
Desenvolvimento de um ERP com CI/CD,
Autenticação e Auditoria do sistema

PORFÍRIO AFONSO FERNANDES
Outubro de 2023

Development of an ERP with CI/CD
application, Authentication and

System Auditing

Porfírio Afonso Fernandes

A dissertation submitted in partial ful�llment of
the requirements for the degree of Master of Computer Science,

Specialisation Area of Software Engineering

Supervisor: Joaquim Filipe Peixoto dos Santos

ISEP, Porto, October 14, 2023

iii

Declaration of Integrity

I declare that I have conducted this academic work with integrity.

I have not plagiarised or applied any form of misuse of information or falsi�cation of results
throughout the process that led to its preparation

Therefore, the work presented in this document is original and of my own authorship, and
has not previously been used for any other purpose.

I also declare that I am fully aware of P.PORTO's Code of Ethical Conduct.

ISEP, Porto, October 14, 2023

v

Dedicatory

To my mentor Joaquim Filipe Peixoto dos Santos, that accepted this challenge and guided
me so that this project could reach to a great result, even after a signi�cant change in the
project occured, by encouraging me to continue and �nish this thesis.

To my family, that helped me support all the work that I invested in this project, and by
helping me when I was struggling with the project.

To my friends who have lived with me over the last year, for being there by my side, and
making sure that, in the middle of all the anxiety and fatigue I felt with dealing both work
and university, they were there to help me enjoy life.

To my friends, for being around me during my free time, and making sure that I had all the
strength needed to pursue the write of this dissertation.

Without the people around me, this would not be possible.

vii

Abstract

Developing and maintaining software like ERPs can be challenging because of the complexity
and the amount of data that these systems require maintaining. Many of the software
programs can grow with weak structure, which lead to great e�ort to maintain, and with
more probability to error.

This project proposes that a development cycle that incorporates DevOps can have major
bene�ts, by not only removing some hassle the programmers and systems admins have with
testing and deploying the system, but can also give a early feedback if the changes made
into the application brings problems to the systems. The design of a CI/CD pipeline and
audit logs, and the implementation in an ERP development helped get more feedback and
cause of root problems, which lead to more con�dence in the developers to make changes,
and to escalate more quickly since the deployment is automatized.

Keywords: CI/CD, DevOps, Audit, ERP, Development

ix

Resumo

Desenvolver �software� como os ERPs podem ser difícil de manter devido à complexidade e
a quantidade de dados envolvida nestes sistemas. Isto leva a que muitos destes �softwares�
cresçam com uma estrutura de código fraca, o que leva a um esforço adicional para manter,
e com maior probabilidade para erros.

Este projeto propõe que a incorporação do conceito de DevOps no ciclo de desenvolvimento
traz muitas vantagens, não só a remover algum trabalho dos programadores e dos admi-
nistradores de sistemas ao ser mais fácil testar o sistema e fazer deploy do mesmo, mas
também fornece uma forma de feedback mais rápida para eventuais erros. O �design� de
uma pipeline CI/CD e logs para auditoria do sistema, e a respetiva implementação destes
conceitos no desenvolvimento consegue dar mais feedback a problemas, o que leva a uma
maior con�ança dos programadores para fazer alterações, e conseguir escalar a solução mais
rapidamente visto que a implantação é automatizada.

xi

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

Abbreviations xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Context . 1
1.2 Problem . 2
1.3 Objectives . 2
1.4 Approach for the project . 3
1.5 Structure of the Document . 3

2 State of the Art 5

2.1 Context . 5
2.2 DevOps . 5
2.3 DevSecOps . 7
2.4 CI/CD . 8
2.5 Tools CI/CD . 9

2.5.1 Jenkins . 9
2.5.2 Gitlab . 9
2.5.3 Travis CI . 10
2.5.4 Circle CI . 11

2.6 Virtualization of software . 11
2.7 Containers . 12
2.8 Container Tools . 12

2.8.1 Docker . 12
2.8.2 Podman . 13
2.8.3 Sysbox . 14

2.9 Infrastructure as code . 14
2.10 IaC Tools . 16

2.10.1 Terraform . 16
2.10.2 Ansible . 16
2.10.3 Chef . 17

2.11 Audit . 17
2.12 Audit Tools . 18

2.12.1 DataDogs . 18

xii

2.12.2 Grafana . 18
2.12.3 Netwrix . 18

2.13 Security . 19
2.14 Security Tools . 20

2.14.1 OWASP ZAP . 20
2.14.2 Burp Suite . 21

2.15 ERP . 22

3 Value Proposition 25

3.1 New Concept Development . 25
3.2 Opportunity Identi�cation . 27
3.3 Opportunity Analysis . 28
3.4 Perceived Value . 28
3.5 Value Proposition . 28
3.6 Business Model CANVAS . 30
3.7 Value Analysis Approaches . 31
3.8 FAST . 32
3.9 Analytic Hierarchy Process . 33

4 Technologies Used 37

4.1 Git . 37
4.2 Visual Studio . 37
4.3 Visual Studio Code . 37
4.4 Postman . 37
4.5 Putty . 38
4.6 WinSCP . 38

5 Design 39

5.1 CI/CD . 39
5.2 Audit Tool . 42
5.3 Security . 43
5.4 ERP . 44

6 Implementation 47

6.1 Gitlab . 47
6.2 Optimizations on the Pipeline . 50
6.3 Linters . 53
6.4 Logging . 54
6.5 Sonarqube . 56
6.6 Docker . 57
6.7 Kubernetes . 58
6.8 Terraform . 60
6.9 Atlantis . 61
6.10 SAST . 62
6.11 DAST . 63
6.12 Prometheus and Grafana . 64
6.13 ERP . 65

7 Experimentation and Evaluation 69

7.1 Problem Description . 69

xiii

7.2 Objectives . 70
7.3 Hypotheses . 70
7.4 Identi�cation of indicators and sources of information 70

7.4.1 Indicators . 70
7.4.2 Sources of Information . 71

7.5 Description of the evaluation methodology 71
7.5.1 Methodology - Indicators . 71
7.5.2 Methodology - Implementation . 71

7.6 Evaluation Results . 71
7.6.1 Results - Indicators . 71
7.6.2 Results - Implementation . 74

8 Conclusion 77

8.1 Results . 77
8.1.1 DevOps . 77
8.1.2 ERP . 77

8.2 Goals Achieved . 78
8.3 Future Work and Limitations . 78
8.4 Final Appreciation . 79

Bibliography 81

A AHP Analysis 87

xv

List of Figures

2.1 DevOps . 6
2.2 CI/CD . 9
2.3 Containers . 13
2.4 IaC . 15
2.5 Various of the Modules integrated in ERPs 22

3.1 The Innovation Process . 25
3.2 The NCD Model . 26
3.3 DevOps search on Google . 27
3.4 Value Proposition . 30
3.5 Business Model Canvas . 31
3.6 FAST Diagram . 32

5.1 Use Case Diagram for DevOps . 39
5.2 Use Case Diagram for ERP . 44

6.1 Repository in Gitlab . 48
6.2 Pipeline History . 49
6.3 Release Screen . 52
6.4 Linter Project . 53
6.5 Linter Import . 54
6.6 Eslinter NPM packages . 54
6.7 Include of OpenTelemetry in the Backend Project (.NET 6) 55
6.8 Sonarqube instance . 56
6.9 Gitlab Container Registry . 58
6.10 Gitlab Environments Management . 60
6.11 Terraform con�guration for Hetzner Cloud 61
6.12 Gitlab with Terraform Integration to store state 62
6.13 Execution of the SAST job . 63
6.14 Prometheus portal . 65
6.15 Grafana dashboard . 66
6.16 ERP Screen Example . 66

7.1 Time to run the CI/CD . 72
7.2 Number of bugs detected during the implementation phase 73
7.3 Number of vulnerabilities detected during the implementation phase 74

xvii

List of Tables

3.1 Perceived Value by each Stakeholder . 29
3.2 Criteria pairwise comparison . 34
3.3 Priority Vector . 34
3.4 Alternatives composite priority . 35

xix

List of Source Code

6.1 Stages Con�guration . 50
6.2 Needs usage in Gitlab con�guration . 51
6.3 Expires usage in Gitlab con�guration . 51
6.4 Usage of rules keyword to determine if the pipeline should create a release

entry in the repository . 51
6.5 When usage in Gitlab con�guration . 52
6.6 Docker Compose . 57
6.7 Kubernetes Con�guration for the Backend 59
6.8 DAST Con�guration in the Gitlab pipeline 64

xxi

Abbreviations

DevOps Development and Operations.
DevSecOps Development, Security and Operations.

xxiii

List of Acronyms

AHP Analytic Hierarchy Process.

CI/CD Continuous Integration/Continuous Deploy-
ment.

CIA Con�dentiality, Integrity, and Availability.

DAST Dynamic Application Security Testing.
DORA DevOps Research and Assessment.

ERP Enterprise Resources Planning.

FAST Function Analysis System Technique.
FFE Fuzzy Front-End.

IaC Infrastructure as Code.
IAST Interactive Application Security Testing.

MVP Minimun Value Product.

NCD New Concept Development.
NPD New Product Development.

SAST Static Application Security Testing.

VM Virtual Machine.

1

Chapter 1

Introduction

This chapter provides an overview of the key concepts that led to the development of this
dissertation, with a description of the main topic. First it is justi�ed what is the motivation
behind this dissertation, and the current problem that exist, which forms the basis of this
dissertation. After that, is described the objectives that are intended from the development
of this project, and what results should be expected from the development. In the following
sections is explained what will be the approach for this thesis, that will guide the theory and
the practical parts of it. It ends with a summary of the following chapters of this document.

1.1 Context

This dissertation was developed in the second year of Master's Degree in Informatics Engi-
neering of Instituto Superior de Engenharia do Porto (ISEP), in the specialization of Software
Engineering. It was a self-proposed project, supported by the supervisor, for implementing
a Development and Operations (DevOps) process in the development of an application (in
this case, an Enterprise Resources Planning (ERP) application), planned by three students
in order to �nish the Master's Degree, while demonstrating the skills acquired during the
master's programme. The outcome is the analysis of the current DevOps state, implemen-
tation of it during the development of an application, and documentation of the advantages
and disadvantages on using DevOps in a software development cycle.

The motivation for this project came from one of the subjects during the Master's Degree,
demonstrating the importance of a good support process in the software development cycle,
since it can a�ect how a code base and a product is maintained. Since then, the desire
to explore the subject further was stronger, due to the fact that normally the focus of
developers is programming software, and this project is a great opportunity to explore more
about it.

Also, another reason was the increase in the market need of ensuring that the product is
robust enough, since the shorted development cycles are causing more stress and e�ort to
maintain a high level of e�ciency and optimization, with fewer bugs. The products are
growing to be more complex, with more integrations, dealing with scalability problems, and
to minimize the downtime of the system, since many companies are now dependent of the
software being completely functional, or otherwise they stop. And with more regulations
and security concerns, the compliance also needs to be cared [1].

Software engineers need tools that can automate part of the task of code management, so
they can focus only on the primary task of developing new features and �xes. The market,
by many years, already o�er many solutions that allow the developer to build, test and

2 Chapter 1. Introduction

deploy. However, these steps were normally manually done, and was prone to error and
"good practices" of the developer. Can DevOps tools increase reliability, maintainability and
number of deployments in a given application, while o�ering a better developer experience
by automating part of their job [2]?

1.2 Problem

In an increasingly digital world it has become almost mandatory for all businesses to use IT
systems to support their management. The digitalization made the market faster, which
forced the rest of the companies to keep the pace, and join the IT adoption. New features
are asked, the pressure rises to deliver faster, software must do more things and integrate
with di�erent sources, etc. It is crucial for an organization to be able to adjust everything
about their work, in order to stay competitive and relevant [3]. Nowadays, it becomes usual
to worry about how to create the infrastructure with the right hardware, to know all the
software required to deploy an application, and after that how to maintain and have prepared
the procedures to migrate or upgrade the systems when needed.

On the other side, software companies are now facing a tremendous search, since the market
require systems that can support their processes, so they can have a chance to increase. So,
the software cycle become important, as the release of a defective application to customers
require detecting, reproduce, �x it, test the correction, and release the software again with
the right corrections, while still trying to deliver new features that can correspond to their
needs. This also applies to the security aspect of the applications, because systems become
more interconnected with others software programs, that creates an exposed attack surface
for hackers, and incorporate security as the root of the development is important, and
not just as add-on that is checked before release, since the tools that can automate the
exploration and application of vulnerabilities are rising [4].

Finally, developers have a problem with dealing with complex structure of code, and the
infrastructure of the application deployed. The tools are becoming more abstract to the
developer, which can lead to faster time to produce functionalities, but also more obscure
problems related with the dependencies and tools used in the tech stack of the application.
As such, it is necessary that the process of development and deployment can be as much
automatized, consistent and observable, in order to maintain a fast and reliable way to
deliver secure and robust software.

1.3 Objectives

In this dissertation it is expected the analysis of the DevOps methodology, and the tools
that are available to enforce and automate the process. From the information gathered,
implement, con�gure and enforce a DevOps process, while developing an ERP application.

Is intended to make an implementation of a Continuous Integration/Continuous Deployment
(CI/CD) pipeline that uses this tool to enforce a rigorous process, while removing manual
processes that could result in human error. The pipeline should enforce quality rules that
obligate the developers to be more careful about the code written, and also automate the
deployment of new code into the respective environments (staging and production), with
the right management of the credentials and data that should be in place.

1.4. Approach for the project 3

The logging and monitoring of the application and infrastructure is also expected to be
made, since is one vital phase of the DevOps cycle. This requires what can be done to
log and observable the application, and at the same time the system that is running the
application, in order to keep track of the performance and possible failure of components
while deployed.

This dissertation has the following objectives:

� Analysis and documentation of the DevOps processes and the di�erent existing tools
to support this process, and creation of a pipeline to automate the DevOps process;

� Analysis of the di�erent logging methodologies and the di�erent existing tools, and
development of an application logging mechanism;

� Design and implementation of a CI/CD pipeline using a tool already existing in the
market;

� Implementation of a monitoring system in order to, in conjunction with the logs of the
system, keep track of the application performance and number of errors.

� Compilation of the results taken during development to analyse the importance for
DevOps and audit tools use in development of an application.

With the concretization of the objectives proposed, it is expectable more comprehension
about the DevOps cycle, and how it can reduce manual work, help reach faster times of
deployment, reduce number of errors, and overall better experience for the developers.

The process of developing a practical application while pushing a DevOps process must
ensure traceability of the bugs made, and how the developer can have early feedback in the
process.

1.4 Approach for the project

This work will �rst conduct a study of the necessary knowledge related to the project, then a
design will be performed to answer the problem, and then a description of the implementation
with the results obtained.

To follow this segmentation, the study will be performed using scienti�c documents gath-
ered from platforms like IEEE (IEEE Xplore), ACM Digital Library (About ACM DL) and
Springer. Then, the system will be designed, describing the advantages and disadvantages
of the approach, with the right explanation of the decision made. The next phase is the
implementation, where the pipeline is con�gured, with the right optimizations, and made so
that the process is validated. Finally, a set of tests will be made to validate if the design
and implementation of the solution solves the problem.

1.5 Structure of the Document

The thesis follows a structure where each chapter has a speci�c purpose. The current
chapter, as mentioned previously, provides the context and purpose of this dissertation, and
the objectives that are proposed to be done and the solution being implemented.

Introduction: In this chapter it is contextualized the project, the purpose of it and the
motivation behind it. It is described the objectives and expected results from it.

4 Chapter 1. Introduction

State of the Art: In this chapter it is made a contextualization of the current knowledge
about the topics and concepts that are used in this project, to give the fundamentals needed
to understand this document, like DevOps, Infrastructure as Code, etc. It is also described
several tools that are available in the market and that can be used in the project.

Value Proposition: This part of the document is where is analysed the value that can
be obtained from this project in terms of advantages in DevOps implementation during a
software cycle. This includes the value proposition proposed, and the application of the
methods that helps decide the solution that will go to be used.

Technologies Used: This chapter described all the tools used during the development of
this project, with detail about the characteristics and the decision behind using them.

Design: This part of the document explains the solution implemented in this project, with
their respective advantages and disadvantages.

Implementation: This chapter describes all the important details of the implementation of
this project, from the infrastructure to the demonstration of the process.

Experimentation and Evaluation: In the chapter 7, is described which hypotheses will be
tested in this project, and the results obtained after validating the values of the metrics with
the objectives.

Conclusion: Finally, what goals where achieved, the limitations and future work, and the
�nal appreciation is made in the chapter 8.

5

Chapter 2

State of the Art

In this chapter is present all the knowledge related to the main concepts of this project.
This is necessary in order to collect, analyse and comprehend the necessary information in
order to understand the problem, and create the background needed to design a solution.

The chapter 2 include both the scienti�c knowledge and the technologies and practical com-
parisons between them. It is described what is the DevOps and the concepts associated with
it, the technologies involved in this project, and an ERP. The research for the technologies
that this thesis focus the most is also described.

2.1 Context

The use of automated tools to compile, test and deploy already exist in the early 2000s,
during the phase of divulgations of the Xtreme programming methodology. However, with
the more adopted Agile work methodology, and the rise of competition in the market, cloud
services and general computational power, only in the last years the CI/CD tools saw their
boom.

In the same way, some studies were already made about this area, and what challenges and
bene�ts the companies can face when embracing these tools. And the results, even with the
e�ort necessary to implement, are enough to bring processes more e�cient, that includes
time and costs reduced, and overall increase in quality and productivity.

2.2 DevOps

Development and Operations (DevOps) is a collection of ideas, practices, processes and
technologies that allow development and operation teams to work together to streamline
product development. It helps the companies to give the next step into their teams processes
development [5].

The main idea is to break the di�erence between the dev team and the operations/support
team by combining and connect their tasks that create a speci�cation that both parties
understand and contribute to, not only to create better software, but also a good build and
deployment of it [6].

As illustrated in the �gure 2.1, the practices inherent to DevOps is:

� Test Automation

� Integrated Con�guration Management

6 Chapter 2. State of the Art

� Integrated Change Management

� Continuous Integration

� Continuous Delivery

� Continuous Deployment

� Application Monitoring

� Automated Dashboard

Figure 2.1: DevOps

Once code changes are integrated, they are automatically deployed to production, eliminating
the need for manual deployment processes and reducing the potential for human error. This
consequently shortens the time it takes to provide users with new features and bug �xes. As a
result, teams can swiftly adapt to the evolving user requirements and business needs. These
practices embody fundamental principles. For instance, it is expected that code changes are
regularly integrated and tested into a central repository, often multiple times a day.

This enables developers to detect and resolve integration issues early in the development pro-
cess, preventing them from escalating and becoming more challenging to �x. By integrating
code changes frequently, it becomes possible to promptly identify and address integration
problems, thereby reducing the likelihood of defects. Moreover, collaborating on a shared
codebase becomes more convenient, minimizing the risks and time required to resolve issues
and enhancing the quality of the codebase [7].

However, after the changes are implemented for users, it is crucial for teams to continuously
gather feedback from stakeholders, users, and even other development and operations teams.
This enables the team to comprehend the needs and concerns of di�erent groups, facilitating
more e�ective collaboration in delivering value. This feedback also provides valuable data
for monitoring the system and identifying real-time issues, such as the frequency of errors
and the alignment of the new changes with user expectations and desired features [8].

With these practices of connecting the work�ow of managing the code, and the automation
of the infrastructure, the company see an increase in e�ciency and communication between
their collaborators. Nevertheless, this implies a process and cultural shift inside a company
in order for this to work [6].

2.3. DevSecOps 7

The DevOps importance is still growing, with IDC predicts that the DevOps market is
expected to grow from $2.9 billion to $8 billion by 2022. And the companies that already
implemented DevOps has had a positive impact on their organization, helped them produce
higher quality deliverables, and a reduction in time-to-market software and service in 2020.
Some studies state that the use of DevOps philosophy deploy 973x times faster than the
others companies. Also, the company have more time to innovate that wasting time testing
and deploying new versions of the software [9].

One of the challenges around DevOps is how it is possible to track the performance of a
software development. This becomes relevant, as more companies want to determine if they
are getting positive return of investment in terms of e�ort by applying DevOps. As of today,
a team in Google called DevOps Research and Assessment (DORA) identi�ed 5 metrics to
help get status about the developers [10]. They are:

� Deployment Frequency - How often an organization successfully releases to production

� Lead Time for Changes - The amount of time it takes a commit to get into production

� Change Failure Rate - The amount of time it takes a commit to get into production

� Time to Restore Service - How long it takes an organization to recover from a failure
in production

� Reliability - Is meet or exceed the reliability targets of the company

This helps check how fast a team is working and if they are doing a good job. It also
determines if they are focusing on making good quality work or just trying to �nish quickly.
The metrics help leaders know where to focus their e�orts. For example, if a team sees that
they are not delivering updates often enough, they can start using more automated testing
to speed things up and �x mistakes quickly.

This can in�uence the team to make better choices that improve the system, make them
more valuable, and change how people think. Other metrics that can also be used is how
much of the code is tested, how many mistakes get missed, how many problems customers
have, how long it takes for a computer program to be checked, or how long it takes to �nd
a problem.

2.3 DevSecOps

In recent years, the paradigm of software development has witnessed a transformative shift
toward greater agility and e�ciency. DevOps, an approach that emphasizes collaboration
between development and operations teams, has become pivotal in achieving rapid and con-
tinuous software delivery. However, as software development accelerates, security concerns
must not be sidelined. From this concern Development, Security and Operations (DevSec-
Ops) emerged, an extension of DevOps that integrates security practices seamlessly into
the software development lifecycle, ensuring that security is not compromised in the pursuit
of agility and innovation.

DevSecOps is the union of "Development," "Security," and "Operations," symbolizing the
convergence of these domains to create a holistic approach to software development. De-
vSecOps is a way of making software that focuses on keeping it safe from hackers. It
combines di�erent parts of making software, like writing the code, making it secure, and
keeping it working well. Unlike old ways of making software, DevSecOps tries to �nd and

8 Chapter 2. State of the Art

�x security problems early on. It follows certain rules, like doing security checks right from
the start, using computers to test for security problems, and making sure everyone on the
team works together. The main goals of DevSecOps are to make software more secure, �x
security problems faster, and make sure everyone on the team knows how to keep things
safe [11].

By incorporating security practices throughout the entire DevOps lifecycle, starting from
the planning phase where threat modelling and risk assessment take place, and continuing
through coding, testing, deployment, and monitoring. Security checks and validations are
integrated into each phase, ensuring that security is always a priority rather than an af-
terthought. A fundamental aspect of DevSecOps is the idea of "Security as Code." Similar
to how infrastructure can be de�ned and managed as code, security policies, controls, and
checks are also transformed into code. This approach enables security practices being auto-
mated, versioned, and reviewed alongside application code, thereby promoting consistency
and accountability [12].

The DevSecOps process supports the use of automated security testing to identify vulner-
abilities in both source code and running applications. This ensures that potential threats
are detected early. With the increasing popularity of containerization and microservices ar-
chitectures, DevSecOps also focuses on container security. Tools like vulnerability scanners
and image signing mechanisms are used to ensure that containers are not compromised
and do not contain known vulnerabilities. Tools like Infrastructure as Code frameworks and
con�guration management tools help automate security controls, allowing for consistent
application of security measures across all environments [13].

DevSecOps requires a cultural transformation where security professionals collaborate closely
with developers and operations teams. Encouraging shared responsibility for security fosters
a cohesive approach to risk mitigation. Adopting it involves integrating a range of security
tools and practices into existing DevOps pipelines. Ensuring seamless tool integration and
managing the complexity can be a challenge, requiring careful planning and expertise. Devel-
opers and operations personnel need to acquire security knowledge and skills to e�ectively
implement DevSecOps practices. Training programs and resources play a crucial role in
upskilling teams.

2.4 CI/CD

Continuous Integration/Continuous Deployment (CI/CD) is a crucial component of DevOps.
Its primary objective is to enhance a company's agility and ability to innovate by automating
the deployment process, while also providing faster feedback from clients. CI/CD automates
the entire software development life cycle, from code integration to deployment, using a
set of automated tools and processes, such as version control systems, build tools, and
deployment tools. The process begins with continuous integration, where code changes are
merged into a central repository like Git. Automated build and test processes then validate
the code changes to ensure they meet quality standards. If the changes pass these processes,
they are automatically deployed to production, thereby completing the CI/CD cycle [14].

The proven bene�ts of implementing CI/CD have led to a growing number of companies
adopting this process. However, it is important to note that CI/CD implementation requires
proper evaluation and design, as well as a certain level of expertise [8]. The CI/CD urges
the team to release from the practices acquired from Agile and Git�ow, and start using

2.5. Tools CI/CD 9

a methodology where the developers should always merge their changes if the build can
success. This helps reduce the friction associated with multiple branches, resulting in fewer
changes remaining in isolated branches and being merged later. Additionally, the combination
of automated tests, code coverage, and code review often results in development that is
almost always ready for production.

It is important to note that "CD" can be a reference to Continuous Delivery or Continuous
Deployment. Both methods are utilized, but the main di�erence is that Continuous Deliv-
ery requires a manual step prior to production deployment, while Continuous Deployment
automates the deployment process.

Figure 2.2: CI/CD

2.5 Tools CI/CD

In this section it is described some of the tools that exist in the market and allows the creation
and execution of a pipeline for CI/CD. These tools o�er hooks that can automatically be
triggered when a new commit is made into a VCS repository like Git.

2.5.1 Jenkins

Jenkins, a widely used automation server, is a Java-based open-source platform, that o�ers
developers the �exibility to carry out tasks like integration tasks, code building, testing, and
software deployment. What sets Jenkins apart is its large collection of plugins that enhances
its core functionalities and empowering users to achieve even greater levels of automation.
Moreover, Jenkins is compatible with any machine equipped with a Java Virtual Machine.
Its collaborative nature and extensive development history have propelled Jenkins to the
forefront of the automation server industry, solidifying its position as a dominant player [15].

Jenkins has recently introduced a new feature that allows developers to create pipelines using
a DSL (domain-speci�c language). This feature improves collaboration among teams by
enabling them to de�ne the pipeline within the project repository. However, some users have
encountered di�culties with Jenkins as it may not be as user-friendly as other integration
tools. This can be attributed to its outdated user interface and the presence of plugins
that are no longer supported, deprecated, or even abandoned. Furthermore, the declarative
pipeline does not fully support all the plugins available, and there is outdated documentation
on how to e�ectively use Jenkins [16].

2.5.2 Gitlab

Gitlab is an open source version control system that provides users CI/CD tools that can
enhance their experience. It allows managing, build, test, integrate and deploy source code in

10 Chapter 2. State of the Art

a single tool, reducing the number of tools to learn. Also, because Gitlab can be con�gured
out of the box, it is ideal for companies that have strict rules about accessing external
resources[17].

GitLab's CI/CD capabilities help developers create and manage pipelines to automate the
process of building, testing, and deploying software. These features can be con�gured to
�t di�erent software development work�ows, and GitLab integrates with a variety of third-
party tools to make it even easier. The GitLab pipeline is a series of stages that runs the
jobs con�gured in the repository. Each operation is performed by one or more jobs that
run in parallel or sequentially. You can de�ne pipelines in GitLab using YAML syntax, and
developers can manage them directly from the user interface.

GitLab o�ers a variety of pre-built templates for popular programming languages and frame-
works, so you can quickly create and con�gure pipelines for your projects. In addition, GitLab
provides built-in runners, which are agents that execute pipeline jobs, and the ability to con-
�gure custom runners based on speci�c requirements. GitLab is a tool that allows you to
automatically deploy changes to production, or you can choose to do it manually [18].

GitLab is software that helps teams work more e�ciently. It has many features like CI/CD,
but also has features that allow teams to use other tools like code review, issue tracking, and
project management. GitLab also supports integration with other tools to make it easier for
teams to use them.

2.5.3 Travis CI

Travis CI is a continuous integration (CI) platform that allows software developers to auto-
matically build, test, and deploy their projects. This helps teams ensure that their code is
always in a releasable state, and bugs and issues are found and �xed early in the development
process [19].

Travis CI integrates with various version control systems, including GitHub, GitLab, and
Bitbucket, allowing developers to easily set up CI work�ows. When a project is connected to
Travis CI, the platform automates the build and test process every time changes are pushed
to the version control repository. The process of building and testing Travis CI is de�ned by
pro�les, often called "Travis Pro�les", which de�ne the actions to be performed for a given
project. The �le can contain instructions for installing dependencies, compiling source code,
running tests, and deploying the code to di�erent environments such as development, test,
and production.

Travis CI supports a wide range of programming languages and technologies, including pop-
ular frameworks such as Ruby on Rails, Node.js, and Django. It also integrates with many
third-party tools and services, such as databases, cloud hosting platforms, and code cover-
age tools, to provide software teams with a comprehensive CI solution. One of the main
advantages of using Travis CI is its scalability and reliability. The platform is designed to
handle large and complex projects, with the ability to run multiple versions and tests in
parallel on multiple machines. This helps teams save time and reduce the time it takes
to complete a build or test cycle. Travis CI also provides powerful reporting and analytics
capabilities to help teams monitor the health of their applications and track their progress
over time. Teams can see real-time information on build, test and deployment status, as
well as detailed performance and usage reports [20].

2.6. Virtualization of software 11

In general, Travis CI is a highly capable and adaptable CI platform that can greatly as-
sist software teams in enhancing the e�ciency and dependability of their software delivery
pipelines. Whether you belong to a small development team focused on a single application
or a large enterprise organization with numerous projects and development teams, Travis CI
can e�ectively aid you in streamlining your software delivery process and guaranteeing that
your code is consistently ready for release.

2.5.4 Circle CI

CircleCI is a continuous integration and continuous delivery (CI/CD) platform that helps
software teams automatically build, test, and deploy applications. The platform enables
developers to quickly and easily create end-to-end and repeatable build processes, simplifying
collaboration and increasing the speed and reliability of software delivery[21].

With CircleCI, developers can de�ne a set of instructions (or "work�ow") that describe
how to build, test, and deploy applications. It enables teams to automate tasks including
compiling source code, running tests, building and packaging applications, and deploying
code to di�erent environments such as development, test, staging, and production. CircleCI
supports multiple programming language and frameworks, including popular technologies
such as Java, Ruby, Python, and Node.js. It also integrates with various third-party tools
and services, such as GitHub, Bitbucket, and Slack, to streamline the software development
process.

One of the key features of CircleCI is its ability to run builds and tests on multiple machines in
parallel. This can signi�cantly reduce the time it takes to complete a build or test cycle and
help teams release new features and bug �xes faster. In addition, CircleCI provides powerful
reporting and analytics capabilities to help teams monitor the health of their applications
and track their progress over time. Teams can see real-time information about build, test
and deployment status, as well as detailed performance and usage reports [22].

Overall, CircleCI is a powerful and �exible CI/CD platform that helps software teams im-
prove the speed and reliability of their software delivery pipelines. Whether you are a small
development team developing a single application or a large enterprise organization with mul-
tiple projects and development teams, CircleCI can help you optimize your software delivery
process and improve the quality and speed of your software releases.

2.6 Virtualization of software

The operation of software requires appropriate hardware that supports the architecture of the
application. This involves having adequate computational resources, which necessitates the
use of physical machines with the right con�gurations and network connections. However,
managing many physical machines can become complex and costly [23].

To address this issue, the concept of application virtualization was introduced. This process
enables an application to run as if it were on a target machine, but it is actually executing in a
virtualization layer between the application and the host operating system (OS). In a normal
environment, the OS controls access to the machine's resources. There are two modes of
operation: user mode, in which applications execute, and supervisor mode, in which the OS
operates. To run virtualization systems, the guest OS runs in user mode, while the virtual
machine monitor executing it operates in supervisor mode. When the guest OS needs to

12 Chapter 2. State of the Art

execute a privileged operation, the virtualization must emulate the corresponding command,
creating an overhead [24].

Although the concept of virtualization appeared in the 1980s, the decrease in hardware costs
led to migration from mainframes, resulting in virtualization fading away. However, with the
growing complexity of modern environments, increased network connections, and issues
related to security and reliability, virtualization has become a crucial tool in maintaining and
reproducing the machines required to run software. The use of virtual machines enhances
security by compartmentalizing environments, reduces costs by maximizing use of the host
hardware, and minimizes the risk of failures a�ecting other virtual machines in the event of
a single virtual machine failure [25].

2.7 Containers

The advent of virtual machines (VMs) improved the e�ciency of server management, but
it still presented issues such as performance overhead and slow start times. To address
these problems, the concept of containers emerged as a �exible and low-overhead solution.
Containers di�er from VMs in that they do not require a full virtual machine to run an
application, but instead use an image �le that represents the application and its con�gu-
ration, and a container that runs an instance of the image. This makes it easier to move
and run applications on any infrastructure, without the need for additional software or de-
pendencies. A container is a lightweight and portable unit of software that packages all
the necessary components, including code, libraries, and con�guration �les, into a single,
self-contained unit. This makes it easy to move and run applications on any infrastructure,
including laptops, servers, and cloud platforms, without the need for any additional software
or dependencies [26].

This helps reduce the overhead of having multiple operating systems, while having the iso-
lation between environments needed to run these containers. Also, it makes the escalation
of applications more quickly and easily, since it only requires starting just another container
from a particular image, as it provides a �exible and scalable infrastructure that can be ad-
justed as needed. Containers are isolated from one another, which means that they can run
independently and do not interfere with each other. This makes them ideal for microservice-
based architectures, where applications are broken down into smaller, independent services
that can be developed, deployed, and maintained separately [27].

2.8 Container Tools

The following sections demonstrate some of the tools that exist that allow for the cre-
ation of an isolated container environment to run images that contain the application and
dependencies necessaries

2.8.1 Docker

Docker is a platform that allows multiple applications to run each one in a di�erent and
isolated environment. This is possible since it utilizes the concept of containers to virtualize
individual setups, not only allowing for �exibility but also to standardize the setup required to
run an application. A container is a standalone executable package that includes everything

2.8. Container Tools 13

needed to run a piece of software, including the code, runtime, system tools, libraries, and
settings.

By distributing and testing the application using Docker, the developers have more reliability
to know that the application will run in every end user that will use the application. In the
�gure 2.3 it is possible to see how the Docker works in terms of runtime and registry of
images in the cloud.

Figure 2.3: Containers

One of the key features of Docker is its use of images, which are snapshots of a container.
Images are built from a set of instructions called a Docker�le, which speci�es the base image
to use, the application code to include, and any additional dependencies or con�guration
[28].

It can also be used to orchestrate a service in the cloud, since the time it takes to start a new
instance of an application is greatly reduced compared to manually launch the application
into a new machine. And since it is lightweight, and it is possible to run multiple instances
in the same host machine, the resources of a server can be used at his maximum [29].

The service o�ers also a way to con�gure how multiple services should run and communicate
with each other, with the Docker Compose tool. With this tool, the possibility to con�gure
all the services and network of an entire application leads to be ease to start an entire set
of services in one command, in the right order.

2.8.2 Podman

Podman is an open-source tool that helps manage containers on Linux systems. Unlike
Docker, it operates without a background process, making it simpler and more secure. It is
compatible with Docker's commands and can run containers as a non-root user for added
security. Podman can also work with Kubernetes and integrates with systemd for better
control over container lifecycles. It follows industry standards, ensuring compatibility with
other containerization technologies [30].

14 Chapter 2. State of the Art

Podman extends its capabilities by integrating with Buildah, a container imaging tool. This
separation of concerns between creating images and running containers increases its �exi-
bility. Podman also o�ers network management, custom network creation, volume manage-
ment for data persistence, and extensibility via plugins, enabling custom functionality and
integration with various tools and services.

As a whole, Podman is well suited to environments where security, rootless containers,
and Docker compatibility are a priority. It o�ers a versatile set of container management
tools, making it an attractive choice for developers and system administrators working with
containers on Linux systems [31].

2.8.3 Sysbox

Sysbox is an open source container execution and management utility that pushes the tra-
ditional boundaries of containerization technology. It has established itself as a standout
solution in the container orchestration space, o�ering a sophisticated approach to address
speci�c IT needs that require deeper integration with the host operating system.

A fundamental aspect that di�erentiates Sysbox from traditional container runtimes is its
suitability for orchestrating system containers. These system containers have the unique
ability to run system-level processes, including systemd and init, which are typically beyond
the reach of standard containerization technologies. This makes Sysbox suitable for a variety
of use cases where encapsulating system services and processes in containers is essential. The
value of Sysbox is particularly evident in scenarios where system-level isolation, security, and
process management are paramount. It o�ers a new approach by allowing these processes
to run in containers, bringing the bene�ts of containerization, such as resource isolation
and encapsulation, to the heart of the host system. This feature is of utmost importance
in environments where running multiple system services requires strict control and isolation
[32].

Sysbox further strengthens its status by o�ering seamless integration with the Systemd-
Init system, the standard initialization and service management framework for most modern
Linux distributions. The ability to run systemd in containers not only facilitates compatibility
with existing service management practices, but also makes complex applications easier to
manage and deploy [32].

In summary, Sysbox represents a paradigm shift in containerization technology, providing
an advanced and versatile solution for orchestrating system containers. The ability to run
system-level processes within containers not only extends the scope of containerization, but
also strengthens the security, isolation, and manageability of system services and applica-
tions, making it an invaluable tool in today's landscapes. computer scientists.

2.9 Infrastructure as code

Infrastructure as Code (IaC) is a combination of the DevOps philosophy and version control
system with a model that describes how the infrastructure as a system, like the computers
and networks must be con�gured in order for the system works according to the speci�cation.
Is a component of the Continuous Delivery and "Integrated Con�guration Management"
concepts, and it helps to automatize the deployment by creating an environment to run the
application that can be maintained by the developers, with easy rollback in case of failure

2.9. Infrastructure as code 15

by using the version control system, and creating an agnostic way to recreate environments
[33].

Normally is used declarative con�guration �les, which specify the desired state of the infras-
tructure, instead of, in an imperative way, declare what each node needs to have. These
con�guration �les are used to automatically provision and manage the infrastructure, elimi-
nating the need for manual processes and reducing the risk of errors. The con�guration �les
can be used to manage a wide range of infrastructure, including servers, databases, net-
works, and cloud resources. The tools used for IaC can also be integrated with other tools
and systems, such as CI/CD pipelines, to automate the entire infrastructure management
process. This prevents the issues that occurs when trying to manage multiple servers, that
is the possibility of inconsistency between them like con�gurations, dependencies, network
connections, di�culty to create a new environment, and hard to maintain [34].

By using these tools, both developers and system administrators can work together to man-
age the requirements of a system, and how it can evolve during the development cycle of a
product. This lead to a reduction in the cost and e�ort, since it removes manual component,
increases speed by recreating a correct working environment more quickly, and the risk of
error reduce the downtime of the product. Some advantages are the automation the process
of con�guring and deploying infrastructure, ensuring consistency and repeatability, version
control of the infrastructure, easier to recover from failures and disasters, quickly scale the
infrastructure, and better control over the infrastructure [35]. In the �gure 2.4 it is possible
to see the architecture of the IaC tools in general.

Figure 2.4: IaC

Implementing IaC can be challenging like the lack of technical expertise in using the tools,
di�culty to integrate with existing systems, resistance to change by the development team,
lack of standardization, security concerns about sensitive data management in the systems,
resource constraints in terms of time and budget, and complexity to manage the infrastruc-
ture. The IaC started in the late 2000s with the launch of the CloudFormation, and since
then the adoption of IaC has grown rapidly, since it tackles a problem that is managing a

16 Chapter 2. State of the Art

cluster of servers and applications, and be able to scale it quickly. It's seen as a critical com-
ponent of modern infrastructure management, and the use of others tools like containers
and serverless computing can drive further adoption [36].

2.10 IaC Tools

In the following section is presented various tools that are available in the market, and what
they have to o�er to the developers in terms of state deployment management and migration
of state when required.

2.10.1 Terraform

Terraform is a tool to track con�gurations of cloud and on-premise resources e�ciently.
This is possible by using human-readable con�gurations �les that can be then versioned and
reused, leading to a consistent work�ow. Terraform supports a wide range of resource types,
including virtual machines, databases, network con�gurations, load balancers, and more. It
contains thousands of providers to manage types of resources and services [37].

To terraform have the work�ow divided in three stages:

� Write, where is de�ned the resources needed for infrastructure, and the network to
implement.

� Plan, where the platform creates an execution plan that will create, update or destroy
based on the con�guration and the infrastructure already present.

� Apply, where it performs the proposed operations in the correct order.

One of the key bene�ts of using Terraform is that it provides a uni�ed and reusable way
to describe your infrastructure, making it easier to manage, version, and track changes
over time. It also supports state management, where it maintains the current state of the
resources that has created, and uses that to determine what changes need to be made,
modules where it is possible to reuse code, and workspaces, providing isolation between
di�erent parts of the infrastructure.

2.10.2 Ansible

Ansible is an open-source software platform for automation and con�guration management.
It provides a simple and e�cient way to automate repetitive tasks, manage complex deploy-
ments, and orchestrate multi-tier infrastructure. Ansible uses a declarative language called
YAML to describe the desired state of systems and applications, making it easy for even
non-technical users to automate complex tasks. Ansible can automate a wide range of tasks,
including the provisioning of servers, the con�guration of software, and the deployment of
applications. It supports multiple operating systems, including Linux, Unix, and Windows,
and can automate tasks on remote systems without the need for an agent to be installed
on each machine [38].

One of the key bene�ts of Ansible is its simplicity and ease of use. It uses a push-based
approach to automation, which means that changes are pushed out to the target systems,
rather than being pulled from a central repository. This makes it easy to automate a wide
range of tasks, even in large and complex environments. Ansible also provides robust error

2.11. Audit 17

handling and reporting capabilities. It can detect and report errors in real-time, and pro-
vides detailed information about the state of systems and applications, making it easier to
troubleshoot and resolve issues [39].

In addition to its core automation capabilities, Ansible also integrates with a variety of
other tools and services, including cloud providers, databases, and source control systems.
This makes it easy for teams to automate complex tasks that span multiple systems and
applications, and to integrate Ansible into their existing work�ows and processes.

2.10.3 Chef

Chef is a popular open-source tool used in DevOps and IT operations for automating the
con�guration, provisioning, and management of infrastructure. It uses a central repository
called the Chef Server to store con�guration data, policies, and cookbooks. Nodes, which can
be physical servers, virtual machines, containers, or cloud instances, run the Chef client to
fetch and apply con�gurations. Cookbooks are the main components in Chef automation and
contain recipes, attributes, and resource de�nitions. Recipes de�ne speci�c con�guration
tasks using resources and actions. Attributes allow customization of recipe behaviour, while
roles simplify node con�guration by grouping related recipes and attributes together [40].

Administrators and developers use the Chef Workstation to create and manage con�gura-
tions related to Chef. Chef ensures that con�gurations can be applied multiple times without
causing harm by only making necessary changes. The Chef Client on nodes communicates
with the Chef Server to apply con�guration instructions and maintain the desired state. Chef
can integrate with cloud platforms and container orchestration tools to provision and man-
age resources. Using Chef allows organizations to automate infrastructure management,
maintain consistency, and reduce errors. Its �exibility and automation capabilities make it
valuable in modern IT environments.

2.11 Audit

The concept of audit plays a crucial role in ensuring the proper functioning and maintenance
of a software application. It provides administrators and relevant business users with access
to critical information regarding the reasoning behind a system's actions, especially in cases
where these actions have signi�cant implications for the company. However, many software
systems lack e�cient audit tools that are easy to use and provide the necessary information
to all users. The implementation of audit functions in a software system o�ers several
advantages, including increased control over the system, quick access to information during
system malfunctions, and the ability to set up alerts and take action based on speci�c system
activities [41].

There are various types of audit tools available, including system monitoring tools that
monitor the performance and resource usage of the system and log management tools that
aggregate and summarize log data from various sources. For instance, a study was conducted
on tools like Moodle, a learning management system, and how it can help administrators
understand student activity during coursework [42]. Despite the existence of logs, there are
still several challenges associated with log management, such as the rapid growth in log size,
di�culties in searching for logs, and cross-referencing logs across multiple components of a
system.

18 Chapter 2. State of the Art

Logging, when used as a fundamental aspect of the software development process, start-
ing from the continuous integration and continuous delivery phase, allows the companies
to improved customer support and reduced time and cost e�ort in �xing bugs during the
production phase. Normally the logs contain information like performance evaluation, user
actions, system actions, errors, crashes, and communication failures between components.
Logs should be descriptive and provide contextual information that can assist in tracking a
user session and actions across the logs [43].

2.12 Audit Tools

In this section is described some of the tools that are available in the market that allows
to monitor and audit applications and systems, that can be used by developers and/or
operations teams.

2.12.1 DataDogs

Datadog is a cloud-based monitoring and analytics platform that helps organizations gain
visibility into the performance of their applications and infrastructure. It is designed to
provide comprehensive observability across complex, dynamic, and distributed environments
[44].

It o�ers features like agent bases monitoring, dashboards, alerts, Application Performance
Monitoring (APM), security monitoring, etc. Furthermore, it is a versatile platform that
allows the DevOps teams to acquire new information about the system behaviour and ensure
the service level objective. Datadog's pricing is typically based on a subscription model, and
the cost can vary depending on the speci�c features, usage, and scale of the monitoring and
observability needs [44].

2.12.2 Grafana

Grafana is an open-source platform for monitoring, observability, and data visualization. It is
commonly used to create interactive and customizable dashboards that display real-time data
from various sources. Some main features include data visualization, a wide range of data
sources, plugins that can extend the functionalities of the main software, alerting, templates
and dashboards sharing. Grafana is widely used in DevOps, IT operations, and engineering
teams to monitor infrastructure, applications, and services. It is known for its �exibility and
ability to connect to a variety of data sources, making it a valuable tool for gaining insights
into system performance and facilitating data-driven decision-making [45]. Grafana is mostly
free and open-source, however if o�ers an enterprise version with a premium support.

2.12.3 Netwrix

Netwrix Corporation is a cybersecurity and information security software company that spe-
cializes in solutions for data security and governance. The company's products are designed
to help organizations monitor and protect sensitive data, detect security threats, and ensure
compliance with various regulations and standards.

Netwrix is used by a wide range of organizations, including enterprises, government agencies,
healthcare providers, and �nancial institutions, to enhance their data security and compliance

2.13. Security 19

e�orts. The speci�c products and features o�ered by Netwrix may vary, so it's advisable to
visit their o�cial website for the latest information on their solutions and services [46].

2.13 Security

In today's interconnected and digital landscape, ensuring the security of software systems
is of paramount importance. The rapid evolution of cyber threats demands a proactive
and comprehensive approach to security throughout the software development lifecycle.
This chapter explores the multifaceted domain of secure software development, delving into
methodologies, practices, and tools that enable organizations to create resilient and secure
software solutions.

The Secure Development Lifecycle (SDL) is a systematic approach that integrates secu-
rity practices into the software development process. It typically comprises phases such as
requirements analysis, design, coding, testing, deployment, and maintenance. Each phase
incorporates security checks and validations to mitigate vulnerabilities. Understanding and
de�ning security requirements is a crucial initial step in the SDL. Collaborative e�orts in-
volving security experts, developers, and stakeholders help identify potential threats, security
controls, and compliance needs. The Con�dentiality, Integrity, and Availability (CIA) triad
forms the core of security objectives: ensuring con�dentiality, maintaining data integrity,
and guaranteeing system availability. Secure software development aims to uphold these
principles to safeguard sensitive information and critical systems [47].

The principle of "Security by Design" emphasizes embedding security considerations into
the very foundation of software architecture and design. It involves threat modelling, risk
assessment, and the selection of appropriate security controls at the earliest stages of de-
velopment [48]. One of the most common attack vectors is input manipulation. Secure
coding practices involve thorough input validation and sanitization to prevent vulnerabilities
like SQL injection, cross-site scripting (XSS), and command injection [49]. Implementing
strong authentication mechanisms and �ne-grained authorization controls is essential to pre-
vent unauthorized access and data breaches. Regular code reviews and static analysis tools
identify vulnerabilities early in the development process. This proactive approach assists in
addressing security issues before they reach production [50].

Static Application Security Testing (SAST) is the analyses of source code, bytecode or
binary code in order to detect patterns and structures that match bad coding practices,
security issues or even known vulnerabilities. This is done without running the code, so it
can be performed as early as possible in the development of an application. This allows the
developers to improve overall code quality, by getting early feedback of the code that need
to be changed and �xed, so it does not raise problems later on. Although this tools can
miss important vulnerabilities because they don't know the context on which the code will
be executed, it still brings value to use it, since it can also be incorporated nicely in a CI/CD
pipeline [51].

Other type of analysis is the Dynamic Application Security Testing (DAST), where the
application is put in a run state, to simulate real-world attacks. The tool is responsible to
interact with the application, testing possible vulnerabilities based on inputs to the system.
This brings another perspective of automatic analysis, since it simulates possible interactions
with the system, sometimes even exhausting possibilities very fast in order to test the limits
of the application, and how it handles such scenarios. It allows detecting runtime-speci�c

20 Chapter 2. State of the Art

issues, miscon�gurations and vulnerabilities related to the application's runtime environment
[52].

Finally, other type of tool is the Interactive Application Security Testing (IAST), where is
combined elements of SAST and DAST, such as the application is instrumented during
runtime and analysed both runtime behaviour and source code �ow. This o�ers precise
identi�cation of vulnerable code, with the cost of having more performance overhead, and
may not run through all code paths [53].

They are other type of tools, like Software Composition Analysis, where the libraries used by
the application are investigated for known vulnerabilities or licensing issues. Fuzz Testing,
where is provided to the application malformed or unexpected inputs to an application to
identify vulnerabilities arising from incorrect handling of data. Runtime Application Self-
Protection (RASP) involves embedding security controls into the application itself to detect
and prevent attacks during runtime [54].

2.14 Security Tools

In this section is demonstrated some of the tools that can be used to analyse the application
in order to �nd known vulnerabilities.

2.14.1 OWASP ZAP

OWASP ZAP is an open-source security testing tool speci�cally designed for dynamic appli-
cation security testing. As a part of the Open Web Application Security Project (OWASP),
ZAP is a versatile and powerful tool that assists in identifying vulnerabilities in web applica-
tions through simulated attacks. Some of his functionalities are:

� Proxy Mode: Is allows intercepting proxy, allowing to view and modify the requests
and responses between your browser and the target application. This can be used to
explore and test various input vectors, headers, and parameters.

� Active Scanning: ZAP o�ers active scanning capabilities, where it automatically
analyses the application by sending malicious payloads and probing for vulnerabilities
such as cross-site scripting (XSS), SQL injection, and more.

� Passive Scanning: In passive scanning mode, ZAP monitors tra�c and �ags potential
vulnerabilities without actively sending payloads. This helps identify security issues
without disrupting the application's functionality.

� Automated Spidering: ZAP includes a spidering feature that automatically navigates
through the application's links to discover and map out di�erent components, pages,
and endpoints.

� Authentication and Session Management Testing: ZAP supports testing of au-
thentication mechanisms and session management. It allows you to capture and replay
authentication sequences to assess their security.

� Contextual Analysis: ZAP provides contextual analysis, allowing you to de�ne speci�c
contexts for testing, such as speci�c areas of the application, to focus on certain
vulnerabilities.

2.14. Security Tools 21

� Extensibility and Automation: ZAP is highly extensible and o�ers an API that enables
users to automate scans, customize reports, and integrate the tool into their CI/CD
pipelines.

� Vulnerability Reporting: ZAP generates detailed reports that highlight discovered
vulnerabilities, their severity, and recommended remediation steps. This aids in com-
municating �ndings to development teams.

In summary, an open source tool that helps identify a wide range of vulnerabilities, having
all automated, that can help developers understand how attacks occur, and given recom-
mendations to address vulnerabilities, is a robust tool to use as a DAST tool and being
incorporated in a CI/CD pipeline [55].

2.14.2 Burp Suite

Burp Suite is a DAST tool, developed by PortSwigger, that helps identify vulnerabilities in
a web application by simulating various types of attacks [56]. This software comes with a
range of features, such as:

� Proxy: The Proxy component acts as an intermediary between your web browser and
the target web application. It allows you to intercept and manipulate HTTP requests
and responses, which is crucial for understanding how an application works and for
�nding vulnerabilities. Security professionals use the proxy to analyse and modify
requests and responses in real-time.

� Scanner: The Scanner automates the process of identifying security vulnerabilities in
web applications. It performs various types of scans, such as vulnerability scans, crawl-
ing, and scanning for common issues like SQL injection, cross-site scripting (XSS),
and more. The results are presented in a user-friendly format for analysis and further
investigation.

� Intruder: The Intruder is a powerful tool for automated attacks against web applica-
tions. It allows users to customize and automate attacks by replacing speci�c parts
of HTTP requests with payloads, making it useful for �nding vulnerabilities related to
input validation, parameter manipulation, and more.

� Repeater: The Repeater tool enables security professionals to send modi�ed requests
to the target web application repeatedly. This is useful for testing how the application
responds to di�erent inputs or to con�rm the existence of vulnerabilities discovered
during manual testing.

� Sequencer: The Sequencer tool is used for analysing the randomness and quality of
tokens generated by the web application, which can be crucial for assessing session
management and security features like anti-CSRF tokens and session identi�ers.

� Decoder: The Decoder helps with various encoding and decoding tasks, which are
essential when dealing with data manipulation, encryption, and obfuscation within web
applications. It can decode di�erent encoding schemes like base64 and URL encoding.

� Comparer: This tool allows users to compare two HTTP requests or responses to
identify di�erences, which can be helpful when analysing the e�ects of di�erent inputs
on the application's behaviour.

22 Chapter 2. State of the Art

� Extender: The Extender component allows users to enhance Burp Suite's functionality
by writing custom extensions in various programming languages like Java or Python.
This is useful for automating speci�c tasks or adding new features tailored to your
testing needs.

2.15 ERP

An Enterprise Resources Planning (ERP) is a software that integrate several pieces of com-
ponents, using a common database, and sharing the data between the various functional
areas [57]. A representation of the various modules that can compose an ERP is demon-
strated in the image 2.5

Figure 2.5: Various of the Modules integrated in ERPs

It's origin remotes to the Material Requirements Planning (MRP) and Manufacturing Re-
source Planning (MRP II), where both are closely related concepts in the history of ERP
systems. From this base, ERP utilizes the knowledge acquired from MRP and MRP II to
develop more sophisticated systems that are capable of managing all aspects of a business,
from �nance and accounting to human resources and supply chain management [58].

The ERPs popularity has grown over the last years, since it proven to increase the e�ciency
and speed of the processes that the companies had. The market that is available to use
ERPs in their business, with more solutions available to choose, and the need to digitalize
the companies to reduce paper use and getting more e�ectiveness in their processes are the
leading reasons why companies invest in ERPs implementations [59].

2.15. ERP 23

However, there are reports that many of ERP's implementations get a signi�cant customiza-
tion, indicating that the all-in-one solution, that is the major point to implement an ERP,
is not good enough to sell it to every company in the market, requiring an extra e�ort.
Choosing the right system can be very challenging, since it not only require a system with
all the functionalities that are needed, but also a vendor that fully understands the need of
the market the client is in [60].

Despite the ERPs history, these systems can be applied to many type of sectors, like the
education industry, where the ERPs are more used to manage the academic and research
facilities, sta� and student data, etc. In the healthcare industry, the ERPs are used for
tracking the medical supplies, patient's records, and the overall facilities [61]. In today's
world the increase for the Cloud based solutions increased, since it allows for less cost for
the companies not only in hardware but also in maintenance, since all the process is managed
by the company managing the ERP. This allows for more �exible processes, as the software
is available everywhere with less e�ort to put. [59].

The goals that are most important from the ERPs are cost savings, better performance
metrics and improved e�ciencies in business transactions. Most of the actual trends are
cloud subscriptions, and IA and IoT technologies incorporation in ERPs [57]. Most of the
companies implement ERPs is to shift from legacy systems to a new one, that is more
standardized and with more support.

The market already have ERPs software established, some of these examples are the Oracle
Netsuite, Sage, SAP or FinancialForce, among others [62]. The Oracle Netsuite for example
have a diversity of pre-built solutions so the product their sell is versatile enough to cover
most of the market available. It also has plans to migrate the new clients from their existing
software to help the process of streamlining with the change of software, and indirectly the
processes of a company.

In the case of the Sage, although they have variants for small and accountants companies,
their solution for medium companies with the Sage X3 ERP o�ers functionalities as control-
ling the shop �oor, quality control, �xed assets, procurement, customer support, etc. SAP
o�ers solution which includes analysis of the data from the customer to help create new
business models to guide the client to a new business structure that can bring more value
to the company.

25

Chapter 3

Value Proposition

This chapter describes the process that was used in order to assess the value that can be
derived from this dissertation project. First is described the concept models for innovation
and opportunity analysis, by following the New Concept Development (NCD). Afterwards,
the opportunity that the project intends to address is identi�ed and analysed, with the
perceived value that the stakeholders derive, and with the description of the value proposition
and the business model the project proposes to. Finally, the requirements are analysed
and selected with support from Function Analysis System Technique (FAST) and Analytic
Hierarchy Process (AHP) methods, with the conclusions taken from this analysis.

3.1 New Concept Development

The development of a product must require an understanding between the proposed solution
and the value derived from the customer. But, in order to create a solution, �rst is required
to create an idea of a product.

The concept of innovation results from the unsatisfaction with the current state of the art,
and is connected to the introduction and implementation of new ideas or processes, with
the objective of generating new ways to perform tasks, improving the processes associated
with it. This process of innovation can be characterized with the model propose by Peter
A.Koen, represented in the 3.1, where it's divided into three segments [63]. This model
describes all the process from the creation to the commercialization of a product, and it is
expected to be followed sequentially.

Figure 3.1: The Innovation Process

26 Chapter 3. Value Proposition

The �rst phase is the Fuzzy Front-End (FFE), that refers to the early stage of a product
development, and is characterized by a high degree of uncertainty and ambiguity, as many
decisions is still to be made for the product. This phase is critical, since it sets the rest
of the project, and so the importance to gather information, generate and evaluate ideas,
and making key decisions is very important. Afterwards is the New Product Development
(NPD), where is performed the design, development and marketing of the product, in order
to increase the market of a company, satisfying the need from the consumer. Finally, the
commercialization process is when the company sells the product made, even if it's brand
new or only a change to an existing one.

Since the �rst phase is very di�cult to stipulate the decisions to be made, the NCD is a
structured approach for the FFE that is based on the idea that the planning and management
of this phase can help navigate the people through the uncertainty and ambiguity that is
normally associated with this stage. The NCD can be described as a model that consists of
�ve stages, like represented in the �gure 3.2:

Figure 3.2: The NCD Model

� Idea generation: First phase of NCD, where ideas are generated. It can include market
research, brainstorming sessions, and others activities to stimulate creative thinking.

� Idea selection: After generating the ideas, the team evaluate and select the most
promising idea.

� Concept Development: The idea selected is re�ned, elaborating more detailed concept
designs and prototypes.

� Business Analysis: The team generates an assessment of the potential market, target
customers and �nancial viability.

� Implementation Planning: Is generated a plan to bring the product to market.

� Engine - Represents the organization strategy to impulse and work the �ve elements
described before.

3.2. Opportunity Identi�cation 27

� In�uencing Factors - Are external factors that are outside the organization environ-
ment, but can shift the innovation process.

By applying the New Concept Development, it's possible to analyse di�erent characteristics
of the problem, for both the external factors and the organization component, leading to the
concept that will lead to the New Product Development phase of the innovation process.
Thus, in the next sections, is presented the application of this model in order to generate of
ideas and the respective selection.

3.2 Opportunity Identi�cation

Development is always changing, with new technologies and tools to help developers make
software faster, safer and with fewer errors. From this evolution, it is expected that the
products turns out to be more robust. However, the products are also constantly changing,
becoming more complex that ever, since the market needs shift when the previous needs are
accomplished.

The maintenance of the products are becoming more challenging to be performed, and so the
automation of the operations that support the development and deployment of the product
are being more searched than ever. Take for example the Google Search Trend for the word
"DevOps", shown in the image 3.3.

Figure 3.3: DevOps search on Google

So, the importance of implementing a good pipeline to build, test and deploy the tool, and
audit the software to be faster to track bugs and usage of the system is a new priority settling
in the software companies. And since applications are becoming generally more complex,
with more integrations between di�erent tools, and the need to scale up the application when
is required to maintain a good service, is making companies turn to automation of tasks
such a testing and deploying, in order to reduce the time and human resources needed. This
allows the developers to have more time to make more functionalities, and the operations
team to be able to deploy new changes and adjust the infrastructure as needed.

Incorporating DevOps in any software cycle can lead to the �nal product being more robust,
thus requiring less support cost. This is specially important for complex applications like
an ERP system, that contains several modules with information integrated, since the errors
are detected during development, and the number of errors occurring on the client side are
reduced [64].

28 Chapter 3. Value Proposition

3.3 Opportunity Analysis

The NCD model serves to demonstrate the potential and viability of an opportunity in the
market. For that, a set of articles and reports are used to describe and explain why a given
opportunity is worth the time and investment.

A Google Report from 2022 about the state of DevOps and his usage in enterprise solutions
development states that the number of companies that are relying on the DevOps process
to be more responsive and more resilient to product failure is increasing. About 69% of the
respondents report that can deploy and take new changes into production between once per
week and once per month, that can restore a service between one day and one week, and
their average failure rate is around 16%-30%. This lead to teams with less burnout, less
susceptible to errors, and less unplanned work [65].

In the same report it is stated that the usage of public cloud increased 36%, and that the use
of public cloud help the reliability and time to recover of the product. This means that the
investment in some cloud provider, or even private, can relieve the pain from the company
and their clients, and also have more availability time.

Another report from Microsoft describes that the teams that implement DevOps have easier
process to manage the infrastructure of the system in comparison to the others companies
[66].

Although DevOps is a concept with already some established knowledge and business prac-
tical examples, it's still a challenge in the market to use this methodology at full, specially
the cases where there is already a legacy product that requires several changes in place in
order to �t in the DevOps. This shows that there is an opportunity to design and develop
a DevOps process that can help in the implementation of a product like an ERP, and that
can be e�ectively measured to prove the e�ciency of the implementation when using this
methodology.

3.4 Perceived Value

The perceived value is the perceived utility from a stakeholder, and the price associated with
it. In terms of software development, the value generated for the customers is what can the
system do and if it corresponds to all the needs required for a business.

To verify what value can be made from developing an ERP solution with the use of DevOps
and Audit tools it is relevant to understand all the stakeholders involved, and what value can
be generated from it. In the table 3.1 is demonstrated what is the value that the solution
can bring to the stakeholders of this project.

3.5 Value Proposition

The Value Proposition Canvas is a framework that was developed by Alexander Osterwalder,
and with the objective to describe the correlation between customers needs, and the bene�ts
from using the product that is being discussed. It provides a framework for testing and
re�ning the value proposition, enabling organizations and individuals to iteratively improve
their o�erings and better understand the needs and motivations of their customers. The
canvas is divided into two sections, one representing the customer and the other representing
the product or service [67].

3.5. Value Proposition 29

Stakeholders Bene�ts Sacri�ces

Developers

Can produce more product changes, and

write tests and implantation con�gura-

tions with less e�ort.

Loss of control, which can lead to un-

derstand less about how the system is

implanted.

Audit tools also help developers to bet-

ter understand in which part of the sys-

tem the changes they are making are

causing wrong execution from the sys-

tem, since this tools will warn the de-

veloper when the system detects some-

thing stop working.

The e�ort associated with implementing

changes increase partially because of the

e�ort required to also implement the log

necessary in the system.

Using some current technologies in the

market lead to better support, taking

the advantages of this tools like their

performance, static analysis, features

like garbage collection and such that

prevents bugs, etc.

Adaptation from older and stable lan-

guages.

Customers

Software that can be proven more ro-

bust will lead to fewer errors, leading to

more con�dence about the system and

what he can do.

A product that change too quickly can

lead to di�culty in using the system.

Products prepared for fast iterative im-

plementation and deploy process lead to

faster changes made to the product, and

the possibility for automation the up-

grades lead to easier process to main-

tain the clients.

User experience is expected to be fast.

Table 3.1: Perceived Value by each Stakeholder

To apply the Value Proposition Canvas, the �rst step is to identify the customer segments
being targeted, that includes de�ning the characteristics, needs, and motivations of the
customers, as well as their pain points and the problems they are trying to solve. The
second step is to de�ne the customer problems and needs being addressed, covering the
pain points and the jobs they are trying to get done. The third step is to de�ne the unique
value being o�ered to solve those problems, including the bene�ts and unique features of
the product or service. The fourth step is to de�ne the channels through which the value
proposition is delivered, including the touchpoints and interactions with the customer.

The Value Proposition Canvas has become a widely used tool for product design, develop-
ment, and marketing. Is a strategic tool used to help organizations and individuals create
compelling value propositions for their products or services. One of the key conclusions that
can be drawn from using the Value Proposition Canvas is a deeper understanding of the cus-
tomer and their needs, enabling organizations to create more compelling value propositions
that e�ectively address their customers' problems. Additionally, it can help organizations to
identify and optimize their key di�erentiators, making it easier to stand out in a crowded
market and di�erentiate themselves from their competitors.

In this dissertation the purpose is to create a good support development process that removes
some manual review and pain from the developers when changing the product. So, one of
the stakeholders are the developers that make part of the team developing the ERP, and

30 Chapter 3. Value Proposition

the value proposition is that DevOps will remove some hard work of the developers when
included in the software development cycle. The other stakeholder are the customer that
will be using the ERP system.

Considering the stakeholders mentioned above, it was designed the canvas presented in the
�gure 3.4, that describes in the details what the project have to o�er.

Figure 3.4: Value Proposition

3.6 Business Model CANVAS

The term business model refers to plan of a company to generate value and pro�t. The
Business Model Canvas is an important management and Lean Startup tool used to develop
and visualize the di�erent elements of a business model. It was developed by Alexander
Osterwalder and Yves Pigneur in their book "Business Model Generation", and has since
become a widely used tool for entrepreneurs, startups, and established companies looking to
develop and improve their business models [67].

It denotes the products or services the company want to develop and sell, in which markets,
and the costs in order to implement it. Business models are important for both new and
established businesses. They help new, developing companies attract investment, recruit
talent, and motivate management and sta�. The canvas is designed to be �exible and
iterative, allowing organizations to quickly and easily test and re�ne their business models
as they gain new insights and market feedback.

It is a visual representation of a company's asset, both physical and logical. To apply
the Business Model Canvas, �rst is necessary to identify the characteristics of the customer
segments being targeted, with the motivations and pain points of the customers, and identify
the unique bene�ts and features of the product or service being o�ered to the customers.
After that, is to consider the channels that will be used to deliver the product to the client,
and the customer relationships, including the type of relationship being established with the

3.7. Value Analysis Approaches 31

customer and the value of it. Next is required to identify the revenue streams and the pricing
strategy being used, and the key resources, including the tangible and intangible assets that
will be needed to deliver the value proposition. Finally, is de�ned the key activities, with
the critical processes and operations of the business, the key partnerships, including the
strategic relationships and collaborations required to deliver the value proposition, and the
cost structure. By visualizing the business model in a structured and comprehensive way,
organizations can quickly identify opportunities for improvement and areas for optimization,
enabling them to make informed decisions about their strategy and direction.

In this project, although is an auto-proposal project, it is still possible to refer some principals
business aspects from it. The business model canvas is represented in the �gure 3.5, that
describes the value behind the solution proposed.

Figure 3.5: Business Model Canvas

3.7 Value Analysis Approaches

In order to develop an e�ective solution, it is necessary to select the right ideas, which is
very challenging to choose properly. Since it is a crucial stage to conduct the development
of a solution, a set of di�erent techniques and methods can be used to guide this process
of choice.

Therefore, a set of criteria must be established to determine what is most important, and
once this is done, a list of potential approaches can be drawn up, and with the help of a
methodical implementation, it will be possible to decide which solution should be used to
implement the new system.

For this project it will be used two di�erent methods to evaluate the ideas that can possible
be used for this project:

� FAST design

� Analytic Hierarchy Process

32 Chapter 3. Value Proposition

The following sections will provide more detail on each method used to reach the decision
about which idea should be selected.

3.8 FAST

The Function Analysis System Technique (FAST) technique is a graphical representation of
the functional decomposition of a product or service, breaking it down into its constituent
parts and functions. It starts with the identi�cation of the main function of the product
or service, which is represented by a box at the top of the diagram. This main function is
then broken down into smaller, more speci�c functions, represented by boxes below the main
function, and so on until all the functions of the product or service have been identi�ed [68].

Is a tool used in value analysis to analyse and evaluate the functions of a product or service in
order to identify areas for improvement and cost reduction. It supports the communication
between team members by sharing common knowledge, de�ning and clarify the problem,
identifying the basic function of the project.

This diagram helps thinking the problem objectively, identifying the scope of the project, and
verify if a proposed solution achieves the needs of the project. It requires majoring questions
"How?" and "Why?", where the "How" de�nes the bases from where it's reached the scope
the study, while the "Why" de�nes the motives behind the scope of the study.

This representation provides an overview of the process under analysis, allowing users to
track the critical path. The critical path represents the most important functions of the
process, and this tool also shows supporting functions that, even though they are not part
of the critical path, can adversely a�ect the normal course of operations and thus the full
data migration process. There are tools available for almost every operation in this complex
process that can make implementation easier.

By this principle, it was developed the diagram illustrated in the �gure 3.6 that shows the
reason behind the implementation, and how it will be done.

Figure 3.6: FAST Diagram

In the diagram it is described that, in order to implement a DevOps methodology in an
ERP development process, it is required to specify and design what is needed to be done
in the pipeline, and how will it be structured in order to reach the goals of the team. The
main priority is to automatize the integration, and after that the deployment process. In the

3.9. Analytic Hierarchy Process 33

automation process, the primary objective is to implement a continuous integration pipeline,
and after that is completed, then add the deployment of the application into the pipeline.
In this part is also necessary to analyse the application containerization.

3.9 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a mathematical decision-making method that
allows a decision maker to structure and examine complex decision problems. It was �rst
introduced by Thomas L. Saaty in 1980, and it has since been used in a variety of �elds,
including business, engineering, public administration, and social sciences [69].

AHP involves the use of pairwise comparisons between decision criteria and alternatives,
and the assignment of weights to the criteria and alternatives. These weights are used to
calculate the overall importance of each alternative in relation to the decision problem.

The process of using AHP typically consists of several steps:

� De�ne the problem: The decision maker must clearly de�ne the problem to be solved
and determine the objectives of the decision.

� Identify the criteria: The decision maker must identify the criteria that will be used to
evaluate the alternatives.

� Develop a hierarchy: The decision maker must arrange the criteria in a hierarchy, with
the most important criterion at the top. This helps to clarify the relationships between
the criteria and provides a framework for the analysis.

� Perform pairwise comparisons: The decision maker must perform pairwise comparisons
between the criteria and between the alternatives, in order to determine their relative
importance.

� Calculate weights: The pairwise comparisons are used to calculate the weights of the
criteria and alternatives.

� Evaluate alternatives: The weights are used to evaluate the alternatives and determine
which one is the best choice.

The application of the AHP allows to determine the alternative that the best choice for the
decision problem. This conclusion is based on the relative importance of the criteria and
alternatives, as determined by the decision maker through the pairwise comparisons [70].

With this, the �rst step is to build a hierarchical decision tree, where is present the problem,
the criteria considered, and the alternatives available. The criteria considered for this project
are:

� Security - the tool should be very secure, since the project have a special attention to
the security aspect in the programming.

� Cloud Integration - the tool should present an easy process to install and/or deploy on
the cloud

� Plugins - the tool should have a good plugin infrastructure.

� Reports - the tool should have good reports about metrics and other statistics about
the pipeline and the execution of it.

34 Chapter 3. Value Proposition

� Price - The cost to use and maintain the tool is important.

The alternatives that are considered in this decision tree are the following:

� Jenkins

� Gitlab

� Travis CI

� Circle CI

After the de�nition of the decision tree, the next step is the creation of the pairwise com-
parison between the criteria, to determine which one are more important than others. For
this step, the scale proposed by Saaty was used, and the result of this evaluation can be
seen in the table 3.2.

Security Cloud Integra-

tion

Plugins Reports Price

Security 1 1 1 3 1

Cloud Integra-

tion

1 1 1/5 5 1

Plugins 1 5 1 5 3

Reports 1/3 1/5 1/5 1 1/5

Price 1 1 1/3 5 1

TOTAL 4 1/3 8 1/5 2 3/4 19 6 1/5

Table 3.2: Criteria pairwise comparison

The third step is the calculation of the relative priority of each criterion. This is possible
by normalizing the comparison matrix and calculate the arithmetical average of each value.
The table 3.3 demonstrates the values that originated the priority vector.

Security 0.2076

Cloud Integration 0.1701

Plugins 0.3907

Reports 0.0519

Price 0.1798

Table 3.3: Priority Vector

After this, is necessary to calculate the consistency ratio, to verify if the relative priority are
consistent, thus proving that the matrix is consistent, and the values can be trusted. The
value obtained in this case was 0.08, meaning the comparison matrix is e�ectively consistent.

The �fth step is the development of comparison matrix for each criteria, considering all the
alternatives. In the appendix A it is demonstrated the calculations for each criteria.

Finally, in order to reach which tool should be considered to use in this project, is necessary
to calculate the priority vectors of each criteria, and then multiply with the criteria relative
priority. The result are shown in the table 3.4.

In this case, based on the results obtained, the most appropriate tool to implement a CI/CD
pipeline, in comparison with the others tools, is Gitlab.

3.9. Analytic Hierarchy Process 35

Security Cloud

Integra-

tion

Plugins Reports Price Vector Priority

Jenkins 0.0979 0.1072 0.375 0.3042 0.4167 0.2076 0.2758

Gitlab 0.3226 0.1204 0.25 0.3875 0.4167 0.1701 0.2801

Travis CI 0.4060 0.4112 0.125 0.1292 0.0833 0.3907 0.2247

Circle CI 0.1735 0.3612 0.25 0.1792 0.0833 0.0519 0.2194

0.1798

Table 3.4: Alternatives composite priority

37

Chapter 4

Technologies Used

In this chapter is described all the technologies that were used during all the phases in the
project as a support for the implementation.

4.1 Git

Git is a distributed version control system that enables developers to track changes in their
source code, collaborate with others, and manage code history e�ciently. It allows users to
create branches for development, merge changes, and maintain a complete history of code
revisions, making it a crucial tool for software development and collaboration [71].

4.2 Visual Studio

Visual Studio is an integrated development environment (IDE) developed by Microsoft. It
provides a robust set of tools for software development across various programming lan-
guages and platforms. With features like code editing, debugging, pro�ling, testing, and
collaboration tools, Visual Studio streamlines the entire software development lifecycle. It
supports a wide range of languages, including C++, C, .NET, Python, and more, making it
a versatile choice for building applications ranging from desktop software to web and mobile
applications [72].

4.3 Visual Studio Code

Visual Studio Code is an open-source text editor created by Microsoft as an alternative to
Visual Studio. You can use it only for the basic functionalities of writing �les with syntax
highlight for the speci�c language you are writing. But its great potential comes from the
opportunity to use it for compilation, execution and debugging using plugins, as well as other
functionalities that are available to everyone in its marketplace. It's one of the programmes
most used by developers because it allows them to work with many languages in a single
application, and due to its extensions, it can easily be a substitute for other more specialized
programs that require the use of several programmes [73].

4.4 Postman

Postman is software that allows you to make HTTP requests to an application. More
focused on testing WebAPIs, it allows you to execute several HTTP requests of di�erent

38 Chapter 4. Technologies Used

types, associate tests with the requests in order to test the response code, body of the
response received, execution speed, etc. You can share HTTP requests with other people,
run Postman tests in CI/CD, generate documentation, work with di�erent response formats,
which makes it a complete tool for testing HTTP servers [74].

4.5 Putty

PuTTY is a widely used open-source terminal emulator and SSH client for Windows. It
enables secure remote access to servers and devices using the SSH, Telnet, and other network
protocols. PuTTY o�ers a command-line interface for managing and interacting with remote
systems. Its simple and lightweight design makes it a popular choice for administrators,
developers, and anyone needing to establish secure connections to remote servers or network
devices [75].

4.6 WinSCP

WinSCP (Windows Secure Copy) is a popular open-source software application used for
secure �le transfer and remote �le management between a local Windows computer and
a remote server. It supports various �le transfer protocols, including FTP, SFTP, SCP,
and WebDAV, and provides a user-friendly graphical interface for ease of use. WinSCP is
commonly used by system administrators, web developers, and anyone who needs to transfer
�les securely between their computer and a remote server [76].

39

Chapter 5

Design

In this chapter is explained what are the users of this project, followed by the requirements
that are expected to be implemented. After that, the design of the pipeline is described,
with the justi�cation about the decisions made.

5.1 CI/CD

This dissertation is focused on the application of the DevOps concept during the software
development cycle, and such it is necessary to analyse how a developers team can apply
this in a new project, with the steps of the methodology that will be designed in order to
implement.

During the development of the ERP, is expected to design and implement a CI/CD pipeline
using a tool already established in the market in order to create the process needed to
maintain a �uid process that ensure a good automation of steps used to validate the new
changes that was made to the software. This helps the developers to focus more on the
program, and be more committed to the changes be deployed more early to the clients, since
it helps create a feeling of safe environment.

The following use cases was listed as the primary sources to implement the DevOps process
during the development of the ERP.

Figure 5.1: Use Case Diagram for DevOps

40 Chapter 5. Design

For the engineer it is important that the maximum time of his work is to develop new
features, in order to grow the product more rapidly and to �ll in the requirements of the
clients. This can be very challenging, because making changes to the code already present
in the product can be complicated if the product has not grown with the right structure,
leading to a technical debt that su�ocates new changes, and can even lead to more debt.

So, the DevOps methodology tries to facilitate the work of the engineer by removing the
manual and gross time of the building, testing and deploying new changes, since part of
this process, if not entirely, can be made automatically by the CI/CD process. With this, it
helps to detect bugs more early, keep tracking of the changes made and their impact in the
product, and can be used to implement others processes like code review.

In terms of Git branching, there are multiple ways to manage, depending on the size of
the team, the number of commits made, and the overall team coordination. One of the
examples is the Git�ow. Git�ow is a branching model and work�ow for Git, designed to
manage complex software development projects with structured branching strategies [77].

It de�nes two main branches: "Main" for stable production code and "Develop" for ongoing
development. Developers create "Feature" branches for individual features or enhancements,
which are later merged back into "Develop." When preparing for a release, a "Release"
branch is created for testing and bug �xes before merging into both "Main" and "Develop."
"Hot�x" branches are used to address critical issues in production and are merged into both
"Main" and "Develop" as well. This approach promotes organization and stability in code
development and release management, while creating very distinct branches, each one with
their own purpose, separating the type of commits that can be made in each one.

While Git�ow o�ers structure and order to collaborative software development, it may in-
troduce complexity, making it more suitable for larger projects with frequent releases and
multiple contributors. Smaller teams or less complex projects might prefer simpler branching
models like GitHub �ow. The choice of work�ow should align with the speci�c needs and
dynamics of the project and team.

Others are simply have one main branch, and every time someone wants to commit just
commit to main, like the Github Flow. GitHub Flow is a straightforward and lightweight Git
branching strategy focused on enabling continuous delivery and frequent deployments [78].

It centres around two main branches: the "main" branch representing the production-ready
code and feature branches created by developers for speci�c tasks or features. Developers
work on these feature branches, implementing changes and improvements. When a feature
is complete, they initiate a pull request (PR) to merge their branch into "main." The PR
undergoes code review and testing, ensuring code quality and functionality. Once approved,
the changes are merged into "main" and subsequently deployed to the production environ-
ment. GitHub Flow promotes a streamlined development cycle that emphasizes continuous
integration, code review, and the swift delivery of new features and bug �xes, making it
especially suitable for teams focused on agility and rapid development.

The simplicity of GitHub Flow makes it an accessible and e�cient choice for many develop-
ment teams, particularly those engaged in web development, cloud-native applications, and
other fast-paced projects where frequent releases and collaboration are essential. Its ease of
use and clear structure make it a popular choice for organizations that prioritize agility and
responsiveness in their software development processes.

5.1. CI/CD 41

There are more approaches, like git rebase, where is maintaining a linear history, by developers
rebasing their branches into the main, leaving only one single line of history, and others are
even just directly make commits to a main branch, normally used only by smaller teams with
minimal complexity.

In this project, the following branches will be used, taken into consideration the number of
developers, and the cycle intended to have in this project:

� A development branch, where all the commits will have to be merged. This will be the
most updated branch, as all the developments will get to this branch

� A developer, if �nd it better to have a separate branch for a speci�c functionality, it
can create it, so that it can create a bigger change in the system, and only merge into
the development branch when �nished.

� A release branch, where the commits made into the development branch will be merged
when the developers team decided that the features and hot�xes made is enough to
create a new version of the software. In this case, a merge request will be performed,
and a commit with a tag version will be made into the repository. The pipeline will
make its �nal validations, and release the binaries and images correspondent to that
version.

With this type of branching, it is possible to de�ne what is the branch that represents the
current software version, the version that have the latest code changes, and the process for
releasing well-de�ned and automated.

This lead to the stakeholders gain more e�ciency in their processes, because the engineers
are working more on the product and less on maintenance and the pain to deploy new
changes, leading to fewer costs to the company. Also, because changes can be deployed
more times and faster, the business can deliver more features than the competition. To
the customer, this DevOps methodology can result in a product more robust and with more
changes and corrections made into the product, leading to more support.

With the CI/CD process, the pipeline must meet the requirements of the developers, op-
erations teams and stakeholders of the company. The CI/CD must be the process that
can:

� Automate the tasks that are normally associated indirectly with producing software,
like building, run tests, check code quality, check code conformity with regulations,
and deployment and con�guration

� Make it faster as it would be done if it was a human make the similar steps

� Make it fail fast and deliver early feedback as possible, to reduce the time need to get
the results from the integration of the changes into the codebase.

� Be a tool that can be a source of truth related to the build and testing, since it can
exist cases where the developers may have local con�gurations that can prevent them
from seeing the bugs that can occur in the production.

How can the pipeline be designed to cover these requirements? For that, the architecture
proposed for this project is consisted in the following phases:

1. Pipeline is triggered by a commit made to a branch of the repository.

42 Chapter 5. Design

2. Pipeline makes the compilation of the project, to ensure the latest changes can produce
a working executable.

3. The unit tests are run to ensure no change break the test suite.

4. At the same time the integration tests are run to ensure the services are able to
communicate with each other.

5. After the tests are run, a static code analysis is made to analyse for bugs and code
smells.

6. Next the stress tests are made to ensure the performance didn't reduce below the
satisfactory value.

7. The deployment is tested onto a test environment to ensure the application and op-
erating system can migrate the instances without issues.

8. Finally, the deployment can be made onto the production environment.

5.2 Audit Tool

The audit tool is a crucial tool in the maintenance of a working system, since it allows
collecting data used to keep track of the system, collect metrics to study the overall working
of the application during the time of execution, etc.

This helps not only the operations teams to giving proper support of the application for the
clients, since they have more information available, but also for the developers, since the
developers have more insights about how the code is performing in real scenarios, that can
be a�ected by the volume of data or users, resulting in di�erent code changes impact, that
are not measurable or predictable in the development phase. And so, by having telemetry
on the app, the tracking of the cause of problems is more easily �ndable, resulting in less
time and costs in detecting and reproduce the scenarios, and also transmit more knowledge
about what best practices should be enforced to reduce the risk of problems in the future
[79].

In this project, in order to have the full cycle of DevOps, it is necessary to instrument the
application and infrastructure with necessary tools to have the possibility to monitor when
needed. So, the team designed a set of requirements in terms of logging, telemetry and
auditing, that are considered to be essential when dealing with the monitoring:

� Collect logs from all the relevant services and the events of the operating system
running the application;

� Aggregate and summarize the data into the relevant metrics and alerts;

� Platform to visualize all the data collected;

� Possibility to con�gure alerts for system downtime and others factors.

This requires that the architecture chosen make it this works is resilient to all type of system
failures, without data loss and with rapid recovery. In the application was implemented an
observability stack, e.g a tool that allows to log, collect and analyse the execution status of
the application, traceability on indicators like latency and time spent to process a request,
and metrics that illustrate the evolution of the system usage and performance.

5.3. Security 43

In this project the OpenTelemetry was used to integrate the logging enhanced capabilities
with Prometheus, that will serve as a time series database, and then use Grafana as a
Dashboard tool for monitoring the system by using Prometheus as a data source for the
data that will be displayed in the dashboards.

5.3 Security

Since this dissertation also focuses on DevSecOps and overall security, this plays an impor-
tant aspect of the solution. This covers everything associated with the project, from the
application that will be built, to the devops process and the tools used. This is to ensure that
all the intellectual property is covered from unauthorized access by the use of vulnerabilities,
and also to enforce good security practices among the developers and users.

For the application, it is important that the customers can feel safe when using it, i.e. that
they can have trust in the data stored. For that, the application must already be designed to
protect their users. After an analysis of the requirements for the application, it was decided
to specify the following requirements:

� The users must authenticate in the system before start using it;

� The system must validate the level of permissions of the user before allowing the user
to access certain functionalities;

� The system must provide more than one method of authentication;

� The system should implement good measures that prevent session hijack;

� The system should be validated against known vulnerabilities

In terms of authentication and authorization implementation, it will be used the Bearer
authentication, with JSON Web Token (JWT), with the optional JSON Web Encryption
(JWE) variant that encrypts the payload in order to prevent sni�ng the payload of the
content. This allows for stateless sessions, which reduce the overhead of the system in
handling multiple sessions. Also, it allows the user to maintain the same session through
multiple instances of the application.

For the source code and the CI/CD tool, it is important that is protected from thief, and
accessing important customer's information. If this is not protected, then the application
could be seriously compromised, not only by coping the product, but also interfering with
the source code undetected, and possibly compromise customers machines. This is a serious
question that should be also be taking care of.

For that, one of the important aspects is to have restricted access to the Gitlab instance.
This can be enforced by setting up a whitelist of IPs that can access, or a VPN that can be
used to then have access to the instance, instead of having it publicly available, since only
a handful of people will use it.

Another measure that can be applied is the protection of the main branch of the repository,
by only be possible to commit to it by a merge request. This creates another set of history,
and also can be used to enforce code review of the code being pushed. The communication
between the Gitlab and the possible environments should also be protected, by using HTTPS
communications between the machines, and by only using elevated commands in an extreme
scenario where other solution is not available.

44 Chapter 5. Design

The environments should also be accessible to their system and �le system by using SSH
that is not exposed to the internet, only exposing the application itself. The SSH connection
should use certi�cates authentication, and the private key should be con�gured as a variable
in the pipeline, since it allows to change the credentials without touching the pipeline, while
also protecting from secrets exposed in the source code and version control repository.

Another way to enforce security is by using most of the time virtual machines and/or contain-
ers, that can run what they need, while also protecting the host environment from hijacking
and gain privilege access to the infrastructure.

With this set of measures, it is much harder for intruders to in�ltrate and start running
unintended commands.

5.4 ERP

The ERP that will be developed in this dissertation, that is the base for this project, is
focused on the small and medium companies businesses market. The system should help
the owners of these places have a more agile process to manage and register their sales,
with the importance that the data is correct. By making a software product oriented to
this market, it is possible to test with an Minimun Value Product (MVP) to check if the
application meets the requirements so that it can be used commercially in large scale.

With the before statement in consideration, it was developed the following use cases diagram,
that represent the list of functional requirements that are taken into the scope of this project.

Figure 5.2: Use Case Diagram for ERP

The ERP will be composed by a base module that contains concepts of products, third
parties, documents, series and currencies.

An administrator is supposed to make the con�guration of the ERP that is appropriate for
his business. For that it is possible to con�gure group of users and their accesses, and the

5.4. ERP 45

list of users in order to manage what persons can interact with the system. Also, the series
of documents can be con�gured as their needs, so that the organization of documents in the
system is as wanted. The currencies and taxes are an important con�guration for documents
that have associated monetary value. The products are what the business can buy or sell,
and the warehouses is the facilities that can be logically created in order to distinguish the
stocks and their locations. Finally, the con�guration of third parties is important to maintain
a list of suppliers and some customers.

Outside the scope of this dissertation, implemented by two others students, it will be cre-
ated the stock modules, related to the management of the products and their inventory, and
associated reception and documentation of products. Also, the sales module will be devel-
oped, with the invoice management and cash �ow of the business, allowing the company to
register the billing service made to their customers. To the normal user, is important to be
able to make most of the movements that occur in the business, like the purchase orders
and the product reception, invoice registration, and consult the history of these movements.

In terms of non-functional requirements, the following list was de�ned:

� The system must work both On-Premise and on Cloud environment;

� The system must work on Web browsers;

� The user must be able to work with the system in any operating system;

� The system should have multilanguage support;

� The system must be able to work with multiple users;

� The system should log the actions made in the system, in order to be possible to audit
its status;

� The system must work with low latency;

� The system should use the lowest possible resources from the browser;

� The system must encrypt the data that is sensible or contain personal information;

� The system must comply with the GDPR;

� The system should be simple and easy to use;

47

Chapter 6

Implementation

In this chapter it will be discussed the technical decisions made, and described the process
that was taken to conduct the development of the project.

6.1 Gitlab

So, as described in the chapter 3, the tool chosen was the Gitlab as it have strong tools to
manage repositories, the implementation of CI/CD pipeline, and overall all the integrations
and facilities made around DevSecOps speci�cally.

For this project, a self-hosted Gitlab was mounted, as it allow to have more control of the
features enable, and also the liberty to use the majority of the resources without costs. They
are still some features that are behind a paid licence, but with this setup it is possible to
make adjustments to the setup made, like the security around accesses for example, and still
have the code hosted on a private server.

To create this instance, a remote server running Ubuntu was used, as it is one of the most
known distributions of Linux being used. Then, it was installed a Gitlab Community Edition
version. There are plenty of ways to deploy a self-hosted instance of Gitlab, but it was used
the Linux Package deployment, where the binaries are already compiled, and a combination
of the chef tool with a ruby con�guration allows the customization of the instance, with
tools prepared to startup all the necessary services[80]. After that was made, the next steps
was con�gured the users that will access this instance, the groups of users, repositories to
be created and given the proper access.

After the installation, it was necessary to create the repository where all the work will be
put, i.e. the code of the application, and all the necessary stu� to create the pipeline. The
group decided to have two separated folders, one for the backend API project, and another
for the frontend React project, allowing for better separation when dealing with building and
deploying the code. This is visible in the �gure 6.1.

Next, it was created the CI/CD pipeline, as designed in the 5 chapter. The Gitlab uses a
.gitlab-ci.yml �le to have all the necessary stages, jobs, steps and scripts necessary to run all
the necessary con�guration and execution when a commit is made. This �le is at the root
of the Git repository, and the user can edit it manually, or using the web browser with the
built-in editor from Gitlab. By using this strategy, ensures that the Git is the single source of
truth of everything, and also is very easy to migrate the repository into another installation
of Gitlab, since the majority of the con�gurations is already versioned.

48 Chapter 6. Implementation

Figure 6.1: Repository in Gitlab

The Gitlab allow for some advance con�gurations in the pipeline, that can be based on the
branch the commit was made, if the source code was changed, dependency between stages,
etc. Also, it allows to be running in multiples environments, like Docker, Linux, Windows,
etc., allowing for better control of the environment and dependencies to run a speci�c target
or script, since it is normal to use external tools.

Gitlab, although is not only a CI/CD tool, o�ers many features, like pipeline visualization
of the stages and jobs and their dependencies, simple parallel execution, management of
artefacts, docker images and binaries, package registry, approval jobs, auto devops, secret
management, cross-project pipeline, security scanning, etc.

The Gitlab ha1ve a concept of Runners, where the machines that are allocated to run the
stages can be independent of the server that is running the Gitlab itself. By separating the
applications needed to execute the pipeline from the Gitlab itself, is possible to spread the
workload between one or multiple servers, allowing for faster time to execute a pipeline, by
removing the waiting time of the pipelines. Then, depending on the type of job (whether it's
supposed to run in docker, windows, shell, etc.), the Gitlab picks one of the available runners
that is capable of executing the job, to run it and return if it encounters some errors. In this
case, it was used a separated machine to have the Gitlab Runner con�gured. It was only
necessary to install the package, and then running the command "gitlab-runner con�gure",
that after a few steps, the instance is ready to start receiving job executions.

Since the Gitlab have a good community feedback, and is focused on DevSecOps, it already
possesses several templates that can be imported to the pipeline. The templates can run a
speci�c set of SAST, DAST, Container Scanning, Dependency Scanning, Secret Scanning,
and much more, all already automatized based on the languages and projects that are
presented inside the repository. For this project, it was imported the following templates,
since they are very important to maintain a higher rate of con�dence in the code produced
by the developers.

So, with all con�guring, it was time to set up the pipeline. In this case, and after a few
adjustments during the implementation of the project, it was decided to have the following

6.1. Gitlab 49

stages.

� Prebuild: This stage is to ensure that all dependencies to build the application can
be imported or build it �rst.

� Build: This stage is to ensure the latest changes made to the application does not
prevent the application from building

� Image: Then, it is necessary to ensure that the build of a Docker image is also not
broken, ensuring that all the artefacts to run the application can be put inside the
image

� Test: After that, a series of tests are run (unit tests, integration tests, SAST tests,
DAST tests, secret analysis, dependency scanning, etc.), to ensure that the application
didn't break, or didn't bring new vulnerabilities into the code.

� Analysis: Then, the quality gates, and the scan for code smells is made into the appli-
cation, to ensure the quality of the code produced didn't reduce below the expected.

� Pages: A simple stage to publish the results of the analysis into the repository

� Deploy: Deploy the new changes into the staging environment, by using IaC tools in
order to only run the necessary steps to transit the infrastructure to a new state.

� Release: This stage only runs when a new version of the application is made. This is
done by associated a tag with the commit. Then, the system will publish the binaries
and image artefacts, and associated them with a new release entry in the repository.
This allows that the versions that are published are easily tracked.

Inside each stage there's one or more jobs that are executed. The necessary dependencies
are declared in each job, so besides the stage order, the jobs are ensured to have the required
order to execute without errors. Then, some jobs have conditions to run, so it is possible to
control whenever the jobs are not relevant to run, allowing to reduce the loading and costs
of the runners, and improving the overall performance of the pipeline. One example of how
the pipeline history is shown in Gitlab can be seen in the �gure 6.2.

Figure 6.2: Pipeline History

After the pipeline, it was necessary to activate and con�gure the rest of the tools that
Gitlab provides. One of them was the Gitlab Pages. A problem with Gitlab Pages is that
it is designed to have of the pages have a pre�x of the group in the domain. This requires,
in order to use HTTPS, to use wildcards certi�cates, that can be more expensive than a
regular �xed domain one. To activate, in the gitlab.rb �le, it is necessary to activate the
feature, con�gure the ports and location of the certi�cates, and restart the Gitlab instance.

50 Chapter 6. Implementation

Another feature that was required to activate was the Container Registry. To be able to use
the Gitlab Container Registry as the repository for the images when pulling and pushing, it
is necessary to expose the service at a speci�c port. To use it in the pipelines, it is possible
to leave it dynamically, since the Gitlab expose internal variables that contain the URL,
username and password, that can be then used in the scripts on the pipeline to make push
or pull of images from the Container Registry.

Another feature was the Gitlab Kubernetes Agent. This agent is responsible to be a node on
one Kubernetes cluster, and from that it can push con�guration to the controller to change
the number of replicas, or even the overall state of the cluster with modi�ed images, all
from the pipeline itself. After activating and con�guring the proper ports, the repositories
can then commit a �le that contains the credentials and con�guration needed for the agent
to connect to the cluster and check the state of it.

One of the features that was changed was the prometheus module that is included in the
instance. Since the group deployed a dedicated Prometheus and Grafana server, it was
decided to pull also the metrics from the Gitlab into that instance. So, the prometheus were
disabled, and only the metrics URL was exposed to pull the information from the Gitlab into
the separated server that have the Prometheus instance.

6.2 Optimizations on the Pipeline

In this section will be described several steps that were performed, in order to adjust the
pipeline to reduce the processing time of it, time of artefacts persistency, version manage-
ment of the images and binaries, etc., e�ectively making the pipeline faster to run, and so
less annoying to wait for the results of the CI/CD to gain feedback about the commit made.

First, the pipeline can be con�gured to have a speci�c order using the keyword stages, that,
instead of putting the jobs and their scripts, it is possible to explicit give a macro order of
the pipeline. Then, each job can be associated with a speci�c stage. This ensures an overall
dependency and sequential validations of the jobs.

1 s t a g e s :
2 - p r e b u i l d
3 - b u i l d
4 - image
5 - t e s t
6 - a n a l y s i s
7 - pages_prep
8 - pages
9 - v a l i d a t e
10 - dep l oy
11

12 image_frontend :
13 t ag s : [s h e l l]
14 s t age : image
15 s c r i p t :
16 - cd Frontend / erp
17 - docke r b u i l d = t $CI_REGISTRY_IMAGE/ f r o n t e nd .
18 - docke r l o g i n =u $CI_REGISTRY_USER =p $CI_REGISTRY_PASSWORD

$CI_REGISTRY
19 - docke r push $CI_REGISTRY_IMAGE/ f r o n t e nd

Listing 6.1: Stages Con�guration

6.2. Optimizations on the Pipeline 51

One of the changes made was using the keyword needs, which makes the dependencies
between jobs explicit. This helps in two situations: one is that the gitlab, when checking
for the next jobs that can run, can pick jobs from stages ahead if the others cannot cause
the pipeline to abort. The other is that the jobs can e�ectively con�gure more options
when describing the dependence with another job, like the requirement to have the artefacts
generated in the workplace when executing the job. This can also be done similarly with the
keyword dependencies.

1 bu i ld_backend :
2 t ag s : [d o c k e r]
3 s t age : b u i l d
4 image : mcr . m i c r o s o f t . com/ do t n e t / sdk : 6 . 0
5 s c r i p t :
6 - dotne t r e s t o r e Backend/ P i l o t o . s l n
7 - dotne t b u i l d == c o n f i g u r a t i o n Re l e a s e Backend/ P i l o t o . s l n
8 needs :
9 - j ob : b u i l d_bac k end_cu s t om_ l i n t e r
10 a r t i f a c t s : t r u e
11 a r t i f a c t s :
12 paths :
13 - '**/ bin / Release / net6 .0/*. dll '

14 - '**/ obj / project . assets . json '

15 e xp i r e_ i n : 1 week

Listing 6.2: Needs usage in Gitlab con�guration

Another optimization is make it explicit how much time the artefacts generated from the
job should be persisted. This helps the developers to check if the jobs generated the right
�les, but after a while the Gitlab itself automatically release this �les associated with the
repository, making the size of the repo not grown exponentially.

1 bu i ld_backend :
2 . . .
3 a r t i f a c t s :
4 paths :
5 - '**/ bin / Release / net6 .0/*. dll '

6 - '**/ obj / project . assets . json '

7 e xp i r e_ i n : 1 week

Listing 6.3: Expires usage in Gitlab con�guration

One of the other optimization is the use of the keyword rules where it is possible to con�gure
when certain jobs should be run. This can be when detecting �le changes in a speci�c folder,
what branch was the commit made, use of variables state within the pipeline

1 r e l e a s e_ j ob :
2 s t age : r e l e a s e
3 image : r e g i s t r y . g i t l a b . com/ g i t l a b =o rg / r e l e a s e = c l i : l a t e s t
4 r u l e s :
5 - i f : $CI_COMMIT_TAG # Run this job when a tag is

created

6 s c r i p t :
7 - echo " running release_job "

8 - apk add c u r l
9 - apk add j q
10 - e xpo r t BACKEND_CONTAINER_REGISTRY_ID= ` c u r l == i n s e c u r e =s ==

header " PRIVATE - TOKEN$ { RELEASE_TOKEN }" [REDACTED] | j q '.[] | select

(. path == " root / erp / backend ") | .id ' `

52 Chapter 6. Implementation

11 - e xpo r t FRONTEND_CONTAINER_REGISTRY_ID= ` c u r l == i n s e c u r e =s ==

header " PRIVATE - TOKEN$ { RELEASE_TOKEN }" [REDACTED] | j q '.[] | select

(. path == " root / erp / frontend ") | .id ' `
12 - r e l e a s e = c l i == i n s e c u r e =h t t p s c r e a t e ==name " Release

$CI_COMMIT_TAG " == d e s c r i p t i o n " $CI_COMMIT_TAG " ==tag=name "

$CI_COMMIT_TAG " ==a s s e t s = l i n k " {\" name \":\" frontend_binary \" ,\" url

\":\" ${ PACKAGE_REGISTRY_URL }/ frontend . tar \" , \" link_type \":\" package

\"} " ==a s s e t s = l i n k " {\" name \":\" backend_binary \" ,\" url \":\" ${

PACKAGE_REGISTRY_URL }/ backend . tar \" , \" link_type \":\" package \"} " ==

a s s e t s = l i n k " {\" name \":\" backend_image \" ,\" url \":\"[REDACTED]\" , \"

link_type \":\" image \"} " ==a s s e t s = l i n k " {\" name \":\" frontend_image

\" ,\" url \":\"[REDACTED]\" , \" link_type \":\" image \"} "

Listing 6.4: Usage of rules keyword to determine if the pipeline should create

a release entry in the repository

Similar optimization can be done with the keyword when, that allows to con�gure if a job
should only run if everything before run with success, if others have failed, etc. This allows to
handle speci�c conditions inside the pipeline, like for example publishing always the coverage
reports even if the pipeline have failed, etc.

1 dep loy_to_kubernetes :
2 s t age : d e p l o y
3 t ag s : [d o c k e r]
4 image : a l p i n e : l a t e s t
5 s c r i p t :
6 - apk add ==no=cache c u r l
7 - c u r l =LO " https :// dl . k8s .io / release /$(curl -L -s https :// dl .

k8s . io/ release / stable . txt)/ bin / linux / amd64 / kubectl "

8 - chmod +x kub e c t l
9 - mv kub e c t l / u s r / l o c a l / b i n /
10 - k ub e c t l ==kubecon f i g . g i t l a b / agent s / kube rne t e s / c o n f i g . yaml

app l y = f db . yaml
11 env i ronment :
12 name: k i nd = c l u s t e r
13 # when : manual

Listing 6.5: When usage in Gitlab con�guration

Figure 6.3: Release Screen

6.3. Linters 53

6.3 Linters

One of the concerns in today's markets is the incorporation of the security aspects related
to software in the software development lifecycle, as the search for actively validate if the
software produced is free of vulnerabilities is relevant to the most companies, since most of
the tools are now connected to the internet and can have integrations with others software
products, that can result in a larger surface to be attacked.

One tool used in this project was linters, since these tools integrate nicely in an IDE, it can
be used to give extended warnings or errors about speci�c code styles and procedures that
should be avoided, leading to a consistent code base in terms of styles, and also free of
deprecated or not recommended approaches to implement some features. This can also be
enforced when the project is build in the pipeline, ensuring that the code that is committed
can only be considered to be merged if the changes respect the rules of that linters.

In terms of "Security By Design", it was also explored and implemented a way to create
a custom linter that allows to enforce even more rules. For example, one of the strategies
was to implement a linter that have a rule that doesn't allow speci�c imports to be made
between layers of the project. This mean that the code is validated that the reference of
others classes respect the layers that were designed in terms of project.

This was made for the backend part, where a Rosyln linter was implemented using the tem-
plate provided in Visual Studio by Microsoft, and then generating a local nuget package[81].
The package was then imported in the backend project to enforce that the code respect the
multiple layers, and how they can communicate between them.

First, it was creating a new project from a template provided by Visual Studio, shown in
the �gure 6.4. Then, the code made was to be registered every time the IDE or compiler
detects the user of a using statement. In that case, it will run a speci�c method that will
then enforce the rules to check what was the import. If the import does not respect what
is expected, then it is issue a warning.

Figure 6.4: Linter Project

After that, it was generated the VSIX package, that can be installed in any Visual Studio
installation, or a package, that can be imported as dependency for the project, as it can
be seen in the �gure 6.5. The developers can import locally, or as a nuget package from
the Gitlab Package Registry (making it private to use), and then starting getting the same
warnings and errors in the code as the pipeline. With this, it is possible to create new custom
rules that can convenient enforce the necessary constraints to maintain the code.

For the frontend component, since it was used React, the group decided to use some linter
already established that could enforce some best practices that help reduce the overall risk
of bugs. After some research, it was decided to go with the Airbnb Javascript linter, that
uses eslint to customize their rules. This rules can be quite aggressive, but it helps enforce
robustness of the code by helping the developer produce better code.

54 Chapter 6. Implementation

Figure 6.5: Linter Import

The con�guration was very simple, since it is available as a npm package, as it can be seen
in the 6.6 �gure. After installing the package, the developer just requires the IDE that is
using to have EsLint integration to start getting warnings visible in the code, with possibility
to �x it. In this case, since it was used Visual Studio Code, the EsLint integration is one
plugin install.

Figure 6.6: Eslinter NPM packages

As with the backend, the publishing steps enforce that no warnings are produced, so the
developers, even if they are ignoring the linter while developing, before pushing they must
correct the code so that the pipeline can execute correctly and their code can be merged.

6.4 Logging

Applications should not run without some sort of log or monitoring tool, since this leads
to unpredictable and unknown errors, and even not knowing when a system starts to fail,
since the only feedback that the developers have is the customers complaining about the
malfunction of the system. To prevent that, and have the possibility to monitor what is
happening in the system, it was considered the use of telemetry.

Observability is the concept of understanding what is happening in the system, without
knowing how the system is implemented. So, this means that it should be possible to analyse
the work, performance and other metrics of the application by considering the application
as a black box system. In order to reach this level, the application must transmit to outside
logs, metrics and traces. The instrumentation is considered satisfactory when the developer

6.4. Logging 55

doesn't need to have more information in order to debug an issue. This allows the developers
to more easily respond to possible errors, even if they are in production environments, because
they will have the right information that allows to them to track where the errors occurred,
or where the system is getting malfunction. By investing the time at development phase to
instrument the application, the costs to track the errors after are greatly reduced [79].

For this project it was considered the OpenTelemetry, since it is the open source, and is
the library that is trying to standardize the format across several technologies and monitor
tools. OpenTelemetry is specially useful when dealing with distributed application, since
the trace context is propagated between the di�erent services where the request passes by.
This allows for a more understanding when searching for the errors' location across multiple
services in the network. Besides the instrumentation, is necessary to export this data to
some database or monitoring tool. The OpenTelemetry separate this component from the
rest, allowing for better adaptability, since multiple exporters can be de�ned and swapped
easily, without a�ecting the rest of the instrumentation process. Some examples of exporters
that OpenTelemetry provides are Prometheus, Jaeger, etc.

In the case of the backend, a simple import of the package is required, and then a simple
con�guration in the startup of the project already allows keeping track of the requests that
are made, and the time that the system take to process the request or even consult the
database, as it can be seen in the �gure 6.7. The developer can add manually more metrics
and logs that he considered being relevant to be made when the application is working.

Figure 6.7: Include of OpenTelemetry in the Backend Project (.NET 6)

Then, the logs are exported to a Prometheus instance, which will then collect all the logs,
traces and metrics and persist it, to then being able to being used in a monitor tool.

For the frontend, a similar approach was made, where the package was imported into the
project, and then the necessary registration was made into the code. In this case, since
it is a React with NextJS, both the server and client components are associated to be
instrumentation.

For the database, in this case that the project is using MySQL, the Prometheus can also
read directly from the MySQL the necessary database without further tools. So, it only
requires the necessary con�guration to access the database, with a user to connect, and
Prometheus can consult the data to retrieve the metrics that can be then used to develop
dashboards.

56 Chapter 6. Implementation

6.5 Sonarqube

It was decided to use Sonarqube for this part, since it was already knew by the group, and
this tool have many features now that ever, like a sonarlint that can be integrated in IDEs
like Visual Studio Code. Also, the code quality is a paid feature on Gitlab, that although
it generates the JSON and HTML reports in the free version, to see in the Pipeline result
is only possible if the user have a premium licence, or makes manual publish report to the
Pages section of the repository [82].

Sonarqube is an open-source platform designed for continuous inspection of code quality and
code analysis, with tools that identi�es code quality problems, vulnerabilities in the code,
code smells, and duplication code. It o�ers a static code analysis, with option to de�ne
custom rules, that can be integrated nicely in CI/CD pipelines, with dashboard to get the
overall result of the quality of the project. It has the community and enterprise editions, and
possibility to con�gure plugins to extend functionalities. This allows the enforcement not
only of code styles, but also prevent even before the commit of changes of bad code or code
with bad practices, since this will give warnings to the developer to rethink and reimplement
a better solution while working on a code base.

For this project, it was used the Open-Source and Community Edition of the Sonarqube,
since it requires only a server, with no extra costs in terms of licensing, and it was possible
to make the adjustments needed. Also, since the author have already experienced with
installing and con�guring Sonarqube, it was made that decision. It was used a new server,
installed the required dependencies, and con�gured the database.

After con�guring the Sonarqube in the cloud as a self-hosted instance, the next step was
to create the users that will have access to the instance. Next, the projects have being
con�gured, in order to create the project keys for the right language that was going to
be analysed, since the project is constituted in two languages, C# and JavaScript. It was
exported the necessary con�guration so that the developers can have integrated in their IDEs
the necessary information to create better code, must like the Linters mentioned previously,
and also to be con�gured in the pipeline jobs that will trigger the SonarQube scanner to
check and send the analysis data to the instance, where the developer can then next for new
bugs and code smells.

The variables necessary to run the tool (like the project key, the URL of the instance, etc.)
is all in Gitlab variables, so that the information is not hardcoded in the repository. If some
checks is not between the satisfying values, then it will also cause the pipeline to abort and
not advance, and obligate the developer to revise the code in order to maintain the necessary
quality levels. The projects can be then be seen as the �gure 6.8 shows.

Figure 6.8: Sonarqube instance

6.6. Docker 57

6.6 Docker

Docker is a containerization tool that allows the developers to package and distribute ap-
plications together with their dependencies and system tools as an isolated and consistent
environment. The images generated are lightweight, standalone units that contain every-
thing needed to run the application. Docker makes it simple to build, deploy and manage
running instances across di�erent platforms and operating systems, by ensuring that they
run consistently regardless of the underlying infrastructure.

In this project, it was decided to embrace the Docker tool, since its agnostic nature allow
bettering understand all the con�guration and libraries needed to run the application, and also
have a consistent way to replicate a fully working environment to run the application, giving
better facilities over installing standalone tools that require special attention to deal with
dependencies and checks. Also, it helps reduce multiple environments di�erence, reducing
the number of bugs occurring.

One of the strategies of deployment of the target application being developed is the use of
Docker, since is environment agnostic, allowing for better accuracy, con�dence and reliability
when deploying the changes made into the product. For that, a Docker�le was made for
each component present in the application, where is speci�ed the steps needed to build the
image and then run it.

Although the docker could only be used after the build was made, by also making the build
inside Docker, there's no need to worry about having the right tools in the server that is
building in order to create a new version of the runtime. Also, since the Docker supports
multi-stage builds of image, it is possible to use one image as a base to build, and then
another with less resources and dependencies to run the �nal build. With this, anyone can
rapidly create a new instance of the application.

It was created two Docker�les, one for the backend, and other for the frontend, each one
with their scripts. After that, since the application to run requires at least three components
(database, backend and frontend), a Docker Compose was created that ensure the images
are build and con�gures how these containers can communicate between them. With this,
the pulling of the latest changes, and the startup and shutdown of all containers is very
simpli�ed, reducing the risk of con�guration drift, human error, etc [83].

1 v e r s i o n : '3 '

2 s e r v i c e s :
3 erp_backend :
4 image : REDACTED/ backend
5 po r t s :
6 - " 7141:80 "

7 depends_on:
8 db:
9 c o n d i t i o n : s e r v i c e_ h e a l t h y
10 env i ronment :
11 - Connec t i onSt r i ng s__Defau l tConnec t i on=Se r v e r=db ; Port =3306;

Database=${MYSQL_ROOT_DATABASE} ; User= r oo t ; Password=${
MYSQL_ROOT_PASSWORD}

12

13 db:
14 image : mysq l : l a t e s t
15 env i ronment :
16 MYSQL_ROOT_PASSWORD: ${MYSQL_ROOT_PASSWORD}
17 hea l t h che ck :

58 Chapter 6. Implementation

18 t e s t : [" CMD " , " mysqladmin " , " ping " , "-h" , " localhost "]
19 t imeout : 20 s
20 r e t r i e s : 10
21

22 e rp_f rontend :
23 image : REDACTED/ f r o n t e n d
24 po r t s :
25 - " 3000:3000 "

26

27 c a d v i s o r :
28 image : g c r . i o / c a d v i s o r / c a d v i s o r :v0 . 4 7 . 0
29 container_name : c a d v i s o r
30 r e s t a r t : u n l e s s = s t o pp ed
31 p r i v i l e g e d : t r u e
32 po r t s :
33 - " 8080:8080 "

34 vo lumes :
35 - /:/ r o o t f s : r o
36 - / va r / run :/ v a r / run : r o
37 - / s y s :/ s y s : r o
38 - / va r / l i b / docke r /:/ v a r / l i b / do c k e r : r o
39 - /dev/ d i s k /:/ dev / d i s k : r o

Listing 6.6: Docker Compose

Gitlab allows to have a private Docker image registry, that can be used to push new versions
when a pipeline is running for a commit, or even upon a release of a new version, reducing
the exposed information needed to a minimum, having great advantage in an enterprise
environment, as it can be shown in the 6.9 �gure [84]. Also, by being all in the same tool, is
faster to track in which commit was originated the image with a speci�c version or changes.

Figure 6.9: Gitlab Container Registry

6.7 Kubernetes

In the last section it was described how Docker and Docker Compose can help start in
a server the containers necessary to run the application, making it nice to start up the
application without too much of a problem.

6.7. Kubernetes 59

However, one of the industrial needs nowadays is to be able to scale up the application as
needed, since it can become used by many users, and also the possibility to have a second
instance in case the �rsts one starts to failing.

Kubernetes clusters consist of multiple nodes, including a control plane and worker nodes.
It o�ers high availability, scalability, resource management, and self-healing capabilities for
containerized applications. Kubernetes is an open-source platform that automates the de-
ployment and management of containerized applications. It achieves load balancing through
di�erent service types, such as ClusterIP, NodePort, and LoadBalancer.

Another case that was considered was the use of Kubernetes to deploy the application, since
it allows for better escalation in case of instances of the application where the number of
users, and the number of actions made are signi�cantly larger that the use of more than one
machine can help relieve some bottlenecks when dealing with great spike of workload.

In the project it was created the necessary con�gurations �les to create the pods of the
backend, frontend and database. For that, is only require to describe what is the image
to use, the name of the pod, number of replicas, environment variables, port mapping and
the type of mapping. This was done to each of the component of the application, in order
to separate the various con�gurations. Next, in order for the frontend to know where is
located the backend in runtime (since it can have multiple instances), it was created a
fourth con�guration, so that it was created a special URL to redirect to the right pod. This
is possible because the Kubernetes create a internal DNS entries, must like the Docker, but
can be exposed to outside using an Ingress type of pod.

In this case, every time a URL with the host of the cluster, but with a path that starts
with a speci�ed string, then the Kubernetes will gracefully redirect the request to the right
instance.

1 a p iV e r s i o n : apps / v1
2 k i nd : Dep loyment
3 metadata :
4 name: e rp =backend =dep l o ymen t
5 spec :
6 r e p l i c a s : 1
7 s e l e c t o r :
8 matchLabe l s :
9 app: e rp =backend
10 t emp la te :
11 metadata :
12 l a b e l s :
13 app: e rp =backend
14 spec :
15 c o n t a i n e r s :
16 - name: e rp =backend
17 image : d o c k e r . i o / erp =backend : l a t e s t
18 im ag ePu l l P o l i c y : Neve r
19 env :
20 - name: C o n n e c t i o nS t r i n g s__De f a u l tCon n e c t i o n
21 v a l u e : " Server =db ; Port =3306; Database = piloto ; User =;

Password ="

22 ---
23 a p iV e r s i o n : v1
24 k i nd : S e r v i c e
25 metadata :
26 name: e rp =backend = s e r v i c e
27 spec :

60 Chapter 6. Implementation

28 type : NodePort
29 s e l e c t o r :
30 app: e rp =backend
31 po r t s :
32 - name: backend = p o r t
33 po r t : 7141
34 t a r g e tPo r t : 80

Listing 6.7: Kubernetes Con�guration for the Backend

Figure 6.10: Gitlab Environments Management

6.8 Terraform

Terraform is an open-source infrastructure as code (IaC) tool that allows you to de�ne, pro-
vision, and manage cloud and on-premises infrastructure using code. It enables automation,
version control, and consistency in infrastructure deployment and management.

Although all the tools used before allows for automation of the process to start up the
service, none of them allows to, consistently, create the infrastructure (that can be servers,
Kubernetes, databases, �le servers, etc.) necessary to run all the software that the ERP
requires. Since normally making this process manually is tedious, and requires multiple steps,
the use of Terraform was considered, since it allows automatizing even the creation of the
servers, �rewalls, etc.

Since the group was using Hetzner provider for the rent of servers, it was decided to ex-
periment the creation of a terraform con�g �le that can take use of the hetzner terraform
provider to automate the creation of a server with all the necessary software to run the
ERP, that can go from running natively in the server and with the runtime of the languages
installed, with Docker only, or even spawn a Kubernetes cluster. All of that automated by
the CI/CD pipeline, and repositories with terraform templates.

Then, every time is necessary to recreate the infrastructure of a client in the cloud, or even
automatize the upgrade of the ERP version, it all can be made using only the repository,
since the CI/CD plus the terraform script and the terraform state persisted in the backend
of Gitlab (that have a special integration with Terraform) will take into account which part
needs to be created again, as it can be seen in the �gure 6.12.

This allows to reduce drastically the time it takes to create new servers, or make migrations
between instances, as the process is all automated using a IaC tool.

6.9. Atlantis 61

Figure 6.11: Terraform con�guration for Hetzner Cloud

6.9 Atlantis

The use of infrastructure as Code helps to reduce work and have a single location of truth
across many environments, since the operation teams are required to know exactly what
are the steps necessary to create all the infrastructure needed. But, this still must require
some previous validations, as a push of a bad con�guration can result in a failure of the
infrastructure. While this can manage manually, the process of test and validate becomes
tedious.

For that, exist tool in the market that take advantages of the merge requests to detect
if the IaC con�guration su�er changed, and if that's the case then they will validate the
con�g, plan the resources that will su�er the change, and associate the output to the marge
request, giving the approvers information to be able to approve without need to manually
check the changes.

One of those tools is Atlantis, that works by con�guring webhooks associate with the repos-
itory, in this case Gitlab webhook when someone makes a merge request. Then, each time
someone creates a merge request, the tool will automatically try to validate and plan the
new terraform con�guration, in order to leave associate with the merge request that the
con�guration is valid, and it will make some speci�c changes to the environment. Then,
the users with authorization to approve the merge request can check this previous execution
from Atlantis, and from that they can approve the merge, which lead the environment to
have a new state, or reject it. This state change can then be made by Atlantis itself, or by
the normal execution of the pipeline.

62 Chapter 6. Implementation

Figure 6.12: Gitlab with Terraform Integration to store state

6.10 SAST

One of the aspects of this project is the e�ort to maintain a high level of security in the
application being developed, and how you can automatically guarantee that the system is
secure. Static Code Analysers can already make some of this validations in terms of best
practices, but security can require speci�c tools that are looking for vulnerabilities in the
code. Well, it is possible to resort to some tools that can analyse the code and detect most
of the vulnerabilities and bad practices being used by the developers, enforcing that they
don't publish bad code into the clients.

Static Application Security Testing (SAST) is the type of tools that makes a static analyses
of the code to detect such �aws. They can scan source code, bytecode or binaries, without
running the code, meaning the e�ort to run is reduced and can be easily integrated into
a CI/CD pipeline. This allows for early feedback for the developer, and it is possible to
con�gure custom rules, depending on the type and target of the application. SAST have
speci�c rulesets, deeper analysis and language expertise that is capable of detecting more
types of vulnerabilities that a traditional static code analyser.

In this project, although Sonarqube already makes a great security analysis of the code,
Gitlab o�ers templates to run SAST tools within the CI/CD. This is possible because Gitlab
company maintain Docker images that incorporate several tools that, depending on the
programming languages and projects in the repository Gitlab �nd, will execute the right tool
to run the tests [85]. Tools like semgrep, SpotBugs, MobSF, and others, are used in the
project.

1 i n c l u d e :
2 - t emp la te : Jobs /SAST . g i t l a b = c i . yml
3 - t emp la te : S e c u r i t y / Con t a i n e r =Scann i n g . g i t l a b = c i . yml
4 - t emp la te : S e c u r i t y / Sec r e t =De t e c t i o n . g i t l a b = c i . yml

The con�guration is simply including a template and a few variables of con�guration. Gitlab
then already knows which images and tools needs to use, detects the type of projects and

6.11. DAST 63

solutions that exist in the repository, and automatically runs and generates reports about
the �ndings. This is great, since the pain to use this tools becomes extremely reduced, since
this doesn't require external tools, licences and servers. One example of the execution can
be seen in the �gure 6.13.

Figure 6.13: Execution of the SAST job

6.11 DAST

Some vulnerabilities require the context of a real code execution to detect variables values
and code �ow that can lead to such �aws. DAST tools emerged to resolve this problem,
by scanning a running version of the application, and try to explore what inputs can cause
a malfunction and unexpected behaviour.

Gitlab also o�ers tools already included with the product for the execution of DAST tools.
Again, this demonstrates the simpli�cation that Gitlab o�ers in terms of DevSecOps [86].
However, some of it features are behind a paywall (for example, the execution of the DAST
API Analyser tool lead to licensing error). So, it was decided to explore another open source
alternatives, that could be integrated in the pipeline. One of the tools is the OWASP ZAP.

OWASP ZAP, or the OWASP Zed Attack Proxy, is an open-source security testing tool that
allows the developers to test the web applications that are being developed to �nd and �x
security vulnerabilities. This tool searches for the most common �aws that are �nding, by
automate the tests that normally the hackers do.

This is possible by intercepting and manipulating the HTTP requests, crawling the HTML
pages to �nd for possible inputs and forms that can be subject to attack the server with
data that can lead to wrong function or open accesses to information not normally available.

In this case, the attack was made to the API for the backend, when it was used the option
available in the OWASP ZAP to import an OpenAPI de�nition, in which .NET 6, with the
integration with Swagger, can be easily generated, and after the import, it runs various
attacks against the API. For this project in speci�c, since it is required to have a Bearer

64 Chapter 6. Implementation

Token in most of the endpoints, and since the OWASP ZAP can be limited in that regard,
it was written an Authentication script, together with an HTTP Sender script, in order to
authenticate �rst in the API using the speci�c route available, and then always pass the
Bearer Token between all the requests to the API, so that the API can be properly tested.

1 owaspzap :
2 t ag s : [d o c k e r]
3 s t age : d a s t
4 image :
5 name: g h c r . i o / z a p r o x y / z a p r o x y : s t a b l e
6 s c r i p t :
7 - zap=ap i =scan . py = t ${API_TEST_URL} = f openap i
8

9 dast_u i :
10 t ag s : [d o c k e r]
11 s t age : d a s t
12 image :
13 name: " $SECURE_ANALYZERS_PREFIX / dast :

$DAST_VERSION$DAST_IMAGE_SUFFIX "

14 v a r i a b l e s :
15 GIT_STRATEGY: none
16 DAST_BROWSER_SCAN: " true "

17 DAST_ADVERTISE_SCAN: " true "

18 DAST_USERNAME_FIELD: " id: username "

19 DAST_PASSWORD_FIELD: " id: password "

20 DAST_DISABLED_FOR_DEFAULT_BRANCH: " false "

21 DAST_SUBMIT_FIELD: c s s : b u t t on [t y p e=' submit ']
22 a l l o w_ f a i l u r e : t r u e
23 s c r i p t :
24 - e xpo r t DAST_WEBSITE=${DAST_WEBSITE:=$ (c a t e n v i r o nmen t_u r l . t x t

) }
25 - i f [=z " $DAST_WEBSITE$DAST_API_SPECIFICATION "] ; then echo "

Either DAST_WEBSITE or DAST_API_SPECIFICATION must be set . See https

:// docs . gitlab . com /ee / user / application_security / dast /# configuration

for more details ." && e x i t 1 ; f i
26 - / ana l y z e
27 a r t i f a c t s :
28 r e p o r t s :
29 da s t : g l =das t = r e p o r t . j s o n

Listing 6.8: DAST Con�guration in the Gitlab pipeline

Since it will be run in the CI/CD pipeline, it was used a docker image of the OWASP zap,
and generated the con�g with the automation framework available inside the OWASP ZAP
GUI [87]. After generated the con�gs, the con�g and script �les were then committed inside
the repository. The URL is dynamic, since it will be run against another docker image, and
so the API can be accessed using the container name, and the credentials are obfuscated
using the Gitlab variables, that pass to the OWASP zap using environment variables for the
image.

6.12 Prometheus and Grafana

In another section, it was described how the application can generate logs, metrics and
traces and export this data to external data sources. This is useful, since the need to gather
data such as amount of errors, time to process requests, etc. become easily manageable,
leading to a better support experience. But, this alone does not lead to the value wanted for

6.13. ERP 65

the observability stack. And, although all the necessary steps to prevent bugs and errors was
considered in this project, it is still a relevant step to incorporate the Operate and Monitor
phase of the cycle. And so, all the application, and even the deployment in case of Docker
and Kubernetes, export speci�c metrics that are being imported.

In the case of this project, this metrics is being collected to a Prometheus instance. Prometheus
is an open-source monitoring and alerting system used to collect and store metrics from var-
ious sources like applications and infrastructure. It provides a querying language and alerting
capabilities to help monitor the performance and health of systems, particularly in modern,
dynamic, and cloud-native environments.

It was decided to install and mount a Prometheus instance on the cloud, with the right
access administration and a database to store the data saved, in this case a Postgres one.
The prometheus have a web portal that can display the metrics collected, as it is shown in
the �gure 6.14.

Figure 6.14: Prometheus portal

In order to collect the metrics from the application and deployment, it was con�gured the
Prometheus to use �le_sd dynamic con�guration of sources. This allows the �exibility to
register new sources, without the need to restart the Prometheus instance [88]. In this
case, every time a new deployment is made, a new entry is added to a server that is running
prometheus, and immediately become available to start tracking and store all the relevant
metrics collected.

This is then used in Grafana Dashboards to have an aggregation of the most critical indi-
cators, in order to keep track if the system is working and what is the level of workload,
comparing to the available resources available. This allows for proactively create alerts when
some metrics start to get values below the minimum considered as good. Not only is the
target application being tracked, but also Gitlab and other components, which mean all the
infrastructure is being monitored and controlled from Grafana, which leads to better control.
One example of a dashboard can be seen in the �gure 6.15.

6.13 ERP

In terms of the application that is our case study, initially it was proposed to be made by
three students, but since the other members decided to not �nish the thesis, this application

66 Chapter 6. Implementation

Figure 6.15: Grafana dashboard

was mostly made only by the author. The system was created with three components:

� A backend REST API made in .NET 6

� A frontend website using React and NextJS

� A database, in this case was used MySQL

The system have two main windows: the "back o�ce", where the users can change and
manipulate the con�guration of the system, as it can be seen in the �gure 6.16, and the
"front o�ce", where users can log in to perform tasks like Invoice Registration, Purchases
Registration, etc. The users can insert a password or a PIN to authenticate themselves.
The system is designed with big buttons, since this is intended as a POS system.

Figure 6.16: ERP Screen Example

In terms of backend, the system was designed with the structure:

� Repository: this layer is responsible to have the code necessary to persist and retrieve
the data from the application.

� Model: this layer is responsible to have the code necessary to represent the multiples
entities and value objects across the project

� Controller: this layer is responsible to have the methods that can be called by HTTP
requests, with the respective inputs necessary.

� DTO: this layer is responsible to translate complex data received in requests, or sent
as responses into objects. This can be objects with simpler attributes that the ones
found in the model layer.

6.13. ERP 67

� Service: this layer is responsible to have the business logic, in terms of interactions
with the system.

� Utils: this layer is responsible to have unique code related to functionalities like JSON
parse, that is not used in one simple layer.

In terms of Frontend, the system was designed where each TSX �le represents a pages or
component that can be reused for multiple pages. The NextJS automatically map the folder
structure to the URL where each page can be accessed, so no con�guration is needed to
map the URLs.

69

Chapter 7

Experimentation and Evaluation

In this chapter it is tested and measured the implementation made and what results were
obtained, in order to identify if the solution that was created satisfy the requirements that
were initially required.

For this, it is de�ned a set of hypotheses that addresses the objectives of this thesis, describ-
ing what is expected to �nd. Then, it will be demonstrated what measures were collected
in order to validate if the hypotheses are proved to be correct or not.

Finally, a conclusion of the results obtained will be derived, with the right justi�cation for it.

7.1 Problem Description

Development have drastically changed over the course of the years. Software usage is
becoming more generalized among companies, and the number of features, integrations and
architectures, together with the languages and tools that are provided to the developers
have helped created more complex applications. But, complexity brings more risk for the
maintenance and security aspects of a system. Besides, as some software have being in the
development for several years, and teams are constantly rotating, the codebases can easily
become out of control, and increasing the size of it only helps to destroy what is working
�ne [89].

Some solutions proposed are to increase the number of user tests that are made to the
applications, while others is implementing methodologies like code review. However, this is
all done manually, and so it causes an increase in the costs of paying developers to maintain
software. Besides, error human is always involved, and as the application is more complex,
it becomes impossible to test all the scenarios. Automated tools like test frameworks and
deployment tools are available, and so it can generate consistent ways to maintain the
software. But this is only good to use if the developer can use it as early in the development
as possible, since it is when they have the time to �x all the problems before releasing the
software [90].

So, how the developers can have con�dence that their changes will only impact what is
expected, without compromising the rest of the application? How can the task of ensuring
the hundred or thousands of scenarios existing in the system being reproduced every time a
change is made in order to validate the changes? How can the developer gain early feedback
if something goes wrong when changing parts of the code?

70 Chapter 7. Experimentation and Evaluation

7.2 Objectives

The purpose of this dissertation was to implement the DevSecOps methodology in a devel-
opment cycle process, in order to validate what are the necessary steps that the team must
pass in order to implement and have all the advantages from it. So, the principal objective
is to explore a development environment and implementation of a lifecycle that includes a
DevSecOps principle.

In order to achieve this goal, it is necessary to collect and compare the tools available that
can provide the creation of CI/CD pipelines that can be used to automate the process of
building, testing and deployment. Then, deploy the most appropriate tool to design and
implement a development pipeline capable of running the necessary to steps validate the
changes that a developer make when pushing new changes into the repository. After that,
it is necessary, given the context of the application being developed, adjust the pipeline to
meet the needs of the developers team.

Finally, the evaluation of the pipeline and their performance and e�ectiveness is necessary
to conclude if the solution is suitable for the problem, and if it solves the problem initially
proposed.

7.3 Hypotheses

Based on the objectives, the hypotheses were formulated according to test and conclude if
the results veri�es them. The following hypotheses were established:

� The use of a CI/CD tool covers all the process necessary to compile, test and deploy
the application e�ciently.

� The use of a CI/CD tool does not cover all the process necessary to compile, test and
deploy the application e�ciently.

In order to test these hypotheses, it will be collected metrics from the CI/CD tool that can
provide su�cient feedback data that can be then analysed in order to derive conclusions
that can then validate the hypotheses.

7.4 Identi�cation of indicators and sources of information

In this section is described the indicators to evaluate the work, and the sources of information
to be utilized within the context of this work.

7.4.1 Indicators

In order to reach the proposed objectives, it is necessary to de�ne what is the data that will
be collected in order to evaluate the project developed.

For this dissertation, in the context of DevSecOps, it was decided the following indicators,
that can measure the e�ciency of the process in the development cycle:

� Time to run the pipeline;

� Number of bugs detected in the repository;

� Number of vulnerabilities found in the application that was developed;

7.5. Description of the evaluation methodology 71

It is expected that, with these indicators, the data re�ect the objectives proposed, and that
it can represent su�cient data to derive conclusions about the implementation made.

7.4.2 Sources of Information

In order to retrieve the indicators, the information was extracted from the Gitlab instance
that was used during the development of the application, particularly in the pipeline history,
and the Sonarqube instance, that have the number of bugs detected. The Gitlab o�ers
Dashboards and metrics that can be used by an admin to consult the data about anything
that is related to a speci�c repository, and so, since it is self-hosted, the data can be
extracted. As of the Sonarqube, the graphs that the tool provides, together with the number
of bugs that can be tracked every time a commit is made, allows to produce the necessary
representation of the number of bugs.

Also, the implementation itself was veri�ed and the strengths and failures from the solution
where revised to conclude if the solution meet the hypotheses or not.

7.5 Description of the evaluation methodology

The evaluation methodology de�nes how the hypotheses de�ned above will be validated,
by justifying how the data will be used to derive conclusions that can be confronted with
the expected results. In the following subsections, it is explained how the procedure was
conducted.

7.5.1 Methodology - Indicators

During the implementation phase, it was collected the necessary data for each indicator,
and stored in a separate �le for later, when the implementation phase ends, aggregate the
information in order to draw conclusions from it.

With the information from the indicators analysed, it is possible to verify if the process was
indeed a motivator to develop a better application.

7.5.2 Methodology - Implementation

While performing the dissertation project, it was analysed if the process was better by using
DevSecOps, according to the expected. Also, the implementation give more information
and understanding about each objective that was proposed in the dissertation.

7.6 Evaluation Results

After the implementation phase was �nished, it was necessary to gather the data collected
and then analyse what objectives where ful�lled. For this, it was evaluated the implementa-
tion made, and with critical thinking, justi�ed the results obtained.

7.6.1 Results - Indicators

The time to run the pipeline is a good metric to analyse, since the pipeline should be as fast
as possible, in order for the developers to have immediate feedback, and also, by consuming

72 Chapter 7. Experimentation and Evaluation

less time, more runs can be performed, and costs can be reduced, which mean that can be
made more commits to the repository without compromising the performance.

In the �gure 7.1 is shown the overall time to run the pipeline. Is important to take note
that the pipeline was developed together with the application, and so it is possible to see
the various phases of the pipeline development.

Figure 7.1: Time to run the CI/CD

First, the pipeline only made the build of the application (frontend and backend), having
only two jobs to build each part of the application. The pipeline was simple at this time,
meaning that the reasons to fail were very few. Then, it was added the step to test the
application (both unit tests and also the tests that was included from templates in Gitlab
like secret detection). This added already a sequence of the stages, creating the necessary
order to make a complete run. Since the number of tests already added on this phase was
with some magnitude, represented a larger time to run the pipeline at this phase.

After this, the static code analysis from Sonarqube agent was added. It was necessary to
run twice, one for each part of the application, as they use di�erent programming languages
and tools, and the rules for each one is di�erent. So, the two jobs were added at the same
stage, and the report generated from this tool was published in two di�erent projects in the
Sonarqube instance.

Later on, the creation of Docker images was added, together with more tests from templates
in Gitlab. In this case, the cache of Gitlab was useful, as it provided better time overtime,
since the layers that must be run in each execution is reduced when the base image is already
downloaded, together with the dependencies, meaning the build commands was the only part
of the image creation that was necessary to run as full.

At a later stage, the pipeline was changed to include the deployment to a test environment,
where the IaC tools were con�gured to recreate the server, if necessary, and push the latest
image of the application into the server, and refresh the environment. This only run if the
build and tests pass successfully, and the execution of this stage implied that the application
should be up and running before considering the deployment a success. The Kubernetes was
considered to use in the target server, but was later on moved to a Terraform script, which
allowed to recreate all the infrastructure needed in one command.

7.6. Evaluation Results 73

Finally, the SAST and DAST tests where added, with improvements in the pipeline to
become faster, by adding more cache �ags, dependencies speci�cation between jobs, etc.
The SAST and DAST, although they are running relative fast because it was con�gured to
not exhaust all the possibilities, it can exponentially grow each time a new endpoint in the
backend or a page in the frontend is created, since a new set of tests will be necessary to
run.

Although the time to run the pipeline was increasing every time a new stage was added, the
job still runs fast enough to deliver early feedback to the developer making the commits. A
stage that was not considered in this statistics, since it only runs few times is the release
stage, where, when a commit is made with a tag that represents a new version of the
application, will be run to add to the 'Releases' screen in the Gitlab, with the binaries and
images created of the application, as well as a zip that contains the source code at that very
moment.

Another indicator that was tracked was the number of bugs that were present in the ap-
plication, since it can provide information to the developer about faulty code, before it is
released and detected during production environment. This metric was gathered using the
feedback returned from the Sonarqube analyses.

In the �gure 7.2 it is possible to verify the number of bugs during the development. One
aspect to take note is that the Sonarqube was only con�gured after some commits were
already made, and after the deployment of Sonarqube, the developer also used the SonarLint
integration to have the feedback directly into the IDE.

Figure 7.2: Number of bugs detected during the implementation phase

The initial number of bugs were not available since the addition of code analysis was only
added in the middle of the implementation. But then, after the developer started to have
information about code smells presented in the code already developed, the next changes
also �xed the existing ones, while having the Sonarlint to have immediate feedback about
what should be changed in the code while developing new features.

These two factors helped to reduce the number of bugs incrementally, since it was possible
to add new features, while taking some time to reduce the number of bugs, and adding
only few code smells and technical debt. So, the use of a static code analysis tool helped
maintain good code quality in the project, while providing the developer the justi�cation and
the necessary steps to �x the bugs.

74 Chapter 7. Experimentation and Evaluation

Finally, the number of vulnerabilities was considered as a metric to evaluate the hypotheses,
since it was added SAST and DAST tests to determine if the application have into the
account the possible security attacks that can be made. Also, since the dissertation as
a focus in the security aspect of the application, it is important to also ensure that the
application follows the best practices. In the �gure 7.3 it is possible to see the evolution of
the results obtained from both SAST and DAST tests.

Since this security tests was only added at a later phase of the project, the number of records
is reduced. However, is it possible to see that the detection was e�ective, and by gaining
the insight in the CI/CD pipeline, the developer had the information necessary to �x this
issues, that is possible to see in the evolution of the next commits.

Figure 7.3: Number of vulnerabilities detected during the implementation

phase

Although it is possible to further improve the pipeline and the application, the result is overall
positive. The factors that contributed for this result was the pipeline that automated and en-
forced this type of checks, while the Gitlab pipeline tool o�er ways to optimize the execution,
leading to a lightweight process that contributes to a possible DevSecOps work�ow.

7.6.2 Results - Implementation

During the development of the project and the use of the DevSecOps methodology and tools,
it was possible to gather and adjust the process, in order to move forward and try to meet
the objectives. Regarding this, below are identi�ed the drawbacks along their explanations:

� Pipeline CI/CD: With Gitlab to manage the repository, and also to manage the
execution of a multi-stage pipeline, it was possible to ensure that every change was
considered valid if it allows the application to build, run the tests and deploy. The
execution of an automate process that validates the application in several aspects
ensures a safer application.

� Linters: By using Linters incorporated into the IDE and build tools of the projects,
the developer is enforced to maintain a style and best practices that helps reduce
the friction between multiple people, with di�erent experience and way to program,
separates their way of thinking and starting creating large gaps of code standards that
a�ect readability.

7.6. Evaluation Results 75

� Sonarqube: The Sonarqube usage as a Static Code Analysis tool, most of the Code
Smells and bugs are detected, and so the developer have the early feedback about how
is changes a�ects the quality and maintainability of the system. Also, by integrating
directly in the IDE, the immediate feedback was possible, so the developer can solve
most of the problems without the need to commit the changes before.

� SAST and DAST: The incorporation of SAST and DAST tools, included in the Gitlab
instance, allowed to test for possible vulnerabilities in the application. These tools were
very practical, since the inclusion in the pipeline was very simple, and allowed for better
comprehension about the vulnerabilities that can exist in a Web application.

� OWASP ZAP: By using the OWASP ZAP, the customization process to test the
API was made possible, adding one type of test to execute that can leverage new
vulnerabilities from the application.

� Docker and Kubernetes: These tools let create agnostic environments that were
easily reproducible, which help avoid the miscon�guration that can happen during
development and deployment, and stays undocumented until the problems arise.

� Terraform: With the terraform tool, the process to start and adjust the con�gura-
tion of servers become simpli�ed and predictable, since it becomes all scripted and
automatic, leaving very less human error involved.

� OpenTelemetry: The use of the OpenTelemetry to, not only produce logs, but also
to generate metrics and traces of the distributed system, it helps the developer to
easily detect where the �aws are, and so the detection and �x of bugs is more rapid.

� Prometheus and Grafana: By using tools that collect and produces dashboards that
allows to see summarizes, aggregates and alerts of the various metrics that are gener-
ated from the infrastructure, the developers and operations teams can work together,
and obtain value from the analysis from the data collected.

With these tools, the DevSecOps, that covers the code, building, test, release, deployment,
observability and security, was fully enforced, leading to a better developer and support
experience for the application that was developed.

77

Chapter 8

Conclusion

In this chapter is shown what are the results from the objectives proposed in the chapter
1. It is also described what is necessary to evolve from future work, and what this project
leaded in terms of results and experience.

8.1 Results

In this section is indicated what results the implementation of the DevSecOps during the
development of the ERP instance leaded to.

8.1.1 DevOps

For the pipeline, by automatized a set of steps whenever someone pushes changes to the
repository, or a new version is created, it helps gain con�dence that the changes made to
the product maintain a level of robustness that helps the overall support to the product,
since fewer errors occur upon releasing the product.

By structuring the development process and the di�erent phases of testing and releasing
necessary to maintain good quality and fast deliveries, while deploying a pipeline that provides
to the developer early feedback about all the changes (from him and others) made, the
product become more secure. The results from the various metrics demonstrates that the
developer can focus on what is important, and by investing some time in tooling and tests,
the development cycle have great guaranties of quality and few errors. This leads to be
easier to increase the size of the application without compromising the code into a spaghetti
style where the next changes are very di�cult to predict the impact.

8.1.2 ERP

For the application, the results where that most of the rules and validation were made using
the "fail fast" approach, which mean the developer had instant feedback about common
errors and being enforced to follow a strict style of programming. Although this can initially
limit the creativity of the developer, it helps with maintenance by all the developers working
on the same style, and by avoiding common errors to happen in the project. This increases
the long run of the development, without compromising the technical problems that can
occur from the software growing in size.

78 Chapter 8. Conclusion

8.2 Goals Achieved

With this project, it was possible to analyse the latest trends about the DevOps and specif-
ically the DevSecOps trend, and do a state of the current tools and methodologies that
are available in the market. With that info, it was possible to apply in a practical context,
and determine how to work with these tools and how it can be all integrated in a single
work�ow. From these, the advantages and disadvantages were determined to conclude that
the DevSecOps is indeed a powerful methodology, with a great set of tools that can be
utilized to support the process. It helps teams and leaders to enforce and maintain a high
quality of the code and product produced, while being fast in delivering the changes to their
customers.

However, the complexity of maintaining a tech stack that compresses more tools, the costs
of maintain multiple services, and the overall restrictions in the process can lead to an
overhead that for some small teams or applications it can be considered not worth it. Either
way, is proven that, by reducing the human errors in the process and automatize all the chain
line until the deployment is e�ectively.

8.3 Future Work and Limitations

For future work, the use of DevSecOps is ensured in this project, but it stills requires
constant changes, since the application is at his beginning, and so many constraints are
being discovered or decided. One of the tools used (Terraform) recently changed their ToS,
which can lead to a shift in terms of the IaC tools being used in the future.

Other work that was considered to be implemented, but not �nished, was a portal where a
user, like a consultant, could register a new client, and the system would automatically pick
the latest image released from the repository, customize the IaC con�guration with the data
introduced, and deploy a new instance corresponding for that customer. It would create all
the servers and connections needed (database, monitoring tool, etc.), and display the URLs
and credentials the user could use to connect to that instance. This work was initiated but
never �nished, but it was considered to implement in .NET, with Gitlab API to retrieve the
latest release, create a new repository for the con�guration of the new customer, and run
the pipeline to trigger the IaC.

In terms of team organization, this project was initially started as a three person developing
the same product, each one with their own focus for the dissertation. However, since
the project was then only continued by one member, the application of DevSecOps would
bene�t if it was used by a large team to the end, since the impact of the stages involved could
in�uence how the pipeline is designed. Although, that requirement is always a necessary step
when designing a pipeline, since the number of commits and number of persons involved can
in�uence the performance of the pipeline.

Also, the development of the ERP was impacted from this decision, since the initial concept
was to three persons develop the application, while each one had a concrete focus for their
thesis. With this, it was no longer possible to fully complete the application, and so this
thesis only relied on the development made in the DevSecOps process.

This, however, didn't prevent this project to �nish, since it was still possible to demonstrate
the use of DevSecOps with the latest tools, and still take a look on how, in practice, can be
applied when developing an application.

8.4. Final Appreciation 79

8.4 Final Appreciation

This dissertation allowed to apply some knowledge from some of the classes that were
presented in the master's degree of Software Engineering, demonstrating that the degree
o�ers some advanced topics about this �eld. The work that was done, although with some
drawbacks, demonstrated that the DevSecOps methodology and tools can enhance the
developer experience, leading to a better product. Also, it was used tools that allows full
control of the application, which in other methodologies can be seen as a feature that is
only developed at the very end, if the team have time. Compared to the DevSecOps, this
leads to lose capability to understand and o�er better support of the application.

Besides, the project allowed focusing on a subject that, although is can be considered as
a support process in software development, it helps the awareness of the importance of a
good code management, and how it can a�ect how a product can grow. By applying the
knowledge necessary to build, test and deploy applications, in an automated, controlled and
safer way, the developers can also understand how di�erent parts of the system must be
build to reach the client. The important is to understand when and how the tools can be
applied in a development cycle.

81

Bibliography

[1] Scott Carey. Complexity is Killing Software Developers. Nov. 2021. url: https://
www.infoworld.com/article/3639050/complexity-is-killing-software-

developers.html.
[2] OutSystems. What Is DevOps? url: https://www.outsystems.com/glossary/

what-is-devops/.
[3] Pixelplex. 7 Main Digital Transformation Challenges to Be Aware of in 2023 and

Tips on How to Overcome Them. url: https://pixelplex.io/blog/digital-
transformation-challenges/.

[4] SuperO�ce. How digital transformation is driving the customer experience. Mar. 2023.
url: https://www.superoffice.com/blog/digital-transformation/.

[5] Hossein Ashtari. CI/CD vs. devops: Understanding 8 key di�erences. Accessed on
2023-02-03. Apr. 2022. url: https : / / www . spiceworks . com / tech / devops /

articles/cicd-vs-devops/.
[6] Nasreen Azad. �Understanding DevOps critical success factors and organizational

practices�. In: 2022 IEEE/ACM International Workshop on Software-Intensive Busi-

ness (IWSiB). 2022, pp. 83�90. doi: 10.1145/3524614.3528627.
[7] Continuous integration. Accessed on 2023-02-03. url: https://martinfowler.com/

articles/continuousIntegration.html.
[8] Saumya Gupta et al. �Prevalence of GitOps, DevOps in Fast CI/CD Cycles�. In:

2022 International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing (COM-IT-CON). Vol. 1. 2022, pp. 589�596. doi: 10.1109/COM- IT-
CON54601.2022.9850786.

[9] 11 key bene�ts of DevOps for your business: Epam anywhere business. Accessed on
2023-02-03. url: https://anywhere.epam.com/business/devops- benefits-
for-business.

[10] Use four keys metrics like change failure rate to measure your devops performance |

google cloud blog. Accessed on 2023-01-29. url: https://cloud.google.com/blog/
products/devops- sre/using- the- four- keys- to- measure- your- devops-

performance.
[11] Zaheeruddin Ahmed and Shoba. C. Francis. �Integrating Security with DevSecOps:

Techniques and Challenges�. In: 2019 International Conference on Digitization (ICD).
2019, pp. 178�182. doi: 10.1109/ICD47981.2019.9105789.

[12] Betsy Beyer et al. Site Reliability Engineering: How Google Runs Production Systems.
1st. O'Reilly Media, Inc., 2016. isbn: 149192912X.

[13] Gene Kim et al. The DevOPS handbook: How to create world-class agility, reliability,

and security in technology organizations. Portland, OR: IT Revolution Press, 2016.
[14] Fiorella Zampetti et al. �CI/CD Pipelines Evolution and Restructuring: A Qualitative

and Quantitative Study�. In: 2021 IEEE International Conference on Software Main-

tenance and Evolution (ICSME). 2021, pp. 471�482. doi: 10.1109/ICSME52107.
2021.00048.

[15] Jenkins. Accessed on 2023-01-29. url: https://www.jenkins.io/.

82 Bibliography

[16] Saurabh. What is Jenkins?: Jenkins for continuous integration. Accessed on 2023-01-
30. Nov. 2022. url: https://www.edureka.co/blog/what-is-jenkins/.

[17] GitLab - The DEVSECOPS platform. Accessed on 2023-01-30. url: https://about.
gitlab.com/.

[18] Codefresh. GitLab CI: Feature Overview, Tutorial and Best Practices. Accessed on
2023-01-22. July 2023. url: https://codefresh.io/learn/gitlab-ci/.

[19] Travis-CI. Accessed on 2023-01-30. Nov. 2022. url: https://www.travis-ci.com/.
[20] Yamini Priya. CircleCI Vs Travis CI: Which is the Best CI/CD Tool? Accessed on 2023-

01-20. Jan. 2023. url: https://testsigma.com/blog/circleci-vs-travis-ci/.
[21] CircleCI - Continuous integration and delivery. Accessed on 2023-01-30. url: https:

//circleci.com/.
[22] Jordi Mon Companys.What is circleci? features, review, Pricing & More: Harness. Ac-

cessed on 2023-01-20. Aug. 2023. url: https://www.harness.io/blog/circleci.
[23] Matthew Portnoy. Virtualization Essentials. English. Paperback. Sybex, May 1, 2012,

p. 304. isbn: 978-1118176719.
[24] What is application virtualization?: Vmware glossary. Accessed on 2023-02-02. Feb.

2023. url: https://www.vmware.com/topics/glossary/content/application-
virtualization.html.

[25] Ali Y�ld�r�m and H. Hakan Kilinc. �A Study on the E�ect of Virtualization on Produc-
tivity�. In: 2022 7th International Conference on Computer Science and Engineering

(UBMK). 2022, pp. 94�97. doi: 10.1109/UBMK55850.2022.9919452.
[26] Tommi Mikkonen et al. �Cargo-Cult Containerization: A Critical View of Containers in

Modern Software Development�. In: 2022 IEEE International Conference on Service-

Oriented System Engineering (SOSE). 2022, pp. 93�98. doi: 10.1109/SOSE55356.
2022.00017.

[27] Senecca Miller, Travis Siems, and Vidroha Debroy. �Kubernetes for Cloud Container
Orchestration Versus Containers as a Service (CaaS): Practical Insights�. In: 2021
IEEE International Symposium on Software Reliability Engineering Workshops (ISS-

REW). 2021, pp. 407�408. doi: 10.1109/ISSREW53611.2021.00110.
[28] Docker Overview. Accessed on 2023-02-02. Feb. 2023. url: https://docs.docker.

com/get-started/overview/.
[29] Mayank Modi. Top Features of Docker That Stand You Out from the Crowd. Accessed

on 2023-06-22. url: https://www.knowledgehut.com/blog/devops/docker-
features.

[30] Podman. What is Podman? Accessed on 2023-06-20. url: https://docs.podman.
io/en/latest/.

[31] William Henry. Podman and buildah for Docker users. Accessed on 2023-06-20. Mar.
2023. url: https://developers.redhat.com/blog/2019/02/21/podman-and-
buildah-for-docker-users.

[32] Nestybox. Nestybox/sysbox: An open-source, next-generation �runc� that empowers

rootless containers to run workloads such as Systemd, Docker, Kubernetes, just like

VMS. Accessed on 2023-08-01. url: https://github.com/nestybox/sysbox.
[33] Matej Artac et al. �DevOps: Introducing Infrastructure-as-Code�. In: 2017 IEEE/ACM

39th International Conference on Software Engineering Companion (ICSE-C). 2017,
pp. 497�498. doi: 10.1109/ICSE-C.2017.162.

[34] Matej Artac et al. �DevOps: Introducing Infrastructure-as-Code�. In: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C). 2017,
pp. 497�498. doi: 10.1109/ICSE-C.2017.162.

Bibliography 83

[35] Akond Rahman. �Characteristics of Defective Infrastructure as Code Scripts in De-
vOps�. In: 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion (ICSE-Companion). 2018, pp. 476�479.
[36] Akond Rahman. �Anti-Patterns in Infrastructure as Code�. In: 2018 IEEE 11th Inter-

national Conference on Software Testing, Veri�cation and Validation (ICST). 2018,
pp. 434�435. doi: 10.1109/ICST.2018.00057.

[37] Terraform by HashiCorp. Accessed on 2023-02-02. url: https://www.terraform.
io/.

[38] Red Hat Ansible. Ansible - How it works. Accessed on 2023-02-02. url: https://
www.ansible.com/overview/how-ansible-works.

[39] Rahul Awati and Meredith Courtemanche. What is the ANSIBLE IT automation plat-

form? � TechTarget de�nition. Accessed on 2023-08-01. Mar. 2023. url: https:
//www.techtarget.com/searchitoperations/definition/Ansible.

[40] Chef. Chef Software DevOps Automation Solutions. Accessed on 2023-08-01. url:
https://www.chef.io/.

[41] PeiBo Xie and Yanhong Wu. �Audit Computer Information Management and Software
Development System in the Internet Era�. In: 2021 International Wireless Commu-

nications and Mobile Computing (IWCMC). 2021, pp. 1993�1996. doi: 10.1109/
IWCMC51323.2021.9498823.

[42] Arif Onan, Eda Gürlen, and Sevgi Turan. �Do moodle reports and logs meet the needs
of educational supervision?� In: 2014 9th Iberian Conference on Information Systems

and Technologies (CISTI). 2014, pp. 1�5. doi: 10.1109/CISTI.2014.6877087.
[43] Sepehr Amir-Mohammadian and Afsoon Youse� Zowj. �Towards Concurrent Audit

Logging in Microservices�. In: 2021 IEEE 45th Annual Computers, Software, and Appli-

cations Conference (COMPSAC). 2021, pp. 1357�1362. doi: 10.1109/COMPSAC51774.
2021.00191.

[44] Datadog.Datadog. Accessed on 2023-06-30. Oct. 2016. url: https://www.datadoghq.
com/product/.

[45] Grafana. Grafana: The open observability plataform. Accessed on 2023-07-13. url:
https://grafana.com/.

[46] Netwrix. Powerful Data Security Made Easy. Accessed on 2023-06-30. url: https:
//www.netwrix.com/.

[47] Radek Fujdiak et al. �Managing the Secure Software Development�. In: 2019 10th

IFIP International Conference on New Technologies, Mobility and Security (NTMS).
2019, pp. 1�4. doi: 10.1109/NTMS.2019.8763845.

[48] Anivesh Panjiyar and Debanjan Sadhya. �Defending against code injection attacks
using Secure Design Pattern�. In: 2022 29th Asia-Paci�c Software Engineering Con-

ference (APSEC). 2022, pp. 570�571. doi: 10.1109/APSEC57359.2022.00085.
[49] Goran Piskachev, Ranjith Krishnamurthy, and Eric Bodden. �SecuCheck: Engineer-

ing con�gurable taint analysis for software developers�. In: 2021 IEEE 21st Interna-

tional Working Conference on Source Code Analysis and Manipulation (SCAM). 2021,
pp. 24�29. doi: 10.1109/SCAM52516.2021.00012.

[50] Antonio Nehme et al. �Securing Microservices�. In: IT Professional 21.1 (2019),
pp. 42�49. doi: 10.1109/MITP.2018.2876987.

[51] Thomas Ryan Devine et al. �SREP+SAST: A Comparison of Tools for Reverse Engi-
neering Machine Code to Detect Cybersecurity Vulnerabilities in Binary Executables�.
In: 2022 International Conference on Computational Science and Computational In-

telligence (CSCI). 2022, pp. 862�869. doi: 10.1109/CSCI58124.2022.00156.

84 Bibliography

[52] Manohar Marandi, A. Bertia, and Salaja Silas. �Implementing and Automating Security
Scanning to a DevSecOps CI/CD Pipeline�. In: 2023 World Conference on Commu-

nication & Computing (WCONF). 2023, pp. 1�6. doi: 10.1109/WCONF58270.2023.
10235015.

[53] Hermawan Setiawan, Lytio Enggar Erlangga, and Ido Baskoro. �Vulnerability Analysis
Using The Interactive Application Security Testing (IAST) Approach For Govern-
ment X Website Applications�. In: 2020 3rd International Conference on Information

and Communications Technology (ICOIACT). 2020, pp. 471�475. doi: 10.1109/
ICOIACT50329.2020.9332116.

[54] Sudip Sengupta. SAST, DAST, IAST, RASP Explained in Short. Nov. 2022. url:
https://crashtest-security.com/sast-dast-iast-rasp/.

[55] Ivan Homola. OWASP Zap: 8 Core Features (Pros & Cons). Accessed on 2023-07-11.
Feb. 2023. url: https://www.codiga.io/blog/owasp-zap/.

[56] PortSwigger. Burp Suite Professional Features. Accessed on 2023-07-10. url: https:
//portswigger.net/burp/pro/features.

[57] Abdullah A. Al-Ghofaili and Majed A. Al-Mashari. �ERP system adoption traditional
ERP systems vs. cloud-based ERP systems�. In: Fourth edition of the International

Conference on the Innovative Computing Technology (INTECH 2014). 2014, pp. 135�
139. doi: 10.1109/INTECH.2014.6927770.

[58] F. Robert Jacobs and F.C. `Ted' Weston. �Enterprise resource planning (ERP)�A
brief history�. In: Journal of Operations Management 25.2 (Dec. 2006), pp. 357�363.
doi: 10.1016/j.jom.2006.11.005. url: https://doi.org/10.1016/j.jom.2006.
11.005.

[59] Ming Jia Lee, Whee Yen Wong, and Meei Hao Hoo. �Next era of enterprise resource
planning system review on traditional on-premise ERP versus cloud-based ERP: Fac-
tors in�uence decision on migration to cloud-based ERP for Malaysian SMEs/SMIs�.
In: 2017 IEEE Conference on Systems, Process and Control (ICSPC). 2017, pp. 48�
53. doi: 10.1109/SPC.2017.8313020.

[60] Neslihan Küçükate³ Ömüral and Onur Demirörs. �E�ort Estimation for ERP Projects
� A Systematic Review�. In: 2017 43rd Euromicro Conference on Software Engi-

neering and Advanced Applications (SEAA). 2017, pp. 96�103. doi: 10.1109/SEAA.
2017.68.

[61] Ishan Aggarwal, A. Anirudh, and Raviteja Buddala. �Literature Review: ERP Imple-
mentation in Various Industries�. In: 2021 Innovations in Power and Advanced Com-

puting Technologies (i-PACT). 2021, pp. 1�6. doi: 10.1109/i-PACT52855.2021.
9696962.

[62] Best ERP systems in 2023: Compare reviews on 570+ | G2. Accessed on 2023-02-02.
url: https://www.g2.com/categories/erp-systems.

[63] Peter A. Koen et al. �1 Fuzzy Front End : E�ective Methods , Tools , and Techniques�.
In: 2002.

[64] Barry W. Boehm. Software Engineering Economics. English. Hardcover. Prentice Hall,
Nov. 1, 1981, p. 767. isbn: 978-0138221225.

[65] 2022 Accelerate State of DevOps Report. Accessed on 2023-02-02. Sept. 2022.
url: https://cloud.google.com/blog/products/devops- sre/dora- 2022-
accelerate-state-of-devops-report-now-out.

[66] Enterprise devops report 2020�2021. Accessed on 2023-02-02. Sept. 2020. url: https:
//azure.microsoft.com/en- us/resources/enterprise- devops- report-

20202021/.

Bibliography 85

[67] Alexander Osterwalder and Yves Pigneur. Business model generation. en. Chichester,
England: John Wiley & Sons, June 2010.

[68] James R Wixson. �2 Function Analysis and Decomposistion using Function Analysis
Systems Technique�. In: INCOSE International Symposium. Vol. 9. 1. Wiley Online
Library. 1999, pp. 800�805.

[69] Thomas L. Saaty. The Analytic Hierarchy Process: Planning, Priority Setting, Re-

source Allocation (Decision Making Series). English. Hardcover. McGraw-Hill, Jan.
1980, p. 287. isbn: 978-0070543713. url: https://lead.to/amazon/com/?op=bt&
la=en&cu=usd&key=0070543712.

[70] Thomas L. Saaty. Decision Making for Leaders: The Analytic Hierarchy Process for

Decisions in a Complex World. English. Kindle Edition. RWS Publications, Feb. 8,
2013, p. 342. url: https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=
B00BDBNZDY.

[71] Git. Git �distributed-is-the-new-centralized. Accessed on 2023-01-15. url: https :

//git-scm.com/.
[72] Microsoft. Visual Studio: IDE and Code Editor for Software Developers and Teams.

Accessed on 2023-05-16. url: https://visualstudio.microsoft.com/.
[73] Microsoft. Visual Studio Code - Code Editing. Rede�ned. Accessed on 2023-05-16.

url: https://code.visualstudio.com/.
[74] Postman. What is Postman? Accessed on 2023-04-29. url: https://www.postman.

com/product/what-is-postman/.
[75] PuTTY. PuTTY: a free SSH and Telnet client. Accessed on 2023-05-17. url: https:

//www.chiark.greenend.org.uk/~sgtatham/putty/.
[76] WinSCP. WinSCP: Free SFTP, SCP, S3 and FTP client for Windows. Accessed on

2023-07-02. url: https://winscp.net/eng/index.php.
[77] Atlassian. Git�ow work�ow: Atlassian Git Tutorial. Accessed on 2023-05-29. url:

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-

workflow.
[78] Github. GitHub �ow. Accessed on 2023-05-29. url: https://docs.github.com/en/

get-started/quickstart/github-flow.
[79] Gursimran Singh. What is Observability? Accessed on 2023-06-24. Mar. 2023. url:

https://www.xenonstack.com/insights/what-is-observability.
[80] Gitlab. Install GitLab with the Linux package. Accessed on 2023-04-16. url: https:

//docs.gitlab.com/omnibus/installation/.
[81] BillWagner. Tutorial: Write your �rst analyzer and code �x. Accessed on 2023-06-

15. url: https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/
tutorials/how-to-write-csharp-analyzer-code-fix.

[82] Gitlab. Code Quality. Accessed on 2023-07-01. url: https://docs.gitlab.com/ee/
ci/testing/code_quality.html.

[83] Docker. Docker Compose overview. Accessed on 2023-05-24. Aug. 2023. url: https:
//docs.docker.com/compose/.

[84] Gitlab. GitLab Container Registry. Accessed on 2023-07-15. url: https://docs.
gitlab.com/ee/user/packages/container_registry/.

[85] Gitlab. Static Application Security Testing (SAST). Accessed on 2023-07-09. url:
https://docs.gitlab.com/ee/user/application_security/sast/.

[86] Gitlab. Dynamic Application Security Testing (DAST). Accessed on 2023-07-10. url:
https://docs.gitlab.com/ee/user/application_security/dast/.

[87] ZAP. ZAP Docker User Guide. Accessed on 2023-07-18. url: https://www.zaproxy.
org/docs/docker/about/.

86 Bibliography

[88] Prometheus. Con�guration: Prometheus. Accessed on 2023-07-17. url: https://
prometheus.io/docs/prometheus/latest/configuration/configuration/

#file_sd_config.
[89] Dragos Dobrean. �Automatic Examining of Software Architectures on Mobile Appli-

cations Codebases�. In: 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME). 2019, pp. 595�599. doi: 10.1109/ICSME.2019.00094.
[90] Yuhoon Ki and Meongchul Song. �An Open Source-Based Approach to Software De-

velopment Infrastructures�. In: 2009 IEEE/ACM International Conference on Auto-

mated Software Engineering. 2009, pp. 525�529. doi: 10.1109/ASE.2009.73.

87

Appendix A

AHP Analysis

88 Appendix A. AHP Analysis

Appendix A. AHP Analysis 89

