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Abstract

In today’s ever-evolving technological landscape, the volume of data across sectors is grow-
ing, particularly in healthcare. Here, the gathering and processing of biochemical data aim
to refine decision-making for patient treatments, especially using tools based on Machine
Learning (ML). As a subset of Artificial Intelligence, ML harnesses algorithms to predict
outcomes or unearth patterns that might otherwise remain concealed.

The interpretability of ML models is pivotal, enabling healthcare professionals to place con-
fidence in and decipher the model’s predictions. This assumes particular significance when
decisions could directly affect patient lives.

This research embarked on an in-depth exploration of various ML algorithms and techniques
to discern whether the combined metabolic profiles of amino acids and acylcarnitines might
serve as new biochemical indicators for predicting colo-rectal cancer prognosis.

Throughout this study, several algorithms and data preprocessing techniques were evaluated.
Four distinct experiments validated the predictions of the models in different scenarios.
These scenarios involved predicting Colorectal Cancer using amino acids with and without the
age parameter, and similarly, using acylcarnitine with and without the age parameter. Each
scenario’s predictions were elucidated using SHAP, both for overarching feature significance
and individual instances.

Preliminary analyses indicated that the constructed models demonstrated promising predic-
tive power, with notable variations for the different scenarios. Amongst the algorithms
tested, Random Forest, Support Vector Machine, Gaussian Naive Bayes, and Gradient
Boosting emerged as the top performers.

Keywords: Colorectal Cancer, Machine Learning, Amino Acids, Acylcarnitines, Explain-
ableAI
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Resumo

No atual panorama tecnológico em constante evolução, o volume de dados em diversos
setores está a aumentar, particularmente na saúde. Aqui, a recolha e processamento de
dados bioquímicos visam aprimorar a tomada de decisão para tratamentos de pacientes,
especialmente utilizando ferramentas baseadas em Aprendizagem Automática. Como um
subconjunto da Inteligência Artificial, a Aprendizagem Automática utiliza algoritmos para
prever resultados ou descobrir padrões que de outra forma poderiam permanecer ocultos.

A interpretabilidade dos modelos de Aprendizagem Automática é fundamental, permitindo
que os profissionais de saúde confiem e decifrem as previsões do modelo. Isto assume uma
importância particular quando as decisões podem afetar diretamente a vida dos pacientes.

Esta investigação levou a cabo uma exploração aprofundada de vários algoritmos e téc-
nicas de Aprendizagem Automática para determinar se os perfis metabólicos combinados
de aminoácidos e acilcarnitinas poderiam servir como novos indicadores bioquímicos para a
previsão e prognóstico do cancro colo-retal.

Ao longo deste estudo, vários algoritmos e técnicas de pré-processamento de dados foram
avaliados. Quatro experiências distintas validaram as previsões dos modelos em diferentes
cenários. Estes cenários envolveram a previsão de Cancro Colorretal usando aminoácidos
com e sem o atributo idade, e de forma semelhante, usando acilcarnitinas. As previsões de
cada cenário foram elucidadas usando o SHAP, tanto para a importância geral dos atributos
como para amostras individuais.

Análises preliminares indicaram que os modelos construídos mostraram um poder preditivo
promissor, com variações notáveis nos diferentes cenários. Entre os algoritmos testados,
Random Forest, Support Vector Machines, Naive Bayes e Gradient Boosting destacaram-se
com melhor desempenho.
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Chapter 1

Introduction

The topic of the dissertation is introduced in this chapter along with its context, problem,
objectives, information sources and the approach used in its realization. The document’s
structure is then presented.

1.1 Context

The digital era has been feeding worldwide databases with very large volumes of data. Ex-
tracting information and knowledge from this data has become one of the most predominant
study fields. Multiple areas can take advantage of the emerging technologies and healthcare
is no exception.

Cancer is a decease with very high death rate which is grouped accordingly with the organ
or tissue. ColoRectal Cancer (CRC) is a particular aggressive one [1].

Metabolic profiles such amino acids and acylcarnitines, which can be discovered in blood,
urine, and other bodily fluids, can give information about a person’s health. Therefore, they
are candidates to feed Machine Learning (ML) algorithms.

ML is a type of artificial intelligence that involves training algorithms to identify patterns in
data and make predictions or decisions based on the data.

The healthcare field still has not widely adopted predictive tools. There is plenty of room
to explore the use of metabolic profiles in CRC diagnosis and treatment using ML.

While ML algorithms have the potential to revolutionize early disease detection, such as in
the case of CRC, the explanatory aspect ensures that these tools are safely and effectively
integrated into clinical workflows.

1.2 Problem Definition

CRC is a type of colon or rectal cancer, which may also be called colon or rectal cancer (RC)
depending on location [2]. CRC is the third most commonly diagnosed cancer worldwide
and has been increasing its incidence over time. The dietary habits from western lifestyles
may be contributing for this increase [3].

With the lack of symptoms at early stages, it is critical to explore the digital metabolic
print, provided by the screening and thus the collected data, along side with the help of the
available computational power. This can provide the so needed support in the prematurely
diagnose of the decease.
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In the context of machine learning (ML), especially in healthcare, the importance of expla-
nations cannot be overstated. Explaining ML models ensures that healthcare professionals
can trust and interpret the predictions made by these models. This is especially crucial
when patient lives are at stake, as transparent and interpretable ML models can aid in clin-
ical decision-making, reinforcing confidence in the digital tools, and lead to more informed
medical interventions.

1.3 Objectives

This dissertation aims to carry out an investigation, using the combined metabolic profiles
amino acids and acylcarnitines, with two main goals:

• Predict the diagnosis of CRC in a set of patients;

• Explain the predictions, so healthcare staff can understand why those predictions are
being made

1.4 Information Sources

All data is provided by the Hospital and University Center of Porto (CHUPorto) by the
following departments:

• Colorectal Surgery Unit of the General Surgery Service

• Genetic Biochemistry Unit of the Medical Genetics Center

The datasets are spread across multiple files containing the results of real patients and being
distinct by the measured biomarkers (amino acids and acylcarnitines).

The datasets are divided in two categories:

1. Patients with several types of diseases (including no disease)

2. Patients already diagnosed with CRC

1.5 Approach

There are several project management frameworks used to help teams to execute their data
science projects. According to the study made at [4], the Cross Industry Standard Process
for Data Mining (CRISP-DM) is the most commonly used.

This framework consists on the following steps:

1. Business Understanding - Starting by understanding the customer’s needs.

2. Data Understanding - Explore the RAW data.

3. Data Preparation - Select, clean, format the data into the datasets that will be used.

4. Modeling - Determine which algorithms to try for building the models.

5. Evaluation - Check if the models meet the business success criteria by the use of
performance metrics.

6. Deployment - How the models can be deployed for being used by the customer.
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Figure 1.1 shows a diagram to visualize the several CRISP-DM steps.

Figure 1.1: CRISP-DM Diagram [5]

1.6 Document Structure

The document organized by the following items:

• Introduction - Describes the topic of this dissertation, including its context, the prob-
lem, the objectives, the information sources and the approach used in its realization

• State of the Art - Introduces the CRC folowed by amioacids and acylcarnitines. Then
presents the ML, exploring algorithms, frameworks and explanations. Finally, literature
examples of the application of ML in the prediction and prognosis of cancer are given.

• Data Understanding & Preparation - Gives an overview of the data used, as well as
the pre-processing tools.

• Modeling - Provides an insight on how the bench for running the tests was structured.

• Evaluation & Explanations - This is where the collected results will be explored in the
search for the best models for each scenario, followed by their respective explanations.

• Deploy - Describes the system architecture allowing to understand how the models
and explanations are going to be deployed.

• Conclusions - Presents the conclusions about the work carried out, highlighting what
objectives were achieved and what the next steps should be.
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Chapter 2

State of the Art

This chapter exposes the fundamental concepts for a better understanding of the work
developed: CRC, amino acids, acylcarnitines, ML and Explanations. Finally, examples of
ML applications in cancer prediction are presented.

2.1 Colorectal Cancer

This section presents a generic definition of cancer and a more detailed one for the colorectal.

2.1.1 What is a cancer

An aberrant mass of cells that grow and divide uncontrollably is referred to as a tumor.
They can be brought on by a variety of things, such as genetic mutations, environmental
influences, and way of life decisions, and they can happen in any portion of the body.

There are two types of tumors.

• Benign - Usually grow slowly and do not invade nearby tissues or spread to other parts
of the body. They can also be called as Polyps.

• Malign - Grow rapidly and invade nearby tissues. They can also spread to other parts of
the body through the bloodstream or lymphatic system, a process known as metastasis.

Cancer is a malign tumor [6]. Its mortality is very related with its detection timing. The
survivability increases the early the patient is diagnosed. Depending on the cancer, usually
the symptoms start appearing in not so early stages. Moreover, the symptoms may be
generic by being present in several other diseases, making it more difficult to relate to them
to the cancer [7]. Therefore, it’s important to screen each type of cancer. Screening is
looking for cancer before a person has any symptoms [8].

2.1.2 What is a Colorectal Cancer

Definition

CRC is a type of cancer that starts in the colon or rectum. It usually begins as small clumps
of cells called adenomatous polyps that slowly develop into cancer over time.

The study [9] presents the CRC stages in 2.1.
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Figure 2.1: Colorectal Cancer Stages - [9]

Incidence and mortality

It’s the third and second most commonly diagnosed cancer in males and females respectively
[10]. It comprised 10% (1.9 million) of global new cancer cases and 9.4% (0.9 million) of
cancer deaths in 2020 [11]. The figure 2.2 confirms the increasing trend.

Figure 2.2: Colorectal Cancer Incidence and Mortality adapted from [12]

Risk Factors

There are several risks factors such as family clinical history, lifestyle, age and sex play.
Obesity, sedentarism, smoking, alcohol consumption and inappropriate dietary are among
them [13]. The 2.3 figure shows the main risk factors associated with CRC.

Symptoms

CRC symptoms may vary depending on the location of the cancer and the stage of the
disease. The study [14] identifies the following common symptoms:

• Bleeding from Back Passage
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Figure 2.3: Classification vs Regression Algorithms [13]

• Change in Bowel Habit

• Back pain

• Indigestion/Heartburn/Tummy Ache

• Decrease in Appetite

• Weight loss

• Fatigue or Tiredness

• Feeling Different

Treatments

Treatment plans differ greatly depending on the stage. Surgery and chemotherapy have
been the most common treatments for this disease [9]. There are different strategies on
the order where these two common treatments are applied. The study [15] found that
Neoadjuvant ChemoradioTherapy followed by surgery and postoperative chemotherapy was
associated with a lower risk of local recurrence and improved disease-free survival compared
to postoperative chemotherapy alone.

There other treatments such as Immunotherapy [16] and Targeted therapy [17].

Screening

Cancer screening is the use of medical tests to detect cancer in asymptomatic individuals.
The goal of cancer screening is to identify cancer early, when it is more treatable and curable.
[18]

In CRC screening is different from surveillance which refers to the interval use of colonoscopy
in patients with previously detected with the disease [19]. The study [19] also recommends
that CRC screening should start at age 50.
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2.2 Metabolic Profiles

This section introduces the concept of metabolic profiles specializing on amino acids and
acylcarnitines.

"Metabolic profiling (metabolomics/metabonomics) is the measurement in bi-
ological systems of the complement of low-molecular-weight metabolites and
their intermediates that reflects the dynamic response to genetic modification
and physiological, pathophysiological, and/or developmental stimuli." - Christo-
pher J Clarke and John N Haselden [20]

Amino acids and acylcarnitines are examples of metabolites and can be used for
clinical diagnosis [21].

2.2.1 Amino acids

Amino acids are the basic building blocks of proteins and serve as the nitrogen
backbone of compounds such as neurotransmitters and hormones. The name
comes from its organic compound that contains both an amino (-NH2) and
carboxylic acid (-COOH) functional group. [22].

Although homoeostasis regulates the levels of amino acids in the blood, dietary,
metabolic, behavioral, and genetic factors also have an impact. Cancers need
a plentiful supply of amino acids to maintain their proliferation drive. They can
play a direct function in promoting the synthesis of nucleosides and maintaining
cellular redox homoeostasis in addition to their direct involvement as substrates
for protein synthesis. Cancer cells occasionally coexist with other metabolic
community members in complicated and frequently nutrient-poor microenviron-
ments, developing interactions that can be both symbiotic and parasitic. [23]

2.2.2 Acylcarnitines

Fatty acid metabolites called acylcarnitines play a role in the synthesis of energy
needed to maintain cell function. Nowadays, they are employed in the research of
numerous illnesses, including diabetes, cardiovascular disease, depression, and a
few malignancies, as well as metabolic and neurological disorders. Traditionally,
they have been used as diagnostic indicators of fatty acid oxidation mistakes.
They are also being researched as indicators of deficiencies in energy metabolism,
insulin resistance, peroxisomal and mitochondrial b-oxidation activity, and phys-
ical activity. [24]

2.2.3 Relatioship between Amino Acids and Acylcarnitines with
CRC

Amino acids and acylcarnitines are not directly related, but they are both impor-
tant molecules involved in metabolic processes in the body. They can provide
information about a person’s health and can be found in blood, urine, and other
body fluids. These biomarkers can be used to diagnose and monitor various
diseases, including CRC [25].

While associations between amino acids and acylcarnitines profiles with CRC
have been identified, causative relationships are more challenging to establish.
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The altered metabolite profiles might be a consequence of the cancer, or they
might play roles in cancer initiation and progression. Furthermore, factors such
as diet, microbiota composition and medication use can influence these metabo-
lite levels. The study [26] discusses how amino acid metabolism is dysregulated
in colorectal cancer patients and the study [27] desribes the promising role of
carnitine and acylcarnitine levels in understanding and potentially diagnosing and
treating. Both point out the need of further investigations.

2.3 Machine Learning (ML)

In this section, ML will be introduced followed the classification algorithms and
libraries.

2.3.1 Supervised Algorithms

In the context of this work, only the ML supervised algorithms are going to be
used, therefore, only these ones will be explored.

Supervised learning uses the approach of a mapping between a set of input
variables and an output variable. By applying this mapping, it can predict the
outputs for unseen data [28].

There are two types of algorithms [29]:

• Classification - Assumes discrete values from a non ordered dataset. Fraud
detection and Medical diagnosis are examples of applications.

• Regression - Assumes infinite values from an ordered dataset. Sales/Weather
forecasting are examples of applications.

The figure 2.4 shows the difference between these two types of algorithms.

Figure 2.4: Classification vs Regression Algorithms [30]

The figure 2.5 shows in, a simple way, the typical flow of the implementation
and use of ML Classification Supervised Algortihms.
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Figure 2.5: Typical flow of the implementation and use of ML Supervised
systems with Classification

Bellow some common supervised learning algorithms from the book [29]:

Distance Based Algorithms

• k-NN k-Nearest Neighbors was first introduced by Evelyn Fix and Joseph
Hodges in their paper titled "Discriminatory Analysis, Nonparametric Dis-
crimination: Consistency Properties" published in 1951. It is a simple and
effective classification algorithm that is based on the idea that similar in-
puts are likely to have similar outputs. It classifies an input based on the
class of the k-nearest neighbors in the training data. A new case is classi-
fied considering the distance between the point to be classified and the K
closest points of the different classes, which were previously defined during
the learning process. The classification result is given by the class that has
the highest number of points represented in the defined distance [31].
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Figure 2.6: k-NN adapted from [29]

Advantages:

– Simplicity - simple and easy-to-understand algorithm.

– Versatility - can be used for both classification and regression problems.

Disadvantages:

– Computationally expensive

– Sensitivity to noise: k-NN is sensitive to noise and outliers in the data,
which can affect its classification accuracy.

– Choice of k: The choice of k can affect the performance of the algo-
rithm, and selecting the optimal value of k can be challenging.

Probabilistic Algorithms

• Naive Bayes - A classification algorithm based on Bayes’ theorem. Intro-
duced by Reverend Thomas Bayes in the 18th century and later extended
by Laplace. It assumes that input variables are independent and calculates
the probability an input belongs to a class, given the variables [32].

Bayes’ Theorem: The formula is defined as:

P (A|B) =
P (B|A)× P (A)

P (B)

Where:

– P (A|B) represents the posterior probability of A given B.

– P (B|A) signifies the likelihood of B occurring given A.

– P (A) is the prior probability or initial belief about A.

– P (B) is the marginal likelihood or evidence of B.

To illustrate the application of Bayes’ Theorem, consider an example adapted
from [29]:
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Given:

– P (HeartRisk) = 0.20

– P (High BP | HeartRisk) = 0.90

– P (Elderly | HeartRisk) = 0.80

– P (High BP | No HeartRisk) = 0.30

– P (Elderly | No HeartRisk) = 0.20

Compute:

– Joint probability with HeartRisk: 0.90× 0.80 = 0.72

– Joint probability without HeartRisk: 0.30× 0.20 = 0.06

The marginal probability of both High BP and being Elderly is:

P (High BP, Elderly) = 0.72× 0.20 + 0.06× 0.80 = 0.192

Using Bayes’ theorem:

P (HR | HBP, Elderly) =
P (HBP, Elderly | HR) · P (HR)

P (HBP, Elderly)

=
0.72 · 0.20
0.192

= 0.75

There are different types of Naive Bayes classifiers, like Gaussian (used for
continuous data) and Multinomial (often used for text data).

Advantages:

– Robust to irrelevant features and noise in the data [33].

– Computationally efficient.

Disadvantages:

– The strong independence assumptions might not always hold in real-
world scenarios, potentially leading to suboptimal performance [34].

Search Based Algorithms

• Decision Trees - Peter E. Hart, Richard O. Duda, and David G. Stork
developed the concept of the decision tree as a machine learning algorithm
in the 1970. This is a popular algorithm for classification and regression
tasks. It uses a tree-like structure to represent a set of decisions and their
possible consequences, based on the input data [35]. The construction of a
decision tree involves a recursive process that optimally selects features and
splits the dataset at each node to create a tree-like structure. The root
node serves as the initial starting point, representing the entire dataset.
Internal nodes, also known as decision nodes, are non-leaf nodes within the



2.3. Machine Learning (ML) 13

tree. Each leaf node corresponds to a specific predicted class or value [36].

Figure 2.7: DecisionTrees adapted from [36]

Advantages:

– Easy to visualize and understand, even for non-experts, providing a
clear graphical representation of the decision-making process, making
it easy to see how decisions are being made [36].

– Can handle both categorical and numerical data [37].

Disadvantages:

– Instability: Small changes in the training data can lead to significantly
different decision trees. This instability can make decision trees less
reliable than other machine learning algorithms. [35].

– Bias: Decision trees can be biased towards features with many levels,
as these features can have a larger impact on the split decisions [38].

Ensemble Methods

• Random Forests - Created in 1995 by Tin Kam Ho using the random sub-
space method. Combines multiple decision trees to improve the accuracy
of the predictions. Each decision tree is trained on a random subset of the
input data, and the final prediction is based on the average or majority vote
of the individual trees [39].
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Figure 2.8: RandomForests adapted from [39]

Advantages:

– Robust to overfitting [39].

– Can handle missing data and outliers in the input features [40].

Disadvantages:

– Computationally expensive and slow to train on large datasets, partic-
ularly when the number of features or trees is high [41].

– Difficult to interpret and visualize, particularly when the number of
trees in the forest is large [42].

• Gradient Boosting - Gradient Boosting is a family of algorithms such as
XGBoost, LightGBM, and CatBoost. It was introduced in the context of
machine learning by Jerome H. Friedman in a series of papers between
1999 and 2002. It builds an ensemble of decision trees in a sequential
manner, where each tree corrects the errors of its predecessor. In each
iteration, it fits a new tree to the negative gradient of the loss function,
essentially pointing in the direction that minimizes the error. By summing
the predictions of each tree, the final model produces a combined output
that, ideally, offers improved accuracy [43].

Figure 2.9: GradientBoosting adapted from [44]

Optimization Based Algorithms

• SVMs Support Vector Machines - were developed by a team of computer
scientists, including Vladimir Vapnik and Corinna Cortes, while working at
Bell Labs in the 1990s. It separates data points using hyperplanes. They
work by finding the hyperplane that maximizes the margin between the two
classes of data points. [45].
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Figure 2.10: Support Vector Machines adapted from [46]

Advantages:

– Perform well in high-dimensional spaces, such as those commonly found
in image recognition, text classification, and bioinformatics [45].

– High accuracy and generalization performance in many applications[45].

Disadvantages:

– Computationally expensive, especially for large datasets, which can
make training and optimization time-consuming [47].

– Sensitive to noisy and outlier data, which can lead to overfitting or
poor generalization performance [47].

– Difficult to interpret and understand, as the decision boundaries are
defined in a high-dimensional space [48].

• ANNs Artificial Neural Networks - Were first proposed in the 1940s by War-
ren McCulloch and Walter Pitts in their seminal paper "A Logical Calculus
of the Ideas Immanent in Nervous Activity. They are a class of machine
learning models that are inspired by the structure and function of the hu-
man brain. They consist of multiple layers of interconnected nodes. [49].
Each layer is responsible for a different task, and in addition to the input
and output layers, there are hidden layers where several data transforma-
tions are carried out. This way, the input data is supplied to the input layer,
processed, transformed in the hidden layers and, later, sent to the output
layer, where the classification result will be produced [50].
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Figure 2.11: Artificial Neural Networks adapted from [51]

Advantages:

– Capable of handling large amounts of data and can be used with a wide
range of input types [52].

– Flexible and can be used for both classification and regression tasks
[49].

Disadvantages:

– Can be computationally intensive and requires large amounts of data.
[53].

– Difficult to interpret, making it hard to understand how they arrive at
their predictions [54].

2.3.2 Machine Learning Libraries

There are several ML libraries. While TensorFlow, Keras, PyTorch, and ML.Net
are powerful frameworks, they are primarily tailored for deep learning tasks. Deep
learning models often need large volumes of data to perform optimally. For
projects not based on vast datasets, such as this one, diving deep into these
frameworks might not be the most efficient approach. In contrast, scikit-learn
is designed for traditional machine learning algorithms, offering a simplified and
consistent API that integrates seamlessly with the Python ecosystem. Given
the nature and data constraints of this project, scikit-learn emerges as the best
and most appropriate choice. In the subsection bellow, some key attributes and
features of scikit-learn will be explored.

Scikit-learn

This library for Python, is one of the most popular for both beginners and ad-
vanced users. It has the following key attributes and features [55]:

• Easy to Use: Scikit-learn provides a consistent interface for different kinds
of machine learning algorithms, making it easy to switch between models
with minimal code changes.
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• Tools and Algorithms: The library offers a wide variety of supervised and
unsupervised learning algorithms:

– Classification: e.g., SVM, KNN, Random Forests, etc.

– Regression: e.g., linear regression, ridge regression, Lasso, etc.

– Clustering: e.g., k-means, spectral clustering, mean-shift, etc.

• End-to-End Workflow: Pipelines

– Ensure consistency by streamlining the sequence of transformations
applied to data.

– Prevent data leakage by encapsulating the entire workflow.

– Simplify the machine learning workflow, making code more readable.

– Enhance reusability by allowing the same steps and processes to be
applied consistently across different contexts.

• Model Selection: Tools to help in choosing between models, such as
cross-validation, grid search, and metrics.

• Preprocessing: Tools for normalization, feature selection, etc.

• Deployment: Models can be easily serialized (using libraries like joblib) and
deployed in various environments.

• Maturity and Stability: It’s a mature library with a long track record,
which means it’s stable and has been tested across various scenarios.

• Integration with Python Ecosystem: Built on top of NumPy and SciPy,
it allows for seamless integration and interoperability with other scientific
libraries in the Python ecosystem.

• Documentation and Community: Comprehensive online documentation
with both tutorials and detailed method information, supported by a large
and active community.

• Extensibility: The library’s architecture is designed to be extensible, allow-
ing users to add their own algorithms and tools.

2.4 Explainable artificial intelligence

In the past decade, Artificial Intelligence (AI) has seen remarkable and continuous
advancements, resulting in a wider use of its algorithms, including ML algorithms,
to address a variety of problems. This significant progress has its downsides:
it results in the creation of more complex models and the use of ’black-box’
AI models that are not transparent. Consequently, it is becoming increasingly
important to develop solutions to tackle this challenge, as this would enable the
expanded use of AI systems in critical and sensitive sectors, such as healthcare
and security [56].

The study [57] states the following:
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In many applications, an explanation of how an answer was obtained
is crucial for ensuring trust and transparency. An example of one such
application is a medical application.

Explainable Artificial Intelligence (XAI) is a field of research dedicated to making
the results of AI systems more comprehensible to humans. The term was origi-
nally introduced in 2004 [58], which used it to describe their system’s capacity to
elucidate the behavior of AI-controlled entities in simulation game applications.
Technically, there is no universally accepted definition of explainable AI. In fact,
the term XAI is more often associated with the movement, initiatives, and ef-
forts undertaken to address concerns about AI transparency and trust, rather
than a formal technical concept [59]. The following terms are also used, by the
research communities, to address the issue of explainability:

• Understandable AI

• Comprehensible AI

• Accurate AI/ML

• Transparent AI

• Interpretable ML

• Responsable ML

• Interactive ML

In the mid-1990s, an artificial neural network (ANN) was developed to predict
which pneumonia patients required hospital admission and which could be treated
as outpatients.Initial results suggested that neural networks were significantly
more accurate than traditional statistical methods. However, a comprehensive
test revealed that the neural network incorrectly deduced that pneumonia pa-
tients with asthma had a lower risk of death and, therefore, did not require
hospital admission. This conclusion was medically counterintuitive but reflected
a pattern in the training data. Asthma patients with pneumonia were often ad-
mitted directly to the ICU (Intensive Care Unit), received aggressive treatment,
and survived. Consequently, it was decided to abandon the AI system as it was
deemed too dangerous for clinical use. This incident highlighted the importance
of interpreting the model to identify and rectify such critical issues [59].

There are several tools and libraries available for model explanation and inter-
pretation. The following sub section will explore one of them.

2.4.1 SHAP

Shapley Additive Explanations (SHAP) method was introduced in the paper "A
Unified Approach to Interpreting Model Predictions" by Scott M. Lundberg and
Su-In Lee (2017) [60]. This method is based on Shapley values.

Shapley values originate from cooperative game theory and were introduced by
Lloyd S. Shapley in 1953 in the paper: Shapley, L. S. (1953). A value for n-
person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the
Theory of Games (Vol. II, pp. 307–317). Princeton University Press[61].
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It is a concept from cooperative game theory that provides a way to fairly allocate
the rewards or payoffs among the players, based on their marginal contributions
to the coalition. The contribution of a player is the additional value that the
player brings to a coalition. For example, if a group of players has a certain value
without a specific player, and a higher value with that player, the contribution
of that player is the difference between the two values. The Shapley value
is computed by considering all possible orders in which the players can join the
coalition, and averaging the marginal contributions of each player across all these
orders. [62]

In ML, SHAP is a method used to explain the contributions of each feature (input
variable) to the predictions made by a model.The SHAP value of a feature is
comparable to a player’s Shapley value in a cooperative game. It represents the
average contribution of that feature to the model’s prediction across all possible
feature combinations. By calculating the SHAP values for all features, it is
possible to comprehend how each feature influences the model’s prediction for
a particular instance [60].

The contribution of individual features can be measured by the expected value
which represents the average prediction that the model would make over the
entire dataset, acting as a baseline or reference point. The value is calculated by
averaging its predictions over the training set or any representative dataset. It
is essentially the model’s "base rate" prediction without considering any specific
features of an instance [60].

The sign (positive/negative) of the SHAP value point the direction of the rela-
tionship. In a binary classification problem, such as CRC detection, a positive
value means that feature increases the model’s likelihood of predicting a patient
with CRC (assuming the value 1 for), while a negative value means it increases
the likelihood of not having CRC (assuming value 0).

The magnitude of the SHAP value (ignoring the sign) describes the importance
of that feature. Larger absolute values mean that a feature plays a more crucial
role in the model’s decision. regarding the presence or absence of CRC.

SHAP can be useful to explain the overall feature importances for a given dataset
or a single instance. The next subsections will explore how each can be achieved.

Overall Feature Importances

If we gather the shap values for every feature of every dataset instance, we’re
able to see which features impacted the model’s prediction and in which way.
It gives a sense of which features, on average, have the most influence on the
model’s predictions

SHAP Library has several plots [63]. SummaryPlot is one that provides a clear
visualization of the features importances for multiple predictions, and therefore
can be applied to an entire dataset. An example of this plot can be seen at
2.12. In this example, the Breast Cancer Wisconsin dataset from scikit-learn
was utilized. It represents a binary classification problem where the objective
is to distinguish between malignant and benign tumors based on various cell
nucleus. Only the four top most influencing features are shown.
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Figure 2.12: SHAP SummaryPlot example

Each feature is listed on the y-axis, often sorted by the average absolute SHAP
value. This gives a sense of which features are, on average, most influential
in making predictions. The x-axis shows the SHAP value. A feature’s SHAP
value on the left (negative side) suggests it pushes the model’s prediction lower
than the base value (expected value), while a SHAP value on the right (positive
side) indicates it pushes the prediction higher. The color represents the value
of the feature for each data point. A gradient is typically used, where one
color (e.g., red) represents higher values of a feature, and another color (e.g.,
blue) represents lower values of the feature. In this example, the feature "worst
concave points" is on top, meaning that it’s the most influence feature. The
colors all four features have higher values (color red) when the shap values are
negative pushing the prediction to 0 (the tumor is benign).

Single Instance

For a single instance explanation, several shap plots can be used. One of them
is the the ForcePlot. Positive SHAP values are shown in red and the negative as
blue. The range is typically from 0 to 1 in binary classification problems, however
it can change depending on the classifier. For example the RandomForests
classifier presents the range between 0 and 1 while the GradientBoosting can
present a range with negative values. The importance interpretation doesn’t
change.

The force plots 2.13 and 2.14 represent two examples of the same Wisconsin
dataset where the first is explaining a predicting of tumour as being malign and
the second as benign.

Figure 2.13: SHAP ForcePlot example with positive class
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Figure 2.14: SHAP ForcePlot example with negative class

In the example 2.13, features like "worst perimeter", "mean concave points"
and" worst radius" with their positive SHAP values and red coloration signifi-
cantly drive the prediction towards 1. Blue features, with their negative SHAP
values, act in opposition, trying to reduce the prediction, they’re not appear-
ing in the plot due to their low values. The collective strength of the positive
contributors outweighs the negative ones, resulting in a prediction of 1 (malign
tumout).

2.5 Machine Learning in Cancer Diagnosis

Over recent decades, ML methods have become prevalent in predicting cancer.
The emergence of new medical technologies has provided the healthcare commu-
nity with vast amounts of cancer-related data. Using this data, researchers have
employed various ML techniques to identify patterns and correlations, enhancing
their ability to forecast outcomes for specific cancer types [64]. The table 2.1
presents relevant publications that used ML methods for cancer susceptibility
prediction.

Publication ML method Cancer type Number of patients Accuracy
Ayer T et al. [65] ANN Breast cancer 62 219 96.5%
Waddell M et al. [66] SVM Multiple myeloma 80 71%
Listgarten J et al. [67] SVM Breast cancer 174 69%
Stojadinovic A et al. [68] BN Colon carcinomatosis 53 71%

Table 2.1: Relevant publications that used ML methods for cancer suscepti-
bility prediction (adapted from [64])

2.5.1 Colorectal Cancer Diagnosis

When it comes to CRC diagnose, the studies [23] and [24] explore the use of
amino acids and acylcarnitines, repectively, for CRC diagnosis using the same
data mentioned at section 1.4. They both had positive results with the [23]
having an accuracy of 95% using 175 samples with RandomForests and the [24]
with an accuracy of 90% using 182 samples with also RandomForests.

The study by H. Hussan [69] enrolled 3,116 adults aged 35-50 at average-risk
for CRC where machine learning models were constructed to predict CRC and
high-risk polyps, using data from electronic health records (EHR) such as demo-
graphics, obesity, laboratory values (hemoglobin and cholesterol panels), med-
ications, and zip code-derived factors. Random forest, neural network, and
gradient boosting decision tree, were compared against a reference logistic re-
gression model. The results indicated that all machine learning models, except
for gradient boosting, showcased superior discriminative ability in predicting CRC
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or high-risk polyps than the reference model. Particularly, factors like income per
zip code, colonoscopy indication, and body mass index quartiles were significant
predictors in the regularized discriminant analysis. The findings suggest that
machine learning, using EHR data, can enhance CRC risk prediction for adults
in the specified age group, but further refinement and validation in primary care
settings are essential before clinical deployment.

The study by S Bosch [70] aimed to identify potential biomarker panels for CRC
and adenoma detection and understand the interplay between gut microbiota
and human metabolism when these lesions are present. Conducted between
February 2016 and November 2019, it involved participants grouped into CRC,
adenomas, and controls, all matched by age, gender, body-mass index, and
smoking status. Fecal samples from 1093 participant were used and analyzed
for their proteome, microbiota, and amino acid composition. Only 14 out of
the 1093 were diagnosed with CRC. For the comparison between CRC samples
and controls, three amino acids: sulfo-l-cystine, proline, and ethanolamine were
selected from the machine learning pipeline. The combination of these amino
acids resulted in an Area Under the Curve (AUC) of 0.6, suggesting moderate
predictive power. It concluded that the integration of biomarkers, derived from
fecal microbiota, proteome, and amino acids, offer a hopeful pathway for non-
invasive screening of CRC and adenomas, which could potentially decrease the
rate and fatalities of CRC.

The article by Zugang Yin [71] explores the advancements of AI in addressing
CRC diagnosis and treatment. It emphasizes the value of machine learning and
bioinformatics in pinpointing CRC biomarkers, which aids in non-invasive screen-
ings. Additionally, Convolutional Neural Networks are noted for their capability
in analyzing histopathologic tissue images, mitigating variability in doctors’ inter-
pretations. The article also touches on the rise of robotic surgical systems, such
as da Vinci, due to their precision in CRC treatments. The integration of AI
in neoadjuvant chemoradiotherapy has also elevated CRC treatment outcomes.
It also concluded that deep learning in gene sequencing research offers a new
treatment option.
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Data Understanding &
Preparation

All data came from medical equipment in the form of several files from the
sources indicated at 1.4 These files were pre-cleaned by the previous studies and
also by the medical personel, meaning that a treatment to deal with missing,
duplicated or inaccurate values, was already applied. This resulted in two CSV
and one XLSX files with the follow characteristics:

• Non CRC Amino acids - Contains amino acids samples of patients without
CRC (csv) totalizing 118 rows, from [23]

• Non CRC Acylcarnitines - Contains acylcarnitines samples of patients with-
out CRC (csv) totalizing 118 rows, from [24]

• Combined Amino acids and Acylcarnitines - Contains multiple metabolic
profiles (including amino acids and acylcarnitines) samples of patients with
CRC (xlsx) totalizing 214 rows of multiple stages of the disease, prepared
by the healthcare professionals

The two CSV files have a simple structure with features and their correspond-
ing values. However, the XLSX file follows a more complex structure. This
structure includes more data that enhances human readability but also makes it
more challenging for machines to interpret. The multiple stages found at the
Combined Aminoacids and Acylcarnitines (xlsx) file are the following:

• The sample collection moment when the CRC is detected (M0) - 99 sam-
ples

• The sample collection moment after the neoadjuvant Chemoradiotherapy
treatment (M1) - 48 samples

• The sample collection moment after the Surgery (M2) - 61 samples

• The sample collection moment for vigilance purposes (M3) - 5 samples

• The sample collection moment after the recurrence of disease (M4) - 1
sample

• Blanks (no moment specified) - 2 samples

Since the objective of this work is to help diagnosing patients with CRC, only
the M0 samples will be used for training the models. Upon agreement with
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healthcare professionals, it was decided to use the M1 samples to check the
predictions made by those models.

In order to be able to start the data analysis and the model construction, the
three different datasets were transformed into two. These two new datasets
comprise the samples of patients with and without CRC for each type of metabolic
profiles. The merge of the datasets was done by the common columns. The
figure 3.1 illustrates this.

Figure 3.1: Datasets Construction

This process was automated by a tool that receives the three input files and
automatically merges the common columns and outputs the two standardized
files adding a new column called "CRCDetected" which is the target. Several
features from each metabolic profiles were drop since they were not present in
the files of patients without CRC. The common columns along with the dropped
ones, are described in different sections that are dedicated for the two different
metabolic profiles, Amionacids and Acylcarnitines. The dynamic feature of the
tool, allows it to receive more columns if, in the meanwhile, data becomes
available.

The next to sections will describe and explore the data. However, the column
"Date of Birth" was previously transformed to represent the patients age. Also,
the percentage of outliers for each feature was calculated using the z-score
statistical measurement. More details about transformation, encoding and nor-
malization at section 3.3
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3.1 Amino acids

In this section the Amino acids dataset will be explored.

The table 3.1 lists the features for the Aminoacids dataset resulted from the
construction described at the section 3.1 which has a total number of 217 sam-
ples. It presentes the feature description along side its abbreviation, the range
of values (min and max), the median, average and percentage of outliers. The
table 3.2 lists the features that were not present in the NonCRC dataset and
therefore they won’t be consider.

Table 3.1: Amino acids Dataset - Features

Feature
Description

Abbreviation Range
(min - max)

Median Average % of Outliers Measurement
Unit

1-Methylhistidine 1mhis (1 - 81) 12.0 16.11 1.38%

micromoles
/

litre

3-Methylhistidine 3mhis (0 - 42) 5.0 5.49 1.38%
Alpha-Aminoadipic acid aaa (0 - 38) 6.0 7.39 1.84%
Aminobutyric acid abu (0 - 58) 15.0 17.91 2.30%
Alanine ala (131 - 723) 361.0 367.69 0.92%
Arginine arg (0 - 202) 46.0 48.44 0.92%
Asparagine asn (34 - 179) 65.0 66.92 0.46%
Aspartic Acid asp (0 - 52) 7.0 7.48 0.92%
Citrulline cit (1 - 80) 28.0 30.07 1.38%
Cystine cys2 (10 - 147) 59.0 61.73 1.38%
Cystathionine cysta (0 - 7) 1.0 1.31 0.92%
Glutamine gln (293 - 1177) 532.0 536.07 1.38%
Glutamic acid glu (13 - 564) 55.0 70.11 0.92%
Glycine gly (117 - 474) 243.0 257.59 0.92%
Histidine his (37 - 159) 81.0 81.60 0.92%
Hydroxyproline hyp (0 - 46) 8.0 10.22 1.38%
Isoleucine ile (28 - 145) 62.0 65.25 1.38%
Leucine leu (62 - 289) 126.0 130.29 0.46%
Lysine lys (100 - 535) 213.0 217.71 0.92%
Methionine met (10 - 100) 24.0 26.05 1.38%
Ornithine orn (43 - 238) 123.0 127.18 0%
Phenylalanine phe (27 - 166) 55.0 57.00 1.38%
Proline pro (61 - 469) 173.0 191.27 1.38%
Serine ser (44 - 236) 117.0 122.83 0.46%
Taurine tau (29 - 235) 97.0 100.75 0.92%
Threonine thr (56 - 424) 141.0 145.49 0.92%
Tyrosine tyr (8 - 156) 62.0 65.42 0.92%
Valine val (78 - 377) 215.0 217.66 0.46%
Age of the Patient age (18 - 90) 53.0 52.38 N/A positive inte-

ger
The sex of the
Patient

sex N/A N/A N/A N/A Male
or
Female
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Table 3.2: Amino acids Dataset - Features not present in the Non CRC
dataset

Feature Description Feature Abbreviation Measurement Units
Serine ester phosphoric pps

micromoles / litre

Phosphatidylethanolamine pea
Ureia ureia
Sarcosine sar
Beta-Alanine bala
Beta-aminoisobutyric acid baib
Homocystine hcy2
Gamma-Aminobutyric Acid gaba
Ethanolamine etn
Ammonia nh3
Hydroxylysine hyl
Anserine ans
Carnosine car
Sulfocysteine sulfocys

Age and sex are well-established demographic factors that often have clinical rel-
evance. Many diseases vary in prevalence, severity, or manifestations depending
on age and sex. By plotting these, we can quickly identify patterns or trends re-
lated to these factors. The next subsections will explore the number of patients
with and without CRC, the age and sex features.

3.1.1 CRC cases

From the plots 3.2 and 3.3 we can see that there are slightly more cases without
CRC as shown on the graphs bellow but in general, the dataset is balanced.

Figure 3.2: Amino acids - Absolute Frequency of the 2 classes
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Figure 3.3: Amino acids - Relative Frequency of the 2 classes

3.1.2 Age

The plot 3.4 shows that patients with CRC are older than the healthier ones.
This might indicate that this feature has a high information gain meaning that
it is good splitter.

Figure 3.4: Amino acids - Presence of CRC by Age
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3.1.3 Sex

Males exhibit a more pronounced difference in the presence and absence of the
disease compared to females, as shown in figure 3.5. However, we can not
conclude that males are more likely to have the disease.

Figure 3.5: Amino acids - Number of patients with and without CRC by Sex

3.2 Acylcarnitines

In this section the Acylcarnitines dataset will be explored. The resulting dataset
has a total number of 216 samples. The table 3.4 lists the features that were
not present in the NonCRC dataset.
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Table 3.3: Acylcarnitines Dataset - Features

Feature
Description

Abbreviation Range Median Average % of Outliers Measurement
Unit

Decenoylcarnitine c10:1 (0.0 - 0.90) 0.052 0.08 1.84%

micromoles
/

litre

Tiglylcarnitine/3-
Methylcrotonylcarnitine

c5:1 (0.0 - 0.05) 0.0 0.00 3.23%

Decadienoylcarnitine c10:2 (0.0 - 0.30) 0.0 0.01 2.76%
Glutarylcarnitine c5dc (0.0 - 0.65) 0.0 0.03 1.84%
Tetradecenoylcarnitine c14:1 (0.0 - 1.91) 0.103 0.15 1.84%
Methylmalonylcarnitine/-
Succinylcarnitine

c4dc (0.0 - 57.12) 0.2435 1.15 2.30%

Malonylcarnitine c3dc (0.0 - 0.34) 0.0 0.01 1.84%
Tetradecenoylcarnitine c14 (0.0 - 0.85) 0.049 0.07 2.76%
Octadecenoylcarnitine c18:1 (0.0 - 3.21) 0.874 0.89 1.38%
Hexadecenoylcarnitine c16:1 (0.0 - 0.82) 0.0485 0.07 2.30%
Octenoylcarnitine c8:1 (0.0 - 0.50) 0.0405 0.08 1.38%
Dodecanoylcarnitine c12 (0.0 - 0.83) 0.015 0.04 2.30%
Acetylcarnitine c2 (0.0 - 28.15) 9.2915 9.76 1.38%
Octadecanoylcarnitine c18 (0.0 - 1.16) 0.366 0.38 1.38%
Tiglylcarnitine/ 3-
Methylcrotonylcarnitine

c5 (0.0 - 1.47) 0.01 0.07 1.38%

Hexanoylcarnitine c6 (0.0 - 0.80) 0.0 0.02 2.76%
Decanoylcarnitine c10 (0.0 - 2.26) 0.057 0.14 2.76%
Tetradecadienoylcarnitine c14:2 (0.0 - 0.53) 0.012 0.04 4.15%
Octadecadienoylcarnitine c18:2 (0.0 - 0.66) 0.233 0.24 0.92%
Propionylcarnitine c3 (0.0 - 5.0) 0.898 0.97 0.92%
Octanoylcarnitine c8 (0.0 - 2.10) 0.0395 0.10 2.76%
3-
Methylglutarylcarnitine

c6dc (0.0 - 0.70) 0.0 0.02 1.84%

Butyrylcarnitine Isobu-
tyrylcarnitine

c4 (0.0 - 0.88) 0.0 0.08 3.23%

Dodecenoylcarnitine c12:1 (0.0 - 3.18) 0.0705 0.27 0.92%
Hexadecanoylcarnitine c16 (0.0 - 2.37) 0.694 0.75 2.30%
Age of the Patient age (18 - 90) 47.0 47.46 N/A positive inte-

ger
The sex of the Patient sex N/A N/A N/A N/A Male or Fe-

male

Table 3.4: Acylcarnitines Dataset - Features not present in the Non CRC
dataset

Feature Description Feature Abbreviation Measurement Unit
Free Carnitine C0

micromoles / litre

3-Hydroxybutyrylcarnitine/3-Hydroxyisobutyrylcarnitine C4-OH
3-Hydroxyisovalerylcarnitine/3-Hydroxy-2-methylbutyrylcarnitine C5OH

3-Hydroxytetradecenoylcarnitine C14:1-OH
3-Hydroxytetradecenoylcarnitine C14-OH
3-Hydroxyhexadecanoylcarnitine C16-OH

Octadecanoylcarnitine C18
3-Hydroxyoctadecenoylcarnitine C18:1-OH
3-Hydroxyoctadecanoylcarnitine C18-OH

Just like the amino acids, the next subsections will explore the number of patients
with and without CRC and the age and sex features.
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3.2.1 CRC cases

Similar to the amino acids, there are slightly more cases without CRC as shown
on the graphs bellow. However we can still consider that the dataset is balanced.

Figure 3.6: Acylcarnitines - Absolute Frequency of the 2 classes

Figure 3.7: Acylcarnitines - Relative Frequency of the 2 classes
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3.2.2 Age

The boxplot 3.8 shows that patients with CRC are older than the healthier ones.
Also similar to the amino acids, this feature might be a good splitter.

Figure 3.8: Acylcarnitines - Presence of CRC by Age

3.2.3 Sex

Males exhibit a more pronounced difference in the presence and absence of the
disease compared to females, as shown in Figure3.9, showing a very similar
pattern to the amino acids.

3.3 Encoding & Normalization

Most machine learning algorithms require numerical input. Encoding helps con-
vert non-numerical data (e.g., categorical or textual data) into a numerical for-
mat, making it suitable for these algorithms [29].

There’s only one categorical feature, the "Sex". Males will be encoded with the
value 0 and Females with 1.

Normalization is the process of transforming features to be on a similar scale.
This process is crucial because the scale of the features can significantly affect
the performance of many ML models. KNeighborsClassifier and Support Vector
Machines are examples of classifiers that are sensitive to the scale, in the other
hand, DecisionTrees and RandomForest classifiers are not. Normalization tech-
niques are primarily applied to numeric data. The goal is to change the values of
numeric columns in the dataset to a common scale without losing information
[72].

There are several scikit-learn normalization methods. The following thre are
among the most popular ones [73]:
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Figure 3.9: Acylcarnitines - Number of patients with and without CRC by
Sex

• RobustScaler: Useful when the data contains many outliers.

• StandardScaler: Useful when the data distribution is normal. Sensitive to
outliers.

• MinMaxScaler: Useful when the data does not follow a normal distribution.
Sensitive to outliers.

The Z-score is a commonly used statistical measurement to describe a value’s
relationship to the mean of a group of values. If a Z-score is 0, it indicates that
the data point’s score is identical to the mean score. If the Z-score of a data
point is more than 3, it indicates that the data point is quite different from the
other data points. Such a data point can be an outlier. Z-score can be both
positive and negative. The farther away from 0, higher the chance of a given
data point being an outlier [74].

Both aminoacids (table 3.1) and acylcarnitines (table 3.3) present very low pres-
ence of outliers.

There are several statistical tests to determine if data follows a normal distribu-
tion. The Shapiro-Wilk is among the most powerful tests. [75]. Upon applying
this test to given feature, it will output the p-value. If this p-value is less than the
commonly used 0.05, there is evidence that the data is not normally distributed.

After applying this test to both aminoacids and acylcarnitines, none of them
returned a p-value less than 0.05. This indicates that both datasets are not
normally distributed.

Given that there are no significant outliers and the data is not well distributed,
the MinMaxScaler will be used as the normalization method.
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3.4 Feature Selection

Feature selection is a crucial step in building a ML model. It refers to selecting
the most important features (or variables) from the original set of features in
the dataset. This process helps in reducing the dimensionality of the data, which
in turn helps in building a more interpretable, simpler, and more efficient model.
[76]

It maintains the initial representation of the variables by simply choosing a subset
of them. Consequently, the original meaning of the variables is preserved, which
provides the benefit of being easily interpretable by an expert in the field. It also
improves the model’s prediction performance. [77]

There are several categories of feature selection methods, such as: [78]

• Filter Methods: Simple and fast as they evaluate features independently
of the classifier, making it a preprocessing step.

– Examples: Variance Threshold, Univariate Feature Selection

• Wrapper Methods: Dependent on a classifier and computationally more
expensive than filter methods but can lead to better results.

– Examples: Recursive Feature Elimination (RFE), Forward Selection /
Backward Elimination

• Embedded Methods: Provide a good trade-off between model perfor-
mance and computational costs.

– Examples: Lasso Regression, Tree-based models

There is another feature selection method called "Permutation Feature Impor-
tance" that does not fit in any of the categories previous listed. It’s a model-
agnostic method that can be applied to any fitted model. However it requires
a model to be trained and does not create a subset leading to a more complex
implementation. [79] For these reasons it will be excluded from this work.

Since computational power is not an issue, the wrapper methods would be the
choice. Specifically the RFECV which is a variant of RFE but with cross-
validation. However, it’s a classifier dependent method and not all classifiers
mentioned at section 2.3.1 are directly compatible since they lack "_coef" or
"_feature_importances" attributes.

Filter methods, even with their lower performance, can be considered as an
"universal" solution. Based on the scikit-learn library [80], the SelectPercentile
will be used.

SelectPercentile works by computing the univariate statistical measure (pa-
rameter score_func) between each feature and the target variable, and then
selecting the specified percentile of features with the highest scores (parameter
percentile). [81] For the parameter score_func the default value will be used
(f_classif - ANOVA F-value) since it’s well suited for a binary classification prob-
lem. Since automatic feature selection is desirable, the percentile value cannot
be precisely pre-determined. Therefore, a range of values will be used from 10
up to 100 (all features).
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3.5 Final Remarks

In this section we described the two initial data steps of the CRISP methodology
where the amino acids and acylcarnitines datasets were built and explored, the
encoding, normalization and feature selection methods were defined. Next step
will be the modeling.
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Chapter 4

Modeling

Model selection is the process of choosing the most suitable model from a set of
candidates for a specific dataset. This involves a comparison of different models,
selecting the most appropriate one based on certain metrics (such as accuracy,
precision, and recall), and then validating its performance on both the training
and unseen data.

To ensure robustness, techniques such as Cross-Validation are employed, where
the model is tested on multiple subsets of the data to confirm its consistent
performance. Additionally, Hyper Parameter Tuning (running the model with
different specific classifier parameters) is essential to optimize the model’s per-
formance. The diagram 4.1 illustrates how the process is arranged.

The following subsections will describe these techniques and how they’re going
to be applied in this context.

4.1 Evaluation Metrics

A machine learning model is evaluated based on its ability to make accurate
predictions on new data that it has not seen before [82].

Bellow a list of some commonly used evaluation metrics for supervised machine
learning models:

1. Confusion Matrix - This is a table that shows the number of true positives,
true negatives, false positives, and false negatives.

Predicted
Actual Yes No
Yes TP FN
No FP TN

2. Accuracy - The ratio of the number of correct predictions to the total
number of predictions. It’s a common metric, but not always the best
one for imbalanced classes or when false negatives are particularly costly.
Correct Predictions / Total Predictions.

3. Precision (Positive Predictive Value) - The ratio of the number of true
positive predictions to the total number of positive predictions (true posi-
tives + false positives). It is important in situations where minimizing false
positives is crucial.
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Figure 4.1: Datasets preparation
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4. Error - In a binary classification problem like CRC detection, the error rate
would be the sum of the false positives and false negatives divided by the
total number of sample.

5. Recall (Sensitivity or True Positive Rate) - The ratio of the number of true
positive predictions to the total number of actual positives (true positives +
false negatives). This is a particularly important metric in CRC detection,
as it is crucial to minimize false negatives. TP / (TP + FN)

6. F1-score - This is the harmonic mean of precision and recall. It is a good
metric to consider for the balance between precision and recall. 2TP /
(2TP + FP + FN)

7. Area Under the Receiver Operating Characteristic Curve (AUC-ROC) -
The ROC curve is a plot of the true positive rate (recall) against the false
positive rate. The AUC is the area under this curve. A model with perfect
classification ability will have an AUC-ROC of 1, whereas a model with no
classification ability will have an AUC-ROC of 0.5.

As previously mentioned, selecting the best model requires the use of certain
metrics that will indicate if one model is outperforming others.

For a binary classification problem like CRC detection, it is crucial to minimize
false negatives as it could be life-threatening to incorrectly classify a cancerous
sample as benign.

From the metrics previously described, the F1-Score and Recall will be used.

While the F1-score is a good overall measure of a model because it balances
precision and recall, in this case, recall is more important due to the potential
consequences of false negatives. However, it is also important to consider the
overall performance of the model, and not just focus on a single metric. There-
fore, if one model outperforms the other on recall, it would generally be more
advisable to choose that model, even if its F1-score is slightly lower.

4.2 x-Fold Cross Validation

The process of building a model requires a train and test subsets from the
original dataset. The first is used to train the model, the second to evaluate
it. This train-test split can be done in several ways. However, the model’s
performance can vary upon different subsets even if they come from the same
dataset. Therefore, different train-test splits should be used. One of these
processes is the x-Fold Cross Validation which works by dividing the dataset into
k equally sized "folds" or subsets. In each iteration, one of these folds is used as
the test set, while the remaining (k-1) folds are combined to form the training
set. The model is trained on the training set and then evaluated on the test set,
resulting in one performance metric for that iteration. This process is repeated
k times, with each fold taking a turn as the test set. The final evaluation score
is typically an average of the scores from all iterations. This helps in obtaining
reliable performance estimates and reduces the risk of overfitting.[83]. The
figure 4.2 illustrates the behaviour of K-fold Cross-Validation with K=5.
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Figure 4.2: K-fold Cross-Validation for K=5 (adapted from [84])

Overfitting is a common issue in ML, occurring when a model excessively adapts
to the training data, to the point of capturing the data’s noise instead of the
fundamental pattern. This leads to excellent performance on the training data
but subpar performance on new, unseen data. Essentially, the model becomes
overly complex, fitting the training data so precisely that it fails to generalize
effectively to new data.[85]

The StratifiedKFold from scikitlearn, which is a variation of k-fold cross-validation
that returns stratified subsets (also known as folds) where they’re made by pre-
serving the percentage of samples for each class. [86]. In this work, the number
of splits will be the default, 5.

For each split, the normalization, feature selection and hyper parameter tuning
is applied upon evaluating the different classifiers described at subsection 2.3.1.

4.3 Hyper Parameter Tuning

Hyperparameters are specific parameters whose values are predetermined before
initiating the training process. Hyperparameter tuning involves searching for the
optimal set of hyperparameters from all possible combinations. The objective
is to maximize the evaluation score. It is a crucial step in optimizing a model’s
performance and it’s considered a model-centric approach [87].

While hyperparameter tuning focuses on optimizing the model and its configura-
tion, it is often recommended to prioritize data-centric approaches for optimizing
a model’s performance. Data-centric optimization involves cleaning, sampling,
augmenting, or modifying the data. Despite the complexity and sophistication
of a model, its performance will be limited if the quality of the data or features
is poor. This concept is the well-known expression, "garbage in, garbage out
(GIGO)" [87].
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Scikit-learn provides several hyperparameter tuning classes. Since computational
resources and time are not an issue, the GridSearch can be used. This method
performs an exhaustive search over a specified parameter grid. It tries every
combination of hyperparameters in the grid and selects the best combination
based on cross-validated performance [88].

The following hyperparameters will be used:

• KNeighbors

– Number of neighbors (scikit-learn: n_neighbors): The values 3,
5(default), 7, 9 and 11 will be used.

– Weights (scikit-learn: _weights): The values ’uniform’ (default) and
’distance’ will be used.

• DecisionTree

– Maximum depth (scikit-learn: max_depth): The values ’None’, 5
and 10 will be used.

• GaussianNB (Gaussian Naive Bayes)

– Variance smoothing (scikit-learn: var_smoothing): The values ’1e-
9’ (default), ’1e-8’ and ’1e-7’ will be used.

• SVC (Support Vector Machine)

– Kernel type (scikit-learn: kernel): The values are ‘linear‘, ‘poly‘, ‘rbf‘
(default), ‘sigmoid‘.

– Regularization parameter (scikit-learn: C): The values 0.1, 1 (de-
fault) and 10 will be used.

• MLP(Multi-Layer Perceptron, a type of artificial neural network)

– Activation function (scikit-learn: activation): The values ‘identity‘,
‘logistic‘, ‘tanh‘, ‘relu‘ (default) will be used.

– Size of hidden layers (scikit-learn: hidden_layer_sizes): The val-
ues (50,) and (100,) will be used where (100,) is the default.

• RandomForest

– Number of trees (scikit-learn: n_estimators): The values 50, 100
(default), 150 will be used.

– Maximum depth (scikit-learn: max_depth): The values None (de-
fault), 10 and 20 will be used.

• GradientBoosting

– Number of boosting stages (scikit-learn: n_estimators): The val-
ues 50, 100 (default), 150 will be used.
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4.4 Final Remarks

In this section we described the modeling step CRISP methodology where the
metrics, the train/test splits and the algorithms to be used were presented. Next
chapter the evaluation and explanations will be presented.
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Chapter 5

Evaluation & Explanations

The results were recorded for each classifier. After running all the folds, de-
scribed at section 4.2, a mean was applied to both F1-score and Recall. These
metrics allowed to understand the overall performance of each classifier. A
"Control" version was also recorded, so a baseline could be established. This
record contains the classifier’s performance without the application of any pre-
processing steps. The performance with normalization,described at section 3.3,
and feature selection were recorded separately, resulting in three pairs (F1-Score
and Recall) for each classifier. For the feature selection, describer at section
3.4, the most common percentile for each classifier was also recorder as well as
the most common features removed.

For the explanations, three different approaches were applied:

• Overall Feature Importance on the original dataset. SHAP was applied with
the entire dataset that train the model.

• Overall Feature Importance on the M1 cases. SHAP was applied to the
patients in M1 phase. The reason for the use of these cases for testing
the model’s performance and explanations, is described at the beginning of
chapter 3.

• Single M1 instance. SHAP was applied to explain a single instance of the
M1 phase, specifically for wrong predicted instances. This plot is the one
that is going to be shown once the system is deployed. Also, only the top
10 most influencing features are going to be presented.

The diagram 5.1 illustrates the overall process of results evaluation and expla-
nations.
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Figure 5.1: Evaluation Diagram

Upon agreement with healthcare professionals, it was decided to build models
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with and without the feature "age". This feature is considered a discriminative
feature, meaning that it has a strong correlation with the target. Even though
this feature can enhance the performance of classification models, when applying
explanations, they’ll translate something that healthcare professionals already
know, older patients are typically more susceptible to have the disease as we
can see at the feature blox plots for amino acids 3.4 and acylcarnitines 3.8. For
these reasons, there were four runs at total, with and without "age" for each of
the metabolic profiles. These runs are called scenarios and their results will be
described at the sections bellow.

5.1 Scenario 1 - Amino acids All Features

This section will explore the results for Amino acids using all features, presenting
the classifiers performances first followed by the explanations.

5.1.1 Model Selection

This subsection will present the classifiers performances and the best model for
the amino acids dataset.

Normalization

Overall, the impact of normalization on classifier performance appears to be
classifier-specific, with some benefiting and others experiencing declines as we
can see at table 5.1. KNeighbors, for instance, experiences a noticeable perfor-
mance decline upon normalization, with both F1 and Recall dropping by around
5%. This is surprising since KNN usually benefits from normalization as stated
at section 3.3. While KNeighbors experienced a substantial improvement of ap-
proximately 22% in both F1 and Recall metrics, DecisionTree and RandomForest
saw slight declines. GaussianNB’s performance remained unchanged, whereas
SVC and MLP demonstrated gains, with SVC having a notable 14% rise in F1.
GradientBoosting displayed a marginal decrease in its performance metrics post-
normalization. Overall, normalization proved beneficial for some classifiers and
neutral or slightly detrimental for others in the context of this dataset.

ClassifierName Mean F1-Recall Control Mean F1-Recall Norm
KNeighbors 0.65-0.65 0.79-0.80 (22.52% - 22.32%)
DecisionTree 0.80-0.83 0.79-0.82 (-1.78% - 0.92%)
GaussianNB 0.72-0.73 0.72-0.73 (0.00% - 0.00%)

SVC 0.71-0.72 0.81-0.82 (14.27% - 13.68%)
MLP 0.49-0.53 0.52-0.55 (7.88% - 3.28%)

RandomForest 0.88-0.91 0.87-0.90 (-1.76% - -0.95%)
GradientBoosting 0.83-0.86 0.82-0.85 (-0.64% - -0.72%)

Table 5.1: Comparison of Classifier Performance with and without Normal-
ization for Amino acids with All Features

Feature Selection

Upon applying feature selection, classifiers showed varied responses. KNeigh-
bors and GaussianNB witnessed marked improvements, with KNeighbors gaining
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nearly 25% in F1. SVC also saw a significant rise of over 15% in its F1 metric.
MLP, although starting with lower baseline scores, showcased a big increase of
over 60% in its F1 score. Conversely, DecisionTree and RandomForest expe-
rienced minor declines in certain metrics. GradientBoosting’s F1 improved by
6.5%, ensuring consistency with its high baseline. The optimal feature subsets,
as indicated by the best percentiles, ranged from 20% to a complete set at
100%, underscoring the uniqueness of each classifier’s feature preference.

These results can be seen in the table 5.2.

ClassifierName Mean F1-Recall Control Mean F1-Recall FS Best Percentile
KNeighbors 0.65-0.65 0.81-0.80 (+24.90% - +22.54%) 50
DecisionTree 0.80-0.83 0.81-0.80 (+0.64% - -2.93%) 20
GaussianNB 0.72-0.73 0.82-0.73 (+13.39% - 0.00%) 30

SVC 0.71-0.72 0.82-0.82 (+15.54% - +13.68%) 50
MLP 0.49-0.53 0.78-0.65 (+61.48% - +23.36%) 100

RandomForest 0.88-0.91 0.90-0.88 (+1.78% - -2.96%) 60
GradientBoosting 0.83-0.86 0.88-0.87 (+6.50% - +1.34%) 100

Table 5.2: Comparison of Classifier Performance with and without Feature
Selection for Amino acids with All Features

The features "sex", "pro" (Proline), "abu" (Aminobutyric acid) were among the
most frequently removed features across the classifiers, suggesting that these
features might not be as influential for the given dataset.

Hyperparameters and Processing Times

The table 5.3 summarizes the processing time and the most common parameters
for the different classifiers. KNeighbors and DecisionTree classifiers have the
least processing time, each taking 10 seconds and 4 seconds, respectively. On
the other hand, RandomForest took notably longer with a processing time of 3
minutes and 25 seconds. The classifiers SVC, MLP, and GradientBoosting took
moderate processing times ranging between 14 to 52 seconds.

For the KNeighbors classifier, the most common hyperparameters were 9 neigh-
bors with uniform weights. For the DecisionTree classifier, the most frequent
configuration did not limit the maximum depth of the tree. The GaussianNB
often applied the default variance smoothing factor. The SVC classifier typically
utilized a linear kernel with a regularization parameter of 1. The MLP classi-
fier commonly had an identity activation function and hidden layer sizes of 100
units. The RandomForest was frequently set with a maximum depth of 10 and
50 estimators. Lastly, the GradientBoosting classifier commonly employed 50
estimators.
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ClassifierName Processing Time Most Common HyperParameters
KNeighbors 0m:10s {’neighbors’: 9, ’weights’: ’uniform’}
DecisionTree 0m:4s {max_depth’: None}
GaussianNB 0m:4s {’var_smoothing’: 1e-09}
SVC 0m:17s {’C’: 1, ’kernel’: ’linear’}
MLP 0m:14s {’activation’: ’identity’, ’hidden_layer_sizes’: (100,)}
RandomForest 3m:25s {’max_depth’: 10, ’n_estimators’: 50}
GradientBoosting 0m:52s {’n_estimators’: 50}

Table 5.3: Processing Times and Most Common HyperParameters for Amino
acids with All Features

Best Model

Based on the previous listed results, the best classifier was the RandomForests.
Even though it had the biggest computational cost, it outperformed the oth-
ers with a F1-Score 0.90 of and Recall of 0.88. Without normalizing, with a
percentile of 50%, the _max_depth set to 10 and n_estimators set to 50. If
the computational cost was to be considered, the GradientBoosting could be an
alternative since it took three times less to process and the performance is not
that lower.

5.1.2 Explanations

For this dataset, the dominating feature is the "age". Details about the expla-
nations at the subsections bellow. The process took about 5 seconds for the
original dataset and about 1 second for the M1 samples using TreeExplainer.

Overall Feature Importance on the original dataset

The top four most influencing features for the original dataset are the "age",
"cys2" (Cystine), "his"(Histidine) and "phe" (Phenylalanine). When the value
of the age increases, the model is more likely to predict a sample as having CRC.
The same happens for "cys2". On the contrary,when the values of the features
"hys" and "phe" increase, the model is more likely to predict a sample as not
having CRC. This confirms the age as being a discriminative feature as stated at
the beginning of this chapter. The summary plot for the original dataset values
can be seen at 5.2
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Figure 5.2: Shap Summary Plot for the amino acids original dataset

Overall Feature Importance on the M1 samples

When applying to the unseen M1 samples, there’s no big difference in the fea-
tures importances. The age is still the most influential feature, however, as we
can see at the summary plot 5.3, no matter the value of the age, it still pushed
almost all instances towards the positive class (CRC detected).
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Figure 5.3: Shap Summary Plot for M1 samples for amino acids

Single M1 instance

From the 48 M1 samples, the model correctly predicted 46 as having CRC.

The table 5.4 presents the features and shap values of one of the wrongly pre-
dicted samples. The table is ordered by the features that contributed for the
prediction to be 0 (without CRC) followed by the ones that contributed for being
1 (with CRC).
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Table 5.4: Shap Values for Single Amino acids M1 Wrong Prediction

Feature Description Value SHAP Value
age Age 46 -0.2049
his Histidine 101 -0.0928
tau Taurine 133 -0.0264
glu Glutamic acid 37 -0.0227
cys2 Cystine 51 -0.0215
ser Serine 149 -0.0193
hyp Hydroxyproline 9 -0.0199
gly Glycine 256 -0.0124
thr Threonine 152 -0.0018
orn Ornithine 103 -0.0009
phe Phenylalanine 45 0.0328
3mhis 3-Methylhistidine 4 0.0163
asp Aspartic Acid 3 0.0096
tyr Tyrosine 46 0.0121
met Methionine 21 0.0070
lys Lysine 207 0.0054
aaa Alpha-Aminoadipic acid 6 0.0037
cysta Cystathionine 0 0.0036

The feature "age" with a SHAP value of -0.1809 is the most influential, push-
ing the prediction lower. This implies that the age value of 46 is associated
with a decrease in the likelihood of the target being 1 (crc detected). The
features "his" and "cys2" also have relatively high negative magnitudes. "met"
(0.0291), "phe" (0.0205), and "tyr" (0.0108) are features that push the predic-
tion higher, implying that these feature values are associated with an increased
likelihood of the target being 1 for this instance. Features with Minimal Influ-
ence: Features like "gly" (-0.0001), "aaa" (0.0011), and "orn" (-0.0027) have
very low magnitudes, suggesting they had a minimal influence on the prediction
for this instance. The force plot 5.4 provides a visual representation of the shap
values and their corresponding features that have a bigger influence on the pre-
diction. The features with red color indicate, that they’re making the instance
more likely to be predicted as the class 1 (with CRC). The blue Indicates the
opposite, where they’re making the instance more likely to be predicted as the
class 0 (without CRC).

Figure 5.4: Shap Force Plot for Single Amino acids M1 Prediction

5.2 Scenario 2 - Amino acids Without Age

This section will explore the results for Amino acids using all features except the
age. The structure is very similar to the previous one.
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5.2.1 Model Selection

Normalization

as we can see at table 5.5. KNeighbors exhibited a notable enhancement in
its F1 and Recall scores when shifting from the Control to the Norm dataset,
with an increase of approximately 26.31% and 25.48%, respectively. Conversely,
the DecisionTree and RandomForest classifiers saw a decrease in performance,
with the former dropping by about 5.80% in F1 and 5.57% in Recall, and the
latter declining by around 5.74% and 5.08%. GaussianNB maintained consistent
performance across both datasets. The SVC and MLP classifiers demonstrated
modest improvements, while the GradientBoosting classifier had a slight dip in
its metrics, with a reduction close to 1.18% in F1 and 1.47% in Recall when
applied to the Norm dataset.

ClassifierName Mean F1-Recall Control Mean F1-Recall Norm
KNeighbors 0.61-0.61 0.77-0.77 (+26.35% - +25.50%)
DecisionTree 0.67-0.67 0.63-0.63 (-5.92% - -5.49%)
GaussianNB 0.62-0.63 0.62-0.63 (0.00% - 0.00%)
SVC 0.74-0.75 0.78-0.78 (+5.11% - +4.69%)
MLP 0.52-0.54 0.53-0.56 (+1.40% - +3.94%)
RandomForest 0.75-0.75 0.70-0.71 (-5.72% - -5.08%)
GradientBoosting 0.72-0.73 0.72-0.72 (-1.18% - -1.47%)

Table 5.5: Comparison of Classifier Performance with and without Normal-
ization for Amino acids without Age

Feature Selection

With the removal of the "Age" feature, all classifiers started using more features.
KNeighbors experienced a 30.05% enhancement in F1 score and a 25.56% rise in
recall with the best performance at the 50th percentile, classifiers like Decision-
Tree and RandomForest exhibited a slightly better F1 score with FS, but at the
cost of reduced recall. Specifically, DecisionTree optimized its performance at
the 30th percentile, and RandomForest at the 60th. Meanwhile, SVC and MLP
demonstrated pronounced improvements, particularly at the 100th and 50th per-
centiles, respectively. GaussianNB and GradientBoosting also saw benefits from
FS, optimally at the 80th and 90th percentiles. More details at table 5.6.

ClassifierName Mean F1-Recall Control Mean F1-Recall FS Best Percentile
KNeighbors 0.6067-0.6130 0.7892-0.7694 (+30.05% - +25.56%) 50
DecisionTree 0.6658-0.6676 0.7437-0.6393 (+11.71% - -4.24%) 30
GaussianNB 0.6204-0.6346 0.6864-0.6346 (+10.61% - 0.00%) 80

SVC 0.7408-0.7474 0.8303-0.7824 (+12.06% - +4.69%) 100
MLP 0.5235-0.5430 0.6700-0.4990 (+27.96% - -8.11%) 50

RandomForest 0.7473-0.7473 0.7844-0.7237 (+4.96% - -3.16%) 60
GradientBoosting 0.7248-0.7290 0.7594-0.7183 (+4.76% - -1.46%) 90

Table 5.6: Comparison of Classifier Performance with and without Feature
Selection for Amino acids without Age

The features "sex", "pro" (Proline), "leu" (Leucine) and "cit" (Citrulline) were
among the most frequently removed features across the classifiers, suggesting
that these features might not be as influential for the given dataset.
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Hyperparameters and Processing Times

The table 5.7 summarizes the processing time and the most common param-
eters for the different classifiers. KNeighbors and DecisionTree classifiers have
the least processing time, each KNeighbors classifier took approximately 9.84
seconds to process and commonly used 5 neighbors with uniform weights. The
DecisionTree processed in 3.45 seconds, typically without any depth restriction.
GaussianNB had a processing time of 3.33 seconds with a frequent default value
for var_smoothing. The SVC classifier took 1 minute and 27 seconds (consid-
erably higher than when using all features), predominantly using the RBF kernel
with a C value of 10. The MLP processed in 12.08 seconds, regularly with a
relu activation function and a single hidden layer of 100 neurons. RandomFor-
est, having the longest processing time of 3 minutes (slightly lower than when
using all features), usually had a max depth of 10 and utilized 50 estimators.
Finally, the GradientBoosting classifier took 49 seconds with a recurring number
of estimators set to 100.

ClassifierName Processing Time Most Common HyperParameters
KNeighbors 0m:09s {’neighbors’: 5, ’weights’: ’uniform’}
DecisionTree 0m:03s {’max_depth’: None}
GaussianNB 0m:03s {’var_smoothing’: 1e-09}
SVC 1m:24s {’C’: 10, ’kernel’: ’rbf’}
MLP 0m:12s {’activation’: ’relu’, ’hidden_layer_sizes’: (100,)}
RandomForest 3m:1s {’max_depth’: 10, ’n_estimators’: 50}
GradientBoosting 0m:49s {’n_estimators’: 100}

Table 5.7: Processing Times and Most Common HyperParameters for Amino
acids without Age

Best Model

Based on the previous listed results, the best classifier was the SVC. Using
normalization, percentile as 100 (no features removed) and using the RBF kernel
with a C value of 10 as hyperparameters.

5.2.2 Explanations

For this dataset, the dominating feature is the "cys2" (Cystine). Details about
the explanations at the subsections bellow. The process took about 28 min-
utes for the original dataset and about 3 minutes for the M1 samples using
KernelExplainer.

Overall Feature Importance on the original dataset

The top four most influencing features for the original dataset are the "cys2"
(Cystine), "his"(Histidine) and "cysta" (Cystathionine). The "cys2" was in
second place when the age feature was used, suggesting that this feature may
also be a discriminative feature. The "sex" came in fourth place without much
discrimination between males and females. The summary plot for the original
dataset values can be seen at 5.5
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Figure 5.5: Shap Summary Plot for the amino acids original dataset Without
Age

Overall Feature Importance on the M1 samples

When applying to the unseen M1 samples, the top feature changed to "leu"
(Leucine). The "cys2" came in second place followed by "sex" and "hys" (His-
tidine). This time the females were more likely to be diagnosed with CRC.
The importance of this feature came with surprise since it was one of the most
removed features among the several classifiers.
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Figure 5.6: Shap Summary Plot for M1 samples for the amino acids dataset
Without Age

Single M1 instance

From the 48 M1 samples, the model correctly predicted 41 as having CRC.

The table 5.8 presents the features and shap values of one of the wrongly pre-
dicted samples. Almost all features contributed for the wrong prediction.
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Table 5.8: Shap Values for Single Amino acids M1 Wrong Prediction Without
Age

Feature Description Value SHAP Value
cysta Cystathionine 2 -0.2780
tau Taurine 136 -0.2075
sex Sex 0 -0.1319
orn Ornithine 75 -0.0718
1mhis 1-Methylhistidine 6 -0.0701
his Histidine 72 -0.0523
ile Isoleucine 92 -0.0468
tyr Tyrosine 69 -0.0360
glu Glutamic acid 68 -0.0343
ala Alanine 372 -0.0304
thr Threonine 95 -0.0210
met Methionine 23 -0.0205
aaa Alpha-Aminoadipic acid 3 -0.0192
lys Lysine 206 -0.0192
3mhis 3-Methylhistidine 5 -0.0181
pro Proline 120 -0.0180
asn Asparagine 60 -0.0100
cit Citrulline 18 -0.0082
phe Phenylalanine 56 -0.0048
leu Leucine 169 0.0737
cys2 Cystine 75 0.0679
arg Arginine 59 0.0457
gly Glycine 187 0.0333
gln Glutamine 583 0.0169
ser Serine 95 0.0064
hyp Hydroxyproline 6 0.0
asp Aspartic Acid 4 0.0
val Valine 244 0.0
abu Aminobutyric acid 25 0.0

The feature "cysta"(Cystathionine) with a SHAP value of -0.2780, suggesting
a strong negative influence meaning it contributed to classify the patient as not
having CRC. This is followed by "tau"(Taurine) and "sex" with SHAP values of
-0.2075 and -0.1319, respectively. While these features decrease the predicted
probability, "leu"(Leucine) with a SHAP value of 0.0737 and "cys2" (Cystine)
with 0.0679 increase it. The majority of the features exhibit small SHAP values,
indicating their marginal influence on the model’s prediction for this sample.
Additionally, several features like "hyp"(Hydroxyproline), "asp"(Aspartic Acid),
"val"(Valine), and "abu"(Aminobutyric acid) showed no influence with a SHAP
value of 0.

Figure 5.7: Shap Force Plot for Single Amino acids M1 Prediction Without
Age
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5.3 Scenario 3 - Acylcarnitines All Features

Following the same structure, this section will explore the results for Acylcar-
nitines using all features.

5.3.1 Model Selection

Normalization

KNeighbors showed a slight decrease in performance after normalization, with
Mean F1 and Recall dropping by about 5.04% and 4.65% respectively. Decision-
Tree and SVC had minimal performance declines, both under 1%. GaussianNB
improved by 2.59% in Mean F1 and 2.56% in Recall. The MLP classifier saw the
most notable improvement with a 41.80% increase in Mean F1 and a 22.29%
rise in Recall. Both RandomForest and GradientBoosting had performance dips,
but RandomForest’s drop was more significant at around 3.11% in Mean F1 and
3.17% in Recall. GradientBoosting had a near 1% decrease in both metrics.

Table 5.9: Comparison of Classifier Performance with and without Normal-
ization for Acylcarnitines with All Features

ClassifierName Mean F1-Recall Control Mean F1-Recall Norm
KNeighbors 0.8324-0.8325 0.7904-0.7940 (-5.04% -4.65%)
DecisionTree 0.8324-0.8324 0.8284-0.8291 (-0.48% -0.39%)
GaussianNB 0.7129-0.7321 0.7314-0.7508 (+2.59% +2.56%)
SVC 0.8518-0.8522 0.8473-0.8468 (-0.54% -0.43%)
MLP 0.4757-0.5857 0.6746-0.7162 (+41.80% +22.29%)
RandomForest 0.9293-0.9277 0.9003-0.8984 (-3.11% -3.17%)
GradientBoosting 0.9342-0.9331 0.9249-0.9238 (-0.99% -1.00%)

Feature Selection

Significant improvements in F1 scores were observed, especially for the Gaus-
sianNB and MLP classifiers. The GaussianNB’s F1 score saw a remarkable
increase of 32.35%, while the MLP experienced an even more impressive surge
of 89.68%. Most classifiers’ recall scores, however, displayed slight variations
with the DecisionTree and GradientBoosting classifiers showing the most signif-
icant drops. In terms of the most common percentile used for feature selection,
the values ranged from 10 to 60.

ClassifierName Mean F1-Recall Control Mean F1-Recall FS Best Percentile
KNeighbors 0.8324-0.8325 0.8453-0.8398 (+1.54% - +0.87%) 20
DecisionTree 0.8324-0.8324 0.8452-0.8077 (+1.53% - -2.97%) 20
GaussianNB 0.7129-0.7321 0.9435-0.7508 (+32.35% - +2.56%) 10

SVC 0.8518-0.8522 0.8920-0.8468 (+4.71% - -0.63%) 10
MLP 0.4757-0.5857 0.9025-0.6902 (+89.68% - +17.84%) 30

RandomForest 0.9293-0.9277 0.9384-0.9290 (+0.98% - +0.14%) 60
GradientBoosting 0.9342-0.9331 0.9530-0.9288 (+2.01% - -0.46%) 40

Table 5.10: Comparison of Classifier Performance with and without Feature
Selection for Acylcarnitines with All Features
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"c5:1"(Tiglylcarnitine/ 3Methylcrotonylcarnitine), "c10"(Decanoylcarnitine), "c6dc"(3-
Methylglutarylcarnitine) and "sex" were the most removed features.

Hyperparameters and Processing Times

KNeighbors took 11s with the most common parameters being 3 neighbors and
uniform weighting. The DecisionTree processed in 5s, favoring a maximum depth
of 10. GaussianNB completed in 5s with the default var_smoothing parameter.
SVC, with an RBF kernel and C-value of 10, took 8s. The MLP classifier, using
an identity activation and 100 hidden layer sizes, took 17s. RandomForest,
not setting a maximum depth and using 150 estimators, was the lengthiest
at 3m:26s. Lastly, GradientBoosting finished in 53s, commonly employing 50
estimators.

ClassifierName Processing Time Most Common HyperParameters
KNeighbors 0m:11s {’neighbors’: 11, ’weights’: ’distance’}
DecisionTree 0m:5s {’max_depth’: 5}
GaussianNB 0m:5s {’var_smoothing’: 1e09}
SVC 0m:8s {’C’: 0.1, ’kernel’: ’linear’}
MLP 0m:17s {’activation’: ’identity’, ’hidden_layer_sizes’: (100,)}
RandomForest 3m:26s {’max_depth’: None, ’n_estimators’: 100}
GradientBoosting 0m:53s {’n_estimators’: 50}

Table 5.11: Processing Times and Most Common Parameters with Feature
Selection (FS) for Acylcarnitines without Age

Best Model

The best classifier was the GradientBoosting with a F1-Score 0.9530 and Recall
0.9288. Using Normalization and Feature Selection with percentile as 50 and
n_estimators set as 50.

5.3.2 Explanations

Like the amino acids, the dominating feature is the "age". Details about the
explanations at the subsections bellow. The process took about 5 seconds for
the original dataset and about 1 second for the M1 samples using TreeExplainer,
also similar to the amino acids.

Overall Feature Importance on the original dataset

The top four most influencing features for the original dataset were the "age",
"c3" (Propionylcarnitine), "c14:2"(Tetradecadienoylcarnitine) and "c2" (Acetyl-
carnitine). Just like the amino acids, when the value of the age increases, the
model is more likely to predict a sample as having CRC. The same happens for
"c3". On the contrary,when the values of the feature "c14"(Tetradecenoylcarnitine)
increased, the model was more likely to predict a sample as not having CRC.
The "c14:2" as both low and high values pushing the predictions to a positive
class, however, it had lower values when classifying a sample to the negative side
(without CRC). The summary plot for the original dataset values can be seen
at 5.8
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Figure 5.8: Shap Summary Plot for original acylcarnitines dataset with All
Features

Overall Feature Importance on the M1 samples

There’s no big difference in the features importances when applied to the unseen
M1 samples, just like the amino acids. The age was still the most influential
feature, however, as we can see at the summary plot 5.9, no matter the value
of the age, it still pushed almost all instances towards the positive class (CRC
detected), the same goes with the "c3".
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Figure 5.9: Shap Summary Plot for M1 samples acylcarnitines dataset with
All Features

Single M1 instance

From the 48 M1 samples, the model correctly predicted 45 as having CRC. One
of the wrong predictions is described at the table 5.12.

Table 5.12: Shap Values for Single Acylcarnitines M1 Wrong Prediction

Feature Description Value SHAP Value
c3 Propionylcarnitine 0.00 -3.9058
c14:2 Tetradecadienoylcarnitine 0.00 -0.2111
c18:2 Octadecadienoylcarnitine 0.27 -0.1406
c5dc Glutarylcarnitine 0.00 -0.1363
c10:2 Decadienoylcarnitine 0.00 -0.0901
c2 Acetylcarnitine 8.49 -0.0493
c3dc Malonylcarnitine 0.00 -0.0204
c8:1 Octenoylcarnitine 0.00 0.0019
c14 Tetradecenoylcarnitine 0.00 0.0121
12 Dodecanoylcarnitine 0.00 0.0179
c4dc Methylmalonylcarnitine/Succinylcarnitine 0.00 0.0234
c18:1 Octadecenoylcarnitine 1.06 0.0391
age Age of the Patient 56 2.5056

Table 5.13: Ordered Features by SHAP values

With a shap values of -3.9058 and, for the "c3" (Propionylcarnitine) and "c14:2"
(Tetradecadienoylcarnitine) respectively, were the features that most contributed
to the wrong prediction. Curiously, these sample values were both 0. The "age"
had the highest positive influence with a value of 2.5056, meaning that feature
was the one that "tried" the most to predict this sample has having CRC.
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Figure 5.10: Shap Force Plot for Single Acylcarnitines M1 Prediction All
Features

5.4 Scenario 4 - Acylcarnitines Without Age

This section will explore the results for Acylcarnitines using all features except
the age. The structure is very similar to the previous one.

5.4.1 Model Selection

Normalization

A significant drop in all calssifiers performances can be seen upon removid the
"Age" feature. KNeighbors, SVC, and RandomForest observed improvements
in both F1 score and Recall upon normalization, with KNeighbors achieving
the most significant boost of +3.39% in Recall. On the contrary, Decision-
Tree and MLP experienced slight performance drops after normalization. No-
tably, GaussianNB remained unaffected, maintaining the same performance met-
rics in both scenarios. GradientBoosting’s performance slightly decreased post-
normalization, with a drop of about 0.53% in Recall.

Table 5.14: Comparison of Classifier Performance with and without Normal-
ization for Acylcarnitines without Age

ClassifierName Mean F1-Recall Control Mean F1-Recall Norm
KNeighbors 0.6566-0.6702 0.6744-0.6940 (+2.72% +3.39%)
DecisionTree 0.5870-0.5895 0.5601-0.5625 (-4.59% -4.58%)
GaussianNB 0.5593-0.6055 0.5724-0.6102 (0.00% 0.00%)
SVC 0.6040-0.6107 0.6122-0.6290 (+1.35% +3.00%)
MLP 0.5174-0.5600 0.5139-0.5560 (-0.68% -0.72%)
RandomForest 0.6786-0.6999 0.6975-0.7164 (+2.78% +2.35%)
GradientBoosting 0.6394-0.6596 0.6364-0.6561 (-0.47% -0.53%)

Feature Selection

Like the amino acids, the removal of the "Age" feature made all classifiers us-
ing more features. KNeighbors exhibited a 12.38% improvement in F1 score,
while GaussianNB showed a significant 39.07% boost. SVC and DecisionTree
also benefitted, with respective F1 enhancements of 16.16% and 16.47%. MLP
had a substantial uptick of 38.43%. Conversely, RandomForest and Gradient-
Boosting had modest improvements, with 7.21% and 13.13% respectively. The
majority of classifiers, including KNeighbors, DecisionTree, and GaussianNB,
achieved optimal performance at higher feature selection percentiles such as
80% to 100%.
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ClassifierName Mean F1-Recall Control Mean F1-Recall FS Difference (F1-Recall) Most Common Percentile
KNeighbors 0.6566-0.6702 0.7378-0.6940 +12.38% - +3.57% 100
DecisionTree 0.5870-0.5895 0.6838-0.6233 +16.47% - +5.73% 60
GaussianNB 0.5593-0.6055 0.7780-0.6055 +39.07% - 0.00% 80

SVC 0.6040-0.6107 0.7016-0.6290 +16.16% - +3.00% 60
MLP 0.5174-0.5600 0.7163-0.6150 +38.43% - +9.82% 50

RandomForest 0.6786-0.6999 0.7275-0.6842 +7.21% - -2.25% 50
GradientBoosting 0.6394-0.6596 0.7234-0.6452 +13.13% - -2.18% 80

Table 5.15: Comparison of Classifier Performance with and without Feature
Selection for Acylcarnitines without Age

The most common removed features were the "c10:1"(Decenoylcarnitine), the
"c12:1"(Dodecenoylcarnitine) and the "c6dc"(3Methylglutarylcarnitine) which
was also removed in the All Features dataset.

Hyperparameters and Processing Times

The KNeighbors classifier, with parameters indicating 3 neighbors and uniform
weighting, took about 10 seconds, while DecisionTree and GaussianNB each
finished in approximately 5 seconds, with the former favoring a maximum depth
of 10. The SVC classifier, leveraging an RBF kernel and a C-value of 10, required
8 seconds. The MLP classifier, which utilized an identity activation function and
a hidden layer size of 100, took 15 seconds. RandomForest, without a defined
maximum depth and using 150 estimators, took the longest at 3 minutes and
12 seconds. Meanwhile, GradientBoosting concluded in 51 seconds, typically
employing 50 estimators.

ClassifierName Processing Time Most Common HyperParameters
KNeighbors 0m:10s {’neighbors’: 3, ’weights’: ’uniform’}
DecisionTree 0m:5s {’max_depth’: 10}
GaussianNB 0m:5s {’var_smoothing’: 1e-09}
SVC 0m:8s {’C’: 10, ’kernel’: ’rbf’}
MLP 0m:15s {’activation’: ’identity’, ’hidden_layer_sizes’: (100,)}
RandomForest 3m:12s {’max_depth’: None, ’n_estimators’: 150}
GradientBoosting 0m:51s {’n_estimators’: 50}

Table 5.16: Processing Times and Most Common Parameters with Feature
Selection (FS) for Acylcarnitines without Age

Best Model

The best classifier was the GaussianNB with a F1-Score 0.7780 and Recall
0.6055. Using Normalization and Feature Selection with percentile at 80 and
the default value for var_smoothing. This came with a surprise since data
doesn’t seem to follow a normal distribution as stated at section 3.3.

5.4.2 Explanations

Like the amino acids, by removing the feature "age", the features importances
also changed. Details about the explanations at the subsections bellow. The
process took about 7 minutes seconds for the original dataset and about 1 minute
for the M1 samples using KernelExplainer, also similar to the amino acids.
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Overall Feature Importance on the original dataset

The top four most influencing features for the original dataset were the "c8:1"(Octenoylcarnitine)
and "c4dc"(Methylmalonylcarnitine/Succinylcarnitine) , "c14"(Tetradecenoylcarnitine)
and "c12" (Dodecanoylcarnitine). All of them increased the probability of diag-
nosing a patient with CRC the lower the values were. Just like the amino acids,
upon the removal of the feature "age", the model’s explanations changed. The
summary plot for the original dataset values can be seen at 5.11

Figure 5.11: Shap Summary Plot for original acylcarnitines dataset Without
Age

Overall Feature Importance on the M1 samples

This time the features importances changed for M1 samples, having the "c3dc"
(Malonylcarnitine), "c6" (Hexanoylcarnitine) replacing the "c8:1"and "c4dc" as
the most influencing features. More details can be seen at the summary plot
5.12.
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Figure 5.12: Shap Summary Plot for M1 samples Without Age

Single M1 instance

From the 48 M1 samples, only 42 were correctly predicted as having CRC. One
of the wrong predictions is described at the table 5.17
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Table 5.17: Shap Values for Single Acylcarnitines M1 Wrong Prediction With-
out Age

Feature Description Value SHAP Value
c8:1 Octenoylcarnitine 0.766 -0.6339
c3dc Malonylcarnitine 0 -0.2172
c10:2 Decadienoylcarnitine 0 -0.0608
c5:1 Tiglylcarnitine/ 3-Methylcrotonylcarnitine 0 -0.0357
c16:1 Hexadecenoylcarnitine 0.084 -0.0074
c14 Tetradecenoylcarnitine 0 -0.0063
c5dc Glutarylcarnitine 0 0.0060
c16 Hexadecanoylcarnitine 0.544 0.0063
c18 Octadecanoylcarnitine 0.39 0.0033
c12 Dodecanoylcarnitine 0 0.0128
c6 Hexanoylcarnitine 0.029 0.0580
c14:2 Tetradecadienoylcarnitine 0 0.0
c4dc Methylmalonylcarnitine/Succinylcarnitine 0.518 0.0
c3 Propionylcarnitine 1.28 0.0
c10 Decanoylcarnitine 0.106 0.0
c18:2 Octadecadienoylcarnitine 0.31 0.0
c18:1 Octadecenoylcarnitine 0.83 0.0
c2 Acetylcarnitine 17.29 0.0
c14:1 Tetradecenoylcarnitine 0.262 0.0
c8 Octanoylcarnitine 0.072 0.0

The features "c8:1"(Octenoylcarnitine) and "c3dc"(Malonylcarnitine) dominated
the negative prediction (With CRC) with shaps values of -0.6339 and -0.2172
respectively. The same instance tested with all features at section 5.3.2 was
also tested with this model. The model also failed to predict this sample but
this time pointed two other features as responsible for the wrong prediction.
The features were the "c12" (Dodecanoylcarnitine) and the "c3dc" in contrast
with the feature "c3"(Propionylcarnitine) that had the most importance on the
model with all features but almost none in this model.

Figure 5.13: Shap Force Plot for Single Acylcarnitines M1 Prediction Without
Age

5.5 Final Remarks

In this section we described the evaluation step CRISP methodology where the
performances of the different algorithms were compared along side with the
explanations. Next is the deploy.
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Chapter 6

Deploy

In this chapter, the crucial step of turning the ML models with their respective
explanations, into real, working solutions, will be explored. Starting with the
definition of the functional requirements followed by the system architecture.

6.1 Functional Requirements

The system will be primarily used by healthcare staff. They should be able to
make predictions and obtain explanations for those predictions. They should also
be capable of re-training the models whenever new data is available.

The diagram 6.1 presents a visual interpretation of the use cases.

Figure 6.1: Use Case Diagram

6.2 System Architecture

The system architecture will follow a typical Decision Support System (DSS)
architecture.

A DSS is a computerized system used to support decision-making in an orga-
nization. It assists the users in making informed decisions by providing access
to information and tools to analyze that information. At its core, it comprises
a Database Management System (DBMS) that stores and manages vital raw
data, a Model Management System (MMS) which houses decision models to
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process and analyze data, an User Interface System that facilitates user-system
interaction and ensures efficient tool and information access and a Data Pro-
cessing Subsystem which processes the data, either by preparing it for analysis
(like cleaning or transforming the data) or by conducting the analysis itself. In
some systems, a Knowledge Base that contains expert knowledge and domain-
specific insights that can help in the decision-making process. Together, these
components synchronize to offer users analytical tools and information, enabling
informed decision-making across several organizational challenges [89].

The following sub section provides an adapted system architecture for this work.

Input Component

• Data Sources:

– Pulls data from multiple sources.

– Includes databases, APIs, and user input interfaces.

• Data Preprocessing Modules:

– Clean, preprocess, and transforms data.

– Ensure data is ready for training models.

Model Component

• Model Repository:

– Houses all models and associated metadata.

– Includes versioning, training date, and performance metrics.

• Model Server:

– Manages model training and deployment.

– Uses the tools scikit-learn and joblib.

Explanations Component

• SHAP Calculation Module:

– Calculates SHAP values after model predictions.

• Explanation Database:

– Stores SHAP explanations.

– Useful for historical tracking and audit trails.

• Explanation Visualization Tool:

– Visualizes SHAP values.

– Offers visual explanations like force plots, summary plots.
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Output Component

• API:

– Serves as the bridge between the system and external users or systems.

– Enables system consumption by other platforms.

• Decision Interface:

– Showcases model predictions and SHAP explanations.

– Designed for end-users with clarity and user-friendliness in mind.

Figure 6.2: System Architecture
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6.3 Legal & Ethics

If a bad decision, supported by a DSS is made, who is going to be accounted ?
The medical personnel, the system or both ?

There isn’t a single universally applicable answer, as responsibility can vary based
on jurisdiction, specific circumstances, and the nuances of local laws and regula-
tions. However, there are several relevant frameworks and principles to consider:

• Medical Device Regulation (MDR): If a DSS is classified as a medical device
under EU regulations, the MDR will apply. While the MDR sets standards
for the safety and efficacy of devices, it doesn’t provide a straightforward
answer to the allocation of responsibility between healthcare providers and
the system. However, manufacturers of medical devices have specific obli-
gations related to post-market surveillance, risk management, and overall
system safety [90].

• Proposed AI Regulations (2021): The European Commission’s proposal for
AI regulations classifies AI systems based on risk. High-risk systems, which
include certain applications in healthcare, have stringent requirements, but
the proposal mainly emphasizes transparency, documentation, and system
quality rather than directly addressing the liability question [91].

For this reason, this project will be deployed only for academic/research purposes.

6.4 Final Remarks

In this section we described the deploy step CRISP methodology. In the next
chapter the conclusions will be presented.



67

Chapter 7

Conclusions

7.1 General Considerations

The main objective of this work is to investigate if the combined metabolic
profiles, amino acids and acylcarnitinescould constitute a biochemical marker for
the prediction of CRC, by applying ML algorithms and techniques and also to
provide explanations.

For that, it was necessary to compile and treat multiple sources of data, trans-
forming it in a way suitable to be used by ML algorithms. Unfortunately, for the
combined metabolic profiles, the data was only available for patients with CRC.
For a classification problem, both patients with and without CRC are needed.
Therefore, the patients without CRC were obtained by the previous works, [23]
and [24].

With all the information compiled, we evaluate several data preprocessing tech-
niques and ML algorithms, to test their effectiveness in the task of classifying
patients with CRC.

The constructed ML models successfully identified the majority of the CRC
cases when tested on two distinct datasets comprising just over 200 samples
each. However the models performances substantially decreased when the fea-
ture "age" was removed.

The explanations were applied to two different datasets, the original training one
and another containing some patients in a later stage of the disease. They were
also applied to instances that were wrongly predicted by the models. Overall,
they provided a good insight on which features were most relevant upon predict-
ing CRC. As previously suspected, the feature "age" dominated the explanations,
however this changed with its removal.

7.2 Results

This section summarizes the results.

7.2.1 Amino acids prediction with age

The best model was obtained by the RandomForests classifier with a F1-Score
of approximately 90%. When applying the explanations, the most influencing
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feature was "age", followed by "cys2" (Cystine), "his"(Histidine) and "phe"
(Phenylalanine).

7.2.2 Amino acids prediction without age

The best model was provided by the Support Vector Machine classifier using the
RBF kernel with a F1-Score about 83%. This time, the explanations pointed
out "cys2" (Cystine), "his"(Histidine) and "cysta" (Cystathionine) for the M0
cases. For the M1 this changed to "leu" (Leucine), "cys2", "sex" and "hys"
(Histidine). On this dataset, the females were more likely to have CRC than
males.

7.2.3 Acylcarnitines prediction with age

GradientBoosting with a F1-Score around 95% was the best model. Just like the
aminoacids, the "age" played a predominant role in the predictions. Followed
by the "c3" (Propionylcarnitine), "c14:2"(Tetradecadienoylcarnitine) and "c2"
(Acetylcarnitine).

7.2.4 Acylcarnitines prediction without age

The best model was obtained by the Gaussian Naive Bayes with a F1-Score
close to 77%. The most important features were the "c8:1"(Octenoylcarnitine),
"c4dc"(Methylmalonylcarnitine/Succinylcarnitine) , "c14"(Tetradecenoylcarnitine)
and "c12" (Dodecanoylcarnitine). When applied the explanations for the M1
cases, the features importances also changed having the "c3dc" (Malonylcar-
nitine) and "c6" (Hexanoylcarnitine) as the most influencing ones. The "sex"
feature was not considered in these models since it was automatically removed
by the feature selection method.

7.3 Future Work

To continue the work developed so far, we plan to have more interactions with
the healthcare staff. Some topics for discussion can be considered:

• Collect information from more patients;

• Get samples for patients without CRC with the combined metabolic profiles;

• Test different normalization and feature selection methods;

• Further tune the classifiers hyper parameters;

• Test other explanation tools;

• Deploy the system in appropriate infrastructure so it can be accessed by
CHUP and ISEP;
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