
Gestão automática de atribuição e
monitorização de projetos/estágios

FRANCISCO JOÃO FERREIRA SILVA FERNANDES
Outubro de 2023

i

Automatic management tool for attribution and

monitorization of projects/internships

Francisco João de Ferreira Silva Fernandes

A dissertation submitted in partial fulfilment of the requirements for the
degree of Master of Informatics, Specialisation Area of Software

Engineering

Supervisor: Drª. Piedade Barros Lopez Carvalho

Evaluation Committee:

President:

...

Members:

...

Porto, October 2023

ii

iii

Declaração de Integridade

Declaro ter conduzido este trabalho académico com integridade.

Não plagiei ou apliquei qualquer forma de uso indevido de informações ou falsificação de

resultados ao longo do processo que levou à sua elaboração.

Portanto, o trabalho apresentado neste documento é original e de minha autoria, não tendo

sido utilizado anteriormente para nenhum outro fim.

Declaro ainda que tenho pleno conhecimento do Código de Conduta Ética do P. PORTO.

ISEP, Porto, 13 de outubro de 2023

iv

v

Resumo

No último ano académico, os estudantes do ISEP necessitam de realizar um projeto final para

obtenção do grau académico que pretendem alcançar. O ISEP fornece uma plataforma digital

onde é possível visualizar todos os projetos que os alunos se podem candidatar. Apesar das

vantagens que a plataforma digital traz, esta também possui alguns problemas, nomeadamente

a difícil escolha de projetos adequados ao estudante devido à excessiva oferta e falta de

mecanismos de filtragem. Para além disso, existe também uma indecisão acrescida para

selecionar um supervisor que seja compatível para o projeto selecionado.

Tendo o aluno escolhido o projeto e o supervisor, dá-se início à fase de monitorização do

mesmo, que possui também os seus problemas, como o uso de diversas ferramentas que

posteriormente levam a possíveis problemas de comunicação e dificuldade em manter um

histórico de versões do trabalho desenvolvido.

De forma a responder aos problemas mencionados, realizou-se um estudo aprofundado dos

tópicos de sistemas de recomendação aplicados a Machine Learning e Learning Management

Systems. Para cada um desses grandes temas, foram analisados sistemas semelhantes capazes

de solucionar o problema proposto, tais como sistemas de recomendação desenvolvidos em

artigos científicos, aplicações comerciais e ferramentas como o ChatGPT.

Através da análise do estado da arte, concluiu-se que a solução para os problemas propostos

seria a criação de uma aplicação Web para alunos e supervisores, que juntasse as duas

temáticas analisadas. O sistema de recomendação desenvolvido possui filtragem colaborativa

com factorização de matrizes, e filtragem por conteúdo com semelhança de cossenos. As

tecnologias utilizadas no sistema centram-se em Python no back-end (com o uso de TensorFlow

e NumPy para funcionalidades de Machine Learning) e Svelte no front-end. O sistema foi

inspirado numa arquitetura em microsserviços em que cada serviço é representado pelo seu

próprio contentor de Docker, e disponibilizado ao público através de um domínio público.

O sistema foi avaliado através de três métricas: performance, confiabilidade e usabilidade. Foi

utilizada a ferramenta Quantitative Evaluation Framework para definir dimensões, fatores e

requisitos (e respetivas pontuações). Os estudantes que testaram a solução avaliaram o sistema

de recomendação com um valor de aproximadamente 7 numa escala de 1 a 10, e os valores de

precision, recall, false positive rate e F-Measure foram avaliados em 0.51, 0.71, 0.23 e 0.59

respetivamente. Adicionalmente, ambos os grupos classificaram a aplicação como intuitiva e

de fácil utilização, com resultados a rondar o 8 numa escala de 1 em 10.

Palavras-chave: Sistema de recomendação, Filtragem colaborativa, Filtragem por conteúdo,

Monitorização de projeto, Estudante, Supervisor

vi

vii

Abstract

In the last academic year, students at ISEP need to complete a final project to obtain the

academic degree they aim to achieve. ISEP provides a digital platform where all the projects

that students can apply for can be viewed. Besides the advantages this platform has, it also

brings some problems, such as the difficult selection of projects suited for the student due to

the excessive offering and lack of filtering mechanisms. Additionally, there is also increased

difficulty in selecting a supervisor compatible with their project.

Once the student has chosen the project and the supervisor, the monitoring phase begins,

which also has its issues, such as using various tools that may lead to potential communication

problems and difficulty in maintaining a version history of the work done.

To address the mentioned problems, an in-depth study of recommendation systems applied to

Machine Learning and Learning Management Systems was conducted. For each of these

themes, similar systems that could solve the proposed problem were analysed, such as

recommendation systems developed in scientific papers, commercial applications, and tools

like ChatGPT.

Through the analysis of the state of the art, it was concluded that the solution to the proposed

problems would be the creation of a web application for students and supervisors that

combines the two analysed themes. The developed recommendation system uses collaborative

filtering with matrix factorization and content-based filtering with cosine similarity. The

technologies used in the system are centred around Python on the backend (with the use of

TensorFlow and NumPy for Machine Learning functionalities) and Svelte on the frontend. The

system was inspired by a microservices architecture, where each service is represented by its

own Docker container, and it was made available online through a public domain.

The system was evaluated through performance, reliability, and usability. The Quantitative

Evaluation Framework tool was used to define dimensions, factors, and requirements (and their

respective scores). The students who tested the solution rated the recommendation system

with a value of approximately 7 on a scale of 1 to 10, and the precision, recall, false positive

rate, and F-Measure values were evaluated at 0.51, 0.71, 0.23, and 0.59, respectively.

Additionally, both groups rated the application as intuitive and easy to use, with ratings around

8 on a scale of 1 to 10.

Keywords: Recommendation system, Collaborative filtering, Content-based filtering, Project

monitoring, Student, Supervisor

viii

ix

Table of Contents

1 Introduction .. 1

1.1 Context .. 1

1.2 Problem .. 2

1.3 Objectives ... 2

1.4 Research Methodology ... 3

1.5 Planning .. 4

1.6 State of the Art Summary ... 4

1.7 Document Structure .. 6

2 State of the Art .. 7

2.1 Context .. 7

2.2 Machine Learning ... 9
2.2.1 Data Mining Techniques .. 9
2.2.2 Recommendation Systems .. 11
2.2.3 Learning Methodologies ... 15
2.2.4 Natural Language Processing ... 20
2.2.5 Evaluation... 20
2.2.6 Technologies ... 23

2.3 Learning Management Systems .. 28

2.4 Related Work ... 29
2.4.1 Recommendation Systems .. 29
2.4.2 Learning Management Systems... 35

3 Value Analysis ... 39

3.1 Innovation Process ... 39
3.1.1 Opportunity Identification .. 40
3.1.2 Opportunity Analysis .. 41
3.1.3 Idea Generation and Enrichment .. 42
3.1.4 Idea Selection .. 42
3.1.5 Concept Definition ... 42

3.2 Value .. 43

3.3 Value Proposition .. 43

3.4 Functional Analysis .. 44
3.4.1 Functional Analysis and System Technique ... 45

3.5 Multi-Criteria Decision Analysis .. 45
3.5.1 Analytic Hierarchy Process ... 46

3.6 Summary .. 51

4 Analysis and Design .. 53

x

4.1 Analysis ... 53
4.1.1 Domain Model .. 53
4.1.2 Actors ... 54
4.1.3 Business Process ... 55
4.1.4 Functional Requirements ... 56
4.1.5 Non-Functional Requirements ... 57

4.2 Design ... 58
4.2.1 Architecture .. 58
4.2.2 Use Cases ... 63

4.3 Summary .. 67

5 Implementation .. 69

5.1 System Architecture – Back-end ... 69
5.1.1 Authentication Service .. 70
5.1.2 Recommendation Service ... 71
5.1.3 LMS Service ... 78

5.2 System Architecture – Front-end .. 80

5.3 Deployment .. 83

5.4 Summary .. 84

6 Experimentation and Evaluation ... 85

6.1 Ethics in Software Engineering .. 85

6.2 Evaluation Metrics ... 86

6.3 Evaluation Methodology .. 86
6.3.1 Evaluation Process ... 86
6.3.2 Tools... 87
6.3.3 Result Interpretation .. 88

6.4 Testing .. 88
6.4.1 Unit Tests ... 88
6.4.2 System Tests ... 89
6.4.3 E2E Tests.. 89

6.5 Results .. 91
6.5.1 User Feedback Questionnaires ... 91
6.5.2 Quantitative Evaluation Framework .. 92
6.5.3 Performance.. 93
6.5.4 Reliability ... 96
6.5.5 Usability .. 99

6.6 Summary ... 102

7 Conclusion ... 103

7.1 Objective Analysis .. 103

7.2 Limitations .. 106

7.3 Future Work ... 106

xi

Appendix A – Sequence Diagrams.. 119

Appendix B – Screenshots and Code .. 123

Appendix C – Student Questionnaire.. 127

Appendix D – Supervisor Questionnaire .. 129

Appendix E – Quantitative Evaluation Framework 130

Appendix F – Article Abstract (DeLTA 2023) .. 131

xii

List of Figures

Figure 1 - Gantt Diagram... 4

Figure 2 - Average duration of a task by strategy type (Ferreira & Oliveira, 2012) 11

Figure 3 - Recommendation Techniques (Isinkaye, Folajimi and Ojokoh, 2015) 12

Figure 4 - Example of a decision tree (de Ville, 2013) .. 18

Figure 5 - Tensorflow Architecture (Géron, 2022).. 25

Figure 6 - Computational Graph Execution Example (Goldsborough, 2016) 26

Figure 7 - Personalized Student Thesis List (Tsatsaris and Sakkopoulos, 2021) 32

Figure 8 - ChatGPT Project Recommendations .. 33

Figure 9 - SciPro Thesis Management System (Hansen and Hansson, 2015) 36

Figure 10 - eThesis List of Functionalities (Tsatsaris and Sakkopoulos, 2021) 37

Figure 11 - Innovation Process (Koen et al., 2002) ... 39

Figure 12 - New Concept Development (Koen et al., 2002) ... 40

Figure 13 - Value Proposition.. 44

Figure 14 - FAST Diagram .. 45

Figure 15 - Importance Given to Each Criterion (Saaty, 1988) ... 46

Figure 16 - AHP Hierarchy Tree ... 47

Figure 17 – Random Index Values .. 49

Figure 18 - Domain Model Diagram ... 54

Figure 19 - Business Process Diagram .. 56

Figure 20 - Use Case Diagram and Actor Hierarchy .. 56

Figure 21 – Component Diagram 1 ... 60

Figure 22 – Component Diagram 2 ... 60

Figure 23 – Component Diagram 3 ... 61

Figure 24 - Recommender System Logical View Architecture (Level 2) 62

Figure 25 - LMS Logical View Architecture (Level 2) ... 62

Figure 26 - Deployment Diagram .. 63

Figure 27 - Get Recommendations (UC1) Diagram .. 64

Figure 28 - Chat With Others (UC3) – Chat History Diagram .. 65

Figure 29 - Chat With Others (UC3) – Send Message Diagram .. 65

Figure 30 – Chat With Others (UC3) – Get Message Diagram .. 66

Figure 31 – Share Files (UC4) Diagram.. 67

Figure 32 - Excerpt of Student's Dataset .. 73

Figure 33 - Collaborative Filtering Activity Diagram ... 74

Figure 34 - Content Based Filtering Activity Diagram ... 75

Figure 35 - Natural Language Processing Activity Diagram .. 75

Figure 36 - Front-end Folder Structure ... 81

Figure 37 - Docker Containers of the Application .. 83

Figure 38 - List of System Tests ... 89

Figure 39 - List of E2E Tests .. 90

Figure 40 - Performance Test of Get Study Areas and Locations ... 94

xiv

Figure 41 - Performance Test of Download File.. 95

Figure 42 - Performance Test of Get Recommendations ... 95

Figure 43 - Error values from training and testing datasets ... 96

Figure 44 - Questionnaire Results of Usability .. 100

Figure 45 - Satisfaction Rate of the Application.. 100

Figure 46 - Project Selection Satisfaction ... 104

Figure A 1 - Rate Recommendations Diagram .. 119

Figure A 2 - Make Annotations to the Report Diagram .. 119

Figure A 3 - View Report History Diagram .. 120

Figure A 4 - Adjust Recommendation System Metrics Diagram ... 120

Figure A 5 - Authenticate in the System Diagram ... 120

Figure A 6 - Register as a Supervisor/Student .. 121

Figure A 7 - Apply to Project ... 121

Figure A 8 - Create a new Project.. 122

Figure A 9 - Assign Project ... 122

Figure B 1 - Register a New Student ... 124

Figure B 2 - Student Recommendations ... 125

Figure B 4 - Upload Files .. 126

Figure B 5 - Chat With Student/Supervisor ... 126

List of Tables

Table 1 - Classification of the possible result of a recommendation of an item to a user 23

Table 2 - Framework Objective Comparison .. 27

Table 3 – RS Project Comparison .. 34

Table 4 – LMS Project Comparison ... 38

Table 5 - Benefits and Sacrifices ... 43

Table 6 - Criteria Comparison Matrix.. 47

Table 7 - Normalized Criteria Comparison Matrix .. 48

Table 8 - Data Availability Comparison Matrix ... 49

Table 9 - Normalized Data Availability Comparison Matrix .. 50

Table 10 - Domain Knowledge Comparison Matrix .. 50

Table 11 – Normalized Domain Knowledge Comparison Matrix ... 50

Table 12 – Scalability Comparison Matrix .. 51

Table 13 - Normalized Scalability Comparison Matrix .. 51

Table 14 - Recommendation evaluation for each student ... 97

List of Code

Code 1 - Socket.IO Upload Message Listener ... 79

Code 2 - Socket.IO Implementation Front-End... 82

Code 3 - E2E Test of Get Recommendations .. 91

Code B 1 - R Script to Generate Recommendations (Dataset) ... 123

xvi

xvii

Acronyms and Symbols

List of Acronyms

AHP Analytical Hierarchy Process

AI Artificial Intelligence

AMQP Advanced Messaging Queue Protocol

ANN Artificial Neural Network

API Application Programming Interface

BMF Biased Matrix Factorization

CI Consistency Index

CPU Central Processing Unit

CR Consistency Ratio

CRISP-DM Cross-Industry Standard Process for Data Mining

CSS Cascading Style Sheets

DL Deep Learning

DM Data Mining

DTO Data Transfer Object

E2E End-To-End

FAST Functional Analysis and System Technique

FFE Fuzzy Front-End

FN False Negative

FP False Positive

FURPS Functionality, Usability, Reliability, Performance, and Security

GPU Graphics Processing Unit

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

xviii

ISEP Instituto Superior de Engenharia do Porto

JWT JSON Web Token

KDD Knowledge Discovery in Databases

KNN K-Nearest Neighbour

LMS Learning Management System

MAE Mean Absolute Error

MF Matrix Factorization

ML Machine Learning

MOODLE Modular Object Oriented Dynamic Learning Environment

MSE Mean Square Error

NPD New Product Development

ORM Object Relational Mapping

QEF Quantitative Evaluation Framework

REST Representational State Transfer

RI Random Index

RMSE Root Mean Square Error

RS Recommendation System

SciPro Supporting the Scientific Process

SEMMA Sample, Explore, Modify, Model and Assess

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negative

TP True Positive

TPU Tensor Processing Unit

UC Use Case

1

1 Introduction

In the Introduction chapter, the thought process behind the problem to be studied, the main

objectives to be accomplished and the researched methodology to be utilized are explained.

Taking that into consideration, this chapter describes the context of Instituto Superior de

Engenharia do Porto (ISEP), namely the project subject that exists in all computer engineering

courses, the problem inherent to that subject, the goals of this project, the steps and research

methodology to be applied, the project planning and a brief summary of what was analysed

during the state of the art. Lastly, a general perspective of what was explored in this dissertation

is shown.

1.1 Context

ISEP is an education and research engineering school located in Porto and was founded in 1852.

ISEP offers a broad spectrum of engineering courses, such as civil, chemical, electrical,

mechanical, computer engineering, and others.

Referring to the computer engineering courses, all bachelor and master students need to

develop final projects in the last semester/year of their academic period. The students are free

to choose whichever theme they want to explore and develop, as long as it meets the standards

proposed by ISEP. Students also have the opportunity to choose their preferred teacher to

supervise their work. To assist in the selection process of choosing the most appealing project

for the student and the subsequent steps, ISEP provides a web application for students,

professors and external organizations(1). Inside the project’s platform, it is possible to find

various proposals that cover a panoply of themes, making it accessible for the student to find

the most interesting project. In case some student wants to develop their own project, or he

already established a project with another entity that is not already registered, the platform

supports a mechanism to submit external proposals. After a student manifests their interest in

a particular proposal, it needs to go through an acceptance and formalization process in which

the advisor, supervisor, head of the curricular unit and ISEP presidency participate.

1 - https://projetos.dei.isep.ipp.pt/

2

1.2 Problem

Since the selection process of projects is manual, the enormous amount of proposals available

in the platform originates several potential problems:

• Given the high offer of project opportunities, the student inadvertently overlooks any

proposals that could be interesting to him. In addition, the choice of other less

attractive projects due to not having noticed other proposals becomes more

predominant;

• The manual process requires a detailed reading of the project/internship proposals,

which takes copious amounts of time to analyse them. This can lead to the student not

having enough time to evaluate all the projects that are of interest to him;

• Students who are not sure what they intend to develop in the final project of the course

may feel lost in the immensity of opportunities, which could lead them to not make the

right decision and to have an eventual bad experience during the duration of the project.

After choosing the internship proposal the student wants, the communication process begins

between the entity that created the proposal and the student. As companies and/or ISEP

advisors prefer different methods of communication and given the number of people interested

in these projects, communication with these entities becomes quite complex. In certain cases,

the student ends up not receiving any kind of response to the interest in the proposal.

In addition, considering the large number of documents that need to be completed by students

and/or companies and formalized by the competent entities of ISEP, the process of filling,

formalizing and approving them does not respect a universal sequence, which may lead to

delays and disorganization in the delivery of the documents.

The supervision of the project/internship by the advisor and supervisor is also an aspect in

which some disorganization is noted. The different means of communication adopted by the

advisor and supervisor to communicate with the student, combined with the delivery of the

written report to those entities on different platforms, means that there is no organized

monitoring of the project and no way to access a history of report versions.

1.3 Objectives

The context and problem stated in the Sections 1.1 and 1.2 confirm inefficiency in the selection

and monitoring process of internships and projects. By analysing the points stated in those

sections, some research questions were raised:

• What is the best approach for helping a student in the decision-making process of

choosing the most interesting project?

• What are the main points of interest for a given student that have a significant impact

on the decision-making process of a certain project?

• How to maximize time efficiency in the selection and monitoring phases?

3

Adopting a more automated process would minimize the time spent by all stakeholders during

the internship/project operation. Students would be able to get the majority of their

recommended proposals by filling in their details, grades and preferences. Supervisors on the

other hand would get notified of each potential candidate and have a unique space where they

could control the project process (from acceptance to final delivery).

To achieve that, an automatic recommendation system (RS) (based on machine learning (ML)

principles) that is capable of filtering project proposals based on the interests and knowledge

of the students, so that only those proposals that may be of interest are shown was developed.

These proposals must contain a summary of the project so that it is possible to analyse them

more quickly and effectively. The choice of potential projects must be complemented with the

automatic suggestion of potential supervisors to speed up the process of choosing and

formalizing the project.

In addition to creating a RS for project/internship proposals, a management mechanism for

these proposals is also created. The new monitoring system should incorporate a section where

it is possible for students and supervisors to be able to communicate with each other and share

formal documents. Those documents could be reports and other relevant files for the project.

Both implemented solutions are available via Application Programming Interface (API) gateway

and act independently from external platforms like ISEP’s project platform. This decision was

made because the main purpose of that decision is to make a solution capable of being used

for every study area (not exclusively for computer engineering) and in any university (regardless

of the country).

1.4 Research Methodology

The design science methodology (also known as design and creation) was used to answer the

questions stated in Section 1.3. This research technique consists of 5 process steps described in

the “Design Science Research Process Model” (Vaishnavi, Kuechler and Stacey, 2021):

• Awareness of Problem: A problem worth investigating and solving is delved into

extensively, in order to develop a research proposal out of it;

• Suggestion: The ideas (design) are established in order to solve the problem;

• Development: The solution is developed in this phase;

• Evaluation: The solution created in the development phase is studied, evaluated and

analysed according to the criteria defined in the Awareness of Problem phase.

Depending on the results gathered, another iteration of design science methodology

could be initiated (starting in the Suggestion phase);

• Conclusion: The research methodology ends when results are satisfactory enough to

prove that the developed solution works.

4

The design science approach is essentially a synonym of what software engineers perform on a

regular basis: a potential solution is defined given an identified problem, the solution is

implemented and the results are evaluated and registered (to improve in next iterations of the

project).

1.5 Planning

The Gantt diagram available in Figure 1 settles the planning proposed for the development of

this thesis project.

Figure 1 - Gantt Diagram

The project development started in November 2022. Throughout the first months until

February 2023, the state of the art was investigated using numerous scientific sources, the value

analysis of this project was explored and a first version of the analysis and design of the product

was created. The following months until the final delivery (October 2023) were primarily

dedicated to the development of the solution and individual experimentation and evaluation.

In the experimentation and evaluation section, system trials and questionnaires were given to

potential users (students and supervisors). Those questionnaires serve two primary purposes:

verify if all requirements arising from the problem analysis were correctly obtained, and

feedback on what would be beneficial to improve in the future.

Project development was organized using the agile methodology, which divided the project

requirements into three iteration sprints: one that centred on developing the RS, other that

centred on developing the LMS, and the last one focused on minor improvements and bug fixes.

1.6 State of the Art Summary

During the chapter of the state of the art, the concept of ML was researched with more

emphasis on RSs. ML projects can utilize data mining procedures to discover patterns and

relationships in large datasets. Data mining can be integrated popular frameworks such as KDD,

CRISP-DM and SEMMA. KDD is the most traditional one, while CRISP-DM is seen as the most

5

popular data mining framework since it can be easily integrated with SCRUM, and SEMMA is

more utilized with SAS products.

There are several types of RSs that use different filtering techniques to obtain the best results.

The most traditional filtering techniques are content-based filtering and collaborative filtering.

However, to have the best features of both and mitigate their disadvantages, those techniques

can be combined in an hybrid approach. Examples of hybrid approaches studied in the state of

the art chapter are knowledge-based, utility-based, fuzzy and demographic-based filtering.

Those algorithms can be divided into four main types: supervised, semi-supervised,

unsupervised and reinforcement. RSs can also be implemented with the use of DL, which is

capable of recognizing more complex patterns in the data than traditional ML algorithms.

Several algorithms were analysed in detail for both ML and DL, such as KNN, MF, Decision Tree

and ANN. There is no correct answer as to which is the best algorithm for RS, because it is solely

dependent on the type of filtering technique to be used and the main purpose of the RS. Natural

language processing (NLP) is also analysed since there are RSs that use this technique (in

conjunction with DL) to obtain more tailored recommendations. Term Frequency - Inverse

Document Frequency (TF-IDF) is a NLP algorithm that can be used without DL.

To determine if the RS is producing accurate results, ML applications have an evaluation phase.

Evaluating a RS can be done in several different environments: offline with local data, user

studies where a selected number of people test the application, and online which is tested by

regular users. Besides that, those algorithms are evaluated through property-based metrics,

namely prediction accuracy. Accuracy is measured with equations like Root Mean Square Error

(RMSE) and Mean Square Error (MAE), or classified with a confusion metric to measure

precision, recall, false positive rate, and F-Measure.

There are a vast number of programming languages and frameworks to develop RSs. Python

was analysed because of it being one of the most popular programming languages for ML

applications for its reliability and ease of code. There are several ML frameworks for Python

including Scikit-Learn, TensorFlow, Keras and PyTorch. All of those frameworks were compared

in a separate section because they offer different types of programming styles and features.

The other part of the state of the art is allocated to the LMS. LMS is a concept that represents

systems that allow the possibility of digital learning and offer several features that can be

adapted to specific use cases (UCs). There are several LMS platforms that are either open-

source or paid, including Moodle, Blackboard, Canvas and Brightspace. However, since those

platforms offer a large number of functionalities, the case of creating a system with custom

selected features with a certain programming language is valid and relevant depending on the

UC.

The final section of the state of the art is dedicated to the analysis of related work, where both

RSs and LMSs were analysed. The main investigated applications were course, thesis topic,

internship and supervisor RSs, which are important themes to consider when developing this

dissertation’s RS. On the other hand, it was possible to find one commercial LMS for thesis

monitoring, the SciPro System, a system developed at the University of Stockholm. Besides that,

6

another complete solution described in a research paper is eThesis, which was developed at

the University of Piraeus in Greece. Both LMS solutions have an handful of features that

enhance the supervision and monitoring experience of supervisors. Even though the

dissertation’s project is not as complex as those applications, they serve as a base of inspiration

to improve the project’s functionality.

1.7 Document Structure

This dissertation is composed of seven chapters: introduction, state of the art, value analysis,

analysis and design, implementation, evaluation and experimentation, and conclusion.

The introduction chapter states the context, problem and objectives to be achieved from

exploring the results of developing a solution that answers the raised questions.

The state of the art chapter analyses the practices being used in the field of RSs and LMS, the

technologies that are commonly used in these areas, as well as the most relevant work found

for both themes.

The value analysis chapter explores the value subjacent to this dissertation’s project, by taking

a closer look on the opportunities to be explored, how the functionalities work with each other

and project decisions.

The analysis and design chapter explains the thought process behind the decisions made on

what the solution consists in terms of functional and non-functional requirements and the

coding architecture that it is based on.

The implementation chapter describes the technical aspect of the system by analysing the

front-end and back-end and their individual modules separately. Application deployment to

production is also explained.

The evaluation and experimentation chapter states the metrics that will be evaluated

extensively, by specifying the tools and methodology of evaluation. Quantitative Evaluation

Framework (QEF) was used to specify the dimensions, factors and requirements to test. Besides

that, all tests made to the application (unit, system and end-to-end (E2E) tests) and their

respective results were analysed.

The conclusion chapter makes a general overview about the objectives achieved during the

implementation, evaluation and experimentation of the application and answers the research

questions raised in Section 1.3. Besides that, it points limitations about the developed project,

as well as future work to take into consideration.

There are also several appendix sections that include relevant images (such as use case

diagrams, and questionnaires to students and supervisors) and code samples to justify points

made throughout the dissertation, as well as the abstract of a delivered conference article

based on this report.

7

2 State of the Art

In the State of the Art chapter, contextualization of the project is described, to introduce both

themes to be explored in the chapter: RSs and LMS. For the RS theme, an explanation of what

ML consists of is suggested, with further details about data mining techniques, RS filtering

techniques and evaluation strategies, ML learning methodologies and algorithms, NLP and

frameworks to develop RSs. For the LMS theme, an explanation of how those systems were

introduced and their main features, as well as the most popular solutions to implement them

are discussed. At the end of the chapter, commercial and scientific solutions that mimic what

was developed in the dissertation’s project are explored.

2.1 Context

Computer engineering students at ISEP are meant to work on a project or to be an intern at a

company for the final year/semester of their academic duties. The project to be developed is

intended to mark a vital point in the student’s professional career since it is a way to experience

the area the student intends to explore in the future. A study conducted on eleven

undergraduate students (out of 58 students) that enrolled on a 13-week internship showed that

these experiences can adjust “students’ expectations and priorities for their future work

environment” (Odio, Sagas and Kerwin, 2014).

In addition to selecting the proposal, the student needs to identify the most suitable supervisor

for the project. The monitoring procedure is of extreme importance, since “good

communication between students and their supervisor is the most important element of

supervision” (Hassan, Ahmad and Abiddin, 2009). Supervision needs to “accommodate the

students’ demands and expectations with the supervisor’s availability, experience and

knowledge” (Yuanyuan Fan, Ana Evangelista and Hadi Harb, 2021), which improves the quality

of the work produced. There is a vast number of steps to acknowledge when choosing a

supervisor. In general, it is important that supervisors hold at least “the same qualification level

8

of the student’s course” (Yuanyuan Fan, Ana Evangelista and Hadi Harb, 2021), are specialized

in the area the student wants to explore and have the availability to be supervisors on top of

their professional endeavours.

ISEP offers a web platform for students, professors and companies to help in the whole project

process. Although this mechanism of choosing and monitoring a project is predominantly done

online, and some intrinsic methods are automatic, there are still several manual procedures

that have detrimental consequences for all stakeholders:

• The project or internship selection is chosen from the proposals found on ISEP’s project

website. Due to a large number of offers at the student’s disposal, not only the student

spends a vast amount of time looking at offers that are not of his interest, but also,

predictably, the student also misses potential proposals that could align with what he

wants to work on;

• For those students who are not convinced about what project they want to develop,

the selection task becomes increasingly more difficult, as they do not have a reference

point to search for the best proposal for them;

• By having a large number of projects to analyse, the project selection procedure is likely

to experience delays that could affect the delivery dates of important documents;

• Students do not have access to a list of all the available teachers (and their respective

specializations) to supervise their work. That makes it difficult to choose the most

suitable teacher for the project.

After choosing the project to work on during the academic semester or year, the

communication process begins between the entity that created the proposal and the student.

Depending on the institution that proposed the project, the communication process to

formalize the application can be a smooth experience or the complete opposite of that. The

worst case scenario for a student would be not being given an answer back from his interest in

the proposal. Besides that, having different communication routes between all involved parties

can lead to loss of useful data, unavailability to contact people and increased difficulty to

accompany the developed work.

During the project development phase, the student and ISEP’s supervisor communicates

regularly to check the report’s grammar and spelling issues, as well as its content. Depending

on the supervisor, the monitorization of the report can be done using different platforms such

as cloud service providers (e.g.: Dropbox, Google Drive, Microsoft OneDrive, and others), chat

services (e.g.: Microsoft Teams, Slack, and others) or email. The problem inherent to using the

previously described tools is the difficulty for both the student and supervisor to track notes

and corrections made by each one. Thus, it can be problematic to track a report's version history

and see if improvements were made.

To tackle the problems described in the previous paragraphs, ML and LMS are explored with

detail in Sections 2.2 and 2.3. The rise and evolution of ML technology and constant evolution

9

and adoption of LMS solutions during the most recent years will allow a system capable of

automatizing and monitoring projects to be created.

2.2 Machine Learning

One of the techniques to automatize the attribution and monitoring of projects is ML. ML is one

technology derived from “(…) artificial intelligence (AI) movement of the 1950s (…)” (Bi et al.,

2019) and its main purpose is to create its own intelligence “(…) without being directly

programmed” by a human (Bi et al., 2019). Over the last decade, similar to other technologies,

ML suffered an exponential evolution that allows it to be used in multiple situations. According

to a journal article published in the Science Magazine, a task that may be suitable for ML is

expected to have certain key criteria (Brynjolfsson and Mitchell, 2017):

• Provide a large data set that is applicable to the domain area in cause;

• Learn a “(…) function that can map well-defined classification inputs with well-defined

prediction outputs”. That function cannot change swiftly over time;

• Precise decision without questioning and “(…) long chains of logic and reasoning”. Since

optimal answers is not a guaranteed outcome, it needs to have “tolerance for error”.

2.2.1 Data Mining Techniques

Even though it is important that a certain task respect the key criteria stated previously, the

process of building a new ML system can be based on data mining (DM) frameworks that help

organize those types of projects. Despite DM and ML being seen as two different concepts, DM

can intercept other “(…) fields, such as artificial intelligence, statistics, database systems,

machine learning” (Gullo, 2015).

DM is the term that corresponds to the analysis of large amounts of data to understand

unknown patterns and gather useful information(Gullo, 2015).The most traditional

methodology associated to DM is the Knowledge Discovery in Databases (KDD). KDD “is the

process of using DM methods to extract what is deemed knowledge according to the

specification of measures and thresholds (…)” in an original and non-modified dataset (Ana

Azevedo and Manuel Filipe Santos, 2008). KDD follows several steps to obtain knowledge (Gullo,

2015):

• Selection: create a dataset from the original data;

• Pre-processing: filter and rearrange data that is suitable for the task;

• Transformation: reduce and project data “(…) in order to derive a representation

suitable for the specific task to be performed”;

• Data Mining: process of extracting unknown patterns from the data;

• Interpretation/Evaluation: evaluate the patterns found by DM, extracting its

underlying knowledge.

10

Over the years, other DM frameworks were popularized. Examples of such are Cross-Industry

Standard Process for Data Mining (CRISP-DM) and Sample, Explore, Modify, Model and Assess

(SEMMA).

The CRISP-DM framework is a project sponsored by the European Commission that is designed

to make projects “(…) less costly, more reliable, more repeatable, more manageable (…)”, while

being faster to develop (Rüdiger Wirth and Jochen Hipp, 2000). It is also considered the

standard framework for DM projects (Nguyen et al., 2019). Similarly to KDD, a project passes

through a number of procedures, going from a more general approach to a more specific one

(Rüdiger Wirth and Jochen Hipp, 2000):

• Business Understanding: understand the data to analyse in a business perspective;

• Data Understanding: identification of “(…) data quality problems (…)”, unknown

aspects and subsets from a specific dataset;

• Data Preparation: all procedures to build a final dataset;

• Modelling: selection and application of modelling techniques to the dataset;

• Evaluation: evaluation and review of all datasets that were modelled in the previous

phase (in order to assess if the datasets are worth being deployed). It is possible to go

back to Business Understanding phase in order to address a business problem that it is

not covered in those datasets;

• Deployment: Generation of a final report to show to the end user.

The other framework to facilitate DM projects is SEMMA, created by the SAS Institute, that is

mostly used with the enterprise solutions offered by SAS (namely SAS Enterprise Miner) (SAS,

1999). Each letter of its acronym represents a different procedure (Ana Azevedo and Manuel

Filipe Santos, 2008):

• Sample: extract a relevant dataset from the original data;

• Explore: exploration of the dataset to identify unknown patterns;

• Modify: modification of the dataset to make relevant changes before modelling it;

• Model: automatic modelling of the data in order to predict “(…) a desired outcome”;

• Assess: evaluation of the results from the model phase, by assessing the modelling

performance and prevision.

2.2.1.1 Framework Comparison

By analysing the two frameworks described in Section 2.2.1, it is possible to conclude that both

are similar to each other (even though CRISP-DM has one more step than the others), because

they are all based on the KDD methodology (Ana Azevedo and Manuel Filipe Santos, 2008;

Shafique and Qaiser, 2014). However, their implementation in real projects can vary.

On one hand, despite SEMMA’s usage not being limited to SAS’s enterprise software, the

majority of its utilization is associated with the SAS Enterprise Miner program, making it not the

most suitable option for projects outside that tech stack.

11

CRISP-DM on the other hand is the most popular framework for building DM projects since it

can also be “(…) combined with a team coordination framework such as SCRUM” (Saltz, 2021)

to solve its weaknesses, such as the use of multiple iterations and experimentations, the lack of

team roles and relevant phases (Saltz, 2021). Consequently, CRISP-DM with SCRUM is suitable

for teams with several roles since everyone can participate in different phases of the DM project.

However, due to the extensive documentation of CRISP-DM (Chapman et al., 2000) and

experience needed to run it efficiently, this framework may not be convenient for small teams

or individual projects.

2.2.2 Recommendation Systems

ML methodologies and algorithms can be appropriate for several applications, one of them

being RSs.

Over the years, with the exponential amount of data being generated and saved in data storage,

the availability of information has been at an all-time high. This leads to a “(…) problem of

information overload, which has created a potential problem to many Internet users” (Isinkaye,

Folajimi and Ojokoh, 2015), since it may be difficult for them to know where and what to choose

online (Ferreira and Oliveira, 2012). RSs (or recommender systems) were created to “(…) solve

this problem by searching through large volume of dynamically generated information to

provide users with personalized content and services” (Isinkaye, Folajimi and Ojokoh, 2015).

Consequently, those systems help people with their decision-making process by suggesting the

most relevant results, while minimizing the time spent searching for them.

A study made by Fernando Colmenero-Ferreira and Adicinéia Aparecida de Oliveira in 2012

analysing the influence of RSs in the decision-making process on the Web concluded that the

behaviour of consumers when looking for information is based on cost and benefit, hence the

importance of making it a reality by helping the user with relevant suggestions (Ferreira &

Oliveira, 2012). Figure 2 represents a graphic that evaluates the average time spent by strategy

time, concluding that the prescription strategy (a method that keeps on recommending new

Figure 2 - Average duration of a task by strategy type

(Ferreira & Oliveira, 2012)

12

suggestions based on the user interests and interaction within the website) takes less than

twice the amount of time of exploration strategy when searching for the same result.

Due to the relevance of this topic, most of the biggest corporations in the world have

implemented some form of RS to their products, such as Netflix, Microsoft, Amazon and others

(Pazzani and Billsus, 2007; Shani and Gunawardana, 2011). With a large enough dataset, a

suitable learning/filtering method, a well-defined topic and a complex ML algorithm that can

provide relevant results, every product can offer a RS to their end users.

RSs have intrinsically several filtering techniques implemented in order to produce the best

accurate recommendations for a specific UC (Figure 3). It is also possible for developers to build

their own filtering techniques based on those listed in Figure 3Error! Reference source not

found., by using multiple filtering techniques (hybrid filtering).

Figure 3 - Recommendation Techniques (Isinkaye, Folajimi and Ojokoh, 2015)

In the following subsections some of the most popular filtering techniques for RSs systems are

analysed with more detail.

Content-Based Filtering

Content-Based filtering is a technique that analyses the connection between the user’s selected

items and past preferences (van Meteren and van Someren, 2000; Lops et al., 2019). Taking

that into consideration, this filtering technique tries to create a model “(…) based on a feature-

based representation of the content of recommendable items” (Lops et al., 2019). The items

are analysed by their correspondent characteristics and content, and later compared with the

user’s previous actions. Therefore, it is possible to say that the content-based filtering algorithm

“(…) recommends items that are similar to those that a user liked in the past” (Jariha and Jain,

2018).

Although this technique is based on the user’s previous actions and ratings, it is not get affected

from a cold start problem like collaborative filtering, because if there is no user history, the

system can still make recommendations based on the content of the items themselves.

13

However, the recommendations based on this technique are only “(…) from a restrict theme

scope (…)” (Nabizadeh et al., 2013) and it only recommends items that are similar to the ones

the user has seen. That makes it difficult for the system to recommend items that are somewhat

outside of the user’s scope but still inside its interest. It can also be less precise because

recommendation can be made without user rating (B.Thorat, M. Goudar and Barve, 2015).

Collaborative Filtering

Collaborative filtering is a technique that analyses the “(…) patterns of ratings or usage without

need for exogenous information about either items or users” (Koren, Rendle and Bell, 2022),

which is something that contrasts with content-based filtering. In order to make

recommendations, this method needs to take into consideration both the users and items of

the dataset. According to Yehuda Koren, Steffen Rendle, and Robert Bell, there are two

different ways for a collaborative filtering technique to make recommendations: memory-

based filtering (or neighbourhood models) and model-base filtering (or latent factor models)

(Isinkaye, Folajimi and Ojokoh, 2015; Koren, Rendle and Bell, 2022).

On one hand, memory-base filtering fixes on the relationships between users (user-based) or

items (item-based). In user-based filtering, recommendations are made based on the

preferences of similar users, while in item-based filtering, recommendations are made based

on the similarity between items using user’s ratings (Koren, Rendle and Bell, 2022). The main

disadvantage of this approach is the use of the total or a large portion of the dataset, which can

create efficiency and scalability problems (B.Thorat, M. Goudar and Barve, 2015).

On the other hand, model-base filtering makes simultaneous use of the user and items from a

small set of information in the dataset and “(…) tries to explain ratings by characterizing both

item and users on factors automatically inferred from user feedback” (Koren, Rendle and Bell,

2022). By using lesser data, it is considered more performant and scalable, and capable of

providing better prediction accuracy than memory-based filtering (B.Thorat, M. Goudar and

Barve, 2015).

Collaborative filtering is a great technique that can be both reliable and easy to implement.

However problems such as cold start, sparsity and scalability are aspects to take into

consideration when adopting it on a RS (B.Thorat, M. Goudar and Barve, 2015).

Hybrid Filtering

Hybrid filtering combines features of content-based and collaborative methods of filtering to

create a RS suitable for a specific UC and “(…) improve recommendation accuracy” (B.Thorat,

M. Goudar and Barve, 2015). Besides those advantages, combining several filtering methods in

different ways to produce a reliable recommender system also mitigates some of the problems

associated with using single filtering methods.

According to Gediminas Adomavicius and Alexander Tuzhilin, there are several approaches to

design a hybrid filtering method (Adomavicius and Tuzhilin, 2005):

14

• Implementing both collaborative and content-based methodologies to combine their

predictions;

• Select several features from either one of the filtering methods and add those to their

implementation;

• Build a “(…) general unifying model (…)” that uses both filtering methods.

Using those references as a guideline, several hybrid implementations can be created. For

instance, by only considering the user’s past preferences, content-based filtering could

integrate with collaborative filtering methodologies to solve that disadvantage (B.Thorat, M.

Goudar and Barve, 2015; Lops et al., 2019).

Examples of hybrid approaches relevant for this dissertation include knowledge-based filtering,

utility-based filtering, fuzzy filtering and demographic-based filtering (Burke, 2000; Tarus, Niu

and Mustafa, 2018; Lahoud et al., 2022). Those approaches are explained with more detail in

subsequent sections.

Knowledge-Based Filtering

Knowledge-Based filtering is a technique that uses the knowledge gathered from a particular

domain to make questions to users about their preferences within that domain. Those RSs need

to “(…) employ three types of knowledge: knowledge about the users, knowledge about the

items and knowledge about the matching between the item and user’s need” (Tarus et al.,

2018). Taking into consideration the user’s answers, the system tries to generate

recommendations (Burke, 2000):

Based on such information, the system can pursue a knowledge-based approach to generating
a recommendation, by reasoning about what products meet the user’s requirements.

This type of hybrid filtering does not experience typical problems of content-based and

collaborative filtering techniques such as cold start or rating sparsity problem due to the use of

domain knowledge (Tarus, Niu and Mustafa, 2018).

Utility-Based Filtering

Utility-Based filtering is a technique that evaluates the utility of a particular item to a given user.

By evaluating the user preferences, it is possible to calculate the utility of an item and the

likelihood of that item being chosen by the user (Deng, 2015).

Just like knowledge-based filtering, it is not affected by problems from other filtering

methodologies such as cold start or rating sparsity. However, since this technique often uses

multi-attribute utility theory (the user decision making process is made of several attributes

instead of a few), it makes it difficult to develop a reliable RS with “(…) little user effort” (Deng,

2015).

15

Fuzzy Filtering

Fuzzy filtering is a technique that takes into consideration the “(…) uncertainty, impreciseness

and vagueness in item features and user’s behaviour” (Jain and Gupta, 2018). There are cases

where the user does not know how to quantify certain item ratings with an exact value. Instead,

the user tries to quantify with a range of values (or labels) the item rating, without being so

precise.

As with any other hybrid filtering technique, the fuzzy logic can be applied with other

techniques to enhance its performance and effectiveness. Research conducted to fuzzy logic

within RSs showed significant changes when applied with clustering algorithms, to improve “(…)

the determination of similar users (…)” by analysing the fuzzy characteristics between users

(Jain and Gupta, 2018).

Demographic-Based Filtering

Demographic-Based filtering is a technique that analyses the demographic information of a user

(such as physical attributes, age, status, educational background, and other similar attributes)

and compares to other users with similar demographic characteristics, in order to make

recommendations. This type of filtering is very similar to collaborative filtering due to the fact

that both are capable of “(…) identifying cross-genre niches, enticing the users to jump outside

the familiar, and their ability to improve themselves over time” (Al-Shamri, 2016).

2.2.3 Learning Methodologies

ML methodologies can be divided into four main learning types (Ayodele, 2010; Sarker, 2021):

• Supervised Learning: Algorithms of this category are trained on a dataset, so that they

can map the “(…) inputs to desired outputs” (Ayodele, 2010). The information inside

the datasets is connected correctly, so that it is possible to make predictions about

unseen examples (based on the training set). Inside this category, algorithms are

grouped in two types:

o Classification: Algorithms that associate labels (outputs) to input variables

(inputs). They are normally used for more generic problems, for instance to see

if an email is considered spam or not;

o Regression: Even though classification and regression algorithms have the

same core principals, regression algorithms are used to predict a continuous

quantity (output) based on input variables (inputs). An application of these

algorithms would be to try predicting the height of an individual based on his

other physical statistics.

• Unsupervised Learning: Algorithms of this category need to learn by analysing

similarities inside the dataset. The main objective is to learn how to model the structure

16

and distribution of the dataset without being told what the data represents. Inside this

category, algorithms are grouped in two types:

o Clustering: Algorithms that try to discover trends or patterns in data by

grouping “(…) data points in large datasets without concern for the specific

outcome” (Sarker, 2021);

o Association: Algorithms that use a “(…) rule-based machine learning approach

(…)” (Sarker, 2021) to discover patterns in data. It is used in several industries

and its main objective is to find similarities in points that are often picked

together. For instance, an application of this algorithm is the likelihood of

someone buying a given product based on their shopping cart.

• Semi-Supervised Learning: Algorithms of this category are a mixture of both supervised

and unsupervised learning algorithms because they operate “(…) on both labelled and

unlabelled data” (Sarker, 2021). As a result, it tries to take the best characteristics of

both worlds.

• Reinforcement Learning: Algorithms of this category learn through trial and error by

not making the same mistakes made in previous actions. Consequently, these

algorithms do not learn through datasets, but learn by interacting with the environment

instead.

The previous described methodologies (with the exception of reinforcement learning) can be

programmed with traditional ML techniques, yet they are “(…) limited in their ability to process

natural data in their raw form” (LeCun, Bengio and Hinton, 2015). Classic ML techniques learn

to make predictions based on the features inside datasets, which requires more engineering

effort to design a model that could extract information from raw data. To mitigate that and be

able to learn automatically without much effort to the development team, the concept of Deep

Learning (DL) was originated.

DL is a subfield of ML that consists of several representation learning methods (process of

learning patterns within the data) with multiple layers of abstraction (LeCun, Bengio and Hinton,

2015). Therefore, DL is capable of recognizing more complex patterns in the data than

traditional ML methods. DL is known to be used in several functions such as image and speech

recognition, NLP and machine translation, however there are studies that analyse the use of DL

in other ML activities such as RSs (Khan et al., 2021). The most popular DL techniques are “(…)

Autoencoder, Deep Belief Network, Convolutional Neural Network, Recurrent Neural Network,

Recursive Neural Network and Direct Deep Reinforcement Learning” (Shinde and Shah, 2018).

Although DL seems to be the obvious decision to the majority of ML related problems, it has

some disadvantages compared to traditional methods. In order to use DL effectively, a very

large dataset needs to be provided, which may not be suitable for smaller to medium sized

projects (Shinde and Shah, 2018). Besides that, since DL uses more complex abstraction layers,

it may be more difficult to assess the decision-making process behind the produced result.

Lastly, a hardware machine with a highly capable Graphics Processing Unit (GPU) is advisable to

17

run the developed algorithms (Shinde and Shah, 2018), and it is something that may not be

available in every project.

In conclusion, there is “no one size fits all” approach to choosing the best ML methodology and

algorithms for RSs since various contexts need to be considered before. In the next subsections,

some ML methods and algorithms for RSs, which belong to a single or multiple learning

categories, are described.

2.2.3.1 K-Nearest Neighbour

KNN is a supervised learning ML algorithm that takes into consideration other points

(neighbours) inside a model (Cover and Hart, 1967). KNN can be used in both classification and

regression problems. The main purpose of this algorithm relies on the classification of a sample

based on the data of the closest identical points of the model. Based on the acronym of the

algorithm (KNN), the algorithm tries to classify a point based on the K (𝐾 ∈]0,+∞[) nearest

neighbours (NN). According to a report published on the Institute of Electrical and Electronics

Engineers, this method has a very low probability of error (Cover and Hart, 1967):

“Surprisingly, it will be shown that, in the large sample case, this simple rule has a probability
of error which is less than twice the Bayes probability of error, and hence is less than twice the
probability of error of any other decision rule, nonparametric or otherwise, based on the infinite
sample set.”

KNN classifies its points by measuring the “(…) the difference or similarity between two

instances” (Jiang et al., 2007). Even though this algorithm is classified as being simple and

effective, according to Liangxiao Jiang and its colleagues at China University of Geosciences,

KNN has three main flaws (although those are further discussed in the article and solved) (Jiang

et al., 2007):

• The distance being an Euclidean distance;

• Neighbourhood size being assigned as an input parameter;

• Simple voting mechanism being the only method for probability estimation.

2.2.3.2 Matrix Factorization

MF is a ML algorithm that decomposes a matrix composed of information of a dataset into

lower-dimensional matrices. Therefore, it can be used in multiple applications, one of them

being RSs. In fact, this technique is used in several big corporation such as Amazon and Netflix

for their recommender systems (Koren, Bell and Volinsky, 2009). According to Yehuda Koren,

MF is applied in RSs by a two-dimensional matrix, one that represents users and the other that

represents their items of interest (Koren, Bell and Volinsky, 2009). It is then considered a variant

of latent factor models, which transform both the user and item in some latent factor (Koren,

Rendle and Bell, 2022). These types of algorithms are mathematically more complex than other

algorithm options, however they are consequently more accurate (Mongia et al., 2020).

18

Since it can address both supervised and unsupervised problems, it is possible that this

technique can use additional information, such as user behaviour, to help in the

recommendation process (Koren et al., 2009, 2022).

MF is a versatile methodology since it can be implemented in several different formats. The

most popular methods include the non-negative MF, Singular Value Decomposition, LU

factorization, Cholesky factorization, QR factorization, and other implementations (Ng and Tan,

2021).

2.2.3.3 Decision Tree

Decision Tree is a mechanism that can be used in both regression and classification algorithms

(supervised learning). It was one of the first mechanisms to be adopted to electronic form in

the 20th century and it is considered a general-purpose methodology since it can be used in a

wide spectrum of tasks including “(…) data mining, knowledge discovery, machine learning, and

artificial intelligence” (de Ville, 2013).

As the name suggests, decision trees resemble a tree-like shape when seeing it on a diagram

(Figure 4). Therefore, it can be seen as a “(…) recursive structure for expressing classification

rules” (Quinlan, 1990).

Figure 4 - Example of a decision tree (de Ville, 2013)

The tree is built by analysing the training set, splitting it into several small partitions and placing

tests that connect leaves (branches) from different levels. Those tests decide if the new data

meets the requirements needed for advancing to the next level. The training set is divided until

“(…) every part comprise totally or predominantly of sample from one class”, which means that

each leaf represents tinier portions of the total dataset the higher the tree level is (Anuradha

and Gupta, 2014).

This algorithm tries to predict new data by navigating through the tree and stopping when it

reaches a final leaf or if the stopping criteria were already met (Quinlan, 1990; de Ville, 2013).

19

While it is a simple algorithm to implement, it comes with performance issues when tree

complexity is increased. Since it needs to execute every test within the tree, it has a

computational cost consequently (Quinlan, 1990).

2.2.3.4 Artificial Neural Network

ANN is a ML methodology that was inspired by how the human brain functions. Human brains

are capable of learning on their own because of how neurons work inside the brain. ANN try to

replicate the same principle by simulating a network of model neurons (Krogh, 2008):

“By applying algorithms that mimic the processes of real neurons, we can make the network
‘learn’ to solve many types of problems.”

Like the other ML techniques and algorithms explored in Sections 2.2.3.1, 2.2.3.2 and 2.2.3.3,

ANN has multiple applications besides RSs, including face recognition, anomaly identification

on medical images, control of electronic devices and appliances, and other functions (da Silva

et al., 2017).

At its core, ANN are composed of multiple layers (da Silva et al., 2017):

• Input: This type of layer is responsible for receiving information and it is the only type

of layer that does not have artificial neurons, since its main purpose is to act as a conduit

for the data that is passed to other layers. Before passing it, the information is first

normalized to produce “(…) better numerical precision for the mathematical operations

performed by the network”;

• Hidden: This type of layer has artificial neurons that are responsible for identifying

patterns and features in the data. It is on these layers that most of the internal

processing occurs;

• Output: This layer has artificial neurons that are responsible for producing the final

network output with the processing that occurred in previous layers (such as hidden

layers). Those layers can have different architectures depending on the problem to

tackle. These architectures can be: single-layer feedforward, multilayer feedforward,

recurrent and mesh networks.

As stated previously, most layers are composed of artificial neurons. Artificial neurons mimic

the behaviour of biological neurons by receiving an input from other neurons or external

sources and then performing a computation on that input. Then the results obtained are sent

to other neurons in the next layer, and the process repeats.

However, artificial neurons have a more complex structure behind them, and according to Ivan

Nunes da Silva and co., neurons are composed by seven elements: input signals, synaptic

weights, linear aggregator, activation threshold, activation potential, activation function and

output signal (da Silva et al., 2017).

20

2.2.4 Natural Language Processing

Although NLP is a field of ML and AI that analyses the content of human written language, it can

be also used to enhance RSs. Items that are evaluated in a RS can have important information

that is not being processed by traditional algorithms, such as user reviews or product

descriptions, both of which can hide relevant details. In order to improve NLP’s efficacy, it is

necessary to pre-process the input sentences by removing stop words, removing prefixes and

suffixes to obtain the root word, and/or other techniques.

NLP techniques are applied to process that information by using offline (e.g.: using text reviews

in collaborative filtering, or product description in content-based filtering) or online inputs (e.g.:

talking directly to the system to retrieve more custom recommendations, like the ChatGPT tool

explained in Section 2.4.1.6) (Shalom, Roitman and Kouki, 2022). Most NLP state-of-the-art

algorithms apply DL techniques under the hood to better analyse intrinsic patterns in the text.

Examples of that are DeepCoNN or TransNets algorithms (Catherine and Cohen, 2017; Zheng,

Noroozi and Yu, 2017; Shalom, Roitman and Kouki, 2022). However, NLP is not exclusive to DL

and there are also techniques that can be used in conjunction with ML applications, such as the

TF-IDF algorithm (Renuka, Raj Kiran and Rohit, 2021).

TF-IDF is a text similarity algorithm that is responsible for measuring the importance of a given

word, sentence or expression in a collection of documents. The text is represented as a vector

by taking into consideration the two main parts that characterizes the algorithm (Lan, 2022):

• Term Frequency: Determines how frequent the word or expression appears in the

document. The more frequent it appears, the more relevant it becomes;

• Inverse Document Frequency: Determines how frequent a word or expression appears

in a collection of documents. The more frequent it appears in several documents, the

less relevant it becomes.

By calculating the TF-IDF vector it is possible to assess the similarity of texts by using algorithm

such as cosine similarity (Lan, 2022).

2.2.5 Evaluation

In order to assess which algorithms perform the best in a particular RS, evaluations are used in

different settings with several property-based evaluation metrics. Depending on the evaluation

settings, some properties might have different results or are impossible to measure. For

instance, the trust property of a RS is impossible to assess in an offline evaluation environment

(Gunawardana, Shani and Yogev, 2022):

“It is unclear how to measure trust in an offline experiment, because trust is built through an
interaction between the system and a user.”

21

Therefore, it is advisable that several different implementations are considered depending on

the evaluation setting being utilized. In the next subsections, several evaluation settings and

metrics are analysed with more detail.

2.2.5.1 Evaluation Settings

There are three ways to test RSs: offline, user studies and online. Each one of them has its own

advantages, disadvantages, and its own set of difficulties. In this section, a brief explanation of

those settings are presented according to Asela Gunawardana, Guy Shani and Sivan Yogev

(Gunawardana, Shani and Yogev, 2022).

Offline

Offline experimentation uses a selected dataset of users or rating items to “(…) simulate the

behaviour of users that interact with a recommendation system”, since it is assumed that the

data collected in the dataset is similar to the user behaviour once the RS is online (Gunawardana,

Shani and Yogev, 2022). Hence, it can be seen as a disadvantage of this testing setting because

there is no possibility to reproduce user interaction with the system, which is a major

component to consider.

User Studies

User studies are used as a complement to offline experimentations since it is difficult or almost

impossible to simulate user behaviour and interaction with it. These studies are handed to a

selected group of people where the main objective is to track their interaction with the RS when

doing several proposed tasks. Besides that, questions can be asked before, during, and after the

task completion to collect additional relevant data.

Even though it is an exceptional way to test user interaction, it comes with time efficiency and

cost problems. One of the reasons is that it is expensive to pay for people to test the RS. It is

then advisable to be cautious about the results, since they can be biased “(…) to try and satisfy

the person or company conducting the experiment” (Gunawardana, Shani and Yogev, 2022).

However, even if the majority of users were volunteers, the time constraint would still be a

problem since the same tasks would need to be executed several times in order to take

plausible conclusions.

Online

Online experimentation can be seen as the most complete test setting since it is tested by real

users with as much freedom as they want, since they can perform whichever task they desire.

However, such tests can be detrimental to the final product since a bad RS might lead people

to stop using it in a non-testing environment. It is recommended to conduct an extensive offline

experimentation set in order to mitigate those risks.

22

2.2.5.2 Property-Based Evaluation Metrics

Several scientific studies suggest that a RS is evaluated and measured by the accuracy of

prediction and coverage (Isinkaye, Folajimi and Ojokoh, 2015; Raghuwanshi and Pateriya, 2019)

since those properties can be measured through different equations on “(…) filtering technique,

features of data set, and the task of recommendation system” (Raghuwanshi and Pateriya,

2019).

However, according to several other studies, there are a wide number of evaluation properties

to classify a RS. The listed properties in those scientific articles are: user preference, prediction

accuracy, coverage, confidence, trust, novelty, serendipity, diversity, utility, risk, robustness,

privacy, adaptability, scalability (Wu, He and Yang, 2012; Gunawardana, Shani and Yogev, 2022).

It is worth mentioning that a RS is not evaluated by all the properties referred in the last

paragraph, since some of them can be traded off. Hence, it is important to assess which

properties are the most valuable ones to measure depending on the RS domain.

In the next subsection, the metrics associated to the prediction accuracy are analysed with

more depth, since they can be mathematically calculated and classified, in contrast with the

other general properties.

Prediction Accuracy

Prediction accuracy measures how well the RS can generate accurate recommendations to the

end users. It is often the property that most developers tend to prioritize since it is assumed

that a user continues to use the system depending on its prediction accuracy (Gunawardana,

Shani and Yogev, 2022).

There are several metrics to assess prediction accuracy, which are RMSE and MAE. The lower

the value of these metrics, the better the RS is at predicting (Isinkaye, Folajimi and Ojokoh, 2015;

Raghuwanshi and Pateriya, 2019; Gunawardana, Shani and Yogev, 2022).

MAE is an evaluation metric that measures the deviation of recommendation from user’s

specific value. It is calculated by the absolute difference between predictions (�̂�𝑢𝑖) and actual

values (𝑟𝑢𝑖). 𝑁 stands for the number of ratings inside the dataset and 𝑢𝑖 represents the pair

user-item in a RS.

𝑀𝐴𝐸 =
 ∑ |�̂�𝑢𝑖 − 𝑟𝑢𝑖|(𝑢,𝑖) ∈ 𝑁

𝑁

RMSE is an evaluation metric that penalizes large errors even further, even if it only happens

on only one rating (Gunawardana, Shani and Yogev, 2022). It is calculated by the square root of

the average of the difference between predictions (�̂�𝑢𝑖) and actual values (𝑟𝑢𝑖). 𝑁 stands for

the number of ratings inside the dataset and 𝑢𝑖 represents the pair user-item in a RS.

𝑅𝑀𝑆𝐸 = √
 ∑ (�̂�𝑢𝑖 − 𝑟𝑢𝑖)

2
(𝑢,𝑖) ∈ 𝑁

𝑁

23

Besides measuring prediction accuracy with equation metrics, it is also possible to evaluate

prediction accuracy through classification. These metrics are computed in a confusion metric

with actual and prediction values, and those are classified based on four indicators

(Raghuwanshi and Pateriya, 2019; Gunawardana, Shani and Yogev, 2022) (Table 1).

Table 1 - Classification of the possible result of a recommendation of an item to a user

 Recommended Not Recommended

Used True Positive (TP) False Negative (FN)

Not Used False Positive (FP) True Negative (TN)

Examples of classification metrics are precision, recall, false positive rate and F-Measure.

Precision calculates the relevance of predictions to the user, by calculating the fraction between

the useful recommended items and all recommended items retrieved by the system. The higher

the precision value is, the better the RS is at predicting.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

In addition, recall also calculates the relevance of predictions to the user but in a different

manner, since it analyses the quantity of useful recommended items to the number of all useful

items. The higher the recall value is, the better the RS is at predicting.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

False positive rate is the exact opposite of recall, since it analyses the quantity of recommended

items that were not useful to the user in comparison to the number of total non-useful items.

The higher the false positive rate value is, the worse the RS is at predicting.

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

The final metric of classification is F-measure, which is a simplification method that englobes

both precision and recall metrics.

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2.2.6 Technologies

With the evolution of ML in recent years, many programming languages have been adapted to

allow programmers and developers to create ML applications with them. These types of

applications are harder to develop since besides having to know how to program, the developer

also needs to know other essential areas such as math, information theory and statistics (Wan

et al., 2020). In addition, developers need to take into consideration that software engineering

24

practices change between ML and non-ML applications. Those changes happen during the

whole software engineering process, including requirement engineering, design, development

and testing (Wan et al., 2020).

It is then important to choose a programming language that can help developers accelerate the

coding process. One of those programming languages is Python, which according to several

sources is one of the most popular programming languages for ML and the most used one for

ML programs (Srinath, 2017; Nagpal and Gabrani, 2019; Cohen, 2021).

In this section, a selected number of Python frameworks are analysed in greater depth. In the

end, a comparison between all the analysed technologies is made to discover which coding

framework is most suited depending on the project in hands.

2.2.6.1 Python

Python is an object-oriented, high-level, multi-purpose programming language created by

Guido van Rossom that is becoming one of the most popular programming languages, and one

of the most popular options for ML applications (Nagpal and Gabrani, 2019) (Srinath, 2017).

One of its strengths is the fact that it is a uncomplicated programming language, that has “(…)

a very simple and elegant syntax” and better readability than the likes of C++, Java or C#, making

it a good choice for beginners (Srinath, 2017).

Compared to other languages such as Java and R, Python is pointed out as the one with the

highest value of run time speed for ML tasks. However, it is also the one that has the least

amount of memory utilization and the faster to make a ML program, due to the simpler syntax

(Johnson and Chandran, 2021).

By having high popularity, Python has a considerably sized developer community and offers a

wide spectrum of open-source frameworks for ML, including Scikit-Learn (built on top of NumPy,

SciPy and matplotlib), and DL frameworks such as TensorFlow, Keras and PyTorch (Raschka,

Patterson and Nolet, 2020) (Nagpal and Gabrani, 2019). With the amount of proven ML

frameworks existent in this programming language and the fact that it is well suited for most

environments (because of being written in C, C++ and other languages), Python is being seen as

a replacement option to other alternatives on the market, such as MATLAB and R (Nagpal and

Gabrani, 2019).

Scikit-Learn

Scikit-Learn is a ML framework built with Python that is suitable to all ML learning

methodologies types described in the beginning of Section 2.2.3. (Kramer, 2016). It is one of the

most popular Python ML libraries that is being used by several corporations on their commercial

products. One of its advantages relies on being able to solve some of the efficiency issues from

Python by allowing developers to implement algorithms in C language and integrate them with

a tool called Cyphon (Kramer, 2016). Other programming languages libraries can also be

implemented in Scikit-Learn, such as Fortran and C++ (Hao and Ho, 2019).

Scikit-Learn projects have an implicit structure to be followed (Hao and Ho, 2019):

25

The Scikit-learn package covers four main topics related to machine learning. They are data
transformation, supervised learning, unsupervised learning, and model evaluation and
selection.

Since this framework is built on top of other well established Python libraries such as NumPy,

SciPy and matplotlib, it offers methods for various phases of ML projects. Firstly, it is possible

to import datasets using auxiliary functions from NumPy (Kramer, 2016).

The next step is to use one ML learning methodology. Due to the fact that the algorithms

explained in Section 2.2.3 are used in several commercial solutions and are quite popular, Scikit-

Learn includes implementations of those algorithms as packages to import (Hao and Ho, 2019).

The last part in a Scikit-Learn project is the model evaluation and selection. The training and

test set originated in the previous step can be checked through the execution of cross-validation

method (Kramer, 2016; Hao and Ho, 2019).

TensorFlow

TensorFlow is a ML library created by Google and released in November of 2015 as an open-

source project that is highly versatile due to allowing developers to program in various

programming languages when needed (Low-level Python API, C++, Java and Swift). TensorFlow

can run in both desktop and/or mobile environments and is also considered the “(…) most

widely used deep learning library in the industry (…)” (Géron, 2022).

TensorFlow is mostly used for large ML projects because of the support for GPU and Tensor

Processing Units (TPU) usage and heavy computation, however it can be used for other ML tasks

(Géron, 2022). Figure 5 shows what a typical TensorFlow project architecture looks like.

Figure 5 - Tensorflow Architecture (Géron, 2022)

TensorFlow as a wide spectrum of applications and can be seen as one of the most complete

technologies at the date of writing of this dissertation for ML and DL tasks. This library was

successfully deployed across many production projects across several computer science areas,

including “(...) speech recognition, computer vision, robotics, information retrieval, natural

language processing, geographic information extraction, and computational drug discovery”

(Abadi et al., 2016).

As discussed in the scientific paper “A Tour of TensorFlow” by Peter Goldsborough, TensorFlow

represents ML algorithms as computational graphs, because it is an uncomplicated method to

visualize and comprehend its representation (Goldsborough, 2016). Nodes are referred to as

26

operations, which can be “(…) a mathematical equation, a variable or constant, a control flow

directive, a file I/O operation or even a network communication port” (Goldsborough, 2016),

while edges are referred to as tensors that represent data flow between operations.

Computational graph execution is performed in a specific session, which evaluates tensors. The

execution process starts in a particular session, which subsequently sends that information to

the master process that delegates the task to one or several set of workers divided into one or

more devices (Figure 6).

Figure 6 - Computational Graph Execution Example (Goldsborough, 2016)

Keras

Keras is a DL API created by François Chollet and released in March of 2015 as an open-source

project that works exclusively with TensorFlow since version 2.4. Due to that fact, Keras cannot

be used as a standalone API and needs to be used inside a TensorFlow project, however in

previous versions of the API, it was compatible with other ML libraries (Géron, 2022). Since it is

a DL library, it allows to “(…) train, evaluate, and execute all sorts of neural networks” (Géron,

2022).

Figure 5 shows that since TensorFlow allows low-level code to personalize the developed

algorithms, Keras can be a more useful tool for more generic DL algorithms, since it is seen as a

high-level library.

Every Keras code starts with a model instantiation. The simplest model that Keras provide is the

Sequential model, which is “(…) a linear pipeline (…) of neural network layers” (Gulli and Pal,

2017), though it may not be the best option for more complex structures. After defining the

model, it is possible to add layers (e.g. Dense layers) to it and assign its neurons specific weights.

In order to transform the linear model into a non-linear model that is capable of discovering

non-linear patterns in the data, the neural network layers need an activation function attached

to them with the goal of introducing non-linearity into the output of a neuron. The most

common activation functions in Keras are sigmoid and rectified linear unit (Gulli and Pal, 2017).

PyTorch

PyTorch is a ML and DL library that was developed and maintained by Meta (previously

Facebook) that was created as a faster alternative to NumPy by enabling GPU utilization and a

DL platform that provides “(...) maximum stability and speed” (Ketkar and Moolayil, 2021). Since

it is an alternative to NumPy, developers familiar with that framework have a smoother

transition going with PyTorch. It is also worth mentioning that like the other libraries analysed,

27

it supports C++ algorithms to improve performance against Python (Ketkar and Moolayil, 2021).

Performance is something that is greatly considered by PyTorch, because even though the

simplicity of creating ML algorithms is one of its biggest advantages, performance is not ditched

to achieve that (Paszke et al., 2019):

“To be useful, PyTorch needs to deliver compelling performance, although not at the expense
of simplicity and ease of use. Trading 10% of speed for a significantly simpler to use model is
acceptable; 100% is not. Therefore, its implementation accepts added complexity in order to
deliver that performance.”

In fact, even though PyTorch is a Python framework, it contains a substantial amount of non-

Python code in form of C++ and NVIDIA’s programming language CUDA (Stevens, Antiga and

Viehmann, 2020). The framework adds several optimizations such as a C++ core, separate

control and data flow, custom caching tensor allocator, multiprocessing and reference counting.

PyTorch is increasing in popularity in the last few years as a common ML and DL framework,

and it can be due to the fact that it respects the ‘everything is just a program’ philosophy (Paszke

et al., 2019). What that means is that models, optimizers and data loaders in PyTorch are usually

expressed as Python classes, promoting good code quality and object-oriented patterns (Paszke

et al., 2019).

2.2.6.2 Technology Comparison

A brief objective comparison of all the frameworks analysed in Section 2.2.6.1 is represented in

Table 2.

Table 2 - Framework Objective Comparison

 SCIKIT-LEARN +
SURPRISE

PYTORCH
TENSORFLOW +

KERAS

LEVEL High-Level High / Low-Level
Low-Level (TensorFlow)

/ High-Level (Keras)

OPEN-SOURCE Yes Yes Yes

CPU AND GPU
UTILIZATION

Only CPU Yes Yes

LANGUAGE
SUPPORT

Python Python and C++

Python and C++ (with
other language support

for Java, Swift,
Javascript and mobile

support with
TensorFlow Lite)

POPULARITY 3rd 2nd 1st

28

All of the options analysed in Section 2.2.6.1 are some of the most popular Python libraries for

ML applications because they allow the implementation of the most common ML algorithms

with relative ease. Besides that, since those frameworks are supported by the same

programming language, they do not have a wide range of differences in terms of output.

Interpreting on what was discussed, the main differences lie on the coding syntax, the level the

framework allows to write algorithms and overall performance.

Firstly, it is worth mentioning that Scikit-Learn does not have the necessary specific

implementations for RSs built in, so options like Surprise can be used as a more user-friendly

approach (Hug, 2020). Therefore, implementing RSs with Scikit-Learn increases the learning

curve for people not used to that framework (besides being considered a high-level ML

framework). The same can be said for TensorFlow and Keras. The difference is that, being a low-

level framework, TensorFlow allows for more complex RS implementations, while Keras is used

as a higher-level alternative for more simple and common problems. Starting at TensorFlow’s

2.4 version, Keras is deeply integrated with TensorFlow, providing a seamless experience.

In terms of performance, PyTorch seems to have the advantage in comparison to TensorFlow

in attributes such as forward and backward measure in Central Processing Unit (CPU) and GPU

(Goldsborough, 2016) as well as throughput across several different models, which PyTorch was

17% behind of the fastest framework (Stevens, Antiga and Viehmann, 2020). In spite of that,

those tests were only executed in one specific hardware machine, and performance can vary

depending on the running environment (which is something to take into consideration when

choosing one of those technologies since certain frameworks do not work on specific devices)

(Zhang, Wang and Shi, 2018). In fact, there is one study that concludes that PyTorch is more

accurate than TensorFlow and Scikit-Learn, however it is much slower than the other two

solutions when the number of epochs in a model increases (Gevorkyan et al., 2019).

In conclusion, all of these ML and DL frameworks are capable of providing good results when

implementing ML applications, and RSs are no exception. Scikit-Learn should be paired with a

RS library for better development experience. PyTorch can be a better alternative for

developers that have an object-oriented programming background, however by having that

structure it does not give the same flexibility that frameworks like TensorFlow provide. Being

the most popular Python ML framework, TensorFlow has a more robust open-source

community, more language and device support, and the option of using Keras for higher-level

DL algorithms.

2.3 Learning Management Systems

The other mechanism to automatize the monitorization process of projects is LMS. LMS is a

digital solution that “(…) integrate a wide range of pedagogical and course administration tools”

for students, teachers and school administrative staff (coates, james and baldwin, 2005). These

features allow for the possibility of remote online learning (or e-learning) and can enhance the

learning experience by saving time in more complex manual tasks (Cavus, 2015).

29

LMS is considered a versatile software since it can be implemented in several different ways

and can only have the features that are applicable to the UC in cause.

There are several LMS options that institutions can choose in order to enhance their digital

learning experience. Depending on the LMS, it can be classified as being an open-source

technology or a proprietary software. According to Imed Bouchrika, the most popular LMS

options (the ones with the most market share in the United States) are Moodle, Blackboard,

Canvas and Brightspace (Bouchrika, 2022). All the stated software solutions are paid, with the

exception of Moodle, which is open-source and well accepted by the community, being the one

that “(…) can compete with the commercially available LMS systems” (Cavus, 2015). According

to Nadire Cavus, some of the most common LMS features include (Cavus, 2015):

• Delivery of knowledge to students in various formats, including Word, PowerPoint,

video, and/or audio;

• Assessment of students via homework and exams;

• Delivery of the results to students;

• Communication between student-student and student-teacher;

• Student Interaction with lessons’ content;

• Scheduling and class management;

• Keeping records for students and teachers (e.g. via logs);

• Tracking student attendance records;

• Students seeing their own class times;

• E-learning content;

Although there are several LMS options available in the market, there are a select number of

UCs where the implementation of those systems is not the recommended option, due to the

excessive list of features that would not be utilized. For those specific cases, the development

of a system containing a selected amount of features stated previously and other custom

functionalities is something to take into consideration when implementing a LMS. Therefore,

technology choice for implementing these types of systems is non-relevant, since modern

programming languages can be used to achieve those functionalities.

2.4 Related Work

In this section, a list of related applications and systems are analysed in more depth for both

systems to be developed: RS and LMS respectively.

2.4.1 Recommendation Systems

Since this topic is very specific, it was only possible to find one commercial solution (ChatGPT).

However, there are several papers on this dissertation topic that explore more concrete

solutions with several relevant features.

30

2.4.1.1 Course Recommendation System

A paper that studied several algorithms for course RSs (to help students decide which are the

appropriate courses to take in their academic career) analysed and compared “(…) their

performance by using a real educational data set” (Huynh-Ly Thanh-Nhan, Huu-Hoa Nguyen

and Thai-Nghe, 2016).

The developed system is composed of two main applications: one web app for students and

educators to make use of the RS, and one separate application for system admins to train

and/or retrain the model with several different parameters. Even though it is not directly

correlated to the dissertation’s theme, it evaluates course recommendations based on the

students’ grades, which could be something to keep in mind when recommending projects to

students.

The algorithms compared in the research were baseline predictors, KNN, MF and biased matrix

factorization (BMF). By the end of the comparison, the prototype system was built with BMF

because it produced the most accurate results (with the least RMSE of all algorithms) (Huynh-

Ly Thanh-Nhan, Huu-Hoa Nguyen and Thai-Nghe, 2016).

2.4.1.2 Thesis Topic Recommendation System

Other scientific research made use of the simple additive weighting method, a method that is

popularly used in multi-criteria decision making (Nurmalini and Rahim, 2017), in conjunction

with methods such as K-Means Classifier and Naïve Bayesian Classifier to build RSs systems for

thesis topics (Kusuma and Musdholifah, 2021).

This system was created due to the number of thesis options a student can choose, which can

be overwhelming when choosing the best one. The system asks for the courses which the

student attended and is interested in, and the corresponding grades. After getting the

information, the system analyses the course syllabus and compare them to the thesis abstracts

to see which ones it can recommend. By doing that, this system allows to not only take interests

into consideration but also recommend a thesis within the student’s abilities.

Using those techniques, the system was capable of achieving a “(…) score with relevance

77.33%, novelty 90.67%, serendipity 80% and increasing recommendation diversity 84%”

(Kusuma and Musdholifah, 2021), resulting in an average score of 83% of the system objective,

the metric used for evaluating the RS.

2.4.1.3 Internship Recommendation System

A group of the Department from Computer Science in Nigeria developed a web-based

internship RS platform using a combination of several filtering methods, such as content-based,

collaborative and knowledge-based filtering “(…) to suggest relevant internship organizations

that match student's aspirations (…)” (Olasehinde et al., 2022).

Under the hood, this system filters from student’s past internship records and ratings to

recommend relevant internship organizations to the students. To achieve that, the student is

31

asked to fill some data to generate recommendations, such as course of study, area of interest

within that course and preferred local area for the internship.

This particular study does not provide an evaluation study for the recommender system nor the

algorithms used, but by using an hybrid filtering approach it maximizes the recommendation

efficacy while minimizing the downsides of using only content-based or collaborative filtering.

2.4.1.4 Supervisor Recommendation System

A case study conducted in the Engineering Institute of Technology in Australia that analysed the

process of allocating supervisors for specific thesis used a decision tree algorithm

implementation with Python (and suggested the random forest algorithm as a future research

theme). The manual process described in the paper is explained as follows (Yuanyuan Fan, Ana

Evangelista and Hadi Harb, 2021):

1. The course coordinator selects an important feature;

2. Supervisors that have that feature are kept;

3. Another feature is selected;

4. Steps 2 and 3 are repeated until it reaches a stopping criterion.

Supervisors are then rated according to their answers. If they match the feature, they are

assigned with a 1, otherwise they are classified with a 0. Despite that, there are certain

supervisors that cannot be classified directly with a 1 or a 0, so they are classified with 0/1.

Depending on the stopping criterion, this algorithm recommends the most suitable supervisors

for a specific thesis.

The model was tested using the DecisionTreeClassifier method in Python and the accuracy

score generated was 0.75.

2.4.1.5 eThesis

eThesis is a LMS solution that is explored in more detail in Section 2.4.2.2. However, that system

has an integrated RS (Tsatsaris and Sakkopoulos, 2021). That system has similar characteristics

to what is expected to be achieved in the dissertation’s project.

Upon registering in the platform, students have the opportunity to specify their interests in

order for the RS to filter the best projects for them. The interests are filled in the user profile

section of the webpage. Figure 7 shows all the recommended thesis for the student.

32

Figure 7 - Personalized Student Thesis List (Tsatsaris and Sakkopoulos, 2021)

To evaluate the usefulness and performance of the recommendations made by the RS, the

system tracks user statistics. Those statistics are gathered with different methods such as what

theses the students clicked, and their position in the list of recommended projects. The order

of the list is based on a cosine similarity algorithm that measures “(…) similarity between

documents (theses)”, tags and content (Tsatsaris and Sakkopoulos, 2021). The closer the value

of a project using the cosine similarity algorithm is to 1, the better it is ranked and the higher it

is placed on the recommended list.

The authors of eThesis tested the performance of the RS using the precision and recall method,

and the r-precision metric. Precision and recall concluded that as more theses are

recommended, the more non-relevant theses are also retrieved, however the top 5 thesis have

a score above 75%. In spite of that, r-precision metric indicates that the value for 10 thesis is

0.425, which is higher than any other inferior value of thesis (even though it is still considered

a low value of r-precision).

2.4.1.6 ChatGPT

ChatGPT is a chatbot tool created by OpenAI that uses generative AI (way of generating “(…)

new and unique content with the trained data” (Aydın and Karaarslan, 2023)) to answer

questions from its users in real time. It uses NLP to understand and answer questions from

humans, whether from speech or written text (Aydın and Karaarslan, 2023). Since it was trained

“(…) on a massive corpus of conversational text (…)” including “(…) customer service contact

transcripts, online discussions, and other sorts of spoken or written interaction”, it is an

application that can be used in a multitude of areas and scenarios (Aydın and Karaarslan, 2023).

33

ChatGPT has gained enormous popularity due to the quality and effectiveness of its answers,

and the fact that has a free tier for everyone to use (at the time of writing the dissertation –

October 2023).

Even though it is not a system that directly targets the project recommendation system

department, it can be used for UCs such as recommending project suggestions based on the

student’s preferred themes.

To test its effectiveness, the author of the dissertation tested the application by asking ChatGPT

project recommendations for someone who is pursuing a master’s in software engineering but

is unsure on what theme to explore. The interaction is shown in Figure 8, where ChatGPT was

capable of recommending eight different project topics. Since this application is a chatbot, a

normal conversation can be made with it by asking it to explore some of those options with

even more detail for a more concrete answer.

Figure 8 - ChatGPT Project Recommendations

Although the system was able to recommend several projects, it comes with some limitations.

Since the application is not connected to the Internet and it was trained with datasets before

2021, it can suggest incorrect and inaccurate information on certain topics (OpenAI, 2023;

Thorp, 2023). In the case represented in Figure 8, there is a possibility that the suggested

projects can no longer be interesting to investigate at the time of asking the questions.

Therefore, the chatbot should be used as a guideline for potential and more developed ideas

and not as a definitive answer.

34

2.4.1.7 Recommendation System Comparison

A brief objective comparison of all the frameworks analysed in Section 2.4.1 is represented in

Table 3.

Every RS analysed in section 2.4.1 targets potential topics that are relevant for the dissertation’s

RS.

The course RS determines the best courses for the student by analysing his grades and interests.

Although the purpose of the dissertation’s RS is not to suggest the best courses to the student,

the principles behind it can be applied when choosing a thesis topic.

The thesis topic RS is more specific towards what is developed in this project. The

recommendation process is based on a questionnaire about the student’s interests. Like the

course recommendation system, this one also uses student’s grades to assess which projects to

recommend.

Table 3 – RS Project Comparison

COURSE

RS

THESIS
TOPIC

RS

INTERNSHIP
RS

SUPERVISOR
RS

ETHESIS CHATGPT

COMMERCIAL
SOLUTION

No No No No No
Yes (free at
the time of

writing)

RECOMMEND
ATION INPUTS

Student’s
grades

and
interests

Student’s
grades

and
interests

Student’s
abilities,
course of

study, area of
interest and

preferred local
area

Supervisor’s
answers

Student’s
grades

and
interests

User
message

RECOMMEND
ATION
FILTERING/
ALGORITHMS

BMF

K-Means
Classifier

and
Naïve

Bayesian
Classifier

Hybrid
Filtering

Decision Tree
Not

Known
Generative

AI

In comparison to the thesis topic RS, the internship RS also opts to utilize the questionnaire

mechanism to obtain not only the student’s interests and abilities, but also other vital

properties when choosing an internship like course of study, area of interest within that course

and preferred local area.

Another important RS to take into consideration is the supervisor RS. This application utilizes a

different type of recommendation strategy in form of a decision tree algorithm to classify

supervisors depending on the type of project to monitor.

35

Thus far, there were only analysed RS that tackle specific topics. However, eThesis is considered

an end-to-end product that contains a RS system that shares many characteristics with the

dissertation’s RS. In addition to the thesis recommendation, it can generate user statistics to

assess how relevant the recommendations are, and learn from them.

The last analysed project was ChatGPT, which is the only platform (out of all the compared RS)

on the market. Despite the fact that ChatGPT is considered a generative AI tool, it can be used

as a RS for thesis projects and themes. With the use of NLP, students can ask the chatbot about

thesis themes to research.

All the analysed have relevant implementations that can serve as inspiration to come up with

the best solution for the dissertation’s problem. In this specific case, the conjunction of different

techniques from the thesis topic RS, internship RS and supervisor RS can tackle the majority of

the dissertation’s problem by using the questionnaire, student’s grades and abilities and

supervisor allocation to the projects.

2.4.2 Learning Management Systems

Contrary to the recommendation systems section, it was possible to find production ready

solutions for LMS that are specifically designed for final project and thesis processes.

2.4.2.1 Supporting the Scientific Process System

Supporting the Scientific Process (SciPro) is a system created by the The Department of

Computer and Systems Sciences at Stockholm University with the purpose of maximizing the

time supervisors give feedback to their students in the thesis process, while minimizing the

number of administrative tasks to take into consideration.

This program was created due to students complaining by the lack of instructions for developing

thesis, as well as “(…) infrequent and insufficient supervisor feedback” (Hansen and Hansson,

2015).

SciPro has a large number of features, including supervisor and student allocation to thesis in

an Idea Bank, communication channels, forums and frequently asked questions section,

templates for thesis, milestones, peer-reviews and seminar schedules (Figure 9).

36

Figure 9 - SciPro Thesis Management System (Hansen and Hansson, 2015)

Even though SciPro offers communication channels for both the student and supervisor, their

communication setting is up to them, because there are different communication approaches

within the application.

This LMS is now a commercial product licenced by SciMind AB, and it has an exclusive

partnership with the Stockholm University. There are also several studies of the implementation

of SciPro in other universities, such as the University of Rwanda (Byungura, 2015). However, it’s

supposed price of 6000 dollars per 6 month trial is not an amount of money that many

institutions can afford (Tuhkala and Kärkkäinen, 2018).

2.4.2.2 eThesis

eThesis is a solution developed at the University of Piraeus in Greece that was initially created

to combat the consequences of the COVID-19 lockdown and students' working careers.

Therefore, students did not have the opportunity to meet and interact directly with teachers.

This application provides a single point of contact for the whole thesis process, that includes

both teachers and supervisors. In their own words, Eythymios Tsatsaris and Evangelos

Sakkopoulos, the authors of eThesis, say that (Tsatsaris and Sakkopoulos, 2021):

The eThesis SPOC proposed is an online platform for students that may search to find thesis according to
their interests and for professors who see their research ideas become a reality.

Even though it is an internal software to be used in their university systems, it has an extensive

list of functionalities, including a thesis topic management mechanism, grading, deadlines,

bookmarks and possibility of visualizing detailed statistics and graphs (Figure 10).

37

Figure 10 - eThesis List of Functionalities (Tsatsaris and Sakkopoulos, 2021)

In addition to the functionalities stated in Figure 10 and similarly to this dissertation’s project

solution, this LMS also provides an algorithm to filter projects according to their interests, and

help decide which projects are the most suitable options (Tsatsaris and Sakkopoulos, 2021).

Detailed information about that RS was previously analysed in Section 2.4.1.5.

There is a clear distinction between the functionalities that students and supervisors can take

advantage of.

Students can authenticate using traditional credentials or with external services such as

LinkedIn, Facebook, Microsoft or Google. After the authentication process, the student can use

their RS to filter the most interesting proposals. As soon as the student is assigned to a new

project and supervisor, the access to the “MyThesis” section becomes available, which allows

the student to add notes to the project and tasks to be completed, keep track of due dates and

share files with the supervisor (Tsatsaris and Sakkopoulos, 2021).

In contrast, supervisors can add, edit or delete new theses, as well as attaching tags to them to

help in the recommendation process. Besides that, supervisors can add deadlines to certain

parts that need to be done in the project, and do most of the student’s UCs inside “MyThesis”,

with the capacity of adding “(…) office hours and delete tasks” (Tsatsaris and Sakkopoulos,

2021).

2.4.2.3 Learning Management System Comparison

A brief objective comparison of all the frameworks analysed in Section 0 is represented in Table

4.

38

Table 4 – LMS Project Comparison

SCIPRO ETHESIS

COMMERCIAL
SOLUTION

Yes (6000$/6
month trial)

No

Nº FUNCTIONALITIES
(ORDER)

2nd 1st

THESIS
MONITORIZATION

Yes Yes

DEADLINES Yes Yes

THESIS ALLOCATION Yes Yes (with the help of RS)

Nº THESIS PROCESS
FEATURES (ORDER)

1st 2nd

Even though the two solutions analysed in sections 2.4.2.1 and 2.4.2.2 have different

functionalities from each other, both tackle the main problem behind LMS in different ways.

SciPro is more geared towards the thesis allocation process and monitorization envolving both

student and supervisors, while eThesis also incorporates a RS for students to choose their

preferred project to work on. Besides that, eThesis offer more general functionalities comparing

to SciPro. Examples of that are possibility of statistic, graphic and report visualization, external

third-party login, integrated spam prevention system, and others. However, by offering less

functionalities, SciPro has a more complex flow behind its LMS (supported by Figure 9), with

features such as a complete mechanism for individual supervision, a tool for detecting

plagiarism, thesis distribution, and others. SciPro is also available commercially, whereas

eThesis is a research solution to a problem raised by researchers in the University of Piraeus.

Although the two applications are robust implementations for a thesis LMS, the dissertation’s

solution is not required to have the same level of development complexity. With that, it is

important to acknowledge that those features will serve as inspiration to come up with the best

solution for the dissertation’s problem.

39

3 Value Analysis

In the chapter of value analysis, the value of the dissertation project is evaluated using a

different array of mechanisms. Firstly, the innovation process is explained, with more emphasis

on the five core principles of the New Concept Development (NCD). After that, the value

proposition of the project is represented by its correspondent canvas. Functional analysis is

analysed to investigate how the functionalities work with each other. Finally, a multi-criteria

decision analysis using Analytic Hierarchy Process (AHP) is implemented to determine which

framework and filtering technique to use for the project.

3.1 Innovation Process

Innovation is a term associated with developing something new or a reimplementation of

something that already exists but in a different manner in order to add additional value to it.

When having the idea to build a new product, it is necessary to think about the predevelopment

stages of the product innovation process because it is something that many institutions struggle

with (Kim and Wilemon, 2002). The process can be divided in three main parts, which are the

fuzzy front-end (FFE), new product development (NPD) and commercialization (Figure 11).

Figure 11 - Innovation Process (Koen et al., 2002)

FFE is a term that represents the meaning of creating a new product concept and questioning

if it is viable to invest resources into it. It is known as an experimental phase that serves as a

base for the NPD when things need to be much more detailed, formal and precise. Since it is

the time for experimentation, even if something goes wrong in the FFE part, the consequences

of it are generally insignificant (since the project was never started) (Kim and Wilemon, 2002).

40

Although FFE is utilized in several companies successfully, there is not a common way of

implement it, leading to “(…) difficulty of comparing FFE practices across companies” (Koen et

al., 2002). In order to define a common language and terminology to describe factors that were

always the same for everyone, Peter A. Koen and his colleagues developed a new model called

NCD (Koen et al., 2002). The NCD model divides in three main parts (as suggested in Figure 12):

• Engine: represents organizational principles such as culture, business strategy and

leadership, which influences the five core principles.

• Inner Spoke Area: contains the core principles of the defined FFE which are Opportunity

Identification, Opportunity Analysis, Idea Generation and Enrichment, Idea Selection

and Concept Definition.

• Influencing Factors: external factors that are possibly not controllable by the

organization, such as government policies and laws, competitors, science evolution,

and other attributes.

Figure 12 - New Concept Development (Koen et al., 2002)

By exploring each of the main core principles of the NCD model on the dissertation’s project,

FFE can be followed, which translates smoothly into the development of the project. In the next

subsections, NCD’s principles are explored with concrete examples.

3.1.1 Opportunity Identification

Opportunity identification is the recognition of certain opportunities that might be interesting

for a given institution to pursue. In case of this dissertation project, it would be the creation of

an automatic attribution and monitorization tool that can serve as a potential solution for all

universities, regardless of their study area.

The project that students integrate on their last semester or year is an important step in their

academic and professional careers. As stated in Section 2.1, these types of experiences can

leave a very impactful mark on the student’s career decision. Hence the extreme importance of

choosing and having the best project experience possible.

41

Another point in the use of the attribution process automatization is the vast number of offers

that students have in their disposal. It is overwhelming for a student to search for all the options

available in the platform and read their respective descriptions to see if it is a viable project for

them.

Lastly, there is no universal standard for project monitoring. Although it is necessary to have a

supervisor accompany them throughout the realization of the project, students and supervisors

communicate and share files with other third-party programs. It may be unfair for certain

people to track their history monitoring process depending on the program(s) they use.

3.1.2 Opportunity Analysis

Opportunity analysis is where the hypothesis raised during the opportunity identification phase

is analysed with more depth, in order to assess if it is worth developing a solution for it.

With the vast number of project options the students have at their disposal, a lot of time is

spent during the exploration of the problem and description of those proposals. Since there is

not any filtering mechanism to limit the number of results shown on the screen depending on

the student’s preferences, the student is obligated to explore a lot more options, including ones

that are not of his interest. Adding that to the analysis of the problem and description of each

proposal, the student consumes a lot of time trying to try to find a project of his liking. Besides

that, the probability of missing a potentially interesting opportunity among the immensity of

results becomes higher the more options the platform has. The platform should be a place that

helps the students choose the most compelling project possible, and not make that process

even more difficult.

In addition, the deadline for accepting and formalizing the chosen proposal can be very tight,

so it is vital to come up with a solution for finding the best possible project for the student with

the least amount of time spent analysing proposals.

The final point for analysis is the project monitoring phase. Depending on the preferences of

particular supervisors, the communication process between them and their students are held

in different formats (such as chat services or email). The problem lies in the number of tools

needed to monitor the work developed. For instance, supervisors may want to establish

communication with email, with an optional tool like Microsoft Teams or Zoom for online calls,

and cloud services for file sharing. For students, that may be a problem because they would

need to get used to working with software that they are not familiar with, and they would need

to use a different service every time they want to interact with their supervisors. For supervisors,

it may be difficult to stay in contact with all the students they are supervising if they utilize

traditional services like email or chat services for other purposes (like using those tools in a

personal or work context). That may create a disorganized environment that can lead to several

consequences including the inability to track the work done efficiently and the notes taken by

students and supervisors respectively, and the difficulty and delay in communication with both

parties. By having a universal standard for project monitoring, everything regarding the

42

student’s project would be concentrated in one place that is distinguishable from other

contexts, which could improve project monitoring quality.

3.1.3 Idea Generation and Enrichment

Idea generation and enrichment is the phase where ideas are worked, developed and matured.

Depending on what was discussed in the two previous phases, ideas are “(…) built up, torn down,

combined, reshaped, modified, and upgraded” (Koen et al., 2002) in several iterations. Ideas

can also be generated or enriched outside the bounds (influencing factors).

Considering the problems and analysis discussed in Sections 3.1.1 and 3.1.2, the ideas that were

generated to tackle those points were:

• RS to help students choose their preferred project to work on the final academic

semester/year;

• Advanced filtering mechanism to limit proposals shown on the screen;

• Monitoring tool to help supervisors monitor their students in a more efficient manner

3.1.4 Idea Selection

As the name suggests, idea selection consists of choosing the ideas generated in the idea

generation and enrichment phase to be pursued. This is usually the most difficult part of the

process, due to the fact that according to Peter A. Koen and co., the problem lies on how to

choose the best ideas to follow that could give the most business value to the institution (Koen

et al., 2002).

Considering that this project was already defined before analysing the solutions for it, the

author of this dissertation did not have any input on what the best idea was to tackle the stated

problems. Therefore, the ideas to be developed are the RS and monitoring tool.

3.1.5 Concept Definition

The last element of the NCD model is the concept definition, which is also the phase to exit the

NPD. In this phase, it is necessary to specify a compelling case for investment.

The purpose of this project is to help students and supervisors to have a better experience in

the final project of the semester/year. The final project is extremely important for students

since it may interfere with the student’s career decision-making process, so students must have

access to only the proposals that have the best interest to them. By building a RS that would

take into consideration certain input variables, it would select just the projects worth analysing,

making it more time efficient. In addition, having a monitoring tool for supervisors to monitor

their student’s projects would standardize the supervision process, making it more organized,

43

which would solve problems of missed or delayed communication with students and simplify

the report history tracking process.

3.2 Value

Value to the customer was differently defined several times in literature, however, according

to Albert Graf and Peter Maas, value to the customer is “(…) considered as a theoretical

construct having to do with a customer perspective of provider products or services” (Graf and

Maas, 2014). It is also seen as a strategy to build a competitive advantage amongst others, since

satisfied customers are more likely to use the product or service again (Sánchez-Fernández and

Iniesta-Bonillo, 2007).

Value can be characterized by the perceived value concept, which is how the customer sees

value from the product or service that is being offered. Equally to the customer value, the

perceived value is a term that has been defined differently multiple occasions, however the

methods to obtain the perceived value are divided in two main approaches: one-dimensional

and multi-dimensional (Sánchez-Fernández and Iniesta-Bonillo, 2007).

For this project in specific, the main benefits and sacrifices in regard to each one of the

stakeholders are specified with more detail in Table 5.

Table 5 - Benefits and Sacrifices

Benefits Sacrifices

Project recommendations
allow to spend less time

searching for projects

Time spent answering the
questionnaire, which is

necessary to have the most
accurate answers

Recommendations could

potentially be not relevant
for the student

Greater efficiency and
response to all the

supervisor’s students

Adaptation period to the
new universal supervision

process

3.3 Value Proposition

Value proposition is the methodology needed to demonstrate the value of a product, service or

solution. It is often used in marketing and advertisement segments, and its main purpose is to

transmit the value and benefits a given product or service provides to its customers. It can also

44

explain how the return on the customer’s investment occurs when choosing the product over

other competitors (Camlek, 2011).

To have a visual representation of the value proposition, Alex Osterwalder proposed the Value

Proposition canvas model, that separates the Value Proposition design into two sides: a

Customer Profile side that clarifies the customer understanding, and a Value Map side that

specifies how the product creates value for the customer (Kyhnau and Nielsen, 2015).

The value proposition canvas model of the dissertation’s project is visualized in Figure 13. It

describes the problems and features described in Section 3.1, but more geared towards the

perspective of customers and the product’s value.

Figure 13 - Value Proposition

3.4 Functional Analysis

Once the ideas for this project are well defined, it is possible to analyse which functionalities

the solution is going to have.

The outcome of this dissertation project is the result of two separate products: a RS and a

monitoring tool (LMS).

The functionalities associated to the RS are the following:

• Find projects by student preferences;

• Find supervisors depending on the student’s preferred projects.

Regarding the monitoring tool (LMS), the functionalities identified are:

45

• Communicate with students;

• Upload files and share them between stakeholders;

• See report history version.

In Section 3.4.1, a technique called Functional Analysis and System Technique (FAST) is explored

in order to exemplify how those functionalities can work with each other.

3.4.1 Functional Analysis and System Technique

FAST is a technique that organizes the functionalities of a product “(…) into a How?/Why?

relationship” (Borza, 2011). This methodology can be represented into a diagram, with its

horizontal plane representing the How?/Why? (How do you do this function/Why do you do

this function) relationship, and the vertical plane representing When? (when this function is

executed, it also executes X function). The word count for function description in a FAST

diagram is restricted to two words: Active Verb + Measurable Noun (Borza, 2011). FAST diagram

for the project’s dissertation is represented in Figure 14.

Figure 14 - FAST Diagram

Both systems to be implemented are separated due to not interacting with each other. However,

monitoring tool functionalities are below the system recommendation functionalities because

the student has to select his project before having supervision.

3.5 Multi-Criteria Decision Analysis

In many projects, such as this one, there are certain aspects that need to be taken into

consideration before using them in development and implementation. There are a vast number

of choices to choose from, and it is important to choose the best option according to the task

46

in hand. In this section, the AHP model is analysed by exploring each one of its phases to choose

the best RS filtering technique for this dissertation project.

3.5.1 Analytic Hierarchy Process

AHP is a type of multi-criteria decision analysis model that was initially created by professor

Thoma L. Saaty in 1980 and its main purpose is to help in the decision making process of

complex situations (Saaty, 1988). The classic version of AHP is divided in seven phases:

1. Construction of the hierarchy tree;

2. Comparison of alternatives and criterion;

3. Definition of relative priority of each criterion;

4. Consistency evaluation of relative priorities;

5. Construction of the comparison matrix for each criterion;

6. Get the composite priority for the alternatives;

7. Selection of the alternative.

The classification of each criterion is assigned following a specific scale (Figure 15). Each value

has a different definition, and even numbers connect definitions associated to odd numbers.

Figure 15 - Importance Given to Each Criterion (Saaty, 1988)

3.5.1.1 AHP Demonstration

The AHP model is utilized to decide which filtering technique to use in this project. The

alternatives that are analysed are the following:

• Content-Based Filtering

• Collaborative Filtering

• Hybrid Filtering

47

It is important to mention that since hybrid filtering is a technique that combines both content-

based filtering and collaborative filtering, a large number of variations for this type of filtering

are possible and it is possible to combine several of them in RSs (Kusuma and Musdholifah,

2021; Olasehinde et al., 2022)

The alternatives mentioned previously are compared using the following criteria:

• Data Availability: Since the data available to be analysed by the RS is limited to what is

able to get from open-source datasets, some filtering techniques can be more sensitive

to low amounts of information;

• Domain Knowledge: For this RS it is important that it can recognize unknown patterns

considering the domain and business logic of the project;

• Scalability: This RS is available for all students of Computer Science and Engineering,

regardless of the degree they are pursuing. Therefore, it is advisable that the RS is

capable of scaling with the increase of users and items, while still having good levels of

performance

The first step of the APH model is to build the hierarchy tree with the alternatives and criteria.

Figure 16 represents a visual representation of the AHP hierarchy tree.

Figure 16 - AHP Hierarchy Tree

The second step of the APH model is to compare the importance of the criteria chosen

considering the explored alternatives. The classification of the criteria is determined using the

importance values of Figure 15. Table 6 represents the importance of each criterion in

comparison to the remaining criteria.

Table 6 - Criteria Comparison Matrix

 Data Availability Domain Knowledge Scalability

Data Availability 1
1

5

1

3

Domain Knowledge 5 1 2

Scalability 3
1

2
 1

48

After determining the importance of each criterion, Table 7 shows the same matrix but with

normalized values. This matrix is used to determine the relative importance value of each

criterion and it is determined by the sum of the elements of each column and the division of

each column by that sum.

The normalized matrix is used to determine the priority vector, which analyses the relative

importance of each criterion. The priority vector is calculated by the average value of the row

of that criterion.

Table 7 - Normalized Criteria Comparison Matrix

Data Availability

Domain
Knowledge

Scalability
Priority
Vector

Data Availability
1

9

2

17

1

10
 0,11

Domain
Knowledge

5

9

10

17

3

5
 0,58

Scalability
1

3

5

17

3

10
 0,31

The next step of the AHP model is to evaluate the consistency of the relative priorities calculated

in the previous phase. For that, it is necessary to calculate the consistency ratio (CR) to

determine how consistent the judgements were in comparison to large samples of random

judgements. In order to calculate CR, it is first necessary to calculate the consistency index (CI),

which is obtained by determining the value of 𝜆𝑚𝑎𝑥, and determine the random index (RI).

 𝜆𝑚𝑎𝑥 is determined by multiplying the criteria comparison matrix with the priority value to

obtain a new matrix, and then dividing it with the priority value. Then, the average of those

values divided by the number of criterion minus 1 determines 𝜆𝑚𝑎𝑥. That process is shown in

the following calculations:

[

 1

1

5

1

3
5 1 2

3
1

2
1]

[
0,11
0,58
0,31

] = [
0,33
1,75
0,93

]

[
0,33
1,75
0,93

] / [
0,11
0,58
0,31

] = [
3

3,02
3

]

𝜆𝑚𝑎𝑥 =
3 + 3,02 + 3

3
≈ 3,01

49

CI is calculated by dividing the subtraction between 𝜆𝑚𝑎𝑥 and the number of criterion, with the

number of criterion minus one:

𝐶𝐼 =
 𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
≡ 𝐶𝐼 =

 3,01 − 3

3 − 1
= 0,005

The other variable to determine is RI. According to Thomas L. Satty, the RI values are originated

“(…) simulating random reciprocal matrices of different orders” (Saaty, 1988). Those values are

found in Figure 17.

Figure 17 – Random Index Values

The value to be used in this AHP model is 0.58, since it is RI value that it is associated with

matrices with order 3.

With both CI and RI determined, it is possible to calculate CR. CR is determined by the fraction

between CI and RI. The value of CR is shown in the following equation:

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
≡ 𝐶𝑅 =

0,005

0,58
≡ 𝐶𝑅 = 0,009

The value of CR for this AHP exemplification is 0,009. Values of CR below 0.1 means that the

results are reliable, which means that the results are consistent.

The next step of the AHP model is to compare each alternative to the criteria by building

individual matrices for each criterion. The alternatives are compared with each other using the

same importance values shown in Figure 15.

The first matrix to be built (and its respective normalized matrix and priority vector) is for the

data availability criterion. The importance values given to each alternative are based upon the

fact that low amounts of information are presented in the beginning.

Table 8 - Data Availability Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Content-Based
Filtering

1 7 2

Collaborative
Filtering

1

7
 1

1

3

Hybrid Filtering
1

2
 3 1

50

Table 9 - Normalized Data Availability Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Priority
Vector

Content-Based
Filtering

14

23

7

11

3

5
 0,62

Collaborative
Filtering

2

23

1

11

1

10
 0,09

Hybrid Filtering
7

23

3

11

3

10
 0,29

The second matrix to be built (and its respective normalized matrix and priority vector) is for

the domain knowledge criterion. The importance values given to each alternative are based

upon the fact that the system needs to be able to predict unknown patterns in the data

according to the domain knowledge.

Table 10 - Domain Knowledge Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Content-Based
Filtering

1
1

5

1

7

Collaborative
Filtering

5 1
1

2

Hybrid Filtering 7 2 1

Table 11 – Normalized Domain Knowledge Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Priority
Vector

Content-Based
Filtering

1

13

1

16

2

23
 0,08

Collaborative
Filtering

5

13

5

16

7

23
 0,33

Hybrid Filtering
7

13

5

8

14

23
 0,59

The last matrix to be built (and its respective normalized matrix and priority vector) is for the

scalability criterion. The importance values given to each alternative are based upon the fact

51

that the data gathered from the RS grows as more students use the system throughout the

years.

Table 12 – Scalability Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Content-Based
Filtering

1
1

7

1

5

Collaborative
Filtering

7 1 2

Hybrid Filtering 5
1

2
 1

Table 13 - Normalized Scalability Comparison Matrix

 Content-Based
Filtering

Collaborative
Filtering

Hybrid
Filtering

Priority
Vector

Content-Based
Filtering

1

13

2

23

1

16
 0,08

Collaborative
Filtering

7

13

14

23

5

8
 0,59

Hybrid Filtering
5

13

7

23

5

16
 0,33

With the priority vectors of all alternatives and criteria, the multiplication of those priority

vectors determine which filtering technique to choose. A matrix composed of all priority vectors

of each alternative is multiplied by the priority vector of the criteria. The calculations are shown

in the following equations:

[
0,62 0,08 0,08
0,09 0,33 0,59
0,29 0,59 0,33

] [
0,11
0,58
0,31

] = [
0,14
0,38
0,48

]

The matrix derived from the multiplication shows that the last value (0,48) is the greatest

among the other alternatives. That value is associated to the hybrid filtering, so according to

the developed AHP model, it is the most suited alternative for this project.

3.6 Summary

The intrinsic value associated to this dissertation project was described using several

methodologies in the chapter of value analysis.

52

The first tool used was described in the innovation process section with the NCD model by

describing its five core principles:

• Opportunity Identification where the opportunities were recognized;

• Opportunity Analysis where the recognized opportunities were further analysed to see

their potential in exploring them;

• Idea Generation and Enrichment where ideas were raised regarding the recognized

opportunities;

• Idea Selection where the best ideas were selected;

• Concept Definition where a compelling case for investment is stated.

The second tool used was the development of the value proposition of the project using the

canvas model, where the value proposition and customer segment were filled considering the

information gathered throughout the state of the art, context and innovation process.

The third tool used was the FAST technique that has the main objective of specifying how the

several functionalities of the system are organized and work with each other by analysing the

how, why and when the user utilizes a certain function of the program. Both systems to be

developed (RS and LMS) were represented in the FAST diagram.

The final tool used was the AHP model to determine which filtering technique to implement in

the RS. By applying the seven steps of the AHP model, and determine the alternatives and

criteria to be used, the filtering technique that is best suited for the RS is the hybrid filtering

technique.

53

4 Analysis and Design

In the chapter of Analysis and Design, the description of the artefacts needed to understand the

problem and what needs to be done to produce an automation tool for attribution and project

monitoring is stated. The chapter is divided into two main sections: the analysis and the design

of the solution. In the analysis section, a requirement analysis is made, with the concepts of

domain model, actors, functional and non-functional requirements, and business process being

explained. In the design section, the main focus is centred towards evaluating several proposed

architectures to structure the solution’s code, with visual representations in form of logical and

deployment views, and studying the execution sequence of specific UCs.

4.1 Analysis

In this section, the problem is analysed in a programmatic perspective. With that in

consideration, the domain model, actors, functional and non-functional requirements, and

business process is presented, with written explanations and visual representations.

4.1.1 Domain Model

To understand how the solution works, it is necessary to analyse all the domain entities that

intervenes in both systems. The RS produces recommendation objects based on the student’s

information (such as study area, specialization areas, country, locations, and other information)

and the registered projects in the platform. Every project recommended have a suggested list

of available supervisors (which are also chosen according to study area, specialization areas,

and other information), to give the student the option to choose which one he desires. The

student can then show interest in a particular project by making an application, where a

recommended supervisor is also associated to. If the supervisor accepts the student’s

54

application, the recommendation is then converted into a project. Once the student starts to

work on a certain project, the student and supervisor have the opportunity to communicate

with each other via chat by sending messages and share files, including the report. The system

accepts multiple uploads of the report, in order to allow for version history. All domain entities

were represented by a domain model diagram that can be seen on Figure 18.

Figure 18 - Domain Model Diagram

4.1.2 Actors

Even though ISEP’s project platform has several different actors that are assigned to do several

tasks, both systems to be created are designed to be used by students and their respective

supervisors (teachers).

Students are the main beneficiaries of the RS’s UCs since the main purpose of the RS is to

recommend the best possible project for the student. The recommendations are based on the

gathered information from the student, which is a key element that RS needs to present the

results. The student answers specific questions regarding their personal interests, what themes

he would like to explore in the dissertation and past experiences. Then, the answers are

collected, as well as other student information such as their academic graduation, their grades,

and other useful data. That information is served as input data for the RS, which then gives the

best results possible. Students can also utilize several features from the LMS to be implemented.

They are able to directly communicate with their supervisor, as well as share important

documents with him, such as the project’s report, formalization documents and other useful

files.

On the other hand, supervisors interact indirectly with the RS, since they are assigned to certain

projects by the RS. RS takes into consideration the background of the teacher and availability in

55

order to assign him to a project. Besides that, supervisors have total access to all of the features

of the LMS, to enhance their supervision experience.

Finally, there is also an admin access to the RS’s training models and evaluation metrics. The

admin can make adjustments to the algorithm according to certain established parameters.

4.1.3 Business Process

The purpose of the dissertation project is to make the process of the final project development

more appealing and effective to both students and supervisors. That is the main reason why

this project is subdivided into two different systems: one to help the student to choose the best

project suited to his interests, and the other to assist supervisors during the thesis-making

process and have better communication with their respective students. Although these systems

help automate the project development process, they act at different times of the process.

The process starts with choosing the best project. The student starts by initiating the

recommendation process, in which he is asked to fill out his interests. If those interests are

already registered in the system, an option to skip the additional step is added because the RS’s

output will be the same (there is no need to generate the same recommendations more than

once). If not, the RS generates recommendations, which can be seen by the student. The

student has the opportunity to generate other recommendations by changing his interests

again.

The moment when the student finds a project and gets accepted by all stakeholders (which is

something that is out of the scope of this application but could be represented in the project to

serve as a connection between both systems) is when the project monitoring process takes

place. A general sequence of interaction between student and supervisor happens when the

student uploads his report or files for review. The supervisor is notified and can give annotations

to the work done. After answering back, the student then changes those details and after a

certain amount of time, they can do the same process again. If that process is no longer being

done, it is assumed that the project and the communication between student and supervisor

has ended.

A visual representation of the outlined process is presented in Figure 19.

56

Figure 19 - Business Process Diagram

4.1.4 Functional Requirements

According to the information provided in Sections 4.1.1, 4.1.2 and 4.1.3, it was possible to raise

the following UCs described in the UC diagram of Figure 20.

Figure 20 - Use Case Diagram

57

As seen on Figure 20, the UCs captured are divided by four main actors of the system: student,

supervisor, non-registered user and admin. Those actors are all a hierarchy relation with a

generic actor/class called User. To interact to the system, non-registered users need to either

register as a student or as a supervisor. UC1, UC2, UC7, UC8, UC9, UC10, UC11 and UC12 are

associated to the RS service, while the others are related to the LMS.

During the next sections and chapters, only the most important and more complex UCs are

explored in more detail. Those UCs are: UC1, UC3 and UC4. Some aspects of the other UCs can

be mentioned to give more context. All of the artifacts of those remaining UCs can be found in

the Appendix A.

4.1.5 Non-Functional Requirements

In software engineering, non-functional requirements are visualized as restrictions there are

imposed and need to be met upon project delivery (Mairiza, Zowghi and Nurmuliani, 2010).

Those requirements are usually known as the words that finish with either “-ility” or “-ity”

(Chung and do Prado Leite, 2009).

One model that facilitates the visualization of the most important non-functional requirements

is Functionality, Usability, Reliability, Performance, and Security (FURPS), created at Hewlett-

Packard. A later version of FURPS called FURPS+ was enhanced with more quality attributes

(Chung and do Prado Leite, 2009).

In the following subsections, the non-functional requirements for this project are presented

and discussed with more detail, according to Lawrence Chung and Julio Cesar Sampaio do Prado

Leite (Chung and do Prado Leite, 2009).

4.1.5.1 Security

Security refers to the ability to apply measures and practices to protect inadvertent use of the

system, and protect sensible data from unauthorized access, malicious attacks, or potential

vulnerabilities.

In order to interact with most of the use cases and functionalities of the system (with the

exception of login and register user), the user must be logged in. A token will ensure the user is

logged in and it must be attached to every request to be authorized to do that action.

4.1.5.2 Usability

Usability refers to the way the users interact with the system, and the experience interacting

with it.

The user interface of those systems needs to be easy to use, by providing a commercially-

proven and intuitive design with good user experience. User efficiency when using the platform

is of extreme importance due to being one of the pivotal parts of the project. System users must

be able to interact with all UCs without having the need to ask for help and spend unnecessary

58

time to find or understand the functionality. This non-functional requirement will be evaluated

through feedback and questionnaire to each of the testing users.

4.1.5.3 Reliability

Reliability refers to the ability of a software product to perform its intended functions

consistently and accurately without failing.

If there is a problem with one of the systems, self-explanatory and clear errors need to be

provided to the users, as well as solutions to resolve them. In the case of system failure or

unavailability of one of the services, the remaining UCs need to keep work as expected due to

the microservice approach.

4.1.5.4 Performance

Performance refers to the speed, efficiency and response time of the system.

There is no implicit restriction of performance for this system, however, there are minimum

acceptable thresholds to be met to enhance user experience. For that reason, the RS must

ensure that it produces the best results possible without affecting performance extensively.

Besides that, LMS features must also be responsive and not disturb user experience.

Performance tests will be used to measure request speed of those functionalities.

4.1.5.5 Supportability

Supportability refers to the ability of maintaining, updating and integrating the system with

other externa sources, making it more scalable.

Maintainability of the application is other important aspect to take into consideration. Both

systems need to be developed with code quality standards, implying that a testing policy (with

unit and system tests) and best practices of code development are respected. The system

should also allow additional functionalities to be implemented in the future.

4.2 Design

In this section, different alternatives of possible architectures for this dissertation’s project are

explored, as well as shown visual representations of those architectures in form of logical and

deployment diagrams. Besides that, the referred UCs in Section 4.1 are detailed in text and

sequence diagram formats.

4.2.1 Architecture

During the analysis described in Section 4.1, it was possible to gather that two main systems

need to be designed from the ground up: the RS and the LMS. Since both tackle different

domain problems and UCs and can work independently from each other, the idea of separating

59

both systems into individual systems is relevant. By working as independent systems, they

would also have access to independent databases to store and get important information.

During this chapter, architectures are studied in a variety of different diagram formats, including

logical and deployment diagrams.

4.2.1.1 Logical View

To decide the best architecture to adopt in this project, several architectures are proposed

through component diagrams.

The first two architecture proposals represent the scenario of integrating the systems within an

external project platform, like ISEP’s project platform. The first one is represented in Figure 21

in form of a level 1 component view diagram. The main components identified from the analysis

(and that are used in all the architecture proposals) are the following:

• ISEP Platform Front-End: Component that interacts with all stakeholders;

• ISEP Platform Back-End: Component that has all the functionalities that ISEP’s project

platform offers;

• ISEP Platform DB: Component that represents the database of ISEP’s project platform

• Automation Gateway: Component that redirects the request to registered APIs

depending on what the user wants to do;

• Authentication: Component that is responsible to handle the authentication process of

the system;

• Authentication DB: Component that represents the database of the authentication

service. It stores the data of all users registered in the system;

• Recommender System: Component that represents the RS, that makes

recommendations based on the student’s information and currently available projects;

• Recommender DB: Component that represents the database of the recommender

system. It stores the recommendations of the students (in order to not run the

recommendation algorithm for the same inputs), and other student information;

• LMS: Component that has all the UCs regarding the monitoring of projects;

• LMS DB: Component that represents the database of the LMS. It stores relevant

information of the LMS, including reports and useful files that were shared between

student and supervisor, and other project information;

• Broker: Component that retrieves relevant information from ISEP’s platform database

for both standalone APIs;

• Consumer: Component that listens to changes in the broker’s component and update

the databases according to the information provided.

60

Figure 21 – Component Diagram 1

The current structure of ISEP’s project platform is unknown to the author, however it is

assumed that it is based on three main components: front-end, back-end and database. The

authentication process is dealt by Microsoft 365, which retrieves an access token that serves as

authentication proof for using the system.

To communicate with the two standalone API’s, an API gateway is created to control which API

to call depending on the request (Automation Gateway). Even though both APIs consume their

own databases, some information from the platform is needed. The concept illustrated has a

broker component that retrieves information from the database, and the consumer component

then updates the databases with that data. This method of message broker allows to separate

both APIs while still having the most up-to-date information from ISEP’s database. However,

this architecture has increased complexity, and requires more deployment structures.

The other architecture proposal to integrate with ISEP’s project platform is to make the LMS

and RS APIs interact directly with ISEP’s back-end. The need for an automation gateway and

message broker would disappear since all requests would be now processed by ISEP’s backend

first. In addition, the backend would have direct access to the information needed before calling

one of those systems. This architecture is simpler to develop, however, it would come at the

cost of high coupling. The architecture proposal can be seen in Figure 22.

Figure 22 – Component Diagram 2

Since the main purpose of the dissertation’s application is to work for every study area and

university, those architecture proposals are discarded.

The other project architecture to be explored is the one that is represented in Figure 23.

Contrary to the ones explored previously, this project architecture works independently from

61

other external platforms. By not having the information from other university platforms, the

data necessary for the RS to work (on a testing environment) is retrieved from external datasets.

Even though it will most likely not have the most accurate information about students and

projects, it can serve as a testing example before integrating the solution with real information.

Since the application run independently, it is also necessary to build a front-end infrastructure

for the users to interact with the system. The front-end will communicate with an API gateway

(similarly to what was described in Figure 21) that redirects the requests to the correspondent

system.

Figure 23 – Component Diagram 3

Because the systems need to work independently, the proposed architecture to be used is

architecture 3. Besides that, since that architecture is based on a microservice approach, it will

allow for scalability on each service if necessary.

Taking a closer look at the recommender system and LMS (represented in Figure 24 and Figure

25 respectively), the architecture developed is the controller, service, repository architecture.

Each module is organized by entity, which means that depending on the module, all of the UCs

and/or domain logic associated to a given entity is located in the same file. Therefore, this type

of architecture simplifies the way of developing an API. The definition of those modules are the

following:

• Controller: Module that serves as an entry point to answer outside requests. Depending

on the functionality, the respective controller file calls its correspondent service file to

execute the functionality asked;

• Service: Module that has all the business logic regarding the UCs to be performed. It is

in this module that requests to other services or external services are made, as well as

requests to the database via calling the correspondent repository file;

• Repository: Module that communicates with the database to retrieve specific

information for the service module;

• Model: Module that represents all the domain entities identified in the domain model

in Section 4.1.1;

• Data Transfer Object (DTO): Module that represents the objects that are received from

the request and returned to the response. These objects will be transformed into model

entities during the use case execution;

• Recommender Engine (only applied to Recommender System): Module that represents

all the logic regarding the RS model.

62

Figure 24 - Recommender System Logical View Architecture (Level 2)

Figure 25 - LMS Logical View Architecture (Level 2)

4.2.1.2 Deployment View

According to Section 4.2.1.1, the deployment process is based on architecture 3. The

deployment diagram is seen in Figure 26.

The diagram represented in Figure 26 is based on a microservice architecture, although the

need for more complex concepts such as service discovery and orchestration are not needed

since the system does not need to be scalable (however it allows for that option if necessary in

the future). The decision to use this deployment organization is based on separating domain

concept, more organization and more maintainability, since it would be easy to swap or add

more APIs to this logic. Servers can communicate with each other by using asynchronous

communications powered by RabbitMQ (by utilizing the Advanced Messaging Queue Protocol

(AMQP)).

The automation gateway that serves as an API gateway is executed in its own dedicated Linux

server. It communicates via Hypertext Transfer Protocol Secure (HTTPS) with the other APIs by

redirecting the request made by the platform’s front-end.

Each API to be implemented is deployed in its own dedicated Linux server and communicates

with the API gateway via HTTPS.

63

Figure 26 - Deployment Diagram

4.2.2 Use Cases

In this section, an explanation of the execution sequence of the stated UCs in Section 4.1.4 is

presented, as well as the corresponding sequence diagrams as visual representations.

4.2.2.1 Get Project Recommendations

The UC starts with the student wanting to see his project recommendations, that takes into

consideration his information and his interests.

For every request made (regardless of the UC), it is necessary to verify if the user is

authenticated in the system. It is then necessary to attach the authentication token in the

request’s header section. The request is made to the automation gateway, which acts as an API

gateway that redirects the request to the corresponding API.

The process starts by checking if there are any recommendations already made for the student.

findRecommendations(studentId) only returns recommendations if it finds records

registered in the database that match the student’s information, otherwise it returns null. This

methodology allows for better resource use in generating recommendations for the same

inputs.

If no records were found in the database, the service calls the recommender engine to generate

recommendations for the student. In order to generate recommendations, the recommender

engine needs the student info and his recommendation description (if applicable). If a

recommendation description is provided, the algorithm will apply NLP on top of the

recommendations to sort them accordingly. After generating the recommendations, they are

64

saved in the database and any other recommendations found are override. Finally, the

recommendations are sent back to the front-end, which are displayed to the student.

A visual representation of this UC can be in Figure 27.

Figure 27 - Get Recommendations (UC1) Diagram

4.2.2.2 Chat With Other People

It is only possible to start this UC if a student has been assigned to a project, and it has already

a supervisor attached to it, since this UC belongs to the LMS API.

This process starts by either the student or supervisor wanting to use the chat service to

communicate with the counterpart. If that is not the first time both the student and supervisor

communicate with each other using that service, it is necessary to retrieve the chat history

between both parties. For that, a request is made to the automation gateway to retrieve that

information to the platform’s front-end component. The automation gateway redirects that

request to the LMS API, which calls the respective service file that has the domain logic

necessary to get the chat history between student and supervisor. It then calls the respective

repository file to get the chat history from the database. That list of messages is retrieved to

the front-end and then displayed to the user.

A visual representation of that explanation in form of a sequence diagram is found in Figure 28.

65

Figure 28 - Chat With Others (UC3) – Chat History Diagram

The process of getting the chat history of two people is relatively straightforward. However, the

chat service needs to also allow to send and receive messages. The process of sending and

receiving messages was separated in different sequence diagrams (Figure 29 and Figure 30

respectively).

If the student or supervisor wants to send a message to its respective counterpart, a request is

sent with project, sender and receiver IDs as query parameters and the message in the body of

the request. The automation gateway redirects the request to the LMS API, which then calls the

respective service file to save the message in the database and notify the receiver that a new

message was sent by the sender.

Figure 29 - Chat With Others (UC3) – Send Message Diagram

In order to receive messages in real-time, and get notifications of new messages received, an

event is thrown when sending new messages, and it is then caught by an event listener. The

purpose of that event listener is to receive the message sent by the event and redirect them to

66

the front-end component. If the user is using the chat service at that time, the front-end

immediately displays the message sent.

However, there are cases where the user is not using the chat service at that precise moment

or is not authenticated in the platform at all. That is why it is important to have another

mechanism of notifying the receiver. Therefore, every time a message is sent, a notification

email is sent to the receiver user, increasing the chances of a quicker response.

Figure 30 – Chat With Others (UC3) – Get Message Diagram

4.2.2.3 Share Files

Similarly to the UC “Chat With Others”, it is only possible to start this UC if a student has been

assigned to a project, and it has already a supervisor attached to it.

The process starts when either the student or supervisor wants to upload a file (e.g. the

project’s report or the formalization document) and share it with the other person. The request

has attached the project and sender IDs, as well as the file in the request’s body. Since a file is

sent by REST, it is mandatory to use a multipart Hypertext Transfer Protocol (HTTP) request.

One form of multipart request is the multipart/form-data request, which consists of a specific

request when a form is filled with “(…) information that is typed, generated by user input, or

included from files that the user has selected” (Masinter, 2015).

The request is made to the automation gateway, which redirects the request to the LMS API.

The controller calls the correspondent service to upload the file to the desired project. The file

is saved, as well as the person who sent it. A success message is going to be returned if

everything went well, and the file appears in the front-end. After that, both the student and the

supervisor are able to see or download the file on whichever device they are accessing it. This

behaviour is intended to be similar to what a cloud service provides.

A visual representation of that explanation in form of a sequence diagram is found in Figure 31.

67

Figure 31 – Share Files (UC4) Diagram

4.3 Summary

The analysis and design chapter is subdivided into two main parts: the problem analysis and the

solution design.

The analysis starts by gathering all domain entities that could be found by previous context and

investigation of the problem and the respective objectives. The system has recommendations

which are projects that are assigned to students and supervisors. Once both student and

supervisor have a project, they can communicate with messages and share files with each other

for review or guidance. The actors identified by the system are students and supervisors. Then,

it is explored how the RS and LMS connect with each other in the final project's development

process. Since they are separate systems, the RS is used in the beginning of the process, while

the LMS is only being utilized when students and supervisors are attached to a specific project.

The analysis ends with functional requirement identification with the context of previous

sections in mind, as well as non-functional requirements with the help of the FURPS+ model.

The design section starts with an explanation of possible architectures for this project. Firstly, a

architecture which tries to isolate the standalone systems as much as possible from the ISEP’s

platform is presented, in which is created a separate API gateway to redirect traffic and a

consumer and provider technique to gather all the information necessary from ISEP’s database

and transfer over to the respective databases. However, since this project needs to function

without external sources, another architecture was proposed that uses datasets as the main

information source for the RS. That architecture was chosen in comparison to the other two

that are more coupled to ISEP’s platform. A deployment diagram using the chosen architecture

was also represented to understand how the system can be deployed in production. Lastly, the

most relevant UCs pointed out in the analysis section were explored with further detail, using

sequence diagrams as visual representations. The UCs discussed in the design section were:

UC1 – Get Project Recommendations, UC3 – Chat With Other People and UC4 – Share Files.

68

69

5 Implementation

In the chapter of Implementation, the process behind the project’s dissertation is documented

by analysing the back-end and the front-end separately. The back-end is explained by analysing

the designed architecture and common traits amongst all services. The three services are also

explained separately: authentication, recommendation and LMS. In each one of them,

important files and implementations (in the case of the RS) are detailed, as well as all the

endpoints and their respective functions. The front-end is also explained on the same manner,

by analysing the important files of SvelteKit, folder structure and relevant implementations of

third-party libraries. Screenshots of the front-end can be found inside the Appendix B. The last

part of the chapter analyses the production deployment of the application.

5.1 System Architecture – Back-end

According to Figure 26, the system is supposed to be divided into a microservice architecture,

in which the RS, the LMS, the authentication and the API gateway are allocated in different

standalone services.

With that into consideration, four separate projects were created with Python, which is the

programming language analysed in Section 2.2.6.1. Each project was built with the use of a web

framework called Flask, one of the most popular frameworks for Python that gives the

opportunity for developers to build full stack web applications (Ghimire, 2020). However in this

case, Flask was only use as a backend framework.

Besides respecting the patterns and module structure presented in Section 4.2.1, each project

have common Python files that perform specific functions:

• app.py: Each service is executed by running this file (python app.py). All of the service

endpoints are defined, which are linked to the correspondent controller. In addition,

70

services and repositories are instantiated to allow for dependency injection, which

minimizes dependencies between classes (coupling between objects) (Sun et al., 2022);

• bootstrap.py: In a development environment, databases are filled up with the testing

datasets that contains information for important entities (e.g. students, supervisors,

specialization areas, study areas, etc.);

• init_db.py: Contains the information necessary to setup the database from scratch (or

erase a previously built one);

• config.py: When app.py is executed, this file is responsible to initialize the Flask

application with all the configuration variables defined in the environment file and

setup the properties and relationships between entities in the database. It export

important objects to be used throughout the application, such as the Flask application

object, and the Object Relational Mapping (ORM) object to interact with the database.

Communication between services is essential, as some services need to exchange information

with each other. Each service stores its own information in a separate PostgreSQL database.

Whenever some service needs to communicate with another one, a message is sent to a queue

and it will be received asynchronously by the other service that is subscribed to it. The payload

of those messages is information about a certain entity. There are only two asynchronous

communications between services:

• When a user is created, the authentication microservice sends the user information

(excluding the password) to the recommendation microservice to store that

information in the database and allow the user to complete the registration as student

or supervisor;

• When a supervisor accepts an application from the student, the recommendation

microservice sends the information about that project recommendation to the LMS

microservice to transform that into a project, and allow for both actors to interact with

the project.

The recommendation and LMS services have both a file called auth-middleware.py that is

responsible for verifying if the user requesting is authenticated and has the proper roles to

perform the desired UC.

Having discussed the common points that all of the services share, the following subsections

will be dedicated to exploring each project with more detail.

5.1.1 Authentication Service

This service allocates all the logic behind the authentication process. In this case, it is

responsible for logging in users in the system, as well as registering new users. As identified in

the use case diagram represented in Figure 20, three actors were identified: students,

supervisors and an admin. Even though all of them can authenticate in the application, it is only

possible to register new students or supervisors.

71

When one of those actions are performed, a JSON Web Token (JWT) is returned and it is

mandatory to be attached to all future requests to the system. That token serves as a method

to know if the user is authenticated, and contains basic information, such as the id and role of

the user.

The database of this service only saves the minimum required information to function properly.

Therefore, when registering a new user (whether it is a student or a supervisor), the

authentication service only saves the name, email, password and role of the user, and

communicates that information to the recommendation service to store the newly created user

as a student or supervisor depending on the chosen role.

5.1.1.1 Endpoints

The endpoints this service exposes are the following:

• Authenticate in the system (POST /login): Responsible for signing in a registered user.

Returns a JWT if the user is registered in the system and gave the right credentials,

otherwise gives the appropriate error;

• Register in the system (POST /register): Responsible for registering a new student or

supervisor, and communicate with the recommendation service about the new user.

Returns a JWT if the user introduces the correct information (name, email, password,

and the desired role), otherwise gives the appropriate error.

5.1.2 Recommendation Service

This main function of this service is to recommend projects and the most suited supervisors to

a given student. However, it has also other functionalities that are worth mentioning, such as

the ability to get all the main entities of the domain model (useful when showing that data in

the front-end), update information about the student or supervisor, register a new project and

manage applications of students.

As mentioned in Section 5.1.1, when a new user is registered, the authentication service

communicates with this one to register the user information (with the exception of the

password) into this service’s database. However, the registration of a student or supervisor is

not completed after that, since it is necessary to supply the remaining information (e.g.: study

areas, specialization areas, locations, countries, and other information) in another specific

endpoint (POST /supervisor or POST /student). As soon as the information is filled, the actor

entity is created and persisted to the database. From that moment, the user can interact freely

with all the remaining endpoints.

In the following subsections, it will be explained the thought process behind the creation of the

dataset to test the RS, as well as the RS algorithms and strategies adopted.

72

5.1.2.1 Data Mining

Since this problem is specific, it becomes challenging to find complete compatible datasets that

can be used to train the machine learning models. The approach used to create and evaluate

the dataset and machine learning models was to adopt the CRISP-DM strategy described in

Section 2.2.1.

The first step was to identify which entities needed to be considered into the machine learning

model. According to the Domain Model diagram in Figure 18, those entities are

Recommendations, Students, Supervisors, Projects, Specialization Areas, Study Areas, Locations

and Countries. After that, it was necessary to gather information about each of those entities.

Some entities’ information are more easily attainable than others, since there are general

datasets that can be converted with minimal data processing. Examples of that are the

Locations and Countries, which were retrieved from a trustable source(1). Other entities like

specialization areas and study areas were collected using the ChatGPT application, and contain

answers of sufficient quality for testing purposes, even though they may not be the most

accurate ones. Since projects need to be as accurate as possible, they were retrieved from ISEP’s

current project platform.

All of the data was compiled and then organized in a Excel file, with one spreadsheet per entity

(example shown in Figure 32). Each column represents a property of each entity, and each row

represents an object. Some of the columns represent the IDs of another entity instead of a

name, because it is easier to import the datasets (in the bootstrap.py file) that way. In the

example of Figure 32, the IDs were randomly selected with Excel’s functions to simulate real

student’s preferences and information. All entities were organized in this fashion, with the

exception of the Recommendation’s entity. For that specific entity, a R script was written to

generate a CSV file capable of generating possible recommendations based on all the previous

datasets (Appendix B). For every student, it generates the best five project recommendations

based on their preferred specialization areas, locations, project type and academic degree.

Recommendations are obtained by accessing which ones have the highest reliability percentage.

Each parameter of the percentage has different weights and the value is obtained by the

following equation:

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 0,15 ∗ 𝑚1 + 0,15 ∗ 𝑚2 + 0,7 ∗
𝑚3

𝑚4

where 𝑚1 is equal to 1 if the student preferred project type coincides with the project type, 𝑚2

is equal to 1 if one of the student’s preferred locations are inside a range of 20km of the project

location, and the split between 𝑚3 and 𝑚4 corresponds to how much student’s preferred

specialization areas are contained in the project’s specialization areas.

Besides that, for every project recommendation, it recommends the best 5 supervisors that are

available to supervise according to their initial and final dates, specialization areas and academic

degree.

1 - https://simplemaps.com/data/world-cities

73

Figure 32 - Excerpt of Student's Dataset

5.1.2.2 Recommender Engine

This subsection will dive deep into the implementation process of the RS. The objective of this

RS is to take into consideration previous generated recommendations and the student’s

properties and recommend projects based on that information. With that into consideration, it

was built an hybrid filtering RS that has both collaborative and content-based filtering. The

combination of the results of both techniques is expected to generate more accurate

recommendations. In addition, to improve recommendation personalization, NLP was added

on top of those recommendations if the user provides a project description.

For the collaborative filtering, the datasets generated in Section 5.1.2.1 need to be utilized since

it is necessary to have prior data for this technique (cold-start problem). Having that data, the

chosen algorithm to process it is the matrix factorization algorithm. The algorithm was written

using Pandas for data organization, as well as TensorFlow and NumPy. Firstly, data is pre-

processed into Pandas datasets, to easily integrate with TensorFlow and NumPy functions. Then,

the user-item matrix is created. In the matrix, users represent students, while items are

represented by projects. The records of that matrix are the reliability percentages of each

recommendation. Every other record that does not have a recommendation associated is

assigned to a 0. For that reason, the matrix is classified as non-binary because it has further

information about the recommendations’ quality. To train and test the model, the matrix is

74

divided into training and testing sets, that corresponds to 80% and 20% of the matrix data

respectively.

The next step consists of decomposing the matrix to extract meaningful patterns. It factorizes

the training matrix into latent factors that represent student and project preferences. In other

to find the latent factors and other important variables such as the best learning rate and

regularization values, the system performs a technique called “Grid Search”. That technique

consists of training the model with several different values multiple times to assess which are

the best values for the model. After having those values, they are then used to optimize the

model by using the alternating least squares optimization algorithm. The final step is to evaluate

the model by using a testing set and calculate the MAE and RMSE of those models. Since Grid

Search is used to find the best values for the model, it is ensured that the error values are the

smallest possible.

Collaborative filtering model is saved after training, to be then used when the

recommendations endpoint is called. This algorithm is executed once the system is being

started, and after that it is performed every 24 hours to accommodate new recommendations.

Figure 33 illustrates the collaborative filtering process in the form of a diagram.

Figure 33 - Collaborative Filtering Activity Diagram

Contrary to the collaborative filtering method, the content-based filtering technique focus on

the student’s data by comparing it with the available projects and supervisors. The algorithm is

executed once the student’s requests to generate new recommendations. This technique uses

several recommendation metrics to apply weight to each project recommendation depending

on its characteristics. These metrics are applied to specialization areas, project types and

location attributes. The values of each metric can be changed as specified in Figure 20 by UC7.

The algorithm starts by getting all the information about specialization areas, locations, projects

and supervisors. After also retrieving the recommendation metrics from the database, the RS

organizes the student’s and project’s attributes into NumPy arrays. Those attribute arrays will

be then converted into decimal binary arrays (0 to 1). If the student or project has a certain

specialization area, project type or location, the correspondent binary array value will be the

weight of the attribute. For the student’s binary array, locations are considered when they are

within a 20km radius.

Once the student’s and project’s binary arrays are built, they are compared using a distance

similarity measure. In this case, the chosen algorithm is the cosine similarity. The similarity

scores are then sorted from the most to less similar, and it is retrieved the first 5 results which

75

correspond to the most suited recommendations. For each recommendation, it is necessary to

assess the best supervisors.

The same process described earlier is applied to the supervisors, however it will only be

considered their specialization areas and their preferred specialization areas as attributes.

Supervisors that have preference in a certain specialization area that is also present in the

project will have a better score in the array in comparison to the same specialization area that

is not their preferred one. Similarity distance is also calculated by cosine similarity and sorted

by descent order to return the best 5 supervisors for the project recommendation. Figure 34

illustrates the content-based filtering process in the form of a diagram.

Figure 34 - Content Based Filtering Activity Diagram

When generating the recommendations, if the user provides a project description, NLP is also

applied to the RS. It was decided to adopt a non DL algorithm with NLP (as discussed in Section

2.2.4) since this application does not have enough data to be trained in a DL context. Even

though there are NLP implementations that have multi-language support, this processing is only

applicable to English. Content-based filtering is applied firstly, and after doing the cosine

similarity calculation to obtain the best recommendations, NLP is applied to the best

recommendations to reorder them.

NLP compares the description provided by the student with the project’s descriptions. The first

step to do is perform a pre-processing function to all project descriptions and the user

description, which consists of eliminating language stop words (e.g.: the, on, in, is, when, etc.),

punctuation and performing stemming to convert words to their base form (e.g.: running, runs,

ran → run). Those pre-processing techniques are provided by a Python package called NLTK.

With the pre-processed descriptions, TF-IDF is applied to them to transform the descriptions

into numerical vectors, as explained in Section 2.2.4. Those vectors are then compared with a

cosine similarity algorithm to find the most similar descriptions to the one the user wrote. The

top recommendations are then reordered based on those results (with the same strategy as the

content-based filtering). Figure 35 illustrates NLP in the form of a diagram.

Figure 35 - Natural Language Processing Activity Diagram

76

5.1.2.3 Endpoints

The endpoints this service exposes are the following:

No Actor

• Get all Study Areas (GET /study-area): Responsible for retrieving all the study areas

registered in the database;

• Get all Countries (GET /country): Responsible for retrieving all the countries registered

in the database;

• Get all Specialization Areas (GET /specialization-area): Responsible for retrieving

all the specialization areas registered in the database of a given study area;

• Get all Locations (GET /location): Responsible for retrieving all the locations

registered in the database of a given country.

Student Actor

• Register Student (POST /student): Responsible for registering the remaining

information associated to the user with role “student”. A student must fill in his study

area, preferred specialization areas, country, preferred locations, preferred type of

project, and academic degree. Returns a successful message if the registration is

completed, otherwise gives the appropriate error;

• Get Student (GET /student): Responsible for getting all the information regarding a

given student. Returns that information if the student exists, otherwise gives the

appropriate error;

• Update Student (PUT /student): Responsible for updating any information that a

student desires. Returns a successful message if the update is completed, otherwise

gives the appropriate error;

• Get Recommendations (GET /recommendation): Responsible for generating the

recommendations for the student. Takes into consideration all the information about

the student, and compares it to the trained dataset and registered data of supervisors,

projects, and other relevant entities. If recommendations were generated before, it

retrieves the generated recommendations from the database, otherwise it generates

using the recommender engine;

• Rate Recommendation (POST /recommendation/rate): Responsible for associating a

given rating given by the student to the generated recommendation (rating varies from

1 to 5);

• Apply to a Project (POST /application): Responsible for sending an application to the

project to one of the recommended supervisors. Returns a successful message when

applying to that project recommendation, otherwise it gives the appropriate error.

Supervisor Actor

77

• Register Supervisor (POST /supervisor): Responsible for registering the remaining

information associated to the user with role “supervisor”. A supervisor must fill in his

study area, specialization areas, preferred specialization areas, academic degree, initial

and final dates of supervision, and the maximum number of students that he is willing

to supervise. Returns a successful message if the registration is completed, otherwise

gives the appropriate error;

• Get Supervisor (GET /supervisor): Responsible for getting all the information

regarding a given supervisor. Returns that information if the supervisor exists,

otherwise gives the appropriate error;

• Update Supervisor (PUT /supervisor): Responsible for updating any information that

a supervisor desires. Returns a successful message if the update is completed,

otherwise gives the appropriate error;

• Register a new Project (POST /project): Responsible for creating a new project that

can be added to the recommendation list of projects. The registered projects do not

associate the supervisor, since the recommendation process suggests the best possible

supervisors for each of the recommended projects. A project must have a title,

description, study area, specialization areas, location, type of project, academic degree

and duration (initial and final dates). Returns a successful message if the project was

successfully created, otherwise gives the appropriate error;

• Get all Applications (GET /application): Responsible for retrieving all the applications

students have made to a given supervisor;

• Assign to a Project (POST /recommendation/assign-project): Responsible for

accepting the application of the student and assign that project to the student. As soon

as the project is accepted, it can no longer be recommended to other students. The

service communicates with the LMS service via AMQP to transform that

recommendation into a project. Returns a successful message if the project was

correctly assigned, otherwise gives the appropriate error.

Admin Actor

• Get Recommendation Metrics (GET /recommendation/metrics): Responsible for

retrieving the recommendation metrics used in the recommender engine. Those

metrics are specialization areas, locations and project type, and the sum of all of them

is equal to one;

• Adjust Recommendation Metrics (POST /recommendation/metrics): Adjust one or

more recommendation metrics. Those metrics have weights which directly influence

how the recommender engine classifies each project. Returns a successful message if

the sum of all recommendation metrics after the update is equal to one, otherwise

gives the appropriate error.

78

5.1.3 LMS Service

As soon as a recommendation is converted to a project, the LMS service can be utilized. During

the conversion process, the recommendation service shares the info about the student and

supervisor associated to that recommendation to the LMS service via AMQP. Those entities are

then saved in the LMS database.

Students and supervisors can use almost all the endpoints of that service. Both can see the files

and reports associated to the project, upload or download new files, update reports and see

the history of all messages exchange between them. Students are however the only ones who

can upload brand new reports to the system since they are the authors of the document.

In order to upload files and/or reports to the system, it is necessary that those assets respect

the supported file extensions. Uploaded files must be either images, Word, Excel, PowerPoint,

PDF or text files, while reports need to be PDF files exclusively. If the files meet those criteria,

they are stored as local files in the server under the /uploads/<project_id>/files or

/uploads/<project_id>/reports directory (depending on the type of the uploaded file).

Therefore, the database does not save the file directly, however it saves the path of the file in

the system in order to be used on the download endpoint. When the user requests for the

download of a file or report, the system returns the file as a response using the

send_from_directory auxiliary function provided by Flask.

5.1.3.1 Live Chat

The service also allows for the exchange of messages between student and supervisor. To

simulate a live chat experience, WebSockets must be used. WebSocket can be seen as a

constant connection between the client and the server, as opposed to an HTTP request. With

that, both the client and server can send updates between each other “(…) without clients

needing to poll at certain intervals” (Mardan, 2018). There are libraries that assist in the process

of implementing those sockets in the server and the client, and one of them is the Socket.IO

library (Mardan, 2018). Socket.IO can be easily implemented in a Flask project by using the

flask_socketio package.

Since this service does not communicate directly with the front-end counterpart, it will only

expose the necessary endpoints of the Message entity. Instead, the API Gateway will have

Socket.IO configuration implemented, and will communicate with the LMS service to register

the messages sent by the user. Successful stored messages are then returned in the socket to

the client to create the live chat experience. The Socket.IO implementation when uploading a

new message can be seen in Code 1.

79

Code 1 - Socket.IO Upload Message Listener

5.1.3.2 Endpoints

The endpoints this service exposes are the following:

Student and Supervisor Actors

• Get Project (GET /project): Depending on the user executing this endpoint, it can

retrieve all the projects a supervisor is currently supervising, or the project associated

to a given student. If the project does not exist, gives an error;

• Get All Files (GET /project/<id>/files): Responsible for retrieving all the files

associated to the project;

• Upload File (POST /project/<id>/files): Responsible for uploading a file and

associate it to a given project. The file can be an image, Word, Excel, PowerPoint, PDF

or text file. Returns a successful message if the file respects those formats and was

uploaded, otherwise gives the appropriate error;

• Get All Reports (GET /project/<id>/reports): Responsible for retrieving all the

reports associated to the project;

• Update Report (PUT /project/<id>/reports/<report-id>): Responsible for sending

an updated version of a report, to let the other person know that a certain user made

changes to a given report. The updated version of a report must be a PDF file. Returns

a successful message if the report respects the PDF format and was uploaded,

otherwise gives the appropriate error;

• Download File (GET /project/<id>/files/<filename>): Responsible for retrieving an

Uniform Resource Locator (URL) containing the file to be downloaded;

• Download Report (GET /project/<id>/reports/<filename>): Responsible for

retrieving an URL containing the report to be downloaded;

• Download All Report Version History (GET /project/<id>/reports/<report-id>):

Responsible for retrieving an URL containing all the previous versions of a given report.

• Get All Messages (GET /project/<id>/messages): Responsible for retrieving all the

messages that were exchange between the student and supervisor on a given project.

Student Actor

• Upload Report (POST /project/<id>/reports): Responsible for uploading a report and

associate it to a given project. The report must be a PDF file. Returns a successful

80

message if the report respects the PDF format and was uploaded, otherwise gives the

appropriate error;

Since the API Gateway has a Socket.IO implementation for live chat, the following endpoints

are associated to that socket:

• Register a new Message (POST /project/<id>/messages): Responsible for sending and

storing a message sent by a given user.

5.2 System Architecture – Front-end

Besides building the back-end infrastructure, a front-end system is also a requirement for

students, supervisors and admin to interact with the system in a user-friendly manner (as

identified in Section 4.1.5).

In light of that, a front-end project was created using an open-source JavaScript framework

called Svelte, which is considered one of the most loved frameworks amongst developers.

Besides still being a relatively new framework compared to React, Angular or Vue, it is already

being used in enterprise projects and companies such as The New York Times, GitHub and

GoDaddy (Bhardwaz and Godha, 2023). According to the official Svelte documentation, the

most intuitive way to building Svelte web applications is with the use of their application

framework called SvelteKit (Svelte, 2023a).

A new SvelteKit project was created from scratch. In order to help the creation process of the

user interface, it was used a free Cascading Style Sheet (CSS) template(1) which was adapted to

fulfil the application requirements and accelerate the development process. SvelteKit requires

a specific folder structure when building web applications, which can be seen in Figure 36. In

this case, the src folder contains two main directories:

• lib: Responsible for allocating all the library code that will be used throughout the

application (such as reusable components and other sharable files). When importing

files in this directory, the $lib alias is used instead of the full relative path;

• routes: As the name suggest, it contains the routes of the application, and it is the

only mandatory directory of SvelteKit. Directories inside this folder correspond to a

path segment in the URL. For example, if the directories are organized in this manner:

student/dashboard/+page.svelte, the URL path to access to that page is going to be

FRONTEND_URL/student/dashboard (with FRONTEND_URL being a representation of the

application URL).

Besides that, filename conventions must be respected, since files related to pages must

start with a ‘+’. There are several types of files that can be used in routes, and the most

used ones in this application are:

o +page.svelte: Corresponds to a page of the application;

1 - https://adminmart.com/product/modernize-free-bootstrap-5-admin-template/

81

o +page.server.ts: Can contain a load function that loads data before the page

is rendered. Since it has ‘server’ in the name, the file is executed in the server

(by using server side rendering). The returned data from that function can be

then used in +page.svelte and subsequent Svelte components;

o +layout.svelte: Corresponds to a part of the page that always visible on every

page;

o +layout.server.ts: Same features as +page.server.ts but for

+layout.svelte;

o +server.ts: Corresponds to an HTTP endpoint that gives the opportunity to

take full control over the response.

Inside the lib directory, files were divided by their main functionalities:

• components: Contains all reusable components (.svelte files) that will be used

throughout the application pages;

• model: Contains type declaration files (.d.ts files) that represent each of the domain’s

entities. Those type declarations match what is defined in the back-end and serve as

type checking for the service’s methods and components;

• services: For every entity, there is a service file which has functions that point to all of

the endpoints defined in the API Gateway. Those files are also responsible for data

processing before returning the response back;

• stores: As the name suggest, these files represent Svelte Stores, which are a global

state management mechanism that can be accessed by all pages and components of

the application without the use of props or event listeners;

• utils: Contains all auxiliary and general functions that are used more than once in the

application.

Figure 36 - Front-end Folder Structure

82

Touching on the authentication and authorization process, the application implements

mechanisms to only allow certified users to access the application’s endpoints. The first one is

located in the hooks.server.ts file represented in Figure 36. That file implements a function

that is executed every time a request in the application is made, and sees if the JWT Token is

inside the cookies. If it is, it decodes the token’s information and returns it. The second

mechanism is implemented in the +layout.server.ts file. If the JWT token information is

returned from hooks.server.ts, the layout function will ensure that the user is only redirected

to the allowed page (e.g.: the student will only be able to access to /student/dashboard pages

and not /supervisor/dashboard ones).

According to Figure 36, routes are organized by actors to simplify the authorization process.

Each of the actors have their own dashboard, where they can interact with the allowed

functionalities. There is also an api directory that contains HTTP endpoints (defined in

+server.ts files) that communicate directly with the API Gateway via the services files. Those

files are used to have more control over the HTTP response.

To support the live chat functionality described in Section 5.1.3.1, the front-end needs to also

have a Socket.IO implementation. Code 2 reflects the connection between the front-end and

API Gateway sockets, and useful listeners such as when the client connects to the socket (which

sends the JWT token to the server to authorize communication) and when a message is received

(adds the received message to the array of all messages). It also has a function that sends a

message by emitting it to the server using the upload_message event.

Code 2 - Socket.IO Implementation Front-End

Before starting the application, the environment file needs to know which is the back-end’s URL.

The project uses pnpm has the package manager and it is necessary to execute pnpm install to

download all the dependencies of the project, as well as Svelte and SvelteKit packages. With all

83

the dependencies installed, executing pnpm dev starts the front-end development server.

However, in the production environment, the same principle made for the back-end is also

applied to the front-end. A Dockerfile is defined to build an image of the front-end, using

commands such as pnpm build to build a production-ready bundle for a Node.JS container.

When executing the command docker-compose up -d in the same directory of docker-

compose.yml, all the images of the back-end and front-end start running according to their

dependencies.

Due to the fact that the application was deployed in the author’s machine, and it is not

accessible to the public, some screenshots of the application can be seen at Appendix B (it does

not represent the entirety of the project).

5.3 Deployment

Since this system is composed of several microservices, the adopted strategy was to use Docker

containers to deploy it into production. All services have their own Dockerfile, which is

responsible to transform the service into a Docker container capable of running in a completely

different environment. The root of the project contains a docker-compose.yml file that is

responsible to orchestrate how each container is built, the running commands, the database

volumes to use, and dependencies with each other. Figure 37 shows how the project is

deployed in Docker by showing all of the project’s containers, as well as the ports each one

exposes.

The API Gateway is located in port 5000, and communicates with the other back-end services

at ports 5001, 5002 and 5003. The RabbitMQ service (message-broker-1) exports two ports:

one that serves as a communication service (5672) and other that gives access to a admin

dashboard to control RabbitMQ’s behaviour. The host machine and network were configured

to allow for outside requests on ports 5000 and 3000 (that correspond to the API Gateway and

Frontend respectively).

Figure 37 - Docker Containers of the Application

In Figure 37 there is also a Docker container named caddy-1 that represents a Caddy image.

Caddy is an open-source web server that supplies automatic HTTPS for secure connections. This

tool was used as a reverse proxy to the local machine.

84

Since the system is being hosted on the author’s machine and network, it was necessary to

modify the network’s settings to allow connections for port 443 (HTTPS default port), which is

the one Caddy uses. A domain was used in conjunction with Cloudflare’s DNS services to point

the URLs master-thesis.ffwork.space and api-master-thesis.ffwork.space to the

network’s public IP address. The request will be intercepted by Caddy, and proxied to port 3000

or 5000 depending on the request URL. In this case, master-thesis.ffwork.space will redirect

to the front-end, while api-master-thesis.ffwork.space will redirect to the API Gateway.

5.4 Summary

The implementation chapter dives deep into the technical aspects of the system. The chapter

is divided into two main categories that symbolise both parts of the system: the front-end and

the back-end. Although the back-end is divided into its three main services (authentication,

recommendation and LMS), it shares common traits between all services. All of the services

have their own Dockerfile (container), database, and common important Python files.

The API Gateway and frontend ports are exposed in the host machine and network.

Communication between services happens using a RabbitMQ implementation and AMQP, and

all services are connected to an API Gateway that communicates directly with the front-end. All

services are built with Flask framework from Python, but have separate functionalities (that are

all listed in detail by describing each one of the exported endpoints). The authentication service

is responsible for logging in and register new users. When performing either action, a JWT token

is returned and must be attached to every request made to the other services. The

recommendation service is not only responsible for generating recommendations for the

student, but also manage applications and register student and supervisor preferences. The

process of building the recommender engine was started by doing data mining with the help of

the CRISP-DM framework. Then, two algorithms were made: one collaborative filtering

mechanism using Matrix Factorization, and one content-based filtering mechanism using cosine

binary matrices and cosine similarity. NLP is also considered when a user enters a project

description, and it was developed by using the TD-IDF mechanism. The LMS service is

responsible for managing the student’s project and allow for both students and supervisors to

upload files and reports, and talk to each other. Those functionalities were developed with the

help of Flask auxiliary methods, as well as Socket.IO for real time chat interaction.

The front-end was developed using a JavaScript framework called Svelte. Svelte was used in

conjunction with SvelteKit to make a full-stack web application. SvelteKit follows a strict folder

and file structure that must be complied. The project was developed using an open-source CSS

template, and a Socket.IO implementation was also built to communicate directly with the

back-end via the API Gateway.

The last subsection summarizes the process behind deploying the application to the public by

using Caddy as a reverse proxy and a domain.

85

6 Experimentation and Evaluation

In the chapter of Experimentation and Evaluation, evaluation metrics are defined, and the

thought process of evaluating them is described by specifying their process, tools to be used

and result interpretation. Coding tests to the application are also described, and the results of

each metric are analysed and discussed.

6.1 Ethics in Software Engineering

During system development of several UCs, there were some ethical concerns to be respected.

The RS does not take into consideration user sensible data, and it is completely anonymous,

meaning that only the main properties listed in Chapter 4 and 5 (specialization areas, preferred

locations and project type) are considered for recommendations. The model is trained with

previous recommendations done by the system, to ensure more rigorous results. Therefore,

when creating a new account, the user is only asked to insert the minimum required data, and

sensible data (e.g.: passwords) is encrypted and saved in the database. Measures to safeguard

user data from unauthorized access were also implemented, as explained by port forwarding

and HTTPS implementation in Section 5.3, authorization policies (with the use of role-based

strategies) and various implementation techniques explained throughout Chapter 5.

Application testing was also taken into consideration, as it will be discussed during this Chapter.

This system is geared towards people that are currently enrolled in an academic course or

university teachers. Thus, people need to be above 18 years of age and be in one of those

conditions to use the application. Students and supervisors were randomly selected to test the

application to avoid result bias. Anonymity of the questionnaire results was ensured to promote

honest answers and feedback. Any feedback given to the system (will) serve as continuous

improvement and adjustment.

86

6.2 Evaluation Metrics

Evaluation metrics (or indicators) are important aspects that needed to be tested to assess if

the developed system is answering all the problems stated at the beginning of the dissertation.

The system is evaluated according to several evaluation metrics, including:

• Performance: The application, namely the RS, needs to provide good performance for

all stakeholders. One of the problems identified during the analysis was the fact that

students waste copious amounts of time searching for the most appealing project,

which translates into a monotonous task and potentially missed opportunities. Besides

that, supervisors need a performant application to adopt that system rather than their

usual technological stack;

• Reliability: Since the application has a RS integrated, as well as other UCs, it needs to

ensure that the best results are given to students and supervisors. Although project

selection and monitorization is something that is not standardized and is target of

criticism from both parties, the system needs to retrieve reliable information and be

stable enough in order to be adopted in an university context. Besides that, the system

must be written with availability and maintainability in mind;

• Usability: It is necessary to know if the developed functional and non-functional

requirements in the system can help all stakeholders in the project development

process. The RS and LMS need to have all the functionalities to solve all the problems

stated throughout the dissertation, without neglecting user interface and experience

topics stated in Section 4.1.5.

6.3 Evaluation Methodology

To evaluate the metrics referred to in Section 6.2, the evaluation methodology for all of them

is explained, by mentioning which evaluation process to be followed, the tools needed to

evaluate them, the results that are gathered and how they can be used.

6.3.1 Evaluation Process

The performance metric is evaluated by performing performance tests. The goal of the

performance tests is to verify if the system is capable of having several concurrent users

(students and supervisors) using the application at the same time. Besides that, other types of

performance tests are directly targeted towards the RS, as previously stated in Section 4.1.5.4.

Performance must be acceptable when using the RS functionalities, if not the purpose of having

a RS to help students minimize their time searching for projects would be non-existent.

Information about the reliability metric is obtained by using specific methods for measuring RS

accuracy. Explained with more detail in Section 2.2.4.2, prediction accuracy is one of the main

evaluation properties to take into consideration when evaluating a RS. This metric calculates

how accurate the generated recommendations are. The precision accuracy assesses if the RS is

87

producing accurate results. It is obtained by using two different methods: equations and

classification. The first one addresses the MAE and RMSE of the RS. The second one classifies

the RS into a confusion matrix to calculate precision, recall, false positive rate and F-Measure.

Besides the prediction accuracy, availability and maintainability of the software are also

checked by verifying if the system can keep working in specific scenarios and if documentation

and code quality principles were adopted during implementation.

Finally, the usability metric addresses how all stakeholders experience the application by

allowing them to test and verify if all the developed functional requirements were correctly

implemented. Feedback on what to develop in the next iterations and potential refinements to

the developed UCs are also registered. This type of interaction is recorded by handling custom

questionnaires to each stakeholder and by tracking user interaction in the application.

Additionally, usability is also evaluated by analysing the rating tax given amongst the developed

UCs.

6.3.2 Tools

The performance metric is measured by simulating concurrent users using the same feature at

the same time (e.g. several students using the RS at the same time). For that, it is used dedicated

API testing tools such as Postman, that can also allow to run performance tests. Postman can

simulate a determined amount of concurrent users requesting one more requests at the same

time, as well as test each request independently with several different configurations.

Prediction accuracy is assessed by running the RS in a testing dataset with all the necessary

information. Since the system runs independently from any third-party service, the dataset is

built using other relevant datasets online. Once the RS can produce results successfully,

prediction accuracy metric is calculated using the expressions revealed in Section 6.3.1.

The usability metric is measured by tracking how the user interacts with the system, which

functionalities are used and not used, and how quickly a user can access certain UC or

information. These type of interactions are important to know which functionalities are

relevant to solve the stated problems and which ones need improvements and upgrades. To

achieve that, web tracking is one tool to visualize patterns in user behaviour (Atterer, Wnuk and

Schmidt, 2006). According to a study made in 2006 about user activity tracking, there are

several ways of recording user behaviour such as using an HTTP proxy, client-side scripting or

software to track mouse interaction, eye tracking devices and server-side tracking (Atterer,

Wnuk and Schmidt, 2006). However, since testing will be done remotely using the user’s own

devices, it is problematic to configure those tools in different machines and it can also be seen

as a privacy violation. Therefore, it will not be used to measure usability. With that in mind,

questionnaires will be created (one for each stakeholder) using Microsoft Forms, which allow

for several question formats and statistics.

88

6.3.3 Result Interpretation

All the described metrics in the Section 6.3 generate results that are translated into a statistic

and graphic formats for better understanding and readability.

Firstly, the performance metric assessed by Postman (that simulates several concurrent users)

concentrate on properties such as latency, response time, and how many users the system can

handle before stopping to answer.

Results from the reliability metric vary depending on the calculated property, namely when

mentioning prediction accuracy. The higher the values on the error properties MAE and RMSE,

the less accurate the RS predictions are. However, the higher the values on the classification

properties Precision and Recall, the more rigorous the RS predictions are.

The usability metric will be measured through questionnaires, which will evaluate the user

satisfaction when using the application, the functionalities that need some refinement and

which further feedback the users want to give to this version and future ones. With those

answers, several graphs and statistics will be presented to understand the user’s answers. QEF

will be used as a tool to assess software quality and evaluate the retrieved data from both the

questionnaires and the RS classification and error values. All the questions of both

questionnaires can be seen at Appendix C and D respectively.

6.4 Testing

Testing ensures that the application is producing the correct outputs. The approach to testing

the system was to build unit and system tests for the back-end, and E2E tests for the front-end.

Unit tests will be used to test specific algorithm methods regarding the recommender engine

and domain rules. In contrast, the system and E2E tests will provide general coverage of every

use case and functionality. Regardless of the test type, successful responses are tested, as well

as thrown errors to verify if the output was expected. The following subsections will be

dedicated to exploring each of those types of tests in more detail.

6.4.1 Unit Tests

Unit tests aim to verify the correctness and reliability of individual components of a software

application by isolating and testing small parts of an application separately. Examples of that

are functions or classes.

Since this application does not have a high level of complexity in terms of domain rules, it was

decided to solely use those tests to examine the RS’s algorithm reliability. Even though code

coverage in unit testing is something that several companies and programmers strive for,

domain rules are already being tested in System and E2E testing by analysing each UC as a whole.

Conversely, the RS contains complex algorithms that cannot be tested separately, and it is

89

necessary to check its values to ensure recommendations are being well generated. Unit tests

were made for both filtering techniques:

• Collaborative Filtering: __matrix_decomposition(), __optimize_model(), and

__grid_search();

• Content-Based Filtering: __create_binary_indicator_matrix() and

__calculate_distance()

6.4.2 System Tests

System tests encompass all modules of the back-end application. Those tests check UCs in a

global manner, in this case from the controller module (where the request is received) until the

repositories (where it communicates with the database).

Postman was the elected tool to build those tests. By creating one collection for each service,

those requests are separated by service (which improves organization) and can be tested

separately. Postman tests are then written in the “Tests” tab inside each request in JavaScript

language using their embedded testing API. Figure 38 shows the tests performed for each

service, which are organized by UC.

Figure 38 - List of System Tests

6.4.3 E2E Tests

E2E tests cover the whole application by testing the application flow from front-end, to the

back-end and database. Those tests can simulate real user interactions with the web application,

90

and can also test other important aspects of the system such as error handling, user interface

interactions and request orchestration.

Since the application is using SvelteKit as its front-end meta framework, it comes with

Playwright integration out-of-the-box (Svelte, 2023b). Playwright is an open-source E2E tool

developed by Microsoft that is capable of testing every web system regardless of the framework

used in three different environments: Chromium, Firefox and WebKit. Since it is a Microsoft

project, it has seamless integration with Visual Studio Code, which helps with test development.

Figure 39 shows the side-menu of Visual Studio Code containing all the developed E2E tests, as

well as some of their main features.

To run the Playwright tests, the whole system must be running, and a testing database must be

setup to avoid any entity conflicts. Playwright tests are written in JavaScript and are located in

the front-end project, under the tests directory. A Playwright test starts with the test function,

which accepts a function with a page argument where the whole E2E test will be written. The

argument allows to interact with the page as an user by clicking in page elements, typing,

selecting options, and other interactions. If there is a need to check some value or property,

Playwright offers a expect function where it is possible to write test assertions (e.g.: expect a

certain property to have certain value).

Figure 39 - List of E2E Tests

From Figure 39, the get recommendations without project description test is shown at Code 3.

Before executing any test to ensure they can run independently from each other, a new

student/supervisor is always registered, and then logged in before each test execution.

However, when registering a new student, it is not necessary to execute the login function since

the new user is automatically logged in upon registration. Test executions are re-used in other

test files to avoid rewriting the same code multiple times.

Prior to any test execution, Playwright simulator goes to the recommendations page and

ensures it is fully loaded before running the next procedures. The test starts by clicking on the

91

“Generate Recommendations” button. The simulator waits until the div element with data-

testid property “recommendations” is attached to the DOM and visible. If everything goes

right, the expect function is called to check if that div is visible on the screen and if there are 5

recommendations inside it.

Code 3 - E2E Test of Get Recommendations

6.5 Results

In this section, results for each metric will be analysed and discussed by analysing various

statistics. Both the student and supervisor’s questionnaires and their respective answers will be

analysed alongside the QEF, which will also assess if the defined metrics were considered during

implementation and their impact on software quality. Results can be seen in Appendix E.

6.5.1 User Feedback Questionnaires

In order to evaluate the system in a real world scenario, questionnaires for the main actors of

the system (students and supervisors) were elaborated. A specific number of students and

supervisors were allowed to fully interact with the finished product and fill the answers and

feedback in the form.

The first group to test the application was the students. Since the system database contains

only IT-related projects from ISEP’s platform, it was necessary that the students who tested the

92

application had (or are pursuing) an IT degree in any school/university. Considering that

restriction, it was possible to gather answers from 15 different students.

The next group was the supervisors. Because the author did not have any direct contact with IT

teachers, and also due to their time constraints, it was impossible to gather the same sample

size. However, 5 different supervisors were able to test the application and answer the

questionnaire.

The answers from the student’s(1) and supervisor’s(2) questionnaires can be found in a separate

Excel spreadsheet and will be used in the Subsection 6.5.2 to complement the analysed

dimensions. In the following subsections, the context and motivation behind this project will be

analysed inside the point of view of students and supervisors.

6.5.1.1 Context

The main purpose of this application was to make the project selection process efficient and to

make the monitorization process easier for supervisors. The questionnaires’ answers reflect

that statement, since the current method of choosing the final project in universities averaged

a rating of 3.64 (on a scale of 1 to 10) across 11 students that already participated in this process.

This average rating is achieved regardless of the method used in their universities. Some of the

students did not participate in any curricular project as of yet, however all participants agreed

that they would use a RS if their university offered a similar tool. When asked on how they

evaluate their current method of project monitoring, supervisors were satisfied (6.4 on a scale

of 1 to 10) but all of them were keen to try a new method if it was available to test. It is then

possible to conclude that even though supervisors use their own tools to supervise their

projects, they acknowledge that improvements to their supervision’s efficiency could be made.

6.5.2 Quantitative Evaluation Framework

QEF is an evaluation model that has the goal of assessing software quality by verifying if the

implementation objectives were completed (Escudeiro and Bidarra, 2008). QEF models specify

three main attributes:

• Dimensions: Represent the most important points to be achieved in software

development. Dimensions in this project are represented by the metrics specified in

Section 6.2;

• Factors: Associated to a dimension, it represents a more detailed manner to test a given

dimension. Factors for each dimension in this project are designated in Section 6.3;

• Requirements: Associated to a factor, it represents a standard that should be strived.

Each requirement has its own relevance (𝑟𝑤), which is a value that ranges from 0

(irrelevant) to 10 (key requirement), as well as a fulfilment (𝑤𝑓) that represents how

well the requirement was implemented (it ranges from 0 to 100%). Requirements, as

well as the full QEF model for this project, can be seen in Appendix E.

1 - https://is.gd/p1RZ46 2 - https://is.gd/BgRbIt

93

After identifying QEF’s main attributes, system quality is discovered by determining the value

of the following properties:

• Factor Weight in Dimension (𝒘𝒊𝒋):

𝑤𝑖𝑗 =
𝑛𝑟𝑤→𝑓𝑎𝑐𝑡𝑜𝑟

𝑛𝑟𝑤→𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

• Achieved Performance per Factor (𝑭𝒂𝒄𝒕𝒐𝒓):

𝐹𝑎𝑐𝑡𝑜𝑟 =
1

∑𝑟𝑤
∗ ∑𝑟𝑤 ∗ 𝑤𝑓

• Achieved Performance per Dimension (𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏):

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = ∑𝑤𝑖𝑗 ∗ 𝐹𝑎𝑐𝑡𝑜𝑟

• Global Deviation (𝑫):

𝐷 = √∑(1 −
𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

100
)

2

• System Quality (𝒒):

𝑞 = (1 −
𝐷

√𝑛
) ∗ 100

The following subsections deeply analyse the mentioned dimensions according to their

requirements, the answers from both questionnaires and what was established in the QEF

model at Appendix E.

6.5.3 Performance

Performance tests assess if the application is ready to accommodate a large amount of users at

the same time, and still deliver responses in an adequate time. In fact, as discussed in Section

2.2.2, people will often look for what they desire based on cost and benefit, so the system need

to retrieve its data (especially the RS results) in a reasonable time. Since this application is

supposed to be used by students and supervisors from different institutions, it needs to be

capable of supporting a certain number of concurrent users. Time constraints and concurrent

users were specified in the QEF model.

To test the system, Postman will be used. Postman provides a “Performance Test” functionality

that allows simulation up to 100 concurrent users on a given amount of time. Performance tests

were executed on the author’s computer, which is the device that is hosting the whole system.

Instead of performing the requests to the localhost URL, the requests are made to

api.ffwork.space to also them in a production environment.

94

The machine used for these tests has an Intel i7-11700F processor, along with a GeForce RTX

3060Ti graphics card and 16GB of RAM. Besides that, the data used for testing was the same as

used for the system implementation, which is explained with more detail in Section 5.1.2.

The decision of testing only GET requests of the application lies solely on the fact that most of

the time, those functionalities will be requested more often than POST’s or PUT’s, and also

because of the fact that it would cause the database to store copious amounts of information

that the computer storage cannot handle.

The following endpoints were tested:

• Get Study Areas;

• Get Locations;

• Download File;

• Get Recommendations.

It is worth noting that the following results may not be the same if they were executed in a

different environment, or the project and supervisor database had more entries. Performance

tests were done using the upper limit allowed on Postman (100 users) and 1 minute of test

duration.

The first test consists of executing the Get Study Areas and Get Locations endpoints together

since they are mostly executed at the same time when using the front-end application. Both

endpoints do not return a huge amount of data (around a few kilobytes). The results of the test

can be seen in Figure 40.

Figure 40 - Performance Test of Get Study Areas and Locations

The average response time of the system was 419ms, even though there were a high number

of request with response times over that amount. Although 419ms represents a discrepancy of

39% compared to the 300ms desired response time, it is still a fast response time and it will

possibly not be noticed by users. There are also some spikes up to 1800ms which are not ideal

95

when interacting with those specific features, however it could be explained by other factors

such as network overload.

The next performance test performed was to the download file endpoint. The endpoint

requests the download of a PDF file that has roughly 500 kilobytes of data. The results of the

test can be seen in Figure 41.

Figure 41 - Performance Test of Download File

Contrary to the previous test, this one is much slower, with an average of 4935ms of response

time. There is a steadily increase in response time on the first few seconds of the test, however

that value stabilizes in the 4500ms range. Those values suggest that the time of that request is

directly impacted by the size of the downloaded file and the user’s network. If the downloaded

file is bigger than the one tested, the requests would most likely have a bigger response time.

The last performance test executed was to the get recommendations endpoint. To test the

recommendation system performance, the UC was altered so that new recommendations are

always generated, regardless of any registered record in the database (as explained in Section

4.2.2.1). The results of the test can be seen in Figure 42.

Figure 42 - Performance Test of Get Recommendations

96

The test report shows a 2864ms response time, which is well below the defined target of 5

seconds for each request to the RS. There are some fluctuations in response time, and the

maximum registered value was almost 7 seconds, however the 90th percentile of requests

situated at around 3 seconds. This results show that a capable machine with GPU acceleration

contributes to a good performance of the RS. Nonetheless it is important to keep in mind that

since the database has only ISEP’s projects, those results could suffer changes if the tests were

to be performed with a bigger dataset.

6.5.4 Reliability

The most important factor of reliability is the prediction accuracy, since it is necessary that the

RS is producing the most accurate results, which therefore translates into more user satisfaction.

To test this factor, the dataset will be used to assess the errors associated with the collaborative

filtering part of the RS, while the answers from both the students and supervisors will assess

the content-based filtering part of the RS by calculating the precision, recall, false positive rate,

and F-Measure.

The recommendation system performs a matrix factorization algorithm every 24 hours when

initialising the application. As explained in Section 5.1.2.2, the algorithm conducts a grid search

to assess the best variables to use for this RS by optimizing the algorithm using the alternative

least squares optimization. The system will calculate the loss of the algorithm by calculating the

MSE with the defined learning rate and regularization values after optimization. As the

iterations go by, the MSE progressively decreases. The values with the lowest MSE will be used

to calculate the RMSE and MAE of the RS with the training and testing datasets. Figure 43 shows

both of those error values, the left one being from the training set, and the right one being from

the testing set.

Figure 43 - Error values from training and testing datasets

For the other test to evaluate the prediction accuracy of the RS, data from the student’s

questionnaire was used. The goal of this evaluation is to determine the quality of the generated

recommendations, and also check which weight variables are the most suited for the majority

of students. As discussed in Section 5.1.2.2, the algorithm will produce different results

according to the weight given to each metric. To determine one variable combination that

would work for most users, students tested the RS with different values:

• Custom Settings #1: Specialization Areas: 0.33, Project Type: 0.33, Locations: 0.33 →

Equal preference in every variable;

• Custom Settings #2: Specialization Areas: 0.5, Project Type: 0.2, Locations: 0.3 → More

preference towards specialization areas, and locations;

• Custom Settings #3: Specialization Areas: 0.5, Project Type: 0.3, Locations: 0.2 → More

preference towards specialization areas, and project type;

97

The average score of all settings are mostly the same, averaging a value of 7 on a scale of 1 to

10 (custom settings #1: 7.1, custom settings #2: 6.9, custom settings #3: 7.3). However, there is

a slight preference towards the custom settings #3, which prioritize specialization areas and

project type. This result is proven by the average value in student’s preferences when choosing

a project. Students give more preference to specialization areas (8.4), followed by project type

(7.7), and finally locations (6.5).

The next step of evaluation is to calculate prediction accuracy through classification. To retrieve

that information, the section “Student Information” was used to assess if the preferences

chosen by each student was in accordance with the generated recommendations. Additionally,

each student was asked to fill some additional information on the side by specifying if the given

recommendations were relevant or not (true and false positives), and if other 15 randomly

selected projects that were not recommended could be relevant or not (true and false negatives)

using the best settings, which in this case is the custom settings #3. Findings of this research

can be found in Table 14.

Table 14 - Recommendation evaluation for each student

The results from each student will be used to classify the prediction accuracy using the

equations stated in Section 2.2.5.2. From the testing settings where it was possible to gather

300 different recommendation evaluations (20 recommendations for each student), precision,

recall, false positive rate and F-Measure have the following values:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

53

53 + 52
 ≅ 0,51

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

53

53 + 22
 ≅ 0,71

98

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

52

52 + 173
 ≅ 0,23

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 0,51 ∗ 0,71

0,51 + 0,71
 ≅ 0,59

Precision of the RS sits at around 0.51 or 51%, which means from all the supposed

recommendations, the system is only recommending good projects half of the time. In

comparison to most of the tools analysed during Chapter 2, these results may indicate less

optimal recommendations for students. However, and also taking into consideration the recall

value of 0.71, it is possible to assume that a possible solution to increase precision is to increase

the number of recommendations from 5 to 10 or 15, or utilize the description functionality to

obtain more tailored ones (by utilizing a more complex and developed NLP algorithm), since the

data points out that some false positives are being left out. Another aspect that can be

concluded is that project recommendations for students are more complex than just relying on

their characteristics, since some projects that perfectly match the student’s interests may not

be a good recommendation due to other factors such as the project description or theme.

Nevertheless, this tool serves as an auxiliary mechanism to filter projects and get the most

suited projects more quickly. F-Measure value that encompasses precision and recall sits at 0.59.

This value could have been higher if the precision value was also higher, however in counterpart

it also indicates that the RS does not miss a significant number of possible recommendations.

False positive rate sits at 0.23 or 23%, which means only a small amount of random projects

could be a good recommendation for the student. However, it is important to point out that

this does not represent the whole dataset of the system (due to the amount of projects students

needed to evaluate), so this results must be analysed with caution. Still, a small false positive

rate is a result every RS should be striving for.

In terms of availability, as discussed in Section 5.3, the system is available worldwide over an

HTTPS connection by accessing the URL: master-thesis.ffwork.space. Even though the whole

system composed of several microservices is running on a single machine, the application is

capable of maintaining some degree of functionality if there is one or more microservices not

working properly or offline.

An example of that is the authentication microservice. If the user is already logged in the system,

he can interact with the whole application as normal since each microservice implements a JWT

decryption function capable of identifying the user. If one of the other microservices

(recommendation or LMS) starts malfunctioning or goes offline, the user is capable of

interacting with the UCs of the microservice that is running properly. However, UCs that require

communication between microservices (e.g. assign student to project) will not work as

expected. Those asynchronous messages passed to RabbitMQ will be received by the consumer

once the microservice is online again.

Having that into consideration, data is not lost unless the RabbitMQ service stops working.

There is also data replication between databases of each microservice, and automatic backups

99

of the recommendation dataset, however a more concrete backup strategy should have been

stated to avoid complete data loss.

The final factor to evaluate is maintainability. The main pillars of maintainability in a software

engineering context are documentation, tests and code quality and organization. The system

was produced after the development of the analysis and architectural design specified in

Chapter 4. Besides that, Chapter 5 explains the thought process, tools, API reference and

procedures made during system implementation, which also serves as further documentation.

In terms of code documentation, every microservice offers a Swagger integration that specifies

each API endpoint the service offers, but it was not further explored due to development time

restrictions.

Testing coverage is detailed in Section 6.4, where unit, system and E2E tests are written. Those

tests cover the whole application by evaluating important methods of the RS, all the UC’s and

the application flow from front-end, to back-end and database.

Code quality and organization is respected by following the directory rules specified in Chapter

5, as well as reutilizing common methods and components. Both the front-end and back-end

implement specific features that help enhance maintainability. On one hand, the front-end

follows the development guidelines from SvelteKit by organizing pages into the routes

directory, and following a service-based approach (e.g. one file for one domain entity) where

requests of a given entity are made to the back-end and processed right after. On the other

hand, the back-end follows a controller, service, repository architecture with dependency

injection to isolate each module to reduce coupling and facilitate unit and/or integration testing.

Finally, the whole application code is stored in GitHub, a cloud-based storage service that works

with Git, allowing for version control, issue tracking and pull requests, which enhances the

development process.

6.5.5 Usability

Across both questionnaires, opinions about usability were extremely positive overall. Most

students and supervisors pointed that the interaction between UCs and overall user experience

were friendly and easy to use. Figure 44 shows the overall results of two questions from the

“Application and Evaluation Feedback” section of the questionnaire, while Figure 45 indicates

the satisfaction rate when using the application.

100

Figure 44 - Questionnaire Results of Usability

Figure 45 - Satisfaction Rate of the Application

101

On a scale of 1 to 10, the average rating of application’s usability for students is 8.2 (with only

one negative review), while the average rating of user experience and ease of use is 8.7. This

results in an application usefulness success rate of nearly 100%. Therefore, students would

want to use it in an academic context. Supervisors’ ratings on the other hand are slightly inferior,

yet still averaging 7 on a scale of 1 to 10 (7.6 on usability and 6.8 on ease of use).

Besides those values, there was a clear tendency to choose the RS as the most useful feature of

the application (with 9 students choosing it) followed by the live chat functionality (with 5

students preferring it). The complete opposite happened with the supervisors, since there was

not one clear functionality that stood over the rest.

The questionnaire has a dedicated field to introduce missing functionalities and further

feedback. Since part of the evaluation process was made during the final development phases

of the system, some minor feedback suggestions were implemented right away, such as making

an accordion component for reports such as the latest version is at the highest position.

However, most of the feedback and missing functionalities are discussed with more detail in

the future work section of Chapter 7.

Even though the questionnaire prints a good impression about the application’s usability, there

are some aspects that should also be discussed. As discussed in Section 5.2, the application’s

front-end adapted an open-source CSS Template which offered aesthetically pleasing objects

and good user experience. This template was then adapted to include several custom objects

and support for responsive design, in order to be compatible with smaller devices such as

smartphones. One of those custom objects is the notification, that pops up every time certain

action was successfully completed or an error occurred during execution. The only usability

feature not developed in the system is the inclusion of a Frequently Asked Questions section.

For first time users, it could help use the system more effectively, however it was decided not

to do it due to prioritization of other features. Besides that, due to the small number of features,

it would not offer a large benefit (in this current state).

Accessibility is also an important factor to take into consideration, since in an academic context,

there are both students and supervisors that suffer from various types of disabilities. To

accommodate those variables, the system was developed by utilizing the correct HTML DOM

elements (e.g.: using <p> for paragraphs, <h1> for first headings, <button> for clickable buttons,

etc.) and properties (e.g.: all images have alt attribute defined, which will be shown if the image

cannot be displayed). By using the correct HTML elements and properties, it becomes easier for

other devices such as screen readers to understand the application’s content. A big enough font

size was also used throughout the website to avoid readability problems, and correctly adapted

to various screen sizes.

Another accessibility need was to allow some UCs to be used with only a keyboard to make it

more intuitive to use, such as the login, register, update profile and live chat. All of those

functionalities have input texts and can be saved by clicking the “Enter” key.

102

6.6 Summary

The experimentation and evaluation chapter explores the three evaluation metrics that were

tested throughout the system: performance, reliability, and usability. For every metric, details

about the methods and tools were examined. For the performance metric, performance tests

were performed using Postman. For the reliability metric, RMSE and MAE values for the

collaborative filtering part of the RS algorithm were determined, and classification of the RS and

other important information was obtained with the data from the questionnaires. For the

usability metric, the feedback and answers to the questionnaires from both students and

supervisors were used.

There is also a dedicated section for testing, that explores the three types of testing done

throughout the application: unit, system and E2E tests. Unit tests were solely done to the

machine learning methods to ensure the calculations were producing correct values. System

tests to every use case of the system (which encompasses the back-end and databases) were

developed using Postman. Finally, E2E tests were performed by using Playwright as the testing

tool by checking the whole application flow (from front-end, to the back-end and databases).

To help determine if the metrics were successfully implemented and check software quality, it

was decided to use QEF where each metric (dimension) is divided into factors, and each factor

has its requirements evaluated from 0 to 100 to assess if it was fully completed.

For the performance dimension, the executed performance tests with 100 concurrent users to

the RS were below 5 seconds, while the remaining UCs tested were slightly above the targeted

values but does not translate in a slower user interaction.

For the reliability metric, more precisely the prediction accuracy factor, precision, recall, false

positive rate and F-Measure values were calculated by analysing 300 different recommendation

evaluations from 15 different students. Precision of the RS is 0.51, while the recall is 0.71 and

F-Measure is 0.59. Although the precision value is not a very high value and it could be improved

with more recommendations shown to the students, the RS still serves as a tool to filter projects

more quickly and effectively. False positive rate value is around 0.23, which shows that the RS

does not fail to recommend a lot of projects. The availability factor was evaluated by

determining if the system was available through a public domain, and testing the system with

certain microservices down and its asynchronous communication. Lastly, the maintainability

factor was evaluated by checking if code quality patterns and designed architecture were

respected. Both of those factors were greatly achieved.

For the usability metric, data from the questionnaire from students and supervisors was used

to assess the ease of use and accessibility of the application. Feedback from both actors

indicated that the application’s front-end has a user friendly interface and experience with

support for mobile devices, as well as legible font size and keyboard-only functionalities to

improve productivity and avoid the use of the mouse peripheral.

103

7 Conclusion

In the conclusion chapter, an overview about the system’s implementation and evaluation will

be made, and the research questions made during the Introduction chapter will be answered.

Additionally, limitations and future work to the application will be stated.

7.1 Objective Analysis

The hypothesis raised in this thesis culminated in a system capable of aggregating the selection

process of academic projects and monitoring the student's selected project. As a greenfield

system, the whole architecture, structure and implementation was designed and developed

from scratch. Besides that, the data used for the RS was retrieved from a low number of sources,

due to the difficulty in finding academic projects that could suit the application’s purpose.

After finishing the application’s implementation, experimentation and evaluation was done

with the help of QEF and its definition of dimensions, factors and requirements. By having those

metrics defined, it was possible to compare the defined requirement attributes with the

feedback retrieved from students and supervisors, as well as the results from tests and

implementation.

According to the results gathered in Section 6.4, the developed system successfully integrated

a solution that unites the selection and monitoring processes of academic projects, making it a

unique solution that is more suited to solve the stated problems than the ones described in

Section 2.4. In fact, this RS consider more variables than the analysed solutions (specialization

areas, project type, location and project description with NLP) and could have a similar rate of

precision if small adjustments were made to the RS (as discussed in Section 6.4). It also includes

a project monitoring dashboard which, although includes a smaller number of functionalities

than SciPro and eThesis, contains the necessary UCs to be used for every university and study

area (which is something the prior tools lack).

104

With that, it is possible to determine if the questions raised during Chapter 1 were answered:

• What is the best approach for helping a student in the decision-making process of

choosing the most interesting project?

According to what was explored during the Chapter 2, there is a correlation between time spent

and getting the most accurate results according to the user’s preferences when considering

large amounts of information. Generally, it is necessary to spend more time searching for the

best possible results. Even though it is possible to reduce the number of results by specifying

certain filter properties, it does not give a concrete representation on all user preferences, since

some of them may be outside of only checking item’s properties. That is why the RS option was

the one chosen for this application, since it can recommend projects in terms of importance of

each variable and other aspects, such as the project description.

As demonstrated by the feedback received from the students, the current methods used for

project selection were heavily criticized (as seen in Figure 46), and they were willing to

experiment a RS that would give project options depending on their preferences.

Figure 46 - Project Selection Satisfaction

Even though the results of the RS are slightly below the expectations set in the QEF model,

satisfaction is very positive across the majority of students. However, as noticed during the

Section 6.5.4, the RS can still improve by discovering hidden patterns in the projects, such as

using a more complex NLP algorithm that filters the best projects according to what the student

wrote as his preferred project description. Nonetheless, the main purpose of finding the most

suited projects in the least amount of time is achieved by this current RS implementation (as

seen in Figure 45).

• What are the main points of interest for a given student that have a significant impact

on the decision-making process of a certain project?

By analysing the different related projects in Section 2.4 and taking into consideration the

principles analysed during the Chapter 2, it was possible to come up with several attributes that

can be applied to this domain. During the analysis and design of the system, three main

105

attributes shared between students and projects were identified: specialization areas, locations

and project types. Since this application is meant to support all students and projects regardless

of their study area, university and location, those attributes are seen as common variables, and

other specific project preferences (e.g. languages the project is written for IT students) were

not considered (which would improve RS accuracy for certain students).

By looking at the student’s questionnaire results at Section 6.5.4, they give more preference to

specialization areas, followed by project type, and locations. The results also say that students

prefer a RS that benefits more specialization areas and project type. However, project

descriptions also play a big role in finding the most suitable projects. Analysing the Table 14

where students were asked to say if a given project would be considered a good or a bad

recommendation, there were some projects that do not match all the student’s preferences,

yet they are still recommendations due to their descriptions. That is the reason why it was also

included an optional field for students to introduce their preferred project description, which

will be processed by an NLP algorithm.

• How to maximize time efficiency in the selection and monitoring phases?

Time efficiency during the project selection process was already discussed in the first research

question. By having a RS, students can have a list of possible project recommendations without

having to search between multiple project proposals, and read each of the projects’

descriptions carefully. Even though recommendations cannot be considered accurate and

definitive answers, they can be regarded as a general guideline towards finding the optimal

project. Besides that, for every recommendation there is also a recommended set of

supervisors that are suited to supervise the project. That is a relevant point, because besides

having to search for the best project, students need also to find a suitable supervisor and most

of the time they do not know the teacher’s specialization areas and if they are capable of

supervising their project.

The project monitoring process is best maximized when there is one centralized application

where all the functionalities lie, as seen in the related systems analysed in Section 2.4.

Depending on the supervisor, different applications will be used to communicate and monitor

the student’s work. An example of that would be to use Dropbox as a cloud service to store files

and the report, Microsoft Teams as the communication tool and email as a last resource if

communication between both parties failed for some reason. The use of several different tools

for monitoring several students may lead to loss data, miscommunication, and lack of report

version history. As seen in the Chapter 6, supervisors pointed out in the questionnaire that their

current project monitoring process could see some improvements, and a system that

aggregates everything in one place would be a good solution for that problem. However, all of

them pointed out that the current version would need more functionalities and refinement to

be ready to be used in an academic context.

106

7.2 Limitations

During system’s implementation and evaluation, some limitations were encountered.

One of those limitations lies in the developed NLP algorithm. The NLP algorithm is implemented

by using TF-IDF, which verifies which project description is more similar to the one the student

wrote. However, it fails to determine other important aspects such as the positioning of the

words in the sentence’s context, semantics, and the ability to identify synonyms. TF-IDF was the

chosen mechanism to implement NLP due to its simplistic implementation and the ability to

work with less available data. If other more complex techniques were used in this system (e.g.

deep learning), the system would be able to identify other hidden patterns and be more

accurate.

Another limitation found was during system’s trial by both students and supervisors. Due to the

late testing stage (from August to September), many possible candidates were unavailable to

participate in the trial phase because of vacations, or professional and/or personal reasons. As

mentioned in Section 6.5.4, it was more challenging to contact teachers because of not having

a direct communication line with them. Therefore, the number of supervisors testing the

application was considerably lower than the number of students, which ultimately impacted

the obtained results.

The last limitation of the system is present in certain UCs. The project recommendations’ ratings

(UC2) does not integrate with the current implementation of the RS (even though it is fully

implemented). Students can rate their generate recommendations from 1 to 5, however those

results do not impact the subsequent generated recommendations. Also, the chat functionality

(UC3) does not send an email for unseen sent messages. It was not possible to develop those

concepts due to time constraints, and other more important UCs were prioritized instead.

7.3 Future Work

Despite the positive feedback from students and supervisors, as well as the fulfilment of the

proposed objectives, there is always room for improvement in a software context.

The first aspect to point out is that even though the application’s RS was tested with real IT

projects, it was not evaluated with other study areas, due to the lack of projects in the dataset.

Despite the assumption that the same results would be applied to other study areas due to the

attributes being the same, it needs further testing to test that hypothesis. Therefore, a larger

dataset with more projects would be necessary. Besides that, due to the fact that this RS is not

of higher complexity (since it uses simpler algorithms and techniques), a result comparison

between the presented approach and a new RS with more sophisticated algorithms and/or DL

capabilities could be done to investigate if there are significant improvements to the

recommendation accuracy.

107

The other point focuses on the application's front-end. Students said that the application’s

usability offers ease of use and prioritizes a seamless user experience, but at the same time

some of them gave feedback notes and missing functionalities to take into consideration in

future iterations of the system. Examples of those features are a page of instructions and/or

frequently asked questions page, group chats, calendar, and others. Small feedback notes given

during the evaluation period were implemented right away in order to make the system more

robust. On the other hand, supervisors gave more diverse feedback due to the fact that each of

them have their own way of monitoring projects and it is difficult to please everyone. Examples

of missing features are the enhancement of the notification system, calendar to list important

dates, events and appointments, or a list (history) of conversations with timestamps. Besides

that, the majority of supervisors agreed that limiting the report format to PDF is not a good

approach, since each one has their preferences regarding document editing.

108

References

Abadi, M. et al. (2016) ‘TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems’. Available at: https://arxiv.org/abs/1603.04467 (Accessed: 8 January

2023).

Adomavicius, G. and Tuzhilin, A. (2005) ‘Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions’, IEEE Transactions on

Knowledge and Data Engineering, 17(6), pp. 734–749. Available at:

https://doi.org/10.1109/TKDE.2005.99 (Accessed: 5 January 2023).

Al-Shamri, M.Y.H. (2016) ‘User profiling approaches for demographic recommender systems’,

Knowledge-Based Systems, 100, pp. 175–187. Available at:

https://doi.org/10.1016/j.knosys.2016.03.006 (Accessed: 6 January 2023).

Ana Azevedo and Manuel Filipe Santos (2008) KDD, SEMMA AND CRISP-DM: A PARALLEL

OVERVIEW. Available at: http://hdl.handle.net/10400.22/136 (Accessed: 18 December 2022).

Anuradha and Gupta, G. (2014) ‘A self explanatory review of decision tree classifiers’, in

International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014).

IEEE, pp. 1–7. Available at: https://doi.org/10.1109/ICRAIE.2014.6909245 (Accessed: 13

January 2023).

Atterer, R., Wnuk, M. and Schmidt, A. (2006) ‘Knowing the user’s every move’, in Proceedings

of the 15th international conference on World Wide Web. New York, NY, USA: ACM, pp. 203–

212. Available at: https://doi.org/10.1145/1135777.1135811 (Accessed: 12 February 2023).

Aydın, Ö. and Karaarslan, E. (2023) ‘Is ChatGPT Leading Generative AI? What is Beyond

Expectations?’, SSRN Electronic Journal [Preprint]. Available at:

https://doi.org/10.2139/ssrn.4341500 (Accessed: 7 February 2023).

Ayodele, T.O. (2010) ‘Types of machine learning algorithms’, New advances in machine

learning, 3, pp. 19–48. Available at: https://www.intechopen.com/books/3752 (Accessed: 28

December 2022).

Bhardwaz, S. and Godha, R. (2023) ‘Svelte.js: The Most Loved Framework Today’, in 2023 2nd

International Conference for Innovation in Technology (INOCON), pp. 1–7. Available at:

https://doi.org/10.1109/INOCON57975.2023.10101104.

Bi, Q. et al. (2019) ‘What is Machine Learning? A Primer for the Epidemiologist’, American

Journal of Epidemiology [Preprint]. Available at: https://doi.org/10.1093/aje/kwz189

(Accessed: 18 December 2023).

Borza, J. (2011) ‘FAST diagrams: The foundation for creating effective function models’,

Trizcon Detroit [Preprint]. Available at:

109

http://new.aitriz.org/documents/TRIZCON/Proceedings/2011-06_FAST-Diagrams-The-

Foundation-for-Creating-Effective-Function-Models.pdf (Accessed: 15 January 2023).

Bouchrika, I. (2022) 51 LMS Statistics: 2023 Data, Trends & Predictions, Research.com.

Available at: https://research.com/education/lms-statistics (Accessed: 12 January 2023).

Brynjolfsson, E. and Mitchell, T. (2017) ‘What can machine learning do? Workforce

implications’, Science, 358(6370), pp. 1530–1534. Available at:

https://doi.org/10.1126/science.aap8062 (Accessed: 18 December 2022).

B.Thorat, P., M. Goudar, R. and Barve, S. (2015) ‘Survey on Collaborative Filtering, Content-

based Filtering and Hybrid Recommendation System’, International Journal of Computer

Applications, 110(4), pp. 31–36. Available at: https://doi.org/10.5120/19308-0760 (Accessed:

29 December 2022).

Burke, R. (2000) ‘Integrating Knowledge-based and Collaborative-filtering Recommender

Systems’, Proceedings of the Workshop on AI and Electronic Commerce, pp. 69–72. Available

at: https://www.researchgate.net/publication/2418883_Integrating_Knowledge-

based_and_Collaborative-filtering_Recommender_Systems (Accessed: 2 January 2023).

Byungura, J.C. (2015) ‘E-learning management system for thesis process support from a

supervisor perspective: The case of SciPro System at University of Rwanda’. Available at:

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-27573 (Accessed: 14 January 2023).

Camlek, V. (2011) ‘How to spot a real value proposition’, Information Services & Use, 30(3–4),

pp. 119–123. Available at: https://doi.org/10.3233/ISU-2010-0615 (Accessed: 15 February

2023).

Catherine, R. and Cohen, W. (2017) ‘TransNets: Learning to Transform for Recommendation’,

in Proceedings of the Eleventh ACM Conference on Recommender Systems. New York, NY,

USA: ACM, pp. 288–296. Available at: https://doi.org/10.1145/3109859.3109878.

Cavus, N. (2015) ‘Distance Learning and Learning Management Systems’, Procedia - Social and

Behavioral Sciences, 191, pp. 872–877. Available at:

https://doi.org/10.1016/j.sbspro.2015.04.611 (Accessed: 9 January 2023).

Chapman, P. et al. (2000) CRISP-DM 1.0. Available at: https://www.kde.cs.uni-kassel.de/wp-

content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf (Accessed: 28 December

2022).

Chung, L. and do Prado Leite, J.C.S. (2009) ‘On Non-Functional Requirements in Software

Engineering’, in, pp. 363–379. Available at: https://doi.org/10.1007/978-3-642-02463-4_19

(Accessed: 22 January 2023).

coates, H., james, R. and baldwin, G. (2005) ‘A Critical Examination Of The Effects Of Learning

Management Systems On University Teaching And Learning’, Tertiary Education and

110

Management, 11(1), pp. 19–36. Available at: https://doi.org/10.1007/s11233-004-3567-9

(Accessed: 9 January 2023).

Cohen, S. (2021) ‘The evolution of machine learning: past, present, and future’, in Artificial

Intelligence and Deep Learning in Pathology. Elsevier, pp. 1–12. Available at:

https://doi.org/10.1016/B978-0-323-67538-3.00001-4 (Accessed: 23 February 2023).

Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’, IEEE Transactions on

Information Theory, 13(1), pp. 21–27. Available at: https://doi.org/10.1109/TIT.1967.1053964

(Accessed: 28 December 2022).

Deng, F. (2015) ‘Utility-based Recommender Systems Using Implicit Utility and Genetic

Algorithm’, in Proceedings of the 2015 International Conference on Mechatronics, Electronic,

Industrial and Control Engineering. Paris, France: Atlantis Press. Available at:

https://doi.org/10.2991/meic-15.2015.197 (Accessed: 6 January 2023).

Escudeiro, P. and Bidarra, J. (2008) ‘Quantitative Evaluation Framework (QEF)’, Conselho

Editorial/Consejo Editorial, p. 16.

Ferreira, F.C. and Oliveira, A.A. (2012) ‘OS SISTEMAS DE RECOMENDAÇÃO NA WEB COMO

DETERMINANTES PRESCRITIVOS NA TOMADA DE DECISÃO’, Journal of Information Systems

and Technology Management, 9(2). Available at: https://doi.org/10.4301/S1807-

17752012000200008 (Accessed: 24 December 2022).

Géron, A. (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly

Media, Inc. Available at: https://www.oreilly.com/library/view/hands-on-machine-

learning/9781492032632/ (Accessed: 9 January 2023).

Gevorkyan, M.N. et al. (2019) ‘Review and comparative analysis of machine learning libraries

for machine learning’, Discrete and Continuous Models and Applied Computational Science,

27(4), pp. 305–315. Available at: https://doi.org/10.22363/2658-4670-2019-27-4-305-315

(Accessed: 19 January 2023).

Ghimire, D. (2020) Comparative study on Python web frameworks: Flask and Django.

Metropolia University of Applied Sciences. Available at:

https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf?sequence=2

&isAllowed=y (Accessed: 20 June 2023).

Goldsborough, P. (2016) ‘A Tour of TensorFlow’, CoRR, abs/1610.01178. Available at:

http://arxiv.org/abs/1610.01178 (Accessed: 19 January 2023).

Graf, A. and Maas, P. (2014) ‘Customer value from a customer perspective – a comprehensive

review’, in Service Value als Werttreiber. Wiesbaden: Springer Fachmedien Wiesbaden, pp.

59–87. Available at: https://doi.org/10.1007/978-3-658-02140-5_3 (Accessed: 17 February

2023).

111

Gulli, A. and Pal, S. (2017) Deep learning with Keras. Packt Publishing Ltd. Available at:

https://www.packtpub.com/product/deep-learning-with-keras/9781787128422 (Accessed: 19

January 2023).

Gullo, F. (2015) ‘From Patterns in Data to Knowledge Discovery: What Data Mining Can Do’,

Physics Procedia, 62, pp. 18–22. Available at: https://doi.org/10.1016/j.phpro.2015.02.005

(Accessed: 19 December 2022).

Gunawardana, A., Shani, G. and Yogev, S. (2022) ‘Evaluating Recommender Systems’, in

Recommender Systems Handbook. New York, NY: Springer US, pp. 547–601. Available at:

https://doi.org/10.1007/978-1-0716-2197-4_15.

Hansen, P. and Hansson, H. (2015) ‘Optimizing Student and Supervisor Interaction During the

SciPro Thesis Process – Concepts and Design’, in, pp. 245–250. Available at:

https://doi.org/10.1007/978-3-319-25515-6_23 (Accessed: 17 January 2023).

Hao, J. and Ho, T.K. (2019) ‘Machine Learning Made Easy: A Review of Scikit-Learn Package in

Python Programming Language’, Journal of Educational and Behavioral Statistics, 44(3), pp.

348–361. Available at: https://doi.org/10.3102/1076998619832248 (Accessed: 4 January

2023).

Hassan, A., Ahmad, A.R. and Abiddin, N.Z. (2009) ‘Research Student Supervision: An Approach

to Good Supervisory Practice’, The Open Education Journal, 2(1), pp. 11–16. Available at:

https://doi.org/10.2174/1874920800902010011 (Accessed: 18 December 2022).

Hug, N. (2020) ‘Surprise: A Python library for recommender systems’, Journal of Open Source

Software, 5(52), p. 2174. Available at: https://doi.org/10.21105/joss.02174 (Accessed: 19

January 2023).

Huynh-Ly Thanh-Nhan, Huu-Hoa Nguyen and Thai-Nghe, N. (2016) ‘Methods for building

course recommendation systems’, in 2016 Eighth International Conference on Knowledge and

Systems Engineering (KSE). IEEE, pp. 163–168. Available at:

https://doi.org/10.1109/KSE.2016.7758047.

Isinkaye, F.O., Folajimi, Y.O. and Ojokoh, B.A. (2015) ‘Recommendation systems: Principles,

methods and evaluation’, Egyptian Informatics Journal, 16(3), pp. 261–273. Available at:

https://doi.org/10.1016/j.eij.2015.06.005 (Accessed: 24 December 2023).

Jain, A. and Gupta, C. (2018) ‘Fuzzy Logic in Recommender Systems’, in, pp. 255–273.

Available at: https://doi.org/10.1007/978-3-319-71008-2_20 (Accessed: 6 January 2023).

Jariha, P. and Jain, S.K. (2018) ‘A state-of-the-art Recommender Systems: An overview on

Concepts, Methodology and Challenges’, in 2018 Second International Conference on Inventive

Communication and Computational Technologies (ICICCT). IEEE, pp. 1769–1774. Available at:

https://doi.org/10.1109/ICICCT.2018.8473275 (Accessed: 6 January 2023).

112

Jiang, L. et al. (2007) ‘Survey of Improving K-Nearest-Neighbor for Classification’, in Fourth

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007). IEEE, pp.

679–683. Available at: https://doi.org/10.1109/FSKD.2007.552 (Accessed: 13 January 2023).

Johnson, B. and Chandran, A.S. (2021) ‘Comparison between Python, Java and R progrmming

language in machine learning’, Int. Res. J. Modernization Eng. Technol. Sci., 3(6), pp. 1–6.

Available at:

https://www.irjmets.com/uploadedfiles/paper/volume3/issue_6_june_2021/13609/1628083

530.pdf (Accessed: 18 January 2023).

Ketkar, N. and Moolayil, J. (2021) ‘Introduction to PyTorch’, in Deep Learning with Python.

Berkeley, CA: Apress, pp. 27–91. Available at: https://doi.org/10.1007/978-1-4842-5364-9_2

(Accessed: 8 January 2023).

Khan, Z.Y. et al. (2021) ‘Deep learning techniques for rating prediction: a survey of the state-

of-the-art’, Artificial Intelligence Review, 54(1), pp. 95–135. Available at:

https://doi.org/10.1007/s10462-020-09892-9 (Accessed: 4 January 2023).

Kim, J. and Wilemon, D. (2002) ‘Focusing the fuzzy front–end in new product development’,

R&D Management, 32(4), pp. 269–279. Available at: https://doi.org/10.1111/1467-

9310.00259 (Accessed: 11 January 2023).

Koen, P.A. et al. (2002) ‘Fuzzy Front End: Effective Methods, Tools, and Techniques’, in The

PDMA toolbook 1 for new product development. Wiley, New York, NY, pp. 5–36. Available at:

https://www.wiley.com/en-ie/The+PDMA+ToolBook+1+for+New+Product+Development-p-

9780471206118 (Accessed: 11 January 2023).

Koren, Y., Bell, R. and Volinsky, C. (2009) ‘Matrix Factorization Techniques for Recommender

Systems’, Computer, 42(8), pp. 30–37. Available at: https://doi.org/10.1109/MC.2009.263

(Accessed: 30 December 2023).

Koren, Y., Rendle, S. and Bell, R. (2022) ‘Advances in Collaborative Filtering’, in Recommender

Systems Handbook. New York, NY: Springer US, pp. 91–142. Available at:

https://doi.org/10.1007/978-1-0716-2197-4_3 (Accessed: 2 January 2023).

Kramer, O. (2016) ‘Scikit-Learn’, in, pp. 45–53. Available at: https://doi.org/10.1007/978-3-

319-33383-0_5 (Accessed: 4 January 2023).

Krogh, A. (2008) ‘What are artificial neural networks?’, Nature Biotechnology, 26(2), pp. 195–

197. Available at: https://doi.org/10.1038/nbt1386 (Accessed: 14 January 2023).

Kusuma, H.S. and Musdholifah, A. (2021) ‘Recommendation System for Thesis Topics Using

Content-based Filtering’, IJCCS (Indonesian Journal of Computing and Cybernetics Systems),

15(1), p. 65. Available at: https://doi.org/10.22146/ijccs.62716 (Accessed: 25 December

2022).

113

Kyhnau, J. and Nielsen, C. (2015) ‘Value Proposition Design: How to create products and

services customers want’, Journal of Business Models, 3(1), pp. 81–92. Available at:

https://journals.aau.dk/index.php/JOBM/article/view/1105/934 (Accessed: 2 January 2023).

Lahoud, C. et al. (2022) ‘A comparative analysis of different recommender systems for

university major and career domain guidance’, Education and Information Technologies

[Preprint]. Available at: https://doi.org/10.1007/s10639-022-11541-3 (Accessed: 6 January

2023).

Lan, F. (2022) ‘Research on Text Similarity Measurement Hybrid Algorithm with Term

Semantic Information and TF-IDF Method’, Advances in Multimedia, 2022, pp. 1–11. Available

at: https://doi.org/10.1155/2022/7923262.

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436–444.

Available at: https://doi.org/10.1038/nature14539 (Accessed: 4 January 2023).

Lops, P. et al. (2019) ‘Trends in content-based recommendation’, User Modeling and User-

Adapted Interaction, 29(2), pp. 239–249. Available at: https://doi.org/10.1007/s11257-019-

09231-w (Accessed: 1 January 2023).

Mairiza, D., Zowghi, D. and Nurmuliani, N. (2010) ‘An investigation into the notion of non-

functional requirements’, in Proceedings of the 2010 ACM Symposium on Applied Computing.

New York, NY, USA: ACM, pp. 311–317. Available at:

https://doi.org/10.1145/1774088.1774153 (Accessed: 22 January 2023).

Mardan, A. (2018) ‘Real-Time Apps with WebSocket, Socket.IO, and DerbyJS’, in Practical

Node.js. Berkeley, CA: Apress, pp. 307–330. Available at: https://doi.org/10.1007/978-1-4842-

3039-8_9.

Masinter, L. (2015) Returning Values from Forms: multipart/form-data. Available at:

https://www.rfc-editor.org/rfc/rfc7578 (Accessed: 10 January 2023).

van Meteren, R. and van Someren, M. (2000) ‘Using content-based filtering for

recommendation’, in Proceedings of the machine learning in the new information age:

MLnet/ECML2000 workshop, pp. 47–56. Available at:

http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf (Accessed: 2 January 2023).

Mongia, A. et al. (2020) ‘Deep latent factor model for collaborative filtering’, Signal

Processing, 169, p. 107366. Available at: https://doi.org/10.1016/j.sigpro.2019.107366

(Accessed: 13 January 2023).

Nabizadeh, A.H. et al. (2013) ‘Recommendation Systems: a review’, International Journal of

Computational Engineering Research, 3(5), pp. 47–52. Available at:

https://www.researchgate.net/profile/Amir-Hossein-

Nabizadeh/publication/325074466_Recommendation_Systems_a_review/links/5f3d029a299

bf13404ceecba/Recommendation-Systems-a-review.pdf (Accessed: 6 January 2023).

114

Nagpal, A. and Gabrani, G. (2019) ‘Python for Data Analytics, Scientific and Technical

Applications’, in 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE,

pp. 140–145. Available at: https://doi.org/10.1109/AICAI.2019.8701341 (Accessed: 3 January

2023).

Ng, W.S. and Tan, W.W. (2021) ‘Some properties of various types of matrix factorization’, ITM

Web of Conferences, 36, p. 03003. Available at:

https://doi.org/10.1051/itmconf/20213603003 (Accessed: 13 January 2023).

Nguyen, G. et al. (2019) ‘Machine Learning and Deep Learning frameworks and libraries for

large-scale data mining: a survey’, Artificial Intelligence Review, 52(1), pp. 77–124. Available

at: https://doi.org/10.1007/s10462-018-09679-z.

Nurmalini, N. and Rahim, R. (2017) ‘Study approach of simple additive weighting for decision

support system’, Int. J. Sci. Res. Sci. Technol, 3(3), pp. 541–544. Available at:

https://www.researchgate.net/profile/Robbi-

Rahim/publication/316470807_Study_Approach_of_Simple_Additive_Weighting_For_Decisio

n_Support_System/links/5900074645851565029f4d2a/Study-Approach-of-Simple-Additive-

Weighting-For-Decision-Support-System.pdf (Accessed: 20 January 2023).

Odio, M., Sagas, M. and Kerwin, S. (2014) ‘The Influence of the Internship on Students’ Career

Decision Making’, Sport Management Education Journal, 8(1), pp. 46–57. Available at:

https://doi.org/10.1123/smej.2013-0011 (Accessed: 17 December 2022).

Olasehinde, O. et al. (2022) ‘Design and Implementation of a Web-Based Internship Placement

Recommendation System: A Case Study of Federal Polytechnic, Ile-Oluji, Nigeria’, International

Journal of Scientific & Engineering Research, 13, pp. 398–409. Available at:

https://www.researchgate.net/profile/Olayemi-

Olasehinde/publication/359403105_Design_and_Implementation_of_a_Web-

Based_Internship_Placement_Recommendation_System_A_Case_Study_of_Federal_Polytech

nic_Ile-Oluji_Nigeria/links/623a67922708166c05437592/Design-and-Implementation-of-a-

Web-Based-Internship-Placement-Recommendation-System-A-Case-Study-of-Federal-

Polytechnic-Ile-Oluji-Nigeria.pdf (Accessed: 26 December 2022).

OpenAI (2023) ChatGPT General FAQ. Available at:

https://help.openai.com/en/articles/6783457-chatgpt-general-faq (Accessed: 1 February

2023).

Paszke, A. et al. (2019) ‘PyTorch: An Imperative Style, High-Performance Deep Learning

Library’, in H. Wallach et al. (eds) Advances in Neural Information Processing Systems. Curran

Associates, Inc. Available at:

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-

Paper.pdf (Accessed: 19 January 2023).

115

Pazzani, M.J. and Billsus, D. (2007) ‘Content-Based Recommendation Systems’, in The

Adaptive Web. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325–341. Available at:

https://doi.org/10.1007/978-3-540-72079-9_10 (Accessed: 25 December 2022).

Quinlan, J.R. (1990) ‘Decision trees and decision-making’, IEEE Transactions on Systems, Man,

and Cybernetics, 20(2), pp. 339–346. Available at: https://doi.org/10.1109/21.52545

(Accessed: 13 January 2023).

Raghuwanshi, S.K. and Pateriya, R.K. (2019) ‘Recommendation Systems: Techniques,

Challenges, Application, and Evaluation’, in, pp. 151–164. Available at:

https://doi.org/10.1007/978-981-13-1595-4_12 (Accessed: 11 January 2023).

Raschka, S., Patterson, J. and Nolet, C. (2020) ‘Machine Learning in Python: Main

Developments and Technology Trends in Data Science, Machine Learning, and Artificial

Intelligence’, Information, 11(4), p. 193. Available at: https://doi.org/10.3390/info11040193

(Accessed: 3 January 2023).

Renuka, S., Raj Kiran, G.S.S. and Rohit, P. (2021) ‘An Unsupervised Content-Based Article

Recommendation System Using Natural Language Processing’, in, pp. 165–180. Available at:

https://doi.org/10.1007/978-981-15-8530-2_13.

Rüdiger Wirth and Jochen Hipp (2000) ‘CRISP-DM: Towards a Standard Process Model for Data

Mining’, Proceedings of the 4th international conference on the practical applications of

knowledge discovery and data mining, 1, pp. 29–39. Available at:

http://www.cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf (Accessed: 20

December 2022).

Saaty, T.L. (1988) ‘What is the Analytic Hierarchy Process?’, in Mathematical Models for

Decision Support. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 109–121. Available at:

https://doi.org/10.1007/978-3-642-83555-1_5 (Accessed: 16 January 2023).

Saltz, J.S. (2021) ‘CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next

Steps’, in 2021 IEEE International Conference on Big Data (Big Data). IEEE, pp. 2337–2344.

Available at: https://doi.org/10.1109/BigData52589.2021.9671634 (Accessed: 22 December

2022).

Sánchez-Fernández, R. and Iniesta-Bonillo, M.Á. (2007) ‘The concept of perceived value: a

systematic review of the research’, Marketing Theory, 7(4), pp. 427–451. Available at:

https://doi.org/10.1177/1470593107083165 (Accessed: 17 February 2023).

Sarker, I.H. (2021) ‘Machine Learning: Algorithms, Real-World Applications and Research

Directions’, SN Computer Science, 2(3), p. 160. Available at: https://doi.org/10.1007/s42979-

021-00592-x (Accessed: 29 December 2022).

SAS (1999) Data Mining Software, Model Development and Deployment, SAS Enterprise Miner

| SAS. Available at: https://www.sas.com/en_us/software/enterprise-miner.html (Accessed:

28 December 2022).

116

Shafique, U. and Qaiser, H. (2014) ‘A Comparative Study of Data Mining Process Models (KDD,

CRISP-DM and SEMMA) ’, International Journal of Innovation and Scientific Research, 12(1),

pp. 217–222. Available at: https://d1wqtxts1xzle7.cloudfront.net/88729354/IJISR-14-281-04-

libre.pdf?1658155393=&response-content-

disposition=inline%3B+filename%3DA_Comparative_Study_of_Data_Mining_Proce.pdf&Expir

es=1677349371&Signature=TFNTnqxu52~qhXPps61LQBk~nI5jQ4Io2JBX9mPTgjCor0n8DiZqr2c

785A-XArGKtGCAwOquuLOQAUONlCWt8fHC6G4n7681w7WZ-EtGhX43BQ9EOHzl8Rpy5-

dHgRu7Hkg-NsVs3M04AjWzYFoURyxwocQF0YeyI5NffMUWs2IBKJ0kg~Lx1Ewo-

1qfsKJxWjaPpPNi7l~GTyWUZ6KRzkfQZgvvVGf6YP3xvgs89uLZjmsr6X2OTV~DAERWx5suO8l8SJ

3RPz-

q~vaYWrTLacoOAZ5lY34eU9rnXHrNuBH2uF2Qc2UGxGuboIv4jZwhv3vf5iZksLb30WZa9QEiA__

&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (Accessed: 21 December 2022).

Shalom, O.S., Roitman, H. and Kouki, P. (2022) ‘Natural Language Processing for

Recommender Systems’, in Recommender Systems Handbook. New York, NY: Springer US, pp.

447–483. Available at: https://doi.org/10.1007/978-1-0716-2197-4_12.

Shani, G. and Gunawardana, A. (2011) ‘Evaluating Recommendation Systems’, in

Recommender Systems Handbook. Boston, MA: Springer US, pp. 257–297. Available at:

https://doi.org/10.1007/978-0-387-85820-3_8.

Shinde, P.P. and Shah, S. (2018) ‘A Review of Machine Learning and Deep Learning

Applications’, in 2018 Fourth International Conference on Computing Communication Control

and Automation (ICCUBEA). IEEE, pp. 1–6. Available at:

https://doi.org/10.1109/ICCUBEA.2018.8697857 (Accessed: 4 January 2023).

da Silva, I.N. et al. (2017) Artificial Neural Networks. Cham: Springer International Publishing.

Available at: https://doi.org/10.1007/978-3-319-43162-8 (Accessed: 14 January 2023).

Srinath, K.R. (2017) ‘Python–the fastest growing programming language’, International

Research Journal of Engineering and Technology, 4(12), pp. 354–357. Available at:

https://d1wqtxts1xzle7.cloudfront.net/61651202/IRJET-V4I126620200101-109100-1nbuifw-

libre.pdf?1577884565=&response-content-

disposition=inline%3B+filename%3DPython_The_Fastest_Growing_Programming_L.pdf&Expir

es=1677349493&Signature=QsdWLOQnwg-

xGhScCuHs5cvNw4E8KuOwFFEs2FVNjqG8zvyci9Lkt2Uk9rX8TD3nB6xBNjyS20jAzS5eifDI2sJLVKf

TVHEurseA49DZ9WlcuESSteIJN5fJ2VXyT6WURWZwLH5NWZe0JY~ZHXsyO~LagpqJL9lIiYs1OX6

uwlIGdEFN9aqfONOQG5ppvzoRQxaS7K3GkyvmnF-

XCi46E8fsUmT5Jjjdg3JzioVo4JNYoaosfyGPb1HOO4bjuIcLZbbHwmUtgsCKuMDu~Okb-

j61BC79K95m-e6YQdcXfRRpXVwsqN2f2ilk-pSEIUI5tHLILRBmb8hNLSwoAmEISQ__&Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA (Accessed: 3 January 2023).

Stevens, E., Antiga, L. and Viehmann, T. (2020) Deep learning with PyTorch. Manning

Publications. Available at: https://www.manning.com/books/deep-learning-with-pytorch

(Accessed: 19 January 2023).

117

Sun, P. et al. (2022) ‘Measuring Impact of Dependency Injection on Software Maintainability’,

Computers, 11(9). Available at: https://doi.org/10.3390/computers11090141.

Svelte (2023a) Introduction Docs - Svelte. Available at: https://svelte.dev/docs/introduction

(Accessed: 23 June 2023).

Svelte (2023b) Project Files - Svelte. Available at: https://kit.svelte.dev/docs/project-

structure#project-files-tests (Accessed: 30 June 2023).

Tarus, J.K., Niu, Z. and Mustafa, G. (2018) ‘Knowledge-based recommendation: a review of

ontology-based recommender systems for e-learning’, Artificial Intelligence Review, 50(1), pp.

21–48. Available at: https://doi.org/10.1007/s10462-017-9539-5 (Accessed: 6 January 2023).

Thorp, H.H. (2023) ‘ChatGPT is fun, but not an author’, Science, 379(6630), pp. 313–313.

Available at: https://doi.org/10.1126/science.adg7879 (Accessed: 10 February 2023).

Tsatsaris, E. and Sakkopoulos, E. (2021) ‘Personalized Academic Thesis Management’, in 2021

12th International Conference on Information, Intelligence, Systems & Applications (IISA). IEEE,

pp. 1–8. Available at: https://doi.org/10.1109/IISA52424.2021.9555563 (Accessed: 17 January

2023).

Tuhkala, A. and Kärkkäinen, T. (2018) ‘Using Slack for computer-mediated communication to

support higher education students’ peer interactions during Master’s thesis seminar’,

Education and Information Technologies, 23(6), pp. 2379–2397. Available at:

https://doi.org/10.1007/s10639-018-9722-6 (Accessed: 17 January 2023).

Vaishnavi, V., Kuechler, W. and Stacey, P. (2021) Design Science Research in Information

Systems. Available at: http://desrist.org/desrist/content/design-science-research-in-

information-systems.pdf (Accessed: 15 December 2022).

de Ville, B. (2013) ‘Decision trees’, Wiley Interdisciplinary Reviews: Computational Statistics,

5(6), pp. 448–455. Available at: https://doi.org/10.1002/wics.1278 (Accessed: 13 January

2023).

Wan, Z. et al. (2020) ‘How does Machine Learning Change Software Development Practices?’,

IEEE Transactions on Software Engineering, pp. 1–1. Available at:

https://doi.org/10.1109/TSE.2019.2937083 (Accessed: 23 February 2023).

Wu, W., He, L. and Yang, J. (2012) ‘Evaluating recommender systems’, in Seventh International

Conference on Digital Information Management (ICDIM 2012). IEEE, pp. 56–61. Available at:

https://doi.org/10.1109/ICDIM.2012.6360092 (Accessed: 12 January 2023).

Yuanyuan Fan, Ana Evangelista and Hadi Harb (2021) ‘An automated thesis supervisor

allocation process using machine learning’, Global Journal of Engineering Education, 23(1), pp.

20–30. Available at: http://www.wiete.com.au/journals/GJEE/Publish/vol23no1/03-

Evangelista-A.pdf (Accessed: 18 December 2022).

118

Zhang, X., Wang, Y. and Shi, W. (2018) ‘pCAMP: Performance Comparison of Machine Learning

Packages on the Edges’, in USENIX workshop on hot topics in edge computing (HotEdge 18).

Available at: https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-

zhang.pdf (Accessed: 19 January 2023).

Zheng, L., Noroozi, V. and Yu, P.S. (2017) ‘Joint Deep Modeling of Users and Items Using

Reviews for Recommendation’, in Proceedings of the Tenth ACM International Conference on

Web Search and Data Mining. New York, NY, USA: ACM, pp. 425–434. Available at:

https://doi.org/10.1145/3018661.3018665.

119

Appendix A – Sequence Diagrams

Figure A 1 - Rate Recommendations Diagram

Figure A 2 - Make Annotations to the Report Diagram

120

Figure A 3 - View Report History Diagram

Figure A 4 - Adjust Recommendation System Metrics Diagram

Figure A 5 - Authenticate in the System Diagram

121

Figure A 6 - Register as a Supervisor/Student

Figure A 7 - Apply to Project

122

Figure A 8 - Create a new Project

Figure A 9 - Assign Project

123

Appendix B – Screenshots and Code

Code B 1 - R Script to Generate Recommendations (Dataset)

124

Figure B 1 - Register a New Student

125

Figure B 2 - Student Recommendations

126

Figure B 3 - Upload Files

Figure B 4 - Chat With Student/Supervisor

127

Appendix C – Student Questionnaire

128

129

Appendix D – Supervisor Questionnaire

130

Appendix E – Quantitative Evaluation

Framework

131

Appendix F – Article Abstract (DeLTA

2023)

