|
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO I S E‘
MESTRADO EM ENGENHARIA INFORMATICA ‘

Serverless computing

JOSE MIGUEL OLIVEIRA
Outubro de 2023

POLITECNICO
DO PORTO

]
I Instituto Superior de
] _ Engenharia do Porto

Serverless computing

José Miguel Oliveira

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,
Specialisation Area of Computer Systems

Supervisor: Prof. Dr. Alexandre Braganca

Evaluation Committee:
President:
To Be Defined

Members:
To Be Defined

Porto, October 14, 2023

Dedicatory

This work is dedicated to all those whose unwavering support and encouragement have been
the driving force behind my academic journey, which culminated in this thesis. Firstly, | would
like to give a huge appraisal to my parents who have always supported and encouraged me
to continue and strive for more, both in my personal life and in my academic one. Then, to
the woman who became my wife during this period in which | was writing this document and
without whom this moment would be unreachable. Your belief in my abilities, your endless
patience, and your enduring love have made this endeavor possible. | am profoundly grateful
for the presence of both in my life and for the inspiration you have provided.

| also want to give thanks to the teachers that been part of my academic journey, making
me a professional who is ready for the professional world. In this last group, a special word
of gratitude to this thesis’ supervisor, Alexandre Braganca, which has been very present and
helpful throughout this process. Your fast feedback and outstanding suggestions have made
this process a lot easier.

Abstract

Serverless computing has emerged as a new mindset when it comes to cloud computing,
promising efficient resource utilization, automatic scaling, and cost optimization for a wide
range of applications. This thesis explores the adoption, performance, and cost considera-
tions of deploying applications that use intend to use serverless functions, one of the leading
Serverless types.

This thesis starts by providing an overview of Serverless computing, including its key advan-
tages and disadvantages and the rising adoption it has gained throughout the recent years.
It presents a comprehensive comparison of various Serverless platforms and discusses the
unique features offered by each.

After this context phase, this thesis presents a design section composed by a migration guide
that allows developers to transition from a traditional application to one that takes advan-
tage of serverless benefits. The guide outlines best practices and step-by-step instructions,
facilitating the adoption of Serverless computing in real-world scenarios.

Using the previously created guide, the next section carries out a practical use case: the mi-
gration of complex computational logic from a traditional Java application to AWS Lambda
functions. Performance evaluations are conducted, considering metrics such as the execution
duration and the amount of concurrent executions.

These findings are then evaluated next to the costs associated with deploying and running
Java applications in a virtual machine or with a Serverless architecture.

While Serverless computing is quite promising, networking issues often arise in practice,
affecting the overall efficiency of Serverless applications. This thesis addresses these chal-
lenges, identifying the installation and migration difficulties, how to overcome them, and
what are the expected limitations, while proposing potential solutions.

In summary, this thesis offers valuable insights into the adoption, performance, and cost opti-
mization of Serverless computing for Java applications. It provides a roadmap for developers
looking to take advantage of the benefits of Serverless computing in their projects.

Keywords: Serverless, Cloud, Function, Infrastructure

Acronyms

API Application Programming Interface.
ARN Amazon Resource Name.

AWS Amazon Web Services.
BaaS Backend as a Service.

CLI Command Line Interface.
CPU Central Processing Unit.

CVE Common Vulnerabilities and Exposures.

DDoS Distributed Denial of Service.
DSR Design Science Research.
DTO Data Transfer Object.

FaaS Function as a Service.

GCP Google Cloud Platform.
GRS Geo-Redundant Storage.

IAM Identity And Management.
loT Internet of Things.

JVM Java Virtual Machine.
KPIl Key Performance Indicator.

LRS Locally-Redundant Storage.

RA-GRS Read Access Geo-Redundant Storage.

RGB Red Green Blue.
SDK Software Development Kit.
VM Virtual Machine.

ZRS Zone-Redundant Storage.

Vil

Contents

Acronyms vii
List of Figures Xiii
List of Tables XV
1 Introduction 1
1.1 Problem statement, 1
1.2 Objectives 1
1.3 Methodology 2
1.4 Contribution 2
1.5 Documentoutline 3

2 Literature Review 5
2.1 Computing background 5
2.1.1 History of computing 5
Virtualization 5

Containers, 7

2.2 Serverless Computing 11
2.2.1 Overview of Serverless computing 11
Definition 11

2.2.2 Comparison of Serverless platforms 13
Serverless platforms. 13

Platform differences 15

2.2.3 Best practices for Severless development 16
Scalability 16

Framework selection 16

Single Responsibility Principle 16

Security L, 16

Infrastructure as Code 16

Monitoring 17

224 UsSeCases 17
Asynchronous data processing 17

Synchronous interactions 17

Streaming L, 18

3 Value analysis 19
3.1 Value for the costumer 19
3.2 Perceived Value 19
3.3 Benefits and sacrifices 19

3.3.1 Benefits, 20

Costs . . .
Scalability
Flexibility
Fault tolerance L
3.3.2 Sacrifices
Coldstart
Latencyo
Debugging
Securityo
Vendor lock in.

4 Analysis and design

4.1

4.2

4.3

Analysis . . .
4.1.1 Usecase. s
Architecture design
4.2.1 Serverless platformo
422 Componentsdiagram,
Adoption guide
4.3.1 AWS Lambda creation
Create a new Java project
Import AWS dependencies
Create the handler function
Package and upload the function.
(Optional) Create a function trigger or destination
4.3.2 Implement the AWS SDK onto the existing Java application
Add the needed maven dependencies.
Instantiate the client
Create and use the defined DTO for the input context
Replace the computational logic with the Lambda function invoking

5 Implementation

51

5.2

Theuse case indepth
5.1.1 Application startup and inputs
5.1.2 Calculation formulas
5.1.3 Execution mode
Migration process
5.2.1 Create a new Java project
5.2.2 Import AWS dependencies
5.2.3 Define the input DTO
5.2.4 Serialization of theimages
5.2.5 Create the handler function
5.2.6 Package and upload the function.
5.2.7 Add the needed maven dependencies to the Java application
5.2.8 Instantiateaclient
5.2.9 Create and use the defined DTO for the input context
5.2.10 Replace the computational logic with the Lambda function invoking

6 Evaluation

6.1

Performance assessing metrics and tools

23
23
23
24
24
25
26
26
26
27
27
28
28
29
29
29
29
30

31
31
32
33
33
34
34
34
35
35
36
37
38
38
39
39

41

Methodologies

Metrics

Tools

6.2 Performance results and analysis
6.2.1 Pre-Integration Metrics

6.2.2 Post-Integration Metrics

6.2.3 Resultsdiscussion

7 Conclusion

7.1 Objectives achieved

7.2 Limitations
7.3 Future work

Bibliography

A Repository URL

Xi

41
41
42
43
43
43
46

49
49
49
50

53

55

xiil

List of Figures

1.1

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8

3.1

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2

Design Science Research approach (Claes Wohlin 2021) 2
One of the first mainframe computers (Brooks 2021) 6
Traditional vs Virtual architecture (Brush 2021) 7
Containers vs VMs architecture (Buchanannd.) 7
Container technologies over the years (Strotmann 2016) 8
Docker architecture (Docker n.d.(a)) 9
Docker flow (Docker n.d.(b)) 10
BaaS (Batschinskin.d.) 12
BaaS 13
Cost benefits of Serverless Computing (Cloudflare nd.) 20
Raw fire image 24
Lambda coding languages throughout the years (Schmidt 2023) 25
Components diagram 26
Incompatible Java language in AWS Lambda 27
Application flowchart 32
Upload Lambda function Jarfile 37
Concurrent Lambda function executions 45

Lambda function execution duration 45

List of Tables

6.1 Total execution time before the serverless function integration
6.2 Total execution time after the serverless function integration
6.3 Post-integration Lambda invoking duration

XV

Chapter 1

Introduction

This thesis aims to investigate the use of serverless computing as a model for developing and
deploying cloud applications. The research is based on an extensive research, which includes
a literature review, use cases, and a guide on how to get started with these platforms and
with the serverless principles.

1.1 Problem statement

The Serverless computing model is recent, highly referenced, and its adoption seems to
be growing strongly. However, this model is still hardly known to potential users, which
can lead to wrong implementations or it not being properly adjusted to the problem (Paul
Castro 2019). The lack of knowledge and the difficulty in changing a way of working that
has prevailed for so many years can be two of the reasons that justify slow transition towards
this model and way of working.

Handling large amounts of data in hosted servers is an example of a process that can end up
being quite expensive in many fronts. It requires scaling up or down the servers, according
to the received load, and doing all kinds of maintaining in the host machines.

With the correct usage of a Serverless approach, this process can become very easy and
painless. So, the problem relies on understanding on which types of project it makes sense
to apply this recent approach, and which benefits can it bring to the table, while we compare
it to a traditional micro service architecture.

1.2 Objectives

The goal of this thesis is to study this model in order to identify use cases that make sense for
this computing model compared to other models. Analyze the available platforms, propose
a guide for their adoption, design, implementation and deployment of this computing model,
with the aim of achieving better efficiency comparing to a traditional hosted architecture.

By the end of this, it is expected to have discovered the benefits and the disadvantages
that it brings to the table, and what are the available Serverless frameworks available in the
market nowadays, and how they fit to different problems.

The slow migration to this model is also something that is worth investigating. If it were
the future and an obvious followup to the current way of doing things, people would be
migrating to this approach as fast as possible. What is keeping people from moving? That

2 Chapter 1. Introduction

is also one of the main reasons for going forward with this thesis, in order to demystify this
whole topic.

1.3 Methodology

The methodology used in this thesis is the Design Science Research (DSR). DSR is an
iterative process of problem identification, artifact design and development, and evaluation
of innovative artifacts to solve complex problems in various fields (Claes Wohlin 2021). DSR
is particularly well-suited for this study, as it is a research methodology that emphasizes the
development and evaluation of solutions to real-world problems, while allowing continuous
adjustments throughout the discovery process (Figure 1.1).

Identify and
describe a
software

engineering

challenge

Look at
alternatives and

Evaluate the
solution and

improve
practice

develop a
salution

Figure 1.1: Design Science Research approach (Claes Wohlin 2021)

The primary objective of this study is to investigate the effectiveness of serverless computing
as a means of addressing the challenges associated with traditional server-based architec-
tures. With this in mind, the DSR methodology was followed, which provides a structured
approach to developing and evaluating the serverless solutions under analysis.

1.4 Contribution

This thesis presents valuable contributions towards serverless solutions, with a focus on
hybrid Java applications. These contributions consist on the following key elements:

1.5. Document outline 3

1. Full migration guide: This thesis includes the development of a end-to-end migration
guide. This guide offers a detailed road map for seamlessly integrating serverless functions
into existing applications. It provides step-by-step instructions, practical insights, and best
practices, ensuring that the migration process is both smooth and efficient.

2. Practical implementation: In addition to creating the migration guide, this thesis also
demonstrates its applicability on top of a real world use case. By applying the guide to a
practical use case, it showcases its effectiveness and struggles with a tangible context.

3. Publicly accessible GitHub repository: To facilitate widespread access and collaboration,
all materials and resources used in this thesis will be made available. This includes the
code samples used for the proof of concept, as well as any other relevant assets. This
comprehensive set of resources will be hosted on a public GitHub repository, fostering a col-
laborative environment for developers, researchers, and enthusiasts keen on further exploring
this theme.

1.5 Document outline

This document follows the following structure. Chapter 2 displays the literature review,
which is made of by an introduction to the computing concept and some of the tools and
concepts that marked history, such as virtualization and containerization, followed by a
serverless computing, where some of its major concepts and platforms are studied. Chapter
3 describes the value analysis that serverless computing represents to the costumer, while
discussing the benefits and sacrifices attached to its usage. In Chapter 4, the reader may
find the design proposal for a serverless use case, followed by a guide that allows Java
developers to incorporate Serverless functions in their applications, step by step. Chapter
5 is where the use case is implemented in an attempt to test out the previously elaborated
guide. Throughout the implementation process, some problems were encountered and those
are also explained by the end of this chapter. Given the experience of the implementation
phase, in chapter 6 we have the evaluation phase, in which the outcome is analysed and
compared with the needed metrics and tools. To finalize the content, in chapter 7, there is a
conclusion phase in which the whole thesis is analysed in terms of its added values and future
work. By the end we have the appendixes, in which we can find things like the repository in
which the use case implementation is.

Chapter 2

Literature Review

This chapter goes, initially, through the history of computing, with a special focus on vir-
tualization and containers. Then, travelling a bit to the future, there is a subsection that
analyses some Serverless computing topics, as an attempt to better understand its definition
and the current serverless options.

2.1 Computing background

Computing has not always been like it is nowadays. Throughout the time, there has been a
constant enhancement on the capabilities of computers, both on the software end, and also
on the hardware end.

2.1.1 History of computing

Throughout the years, software developers have always needed to launch their application
to somewhere. Until the early 2000s, there was only one major option, which is deploying
to a local machine. This is also called on premise.

Having an application deployed On Premise is like having all your wage on your own wallet
or home. It means that a certain company keeps all its data, servers and everything else
in its IT environment in-house (Kumar 2022). These people are responsible for running,
supporting and maintaining the data all the time.

In the last twenty years, a lot of developments have emerged to tackle this singularity. With
the emergence of several Cloud providers, the insecurity and unreliability of On Premise
instances has been fading away ever since.

However, regardless of the origin of the computer, there are several ways of running a
software inside it. There are several models, architectures and methodologies to optimize
and segregate applications inside the same machine. Virtualization and Containerization are
some of the trending ways to do so.

Virtualization

Virtualization refers to the creation of a virtual version of something, such as an operating
system (OS), a server, a storage device or network resources (Brush 2021).

The concept of virtualization is generally believed to have its origins in the mainframe days
(Figure 2.1) in the late 1960s and early 1970s, when IBM invested a lot of time and effort
in developing robust time-sharing solutions. Time-sharing refers to the shared usage of

6 Chapter 2. Literature Review

computer resources among a large group of users, aiming to increase the efficiency of both
the users and the expensive computer resources they share. This model represented a major
breakthrough in computer technology: the cost of providing computing capability dropped
considerably and it became possible for organizations, and even individuals, to use a computer
without actually owning one (Oracle 2022).

Gle ol

.s." .l

';?.* -3 W,
fe-- & o-H

Figure 2.1: One of the first mainframe computers (Brooks 2021)

Similar reasons are driving virtualization for industry standard computing today: the capacity
in a single server is so large that it is almost impossible for most workloads to effectively use
it. The best way to improve resource utilization, and at the same time simplify data center
management, is through virtualization (Oracle 2022).

A key use of virtualization technology lays with server virtualization, which uses a software
layer, called a hypervisor, to emulate the underlying hardware (Figure 2.2). This often
includes the CPU's memory, input/output (I/O) and network traffic (Brush 2021).

2.1. Computing background 7

Traditional and virtual architecture

APP APP ApPP
APPLICATION

OPERATING SYSTEM VIRTUALIZATION LAYER

Traditional architecture Virtual architecture

Figure 2.2: Traditional vs Virtual architecture (Brush 2021)

Since most guest operating systems and applications don't need the full use of the underlying
hardware, this was a ground breaking approach on computing history.

This allows for greater flexibility, control and isolation by removing the dependency on a
given hardware platform. While initially meant for server virtualization, the concept of
virtualization has spread to applications, networks, data and desktops(Brush 2021).

Containers

Containers are lightweight software packages that can be run with isolated dependencies on
any environment. However, this concept could be easily confused with virtualization.

The key difference between containerization and virtualization is that containers only virtu-
alize software layers above the operating system level, whilst in the virtualization concept it
virtualizes an entire machine down to the hardware layers (Figure 2.3).

Infrastructure

Virtual machines Containers
VIRTUAL MACHINE VIRTUAL MACHINE VIRTUAL MACHINE CONTAINER CONTAINER CONTAINER
AppA AppB AppC AppA AppB AppC
Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs
Guest OS Guest OS Guest OS
[Contdiner Engine J
[Hypervisor] [Host Operating System J

[Infrastructure] [

Figure 2.3: Containers vs VMs architecture (Buchanan n.d.)

Throughout the years, the concept of containerization and the approaches towards it kept
increasing. History claims that it all started in 1979, with the launching of Unix V7. With

8 Chapter 2. Literature Review

that Linux operating-system system call, called "chroot", people could change the root
directory of a process, and its children’s, to a new location in the file system which is only
visible to a given process. That was the first approach towards containerization, as a host
operating system was firstly divided by different users.

plesk INFOBITS

MOMENTS IN
CONTAINER
HISTORY

N /. /£

2016

Windows Containers

2014

Rocket (rkt)

B® Microsoft
= arkt
2013

Docker

2013

LMCTFY
docker

2011

Cloud Foundry
Warden
CLouD

FOUNDRY

Gouogle

2008
LXC - Linux
Containers

B

2006

Process Containers

Google

2007
cgroups merged
into Linux Kernel

le’O(AFS

2005
Open VZ
(Open Virtuozzo)

&Openvz

2004
Oracle Solaris
Containers
ORACLE'
SOLARIS

2001

Linux VServer

: 2001
L
VS

Virtuozzo

Virtuozzo
2000

FreeBSD Jails

www.plesk.com

f facebook.com/Plesk @Plesk

Figure 2.4: Container technologies over the years (Strotmann 2016)

There were several launches over the years (Figure 2.4) regarding containerization frame-
works, but it was only in 2013 that Docker was launched, and it still remains the most loved
and adopted container nowadays (Figure 2.4).

Docker containers

2.1. Computing background 9

Docker is one of the most popular and widely used container runtime technologies. It allows
building, shipping and running applications fastly and easily on any machine.

Docker brought an easier way to launching microservices and, with it, it introduced a new
way of collaborating between teams. This reprenseted a turning point for DevOps, as it
opened way for new technologies and ways of thinking.

With Docker’'s daemon running on top of the host's operational system, it facilitates the
process of launching endless containers (Figure 2.5).

4 N\

Containerized Applications

©)
Q
Q
<

Host Operating System

Infrastructure

Figure 2.5: Docker architecture (Docker n.d.(a))

With Docker acting as an interface between the host’s Operating System and each container,

it enables the system administrator to easily manage and launch Docker Images and Docker
Containers.

Users can store reusable Docker Images in a private or a public registry, and share them with
their teams or even the whole community. Having Docker installed in each one’s Desktop,

developers can pull the Docker Image and run it on their machine as a Docker Container
(Figure 2.6).

10 Chapter 2. Literature Review

DOCKER_HOST

docker build .-4---4

'iﬂ

Docker daemon |

-~ L~
AN
\

L= NGi

N

<
docker pull -| | , \‘\ 3
| (eomamemy ..

| ' X
N,
™| Y !
./ /

docker run —|

Figure 2.6: Docker flow (Docker n.d.(b))

Docker has its own image registry named DockerHub, which can be found under https:
//hub.docker.com. This enables developers to easily spin up an image of any distribution
in a matter of seconds, either in a local machine or in a Serverless solution. For instance,
developers can access DockerHub and pull a Linux Alpine image, and run it in their own
Windows machine.

Container orchestration

What started as an advantage, fastly became a big burden to bear. The fact that containers
were so easy to spin up, allied with the current trend of splitting the applications into several
microservices, eventually created another problem. With so many containers hanging around,
software engineers started having a bad time managing them.

Container orchestration is the concept associated to the automation, management, scaling
and networking of containers (Redhat n.d.). It is what enables enterprises to scale and still
be able to manage their large clusters, with huge amounts of containers.

With container orchestration, software engineers are able to automate and manage the
following tasks (Redhat n.d.):

e Provisioning and deployment

e Configuration and scheduling

e Resource allocation

e Container availability

e Scaling or removing containers based on balancing workloads across your infrastructure
e | oad balancing and traffic routing

e Monitoring container health

e Configuring applications based on the container in which they will run

2.2. Serverless Computing 11

e Keeping interactions between containers secure
Container orchestration tools

To ease up the burden of orchestrating all the containers, several frameworks have been
launched over the years. The most commonly used ones being Kubernetes, OpenShift,
Hashicorp Nomad and Docker Swarm.

However, despiste there being several tools being currently used, there is a bigger one amongs
them: Kubernetes.

Kubernetes is an open source container orchestration tool developed by Google in 2014. In
2015, it started being maintained by the Cloud Native Computing Fundation. Kubernetes
allows you to build applications that span multiple containers, schedule them across a cluster,
scale them, and manage their health over time (Redhat n.d.).

With it, Kubernetes brings reliability, security and accessibility to everyone. Its Yaml based
configuration makes it readable and easy to install and configure.

It has 4 major components:

e Data plane: provides containers with capacity such as CPU, memory, network, and
storage

e Control plane: where all task assignments occur

e Kubelet: installed in each Node, and provides them with capacity such as CPU, mem-
ory, network, and storage

e Pod: A group of one or more containers deployed in a Node.

2.2 Serverless Computing

2.2.1 Overview of Serverless computing

Back in 2009, Netflix faced a problem that is very common amongst most IT companies.
They wanted to scale, but they had a monolithic architecture which made it hard, and
sometimes even impossible, to scale. Back in those days the concept of microservices did
not even exist, yet they decided to decompose their monolithic application into several tiny
standalone applications. That decision made them an early pioneer in what has become
increasingly common today: transitioning from a monolith architecture to a microservices
architecture (Harris n.d.). However, microservices need orchestrators to aid in the job of
managing them, to ease a job which sometimes may prove to be costly and time consuming.

Not everything was solved with this new approach and, to help solve some of the remaining
issues, a new architecture arose.

In this section, the aim is to introduce the concept of Serverless computing, its architecture,
its strengths and weaknesses, and also its applicabilities.

Definition

Nowadays there is more than one definition to describe the meaning of Serverless. From the
point of view of The Rise of Serverless Computing article, they define Serverless computing as
“a platform that hides server usage from developers and runs code on-demand, automatically

12 Chapter 2. Literature Review

scaled and billed only for the time the code is running” (Paul Castro 2019). On the other
hand, the CNCF (Cloud Native Computing Foundation) defines Serverless as “the concept
of building and running applications that do not require server management. It describes
a finer-grained deployment model where applications, bundled as one or more functions,
are uploaded to a platform, and then executed, scaled, and billed in response to the exact
demand needed at the moment” (CNCF n.d.).

All of these definitions touch very important factors of this concept but, independently of
the definition adopted, one of the main concepts associated to Serverless is definitely that
their users do not need to deal with server administration and hosting. Instead of this, they
pass that responsibility to the cloud providers.

There are several services available in the Serverless concept, as people constantly bring in
new ideas for Serverless approaches on different domains. Amazon Aurora is one of those
examples which differs a bit from the definition that was previously presented while still
calling it Serverless. On the one hand, it has powerful auto-scaling capabilities but, on the
other hand, it requires minimum memory and CPU allocated to it and hence it does not
scale to zero, resulting in ongoing costs.

Despite all this, Serverless architectures are commonly divided into two different categories:
Backend as a Service (BaaS) and Function as a Service (FaaS). Both serve different purposes
and bring their own unique value.

BaaS

Baa$S, also known as MBaaS (Mobile Backend as a Service) is a model in which developers
outsource the backend code from specific vendors. These provide pre-written software
for common scenarios such as data and file storage, messaging and push notifications,
authentication or message bus passing.

&
Infrastructure File Storage a S
Push Notifications Database

Social Media Integration Data Management

Figure 2.7: BaaS (Batschinski n.d.)

With this in mind, developers are able to focus on developing the frontend side of the
application, while integrating with the BaaS part of the code via APIs and SDKs.

FaaS

2.2. Serverless Computing 13

Faa$S is a model that allows developers to run self-contained functions in the cloud. It allows
small pieces of code, represented as functions, to run for a limited amount of time. It is
popularly being used for its real-time processing of data. It hides the underlying infrastruc-
ture, as it launches the instances needed to carry out the function successfully with only the
resources that it requires, and releasing them at the end (Roberts 2018).

Function

as a
Service

Figure 2.8: BaaS

The functions are stateless, meaning that they do not store any data between executions,
and are triggered by events or HT TP request Paul Castro 2019. This allows it to scale easily.
It describes a finer-grained deployment model where Serverless applications, consisting of
one or more functions, are uploaded to a Cloud platform where they are scaled and billed
according to usage.

2.2.2 Comparison of Serverless platforms

One of the major benefits of Serverless computing is that it enables developers to build
applications without worrying about infrastructure management. This is possible because
Serverless computing frameworks and platforms provide the necessary tools and services to
deploy and run Serverless applications. In this chapter, we will discuss some of the popular
Serverless computing frameworks and platforms that are publicly available.

Serverless platforms
AWS Lambda

Launched in 2014 by Amazon Web Services, AWS Lambda (Services 2021) is one of the
most popular Serverless computing platforms. Lambda executes code only when triggered
by an event and automatically scales the computing resources up or down based on the

14 Chapter 2. Literature Review

demand. Due to its pay-as-you-go pricing model, users only pay for the execution time in
which their code is running.

It enables developers to write functions in several programming languages, including Node.js,
Python, Java, and Go. AWS Lambda supports event-driven computing, and it can be
triggered by several AWS services such as S3, DynamoDB, and APl Gateway. Additionally,
Lambda has a built-in APl Gateway that enables developers to create RESTful APIs for their
applications.

AWS Lambda also provides some monitoring and logging tools, which can be used to track
the performance and usage of the functions.

However, one of AWS Lambda’s limitations is that it can only run for a maximum of 15
minutes, which may not be enough for certain applications (Services 2021).

Google Cloud Functions

Google Cloud Platform (GCP) is a Serverless computing platform provided by Google. It
supports several programming languages such as Node.js, Python, and Go. Cloud Functions
can be triggered by several Google Cloud services, such as Cloud Storage (Google n.d.).
Additionally, Cloud Functions can be integrated with GCP services such as Firestore and
BigQuery, but also with HT TP requests.

Just like AWS Lambda, Google Cloud Functions also provide a set of monitoring and logging
tools, which can be used to track the performance and usage of the functions.

Azure Functions

Microsoft Azure Functions is a Serverless computing platform that enables developers to
build and run event-driven applications. Azure Functions supports several programming lan-
guages such as Java, JavaScript, and Python. It can be triggered by several Azure services,
such as Blob storage and Event Hubs. Additionally, Azure Functions can be integrated with
other Azure services such as Azure Cosmos DB and Azure Event Grid.

These can be created and managed through the Azure Portal, a web-based interface that
provides a central location for managing Azure resources

OpenFaaS

OpenFaaS (Function as a Service) is an open-source Serverless computing platform. [t
enables developers to build Serverless functions in any programming language. OpenFaa$ has
a built-in API Gateway that enables developers to create RESTful APlIs for their applications.

The fact that it is an open-source tool, means it can be deployed on any infrastructure,
including on-premises or public clouds. It can be used to build complex applications and
microservices, as well as to run background tasks and automate workflows.

OpenFaa$S also provides a set of monitoring and logging tools, which can be used to track
the performance and usage of the functions.

Knative

Knative is an open-source Serverless computing platform that provides a set of building
blocks for running Serverless applications on Kubernetes. It supports several programming
languages such as Node.js, Java, and Go. Knative has several components such as Knative

2.2. Serverless Computing 15

Serving, which enables developers to deploy Serverless applications, and Knative Eventing,
which provides a way to handle events in a Serverless manner.

Knative is designed to be extensible, meaning it can be customized to fit specific use cases
and workloads.

It provides a set of built-in integrations with other cloud services, such as Google Cloud
Storage, Amazon S3, and Microsoft Azure Blob Storage.

Knative also provides a set of monitoring and logging tools, which can be used to track the
performance and usage of the functions.

Platform differences

Despite addressing the same issue, these platforms have unique features that differentiate
them from each other and that might be important in the moment of choosing between one
of them.

Vendor lock-in

Vendors are great in simplifying Cloud as they provide a pretty interface as an abstraction
layer between the users and the host machines. However, even though most of the serverless
tools are supported by a Cloud provider, that is not always the scenario.

AWS Lambda, Google Cloud Functions and Azure Functions are examples of Serverless
Cloud vendor platforms that represent the ones that the majority of people use across the
world. They provide a Serverless platform supported by the reliability and availability that
the Cloud providers can assure.

On the other hand, open-source platforms give users the flexibility to install it on any machine
and have full control over it. Both OpenFaaS and Knative are good examples of growing
open-source projects. These can be installed on any infrastructure, whether it is on the Cloud
or on premise. Knative is built on top of Kubernetes, which makes it easier to integrate it
with a Kubernetes Cluster.

Programming languages supported

Even though AWS Lambda, Google Cloud Functions, and Azure Functions support multiple
programming languages already, OpenFaaS and Knative are still able to overcome that
number by supporting even more programming languages.

That might not be a very important problem for most developers since the more commonly
used scripting and coding languages are already supported by the public Cloud vendors.
However, it is still a an advantage in favour of the open-source projects.

Integration with cloud services

AWS Lambda, Google Cloud Functions, and Azure Functions provide several built-in inte-
gration with other services inside the same Cloud provider as themselves, which is a double
edged sword. This eases the integration with other services in the same platform, which may
prove to be an enormous advantage. However, on the other hand, OpenFaaS and Knative
follow a different approach in which they provide a more general approach to integrating
with cloud services, allow for a bigger versatility and foster freedom of choosing any vendor
at any moment.

16 Chapter 2. Literature Review

2.2.3 Best practices for Severless development

Serverless computing has gained popularity due to its flexibility and cost-effectiveness, but
good development practices are essential for taking advantage of its full potential. This sec-
tion outlines a set of best practices that developers should consider when building serverless
applications.

Scalability

Serverless applications should be designed to allow scaling horizontally and handle different
workloads efficiently.

For this, one should be using a microservices architecture. Breaking down complex applica-
tions into smaller, independent services, allows for each of them to be served by serverless
functions. This enhances maintainability, fosters team autonomy, and allows for granular
scaling of services.

Using an event-driven architecture to trigger functions in response to events such as HT TP
requests, database changes, or message queue messages, is also very important (Roberts
2018). Having this inserted into the architecture’s design, enables the application to auto-
scale without manual intervention.

Framework selection

Selecting the right runtime environment can be very important. Several factors should be
taken into consideration, such as performance, serverless platform support and community
contributions.

Using a well established framework will leverage the development process with templates,
deployment automation and reusable components.

Single Responsibility Principle

Each function should have a clear, well-defined purpose. Avoid packing unrelated function-
alities into a single function, as this can lead to code chaos and less maintainability.

Security

In case the serverless functions are managed by us, then we should consider securing the
APl with an APl gateway. Those can manage incoming API traffic, such as rate limiting and
request filtering, to prevent overloading the serverless functions and protect against possible
Distributed Denial of Service (DDoS) attacks (Maayan 2023).

Another important security principle that should be applied is the Least Privilege Principle.
Identity And Management (IAM) policies allows people to configure only the needed access
per each person or group of people. It's a good way of keeping sensitive data and information
out of undesired hands.

Infrastructure as Code

The deployment and maintenance of the serverless function should be kept as code, instead
of being done through the user interface of the serverless platform. If written as code, the
serverless functions be easily upgraded, maintained and reproducible.

2.2. Serverless Computing 17

Monitoring

The goal of serverless monitoring is to identify and resolve issues that may impact the
performance and reliability of serverless applications and to optimize resource utilization
for cost efficiency. It involves monitoring various aspects of serverless applications and
infrastructure, including function execution, resource utilization and performance metrics
(Maayan 2023).

Another important factor that should be monitored is the serverless infrastructure’'s cost.
Graphs can help evaluate the cost-effectiveness to better enable organizations to take the
best advantage of the serverless architecture’s benefits.

2.2.4 Use cases

One of the advantages of serverless computing is its versatility and ease of use in a large
amount of scenarios. Understanding the possible use cases is essential as it enables people
to take advantage of its full potential.

According to AWS (AWS 2023), there are three major categories when we talk about server-
less use cases:

e Asynchronous data processing
e Synchronous interactions

e Streaming

Asynchronous data processing

As the volume of data grows, coming from increasingly diverse sources, organizations find
they need to move quickly to process this data to ensure they make faster, well-informed
business decisions. To process data at scale, organizations need to elastically provision re-
sources to manage the information they receive from mobile devices, applications, satellites,
marketing and sales, operational data stores, infrastructure, and more AWS 2023.

These kinds of operations can be executed, asynchronously, using cloud functions to compute
tasks, queuing services to create queues of data for the functions to consume, databases to
store and consume incoming and outgoing data, and others.

Using AWS as a platform for an example scenario, an asynchronous data processing use case
would be to have a file upload to a database or storage system, like the AWS S3 Bucket,
which would trigger a Lambda Function after receiving the file. The Lambda Function
transforms the image and then it can both upload the transformed image to another place,
like another S3 Bucket, and even send an email notification for a target email list.

Synchronous interactions

Breaking an application into loosely coupled microservices can make things easier when it
comes to scaling up and maintaining a growing application. They commonly communicate
through APIs and, by default, the microservices wait for the response to continue the flow,
just like a synchronous integration (AWS 2023).

18 Chapter 2. Literature Review

For these operations, cloud functions can be used just like in the asynchronous integration.
However, in this scenario, they should be invoked with a different trigger, like an APl Gateway
which can be invoked with the HT TP protocol.

With this in mind, people can separate the backend of their websites into a serverless func-
tion, which can be invoked either via a simple HT TP request, or using the AWS Software
Development Kit for the language used.

Streaming

Streaming data allows gathering analytical insights and act upon them, but also presents a
unique set of design and architectural challenges. Lambda and Amazon Kinesis are examples
of platform services that can process real-time streaming data for application activity track-
ing, transaction order processing, clickstream analysis, data cleansing, log filtering, indexing,
social media analysis, Internet of Things (loT) device data telemetry, and metering (AWS
2023).

A possible streaming use case is one where people build an analytics application. Raw data
gets stored in a DynamoDB table and, when items are written, updated, or deleted in a
table, DynamoDB streams can publish item update events to a stream associated with the
table. In this case, the event data can provide the relevant details to a Lambda function
that generates custom metrics by aggregating the received raw data.

19

Chapter 3

Value analysis

In this section, the goal is to analyse the value that serverless computing presents to the
customer. It is important to study what the customer wants and how this new architecture
will impact their life, either it being with a positive or a negative impact. This must always
be present, to never loose the focus on the goal to be achieved while keeping the customer
satisfied.

The costumer can be both the developer, who builds and maintains the application, or the
System Administrator who needs to create and maintain the whole infrastructure.

3.1 Value for the costumer

The primary value that customers receive from a Serverless architecture is increased reliabil-
ity, scalability and availability of their applications. With the ability to automatically allocate
resources on demand, Serverless architecture eliminates the need for manual configurations,
which can lead to downtime and worse performance.

Additionally, a Serverless architecture enables customers to focus on their core business func-
tions, rather than managing the underlying infrastructure, which can result in cost savings
and improved efficiency.

3.2 Perceived Value

The perceived value of a Serverless architecture is mainly due to the ability to reduce opera-
tional costs and improve the for new applications and services. The flexibility and scalability
offered by a Serverless architecture can help companies respond quickly to changing business
needs and adjusting to the market demands. Additionally, the improved reliability and avail-
ability of applications and services can increase trust and credibility in the eyes of customers.

3.3 Benefits and sacrifices

Over the years, people have been using either monolithic or microservice architectures. Both
are valid models that present both advantages and disadvantages, depending on the project’s
scenario.

Since, nowadays, the primary goal is to always leave room for a project to grow and scale,
monolithic architectures will be discarded in order to enable the understanding of the ma-
jor differences between Serverless and Microservices architectures, and what benefits and
sacrifices does Serverless bring to the table.

20 Chapter 3. Value analysis

3.3.1 Benefits
Costs

One of the major benefits of moving towards a Serverless model is the cost optimization.
People are only charged for the period in which their code is running. This way of working
also named "pay-as-you-go". Instead of paying for servers that often are idle, or whose
computational capability is been fully utilized, people pay only for the amount of time that
their code is running and for the specific resources that they need. To allow proper billing,
since the execution time may be short, it is charged in fine-grained time units (like hundreds
of milliseconds) and developers do not need to pay for overhead of servers creation or
destruction (such as the time that Virtual Machines take while starting up). This cost model
is very attractive to workloads that must run occasionally. On the other hand, this represents
a big challenge for cloud providers which need to schedule and optimize cloud resources to
split their computational capability amongst several users (Serverless_martinfowler).

Cost Benefits of Serverless

888

TRADITIONAL
SERVERS

@

SAVINGS WITH

] \
TRADITIONAL : SERVERLESS
SERVERS i
$$:
; SERVERLESS
:
.
:
:
1 i

SERVERLESS

(Pay as you use)

Cost Increases

UPFRONT
COSTS

Scale of Infrastructure Increases

Figure 3.1: Cost benefits of Serverless Computing (Cloudflare n.d.)

Scalability

Since developers do not own and manage the servers that run their code, they stop having
several responsibilities. It stops being part of their functions to scale the nodes or to create
either automatic or horizontal scaling rules. Cloud providers have the job and responsibility
of making sure that they are always available and properly scaled to avoid any throttling.

This is also a huge benefit for system administrators who cease having to apply the latest
security updates, as well as a lot of other concerns that used to be part of their routines.
Instead, they delegate that function to the cloud provider who is now responsible for making
sure that the services are automatically scaled and that they are always available.

Flexibility

Running a function or any backend can be as simple as pressing a button when using a
Serverless architecture. Developers can easily deploy and test new features without worrying

3.3. Benefits and sacrifices 21

about the underlying infrastructure.

Fault tolerance

On a microservice architecture, to avoid having downtime, it is customary to have some sort
of redundancy or replication. Most Cloud providers will offer you the following options to
strengthen your infrastructure’s availability (Azure 2022):

- Locally-Redundant Storage (LRS)
Zone-Redundant Storage (ZRS)

- Geo-Redundant Storage (GRS)

- Read Access Geo-Redundant Storage (RA-GRS)

These are different options to split the infrastructure in either different local machines,
different Cloud zones (e.g. eu-west-1 and eu-west-2) and even in a different geographical
location. However, in a Serverless architecture, this is not something we need to opt from
or maintain. It distributes the workload across multiple computing resources, which will
improve the infrastructure’s fault tolerance capability and reduce the risk of downtime.

3.3.2 Sacrifices
Cold start

What can be one of the major advantages of this Serverless architecture, can also be one of
biggest disadvantages. Having ephemeral functions is a great benefit because it cuts down
costs but, on the other hand, it will take longer than usual to respond. This will only occur
on the first request, while the function is still inactive, but it is still something that will
happen.

Latency

This second disadvantage is a bit related to the first one. There is the latency referred to
in the previous section, but there is also the networking type of latency. Since the machine
that will host our service could be anywhere in the world, it is needed to take into account
that it could have some impact in the application performance and time of response. The
response time of the function will consist on the sum of the time it takes for the request to
travel from the client to the Serverless platform, the processing time of the function, and
the response time on the way back to the client.

The fact that the service is running on a machine that can have several other resources
running side by side to it, might imply that there could be a race for the computing resources
of the machine, such as memory and CPU, which can also contribute to having added latency.

Debugging

Not managing the underlying infrastructure can appear to be very good, but there are also
some downsides to it. Serverless applications can be composed of multiple loosely-couple
functions that run in separated hosts. In case one error occurs in the whole process, it can
get pretty challenging to trace and debug the issue as the source of the error can be in any
of the world split machines.

22 Chapter 3. Value analysis

Serverless applications are also ephemeral, meaning that they will cease to exists once they
finish their job, making them even harder to debug since all the content will disappear unless
stored in a permanent place. That can be done using some tools and best practices such as
logging, monitoring, distributed tracing and testing frameworks (Serverless _martinfowler).

Security

Serverless functions handle sensitive data and could be subject to several security threats.
Even though the Cloud provider should secure the machines as much as they can, it is still
very important that the developers encode and secure all sensitive information. Even the
code, which might not be encoded, can be subject to an attack and respective appropriation
as their own.

There are also some compliance requirements, like data protection laws (i.e. RGPD), that
these shared machines might not fulfill.

Another security issue is that an application might depend on third party libraries. If a new
vulnerability is discovered and the dependency is not updated, that could be a critical entry
point for any attacker who is aware<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>