- provider "

10 key_vault_id = data. azurerm_key_vault .main.id
11 }

Listing 5.8: Reading providers’ credentials from Azure Key Vault

Both secrets with credentials and provider configuration are created in Kuber-
netes through templates. The templates folder has files named with conventional
names (e.g. “<provider>-creds.json” and “<provider>.yaml”). This guarantees
that provider names are passed as variables to the Terraform execution and will
be used to fetch credentials in the key vault and create the necessary configuration
for all mentioned providers. This behaviour is represented in code listing 5.9. The
secrets are created first and then the providers’ configurations are generated using
these secrets, implicitly declaring a dependency between these resources.

1 local {
2 crossplane_providers = {
3 for provider , cred in kubernetes_secret . crossplane_providers :
4 provider => templatefile ("${path. module }/ templates / crossplane /${ provider

}. yaml. tftpl ", { secret_name : cred. metadata .0. name })
5 }
6 crossplane_providers_creds = {
7 for provider , secret in data. azurerm_key_vault_secret . crossplane_providers

:
8 provider => templatefile ("${path. module }/ templates / crossplane /${ provider

}- creds .json. tftpl ", { config = jsondecode (secret . value) })
9 }

10 }
11
12 resource " kubernetes_secret " " crossplane_providers " {
13 for_each = local . crossplane_providers_creds
14
15 metadata {
16 name = "${each.key}-proviver - creds "
17 namespace = helm_release . crossplane . namespace
18 }
19
20 data = {
21 " creds " = each. value
22 }
23 }
24
25 resource " kubernetes_manifest " " crossplane_providers " {

5.2. Application Orchestration 45

26 for_each = local . crossplane_providers
27 manifest = yamldecode (each. value)
28 }

Listing 5.9: Provider configuration and credentials provisionement

The templates vary between providers, and for the current solution, only Azure
configurations were developed. An example of this is shown in code listing 5.10.

1 ap iVers ion : azure . upbound . i o / v1beta1
2 metadata:
3 name: d e f a u l t
4 kind: Prov iderConf ig
5 spec :
6 c r e d e n t i a l s :
7 source : Sec r e t
8 s e c r e t R e f :
9 namespace: c ro s sp lane −system

10 name: ${ secret_name}
11 key: c r eds

Listing 5.10: Azure provider configuration example

To demonstrate the extensibility of the combined technologies, a new component
definition was created in the hub cluster, with the help of KubeVela, the CUE
language and Crossplane. The objective is to create a new type of component
among existing ones that could create a resource group, with a Structured Query
Language (SQL) server and respective databases.

For creating this new definition and render it to a YAML file, the commands in code
listing 5.11 are executed:

1 vela def init azure -sql - server \
2 -t component \
3 -o ./ definitions / component /azure -sql - server .cue
4
5 vela def render ./ definitions / component /azure -sql - server .cue \
6 -o ./ definitions / component /azure -sql - server .yaml

Listing 5.11: Create new component definition

The definition is then edited to match the desired outputs. This is done through
templates and input parameters. The code listing 5.12 refers to the created defini-
tion.

1 import (
2 " encoding / base64 "
3)
4
5 "azure -mssql - server ": {
6 attributes : workload : definition : {
7 apiVersion : "sql. azure . upbound .io/ v1beta1 "
8 kind: " MSSQLServer "
9 }

10 type: " component "
11 }
12
13 template : {
14 parameter : {
15 name: string

46 Chapter 5. Implementation

16 adminUser : string
17 adminPassword : string
18 location : string
19 resourceGroupName : string
20 resourceGroupLocation : string
21 version : *"12.0" | string
22 databases : *[] | [... string]
23 }
24
25 output : {
26 apiVersion : "sql. azure . upbound .io/ v1beta1 "
27 kind: " MSSQLServer "
28 metadata : name: parameter .name
29 spec: {
30 forProvider : {
31 administratorLogin : parameter . adminUser
32 administratorLoginPasswordSecretRef : {
33 key: "admin -login - password "
34 name: "\(parameter .name)-admin - secret "
35 namespace : context . namespace
36 }
37 location : parameter . location
38 minimumTlsVersion : "1.2"
39 resourceGroupName : parameter . resourceGroupName
40 version : parameter . version
41 }
42 writeConnectionSecretToRef : {
43 name: "\(context .name)-connection - details "
44 namespace : context . namespace
45 }
46 }
47 }
48 }

Listing 5.12: Azure SQL server component definition in CUE
language

A component definition must always have a primary output but support the creation
of additional outputs. These are omitted, therefore to view the whole definition
check Appendix B. Aside from the SQL server, a resource group and databases
are created using the custom resources defined by Crossplane. The orchestration
of these resources is possible due to the provider configuration that was described
before. For now, there is only one default configuration, but it is possible to extend
these definitions and support the injection of other configurations by their name.

Besides the component definition, a trait definition was created as well. Traits
are management requirements of an artifact associated with a specific component.
Trait definitions have access to the application’s and component’s context, including
other trait outputs. Therefore, a trait definition was developed to generate a custom
resource representing a new entry in the Domain Name System (DNS) provider in
use. In this case, the Kubeflare operator interprets the custom resources and creates
the records in Cloudflare accordingly. The code listing 5.13 describes this feature.

1 import " strings "
2
3 " cloudflare -dns": {
4 type: " trait "
5 }
6
7 template : {
8 host: context . outputs . ingress .spec. rules [0]. host

5.3. Metrics and Logs Collection 47

9 parts : strings . Split (host , ".")
10 domainZone : parts [len(parts) - 2] + "." + parts [len(parts) - 1]
11
12 parameter : {
13 publicIpAddress : string
14 }
15 outputs : {
16 dnsRecord : {
17 apiVersion : "crds. kubeflare .io/ v1alpha1 "
18 kind: " DNSRecord "
19 metadata : {
20 name: context .name
21 labels : {
22 "app.oam.dev/ cluster ": " local "
23 }
24 }
25 spec: {
26 zone: domainZone
27 record : {
28 type: "A"
29 name: host
30 content : parameter . publicIpAddress
31 proxied : true
32 ttl: 3600
33 }
34 }
35 }
36 }
37 }

Listing 5.13: Trait definition for creating a record in Cloudflare

The resource is created based on the output of another trait (the gateway trait)
and is responsible for creating an ingress resource in the cluster. By accessing that,
the name for the A record is computed instead of receiving it from a parameter.
Regarding the public IP address, it has to be passed as a parameter to complete the
creation of the new record targeting the correct infrastructure entry point.

5.3 Metrics and Logs Collection
Each cluster has its responsibility, depending on its role (hub or spoke), regarding
the collection and storage of applications’ metrics and logs. The hub clusters are
responsible for storing the received data since they do not communicate with spoke
clusters. The hub-and-spoke architecture combined with the pull-based strategy
favours the adopted strategy for metric and log collection. The spoke clusters collect
and send metrics and logs to the centralized system, in this case, to the hub cluster.

5.3.1 The Hub

A helm release is used to deploy Mimir which will be queried by Grafana and receive
logs from other instances like Prometheus. The creation of the helm release is
simplistic, similar to others shown previously. Since the Mimir write endpoint will
be publicly exposed, it has at least to have basic authentication configured to avoid
unauthorized push of metrics by unknown entities. The password varies according
to the cluster group name (also known as the hub cluster name), and it is generated

48 Chapter 5. Implementation

within the Terraform code and stored in Azure Key Vault (code listing 5.14). Loki,
the entity responsible for log collection and aggregation, follows the same approach.

1 resource " random_password " " mimir_password " {
2 length = 32
3 override_special = "!@#%&*() -_=+[]{} < >:?"
4 keepers = {
5 " cluster_group_name " = var. cluster_group_name
6 }
7 }
8
9 resource " azurerm_key_vault_secret " " mimir_password " {

10 name = "mimir - password "
11 value = random_password . mimir_password . result
12
13 key_vault_id = data. azurerm_key_vault .main.id
14 }

Listing 5.14: Generation and storing of Mimir credentials

Mimir and Loki must have their helm releases configured with the correct values
to enable basic authentication. This is done using Terraform templates. The code
listing 5.15 presents a part of the Mimir input configuration receiving the authenti-
cation details (username and password) and the configured hostname accessible by
all spoke clusters.

1 nginx:
2 r e p l i c a s : 1
3 r e s o u r c e s :
4 l i m i t s :
5 memory: 731Mi
6 basicAuth:
7 enabled: true
8 username: ${ basic_auth . username}
9 password: ${ basic_auth . password }

10 i n g r e s s :
11 enabled: true
12 ingressClassName: nginx
13 host s :
14 - host : ${hostname}
15 paths:
16 - path: /
17 pathType: Imp lementat i onSpec i f i c
18 t l s : []

Listing 5.15: Mimir basic authentication configuration

As stated, Mimir is a long-term storage solution for metrics. It aggregates the
metrics in an external storage to have them available whenever needed. The storage
configuration has to be passed to the helm release (code listing 5.16 and 5.17). The
configuration depends on which cloud the hub cluster was created. For example,
when creating an AKS cluster, the developed Terraform code will create a storage
account generating an adequate configuration for Mimir.

1 output " storage_configuration " {
2 value = {
3 backend = " azure "
4 parameters = {
5 account_key = azurerm_storage_account .main. primary_access_key

5.3. Metrics and Logs Collection 49

6 account_name = azurerm_storage_account .main.name
7 endpoint_suffix = "blob.core. windows .net"
8 }
9 }

10 }

Listing 5.16: Mimir long-term storage configuration output

1 mimir:
2 s t ruc turedCon f i g :
3 common:
4 s t o rage :
5 backend: ${ s to rage . backend}
6 ${ s to rage . backend}:
7 ${ indent (10 , yamlencode (s to rage . parameters)) }
8 blocks_storage :
9 backend: ${ s to rage . backend}

10 ${ s to rage . backend}:
11 container_name: mimir−b locks
12 alertmanager_storage :
13 ${ s to rage . backend}:
14 container_name: mimir−alertmanager
15 ru l e r_s to rage :
16 ${ s to rage . backend}:
17 container_name: mimir−r u l e r
18 l i m i t s :
19 max_global_series_per_user: 1000000

Listing 5.17: Mimir long-term storage configuration

Grafana is the component that will allow users to view metrics and logs, apply filters
to them and create or import existing dashboards to track them over time. For this,
Grafana must reach the data sources where metrics and logs are collected. These
data sources are handled by the Terraform code as well through templates. The
output of these templates will be used to create ConfigMaps - a Kubernetes object
that holds configurations typically without any sensitive data - that are injected into
Grafana with a specific label indicating that must be processed by itself (see code
listing 5.18).

1 local {
2 mimir_datasource = templatefile ("${path. module }/ templates / mimir / datasource .

yaml. tftpl ", {
3 query_frontend_endpoint = "${ local . mimir_internal_endpoint }/ prometheus "
4 basic_auth = local . mimir_basic_auth
5 })
6 loki_datasource = templatefile ("${path. module }/ templates /loki/ datasource .

yaml. tftpl ", {
7 endpoint = "${ local . loki_internal_endpoint }"
8 basic_auth = local . loki_basic_auth
9 })

10 }
11
12 resource " kubernetes_secret " " grafana_datasources " {
13 metadata {
14 name = "grafana - datasources "
15 namespace = helm_release . kube_prometheus_stack . namespace
16 labels = {
17 grafana_datasource = "1"
18 }
19 }

50 Chapter 5. Implementation

20
21 data = {
22 "mimir -ds.yaml" = local . mimir_datasource
23 "loki -ds.yaml" = local . loki_datasource
24 }
25 }

Listing 5.18: Grafana datasources generation (for Mimir and Loki)

5.3.2 The Spokes

Helm releases are used to deploy Prometheus and Fluent Bit, each responsible for
scraping metrics and collecting logs, respectively. Input values for each release are
one more time done using templates which receive Mimir and Loki settings, such as
the public endpoints and credentials for authentication.

Prometheus has a feature known as remote write, which sends metrics to another in-
stance. Therefore, it is configured to send these metrics to Mimir. The configuration
for the monitoring stack is described on code listing 5.19.

1 prometheus:
2 prometheusSpec:
3 e x t e r n a l L a b e l s :
4 c l u s t e r : ${ cluster_name }
5 prometheusExternalLabelName: c l u s t e r
6 repl icaExternalLabelName: __replica__
7 remoteWrite:
8 - u r l : ${ mimir_distr ibutor_endpoint }
9 headers :

10 X−Scope−OrgID: "1"
11 basicAuth:
12 username:
13 key: username
14 name: ${mimir_auth_creds_secret_name}
15 password:
16 key: password
17 name: ${mimir_auth_creds_secret_name}
18

19 gra fana :
20 enabled: fa l se

Listing 5.19: Prometheus configuration

The Fluent Bit configuration is more extended since it works with inputs, parsers
and outputs. By default, it will collect logs from all containers within the cluster
it lives in. Depending on the size of the cluster, a massive quantity of logs will be
sent to Loki, which means more infrastructure costs. Sometimes, logs from some
development environments or specific non-critical instances are not required to be
processed, meaning they can be ignored.

The first thing to do is to configure Fluent Bit with zero inputs and configure the
outputs to point to Loki public endpoint as shown in code listing 5.20.

1 c o n f i g :
2 inputs : ""
3 outputs : |

5.3. Metrics and Logs Collection 51

4 [OUTPUT]
5 name l o k i
6 match ∗
7 host ${ lok i_host }
8 port 443
9 http_user ${ loki_basic_auth . username}

10 http_passwd ${ loki_basic_auth . password }
11 t l s on
12 t l s . v e r i f y on
13 tenant_id ${ tenant_id }
14 auto_kubernetes_labels true
15 l a b e l s job=f l u e n t b i t , c l u s t e r=${ cluster_name }

Listing 5.20: Fluent Bit configured inputs and outputs

Although Fluent Bit has a hot reload feature that allows users to inject configurations
on the fly, it does not support mounting created ConfigMaps with specific labels like
Grafana. For this, an additional container was added to replicate this feature (see
code listing 5.21). It watches for ConfigMaps with the label “fluent_bit_input” and
the respective value “1”. Then, it puts them in the “/tmp/config” folder.

1 ext raConta iner s :
2 - name: f l u e n t b i t −sc−c o n f i g s
3 image: k i w i g r i d /k8s−s i d e c a r : 1 . 2 5 . 0
4 command: ["/bin/sh" , "-c" , "touch /tmp/config/dummy.conf && python -

u /app/sidecar.py"]
5 env:
6 - name: METHOD
7 value : WATCH
8 - name: NAMESPACE
9 value : ALL

10 - name: LABEL
11 value : f luent_bit_input
12 - name: LABEL_VALUE
13 value : "1"
14 - name: FOLDER
15 value : /tmp/ c o n f i g
16 - name: RESOURCE
17 value : configmap
18 - name: REQ_METHOD
19 value : POST
20 - name: REQ_URL
21 value : http:// l o c a l h o s t :2020/ api /v2/ re l oad
22 volumeMounts:
23 - name: conf
24 mountPath: /tmp/ c o n f i g

Listing 5.21: Fluent Bit configuration reloader container

The temporary folder is shared between the Fluent Bit container and the extra
container. Then, in the service configuration, an include statement is present to load
additional configurations (code listing 5.22, line 14) by the container that performs
the creation of ConfigMaps and reload of Fluent Bit.

1 extraVolumeMounts:
2 - name: conf
3 mountPath: / f l u en t −b i t / e t c / conf / ext ra

52 Chapter 5. Implementation

4

5 extraVolumes:
6 - name: conf
7 emptyDir: {}
8

9 hotReload:
10 enabled: true
11

12 c o n f i g :
13 s e r v i c e : |
14 @INCLUDE / f luen t −b i t / e t c / conf / ext ra /∗.conf

Listing 5.22: Reload mounted inputs configuration files on the fly

5.3.3 Enabling Log Collection

After the infrastructure is ready for pushing and storing logs, new Fluent Bit inputs
need to be created for applications residing in a specific namespace to have their
logs collected. This is done using the extensible capabilities of KubeVela and the
CUE language. This time, a new policy is defined in code listing 5.23.

1 "container -log": {
2 type: " policy "
3 }
4
5 template : {
6 parameter : {
7 namespace : string
8 cluster : string
9 }

10 output : {
11 apiVersion : "v1"
12 kind: " ConfigMap "
13 metadata : {
14 name: "enable -logging - config "
15 namespace : parameter . namespace
16 labels : {
17 " fluent_bit_input ": "1"
18 "app.oam.dev/ namespace ": parameter . namespace
19 "app.oam.dev/ cluster ": parameter . cluster
20 }
21
22 }
23 data: "\(parameter . namespace).conf":
24 """
25 [INPUT]
26 name tail
27 path /var/log/ containers /*_\(parameter . namespace)_*.log
28 multiline . parser docker , cri
29 tag kube.*
30 mem_Buf_Limit 5MB
31 skip_Long_Lines On
32 """
33 }
34 }

Listing 5.23: Policy definition for collecting logs of applications in
a specific cluster and namespace

The inputs are generated by passing the cluster and namespace parameters. Policy
definitions in KubeVela generally do not have access to other policies. Therefore,

5.4. Artifact State Reconcilement 53

finding the target namespace and cluster overridden by other policies is difficult.
The most simplistic approach is to request the user these parameters, which makes
it more descriptive since it is possible to check what namespaces are being watched,
by looking at the policy logic.

Also, it is important to include the label in line 17 because the extra container
described previously is watching for new configurations with that specific label and
value.

5.4 Artifact State Reconcilement
As stated in functional requirements, when a declaration of an application is created
in a repository, it must be created in the correct hub cluster. Then, the hub cluster
will handle the deployment of the application as it should. The heeded strategy
is a GitOps-based one, the pull-based approach. Following this strategy means an
operator lives within the cluster and will pull configurations from repositories. Flux
is used to implement this workflow and was deployed as a KubeVela addon mentioned
in section 5.1.

Kustomize was used following the separation of concerns of the custom resource of
KubeVela, the “Application” resource. As mentioned, the resource states the compo-
nents, policies and workflow using defined policies. Operation teams are responsible
for managing policy and workflow definitions, while development teams manage the
components to be deployed.

The developed Terraform project sets up the repository and Kustomization resources
that are applied. Although the project only supports declaring one default repos-
itory, it can handle extra Kustomizations. This is shown in the code listing 5.24
where default Kustomizations are declared and concatenated with additional ones
that can be passed as parameters to the hub module.

1 local {
2 merged_kustomizations = concat (var. extra_kustomizations , [
3 { name = "vela - definitions ", repo = " canaveral ", path = "./ definitions " },
4 { name = "apps", repo = " canaveral ", path = "./ gitops /ops/ clusters /${var.

cluster_group_name }" }
5])
6 kustomizations = { for k in local . merged_kustomizations : k.name => k }
7 }
8
9 resource " kubernetes_manifest " " kustomizations " {

10 for_each = local . kustomizations
11
12 manifest = {
13 apiVersion = " kustomize . toolkit . fluxcd .io/ v1beta2 "
14 kind = " Kustomization "
15 metadata = {
16 name = each. value .name
17 namespace = "flux - system "
18 }
19 spec = {
20 interval = "10m"
21 targetNamespace = "vela - system "
22 sourceRef = {
23 kind = " GitRepository "
24 name = each. value .repo
25 }

54 Chapter 5. Implementation

26 path = each. value .path
27 prune = "true"
28 timeout = "1m"
29 }
30 }
31
32 depends_on = [kubernetes_manifest . canaveral_github_repository]
33 }

Listing 5.24: Generation of Kustomization resources

These are responsible for merging the policies and workflow with the rest of the
manifest. For a better understanding of how folders are structured, Figure 5.2 is
presented.

gitops
dev

<app-name>
application.yaml
kustomization.yaml

ops
clusters

<hub-name>
<app-name>
kustomization.yaml

policies.yaml
workflow.yaml
kustomization.yaml

Figure 5.2: GitOps folder structure

For each application, a Kustomization file must exist for the operator to know what
resources to apply. More resources can exist within each application folder. These
are considered the base definition.

The “ops” folder contains a folder for each existing hub cluster. This folder structure
separates resources between infrastructures, in this case, different hub clusters. A
“kustomization.yaml” is present in each app (code listing 5.25) and will take their
base definitions in the “dev” folder and merge the defined policies and workflow
accordingly.

1 apiVersion : kustomize . config .k8s.io/ v1beta1
2 kind: Kustomization
3 resources :
4 # can be a reference to another repository file (e.g. URL)
5 - ../../../../ dev/<app -name >/
6 patchesStrategicMerge :
7 - policies .yaml
8 - workflow .yaml

Listing 5.25: Example of Kustomization for the Operations team

As mentioned, Terraform handles the creation of the default Kustomizations to
create them already pointing to the correct folder in the repository. For private

5.5. Artifact Backup and Restore 55

repositories, a secret must be referenced when creating the repository custom re-
source. The code covers this edge case, but a secret must exist within the Azure
Key Vault, which will be used across the entire project.

5.5 Artifact Backup and Restore
For backing up and restoring resources in the hub cluster, the Velero operator is used.
Similarly to other components, Velero is deployed using a helm release. The module
responsible for creating the hub cluster in the cloud also creates a storage solution
used by Mimir. This storage is shared with Velero but in a different container present
in an Azure Storage Account.

Velero also supports volume snapshotting for saving data in Kubernetes persistent
volumes. For now, this feature is not used nor is contained in the scope of this
project. Resources manifests are simply JavaScript Object Notation (JSON) objects
which occupy minimal space, and Velero zips them to reduce the impact on costs.
However, volume snapshots must be carefully handled since they can exponentially
increase costs depending on which saved data.

The mentioned module creates an output value specifying the storage configuration
for Velero (5.26). This is the same strategy used in Mimir, which enables dynamic
configuration when using a different module to create the hub cluster. Velero uses
various plugins to communicate with heterogeneous storage solutions for storing and
reading its backups. Therefore, the plugin must be configured for each provider. The
“backup_storage” field is a dynamic object that supports different values requested
by other providers.

1 output " velero_storage_configuration " {
2 value = {
3 plugin = {
4 repository = "velero -plugin -for -microsoft - azure "
5 tag = "v1 .7.1"
6 }
7 provider = " azure "
8 backup_storage = {
9 resourceGroup = azurerm_storage_account .main.

resource_group_name
10 storageAccount = azurerm_storage_account .main.name
11 storageAccountKeyEnvVar = " AZURE_STORAGE_ACCOUNT_ACCESS_KEY "
12 subscriptionId = var. subscription_id
13 }
14 credentials = <<EOT
15 AZURE_STORAGE_ACCOUNT_ACCESS_KEY =${ azurerm_storage_account .main.

primary_access_key }
16 AZURE_CLOUD_NAME = AzurePublicCloud
17 AZURE_ENVIRONMENT = AzurePublicCloud
18 EOT
19 }
20 }

Listing 5.26: Output of storage configuration for Velero (Azure
specific)

To start backing up the state of the cluster, creating one or more schedule policies
is needed to trigger the operator to create several backups recurrently. A default
schedule is created if none are specified when provisioning the infrastructure (see

56 Chapter 5. Implementation

code listing 5.27). This is done to enforce backup policies for relevant resources. It
backs all types of resources of all namespaces daily with a Time to live (TTL) of 24
hours, also known as the retention period.

1 variable " velero_backup_schedules " {
2 type = list(object ({
3 name = string
4 included_namespaces = list(string)
5 included_resources = list(string)
6 cron_expression = string
7 time_to_live = string
8 }))
9 default = [{

10 name = " default ",
11 included_namespaces = ["*"],
12 included_resources = ["*"],
13 cron_expression = "0 1 * * *",
14 time_to_live = "24 h0m0s ",
15 }]
16 }

Listing 5.27: Velero backup schedules variable definition and
default value

The creation of these schedules comes from templates that generate custom resources
defined by Velero itself. The input variable described is looped to create all the
schedules. Code listing 5.28 represents a template of a schedule resource. Velero
will read these resources and attend to these policies to create the desired backups
targeting namespaces and resources defined in the policy.

1 %{ f o r schedu le in s chedu l e s }
2 ---
3 ap iVers ion : v e l e r o . i o /v1
4 kind: Schedule
5 metadata:
6 name: ${ schedu le . name}
7 namespace: ${namespace}
8 spec :
9 template:

10 includedNamespaces:
11 %{ f o r ns in schedu le . included_namespaces ~}
12 - "${ns}"
13 %{ endfor }
14 inc ludedResources :
15 %{ f o r r e s in schedu le . inc luded_resource s ~}
16 - "${res}"
17 %{ endfor }
18 snapshotVolumes: fa l se
19 t t l : ${ schedu le . t ime_to_live }
20 schedu le : ${ schedu le . cron_express ion }
21 %{ endfor ~}

Listing 5.28: Velero backup schedules template

5.6 Summary
This chapter presented an overview of the different topics the implementation pro-
cess approaches. It includes how: (i) clusters are managed; (ii) applications are

5.6. Summary 57

orchestrated; (iii) metrics and logs of deployed applications are collected and stored;
(iv) artifacts state are continuously reconciled; (v) artifacts are backed up and re-
stored.

The cluster management section starts by explaining the folder structure that defines
the infrastructure in Terraform code. Since a hub-and-spoke strategy is used, each
cluster has its role and later in the section each role’s responsibilities are described.
It also describes how the hub cluster is provisioned and new spoke clusters join it.

In the application orchestration section, the combination of KubeVela and Cross-
plane functionalities provides a way to create new component definitions that ab-
stract the deployment of complex resources. A snippet of a component definition
that outputs an Azure SQL server is presented.

Afterwards, the metrics and logs collection section presents the responsibilities of
the hub and the spokes, considering the task to be performed. It describes how
metrics and logs are collected and remotely written by spokes and then received,
stored and queried by hub clusters.

Then, the artifact state reconciliation section describes how the state of the infras-
tructure and running applications within it are up to date according to a source of
truth. This is done by using Kustomize and Flux operator capabilities, separating
concerns such as components and infrastructure details.

Finally, the artifact backup and restore section tackles the security side. In case of a
disaster aside from the sources of truth (normally Git repositories), a second backup
of the resources is maintained in an off-site location, available for restoration at any
time.

59

Chapter 6

Experiments and Evaluation

This chapter moves towards the demonstration and evaluation phases of the DSR
methodology, which focuses on the experimentation and evaluation of the solution.
It starts by detailing the mentioned hypotheses in Chapter 1. These help in gathering
relevant indicators and related metrics, which are also connected to the functional
and non-functional requirements. The methodology describes how each metric and
related hypotheses are tested, referencing methods and auxiliary tools. Then, the
results are described, attending to the methodology, indicators and hypotheses men-
tioned.

6.1 Hypothesis
Hypotheses were previously defined in section 1.4 according to the goals and ques-
tions described using the GQM paradigm. They are recalled below, with a more
detailed explanation.

H1. The process of deployment of an application, independently of the
target platform, is faster and more reliable compared to the old one

This hypothesis presumes deploying the same application on different plat-
forms requires no effort if the scenario is already supported. If it is not avail-
able, the process of deployment supports the creation of custom scenarios that
can be reused whenever they are needed.

The newly developed process is more robust considering the managing of ap-
plications and underlying infrastructure, thus deployments are done faster and
with no downtime, ensuring the orchestration of all instances of that applica-
tion.

Application, pipelines and artifacts catalogues are accessible to any team who
wants to check how the components regarding a certain product are available.
Logs and metrics also are available within a time frame (5-10 minutes) after
the deployment phase finishes.

H2. The increase in support of different platforms or workflows in the
deployment process does not affect the complexity of the deployment
process

60 Chapter 6. Experiments and Evaluation

Adding new scenarios to reuse them in many applications does not make the
process to be complicated and tiresome. It presumes that is easy to deploy an
application across different platforms if they are supported without additional
complexity when creating a deployment artifact.

H3. Controlling certain characteristics of the underlying infrastructure
is possible through override techniques

Abstracting some technical settings to have readable and maintainable deploy-
ment artifacts does not erase the possibility of overriding the default behaviour.
However, it may not allow a fine-grain control of all technical aspects of appli-
cation and infrastructure characteristics.

6.2 Indicators
The hypotheses must be tested to understand if the actual results match the expected
answers. Therefore, indicators are identified to help in analysing and evaluating the
developed project. These indicators, which are presented as quality attributes, will
refer to a set of metrics that originate from the research questions defined previously
with the GQM methodology and the non-functional requirements specified in 3.6.
The identified metrics are described below.

Usability

M1. Old process vs. new process

Reliability

M2. Time to restore service (Mean Time To Restore (MTTR)).

M3. Same inputs for application deployment, same outputs.

Performance

M4. Deployment times.

M4.1. Reconciliation time with source control.

M4.2. Deploy time in hybrid environment vs. non-hybrid environment.

Supportability

M5. Complexity and time of the creation of a new deployment scenario.

M6. Degree of control regarding low-level application and infrastructure set-
tings.

6.3 Methodology
Relevant metrics for the evaluation of the new deployment process were identified
in the previous section. Many techniques and tools can be used to collect metrics,
but these depend on the nature of the metric itself (quantitative or qualitative).

6.3. Methodology 61

Regarding the referred usability metrics (M1) and the first hypothesis (H1), practical
experimentation with team members following the new deployment process must
be done. Auxiliary documentation will be written and given to the participating
members, and each one will issue experimentation. Feedback and time consumed
to replicate a specific scenario will be gathered. It also tests the second hypothesis
(H2) since supporting new scenarios should not affect performance and reliability
directly.

Reliability is also related to the first hypothesis (H1). Evaluating reliability will
ensure that the process is robust enough to be used in production. A low time to
restore services (M2) is crucial and can be tested following a simulation. Before
the simulation, the creation and setup of a Kubernetes cluster are needed, and the
deployment of artifacts must be issued. The simulation is started by deleting an
application and recreating it, measuring downtime. This scenario will help analyse
if the same input artifacts produce the same deployment outputs (M3).

The next factor is performance, directly related to the first hypothesis (H1). It
focuses on a set of quantitative metrics related to deployment times (M4) that can
be divided into two more specific metrics. These are reconciliation times with source
control when using a pull-based deployment strategy (M4.1) and the deployment
time in a hybrid environment compared to a non-hybrid environment (M4.2).

Regarding supportability, complexity and time consumed in the creation of a new
deployment scenario is measured (M5). These metrics can be computed by making
use of another simulation where there is an attempt to extend the supported scenar-
ios and migrate applications between platforms. These are also related to H1 and
H2.

Finally, the degree of control of low-level details (M6) is a metric that will be mea-
sured using experimentations and directly related to the third hypothesis (H3). It
will consist of modifying such details and registering successful and failed attempts.

Table 6.1 summarizes which methods and auxiliary tools will be used to test hy-
potheses and gather related metrics:

Table 6.1: Metrics’ related methods and auxiliary tools

Metric Related
Hypotheses

Method Auxiliary Tools

M1 H1, H2 Experimentation
with team members

Questionnaires,
Timers

M2, M3 H1 Simulation Uptime Kuma,
Grafana,
Prometheus

M4, M4.1,
M4.2

H1 Experimentation Grafana,
Prometheus, Azure
DevOps, GitHub

M5 H1, H2 Simulation Timers
M7 H3 Experimentation Observation

62 Chapter 6. Experiments and Evaluation

6.4 Results
Hypotheses and evaluation methodologies were defined, and in this section, the
results will help justify the hypotheses. Regarding usability, a sample application is
provided for the team deploying it using the new platform. The rest of the indicators
will rely on the deployment of an existing complex application, a .NET Core reference
application named “eShopOnContainers” where its definition is shown on Appendix
D.

6.4.1 Usability

The methodology used to measure the usability was a guided experimentation with
team members. At the end of the experimentation, participants answered a ques-
tionnaire presented on Appendix C. The experimentation consisted of five main
tasks:

1. Create two components: a web application and a database;

2. Add a public hostname;

3. Separate the deployment into two environments: development and production.
Deploy each one in different clusters (multicluster deployment).

4. In the production environment, create a database in Azure and configure the
web app to use it.

5. Enable container logging of the web application.

Population details, such as years of experience and age, are presented on Appendix
C. The average time spent in experimentation was 1 hour, and the average time
taken to answer the questionnaire was around 7 minutes. A total of 7 responses
were gathered.

By analysing the bar charts regarding the number of answers per rating on Ap-
pendix C, it is possible to conclude that the learning curve is steep for deploying a
simple application. The scenario of migrating the database to Azure has an average
rating below 4. This is expected since the scenario is complex and relies upon the
development of one or more policies.

Some suggestions were stated, such as formatting the application definition files and
simplifying the configuration part for developers who are interested in customizing
their deployments’ monitoring and logging specifications. Also, it was mentioned
that the development of a higher abstraction layer on top of the platform would
speed up learning of the new deployment process.

The final result of the file that defines the application that is deployed is present on
Appendix D.

6.4.2 Reliability

Reliability is an important factor when assessing if the platform is robust enough to
withstand and adapt to scenarios of disaster, such as unhealthy computing instances,
deletion of resources by mistake, and other situations.

6.4. Results 63

Table 6.2 presents the collected metrics of the simulation. It consisted of deleting
several deployments and checking the time taken for all the components of the
application to be restored.

Table 6.2: MTTR metrics

Iteration Non-hybrid environment Hybrid environment
1 4m 50s 7m 40s
2 5m 20s 6m 23s
3 2m 45s 7m 3s
4 2m 50s 7m 10s
5 3m 26s 7m 3s

Therefore, a job was created to check the status of the application. The applica-
tion exposes a health endpoint that facilitated gathering which components were
unhealthy. The job was responsible for sending a request to a webhook when the
application was fully restored.

The restoration of the non-hybrid environment is fast since it only relies on native
resources supported by the Kubernetes local cluster (also referred to as the hub clus-
ter). The measured times may have some slight deviations from real timestamps due
to KubeVela reconciliation timeouts and the detection delay originated by Uptime
Kuma.

Regarding the hybrid environment, the resources that described the SQL server and
databases to be created, were eliminated several times to gather the restoration
time of the application. Since these resources are in the cloud, it is only natural
that it takes more time for the SQL server to be available compared to the database
deployed as a container.

Finally, multiple deployments of the same application were performed to evaluate
platform consistency regarding the generated artifacts. Grafana is used in this case
to check created resources. Figure 6.1 presents a dashboard that interprets metrics
from KubeVela.

Figure 6.1: Grafana dashboard of KubeVela applications for check-
ing generated resources

64 Chapter 6. Experiments and Evaluation

By checking the managed resources, the consistency can be evaluated by analysing
if the same number of resources and associated specifications were present in the
dashboard in different iterations.

6.4.3 Performance

As the latter indicator, the performance of the platform is also one of the most
important indicators of the quality of the solution. Therefore, the collected metrics
are:

1. Reconciliation time with source control (maximum value of 1 minute due to
the configured reconciliation interval);

2. Deploy time of the application in a non-hybrid environment (development
environment only container-based);

3. Deploy time of the application in a hybrid environment (production environ-
ment with cloud resources).

These metrics were collected using the Grafana dashboards as well. Table 6.3 de-
scribes them. The test consisted of 5 iterations of the defined workflow.

Table 6.3: Performance metrics

Iteration Reconciliation
Time

Non-hybrid
environment
deploy time

Hybrid
environment
deploy time

Total
time

1 34s 17s 3m 39s 4m 30s
2 43s 17s 4m 31s 5m 31s
3 26s 16s 7m 5s 7m 47s
4 48s 15s 3m 17s 4m 20s
5 57s 13s 3m 17s 4m 27s

As mentioned, the reconciliation time is a configurable interval. Since the defined
interval is 1 minute, the reconciliation time will be within that timeframe.

The deployment time of a non-hybrid environment is fast, considering that it has
to deploy 19 components and wait for them to be all healthy. Since it is container-
based and the deployment is done in the hub cluster, the results show only slight
variations, as expected.

The deployment time of a hybrid environment consisted of provisioning an Azure
SQL server instead of using a SQL server as a container. Since communication
with the cloud is mandatory and Crossplane takes care of it, the time it takes to
deploy varies. This can be due to throttling requests since the deployment tests
were consecutively performed. The third iteration was when the deployment took
more time.

For the non-hybrid deployments, the mean time spent was about 15 seconds and
for hybrid deployments was approximately 4 minutes and 22 seconds. Because the
non-hybrid and hybrid environments were considered as development and production

6.5. Summary 65

stages respectively, the deployment workflow contains both environments. The whole
workflow took an average of 5 minutes and 19 seconds.

6.4.4 Supportability

Finally, the supportability of the platform is not quantifiable. The metrics associated
with this indicator rely on observations of performed experimentations.

As mentioned, the platform must be extensible and support the development of
new deployment scenarios. To measure the time and complexity of the process, the
creation of a new component definition in KubeVela was timed.

The objective of the new component definition was to create an Azure Web App
using a Docker image. This definition is present on Appendix D. The time spent
developing this new definition was 24 minutes and 57 seconds. Considering the lack
of documentation for advanced scenarios and the complexity of this scenario - other
resources had to be created due to Azure Web App dependencies - the time spent
and complexity match the expectations.

Regarding the degree of control of infrastructure settings, it is possible to conclude
from the previous experimentations and simulations that controlling some settings
native to Kubernetes is straightforward. An example is shown in code listing 6.1,
which increases the number of replicas to two.

1 apiVersion : core.oam.dev/ v1beta1
2 kind: Application
3 metadata :
4 name: website
5 spec:
6 components :
7 - name: frontend
8 type: webservice
9 properties :

10 image : nginx
11 traits :
12 - type: scaler
13 properties :
14 replicas : 2

Listing 6.1: Example of scaler trait on application

When extending the platform to support new scenarios or functionalities, if they
provide a way to manage infrastructure details, then the templates must reflect that
setting in the parameters to override defaults. For example, scaling an application
attending to its logs would require KEDA. Then, a resource of the kind “ScaledOb-
ject” should be created specifying the target and the triggers (potentially a Loki
trigger type).

6.5 Summary
This chapter described the hypotheses with the related indicators and methodology
for capturing and validating metrics. Different techniques were used, such as simu-
lations, experimentations with team members at the host organization and metric
gathering through monitoring systems.

66 Chapter 6. Experiments and Evaluation

All of the hypotheses were verified throughout the experimentation and evaluation
phase. Therefore, this proves that the developed solution gets closer to achieving
the defined goal for this project.

The results end up showing satisfying values that will reflect on what should be
revised. The feedback from the team members is crucial for better adoption of the
POC, which leads to investing more time in developing a full-featured and robust
solution.

67

Chapter 7

Conclusion

This thesis addresses the problem of orchestrating multiple applications in hybrid
environments and describes a possible solution to mitigate it. The problem, objec-
tives and hypothesis are described in Chapter 1, starting the first phase of the DSR
methodology.

In Chapter 2, knowledge about technologies and strategies was gathered to build a
solution able to respond to the problem. Also, some related work is mentioned. A
value analysis was performed in Chapter 3 as well as a requirements analysis, where
functional and non-functional requirements are gathered regarding the third phase
of the DSR methodology.

Still, in the third phase of the DSR methodology, the architecture of the solution
is presented in Chapter 4. Chapter 5 describes the implementation of the solution
which is considered a POC. The solution followed a COTS approach. Combining
KubeVela with other technologies, it is possible to build a platform that can orches-
trate resources in the cloud, monitor and log applications, replicate the desired state
of the deployments and backup/restore important artifacts anytime.

Then, in Chapter 6, an evaluation of the solution is performed considering different
indicators related to hypotheses. Metrics and feedback were gathered by performing
experimentations, simulations and questionnaires.

7.1 Achievements
After defining the problem, research questions are derivatives from it that break the
problem into specific concerns regarding the topic of this thesis. The answers to
each research question are described below.

RQ1. How can an application deployment process be simplified when it
targets different platforms?
It is possible to simplify deployments across hybrid environments mainly using
abstraction, templating and concrete definitions of an application. KubeVela
follows the OAM principles, which help define a deployable application in any
cloud native platform. It uses the CUE language to create new types of defini-
tions that can extend the scenarios supported by KubeVela. Also, concentrat-
ing all of the orchestration components in a centralized cluster responsible for

68 Chapter 7. Conclusion

dispatching workloads to other clusters simplifies the management of applica-
tions and their environments regarding variations and specific customizations.

RQ2. What is the influence of extensibility upon simplification of the
deployment process targeting different platforms?
In the case of the current POC and after gathering different metrics through
observation and experimentation, extensibility has a low impact on the simpli-
fication of the deployment process. The most complex phase when extending
the platform is when new definitions are being created. The development can
be simple or complex depending on the scenario to be satisfied. The provided
abstraction by these definitions is the reason why the deployment process is
straightforward.

RQ3. Does the degree of control regarding infrastructure details decrease
when the creation of new deployments across different platforms is
facilitated?
Abstraction and templating provide a way of creating new definitions to cus-
tomize the applications’ deployments. Simplifying the creation of new deploy-
ments across different platforms will impact the degree of control of underlying
infrastructure details that support the application being deployed. This is due
to the nature of templating, unless all of the parameters are specified and used
in the output artifacts some specifications will be missed. Whenever a new fea-
ture is required regarding a specific necessity, the definition in question must
be updated. However, extending a template and adding too many parameters
will have the opposite effect.

The main goal of this work was to develop a more improved and optimised process
(compared to the existing one) for deploying and orchestrating applications in hybrid
environments. Although all the hypotheses were verified, the answers to the research
questions help to understand that some flaws exist within the developed solution.

In the end, it was possible to rapidly orchestrate an application with different com-
ponents across different platforms, having metrics and logs almost available instantly
due to the extensibility and robustness of the solution.

7.2 Contributions
All of the work presented in this thesis will be compiled in an article that will explain
in a more succinct way how the deployment and management of applications can be
optimised and orchestrated using KubeVela.

7.3 Limitations and Future Work
Although the goal was achieved and the solution worked as intended, limitations
were identified during the development and experimentation of the solution.

The first one is that the setup of clusters using the Terraform code will not ensure
that the host running it has access to the target cluster. This is due to private

7.4. Final Remarks 69

clusters behind VPNs, and the connection to them has to be performed manually
(the user has to establish a connection).

Regarding the technology itself, KubeVela is considered an incubating project CNCF,
which means it is a stable project and is used in production environments by a few
users. Despite this, the documentation lacks more advanced use cases, and some
problems were detected throughout the evaluation of the solution. Some of them
are unexpected resources created in the wrong clusters, complexity in retrieving
cloud-specific secrets from resources (e.g. databases) and the onboarding of new
clusters that fail if certain flags are passed to the KubeVela operator.

Also, the growth of the applications in several components makes the files that
describe them longer and hard to read. For complex applications that rely on many
variations and a high number of components, this is potentially inconvenient.

One task identified as future work is to simplify even more the setup of infrastruc-
ture and the definition and management of applications. That would require the
development of a tool that would use the Terraform code as template files and will
ensure that a cluster group - one hub cluster and associated spokes - is deployed.
Additionally, the creation of a new schema helps to generate complex application
artifacts across cluster groups according to the type of the project, technologies used
and additional metadata of the same project.

7.4 Final Remarks
All the research and the solutions that resulted from the presented work contribute
to a better understanding of the complexity and limitations of orchestrating multiple
applications across heterogeneous platforms.

As stated, the solution follows a COTS approach, which means the composition of
the solution relies upon existing technologies. KubeVela is the technology that allows
the distribution of applications among different platforms. Although it matched the
organization’s necessities, after a thorough evaluation, limitations were identified.

With the development of the solution, it is possible to have a starting point where
applications can be deployed with almost immediately available monitoring and log-
ging and always being reassured that backups are made daily in case of disasters,
accidents and security breaches. Also, the control of clusters that host the applica-
tions without being publicly available helps reduce the attack surface.

The presented work will also build the motivation to continue studying this topic
within the organization and improve the current solution with the technologies used.
That does not mean that other technology stacks cannot be used, and since the solu-
tion is a POC, it is always subject to architectural, design and technology changes. It
is possible to conclude that all the functional and non-functional requirements were
accomplished for the POC. The POC shows that it has a margin for improvement,
and other approaches can be taken for the development of a better solution.

71

Bibliography

[1] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and prac-
tices,” IEEE Access, vol. 5, pp. 3909–3943, 2017, Conference Name: IEEE
Access, issn: 2169-3536. doi: 10.1109/ACCESS.2017.2685629.

[2] J. Surbiryala and C. Rong, “Cloud computing: History and overview,” in 2019
IEEE Cloud Summit, Aug. 2019, pp. 1–7. doi: 10.1109/CloudSummit47114.
2019.00007.

[3] V. Sharma, “Managing multi-cloud deployments on kubernetes with istio,
prometheus and grafana,” in 2022 8th International Conference on Advanced
Computing and Communication Systems (ICACCS), ISSN: 2575-7288, vol. 1,
Mar. 2022, pp. 525–529. doi: 10.1109/ICACCS54159.2022.9785124.

[4] R. v. Solingen, E. Berghout, and E. W. Berghout, The goal/question/metric
method: a practical guide for quality improvement of software development.
London: The McGraw-Hill Companies, 1999, 199 pp., isbn: 978-0-07-709553-
6.

[5] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design sci-
ence research methodology for information systems research,” Journal of Man-
agement Information Systems, vol. 24, no. 3, pp. 45–77, Dec. 2007, issn: 0742-
1222, 1557-928X. doi: 10.2753/MIS0742- 1222240302. [Online]. Available:
https://www.tandfonline.com/doi/full/10.2753/MIS0742-1222240302
(visited on 02/04/2023).

[6] M. Moravcik and M. Kontsek, “Overview of docker container orchestration
tools,” in 2020 18th International Conference on Emerging eLearning Tech-
nologies and Applications (ICETA), Nov. 2020, pp. 475–480. doi: 10.1109/
ICETA51985.2020.9379236.

[7] A. Malviya and R. K. Dwivedi, “A comparative analysis of container orchestra-
tion tools in cloud computing,” in 2022 9th International Conference on Com-
puting for Sustainable Global Development (INDIACom), Mar. 2022, pp. 698–
703. doi: 10.23919/INDIACom54597.2022.9763171.

[8] P. Mell and T. Grance, “The NIST definition of cloud computing,”
[9] I. Kumara, M. Garriga, A. U. Romeu, et al., “The do’s and don’ts of infras-

tructure code: A systematic gray literature review,” Information and Software
Technology, vol. 137, p. 106 593, Sep. 2021, issn: 09505849. doi: 10.1016/j.
infsof.2021.106593. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0950584921000720 (visited on 02/14/2023).

[10] Y. Wang, C. Lee, S. Ren, E. Kim, and S. Chung, “Enabling role-based orches-
tration for cloud applications,” Applied Sciences (2076-3417), vol. 11, no. 14,
p. 6656, Jul. 15, 2021, issn: 20763417. doi: 10.3390/app11146656. [Online].
Available: https://search.ebscohost.com/login.aspx?direct=true&

72 Bibliography

AuthType = ip , shib & db = edb & AN = 151562167 & lang = pt - pt & site = eds -
live&scope=site (visited on 02/11/2023).

[11] G. Katsaros, M. Menzel, A. Lenk, J. Rake-Revelant, R. Skipp, and J. Eber-
hardt, “Cloud application portability with TOSCA, chef and openstack,” in
2014 IEEE International Conference on Cloud Engineering, Boston, MA: IEEE,
Mar. 2014, pp. 295–302, isbn: 978-1-4799-3766-0. doi: 10.1109/IC2E.2014.
27. [Online]. Available: https://ieeexplore.ieee.org/document/6903486/
(visited on 10/12/2023).

[12] O. Tomarchio, D. Calcaterra, G. Di Modica, and P. Mazzaglia, “TORCH: A
TOSCA-based orchestrator of multi-cloud containerised applications,” Journal
of Grid Computing, vol. 19, no. 1, p. 5, Mar. 2021, issn: 1570-7873, 1572-9184.
doi: 10.1007/s10723- 021- 09549- z. [Online]. Available: http://link.
springer.com/10.1007/s10723-021-09549-z (visited on 10/12/2023).

[13] “Deploying your OAM applications in the napptive cloud-native application
platform | KubeVela.” (Nov. 24, 2022), [Online]. Available: https://kubevela.
io/blog/2022/11/24/napptive-kubevela/ (visited on 10/12/2023).

[14] M. Terneborg, J. K. Ronnberg, and O. Schelen, “Application agnostic con-
tainer migration and failover,” presented at the 2021 IEEE 46th Conference
on Local Computer Networks (LCN), Edmonton, AB, Canada: IEEE, Oct. 4,
2021, pp. 565–572, isbn: 978-1-66541-886-7. doi: 10.1109/LCN52139.2021.
9525029. [Online]. Available: https://ieeexplore.ieee.org/document/
9525029/ (visited on 01/17/2023).

[15] “Docker overview,” Docker Documentation. (Jan. 17, 2023), [Online]. Avail-
able: https : / / docs . docker . com / get - started / overview/ (visited on
01/17/2023).

[16] J. Arundel and J. Domingus, “Cloud native DevOps with kubernetes,” Jan. 24,
2019.

[17] Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson, Kuber-
netes: Up and Running. [S.l.]: O’Reilly Media, 2022, isbn: 978-1-09-811020-8.

[18] “Kubernetes components,” Kubernetes. Section: docs. (), [Online]. Available:
https://kubernetes.io/docs/concepts/overview/components/ (visited
on 02/05/2023).

[19] F. Füstös, K. Péter, N.-P. László, S.-G. Mátis, Z. Szabó, and C. Sulyok, “Man-
aging a kubernetes cluster on raspberry pi devices,” in 2022 IEEE 20th Ju-
bilee International Symposium on Intelligent Systems and Informatics (SISY),
ISSN: 1949-0488, Sep. 2022, pp. 133–138. doi: 10.1109/SISY56759.2022.
10036262.

[20] “Introduction to nomad | nomad | HashiCorp developer,” Introduction to
Nomad | Nomad | HashiCorp Developer. (), [Online]. Available: https://
developer.hashicorp.com/nomad/tutorials/get-started/gs-overview
(visited on 08/05/2023).

[21] F. Beetz and S. Harrer, “GitOps: The evolution of DevOps?” IEEE Software,
vol. 39, no. 4, pp. 70–75, Jul. 2022, Conference Name: IEEE Software, issn:
1937-4194. doi: 10.1109/MS.2021.3119106.

[22] “GitOps,” GitOps. (), [Online]. Available: https://www.gitops.tech/ (vis-
ited on 02/12/2023).

Bibliography 73

[23] I.-C. Donca, O. P. Stan, M. Misaros, D. Gota, and L. Miclea, “Method for
continuous integration and deployment using a pipeline generator for agile
software projects,” Sensors, vol. 22, no. 12, p. 4637, Jun. 20, 2022, issn: 1424-
8220. doi: 10.3390/s22124637. [Online]. Available: https://www.mdpi.com/
1424-8220/22/12/4637 (visited on 02/13/2023).

[24] Yevgeniy Brikman, Terraform: Up and Running. [S.l.]: O’Reilly Media, 2022,
isbn: 978-1-09-811674-3.

[25] E. Truyen, H. Xie, and W. Joosen, “Vendor-agnostic reconfiguration of ku-
bernetes clusters in cloud federations,” Future Internet, vol. 15, no. 2, p. 63,
Feb. 2023, Number: 2 Publisher: Multidisciplinary Digital Publishing Insti-
tute, issn: 1999-5903. doi: 10.3390/fi15020063. [Online]. Available: https:
//www.mdpi.com/1999-5903/15/2/63 (visited on 08/05/2023).

[26] “Open cluster management.” (), [Online]. Available: https://open-cluster-
management.io/concepts/architecture/ (visited on 08/05/2023).

[27] S. Buchanan, J. Rangama, and N. Bellavance, “Helm charts for azure kuber-
netes service,” in Introducing Azure Kubernetes Service : A Practical Guide
to Container Orchestration, Berkeley, CA: Apress, 2020, pp. 151–189, isbn:
978-1-4842-5519-3. doi: 10.1007/978-1-4842-5519-3_8. [Online]. Available:
https://doi.org/10.1007/978-1-4842-5519-3_8.

[28] “Hyscale,” Hyscale. (), [Online]. Available: https://hyscale.io/ (visited on
02/14/2023).

[29] A. Alonso, H. S. Persson, and H. Kassaei, “5g architecture for hybrid and multi-
cloud environments,” Ericsson Technology Review, vol. 2022, no. 3, pp. 2–12,
Mar. 2022, Conference Name: Ericsson Technology Review, issn: 0014-0171.
doi: 10.23919/ETR.2022.9904693.

[30] “CUE.” (), [Online]. Available: https://cuelang.org/ (visited on 10/14/2023).
[31] “KubeVela.” (), [Online]. Available: https://kubevela.io/ (visited on 02/14/2023).
[32] N. Rich, “Value analysis,” Value Engineering, Jan. 2022.
[33] P. A. Koen, G. M. Ajamian, S. Boyce, et al., “Effective methods, tools, and

techniques,” The PDMA ToolBook for New Product Development, 2002.
[34] R. W. Saaty. “THE ANALYTIC HIERARCHY PROCESS-WHAT IT IS AND

HOW IT IS USED.” ISSN: 0270-0255. (1987), [Online]. Available: https :
//reader.elsevier.com/reader/sd/pii/0270025587904738 (visited on
01/28/2023).

[35] I. Nowrin and F. Khanam, “Importance of cloud deployment model and se-
curity issues of software as a service (SaaS) for cloud computing,” in 2019
International Conference on Applied Machine Learning (ICAML), May 2019,
pp. 183–186. doi: 10.1109/ICAML48257.2019.00042.

[36] A. V. Bataev, D. G. Rodionov, and D. A. Andreyeva, “Analysis of world
trends in the field of cloud technology,” in 2018 International Conference on
Information Networking (ICOIN), Jan. 2018, pp. 594–598. doi: 10 . 1109 /
ICOIN.2018.8343188.

[37] “What is hybrid infrastructure? | VMware glossary,” VMware. (), [Online].
Available: https://www.vmware.com/content/vmware/vmware-published-
sites/us/topics/glossary/content/hybrid-infrastructure-service
(visited on 01/23/2023).

74 Bibliography

[38] D. Sitaram, S. Harwalkar, C. Sureka, et al., “Orchestration based hybrid or
multi clouds and interoperability standardization,” in 2018 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), Nov. 2018,
pp. 67–71. doi: 10.1109/CCEM.2018.00018.

[39] “IT infrastructure management: Definition, benefits and more,” DevOps and
Software Engineering Glossary Terms | Atatus. (Sep. 28, 2021), [Online]. Avail-
able: https://www.atatus.com/glossary/it-infrastructure-management/
(visited on 01/26/2023).

[40] “Main cloud service models: IaaS, PaaS and SaaS | stackscale.” Section: Com-
puting. (Aug. 9, 2022), [Online]. Available: https://www.stackscale.com/
blog/cloud-service-models/ (visited on 01/26/2023).

[41] S. Kibe, S. Watanabe, K. Kunishima, R. Adachi, M. Yamagiwa, and M. Ue-
hara, “PaaS on IaaS,” in 2013 IEEE 27th International Conference on Ad-
vanced Information Networking and Applications (AINA), ISSN: 1550-445X,
Mar. 2013, pp. 362–367. doi: 10.1109/AINA.2013.73.

[42] Cloudfoundry, Adaptation, not adoption, is the key to digital transforma-
tion, Apr. 2019. [Online]. Available: https://www.cloudfoundry.org/wp-
content/uploads/GPS-9-Adaptation-Not-Adoption-Report_FINAL.pdf.

[43] Á. Leiter, A. Hegyi, I. Kispál, P. Böõsy, N. Galambosi, and G. Z. Tar, “GitOps
and kubernetes operator-based network function configuration,” in NOMS
2023-2023 IEEE/IFIP Network Operations and Management Symposium, Mi-
ami, FL, USA: IEEE, May 8, 2023, pp. 1–5, isbn: 978-1-66547-716-1. doi: 10.
1109/NOMS56928.2023.10154212. [Online]. Available: https://ieeexplore.
ieee.org/document/10154212/ (visited on 10/14/2023).

[44] E. E. K. Senoo, E. Akansah, I. Mendonça, and M. Aritsugi, “Implementing
SOLID principles for IoT arduino sensor code,” in 2022 10th International
Japan-Africa Conference on Electronics, Communications, and Computations
(JAC-ECC), Alexandria, Egypt: IEEE, Dec. 19, 2022, pp. 21–26, isbn: 978-1-
66546-463-5. doi: 10.1109/JAC-ECC56395.2022.10043950. [Online]. Avail-
able: https : / / ieeexplore . ieee . org / document / 10043950/ (visited on
10/14/2023).

75

Appendix A

Analytic Hierarchy Process
Steps

Table A.1: Criteria comparison normalized matrix

Extensibility Ease of Use Control Observability
Extensibility 0.190 0.167 0.176 0.4
Ease of Use 0.381 0.333 0.353 0.2
Control 0.381 0.333 0.353 0.3
Observability 0.048 0.167 0.118 0.1

For computing Consistency Index (CI):

CI = (λmax − n)/(n − 1) = (4.20 − 4)/(4 − 1) = 0.067

, where n is the criteria number

For computing Consistency Ratio (CR):

CR = CI/RI = 0.067/0.90 = 0.074

, where RI is a tabulated value according to the criteria number

Table A.2: Alternative comparison considering Extensibility crite-
ria

KubeVela HyScale Crossplane
KubeVela 1 4 1
HyScale 1/4 1 1/4
Crossplane 1 4 1

76 Appendix A. Analytic Hierarchy Process Steps

Table A.3: Alternative comparison considering Ease of Use criteria

KubeVela HyScale Crossplane
KubeVela 1 4 3
HyScale 1/4 1 1/3
Crossplane 1/3 3 1

Table A.4: Alternative comparison considering Control criteria

KubeVela HyScale Crossplane
KubeVela 1 3 1/3
HyScale 1/3 1 1/3
Crossplane 3 3 1

Table A.5: Alternative comparison considering Observability crite-
ria

KubeVela HyScale Crossplane
KubeVela 1 5 3
HyScale 1/5 1 1/2
Crossplane 1/3 2 1

Table A.6: Normalized alternative comparison considering Exten-
sibility criteria

KubeVela HyScale Crossplane
KubeVela 0.444 0.444 0.444
HyScale 0.111 0.111 0.111
Crossplane 0.444 0.444 0.444

Table A.7: Normalized alternative comparison considering Ease of
Use criteria

KubeVela HyScale Crossplane
KubeVela 0.632 0.5 0.692
HyScale 0.158 0.125 0.0769
Crossplane 0.210 0.375 0.231

Table A.8: Normalized alternative comparison considering Control
criteria

KubeVela HyScale Crossplane
KubeVela 0.231 0.429 0.2
HyScale 0.077 0.142 0.2
Crossplane 0.692 0.429 0.6

Appendix A. Analytic Hierarchy Process Steps 77

Table A.9: Normalized alternative comparison considering Observ-
ability criteria

KubeVela HyScale Crossplane
KubeVela 0.652 0.625 0.667
HyScale 0.130 0.125 0.111
Crossplane 0.217 0.25 0.222

79

Appendix B

Implementation Assets

1 resource " azuread_application " "main" {
2 display_name = " Canaveral DevScope "
3 owners = ["5ce45fcb -c3d2 -4923 - bdff -197276914320 "]
4
5 web {
6 redirect_uris = [
7 " https ://${ local . hostnames .vela }/",
8 " https ://${ local . hostnames .vela }/ dex/ callback ",
9 " https ://${ local . hostnames .vela }/ callback ",

10 " https ://${ local . hostnames . grafana }/",
11 " https ://${ local . hostnames . grafana }/ login / azuread ",
12]
13 }
14 }
15
16 resource " azuread_service_principal " "main" {
17 application_id = azuread_application .main. application_id
18 owners = ["5ce45fcb -c3d2 -4923 - bdff -197276914320 "]
19 }
20
21 resource " azuread_service_principal_password " "main" {
22 service_principal_id = azuread_service_principal .main. object_id
23 display_name = " Authentication "
24 }
25
26 locals {
27 openid_config = merge (var. openid_config , {
28 client_id = azuread_service_principal .main. application_id
29 client_secret = azuread_service_principal_password .main. value
30 })
31 dex_openid_config = templatefile ("${path. module }/ templates /dex/ config .json.

tftpl ", {
32 config = merge (local . openid_config , { redirect_uri = " https ://${ local .

hostnames .vela }/ dex/ callback " })
33 })
34 }

Listing B.1: OpenID Connect resources and variables

80 Appendix B. Implementation Assets

1 {
2 "type": "oidc",
3 "oidc": {
4 " issuer ": "${ config . issuer }",
5 " clientID ": "${ config . client_id }",
6 " clientSecret ": "${ config . client_secret }",
7 " redirectURI ": "${ config . redirect_uri }",
8 " insecureSkipEmailVerified ": true ,
9 " userIDKey ": "${ config . user_id_key }"

10 }
11 }

Listing B.2: OpenID Connect credentials template

1 r e s o u r c e "kubernetes_job" "join_managed_cluster" {
2 metadata {
3 name = "join -managed -cluster"
4 namespace = "kube -system"
5 }
6

7 wait_for_completion = true
8

9 spec {
10 template {
11 metadata {}
12 spec {
13 conta ine r {
14 name = "clusteradm"
15 image = "devscope.azurecr.io/ocm -tools:latest"
16 command = ["./ scripts/join.sh"]
17

18 volume_mount {
19 name = "hub -kubeconfig"
20 mount_path = "/root/.kube/hub.yaml"
21 sub_path = "hub.yaml"
22 }
23 volume_mount {
24 name = "spoke -kubeconfig"
25 mount_path = "/root/.kube/${var.spoke_cluster_name }.yaml"
26 sub_path = "${var.spoke_cluster_name }.yaml"
27 }
28 volume_mount {
29 name = "scripts"
30 mount_path = "/scripts"
31 }
32

33 image_pull_pol icy = "Always"
34 }
35

36 image_pul l_secrets {
37 name = kubernetes_secre t . c o n t a i n e r _ r e g i s t r y . metadata [0] . name
38 }
39

40 volume {
41 name = "hub -kubeconfig"
42 s e c r e t {
43 secret_name = kubernetes_secre t . hub_kubeconfig . metadata [0] .

name
44 i tems {
45 key = "config"

Appendix B. Implementation Assets 81

46 path = "hub.yaml"
47 }
48 }
49 }
50 volume {
51 name = "spoke -kubeconfig"
52 s e c r e t {
53 secret_name = kubernetes_secre t . spoke_kubeconf ig . metadata

[0] . name
54 i tems {
55 key = "config"
56 path = "${var.spoke_cluster_name }.yaml"
57 }
58 }
59 }
60 volume {
61 name = "scripts"
62 config_map {
63 name = "scripts"
64 default_mode = "0700"
65 }
66 }
67 }
68 }
69 complet ions = 1
70 }
71 }

Listing B.3: Kubernetes Job for joining hub cluster

1 import (
2 " encoding / base64 "
3)
4
5 "azure -mssql - server ": {
6 alias : ""
7 annotations : {}
8 attributes : {
9 workload : definition : {

10 apiVersion : "sql. azure . upbound .io/ v1beta1 "
11 kind: " MSSQLServer "
12 }
13 status : {
14 healthPolicy : #"""
15 isHealth : (context . output . status . conditions [0]. type == " Ready ") && (

context . output . status . conditions [0]. status == "True")
16 """#
17 }
18 }
19 description : ""
20 labels : {}
21 type: " component "
22 }
23
24 template : {
25 parameter : {
26 name: string
27 adminUser : string
28 adminPassword : string
29 location : *" NorthEurope " | string
30 resourceGroupName : *"rg -\(context .name) -\(context . namespace)" | string
31 resourceGroupLocation : *" NorthEurope " | string
32 version : *"12.0" | string

82 Appendix B. Implementation Assets

33 databases : *[] | [... string]
34 allowedIpAddresses : *[] | [... string]
35 }
36
37 output : {
38 apiVersion : "sql. azure . upbound .io/ v1beta1 "
39 kind: " MSSQLServer "
40 metadata : {
41 name: parameter .name
42 labels : {
43 "app.oam.dev/ cluster ": " local "
44 }
45 }
46 spec: {
47 forProvider : {
48 administratorLogin : parameter . adminUser
49 administratorLoginPasswordSecretRef : {
50 key: "admin -login - password "
51 name: "\(parameter .name)-admin - secret "
52 namespace : context . namespace
53 }
54 location : parameter . location
55 minimumTlsVersion : "1.2"
56 resourceGroupName : parameter . resourceGroupName
57 version : parameter . version
58 }
59 }
60 }
61
62 outputs : {
63 resourceGroup : {
64 apiVersion : " azure . upbound .io/ v1beta1 "
65 kind: " ResourceGroup "
66 metadata : {
67 name: parameter . resourceGroupName
68 labels : {
69 "app.oam.dev/ cluster ": " local "
70 }
71 }
72 spec: forProvider : {
73 location : parameter . resourceGroupLocation
74 tags:
75 " kubevela .app": "\(context . namespace)/\(context . appName)"
76 }
77 }
78
79 secret : {
80 apiVersion : "v1"
81 kind: " Secret "
82 metadata : {
83 name: "\(parameter .name)-admin - secret "
84 labels : {
85 "app.oam.dev/ cluster ": " local "
86 }
87 }
88 type: " Opaque "
89 data:
90 "admin -login - password ": base64 . Encode (null , parameter . adminPassword)
91 }
92
93 connectionSecret : {
94 apiVersion : "v1"
95 kind: " Secret "
96 metadata : {
97 name: "\(context .name)-connection - secret "
98 labels : {
99 "app.oam.dev/ cluster ": context . cluster

Appendix B. Implementation Assets 83

100 }
101 }
102 type: " Opaque "
103 data: {
104 " connectionString ": base64 . Encode (null , " Server =\(parameter .name).

database . windows .net; Database =$(DATABASE);User Id =\(parameter . adminUser);
Password =\(parameter . adminPassword); Encrypt = False ; TrustServerCertificate =
true")

105 }
106 }
107
108 for i, ip in parameter . allowedIpAddresses {
109 "\(parameter .name)-allow -rule -\(i)": {
110 apiVersion : "sql. azure . upbound .io/ v1beta1 "
111 kind: " MSSQLFirewallRule "
112 metadata : {
113 name: "\(parameter .name)-allow -rule -\(i)"
114 labels : {
115 "app.oam.dev/ cluster ": " local "
116 }
117 }
118 spec: {
119 forProvider : {
120 startIpAddress : ip
121 endIpAddress : ip
122 serverIdRef : name: parameter .name
123 }
124 }
125 }
126 }
127
128 for dbName in parameter . databases {
129 "database -\(dbName)": {
130 apiVersion : "sql. azure . upbound .io/ v1beta1 "
131 kind: " MSSQLDatabase "
132 metadata : {
133 name: dbName
134 labels : {
135 "app.oam.dev/ cluster ": " local "
136 }
137 }
138 spec: {
139 forProvider : {
140 serverIdRef : name: parameter .name
141 }
142 }
143 }
144 }
145 }
146 }

Listing B.4: Azure MSSQL Server component definition

85

Appendix C

Experimentation Usability
Questionnaire

This appendix presents the developed questionnaire, the population that answered
it and respective details, as well as the rating statistics by question.

1 year
1

2 years
3

3+ years
3

Figure C.1: Number of participants per years of experience

20-30y
6

30-40y
1

Figure C.2: Number of participants per age

86 Appendix C. Experimentation Usability Questionnaire

54

1

2

3

4

Number of Answers

Figure C.3: Number of answers per rating (question 1)

43

1

2

3

4

Number of Answers

Figure C.4: Number of answers per rating (question 2)

Appendix C. Experimentation Usability Questionnaire 87

543

1

1.5

2

2.5

3

Number of Answers

Figure C.5: Number of answers per rating (question 3)

543

1

2

3

4

Number of Answers

Figure C.6: Number of answers per rating (question 4)

88 Appendix C. Experimentation Usability Questionnaire

5432

1

1.5

2

2.5

3

Number of Answers

Figure C.7: Number of answers per rating (question 5)

543

1

1.5

2

2.5

3

Number of Answers

Figure C.8: Number of answers per rating (question 6)

Appendix C. Experimentation Usability Questionnaire 89

Yes
7

No
0

Figure C.9: Number of positive and negative answers (question 7)

90 Appendix C. Experimentation Usability Questionnaire

Figure C.10: Experimentation usability questionnaire (page 1)

Appendix C. Experimentation Usability Questionnaire 91

Figure C.11: Experimentation usability questionnaire (page 2)

93

Appendix D

Evaluation and Experimentation
Assets

1 ap iVers ion : core . oam . dev/ v1beta1
2 kind: App l i ca t ion
3 metadata:
4 name: contacts −app−vc
5 namespace: exper imentat ion
6 spec :
7 components:
8 - name: app
9 type: webserv i ce

10 dependsOn: ["database"]
11 p r o p e r t i e s :
12 image: v i t o r j c o r r e i a / blazor −sample−app: l a t e s t
13 por t s :
14 - port : 80
15 expose: true
16 env:
17 - name: DATABASE
18 value : contactsdb
19 - name: ConnectionStrings__DefaultConnection
20 value : "Server=database;Database=$(DATABASE);User Id=sa;

Password=<REDACTED>;Encrypt=False;TrustServerCertificate=true"
21 t r a i t s :
22 - type: gateway
23 p r o p e r t i e s :
24 domain: contacts −app−vc . devscope . com
25 http:
26 "/": 80
27 - type: c l o u d f l a r e −dns
28 p r o p e r t i e s :
29 publ i c IpAddress : "<REDACTED>"
30 - name: database
31 type: webserv i ce
32 p r o p e r t i e s :
33 image: mcr . m i c ro s o f t . com/ mssql / s e r v e r :2019− l a t e s t
34 por t s :
35 - port : 1433
36 expose: true
37 env:
38 - name: SA_PASSWORD
39 value : <REDACTED>
40 - name: ACCEPT_EULA

94 Appendix D. Evaluation and Experimentation Assets

41 value : "Y"
42 p o l i c i e s :
43 - name: target −dev
44 type: topo logy
45 p r o p e r t i e s :
46 namespace: vc−dev
47 c l u s t e r s : ["local"]
48 - name: target −prod
49 type: topo logy
50 p r o p e r t i e s :
51 namespace: vc−prod
52 c l u s t e r s : ["bonfim"]
53 - name: c reate −database−c loud
54 type: o v e r r i d e
55 p r o p e r t i e s :
56 components:
57 - name: database
58 type: azure−mssql−s e r v e r
59 p r o p e r t i e s :
60 name: mssql−vc−prod−ne
61 adminUser: <REDACTED>
62 adminPassword: <REDACTED>
63 databases : ["contactsdb"]
64 a l lowedIpAddresses : ["<REDACTED>"]
65 - name: over r ide −app−t r a i t s
66 type: o v e r r i d e
67 p r o p e r t i e s :
68 components:
69 - name: app
70 p r o p e r t i e s :
71 t r a i t s :
72 - type: gateway
73 p r o p e r t i e s :
74 domain: contacts −app−vc−bonfim . devscope . net
75 http:
76 "/": 80
77 - type: env
78 p r o p e r t i e s :
79 unset : ["ConnectionStrings__DefaultConnection"]
80 - type: s t o rage
81 p r o p e r t i e s :
82 s e c r e t :
83 - name: database−connect ion−s e c r e t
84 mountToEnvs:
85 - envName: ConnectionStr ings__DefaultConnection
86 secretKey: connec t i onSt r ing
87 - name: enable−l ogg ing −prod
88 type: conta iner −l og
89 p r o p e r t i e s :
90 namespace: vc−prod
91 c l u s t e r : bonfim
92 workflow:
93 s t e p s :
94 - name: deploy2dev
95 type: deploy
96 p r o p e r t i e s :
97 p o l i c i e s : ["target -dev"]
98 - name: manual−approval

Appendix D. Evaluation and Experimentation Assets 95

99 type: suspend
100 - name: deploy2prod
101 type: deploy
102 p r o p e r t i e s :
103 p o l i c i e s : ["create -database -cloud" , "override -app -traits" , "

enable -logging -prod" , "target -prod"]

Listing D.1: Final stage of the application for usability evaluation

1 ap iVers ion : core . oam . dev/ v1beta1
2 kind: App l i ca t ion
3 metadata:
4 name: eshop
5 spec :
6 components:
7 - name: seq
8 type: webserv i ce
9 p r o p e r t i e s :

10 image: d a t a l u s t / seq: l a t e s t
11 por t s :
12 - port : 80
13 expose: true
14 env:
15 - name: ACCEPT_EULA
16 value : "Y"
17 - name: sq lda ta
18 type: webserv i ce
19 p r o p e r t i e s :
20 image: mcr . m i c ro s o f t . com/ mssql / s e r v e r :2019− l a t e s t
21 por t s :
22 - port : 1433
23 expose: true
24 env:
25 - name: SA_PASSWORD
26 value : <REDACTED>
27 - name: ACCEPT_EULA
28 value : "Y"
29 - name: nosq ldata
30 type: webserv i ce
31 p r o p e r t i e s :
32 image: mongo: 5 . 0 . 1 9
33 por t s :
34 - port : 27017
35 expose: true
36 - name: basketdata
37 type: webserv i ce
38 p r o p e r t i e s :
39 image: r e d i s : a l p i n e
40 por t s :
41 - port : 6379
42 expose: true
43 - name: rabbitmq
44 type: webserv i ce
45 p r o p e r t i e s :
46 image: rabbitmq:3−management−a l p i n e
47 cmd: ["/bin/bash"]
48 args :
49 - −c

96 Appendix D. Evaluation and Experimentation Assets

50 - |
51 #!/bin/bash
52 rabbitmq−s e r v e r &
53

54 rabbitmq−d i a g n o s t i c s −−qu i e t check_running
55 HEALTH=$?
56 whi le [! "$HEALTH" −eq 0]
57 do
58 rabbitmq−d i a g n o s t i c s −−qu i e t check_running
59 HEALTH=$?
60 echo $HEALTH
61 s l e e p 1
62 done
63

64 rabb i tmqct l add_user admin <REDACTED>
65 rabb i tmqct l set_user_tags admin admin i s t ra to r
66 rabb i tmqct l s e t_permis s ions −p / admin ".∗" ".∗" ".∗"
67

68 t a i l −f /dev/ null
69 por t s :
70 - port : 5672
71 expose: true
72 - port : 15672
73 expose: true
74 - name: i d e n t i t y −api
75 type: webserv i ce
76 dependsOn: ["sqldata"]
77 p r o p e r t i e s :
78 image: eshop / i d e n t i t y . ap i : l inux −dev
79 por t s :
80 - port : 80
81 expose: true
82 env:
83 - name: ASPNETCORE_ENVIRONMENT
84 value : Development
85 - name: ASPNETCORE_URLS
86 value : http: / / 0 . 0 . 0 . 0 :80
87 - name: SpaCl ient
88 value : https :// eshop−dev−spa . devscope . com
89 - name: XamarinCallback
90 value : https :// eshop−dev−i d e n t i t y −api . devscope . com/

xamar inca l lback
91 - name: MvcClient
92 value : https :// eshop−dev−mvc . devscope . com
93 - name: BasketApiCl ient
94 value : https :// eshop−dev−basket−api . devscope . com
95 - name: Order ingApiCl ient
96 value : https :// eshop−dev−order ing −api . devscope . com
97 - name: MobileShoppingAggClient
98 value : https :// eshop−dev−mobile−shopping−agg . devscope . com
99 - name: WebShoppingAggClient

100 value : https :// eshop−dev−web−shopping−agg . devscope . com
101 - name: WebhooksApiClient
102 value : https :// eshop−dev−webhooks−api . devscope . com
103 - name: WebhooksWebClient
104 value : https :// eshop−dev−webhooks−c l i e n t . devscope . com
105 - name: UseCustomizationData
106 value : "True"

Appendix D. Evaluation and Experimentation Assets 97

107 - name: OrchestratorType
108 value : K8S
109 t r a i t s :
110 - type: gateway
111 p r o p e r t i e s :
112 domain: eshop−dev−i d e n t i t y −api . devscope . com
113 http:
114 "/": 80
115 - name: basket−api
116 type: webserv i ce
117 dependsOn: ["basketdata" , "identity -api" , "rabbitmq"]
118 p r o p e r t i e s :
119 image: eshop / basket . ap i : l inux −dev
120 por t s :
121 - port : 80
122 expose: true
123 - port : 81
124 expose: true
125 env:
126 - name: ASPNETCORE_ENVIRONMENT
127 value : Development
128 - name: Kestrel__Endpoints__HTTP__Url
129 value : http: / / 0 . 0 . 0 . 0 :80
130 - name: Kestrel__Endpoints__GRPC__Url
131 value : http: / / 0 . 0 . 0 . 0 :81
132 - name: Kestrel__Endpoints__GRPC__Protocols
133 value : Http2
134 - name: I d e n t i t y U r l
135 value : http:// i d e n t i t y −api
136 - name: Identity__Url
137 value : http:// i d e n t i t y −api
138 - name: Ident ity__ExternalUrl
139 value : http:// i d e n t i t y −api
140 - name: ConnectionStrings__Redis
141 value : basketdata
142 - name: ConnectionStrings__EventBus
143 value : rabbitmq
144 - name: EventBus__UserName
145 value : admin
146 - name: EventBus__Password
147 value : <REDACTED>
148 - name: OrchestratorType
149 value : K8S
150 - name: PATH_BASE
151 value : / basket−api
152 t r a i t s :
153 - type: gateway
154 p r o p e r t i e s :
155 domain: eshop−dev−basket−api . devscope . com
156 http:
157 "/": 80
158 - name: cata log −api
159 type: webserv i ce
160 dependsOn: ["sqldata" , "rabbitmq"]
161 p r o p e r t i e s :
162 image: eshop / ca ta l og . api : l inux −dev
163 por t s :
164 - port : 80

98 Appendix D. Evaluation and Experimentation Assets

165 expose: true
166 - port : 81
167 expose: true
168 env:
169 - name: ASPNETCORE_ENVIRONMENT
170 value : Development
171 - name: Kestrel__Endpoints__HTTP__Url
172 value : http: / / 0 . 0 . 0 . 0 :80
173 - name: Kestrel__Endpoints__GRPC__Url
174 value : http: / / 0 . 0 . 0 . 0 :81
175 - name: Kestrel__Endpoints__GRPC__Protocols
176 value : Http2
177 - name: ConnectionStrings__EventBus
178 value : rabbitmq
179 - name: PicBaseUrl
180 value : http:// webshoppingagg/c/ api /v1/ ca ta l og / items / [0] / p i c /
181 - name: EventBus__UserName
182 value : admin
183 - name: EventBus__Password
184 value : <REDACTED>
185 - name: UseCustomizationData
186 value : "True"
187 - name: AzureStorageEnabled
188 value : "False"
189 - name: PATH_BASE
190 value : / cata log −api
191 - name: OrchestratorType
192 value : K8S
193 - name: order ing −api
194 type: webserv i ce
195 dependsOn: ["sqldata" , "rabbitmq"]
196 p r o p e r t i e s :
197 image: eshop / orde r ing . ap i : l inux −dev
198 por t s :
199 - port : 80
200 expose: true
201 - port : 81
202 expose: true
203 env:
204 - name: ASPNETCORE_ENVIRONMENT
205 value : Development
206 - name: Kestrel__Endpoints__HTTP__Url
207 value : http: / / 0 . 0 . 0 . 0 :80
208 - name: Kestrel__Endpoints__GRPC__Url
209 value : http: / / 0 . 0 . 0 . 0 :81
210 - name: Kestrel__Endpoints__GRPC__Protocols
211 value : Http2
212 - name: Identity__Url
213 value : http:// i d e n t i t y −api
214 - name: Ident ity__ExternalUrl
215 value : http:// i d e n t i t y −api
216 - name: ConnectionStrings__EventBus
217 value : rabbitmq
218 - name: EventBus__UserName
219 value : admin
220 - name: EventBus__Password
221 value : <REDACTED>
222 - name: UseCustomizationData

Appendix D. Evaluation and Experimentation Assets 99

223 value : "True"
224 - name: AzureStorageEnabled
225 value : "False"
226 - name: CheckUpdateTime
227 value : "30000"
228 - name: PATH_BASE
229 value : / order ing −api
230 - name: UseLoadTest
231 value : "False"
232 - name: GRPC_PORT
233 value : "81"
234 - name: PORT
235 value : "80"
236 - name: OrchestratorType
237 value : K8S
238 t r a i t s :
239 - type: gateway
240 p r o p e r t i e s :
241 domain: eshop−dev−order ing −api . devscope . com
242 http:
243 "/": 80
244 - name: order ing −backgroundtasks
245 type: webserv i ce
246 dependsOn: ["sqldata" , "rabbitmq"]
247 p r o p e r t i e s :
248 image: eshop / orde r ing . backgroundtasks: l inux −dev
249 por t s :
250 - port : 80
251 expose: true
252 env:
253 - name: ASPNETCORE_ENVIRONMENT
254 value : Development
255 - name: ASPNETCORE_URLS
256 value : http: / / 0 . 0 . 0 . 0 :80
257 - name: ConnectionStrings__EventBus
258 value : rabbitmq
259 - name: EventBus__UserName
260 value : admin
261 - name: EventBus__Password
262 value : <REDACTED>
263 - name: UseCustomizationData
264 value : "True"
265 - name: AzureStorageEnabled
266 value : "False"
267 - name: CheckUpdateTime
268 value : "30000"
269 - name: UseLoadTest
270 value : "False"
271 - name: GracePeriodTime
272 value : "1"
273 - name: OrchestratorType
274 value : K8S
275 - name: payment−api
276 type: webserv i ce
277 dependsOn: ["rabbitmq"]
278 p r o p e r t i e s :
279 image: eshop /payment . api : l inux −dev
280 por t s :

100 Appendix D. Evaluation and Experimentation Assets

281 - port : 80
282 expose: true
283 env:
284 - name: ASPNETCORE_ENVIRONMENT
285 value : Development
286 - name: ASPNETCORE_URLS
287 value : http: / / 0 . 0 . 0 . 0 :80
288 - name: ConnectionStrings__EventBus
289 value : rabbitmq
290 - name: EventBus__UserName
291 value : admin
292 - name: EventBus__Password
293 value : <REDACTED>
294 - name: AzureServiceBusEnabled
295 value : "False"
296 - name: OrchestratorType
297 value : K8S
298 - name: webhooks−api
299 type: webserv i ce
300 dependsOn: ["sqldata"]
301 p r o p e r t i e s :
302 image: eshop /webhooks . ap i : l inux −dev
303 por t s :
304 - port : 80
305 expose: true
306 env:
307 - name: ASPNETCORE_ENVIRONMENT
308 value : Development
309 - name: ASPNETCORE_URLS
310 value : http: / / 0 . 0 . 0 . 0 :80
311 - name: ConnectionStrings__EventBus
312 value : rabbitmq
313 - name: EventBus__UserName
314 value : admin
315 - name: EventBus__Password
316 value : <REDACTED>
317 - name: Identity__Url
318 value : http:// i d e n t i t y −api
319 - name: Ident ity__ExternalUrl
320 value : http:// i d e n t i t y −api
321 t r a i t s :
322 - type: gateway
323 p r o p e r t i e s :
324 domain: eshop−dev−webhooks−api . devscope . com
325 http:
326 "/": 80
327 - name: mobi leshoppingagg
328 dependsOn: ["nosqldata" , "sqldata" , "identity -api" , "rabbitmq" , "

ordering -api" , "catalog -api" , "basket -api"]
329 type: webserv i ce
330 p r o p e r t i e s :
331 image: eshop / mobi leshoppingagg: l inux −dev
332 por t s :
333 - port : 80
334 expose: true
335 env:
336 - name: ASPNETCORE_ENVIRONMENT
337 value : Development

Appendix D. Evaluation and Experimentation Assets 101

338 - name: urls__basket
339 value : http:// basket−api
340 - name: ur l s__catalog
341 value : http:// cata log −api
342 - name: ur ls__orders
343 value : http:// order ing −api
344 - name: ur l s__ident i ty
345 value : http:// i d e n t i t y −api
346 - name: urls__grpcBasket
347 value : http:// basket−api :81
348 - name: urls__grpcCatalog
349 value : http:// cata log −api :81
350 - name: urls__grpcOrdering
351 value : http:// order ing −api :81
352 - name: CatalogUrlHC
353 value : http:// cata log −api /hc
354 - name: OrderingUrlHC
355 value : http:// order ing −api /hc
356 - name: IdentityUrlHC
357 value : http:// i d e n t i t y −api /hc
358 - name: BasketUrlHC
359 value : http:// basket−api /hc
360 - name: PaymentUrlHC
361 value : http://payment−api /hc
362 - name: Identity__Url
363 value : http:// i d e n t i t y −api
364 - name: Ident ity__ExternalUrl
365 value : http:// i d e n t i t y −api
366 t r a i t s :
367 - type: gateway
368 p r o p e r t i e s :
369 domain: eshop−dev−mobile−shopping−agg . devscope . com
370 http:
371 "/": 80
372 - name: webshoppingagg
373 type: webserv i ce
374 dependsOn: ["nosqldata" , "sqldata" , "identity -api" , "rabbitmq" , "

ordering -api" , "catalog -api" , "basket -api"]
375 p r o p e r t i e s :
376 image: eshop /webshoppingagg: l inux −dev
377 por t s :
378 - port : 80
379 expose: true
380 env:
381 - name: ASPNETCORE_ENVIRONMENT
382 value : Development
383 - name: urls__basket
384 value : http:// basket−api
385 - name: ur l s__catalog
386 value : http:// cata log −api
387 - name: ur ls__orders
388 value : http:// order ing −api
389 - name: ur l s__ident i ty
390 value : http:// i d e n t i t y −api
391 - name: urls__grpcBasket
392 value : http:// basket−api :81
393 - name: urls__grpcCatalog
394 value : http:// cata log −api :81

102 Appendix D. Evaluation and Experimentation Assets

395 - name: urls__grpcOrdering
396 value : http:// order ing −api :81
397 - name:

ReverseProxy__Clusters__basket__Destinations__destination0__Address
398 value : http:// basket−api
399 - name:

ReverseProxy__Clusters__catalog__Destinations__destination0__Address
400 value : http:// cata log −api
401 - name:

ReverseProxy__Clusters__orders__Destinations__destination0__Address
402 value : http:// order ing −api
403 - name:

ReverseProxy__Clusters__signalr__Destinations__destination0__Address
404 value : http:// order ing −s i gna l rhub
405 - name: CatalogUrlHC
406 value : http:// cata log −api /hc
407 - name: OrderingUrlHC
408 value : http:// order ing −api /hc
409 - name: IdentityUrlHC
410 value : http:// i d e n t i t y −api /hc
411 - name: BasketUrlHC
412 value : http:// basket−api /hc
413 - name: PaymentUrlHC
414 value : http://payment−api /hc
415 - name: Identity__Url
416 value : http:// i d e n t i t y −api
417 - name: Ident ity__ExternalUrl
418 value : http:// i d e n t i t y −api
419 t r a i t s :
420 - type: gateway
421 p r o p e r t i e s :
422 domain: eshop−dev−web−shopping−agg . devscope . com
423 http:
424 "/": 80
425 - name: order ing −s i gna l rhub
426 type: webserv i ce
427 dependsOn: ["nosqldata" , "sqldata" , "identity -api" , "rabbitmq" , "

ordering -api" , "catalog -api" , "basket -api"]
428 p r o p e r t i e s :
429 image: eshop / orde r ing . s i gna l rhub : l inux −dev
430 por t s :
431 - port : 80
432 expose: true
433 env:
434 - name: ASPNETCORE_ENVIRONMENT
435 value : Development
436 - name: ASPNETCORE_URLS
437 value : http: / / 0 . 0 . 0 . 0 :80
438 - name: ConnectionStrings__EventBus
439 value : rabbitmq
440 - name: EventBus__UserName
441 value : admin
442 - name: EventBus__Password
443 value : <REDACTED>
444 - name: AzureServiceBusEnabled
445 value : "False"
446 - name: Identity__Url
447 value : http:// i d e n t i t y −api

Appendix D. Evaluation and Experimentation Assets 103

448 - name: OrchestratorType
449 value : K8S
450 - name: webstatus
451 type: webserv i ce
452 p r o p e r t i e s :
453 image: eshop / webstatus: l inux −dev
454 por t s :
455 - port : 80
456 expose: true
457 env:
458 - name: ASPNETCORE_ENVIRONMENT
459 value : Production
460 - name: ASPNETCORE_URLS
461 value : http: / / 0 . 0 . 0 . 0 :80
462 - name: HealthChecksUI__HealthChecks__0__Name
463 value : WebMVC HTTP Check
464 - name: HealthChecksUI__HealthChecks__0__Uri
465 value : http://webmvc/hc
466 - name: HealthChecksUI__HealthChecks__1__Name
467 value : WebSPA HTTP Check
468 - name: HealthChecksUI__HealthChecks__1__Uri
469 value : http://webspa/hc
470 - name: HealthChecksUI__HealthChecks__2__Name
471 value : Web Shopping Aggregator GW HTTP Check
472 - name: HealthChecksUI__HealthChecks__2__Uri
473 value : http:// webshoppingagg/hc
474 - name: HealthChecksUI__HealthChecks__3__Name
475 value : Mobile Shopping Aggregator HTTP Check
476 - name: HealthChecksUI__HealthChecks__3__Uri
477 value : http:// mobi leshoppingagg /hc
478 - name: HealthChecksUI__HealthChecks__4__Name
479 value : Ordering HTTP Check
480 - name: HealthChecksUI__HealthChecks__4__Uri
481 value : http:// order ing −api /hc
482 - name: HealthChecksUI__HealthChecks__5__Name
483 value : Basket HTTP Check
484 - name: HealthChecksUI__HealthChecks__5__Uri
485 value : http:// basket−api /hc
486 - name: HealthChecksUI__HealthChecks__6__Name
487 value : Catalog HTTP Check
488 - name: HealthChecksUI__HealthChecks__6__Uri
489 value : http:// cata log −api /hc
490 - name: HealthChecksUI__HealthChecks__7__Name
491 value : I d e n t i t y HTTP Check
492 - name: HealthChecksUI__HealthChecks__7__Uri
493 value : http:// i d e n t i t y −api /hc
494 - name: HealthChecksUI__HealthChecks__8__Name
495 value : Payments HTTP Check
496 - name: HealthChecksUI__HealthChecks__8__Uri
497 value : http://payment−api /hc
498 - name: HealthChecksUI__HealthChecks__9__Name
499 value : Ordering SignalRHub HTTP Check
500 - name: HealthChecksUI__HealthChecks__9__Uri
501 value : http:// order ing −s i gna l rhub /hc
502 - name: HealthChecksUI__HealthChecks__10__Name
503 value : Ordering HTTP Background Check
504 - name: HealthChecksUI__HealthChecks__10__Uri
505 value : http:// order ing −backgroundtasks /hc

104 Appendix D. Evaluation and Experimentation Assets

506 - name: OrchestratorType
507 value : K8S
508 - name: webspa
509 type: webserv i ce
510 p r o p e r t i e s :
511 image: eshop /webspa: l inux −dev
512 por t s :
513 - port : 80
514 expose: true
515 env:
516 - name: ASPNETCORE_ENVIRONMENT
517 value : Production
518 - name: ASPNETCORE_URLS
519 value : http: / / 0 . 0 . 0 . 0 :80
520 - name: I d e n t i t y U r l
521 value : https :// eshop−dev−i d e n t i t y −api . devscope . com
522 - name: PurchaseUrl
523 value : https :// eshop−dev−web−shopping−agg . devscope . com
524 - name: IdentityUrlHC
525 value : http:// i d e n t i t y −api /hc
526 - name: SignalrHubUrl
527 value : https :// eshop−dev−web−shopping−agg . devscope . com
528 - name: UseCustomizationData
529 value : "True"
530 - name: OrchestratorType
531 value : K8S
532 t r a i t s :
533 - type: gateway
534 p r o p e r t i e s :
535 domain: eshop−dev−spa . devscope . com
536 http:
537 "/": 80
538 - name: webmvc
539 type: webserv i ce
540 dependsOn: ["webshoppingagg"]
541 p r o p e r t i e s :
542 image: eshop /webmvc: l inux −dev
543 por t s :
544 - port : 80
545 expose: true
546 env:
547 - name: ASPNETCORE_ENVIRONMENT
548 value : Development
549 - name: ASPNETCORE_URLS
550 value : http: / / 0 . 0 . 0 . 0 :80
551 - name: PurchaseUrl
552 value : https :// eshop−dev−web−shopping−agg . devscope . com
553 - name: I d e n t i t y U r l
554 value : https :// eshop−dev−i d e n t i t y −api . devscope . com
555 - name: SignalrHubUrl
556 value : https :// eshop−dev−web−shopping−agg . devscope . com
557 - name: IdentityUrlHC
558 value : http:// i d e n t i t y −api /hc
559 - name: UseCustomizationData
560 value : "True"
561 - name: UseLoadTest
562 value : "False"
563 - name: OrchestratorType

Appendix D. Evaluation and Experimentation Assets 105

564 value : K8S
565 t r a i t s :
566 - type: gateway
567 p r o p e r t i e s :
568 domain: eshop−dev−mvc . devscope . com
569 http:
570 "/": 80
571 - name: webhooks−c l i e n t
572 type: webserv i ce
573 dependsOn: ["webhooks -api"]
574 p r o p e r t i e s :
575 image: eshop /webhooks . c l i e n t : l inux −dev
576 por t s :
577 - port : 80
578 expose: true
579 env:
580 - name: ASPNETCORE_URLS
581 value : http: / / 0 . 0 . 0 . 0 :80
582 - name: Token
583 value : 6168DB8D−DC58−4094−AF24−483278923590
584 - name: I d e n t i t y U r l
585 value : http:// i d e n t i t y −api
586 - name: CallBackUrl
587 value : http: / / 0 . 0 . 0 . 0
588 - name: WebhooksUrl
589 value : http://webhooks−api
590 - name: S e l f U r l
591 value : http://webhooks−c l i e n t /
592 t r a i t s :
593 - type: gateway
594 p r o p e r t i e s :
595 domain: eshop−dev−webhooks−c l i e n t . devscope . com
596 http:
597 "/": 80
598 p o l i c i e s :
599 - name: target −dev
600 type: topo logy
601 p r o p e r t i e s :
602 c l u s t e r s : ["local"]
603 namespace: eshop−dev
604 - name: target −l o c a l −prod
605 type: topo logy
606 p r o p e r t i e s :
607 c l u s t e r s : ["local"]
608 namespace: eshop−prod
609 - name: target −prod
610 type: topo logy
611 p r o p e r t i e s :
612 c l u s t e r s : ["bonfim"]
613 namespace: eshop−prod
614 - name: change−database−type
615 type: o v e r r i d e
616 p r o p e r t i e s :
617 s e l e c t o r : ["sqldata"]
618 components:
619 - name: sq lda ta
620 type: azure−mssql−s e r v e r
621 p r o p e r t i e s :

106 Appendix D. Evaluation and Experimentation Assets

622 name: mssql−eshop−prod−ne
623 adminUser: azureadmin
624 adminPassword: <REDACTED>
625 l o c a t i o n : NorthEurope
626 resourceGroupName: rg−eshop−prod−ne
627 resourceGroupLocat ion: NorthEurope
628 databases : ["microsoft -eshoponcontainers -services -

catalogdb"]
629 - name: d i sab l e −re load −con f i g − f i l e s
630 type: o v e r r i d e
631 p r o p e r t i e s :
632 components:
633 - type: webserv i ce
634 t r a i t s :
635 - type: env
636 p r o p e r t i e s :
637 env:
638 DOTNET_HOSTBUILDER__RELOADCONFIGONCHANGE: "false"
639 - name: add−db−connect ion−s t r i n g
640 type: o v e r r i d e
641 p r o p e r t i e s :
642 components:
643 - name: i d e n t i t y −api | cata log −api | order ing −api | webhooks−api
644 t r a i t s :
645 - type: s t o rage
646 p r o p e r t i e s :
647 s e c r e t :
648 - name: sq ldata −connect ion−d e t a i l s
649 mountToEnvs:
650 - envName: MSSQL_SERVER
651 secretKey: endpoint
652 - envName: MSSQL_USER
653 secretKey: username
654 - envName: MSSQL_PASSWORD
655 secretKey: password
656 data:
657 endpoint : c3FsZGF0YQ==
658 username: c2E=
659 password: <REDACTED>
660 - name: i d e n t i t y −api
661 t r a i t s :
662 - type: env
663 p r o p e r t i e s :
664 env:
665 ConnectionStrings__IdentityDb: "Server=sqldata;

Database=Microsoft.eShopOnContainers.Service.IdentityDb;User Id=sa;
Password=<REDACTED>;Encrypt=False;TrustServerCertificate=true"

666 - name: cata log −api
667 t r a i t s :
668 - type: env
669 p r o p e r t i e s :
670 env:
671 ConnectionStrings__CatalogDb: "Server=sqldata;

Database=Microsoft.eShopOnContainers.Service.CatalogDb;User Id=sa;
Password=<REDACTED>;Encrypt=False;TrustServerCertificate=true"

672 - name: order ing −api
673 t r a i t s :
674 - type: env

Appendix D. Evaluation and Experimentation Assets 107

675 p r o p e r t i e s :
676 env:
677 ConnectionStrings__OrderingDb: "Server=sqldata;

Database=Microsoft.eShopOnContainers.Service.OrderingDb;User Id=sa;
Password=<REDACTED>;Encrypt=False;TrustServerCertificate=true"

678 - name: webhooks−api
679 t r a i t s :
680 - type: env
681 p r o p e r t i e s :
682 env:
683 ConnectionStrings__WebhooksDb: "Server=sqldata;

Database=Microsoft.eShopOnContainers.Service.WebhooksDb;User Id=sa;
Password=<REDACTED>;Encrypt=False;TrustServerCertificate=true"

684 - name: change−db−connect ion−s t r i n g
685 type: o v e r r i d e
686 p r o p e r t i e s :
687 components:
688 - name: i d e n t i t y −api | cata log −api | order ing −api | webhooks−api
689 t r a i t s :
690 - type: s t o rage
691 p r o p e r t i e s :
692 s e c r e t :
693 - name: sq ldata −connect ion−d e t a i l s
694 mountToEnvs:
695 - envName: MSSQL_SERVER
696 secretKey: endpoint
697 - envName: MSSQL_USER
698 secretKey: username
699 - envName: MSSQL_PASSWORD
700 secretKey: password
701 - name: i d e n t i t y −api
702 t r a i t s :
703 - type: env
704 p r o p e r t i e s :
705 env:
706 ConnectionStrings__IdentityDb: "Server=$(

MSSQL_SERVER);Database=microsoft -eshoponcontainers -services -
identitydb;User Id=$(MSSQL_USER);Password=$(MSSQL_PASSWORD);Encrypt=
True;TrustServerCertificate=true"

707 - name: cata log −api
708 t r a i t s :
709 - type: env
710 p r o p e r t i e s :
711 env:
712 ConnectionStrings__CatalogDb: "Server=$(MSSQL_SERVER

);Database=microsoft -eshoponcontainers -services -catalogdb;User Id=$(
MSSQL_USER);Password=$(MSSQL_PASSWORD);Encrypt=True;
TrustServerCertificate=true"

713 - name: order ing −api
714 t r a i t s :
715 - type: env
716 p r o p e r t i e s :
717 env:
718 ConnectionStrings__OrderingDb: "Server=$(

MSSQL_SERVER);Database=microsoft -eshoponcontainers -services -
orderingdb;User Id=$(MSSQL_USER);Password=$(MSSQL_PASSWORD);Encrypt=
True;TrustServerCertificate=true"

719 - name: webhooks−api

108 Appendix D. Evaluation and Experimentation Assets

720 t r a i t s :
721 - type: env
722 p r o p e r t i e s :
723 env:
724 ConnectionStrings__WebhooksDb: "Server=$(

MSSQL_SERVER);Database=microsoft -eshoponcontainers -services -
webhooksdb;User Id=$(MSSQL_USER);Password=$(MSSQL_PASSWORD);Encrypt=
True;TrustServerCertificate=true"

725 - name: add−gateways−dev
726 type: o v e r r i d e
727 p r o p e r t i e s :
728 components:
729 - name: webstatus
730 type: webserv i ce
731 t r a i t s :
732 - type: gateway
733 p r o p e r t i e s :
734 domain: eshop−dev−webstatus . devscope . com
735 http:
736 "/": 80
737 - type: c l o u d f l a r e −dns
738 p r o p e r t i e s :
739 publ i c IpAddress : "<REDACTED>"
740 namespace: kube f l a r e −system
741 - name: add−gateways−prod
742 type: o v e r r i d e
743 p r o p e r t i e s :
744 components:
745 - name: webstatus
746 type: webserv i ce
747 t r a i t s :
748 - type: gateway
749 p r o p e r t i e s :
750 domain: eshop−prod−webstatus . devscope . com
751 http:
752 "/": 80
753 - type: c l o u d f l a r e −dns
754 p r o p e r t i e s :
755 publ i c IpAddress : "<REDACTED>"
756 namespace: kube f l a r e −system
757 - name: deploy−ha
758 type: o v e r r i d e
759 p r o p e r t i e s :
760 components:
761 - type: webserv i ce
762 t r a i t s :
763 - type: s c a l e r
764 p r o p e r t i e s :
765 r e p l i c a s : 2
766 - name: enable−l ogg ing −prod
767 type: conta iner −l og
768 p r o p e r t i e s :
769 namespace: eshop−prod
770 c l u s t e r : bonfim
771 workflow:
772 s t e p s :
773 - name: deploy−to−dev
774 type: deploy

Appendix D. Evaluation and Experimentation Assets 109

775 p r o p e r t i e s :
776 p o l i c i e s : ["add -gateways -dev" , "add -db-connection -string" , "

target -dev"]
777 - name: manual−approval
778 type: suspend
779 - name: deploy−database
780 type: deploy
781 p r o p e r t i e s :
782 p o l i c i e s : ["change -database -type" , "target -local -prod"]
783 - name: manual−approval2
784 type: suspend
785 - name: read−db−s e c r e t
786 type: read−o b j e c t
787 p r o p e r t i e s :
788 ap iVers ion : v1
789 kind: Sec r e t
790 name: sq ldata −connect ion−d e t a i l s
791 namespace: eshop−prod
792 c l u s t e r : l o c a l
793 outputs :
794 - name: endpoint
795 valueFrom: output . va lue . data ["endpoint"]
796 - name: username
797 valueFrom: output . va lue . data ["username"]
798 - name: password
799 valueFrom: output . va lue . data ["password"]
800 - name: apply−s e c r e t
801 type: apply−o b j e c t
802 inputs :
803 - from: endpoint
804 parameterKey: va lue . data . endpoint
805 - from: username
806 parameterKey: va lue . data . username
807 - from: password
808 parameterKey: va lue . data . password
809 p r o p e r t i e s :
810 c l u s t e r : bonfim
811 value :
812 ap iVers ion : v1
813 kind: Sec r e t
814 metadata:
815 name: sq ldata −connect ion−d e t a i l s
816 namespace: eshop−prod
817 data: {}
818 - name: deploy−to−prod
819 type: deploy
820 p r o p e r t i e s :
821 p o l i c i e s : ["add -gateways -prod" , "change -db-connection -string" ,

"enable -logging -prod" , "disable -reload -config -files" , "deploy -ha" ,
"target -prod"]

Listing D.2: Application used for performance evaluation of the
solution

1 import "strings"
2

3 "azure -linux -webapp": {
4 a l i a s : ""

110 Appendix D. Evaluation and Experimentation Assets

5 annotat ions : {}
6 a t t r i b u t e s : {
7 workload: d e f i n i t i o n : {
8 ap iVers ion : "web.azure.upbound.io/v1beta1"
9 kind: "LinuxWebApp"

10 }
11 s t a t u s : {
12 hea l thPo l i cy : #"""
13 i sHea l th : (context . output . s t a t u s . c o n d i t i o n s [0] . type == "Ready") &&

(context . output . s t a t u s . c o n d i t i o n s [0] . s t a t u s == " True ")
14 """#
15 }
16 }
17 description: ""
18 labels: {}
19 type: "component"
20 }
21

22 template: {
23 parameter: {
24 name: string
25 location: ∗"NorthEurope" | string
26 image: string
27 appServicePlanName: ∗"" | string
28 resourceGroupName: string
29 resourceGroupLocation: ∗"NorthEurope" | string
30 }
31

32 appServicePlanName: "asp −\(context . appName) "
33

34 output: {
35 apiVersion: "web . azure . upbound . i o / v1beta1 "
36 kind: "LinuxWebApp"
37 metadata: name: paramater.name
38 spec: {
39 forProvider: {
40 resourceGroupName: parameter.resourceGroupName
41 if parameter.appServicePlanName != _|_ {
42 servicePlanIdRef: parameter.appServicePlanName
43 }
44 if parameter.appServicePlanName == _|_ {
45 servicePlanIdRef: appServicePlanName
46 }
47 applicationStack: {
48 dockerImage: strings.Split(parameter.image , ":")[0]
49 dockerImageTag: s t r i n g s . S p l i t (parameter . image , ":") [1]
50 }
51 }
52 }
53 }
54

55 outputs : {
56 resourceGroup: {
57 ap iVers ion : "azure.upbound.io/v1beta1"
58 kind: "ResourceGroup"
59 metadata: name: parameter . resourceGroupName
60 spec : f o rProv ide r : {
61 l o c a t i o n : parameter . resourceGroupLocat ion

Appendix D. Evaluation and Experimentation Assets 111

62 tags :
63 "kubevela.app": "\(context.namespace)/\(context.appName)"
64 }
65 }
66

67 i f parameter . appServicePlanName != _|_ {
68 s e r v i c e P l a n : {
69 ap iVers ion : "web.azure.upbound.io/v1beta1"
70 kind: "AppServicePlan"
71 metadata: name: appServicePlanName
72 spec : f o rProv ide r : {
73 kind: "Linux"
74 resourceGroupName: parameter . resourceGroupName
75 l o c a t i o n : parameter . resourceGroupLocat ion
76 sku: {
77 capac i ty : 0
78 s i z e : "Y1"
79 t i e r : "Dynamic"
80 }
81 }
82 }
83 }
84 }
85 }

Listing D.3: Azure Web Application component definition

