
Analysis of Module Federation
Implementation in a Micro-Frontend
Application

DIOGO VALENTIM CARVALHO SOARES
novembro de 2023

Analysis of Module Federation
Implementation in a Micro-Frontend

Application

Diogo Valentim Carvalho Soares (1171244)

Dissertation for obtaining the Degree of Master in
Computer Engineering, Specialization Area in Software

Engineering

Advisor: Paulo Gandra de Sousa

Abstract

This thesis explores the implementation of Module Federation in a micro-frontend

application, a technique for dynamically loading components from various bundles

at runtime. It is presented an overview of the micro-frontend architecture

emphasizing its role in enhancing development efficiency and scalability. This

thesis highlights the integration and potential challenges of Module Federation,

focusing on providing optimal performance of the federated applications. The

insights presented in this research provide a solid framework for developers and

organizations aiming to leverage micro-frontends in conjunction with Module

Federation in building efficient, scalable, and integrated web applications.

Keywords— Module Federation, Web Components, Micro-Frontend, Performance

iii

Resumo

Esta dissertação explora a implementação de Module Federation numa aplicação

Micro-Frontend, uma técnica usada para carregar dinamicamente componentes

de vários pacotes em tempo de execução. É apresentada uma visão geral da

arquitetura Micro-Frontend, enfatizando o seu papel no aumento da eficiência e

escalabilidade do desenvolvimento. Esta tese destaca a integração e os possíveis

desafios de Module Federation, focando em fornecer um desempenho ótimo para

as aplicações. As percepções apresentadas nesta pesquisa fornecem um sólido

quadro de referência para programadores e organizações que visam aproveitar

Micro-Frontends e Module Federation na construção de aplicações web eficientes,

escaláveis e integradas.

Keywords— Module Federation, Web Components, Micro-Frontend, Desempenho de

Aplicações

v

Declaração de Integridade

Eu, Diogo Valentim Carvalho Soares, nº 1171244, aluno do Mestrado de Engenharia

Informática do Instituto Superior de Engenharia do Porto, declaro ter atuado com

absoluta integridade na elaboração deste documento. Nesse sentido, confirmo que

NÃO incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a

autoria de um determinado trabalho intelectual ou partes dele). Mais declaro que

todas as frases que retirei de trabalhos anteriores pertencentes a outros autores

foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a

citação da fonte bibliográfica.

vii

Thanks to Professor Paulo Gandra, to the

MyWorkplace team and especially to my fam-

ily for their constant support and patience.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Description . 2

1.3 Objective . 4

1.4 Methodology . 4

1.5 Contributions . 6

1.6 Thesis Structure . 6

1.7 Summary . 7

2 Context 9

2.1 Existing Applications . 9

2.1.1 MyWorkplace Shell . 10

2.1.2 Core Apps . 11

2.1.3 External Applications . 11

2.1.4 Angular-Web-Components . 11

2.1.5 Widgets . 12

2.2 Technological Stack . 13

2.2.1 Angular . 13

2.2.2 Webpack . 13

2.2.3 AngularJS . 14

xi

2.2.4 Nx Workspace . 14

2.3 Interconnection of Applications . 14

2.4 Summary . 15

3 Modularity in Javascript 17

3.1 Definition . 17

3.2 Historical Context . 18

3.2.1 Immediately-Invoked Function Expression 18

3.2.2 RequireJS . 19

3.2.3 CommonJS . 20

3.2.4 ECMAScript Modules . 21

3.3 Static vs Dynamic Modules . 22

3.3.1 Static Modules . 22

3.3.2 Dynamic Modules . 24

3.3.3 Comparison . 25

3.4 Module Bundler . 26

3.4.1 Webpack . 27

3.4.2 esBuild . 27

3.4.3 Rollup . 27

3.4.4 Parcel . 27

3.4.5 Comparison . 28

3.5 Summary . 29

4 Module Federation 31

4.1 Definition . 32

4.2 Compilation Time . 35

4.3 Runtime . 36

xii

4.4 Versions . 37

4.5 Applicability . 39

4.5.1 Micro-Frontends . 39

4.5.2 External Features . 42

4.5.3 Global Components . 43

4.5.4 Polyliths . 44

4.5.5 Strangler Pattern . 45

4.5.6 A/B Testing . 47

4.5.7 Server-Side Rendering . 47

4.6 Testing . 48

4.6.1 Federated Unit Tests . 49

4.6.2 Smoke Tests . 52

4.7 Alternatives . 52

4.7.1 Import Maps . 53

4.7.2 Single-Spa . 57

4.8 Case studies . 58

4.8.1 Netflix . 58

4.8.2 Telia . 60

4.8.3 Housing . 60

4.8.4 Rivian . 60

4.9 Summary . 61

5 Implementation 63

5.1 Technological Decisions . 63

5.2 Module Federation . 64

5.2.1 Angular-Web-Components . 64

5.2.2 Widgets . 67

xiii

5.2.3 iFrames . 71

5.2.4 Non Javascript Files . 74

5.3 Local Development Environment . 78

5.3.1 Traditional Approach . 78

5.3.2 Module Federation Approach . 79

5.4 Summary . 84

6 Experiments and Evaluation 85

6.1 Objectives . 86

6.2 Methodology . 87

6.3 Library Size vs. Impact Analysis . 88

6.4 Number of Applications vs. Impact Analysis 93

6.4.1 Initial Load Time . 94

6.4.2 Total Javascript Files Load Time 96

6.4.3 Number of Requests . 99

6.4.4 Total Data Transferred in MB (JS files) 101

6.5 Summary . 102

7 Conclusions 103

7.1 Performance and Bundle Size . 103

7.2 Implementation and Team Collaboration 105

7.3 Future Recommendations . 106

xiv

List of Figures

1.1 Network print screen before adding Module Federation 3

2.1 MyWorkplace application context . 10

2.2 Component arquitetural representation of MyWorkplace products 15

3.1 Trend graph from 2021-2022 showing the usage of different module bundlers 26

3.2 Comparative benchmark of different bundlers 28

4.1 Three different applications share modules at execution time 32

4.2 Representation of version sharing. 38

4.3 Representation of version mismatch handling 39

4.4 Horizontal split vs Vertical split . 40

4.5 Comparison between different types of Micro-Frontends 41

4.6 (a) Initial State . 46

4.6 (b) Beginning of Migration . 46

4.6 (c) Final of Migration . 46

4.6 (d) Migration Complete . 46

4.6 Example of a migration of a legacy system to a new system using the

Strangler pattern . 46

4.7 Lattice integration with Module Federation. Adapted from Possumato,

Tomlin, Andree, Shim, & Pilani, 2021. 59

xv

5.1 iFrame Loading flow sharing dependencies 72

5.2 Traditional approach local development environment flow. 79

5.3 Module Federation local development environment flow. 80

6.1 Bundle sizes after integrating libraries with Module Federation. 89

6.2 Graph bar of cumulative size of transferred JavaScript files after. 91

6.3 Box plot of cumulative size of transferred Javascript files. 92

6.4 Box plot comparing load times before and after module federation inte-

gration. 95

6.5 Box plot comparing total load times of Javascript files before and after

module federation integration. 97

6.6 Line Graph comparing total load times of Javascript files before and after

Module Federation integration. 97

6.7 Cumulative number of requests made after adding web components using

Module Federation. 99

6.8 Data Transferred with Module Federation Integration 101

7.1 Network print screen after adding Module Federation 104

xvi

List of Tables

1.1 Work Plan . 5

3.1 Comparison of dynamic and static module loading 25

3.2 Comparison of properties of different module bundlers 29

4.1 Comparison between Module Federation and Import Maps 56

4.1 Comparison between Module Federation and Import Maps 57

6.1 Libraries Raw Size results from webpack-bundle-analyzer for Angular-

Web-Component dashboards . 88

6.4 Cumulative improvement of adding web components sharing dependencies 98

7.1 Mapping of web components acronyms with full names ii

xvii

Listings

3.1 Use of script tags. 18

3.2 Use of IIFE . 19

3.3 RequireJS usage. 20

3.4 Use of CommonJS. 20

3.5 Usage of ESM . 21

3.6 Named imports usage example. Retrieved from MDN contributors, 2023b. 23

3.7 Usage of Default imports. Retrieved from MDN contributors, 2023b. . . . 23

3.8 Example of usage of Namespace imports. Retrieved from MDN contribu-

tors, 2023b. 23

3.9 Side Effect Imports usage. Retrieved from MDN contributors, 2023b. . . . 24

3.10 Example of usage of dynamic imports. Retrieved from MDN contributors,

2023b. 25

4.1 Example of a remote configuration in a webpack.config.js file. 33

4.2 Example of a host configuration in a webpack.config.js file. 34

4.3 Example of accessing modules from remote applications. 36

4.4 Example of a configuration of a webpack.test.config.js file for a federated

unit test, retrieved from Jackson (2021). 49

4.5 Example of a partial configuration of a webpack.test.config.js file for a

federated unit test test application, retrieved from Jackson (2021). 50

xix

4.6 Example of federated unit test, retrieved from Jackson (2021). 51

4.7 Example of usage of import maps to share a library, retrieved from Steyer,

2022b. 53

4.8 Example of usage of import maps to share a library, retrieved from Steyer,

2022b. 54

4.9 Example of usage of version mismatch resolution with import maps, re-

trieved from Steyer, 2022b. 55

4.10 Example of usage of Native Federation plugin, retrieved from Steyer, 2022b. 55

5.1 Implementation of the entry file for the Angular-Web-Component. 65

5.2 Module Federation Plugin configuration for Web Component ID Card. . . 66

5.3 Module Federation Plugin configuration for MWP Client. 67

5.4 Widget Component to load widgets dynamically. 68

5.5 Load of remote scripts. 69

5.6 Dynamic load of widgets not using Module Federation. 70

5.7 Module Federation Plugin configuration for Timeline Widget. 70

5.8 Main file configuration within the Host application loading iFrames 73

5.9 Dynamic loading of container for iFrame applications 74

5.10 Module Federation configuration for the Dashboards Angular-Web-

Component for css file sharing . 75

5.11 Module Federation configuration file for the Translator Widget consuming

dashboards Angular-Web-Component . 76

5.12 Example of declaring module in Typescript 77

5.13 Integrating shared styles in the Translator Widget 77

5.14 Configuration abstraction for setting up local environment with Module

Federation . 81

xx

5.15 Dynamic web component loading for local environment with Module

Federation . 82

5.16 Proxies configuration to local running widgets using Module Federation . 83

xxi

Notation and Glossary

API Application Programming Interface

AST Abstract Syntax Tree

BMW Bayerische Motoren Werke

CDN Content Delivery Network

CI/CD Continuous Integration/Continuous Delivery

CJS CommonJS

CLI Command-line Interface

CLO Component Level Ownership

CSR Client Side Rendering

CSS Cascading Style Sheets

CTW Critical TechWorks

DOM Document Object Model

ES6 ECMAScript 6

ESI Edge-side Includes

ESM ECMAScript Modules

GraphQL Graph Query Language

gRPC Google Remote Procedure Call

HTML Hypertext Markup Language

iFrame Inline Frame

IIFE Immediately-invoking function expressions

LeSS Large-Scale Scrum

MWP MyWorkplace

NPM Node Package Manager

REST Representational State Transfer

SEO Search Engine Optimization

xxiii

SPA Single Page Application

SSR Server-Side Rendering

SWC Speedy Web Compiler

UMD Universal Module Definition

URL Uniform Resource Locator

Chapter 1

Introduction

This chapter aims to provide an overview of the document, the current context of this

work and explain the problem on which this dissertation is based. Subsequently, the

objectives, approach, and defined development process will be presented.

1.1 Context

Critical TechWorks (CTW) is a company formed as a result of a partnership between

BMW Group and Critical Software. This company was exclusively created to support

BMW in development of software (Critical TechWorks, 2023). The MyWorkplace portal

serves as an internal application integration solution, enabling access to multiple internal

tools through a single web portal. This highly adaptable platform is not only widely used

by engineering teams via various devices, such as computers, tablets, and mobile phones,

but also on large displays placed throughout the factories floors. MyWorkplace offers

users the flexibility to construct and customize their own dashboards, improving their

experience with the application itself as well as with the integrated widgets. Each user

1

CHAPTER 1. INTRODUCTION

can customize their own dashboards to match their requirements and share them with

others or with their own team. The application provides access to a selection of integrated

applications within the portal and pre-set dashboards. Furthermore, the MyWorkplace’s

extensibility allows external teams to effortlessly create and integrate their own widgets

onto the platform. The MyWorkplace team is composed of three internal teams at CTW

alongside one external team. MyWorkplace manages a set of five distinct applications

known as Core Apps, which have been integrated into the portal using iFrames. These

teams have developed and currently maintain ten widgets and eleven web components

with one team dedicated primarily to widget development while the remaining teams focus

on other projects. These widgets and web components, alongside the Core Apps share a

codebase inside a monorepo created with Nx Workspace (described in detail in section

2.2.4) enabling shared libraries to be used across all existing applications. The external

team is responsible for two applications integrated into the MyWorkplace portal, as well as

four widgets which they develop and maintain. The MyWorkplace relies on an extensive

stack of technologies. On the frontend, this includes AngularJS, Nx Workspace, Angular,

and the company’s Design System. However, AngularJS technology was deprecated in

2022, leading to the need to migrate the application to a new technology (Thompson,

2023). In order to achieve this migration in a less impactful way, web components are now

being developed using Angular. Both the web components used in the migration from

AngularJS to Angular are developed by integrating these Angular micro applications

into an Nx Workspace.

1.2 Problem Description

The MyWorkplace application is at a critical point where its growth and complexity have

started to impact its performance, particularly during startup. This challenge comes

2

CHAPTER 1. INTRODUCTION

from the application’s extensive need of resources, including images, fonts, dynamic

and Javascript bundles from its integrated widgets, applications, and web components.

However, the cumulative weight of these resources has led to prolonged loading times.

Users, expect applications to be responsive and quick, especially for users that are located

in physical places far away from the server physical locations. Any delay, especially

during startup affects user overall satisfaction. Another layer to this challenge is the

structure and size of the final bundles. These bundles, which are meant to package all

shared essential dependencies, have grown considerably in size. These dependencies serve

multiple applications and it plays a big collective impact on response times from the

application. Figure 1.1 represents the requests and response times being made by the

application prior to any implementation of Module Federation.

Figure 1.1: Network print screen before adding Module Federation.

3

CHAPTER 1. INTRODUCTION

In essence, the core problem can be resumed to the need to optimize the resources in

order to ensure a faster application start and the challenge of managing a growing library

of dependencies without compromising on performance. Addressing these issues is crucial

for the future scalability and performance of the application.

1.3 Objective

The goal is to compare the solutions available in the market, identify and create a

solution that meets the product’s needs. This solution aims to optimize and accelerate

the MyWorkplace application, while preserving the ability to support new developments

and the addition of new features.

The speed and reliability of the product are of utmost importance, as its performance

can have a significant impact on the production line. Therefore, it is crucial that these

aspects are taken into consideration when choosing the solution.

1.4 Methodology

The approach taken to address the problem outlined in this document follows the best

practices and concepts taught during the academic journey, particularly regarding the

process of analyzing, designing, and implementing the solution.

The methodology used was the same as the one used by the internal teams at CTW, who

follow the LeSS (Large-Scale Scrum) framework, which allows them to have ownership

over the design, planning, and execution of tasks, progress, and associated work processes.

(LeSS, 2023).

A monthly macro plan was created in order to guide the development of the thesis within

the scope of the team and project. It is worth noting that these stages can be adjusted

4

CHAPTER 1. INTRODUCTION

according to the work flow considering the progress of practical work and thesis writing.

The outcome of the planning by monthly intervals is presented in table 1.1.

Table 1.1: Work Plan

Tasks Months Interval

• Analysis and understanding of the current problem with the

MyWorkplace application, as well as its requirements and objectives.

[1-4]
• Research of existing solutions in the market for optimizing resource

loading in web applications.

• Development of a detailed work plan: establish objectives, stages,

and deadlines for the rest of the thesis.

• Start of thesis writing, including the description of the problem,

research of existing solutions, implementation and optimization of

the chosen solution, as well as test results

[1-9]

• Implementation of the chosen solution, in order to optimize re-

source loading and minimize the size of the final bundles.
[4-7]

• Conduct tests to verify the effectiveness of the implemented

solution, including measuring loading times and the size of the

final bundles.

• Continuous optimization of the implemented solution, including

identifying and correcting issues.
[7-9]

• Additional testing: conducting additional tests to verify the effec-

tiveness of the optimized solution.

• Review and conclusion of the thesis: review and conclude the

thesis, including checking for consistency and coherence in the text,

as well as performing final revision to fix any errors.

[10-end]

5

CHAPTER 1. INTRODUCTION

1.5 Contributions

The main contributions of this project are:

• Systematization of concepts, actors and business processes;

• Analysis of existing solutions in the market, identifying the advantages and disad-

vantages of each one;

• Development of a solution that leads to an improvement in the loading speed and

overall performance of the MyWorkplace application.

1.6 Thesis Structure

In the first chapter, the topic of this dissertation is introduced, as well as the problem it

aims to solve.

In the second chapter, the context is systematically detailed, including a description of

the product’s technology stack.

In the third chapter, its introduced a overview and historic context of modularity and

existing solutions in the market are presented and compared to the technologies that

could be adopted to achieve the objectives in question.

In the fourth chapter, an extensive analysis of Module Federation is conducted. It is

explained its features and applicability as well as some case studies are presented and

discussed.

In the fifth chapter, the system design is presented using different levels of granularity.

In the sixth chapter, concepts related to the implementation of the system are discussed,

including technological decisions, tools used.

6

CHAPTER 1. INTRODUCTION

In the seventh chapter, is presented analysis and an evaluation of the implemented

solution.

1.7 Summary

This provides context, explains the problems faced in the current setup within the project,

and outlines the objectives this document aims to achieve. It emphasizes the contributions

of the thesis and concludes with an overview of the thesis structure, ensuring a logical

flow for detailed exploration and analysis in the subsequent chapters.

7

Chapter 2

Context

This chapter aims to present a description of the technological context, identifying existing

applications in the product as well as the technological stack present in the front-end.

2.1 Existing Applications

In the upcoming sections, the existing application types in the product, as well as the type

of integration in the MyWorkplace portal, will be presented. The Figure 2.1 illustrates

this different types of applications present in the MyWorkplace context, marked with

different colors in order to distinguish one from another.

9

CHAPTER 2. CONTEXT

Figure 2.1: MyWorkplace application context.

The yellow rectangles represent the MyWorkplace Shell, the red ones the widgets, the

blue ones indicate the Angular-Web-Components, and the green ones represent both the

External Apps and Core Apps.

2.1.1 MyWorkplace Shell

The MyWorkplace Shell application, developed using AngularJS, serves as a single

entrypoint to access both Core Apps and Widgets. This allows users to access all the

information of multiple applications in one place. The Core Apps can be developed by

both MyWorkplace teams and external teams, and their integration within MyWorkplace

is achieved through the use of iFrames. The Widgets are integrated in the form of web

components, allowing for their reuse throughout the application. The Web-Components,

are as the name indicates, integrated in the application by the means of web components.

Along with the application integrations, MyWorkplace Shell enables users to create

personalized and shared dashboards, providing an intuitive way to interact with various

10

CHAPTER 2. CONTEXT

applications and widgets.

2.1.2 Core Apps

The Core Apps are self-contained applications built using different versions of Angular.

Each of these applications has its own domain and can be used independently. There are

five different Core Apps, all of which are integrated into the MyWorkplace Shell. This

applications are developed and maintained exclusively by the MyWorkplace teams. A

couple of examples of Core Apps are:

• App Management

• User Settings

2.1.3 External Applications

Applications developed and maintained by teams outside of MyWorkplace are referred

to as External Applications. These applications are integrated into the portal through

the use of iFrames and can be developed using various frameworks and libraries, such as

Angular, React, VueJs among others.

2.1.4 Angular-Web-Components

In the context of this thesis and in order to reduce confusion and differentiate the domain

“web-components” from the application type “web components”, this domain objects

will be referenced as Angular-Web-Components and the type of applications will still

be called web components. Web Components are a group of technologies that allows to

create reusable encapsulated custom elements. These elements can be integrated into

web applications without interfering with other parts of the code (Mozilla, 2023a). The

core of Web Components consists of three main technologies:

11

CHAPTER 2. CONTEXT

• Custom Elements: JavaScript APIs that define and manage custom elements;

• Shadow DOM: Ensures encapsulation by attaching a separate DOM tree to elements,

keeping them isolated;

• HTML Templates: Using elements like and , can be defined markup structures

that aren’t immediately rendered, allowing for flexible content insertion (Mozilla,

2023a).

Angular-Web-components are small applications being built to facilitate the migration of

MyWorkplace Shell from AngularJS to Angular. These components are integrated through

web components, making them reusable within the MyWorkplace Shell. Migrating to a

new version of Angular using web components enables the addition of new features on

top of legacy code, maintaining it while providing users with new functionalities. Some

examples of Angular-Web-Components are:

• Apps Menu

• Dashboards

• Dashboards Menu

2.1.5 Widgets

Widgets are a collection of small applications dynamically integrated into different

dashboards in the MyWorkplace Shell. These applications, like the Core Apps, originate

from both external teams and MyWorkplace teams. The Widgets developed by the

MyWorkplace teams are all built using the Angular framework, while other widgets

developed by external teams are built using different technologies such as React or VueJs.

In order to make it easier to dynamic integrate widgets into dashboards, these Widgets

are built using web components.

These applications are compiled in a way that makes everything accessible from the main

12

CHAPTER 2. CONTEXT

entry point in a single bundle, meaning that both scripts and styles remain in their own

bundle, allowing the application to make a single request for each type of widget, thus

reducing the number of requests made by the MyWorkplace Shell. Some examples of

Widgets are:

• Timer Widget

• Countdown Widget

• Timeline Widget

2.2 Technological Stack

In the following sections, it will be presented the technologies used by the applications

that make up the MyWorkplace product.

2.2.1 Angular

Angular is a development platform built to meet the demands of building scalable web

applications. This development platform is built on TypeScript and it is a component-

based framework that comes with a rich collection of integrated libraries, as well as a set

of tools and features that enable developers to build modern and efficient applications

(Angular, 2022).

2.2.2 Webpack

Webpack is a static module bundler for JavaScript applications, allowing developers to

work with multiple files and dependencies, and bundling them into one or more output

files. This technology can handle JavaScript modules and other types of resources, such as

image and font files, using a dependency graph to analyze and compile modules. Webpack

13

CHAPTER 2. CONTEXT

supports the use of plugins and loaders, allowing to extend its functionalities and work

with additional file types (Concept, 2023). One of its main advantages is the ability to

split the code into multiple output files, significantly improving the application’s loading

time and reducing the size of the final file. This allows the application to load only the

necessary resources at a given moment, increasing the speed and efficiency of the system

(Concept, 2023; Koppers, 2023).

2.2.3 AngularJS

AngularJS is an open-source JavaScript framework for web application development

and has been a leading framework in the world of JavaScript frameworks. Hundreds

of websites and applications have been built on top of this framework, however, this

technology has been deprecated starting from 2022 (Maida, 2017; Thompson, 2023).

2.2.4 Nx Workspace

Nx Workspace is a project management tool in monorepo format that aims to increase

the development process with minimal effort. One of the main advantages of using Nx

Workspace is distributed computation caching feature, which allows sharing the cache of

build results from applications and libraries among Continuous Integration/Continuous

Delivery (CI/CD) machines and local machines. Additionally, this tool also offers a large

number of plugins for generating, compiling, and testing different frameworks (Nrwl,

2023).

2.3 Interconnection of Applications

The Figure 2.2 represents the relationships between the different types of applications

mentioned in section 2.1.

14

CHAPTER 2. CONTEXT

Figure 2.2: Component arquitetural representation of MyWorkplace products.

Widgets communicate with the MyWorkplace Shell through an API that exposes certain

functions, enabling Widgets to perform specific actions. Similarly, the Core Apps also

communicate with the MyWorkplace Shell through their own API. Both of these APIs are

optional and not required to be used by either widgets or Core Apps. The MyWorkplace

Shell makes requests to a GraphQL API Gateway, while standalone applications inserted

into the portal make requests to different APIs, which are not represented in the diagram

in order to simplify its interpretation.

2.4 Summary

In this chapter, a brief overview of the product applications and their integration within

the MyWorkplace portal was presented. Additionally, the technological context that

motivated the creation of this project was introduced.

15

Chapter 3

Modularity in Javascript

The purpose of this chapter is to introduce the concept of modularity in software

development. This chapter offers insights into the evolution of modularity over time in

the context of Javascript. The Modularity chapter discusses and presents the current

state of modularity in Javascript, presenting a comparison between static and dynamic

modules and also describes the tools that aid in the management and bundling of modules.

3.1 Definition

A module is a cognitive or perceptual subsystem whose functioning is relatively indepen-

dent. This module should be independent of the rest of the cognitive architecture and its

functioning can be analyzed and understood relatively independently of the overall system

in which it is embedded. A module is a component whose behavior is not influenced by

any other process or activity that occurs in the system in which it is integrated, beyond

what is provided to these components as input (McClamrock, 2006).

17

CHAPTER 3. MODULARITY IN JAVASCRIPT

3.2 Historical Context

Initially, the JavaScript language was used embedded in Hypertext Markup Language

(HTML) through <script> tags or through JavaScript files, which shared the global

scope of the page. As a result, any of the files could write variables to the global

window variable, which could easily lead to conflicts and inadvertently cause one script

to overwrite a variable of another script (Bevacqua, 2020; Farrell, 2019). Figure 3.1

illustrates this example of global scope sharing.

1 <script>

2 var load ing = true

3 </ script>

4

5 <script>

6 i f (l oad ing) {

7 conso l e . l og (' Has loaded . ')

8 }

9 </ script>

Listing 3.1: Use of script tags.

3.2.1 Immediately-Invoked Function Expression

The problem of global scope pollution led to the creation of Immediately-Invoked function

expressions (IIFE). IIFE define an anonymous function inside a group operator, creating

a new level of scope, preventing access to the var variables defined inside the IIFE, while

minimizing pollution of the global scope (Bevacqua, 2020; Mozilla, 2023b). Figure 3.2

illustrates an example of using IIFE notation, where the variables firstVariable and

18

CHAPTER 3. MODULARITY IN JAVASCRIPT

secondVariable will be discarded after the function is executed. This pattern allowed

multiple IIFEs to be concatenated into a single file, reducing stress on the network by

reducing the number of requests. However, this pattern does not allow the creation of a

dependency tree, requiring files to be ordered precisely to avoid dependencies loading

before any module that depends on them, leading to recursion problems (Bevacqua,

2020).

1 (() => {

2 // some i n i t i a t i o n code

3 l et f i r s t V a r i a b l e ;

4 l et secondVar iab le ;

5 }) () ;

Listing 3.2: Use of IIFE

3.2.2 RequireJS

In order to address the issues raised in section 3.2.1, some libraries emerged, such as the

example of RequireJs library or the dependency injection mechanism in AngularJS, but in

neither case were these libraries adopted as a specification (Bevacqua, 2020; Farrell, 2019).

Figure 3.3 illustrates an example of using the RequireJS library and how, unlike IIFE, it

explicitly declares dependencies at the module level, making the relationships between

the component and other parts of the application obvious. Another advantage of using

this library compared to the IIFE functions is that RequireJS resolves the dependency

tree regardless of the number of modules (Bevacqua, 2020).

19

CHAPTER 3. MODULARITY IN JAVASCRIPT

1 d e f i n e (function (r e q u i r e) {

2 // Loading app−s p e c i f i c modules

3 var messages = r e q u i r e (' . / messages ') ;

4 // Loading l i b r a r y /vendor modules

5 var pr in t = r e q u i r e (' pr in t ') ;

6 p r i n t (messages . g e tHe l l o ()) ;

7 }) ;

Listing 3.3: RequireJS usage.

3.2.3 CommonJS

Node.js introduced the CommonJS (CJS) modules as its original way of packaging

JavaScript code. These modules are loaded synchronously and allow reducing boilerplate

code when compared to RequireJS or AngularJS. Unlike these solutions, CJS modules are

strict, meaning that each file can only have one module and there is no possibility of having

multiple modules dynamically defined per file. Although not an official specification, CJS

modules are widely used (Bevacqua, 2020; Mohan & Prusty, 2018; Node.js, 2023). Figure

3.4 illustrates the import and usage of a CJS module.

1 const c i r c l e = r e q u i r e (' . / c i r c l e . j s ') ;

2 function area () {

3 conso l e . l og (` Radius : 4 ; Area : ${ c i r c l e . area (4) } `) ;

4 }

5 // exposes area func t i on to o ther modules

6 export s . area = area ;

Listing 3.4: Use of CommonJS.

20

CHAPTER 3. MODULARITY IN JAVASCRIPT

The adoption of this type of module made it easier for tools to understand the hierarchy

of the CJS component system. Since each file is considered a module, using the require

function would load its dependencies, and any assignments to module.exports defined

its interface. In order to connect these types of modules to the browser, browserify was

created, which allowed the require method, previously exclusive to Node.js, to be used

in browsers (Bevacqua, 2020; browserify, 2023).

3.2.4 ECMAScript Modules

In June 2015, the ECMAScript 6 (ES6) specification became a standard, which included

an official native syntax for JavaScript called ECMAScript Modules (ESM). These

modules create a dependency graph where the connections between nodes are the imports

and the nodes are the JavaScript files (Bevacqua, 2020; Clark, 2018).

1 import { c i r c l e } from ' c i r c l e ' ;

2

3 // exposes area func t i on to o ther modules

4 export function area () {

5 conso l e . l og (` Radius : 4 ; C i r c l e Area : ${ c i r c l e . area (4)

} `) ;

6 }

Listing 3.5: Usage of ESM

The instances of ESM modules are created in three stages:

• Compilation - This phase involves the search, download (either through a Uniform

Resource Locator (URL) or through the file system), and parsing of all files into

data structures that browsers can use, called Module Records.

21

CHAPTER 3. MODULARITY IN JAVASCRIPT

• Instantiation - This phase involves the allocation of memory for the exported

values. Subsequently, through a process called linking, the imports and exports

are pointed to these memory locations.

• Evaluation - This last phase executes the code and fills the location in memory

with the values.

These stages can run separately, which means that ESM modules can be considered

asynchronous (Clark, 2018). This is considered an advantage over CommonJS, given that

this functionality means that certain parts of the application’s dependency graph can

be loaded concurrently or lazily in response to specific events. Another advantage over

CommonJS is the use of static imports. These static imports can be statically analyzed

and lexically extracted from the Abstract Syntax Tree (AST) of each module in the

system, leading to an improvement in the introspection capabilities of module systems

(Bevacqua, 2020).

3.3 Static vs Dynamic Modules

Rauschmayer (2022) defines the terms “static” and “dynamic” as adjectives that describe

different phenomena in programming languages:

• Static - Something related to the source code that can be determined at compile-

time;

• Dynamic - Something that is determined at runtime.

3.3.1 Static Modules

Static modules are modules that are resolved at compile-time and imported using a static

import declaration. These declarations can only be present at the top level and only

22

CHAPTER 3. MODULARITY IN JAVASCRIPT

exist in modules. They are syntactically rigid, allowing these modules to be statically

analyzed and linked before being evaluated. There are four different types of static

import declarations:

Named Import

This type of static import allows importing multiple names from the same module. These

values must be exported by the module. Code snippet 3.6 represents an example of a

named import.

import { export1 , export2 } from " module−name" ;

Listing 3.6: Named imports usage example. Retrieved from MDN contributors,

2023b.

Default Import

Allows importing modules that have been exported in the form of a default export.

Example of a default import is shown in code snippet 3.7.

import de fau l tExport from " module−name" ;

Listing 3.7: Usage of Default imports. Retrieved from MDN contributors, 2023b.

Namespace Import

The namespace import statement allows the insertion of a namespace object containing

all the exports from the referenced module. An example of a namespace import is shown

in code snippet 3.8.

23

CHAPTER 3. MODULARITY IN JAVASCRIPT

import ∗ as name from " module−name" ;

Listing 3.8: Example of usage of Namespace imports. Retrieved from MDN

contributors, 2023b.

Side Effect Import

Enables importing an entire module only for its side effects. This import runs the code

in the global scope without importing any values and is often used for modules that

change global variables, such as polyfills. Code snippet 3.9 represents an example of a

Side Effect Import.

import " module−name" ;

Listing 3.9: Side Effect Imports usage. Retrieved from MDN contributors, 2023b.

To be able to incorporate these static modules, it is necessary for the file to be dynamically

interpreted as a module during runtime. To achieve this, the type=“module” is added to

the <script> in HTML.

3.3.2 Dynamic Modules

Recent advancements in JavaScript have enabled the dynamic loading of JavaScript

modules, providing the ability to load modules only when required, as opposed to loading

all modules initially, as is the case with static modules. This functionality leverages

the use of the import() function, which returns a Promise that resolves to a JavaScript

module, allowing access to its exports. Listing 3.10 provides an example of dynamically

importing a module (MDN contributors, 2023b).

24

CHAPTER 3. MODULARITY IN JAVASCRIPT

1 import (" . / modules/myModule . j s ") . then ((module) => {

2 // Do something wi th the module .

3 }) ;

Listing 3.10: Example of usage of dynamic imports. Retrieved from MDN

contributors, 2023b.

In JavaScript, this dynamic import is an expression that enables the asynchronous

and dynamic loading of ECMAScript modules in both module environments and other

environments, which, in turn, enables the use of this function even within <script> tags

that are not of the module type (MDN contributors, 2023b, 2023a).

3.3.3 Comparison

Table 3.1 summarizes the analysis of the two types of module loading according to their

characteristics.

Table 3.1: Comparison of dynamic and static module loading.

Static Import Dynamic Import

Application Loading Speed Slower Faster

Memory Usage Consumes More Memory Consumes Less Memory

Dynamically Constructed Im-

port String

No Yes

Conditional Import No Yes

Environment Module Type All Environments

Tree-Shaking Supports Does Not Support

Static Analysis Tools Supports Does Not Support

25

CHAPTER 3. MODULARITY IN JAVASCRIPT

Static module imports result in module evaluation at compile time, rather than dynamic

modules that are evaluated at runtime. Static module imports should be used to load

initial dependencies and allow bundlers to utilize tree shaking. The use of modules

through static imports makes it easier to take advantage of static analysis tools. However,

static imports also significantly slow down loading, and these initially loaded modules

may not be needed during the application’s use (MDN contributors, 2023b, 2023a).

Dynamic imports allow loading modules that don’t exist at compile time, enable the

specification of dynamically constructed strings for module import, and allow conditional

module importing. Conditional module import can be crucial for importing modules that

have side effects, with these side effects being desirable under certain conditions (MDN

contributors, 2023b, 2023a).

3.4 Module Bundler

A Module Bundler is a tool that facilitates the software compilation process. It resolves

code dependencies and can typically remove unnecessary dependencies in production

environments, a process known as tree shaking (Latendresse, Mujahid, Costa, & Shihab,

2022). Figure 3.1 represents a trend graph from 2021-2022 showcasing the usage of the

bundlers described in this section (NPM Trends, 2023).

Figure 3.1: Trend graph from 2021-2022 showing the usage of different module
bundlers, adapted from NPM Trends, 2023

26

CHAPTER 3. MODULARITY IN JAVASCRIPT

3.4.1 Webpack

Webpack is a bundler that, by defining an entry point in the application, analyzes all

dependencies and generates JavaScript bundles that include all the necessary code for the

application to run. Webpack supports the use of plugins, which can be used to optimize

code, remove unused code parts, minify code, among other functionalities (Concept,

2023).

3.4.2 esBuild

esBuild is a JavaScript bundler created by Evan Wallace. It is identified as being up to

ten times faster than its alternatives. This bundler is written in the Go programming

language and compiles to native code. It supports plugin creation and integration and

offers features such as minification, tree shaking, source maps, watch mode, and a local

server, among others (Wallace, 2023).

3.4.3 Rollup

Rollup is a JavaScript module bundler that focuses on ES6 modules. It offers the

possibility to integrate with other tools, such as Deno and Babel, and allows plugin

creation and integration. Rollup provides capabilities for tree shaking and code splitting

(RollupJs, 2023).

3.4.4 Parcel

Parcel version 2, created in 2021, is written in Rust and is based on the Speedy Web

Compiler (SWC). Parcel performs builds in parallel using worker threads, allowing it to

utilize all available machine cores. This bundler utilizes its own cache, eliminating the

need to compile the same code more than once (Parcel, 2021, 2023).

27

CHAPTER 3. MODULARITY IN JAVASCRIPT

3.4.5 Comparison

Wallace (2023), the creator of the esBuild bundler, conducted benchmark tests comparing

different bundlers by analyzing a JavaScript project that includes ten duplications of the

three.js1 library. These tests show that esBuild is faster than the alternatives, with

Webpack being the slowest of all the analyzed bundlers. The results of these tests are

represented in Figure 3.2.

0 5 10 15 20 25 30 35 40
esBuild

Parcel 2

Rollup + Tercel

Webpack 5

0.37

30.5

32.07

39.7

Seconds

Figure 3.2: Comparative benchmark of different bundlers, adapted from Wallace,
2023

Tests were also conducted for projects using TypeScript, but the values were similar to

the test conducted on a JavaScript project, where esBuild was the fastest and Webpack

5 was the slowest. Taking into account these values and other properties of each bundler,

Table 3.2 presents a comparison of the different module bundlers described in Section 3.4.

1This analysis may be considered partial, as it was conducted by the creator of one of the
analyzed bundlers. It is worth noting that the repository where this analysis was performed is
public domain, and this evaluation can be repeated considering the source code present in the
repository (https://github.com/evanw/esbuild).

28

CHAPTER 3. MODULARITY IN JAVASCRIPT

Table 3.2: Comparison of properties of different module bundlers.

Webpack Rollup Parcel esBuild

ES Modules Support Yes Yes Yes Yes

TypeScript Support Yesa Yesa Yes Yes

Code Splitting Yes Yes Yes Yes

Popularityb 62.6k 23k 42k 34.7k

Tree Shaking Yes Yes Yes Yes

Hot Module Replacement Yes Yes Yes Yes

Performancec Low Medium Medium High

a requires additional configuration, b evaluated based on the number of stars on GitHub as of

02-26-2023, c performance evaluated based on the benchmark values analyzed.

According to the analysis, module bundlers vary primarily in terms of popularity

and performance. Among them, Webpack stands out as one of the most renowned.

While not highlighted in this particular comparison, it’s noteworthy to mention a

few emerging module bundlers such as Rspack, Turbopack, and Bun Bundler, which

promise enhanced performance compared to their more established counterparts.

3.5 Summary

This chapter defined and described the concept of modularity and how it has evolved

and exists in the context of JavaScript. It also presented different JavaScript module

bundlers and their specific characteristics.

29

Chapter 4

Module Federation

This chapter discusses Module Federation, exploring its core concepts, operations,

and practical applications. It offers insights into its functionality, case studies,

and alternatives. This exploration aids in understanding and utilizing Module

Federation efficiently in development environments. It is important to note that the

references in this chapter will not be predominantly scientific. Given the recency

of Module Federation, much of the insights and information are retrieved from the

practical field. The references will predominantly include conferences, examples,

videos, and blog posts from the author of Module Federation that explains this

topics and also recreates complex and practical examples of case studies using

Module Federation.

31

CHAPTER 4. MODULE FEDERATION

4.1 Definition

Module Federation was created by Zack Jackson, with co-authors Marais Rossouw

and Tobias Koppers. It is an integral part of Webpack 5, which was made available in

October 2020. It introduces a new way to import chunks, features, or dependencies

from another independently deployed application into an application. The remotely

imported code can be used as an ES6 import, as if it were part of the same

repository, without being tied to any specific framework (Ebey, n.d.; Ghadyani,

2021; Silva, 2021). Figure 4.1 illustrates an example of three applications (sites in

the diagram) sharing modules at runtime.

Figure 4.1: Three different applications share modules at execution time. Adapted
from Ebey, n.d

32

CHAPTER 4. MODULE FEDERATION

Module Federation introduces the following terminology, as defined by its creator,

Zack Jackson (2023b):

• Host - A Webpack build that is initialized first during page loading;

• Remote - A Webpack build where a part of it is consumed by a host application;

• Bidirectional-hosts - A Webpack build that can function both as a host,

consuming remotes, and as a remote. These two roles are not mutually

exclusive, and an application can be both a host and a remote;

• Omnidirectional-hosts - At application startup, it is not known whether it is

a host or a remote. This allows Webpack to dynamically negotiate and switch

vendors using semantic versioning, allowing different versions to coexist.

The configuration of a remote application using the ModuleFederationPlugin is

done in a Webpack configuration file. An example of this configuration is shown in

code snippet 4.1.

1 output : {
2 publ icPath : " http :// l o c a l h o s t :5000/ " ,
3 } ,
4 p lug in s : [
5 new ModuleFederationPlugin ({
6 name : " appRemote " ,
7 f i l ename : " remoteEntry . j s " ,
8 exposes : {
9 ' . / component ' : " . / host /component "

10 } ,
11 shared : [" r x j s "]
12 }) ,
13] ,

Listing 4.1: Example of a remote configuration in a webpack.config.js file.

33

CHAPTER 4. MODULE FEDERATION

The remote application exposes the ./host/component module to be consumed

by the host application. It also expects the rxjs library to be imported by the

host application without including it in the application bundle. The configuration

of a host application using the ModuleFederationPlugin is similarly done in a

Webpack configuration file. An example of this configuration is shown in code

snippet 4.2.

1 p lug in s : [

2 new ModuleFederationPlugin ({

3 name : " app2 " ,

4 remotes : {

5 appRemote : " appRemote@http :// l o c a l h o s t :5000 "

6 } ,

7 shared : [" r x j s "]

8 })

9]

Listing 4.2: Example of a host configuration in a webpack.config.js file.

The code snippets configurations in 4.1 and 4.2 use three fundamental concepts:

• Remotes - A set of names from other applications using Module Federation

that this application will consume. In Figure 4.2, the application app2

consumes code from the application named appRemote.

• Exposes - Represents the set of files the application exports as remotes to

other applications. In Figure 4.1, the application app2 exposes the module

./host/component as ./component to be consumed by its host application.

34

CHAPTER 4. MODULE FEDERATION

• Shared - A list of libraries that the application shares with other applications.

The Module Federation concept is agnostic to the environment. This means it can

be applied in web platforms, Node.js environments, or others (Webpack, 2023a).

The importance of using Module Federation in MyWorkplace becomes evident

when considering the challenges faced in previous contexts. Prior to its adoption,

the team relied on Webpack externals to minimize library code duplication in

the widgets. This approach used the Universal Module Definition (UMD) to

register these libraries within the window object. However, certain libraries stopped

supporting UMD, and the team’s commitment to maintaining the most up-to-date

application possible made the use of externals impossible. Consequently, widgets

began to exhibit a larger footprint, characterized by substantial bundles. This led

to the need for a solution like Module Federation, which promised to address these

issues.

4.2 Compilation Time

Module Federation is exported by the Webpack bundler in the form of a plugin

called ModuleFederationPlugin. This plugin abstracts the implementation of

two other plugins (which can be used independently depending on whether the

application is a remote or a host):

• ContainerPlugin - This plugin is responsible for creating a new entry, which

serves as an application’s manifest, where the modules to be exposed are

specified (Webpack, 2023a). This is the plugin that the remote application

uses.

35

CHAPTER 4. MODULE FEDERATION

• ContainerReferencePlugin - This plugin manages the remotes modules

in the configuration, adds references to containers as externals, allowing the

import of remote modules from these containers (Webpack, 2023a). This is

the plugin that the host application uses.

Compiling a remote application creates JavaScript files, not only to run the

application itself but it also creates the JavaScript bundles for the remote modules

(Webpack, 2023a).

4.3 Runtime

At runtime, the browser loads the remote entry file. This process registers a global

variable with the name specified in the library parameter of the ModuleFedera-

tionPlugin configuration. This global variable exports two key functions: get and

override. The get retrieves remote modules, while override manages all the

shared libraries (Herrington & Jackson, 2023). When a remote module is exported,

the module’s implementation can be accessed via the window object, exemplified

in code snippet 4.3.

1 window . appRemote . get (' component ')

2 . then (f a c t o r y => conso l e . l og (f a c t o r y ())) ;

Listing 4.3: Example of accessing modules from remote applications.

The invoked factory() returns an object. For named exports, these names are

mapped to this object. This factory enables Webpack to load both the module

and its required shared dependencies. These dependencies are loaded only if they

36

CHAPTER 4. MODULE FEDERATION

haven’t been loaded by another remote or host. Module Federation resolves the

dependencies not only of the direct modules but also the remotes modules, if

these modules are bidirectional-hosts. Circular dependencies are allowed and are

efficiently managed by Module Federation (Herrington & Jackson, 2023).

4.4 Versions

In the expansive Javascript ecosystem, the Node Package Manager (NPM) recom-

mends adhering to the Semantic Versioning specification. To do so, it’s necessary

to update and publish an updated version of the package in package.json. This

versioning system helps teams that depend on a certain package understand how

a change in a particular version can affect their code and allows them to make

the necessary adjustments. Semantic Versioning delineates package versions using

three distinct numbers, separated by a dot (“.”) (npm, 2021; Preston-Werner, n.d.).

When working with Module Federation, version specifications align with Semantic

Versioning. Teams with applications that consume external modules can encounter

three problems:

• Duplication - This is common when libraries and packages are not shared.

This can lead to a poor user experience of the applications (Herrington &

Jackson, 2023).

• Version Mismatch - This problem occurs when an application consumes

packages in versions that are not compatible with the current version used in

the application. In extreme cases, this mismatch can cause the application

not to run (Herrington & Jackson, 2023).

37

CHAPTER 4. MODULE FEDERATION

• Singletons and Internal State - Some libraries have an internal state, and

this internal state is required at runtime for the library to run without

problems. For these libraries, there can only be one instance of the library

at runtime (Herrington & Jackson, 2023). Module Federation introduces

measures to solve or diminish these issues. The ModuleFederationPlugin

provides the possibility of adding a shared key to its configuration. This

attribute allows declaring libraries that will be shared between applications,

eliminating duplication of these modules. This configuration is depicted in

Figure 4.2 (Herrington & Jackson, 2023).

Figure 4.2: Representation of version sharing.

Webpack solves version mismatches using fallbacks for shared libraries (Herrington

& Jackson, 2023). As illustrated in Figure 4.3, both host and remote applications

consume the @angular/core library. Even though both applications include this

38

CHAPTER 4. MODULE FEDERATION

version under the shared attribute, they depend on different versions. The host

application first loads the version of @angular/core it needs, then the remote

application starts loading and searches for its version, but due to a version mismatch,

the library’s fallback is used.

Figure 4.3: Representation of version mismatch handling.

4.5 Applicability

In this section, the potential uses of Module Federation in various scenarios will be

described, whether by migrating existing applications, adding new functionalities,

or migrating architectures.

4.5.1 Micro-Frontends

Micro-Frontends is an approach to decomposing the frontend into individual and

semi-independent micro-applications (Taibi & Mezzalira, 2022). This approach

mirrors the microservices architecture, where backend development splits into

logically independent units. Micro-frontends architecture allows the division of

39

CHAPTER 4. MODULE FEDERATION

a monolithic application into several parts that can be developed simultaneously

by different teams. This architecture has been adopted by various companies,

including IKEA, DAZN, Starbucks, among others (Mezzalira, 2019; Nishizu &

Kamina, 2022; Taibi & Mezzalira, 2022).

Taibi & Mezzalira (2022) proposed a decision framework using four key decisions

to start a Micro-Frontends project: Horizontal or Vertical split, Composition Side,

Routing, and Micro-Frontends communication.

Horizontal or Vertical split

The decision aims to identify whether multiple frontends are wanted in the same

view (horizontal split) or if a view or group of views is intended to be assigned to a

team (vertical split). Figure 4.4 illustrates the difference between horizontal split

and vertical split.

Figure 4.4: Horizontal split (esquerda) vs Vertical split (direita). Retirado de
Mezzalira, 2019

Composition Side

The decision responsible for identifying the type of composition to use in the archi-

tecture, client-side composition, server-side composition, or edge-side composition

(Taibi & Mezzalira, 2022). Figure 4.5 graphically illustrates the different types of

40

CHAPTER 4. MODULE FEDERATION

Micro-Frontends composition.

Figure 4.5: Comparison between different types of Micro-Frontends. Retrieved
from Taibi & Mezzalira, 2022

• Client-side Composition - Allows combining and integrating micro frontends

in the browser.

• Server-side composition - Involves having a backend service responsible for

combining pages using pre-rendered sources.

• Edge-side composition - Uses a markup language called Edge-side Includes

(ESI) proposed by Akamai to combine pages using various Content Delivery

Networks (CDNs) or proxies responsible for storing cache and delivering

content close to the region of the world where the request was made (Silva,

2021; Taibi & Mezzalira, 2022).

41

CHAPTER 4. MODULE FEDERATION

Routing

A decision that consists of choosing the best way to create routes from view to

view.

Micro-Frontends communication

A decision that aims to identify how micro frontends will communicate with each

other, either by the usage of web storage, cookies, data in the format of query

strings, through Web Component events, or any other communication method.

Module Federation can be crucial in the development of Micro-Frontends archi-

tectures since it resolves out-of-the-box a significant portion of the complexity

generated by other alternatives (Taibi & Mezzalira, 2022). Module Federation

can be used in Micro-Frontends both with client side composition and server-side

composition, as it supports SSR (Zack Jackson, 2023b).

4.5.2 External Features

Jackson (2022) recommends using Module Federation to integrate functionalities

developed by different teams that appear across multiple user flows or applications.

However, this suggestion is primarily valid if these modules adhere to the Component

Level Ownership pattern (CLO).

The Component Level Ownership pattern delegates as much responsibility as

possible to the component itself, and it is based on four principles:

• Smart Components - These components should function almost independently,

bearing all the necessary business logic and data requests;

42

CHAPTER 4. MODULE FEDERATION

• Colocation - The code should be well-organized, easily comprehensible, main-

tainable, and resilient. Changing a component’s logic shouldn’t inadvertently

affect other business logic streams;

• Loosely Coupled - Components should minimize dependencies on each other,

especially high-level modules. While some coupling is inevitable because

components communicate with one another, minimizing these dependencies

is the essence of being loosely coupled (Fowler, 2001; Jackson, 2022). This

concept relates to the concept of modularity, described in chapter 3;

• Ownership boundaries - Different teams should clearly own and be responsible

for different components. This ownership eases applications maintenance.

This pattern must take granularity into account, without the need to become super

granular and delegate maximum responsibilities to all components. Jackson (2022)

uses an example of a “title” component, which does not need to use the CLO

pattern. However, for certain more complex features, this paradigm makes more

sense.

4.5.3 Global Components

One potential use of Module Federation lies in managing global components.

These components, found in numerous applications, are typically self-contained

and should ideally remain consistent across various applications, making them

strong candidates for the implementation of Module Federation. A more common

alternative to sharing modules through Module Federation would be to update the

component, publish it on a Package Registry, and then update all versions of the

applications using that component. However, this method is more time-consuming

43

CHAPTER 4. MODULE FEDERATION

and labor-intensive for development teams (Jackson, 2022).

4.5.4 Polyliths

Polylith is a software architecture conceived by Joakim Tengstrand. This architec-

ture decouples backend code into small, reusable parts that can be shared across

various services. These “LEGO-like” components are designed to simplify the

development of tools and services. By providing a certain level of abstraction, they

allow developers to easily understand, compose, reuse, and exchange these blocks.

A primary advantage of this architecture is the significant reduction of duplicate

code through component sharing. (Polylith, 2022).

This architecture defines seven building blocks:

• Function - Functions form the foundational layer of this architecture. Within

a Polylith system, most interactions occur through functions.

• Library - Libraries are segments of code archived in a versioned file. They

can be located and downloaded from repositories, such as Maven Repository.

• Component - Components denote parts of the business domain, elements

of infrastructure (like authentication and databases), or integrations with

external systems.

• Base - Bases are a type of building block that expose their functionalities

through a public API, be it GraphQL, Google Remote Procedure Call (gRPC),

Representational State Transfer (REST), among others.

• Brick - This term is used interchangeably for both a Base and a Component.

44

CHAPTER 4. MODULE FEDERATION

• Project - This identifies the Bricks and Libraries to be included in an artifact,

such as a service, command-line tool, or a new library. It accentuates the

principle of reusing components across diverse projects.

• Development Project - A project where libraries, components, and bases are

all interconnected.

• Workspace - It signifies the place where all the building blocks are stored and

where configurations for various projects are made.

Polylith is inherently language-agnostic, making it compatible with languages like

JavaScript. In this context, Module Federation can be important, since it can assist

in resolving and minimizing imported dependencies and streamlines the sharing of

modules. (Jackson, 2022; Zack Jackson, 2023b; Polylith, 2022).

4.5.5 Strangler Pattern

Fowler (2004) coined the term “Strangler Application” or “Strangler Fig Applica-

tion” as a metaphor used to describe a strategy for rewriting significant systems.

This design pattern allows the existing application to be incrementally “strangled”

as migration occurs, ensuring minimal impact on the current system. This approach

has become especially popular for transitioning from monolithic systems to mi-

croservices architectures. The core idea is to develop a new system that seamlessly

integrates with the old one. As new functionalities are added, the new system

gradually “strangles” or replaces the old system. One of the primary benefits of

employing this pattern is the ability to introduce new features while simultaneously

migrating older functionalities in a phased manner (Fowler, 2004; Microsoft, 2023;

Richardson, 2023). Figure 4.6 illustrates an example of migrating from an old

45

CHAPTER 4. MODULE FEDERATION

system to a new one using this strategy.

(a) Initial State
(b) Beginning of Migration

(c) Final of Migration (d) Migration Complete

Figure 4.6: Example of a migration of a legacy system to a new system using the
Strangler pattern. Adaptado de (Microsoft, 2023; Richardson, 2023)

There are two ways through which Module Federation can assist in the process of

strangling a system:

• Converting New Microservices or Modules to Remotes of the Legacy System

- This allows for the gradual strangulation of the legacy system by turning

new micro-services or modules into “remotes” of the older system.

• Inverting the Strangling Process of the Legacy Service - This is achieved by

creating a new service that imports modules from the legacy service, allowing

it to function as a “remote” for the new service (host). When the Strangler

46

CHAPTER 4. MODULE FEDERATION

Pattern is employed for migrating to microservices, this method can ease the

integration of shared code that is still present in the legacy system but is

needed by the new microservices.

Both options allow for the reuse of modules from either the new or the legacy

system, facilitating the service migration (Zack Jackson, 2023b).

4.5.6 A/B Testing

A/B testing, commonly known as split testing, involves comparing two versions

of a webpage or app against each other to determine which one performs better

in terms of achieving a desired action (like clicks, sign-ups, or purchases). As a

business grows, its A/B tests might become more intricate, involving multivariate

testing (testing more than two versions) (Unbounce, n.d.; Walsh, 2019).

Module Federation allows to serve multiple versions of modules to different user

segments. For example, it is possible to serve two different versions of a module

(Version A and Version B) to different user groups dynamically. This means that

when User X visits the website, they could be served Version A of a module,

whereas User Y might see Version B. With Module Federation, developers can

push real-time updates to a A/B tested modules without disturbing the rest of the

application, streamlining the process and reducing potential errors or downtime

(Steyer, 2023; Unbounce, n.d.).

4.5.7 Server-Side Rendering

Server-Side Rendering (SSR) is a rendering technique that allows delivering fully

rendered pages from the server to the browser. Unlike Client Side Rendering

47

CHAPTER 4. MODULE FEDERATION

(CSR), where the browser is responsible for rendering the entire webpage, SSR

sends ready-to-render HTML response, allowing the browser to display the content

immediately. This process occurs in mere milliseconds, and the immediate rendering

of pages in SSR not only reduces the waiting time for users but also eliminates

the initial blank page often encountered in CSR. SSR also offers an advantage

for Search Engine Optimization (SEO), as search engines can more efficiently

crawl and index the content of this sites (Jartarghar, Salanke, R, S, & Dalali,

2022). The use of Module Federation in conjunction with SSR allows to have the

same advantages that module Federation offers to CSR applications but in SSR

powered web applications (Zach Jackson, 2021, 2021). This integration also allows

to have multi-server rendering, where remotes accept properties from the host

application and perform the render at their origin, sending back the pre-rendered

HTML. The use of Module Federation allows to offload the rendering load to

another computer and this concept of distributed parallel rendering implies that

Module Federation can be used in Multi-Threaded computing since the processing

of rendered components is being done by using different CPUs. This distributed

SSR can enhance scalability, enhance speed and reduce runtime overhead (Jackson,

2020; Zach Jackson, 2021).

4.6 Testing

In this section will be discussed some solutions to test the modules that use Module

Federation in order to make sure the interfaces are not broken and the ability to

import modules or files between independently compiled and deployed bundles at

runtime is not affected.

48

CHAPTER 4. MODULE FEDERATION

4.6.1 Federated Unit Tests

In order to test applications using Module Federation, Zack Jackson (2021) defines

a new approach to unit test in the form of Federated Unit Tests. This approach

involves federating modules into unit tests in a manner analogous to federating them

into applications. In a scenario where a file containing a Form imports a Button

using Module Federation, the objective would be to test both the components, each

of which is supplied by its own webpack build. This implies a create a new webpack

configuration file in order to create the build to be used in the tests. The Listing

4.4 represents the Module Federation configuration for the Form component (Zack

Jackson, 2021). The Module Federation configuration for the other components to

be test are similar to the one presented in Listing 4.4.

1 new ModuleFederationPlugin ({
2 name : ' form_app ' ,
3 f i l ename : " remoteEntry . j s " ,
4 l i b r a r y : { type : " commonjs−module " , name : " form_app " } ,
5 remotes : {
6 " d s l " : r eun i t ed (path . r e s o l v e (__dirname , ' . . / d s l / d i s t −t e s t /

remoteEntry . j s ') , " d s l ")
7 } ,
8 exposes : {
9 " . / Form" : " . / f ederated −cros s −t e s t / form . j s "

10 } ,
11 shared : {
12 r ea c t : deps . devDependencies . react ,
13 " react −dom" : deps . devDependencies [" react −dom"]
14 }
15 })

Listing 4.4: Example of a configuration of a webpack.test.config.js file for a federated
unit test, retrieved from Jackson (2021).

49

CHAPTER 4. MODULE FEDERATION

The approach exemplified in Figure 4.4 relies on creating a test build for each

repository/project, acting as a commonjs server build that remotes would create to

expose their features as commonjs. The consumer of both this exposed applications

will be a new project that acts as a host application but instead makes use of

webpack’s asynchronous capabilities to import federated modules and test them.

The testing process is executed by running Jest against a webpack built test of

test files. The webpack configuration for the test application acting as a host for

the exposed remotes is described in Figure 4.5 (complete file configuration can be

found in the attachments).

1 new ModuleFederationPlugin ({

2 name : " test_bundle " ,

3 l i b r a r y : { type : " commonjs−module " , name : " test_bundle " } ,

4 f i l ename : " remoteEntry . j s " ,

5 exposes : {

6 " . / render " : " . / t e s t / suspenseRender . j s "

7 } ,

8 remotes : {

9 " form_app " : r eun i t ed (path . r e s o l v e (__dirname , ' . . / form_app/

d i s t / t e s t / remoteEntry . j s ') , " form_app ") ,

10 " d s l " : r eun i t ed (path . r e s o l v e (__dirname , ' . . / d s l / d i s t /

remoteEntry . j s ') , ' d s l ')

11 }

12 }) ,

Listing 4.5: Example of a partial configuration of a webpack.test.config.js file for a

federated unit test test application, retrieved from Jackson (2021).

50

CHAPTER 4. MODULE FEDERATION

This process would allow for tests to be written as presented in Figure 4.6.

1 const Form = import (" form_app/Form") ;

2 const Button = import (" d s l /Button ") ;

3

4 d e s c r i b e (" Federat ion " , function () {

5 i t (" i s r ender ing Nested Suspense " , async ()=>{

6 const from = await Form

7 conso l e . l og (await suspenseRender (from . default))

8 })

9 i t (" Test ing Button from Remote " , async function () {

10 const Btn = (await Button) . default

11 const wrapper = render (<Btn/>) ;

12 expect (wrapper) . toMatchSnapshot ()

13 }) ;

14 i t (" Test ing Button from Form" , async function () {

15 const Frm = (await Form) . default

16 const wrapper = mount(<Frm/>) ;

17 expect (wrapper) . toMatchSnapshot ()

18 }) ;

19 }) ;

Listing 4.6: Example of federated unit test, retrieved from Jackson (2021).

For this particular case the different projects are locally being build and tested

but, in the context of a Continuous Integration/Continuous Delivery (CI/CD)

environment, the test container can pull down other repositories or buckets and

execute them locally. In the case of a mono-repository, this tests could be done

51

CHAPTER 4. MODULE FEDERATION

either locally or in CI/CD environments without the need to pull down other

repositories or buckets (Zack Jackson, 2021).

4.6.2 Smoke Tests

Smoke testing, also known as Build Verification Testing, is a high-level type of

testing conducted to make sure that the basic functions of a program are working,

ensuring that the application under test is operational and has its core functionalities

working as expected, while not bothering with finer details (Cannavacciuolo &

Mariani, 2022; Chauhan, 2014; Herbold & Haar, 2022). The origins of smoke

testing can be traced back to hardware and plumbing industries, where it was used

to detect any blatant issues or breaks in the system (Chauhan, 2014).

In the context of Module Federation smoke testing can be used to determine the

stability of the software build as it acts as a preliminary check to ensure the

every component of the system under test and interactions between them are

operational. This type of tests can be useful for checking if different modules

are correctly integrating and communicating with each other. If a module is

importing components from another module, the smoke test checks if this operation

is successful and doesn’t break the system under test.

4.7 Alternatives

This chapter explores other techniques and approaches that can be used instead of

Module Federation. The discussion describes the strengths and weaknesses of these

alternatives, offering insight into the options available for managing and optimizing

52

CHAPTER 4. MODULE FEDERATION

web component integration and library sharing.

4.7.1 Import Maps

Import maps are a JSON object that allows, when importing Javascript modules,

to control how the browser resolves module specifiers. It maps the text in a module

specifier to a specific value, ensuring the JSON object follows the Import map JSON

representation format. (Mozilla, 2023c). Import Maps have emerged as a robust

tool, offering a new paradigm for orchestrating micro-frontends at runtime enabling

the redefinition of module specifiers, providing a significant degree of flexibility and

broad applicability across various technologies. Import Maps are not confined to

any specific technology or build tool, making them a versatile choice for projects

with diverse technological stacks. This flexibility extends to dynamic imports and

version handling, allowing for structured management of different module versions

through scopes (Steyer, 2022b; Zaikin, 2023) The Listing 4.7 provides a example

on how to create an import map to share a library.

1 <script type=" importmap ">

2 {

3 " imports " : {

4 " date−f n s " : " . / l i b s /date−f n s . j s "

5 }

6 }

7 </ script>

Listing 4.7: Example of usage of import maps to share a library, retrieved from

Steyer, 2022b.

53

CHAPTER 4. MODULE FEDERATION

Import Maps efficiently manage external dependencies through the import maps

configuration in the HTML. This approach contrasts with other methods that

handle dependencies at build time, offering a more streamlined and efficient process

for dependency management. The external dependencies can also be loaded in

different versions as Import Maps offers the possibility to have multiple versions

of the same dependency. For the resolution of this version conflicts import maps

offer so-called scopes. The Listing 4.9 exemplifies the usage of scopes to deal with

version mismatch (Steyer, 2022b; Zaikin, 2023).

1 <script type=" importmap ">

2 {

3 " imports " : {

4 " date−f n s " : " . / l i b s /date−f n s . j s " ,

5 " i s −br idg ing −day " : " . / j s / i s −br idg ing −day . mjs "

6 } ,

7 " scopes " : {

8 " / j s / i s −br idg ing −day . mjs " : {

9 " date−f n s " : " . / l i b s / other−date−f n s . j s "

10 }

11 }

12 }

13 </ script>

Listing 4.8: Example of usage of import maps to share a library, retrieved from

Steyer, 2022b.

54

CHAPTER 4. MODULE FEDERATION

Imports Maps also offer the possibility to have dynamic import maps. They

enable the management of external dependencies without necessitating a bundler.

However, the bundler is needed to include the corresponding import statements in

the bundle on a one-to-one basis, rather than including the referenced files within

the bundle as well. This approach is commonly referred to as externals in most

bundlers. Typically, such externals can be delineated through the configuration of

the bundler. Listing 4.9 exemplifies the usage of externals making use of esbuild

(Mozilla, 2023c; Steyer, 2022b; Zaikin, 2023).

1 await e s b u i l d . bu i ld ({

2 entryPo ints : [" j s / i s −br idg ing −day . mjs "] ,

3 e x t e r n a l : [" date−f n s "] ,

4 format : " esm " ,

5 t a r g e t : [" e snext "] ,

6 }) ;

Listing 4.9: Example of usage of version mismatch resolution with import maps,

retrieved from Steyer, 2022b.

Steyer (2022a) coined the term Native Federation as a “Framework and tooling-

agnostic implementation of Module Federation”. This tool abstracts the complexity

of import maps and creates a similar interface to the interface provided by the Mod-

ule Federation Plugin. Although this solution remains in its BETA phase, it waits

integration with Angular after experimental esbuild-based builder is used. List-

ing 4.10 demonstrates the utilization of the @angular-architects/native-federation

library.

55

CHAPTER 4. MODULE FEDERATION

1 const { withNativeFederat ion , sha r eA l l } = r e q u i r e ('

@angular−a r c h i t e c t s / nat ive−f e d e r a t i o n / c o n f i g ') ;

2

3 module . export s = withNat iveFederat ion ({

4 name : ' mfe1 ' ,

5 exposes : {

6 ' . / Module ' : ' . / p r o j e c t s /mfe1/ s r c /app/ f l i g h t s / f l i g h t s .

module . t s ' ,

7 } ,

8 shared : {

9 . . . sha r eA l l ({ [. . .] }) ,

10 } ,

11 }) ;

Listing 4.10: Example of usage of Native Federation plugin, retrieved from Steyer,

2022b.

The Table 4.1 describes the principal diferences between the usage of Import Maps

and Module Federation.

Table 4.1: Comparison between Module Federation and Import Maps.

Module Federation Import Maps

Browser Support Dependent on Webpack

support (Webpack sup-

ports all browsers ES5-

compliant)

Cross-Browser Support

only for newer

56

CHAPTER 4. MODULE FEDERATION

Table 4.1: Comparison between Module Federation and Import Maps.

Module Federation Import Maps

Configuration Complex-

ity

Simple Configuration Provides Little Abstrac-

tion (Native Federation

Plugin can reduce this

complexity)

Build Tool Dependency Webpack -

Angular Integration Simple Integration using

Module Federation Angu-

lar Architects Plugin

Needs manual configura-

tion

Version Mismatch Resolves last compatible

version

Needs to be manually re-

solved

4.7.2 Single-Spa

Single-Spa is a framework that takes on the responsibility of routing, loading, and

unloading applications based on the location provided. It allows the integration of

multiple frameworks and versions making it a suitable choice for migrating from

a legacy system to a modern one, allowing incremental upgrades. Implementing

Single-Spa involves configuring the root project to manage child applications. Each

application, whether a micro-frontend or a utility, is treated as an independent

unit with its lifecycle events. Single-Spa provides the necessary hooks to manage

these lifecycles (Single-Spa, 2023b, 2023a). The usage of Single-Spa is not a direct

alternative to Module Federation, instead it can also be used in conjunction with

57

CHAPTER 4. MODULE FEDERATION

it or with Import Maps (Single-Spa, 2023c).

4.8 Case studies

Zack Jackson (2023a) lists part of the companies that are using module federation

to build their applications, this companies list includes Cisco, Amazon, Shopify,

etc. The grand majority of this companies implementation and case studies are

not public and information could not be retrieved about it (Zack Jackson, 2023a).

This chapter will describe some of the companies using module federation, taking

into consideration the limited information available to the public.

4.8.1 Netflix

Netflix’s felt the need for a flexible and scalable solution and the Revenue and

Growth Tools (RGT) team introduced Lattice, a framework designed for micro

frontends. This framework provides an abstraction layer for React web applications

to leverage, and allows to resolve external dependencies on-demand from any

number of sources (Possumato, Tomlin, Andree, Shim, & Pilani, 2021). Lattice

was created to fit in five main objectives:

• Low Friction Adoption - Foster reuse of frontend code using standard

React methods.

• Weak Dependencies - Allow hosts to access modules from internal re-

mote bundles via HTTPS, compliant with standards like Webpack Module

Federation or native JavaScript Modules.

• Alignment & Flexibility - Ensure plugins align with Netflix standards and

58

CHAPTER 4. MODULE FEDERATION

deliver core functions without excess baggage.

• Metadata-Driven - Use configuration-based plugins for dynamic application

adaptation.

• Rapid Development - Streamline the development process by negating

frequent builds and deployments. By using TypeScript declarations and

well-defined interfaces, both plugins and host applications can be developed

simultaneously.

The integration of the Lattice framework can be visualized in Figure 4.7.

Figure 4.7: Lattice integration with Module Federation. Adapted from Possumato,
Tomlin, Andree, Shim, & Pilani, 2021.

The host application relies on a set of plugins to asynchronously load external

modules, Webpack Module Federation Loader being one of them. When using

Lattice the remote modules needs to export method signatures that match Lattice

Plugin Module interface.

59

CHAPTER 4. MODULE FEDERATION

4.8.2 Telia

Telia Company is a multinational telecommunications company that originates from

Sweden and Finland. Telia main motivation behind module federation adoption

was to merge two large monolithic React applications. The implementation consists

of a main federated module and several other micro frontends housed in a mono

repository. The main federated module is responsible for setting the global layout

of the user interface, such as the global navigation menu and top bar. It also

determines which micro-frontend should be rendered based on the route. Each micro

frontend then handles its internal routing. Additionally, the main federated module

serves as a shared library for all applications, offering shared layout components

and formatting utilities. It also handles user authentication, sets up an Apollo

client for data fetching, and provides global state to the entire system (Grini, 2021;

Telia, 2023).

4.8.3 Housing

Housing is a platform based in India that serves as an advertisement hub for home-

owners, landlords, developers, and real estate agents. The company successfully

leverages module federation to manage its micro-frontend applications. Addition-

ally, they were successful in implementing module federation for their server-side

application and integrating it into their architecture (Housing, 2023; Saini, 2023).

4.8.4 Rivian

Rivian, an American automobile manufacturer, specializes in creating electric

vehicles. The modules managed by webpack aren’t restricted to just JavaScript,

60

CHAPTER 4. MODULE FEDERATION

they can be of any type (Java, C, etc.), as long as Node or Webpack can comprehend

them, they can be transmitted using the federation delivery protocols. This allows

Rivian to have the vehicle’s onboard and infotainment systems, as well as all user

interfaces, utilize and being managed by Module Federation. This technology

facilitates communication with the micro-controllers and drives the interfaces that

the users interact with (devtools-fm, 2022; Rivian, 2023).

4.9 Summary

This chapter provided an overview of Module Federation functionalities, its diverse

applicability, and testing methodologies. It was explored alternatives to this

technology and presented real examples from companies implementing solutions

using Module Federation.

61

Chapter 5

Implementation

This chapter describes the practical aspects of the project. It is explained the

chosen technologies and the specifics of Module Federation implementation. Lastly

it is discussed the integration challenges and solutions in a local development

environment.

5.1 Technological Decisions

The technological choice around the use of Module Federation was influenced by

its ease of use and compatibility with the project’s existing infrastructure. At the

beginning of the implementation, alternatives like import maps were not supported

by iOS mobile browsers, presenting a significant limitation since part of our users

use this type of device and browser. Additionally, the project was already using

Webpack for the host and all web components, facilitating the integration with

Module Federation. The option of using esbuild was discarded as its compatibility

63

CHAPTER 5. IMPLEMENTATION

with Angular, which the web components are built on, is still in the beta phase,

posing potential risks and uncertainties.

The type of tests selected to use in this project were smoke tests using cypress

which decisions are out of the scope of this thesis. This decision was made due to

the ease of implementation of smoke tests and knowledge of the team regarding

this type of testing tool, ensuring efficient and effective testing without extensive

setup or complexity. This approach aligns with the project’s scope and objectives

without unnecessary overhead.

5.2 Module Federation

The migration from basic web components to federated web components occurred

in two distinct steps. The initial step involved the migration of the web components

(see sub-chapter 2.1.4). Subsequently, the second step involved migrating the

widgets to make use of Module Federation (refer to sub-chapter 2.1.5). The

Angular-Web-Componentes are always present in the MWP Client application and

therefore they are always loaded at the start. In contrast, the widgets’ loading is

dependent on the configuration of the dashboards in which they present, requiring

dynamic imports.

5.2.1 Angular-Web-Components

The examples presented in this subsection originate from a single Angular-Web-

Component. However, this approach was replicated across all Angular-Web-

Components. For these components, the bootstrap.ts file is exposed, which

64

CHAPTER 5. IMPLEMENTATION

in turn imports the main.ts file. This ensures that the remotes are loaded initially,

followed by the loading of the application itself, as illustrated in Listing 5.1. For the

bootstrap.ts file, the @angular-architects/module-federation-tools was

used to abstract and reduce the complexity involved in the bootstrap of the

Angular-Web-Component’s application.

1 // main . t s

2 import (' . / boots t rap ') . catch (e r r => conso l e . e r r o r (e r r)) ;

3

4 // boo t s t r ap . t s

5 import { boots t rap } from ' @angular−a r c h i t e c t s /module−

f ede ra t i on −t o o l s ' ;

6 . . .

7 boots t rap (AppModule , {

8 product ion : environment . production ,

9 }) ;

10 . . .

Listing 5.1: Implementation of the entry file for the Angular-Web-Component.

The Angular-Web-Components use a webpack.config.js configuration, as rep-

resented in Listing 5.2. This configuration file sets the library type to ‘global’,

allowing webpack to interpret the federated module as a global variable within

the globalObject. This global object is named “idCard”, and its entry file is

designated as id-card.entry.js. The Angular-Web-Component exposes the

bootstrap.ts file, which includes all the component’s code. Given that all the

Angular-Web-Components reside within an Nx Monorepo, they inherently share

identical dependency versions, and for managing shared dependencies it was used

65

CHAPTER 5. IMPLEMENTATION

the @angular-architects/module-federation library. This library allows set-

ting the requiredVersion to auto, enabling the extraction of the dependency

value directly from the global package.json.

1 const { share } = r e q u i r e (' @angular−a r c h i t e c t s /module−

f e d e r a t i o n /webpack ') ;

2 . . .

3 new ModuleFederationPlugin ({

4 name : ' idCard ' ,

5 f i l ename : ' id−card . entry . j s ' ,

6 l i b r a r y : {

7 type : ' g l o b a l ' ,

8 name : ' idCard ' ,

9 } ,

10 exposes : {

11 ' . ' : ' apps/web−components/ id−card / s r c / boots t rap . t s ' ,

12 } ,

13 shared : share ({

14 ' @angular/ core ' : {

15 s i n g l e t o n : true ,

16 s t r i c t V e r s i o n : true ,

17 r equ i r edVer s i on : ' auto '

18 } ,

19 // Omitted f o r b r e v i t y .

20 }) ,

21 }) ,

Listing 5.2: Module Federation Plugin configuration for Web Component ID Card.

66

CHAPTER 5. IMPLEMENTATION

In order for the exposed web components to be consumed by the Host application

MWP Client, the webpack.config.js file needed to be updated as illustrated in

Listing 5.3. Serving as the entry point and host application, the MWP Client ensures

that all dependencies used across the web components are loaded eagerly. This

means that the Module Federation plugin delivers the modules synchronously rather

than placing them in an asynchronous chunk. Such a setup permits the utilization

of these shared modules in the initial chunk. Within this configuration file, an

remotes object is also defined, listing all the remote names and the corresponding

URLs where the entry file is situated.

1 new ModuleFederationPlugin ({
2 name : ' mwpClient ' ,
3 remotes : {
4 idCard : ` idCard@https : //some−p lace . net / id−card . entry . j s ` ,
5 } ,
6 shared : {
7 " @angular/ core " : {
8 s i n g l e t o n : true ,
9 s t r i c t V e r s i o n : true ,

10 r equ i r edVer s i on : deps [" @angular/ core "] ,
11 eager : true ,
12 } ,
13 // Omitted f o r b r e v i t y .
14 } ,
15 })

Listing 5.3: Module Federation Plugin configuration for MWP Client.

5.2.2 Widgets

The widgets are designed to load within the “Dashboards” Angular-Web-Component.

Given that the widgets are specific for each individual dashboards, it was essential

67

CHAPTER 5. IMPLEMENTATION

to load these widgets dynamically, rather than preloading them as it was done with

other web components. To achieve this, a new Angular component was introduced

within the dashboards, as depicted in Listing 5.4.

1 export class WidgetComponent implements AfterViewIn i t {
2 @ViewChild (' t i leWrapper ' , { read : ElementRef , stat ic : true })

t i leWrapper ! : ElementRef ;
3 @Input () widget ! : Widget ;
4
5 ngAfterViewIni t () : void {
6 this . loadWidget () ;
7 }
8
9 private loadWidget () : void {

10 this . r e t ryOperat ion (() =>
11 this . w idge tSe rv i c e . loadRemoteScript (this . widget .

remoteEntryConfig) , 1000 , 1)
12 . then (() =>customElements
13 . whenDefined (this . widget . remoteEntryConfig . elementTagName

)
14 . then (async () => {
15 const widgetElement = await this . createWidgetElement

() ;
16 this . widgetElement = widgetElement ;
17 this . applyWidgetContext () ;
18 this . t i l eWrapper . nativeElement
19 . appendChild (widgetElement) ;
20 i f (! this . widgetElement . shadowRoot) {
21 this . createShadowDomContainer () ;
22 }
23 })) . catch (() => { // Omitted f o r b r e v i t y . }) ;
24 }
25 }

Listing 5.4: Widget Component to load widgets dynamically.

68

CHAPTER 5. IMPLEMENTATION

Widget loading via Module Federation is facilitated using the @angular-

architects/module-federation library. However, certain widgets may not be ready

for importation through module federation. To address this, a “moduleFedera-

tionReady” property was incorporated into the widget configuration within the

database. If this property is set to true, the widget will be loaded using the

Module Federation approach. Conversely, if a widget isn’t configured for module

federation, it reverts to the previously established import method. This strategy

ensures backward compatibility with older widgets that are not ready for Module

Federation. The procedure for loading widget bundles is detailed in Listing 5.5.

1 loadRemoteScript (remoteEntryConfig : WidgetRemoteEntry) : Promise<

unknown> {

2 i f (! remoteEntryConfig . moduleFederationReady) {

3 i f (! (scr iptAlreadyLoaded () | |

customElementAlreadyDefined ())) {

4 return this . loadWidgetNotModuleFederationRemote (

remoteEntryConfig . remoteEntry) ;

5 }

6 return Promise . r e s o l v e () ;

7 }

8 return loadRemoteModule ({

9 remoteEntry : remoteEntryConfig . remoteEntry ,

10 remoteName : remoteEntryConfig . name ,

11 exposedModule : ' . / web−components ' ,

12 }) ;

13 }

14 }

Listing 5.5: Load of remote scripts.

Widgets not utilizing Module Federation are loaded as outlined in Listing 5.6.

69

CHAPTER 5. IMPLEMENTATION

Each of these widgets consists of a singular JavaScript file, which is subsequently

appended to the document’s head.

1 private loadWidgetNotModuleFederationRemote (remoteEntry : s t r i n g) :

Promise<void> {

2 return new Promise ((r e so l v e , r e j e c t) => {

3 i f (! moduleMap [remoteEntry]) {

4 const s c r i p t : HTMLScriptElement = document .

createElement (' s c r i p t ') ;

5 s c r i p t . type = ' t ex t / j a v a s c r i p t ' ;

6 s c r i p t . s r c = remoteEntry ;

7 s c r i p t . async = true ;

8 s c r i p t . onload = () : void => {

9 moduleMap [remoteEntry] = true ;

10 r e s o l v e () ;

11 } ;

12 s c r i p t . oner ro r = r e j e c t ;

13 document . getElementsByTagName (' head ') [0] . appendChild (

s c r i p t) ;

14 } else {

15 r e s o l v e () ;

16 }

17 }) ;

18 }

19 }

Listing 5.6: Dynamic load of widgets not using Module Federation.

To enable the Dashboards Angular-Web-Component to import widgets utilizing

Module Federation, these widgets must make their code accessible. Listing 5.7

illustrates the webpack.config.js file for the Timeline Widget in the context of

Module Federation. This configuration is similar across all widgets.

70

CHAPTER 5. IMPLEMENTATION

1 new ModuleFederationPlugin ({

2 l i b r a r y : {

3 type : ' var ' ,

4 name : ' widgetsTimel ine ' ,

5 } ,

6 name : ' widgetsTimel ine ' ,

7 f i l ename : ' t i m e l i n e . remoteEntry . j s ' ,

8 exposes : {

9 ' . / web−components ' : ' . / apps/ widgets / t i m e l i n e / s r c /

boots t rap . t s ' ,

10 } ,

11 shared : SharedDeps ,

12 }) ,

13 }

Listing 5.7: Module Federation Plugin configuration for Timeline Widget.

5.2.3 iFrames

The integration of iFrames with Module Federation is not an usual use case and

presents several challenges. An initial solution to the issue of library sharing within

embedded iFrames was the utilization of the postMessage() method, available on

both the parent window and the iFrame window object. This method stands as the

most secure mechanism for facilitating two-way communication between distinct

iFrames. However, when considering the global objects that webpack employs for

communication and cache management. Objects such as __webpack_modules__,

the global array (webpackChunk), and __webpack_share_scopes__ are complex

and, in many cases, not JSON serializable. This non-serializability implies that

these objects cannot be shared between iFrames using the Window Messaging API.

71

CHAPTER 5. IMPLEMENTATION

Given these constraints, one viable approach to object sharing between two iFrames,

without using the Messaging API, is to host both the application and the iFrame

under the same domain. While this might not be universally applicable, it is a

feasible strategy for Core Apps where teams have full ownership and can ensure

both apps are in the same domain. With this perspective, a demonstrative example

was developed using the MyWorkplace Shell as host and the App Management

within an iFrame, the sequence diagram in Figure 5.3 is used to illustrate the

implemented process.

Figure 5.1: iFrame Loading flow sharing dependencies.

The procedure must be initiated prior to the loading of the Host application. If

the iFrames reside in distinct sub-domains within the primary domain, they should

72

CHAPTER 5. IMPLEMENTATION

be loaded in advance of the main host application (if all the applications are under

the same full domain the browser will handle the cache of the bundles). Listing 5.8

provides an illustration of the Module Federation configuration within the Host

application’s main.ts file.

1 preLoadIFrames ()

2 . then (() => import (' . / boots t rap ')

3 . catch (e r r => conso l e . e r r o r (e r r))) ;

4

5 async function preLoadIFrames () : Promise<void> {

6 const i f r ames = await getIFrames () ;

7

8 for (const i f rame o f i f r ames) {

9 await loadIFrameDependencies (i f rame . ur l , i f rame .

scope) ;

10 }

11 }

Listing 5.8: Main file configuration within the Host application loading iFrames

The getIFrames method can retrieve a list of iFrames for preloading from various

sources. This list can be sourced from an API endpoint, global window variables,

or even be a static list designated for preloading. The loadIFrameDependencies

method is subsequently invoked, with its implementation depicted in Figure 5.9.

73

CHAPTER 5. IMPLEMENTATION

1 async function loadIFrameDependencies (u r l : s t r i ng , scope :

s t r i n g) : Promise<void> {

2 await l o a d S c r i p t (u r l) ;

3 await __webpack_init_sharing__ (' d e f a u l t ') ;

4 const conta ine r = window [scope] ;

5 await conta ine r . i n i t (\ __webpack_share_scopes__ . default)

6 }

Listing 5.9: Dynamic loading of container for iFrame applications

The loadScript method injects the entrypoint script into the document, allowing

the loading of iFrame dependencies. The host application references these preloaded

dependency bundles, preventing redundant loading. However, this approach will

only work for specific use cases, therefore was not used in real applications and was

implemented primarily for experimental purposes. Alternative methods, where the

iFrame attempts to access the parent frame’s global objects to verify if the bundles

were previously loaded, were explored and unfortunately, these alternatives were

not successful. Had they been successful, there would have been a potential to

bypass even the browser cache, because all the process would then be handled by

Module Federation itself.

5.2.4 Non Javascript Files

The type of files that can be shared through Module Federation is limited only by

Webpack’s ability to interpret them. These files can be shared between remotes and

host applications. While teams can create custom loaders based on their specific

requirements, there is already several pre-existing file loaders. These include loaders

74

CHAPTER 5. IMPLEMENTATION

for compiling Rust into Web-Assembly, processing images, fonts, styles, and more.

In this context, this section will focus on the sharing of CSS styles. The Module

Federation configuration for the Angular-Web-Component Dashboards, which acts

as a host, is illustrated in Listing 5.10.

1 module : {
2 r u l e s : [
3 {
4 t e s t : / f ede ra t ed \ / . ∗ \ . c s s$ / ,
5 use : [' css−l oade r '] ,
6 }
7]
8 } ,
9 p lug in s : [

10 new ModuleFederationPlugin ({
11 l i b r a r y : {
12 type : ' g l o b a l ' ,
13 name : ' dashboards ' ,
14 } ,
15
16 name : ' dashboards ' ,
17 f i l ename : ' dashboards . entry . j s ' ,
18 exposes : {
19 ' . ' : ' apps/web−components/ dashboards / s r c / boots t rap . t s ' ,
20 ' . / s t y l e s ' : ' apps/web−components/ dashboards / s r c /app/ f ede ra t ed

/ s t y l e s . c s s '
21 } ,
22
23 shared : SharedDeps ,
24 }) ,
25] ,

Listing 5.10: Module Federation configuration for the Dashboards Angular-Web-
Component for css file sharing

75

CHAPTER 5. IMPLEMENTATION

The styles intended for sharing are located within the “federated” folder (just for

organization, could be placed anywhere). These styles utilize the css-loader plugin

to transform CSS files into JavaScript, which can then be imported by the remote

application. The styles.css file is subsequently shared for consumption by the

remote application. Listing 5.11 showcases the Module Federation configuration

file for the Translator Widget.

1 new ModuleFederationPlugin ({

2 name : ' widget sTrans la to r ' ,

3 f i l ename : ' t r a n s l a t o r . remoteEntry . j s ' ,

4 exposes : {

5 ' . / web−components ' : ' . / apps/ widgets / t r a n s l a t o r / s r c /

boots t rap . t s ' ,

6 } ,

7

8 remotes : {

9 dashboards : `dashboards@http : // l o c a l h o s t :4004/

dashboards . entry . j s `

10 } ,

11

12 shared : SharedDeps ,

13 }) ,

Listing 5.11: Module Federation configuration file for the Translator Widget

consuming dashboards Angular-Web-Component

In this specific scenario, the Translator Widget functions both as a remote, since

it is loaded by the Angular-Web-Component Dashboards, and as a host, as it

76

CHAPTER 5. IMPLEMENTATION

consumes the styles provided by the Dashboards. In order to use the import

dashboards/styles, it is necessary to first declare this module, as illustrated in

Listing 5.12.

1 // app . component . d . t s

2 d e c l a r e module " dashboards / s t y l e s " ;

Listing 5.12: Example of declaring module in Typescript

The styles must be injected into the component. Specifically, in the

app.component.ts file, it is essential to inject the styles into the shadow

dom, given that the Translator Widget is a web component. Listing 5.13

demonstrates the method by which the Translator Widget integrates the styles

into the component.

1 import s t y l e s from ' dashboards / s t y l e s ' ;

2 // omit ted f o r b r e v i t y

3 export class AppComponent implements AfterViewIn i t {

4 private readonly e l : ElementRef = i n j e c t (ElementRef) ;

5 ngAfterViewIni t () : void {

6 this . i n j e c t S t y l e s (s t y l e s . t oS t r i ng ()) ;

7 }

8 i n j e c t S t y l e s (c s s : s t r i n g) : void {

9 const s t y l e = document . createElement (' s t y l e ') ;

10 s t y l e . appendChild (document . createTextNode (c s s)) ;

11 this . e l . nat iveElement . shadowRoot . appendChild (s t y l e)

12 }

Listing 5.13: Integrating shared styles in the Translator Widget

77

CHAPTER 5. IMPLEMENTATION

Following the injection of the styles, the application can then make use of the styles

provided by the dashboards Angular-Web-Component in the HTML templates.

This serves as a practical illustration of how to share non-JavaScript files using

Module Federation. Within the MyWorkplace application, styles shared among

various Angular-Web-Components and Widgets are stored in a CDN. This storage

approach facilitates browser caching of the response, and therefore the current

implementation is unnecessary for the time being.

5.3 Local Development Environment

In this sub-chapter, two distinct approaches for local development setup are com-

pared. The traditional approach explains the setup before the introduction of

Module Federation and the approach to local development environment using

Module Federation.

5.3.1 Traditional Approach

The previous development process was somewhat cumbersome. Whenever the team

needed to integrate Angular-Web-Components or Widgets from another repository

into the client application, a multi-step process was required.

• Build of the web components had to be generated.

• These components were then manually copied into the host’s repository.

• Client application was run, integrating the new components.

After any changes to the codebase of the web components in test, the component

needed to be re-builded and copied again to the host repository. The Figure 5.3

78

CHAPTER 5. IMPLEMENTATION

illustrates the process described.

Figure 5.2: Traditional approach local development environment flow

This approach, while functional, was time-consuming and the repetitive nature of

the process left ample room for improvement.

5.3.2 Module Federation Approach

Module Federation allows the tedious process of building and copying components

to be eliminated. Instead, developers can directly point to a specific port where the

components or modules are hosted. Host application can dynamically load these

components at runtime, without the need for manual transfers or rebuilds. Now

the process follows the following steps:

• Serve locally web component.

• Serve locally host application.

79

CHAPTER 5. IMPLEMENTATION

After any changes to the codebase of the web components, in order for the changes

to be reflected in the host application its only needed to refresh the page of the

host application. The Figure 5.3 illustrates the flow of local development using

Module Federation.

Figure 5.3: Module Federation local development environment flow

In order for this process to be abstract as possible to the developers, the configura-

tion illustrated in Figure 5.14 was created in the host application. This allows for

a simple and fast configuration of the web- components and widgets that should

be run locally using Module Federation. Widgets and Angular-Web-Components

not included in this configuration will be retrieved from the test environment.

80

CHAPTER 5. IMPLEMENTATION

1 const c o n f i g : Conf igurat ion = {

2 . . . c o n f i g u r a t i o n ({

3 webComponents : {

4 toRunLocal : [

5 WebComponentsNames .APPS_MENU,

6]

7 } ,

8 widgets : {

9 toRunLocal : [

10 WidgetsNames .WORLD_CLOCK,

11 WidgetsNames .TIMER,

12]

13 } ,

14 })

15 } ;

16

17 export default c o n f i g ;

Listing 5.14: Configuration abstraction for setting up local environment with

Module Federation

The abstract configuration will then be passed to the Module Federation plugin

that will dynamically chose to run a web component from the test environment or

from a pre designated localhost port. Figure 5.15 illustrates the code that allows

this process to be dynamic and simple.

81

CHAPTER 5. IMPLEMENTATION

1 // webpack . c o n f i g . t s

2 new ModuleFederationPlugin ({

3 name : ' mwpClient ' ,

4 remotes : remotes (webComponents) ,

5 shared : sharedDependencies ,

6 }) ,

7

8 // remotes . t s

9 export const l o c a l D e f a u l t s : Map<WebComponentsNames , s t r i ng > = new

Map([

10 [WebComponentsNames .APPS_MENU, ' http :// l o c a l h o s t :4003 '] ,

11 . . .

12]) ;

13

14 export const remotesDefau l t = new Map([

15 [WebComponentsNames .APPS_MENU, ' /web−components/apps−menu '] ,

16 . . .

17]) ;

18

19 export function remotes (webComponents : Map<WebComponentsNames ,

s t r i ng > = remotesDefaul t) {

20 return {

21 appsMenu : `appsMenu@${webComponents . get (

WebComponentsNames .APPS_MENU) }/apps−menu . entry . j s ` ,

22 . . .

23 } ;

24 }

Listing 5.15: Dynamic web component loading for local environment with Module

Federation

This process makes use of the library http-proxy-middleware to create proxies.

The Figure 5.16 illustrates how this library is being used to locally create proxies

82

CHAPTER 5. IMPLEMENTATION

to the locally run federated web-components.

1 function l o ca lWidge t sProx i e s (widgetsNames : s t r i n g []) :

RequestHandler [] {

2 const array : RequestHandler [] = [] ;

3

4 widgetsNames . forEach (name => {

5 const widgetLocalObject = Widgets [name] ;

6 array . push (

7 createProxyMiddleware (`/ widgets /${ widgetLocalObject

. name} ` , {

8 t a r g e t : `http : // l o c a l h o s t : ${ widge tLoca lOb jec t .

por t } ` ,

9 pathRewrite : {

10 [`^/ widgets /${ widgetLocalObject . name } `] : `/`

11 } ,

12 s ecure : fa l se

13 })

14) ;

15 }) ;

16

17 return array ;

18 }

Listing 5.16: Proxies configuration to local running widgets using Module Federation

This configuration and process allowed the developers to be more productive and

to waste less time in repetitive tasks.

83

CHAPTER 5. IMPLEMENTATION

5.4 Summary

In this chapter, the various significant aspects and stages of the project’s execution

were described. The technological decisions made were explained, providing insight

into the choice of using Module Federation and the adoption of specific testing

strategies. It is also detailed the implementation of Module Federation within the

project, focusing on its application in Angular-Web-Components and widgets. It

is also discussed the local development environment, contrasting the traditional

approach with the Module Federation approach, allowing for a deeper understanding

of the benefits and advancements brought after the integration of Module Federation.

84

Chapter 6

Experiments and Evaluation

This chapter describes systematic experiments conducted to assess the impact of

various libraries being shared with Module Federation on application performance,

particularly when shared across multiple applications. Through a combination

of quantitative measurements, this chapter attempts to understand the interplay

between library size, sharing mechanisms, and resultant performance metrics. The

experiments have been created with the Angular-Web-Components and Widgets

and analyzes the performance metrics in a controlled Test environment, highlighting

the incremental sharing of libraries, by the means of Module Federation.

85

CHAPTER 6. EXPERIMENTS AND EVALUATION

During this chapter, both Angular-Web-Components and Widgets will have their

names referenced as acronyms due to the large length of their names. The full list

of the mapping between these web components and their acronyms can be found

in Table 7.1 in the Attachments.

6.1 Objectives

The primary aim of this chapter is to systematically evaluate the implications

of integrating specific libraries into the Module Federation configuration. By

conducting this analysis, the following objectives are set forth:

• Assessment of Impact: Understand the performance impact of sharing libraries

in a range of metrics, such as bundle size, load time, and the number of

network requests.

• Optimization Analysis: Identify potential areas of improvement and conclude

if there are certain libraries that, when shared, offer positive or negative

impact on the overall efficiency of the application.

• Strategic Library Inclusion: Provide a foundation for informed decision-

making regarding which libraries should be inlcuded in the module federation

configuration, based on their performance impact and relevance to the appli-

cation’s functionality.

These objectives will allow to take a choice on what libraries to share and to

understand what are the consequences of using Module Federation in the current

setup.

86

CHAPTER 6. EXPERIMENTS AND EVALUATION

6.2 Methodology

In this analysis, the methodologies employed attempt to evaluate the integration

of specific libraries into the Module Federation configuration as well as the impact

on the number of applications sharing this libraries. This systematic approach has

the following steps:

• Baseline Measurement: Before any modifications, a baseline measurement

of the application’s performance metrics was established. This served as a

reference point against which subsequent changes could be compared against.

• Selection of Libraries: The libraries under consideration, namely @angular/-

core, @angular/common and @enterprise-ds/components, among others, were

chosen based on their size relative to the single bundles before using Module

Federation;

• Iterative Integration: Libraries were added to the Module Federation config-

uration one by one, in a sequential manner. After the integration of each

library, the application was tested to measure its impact on performance

metrics. The same approach was taken to measure the differences after adding

more and more web components using Module Federation;

• Performance Metrics Evaluation: Key performance indicators, such as bundle

size, load time, and the number of network requests, were recorded after the

addition of each library and after every addition of a web component. This

allowed for a comparative analysis against the baseline measurements;

• Analysis of Results: The data obtained from the tests were analyzed to

discern patterns, anomalies, and significant findings.

87

CHAPTER 6. EXPERIMENTS AND EVALUATION

6.3 Library Size vs. Impact Analysis

The size of a library is often a primary consideration when integrating it into an

application. A larger library might be perceived as having a more significant impact

on performance metrics, such as load time or bundle size. However, the actual

impact of a library’s size on performance can vary, and it’s essential to analyze this

relationship to make informed decisions. This section attempts to understand if

there is a correlation between the size of each library and its corresponding impact

on the application’s performance when sharing them using Module Federation.

In order to optimize library sharing, the Dashboards Angular-Web-Component

was selected for analysis. The initial examination focuses on identifying the larger

bundles within the web component bundle prior to utilizing Module Federation.

Before the implementation of shared libraries, the web component bundle had an

estimated transfer size of 481.96 KB. An analysis conducted using the webpack-

bundle-analyzer plugin revealed the libraries that most significantly impacted the

final web component bundle size. These libraries are presented in Table 6.1.

Table 6.1: Libraries Raw Size results from webpack-bundle-analyzer for Angular-
Web-Component dashboards.

Library Raw Size (Kb)

@enterprise-
ds/components

4510

@angular/core 1170
@angular/cdk 371.51
@angular/common 354.63
@angular/router 262.28
@angular/forms 256.3
@angular/animations 201.68
sortablejs 113.83

Library Raw Size (Kb)

@angular/platform-
browser

95.15

rxjs 52.73
ngx-device-detector 44.31
@ngx-translate/core 36.8
apollo3-cache-persist 25.5
apollo-angular 22.31
ngx-image-compress 21.21
- -

88

CHAPTER 6. EXPERIMENTS AND EVALUATION

Considering the data presented in the Table 6.1, some libraries, highlighted in

bold, are not utilized in any other web components, consequently, sharing them

using Module Federation would not be beneficial. Webpack sets a recommended

threshold of 250 KB threshold for a single bundle (Webpack, 2023b). Taking all

these libraries except the ones being only used by this Angular-Web-Component

and adding them in a sequence manner results in the graph presented in Figure

6.11.

Figure 6.1: Bundle sizes after integrating libraries with Module Federation.

1For the @angular/cdk was only represented the top four bundles as this libraries generates
multiple bundles that would not be able to be correctly represented in the graphic.

89

CHAPTER 6. EXPERIMENTS AND EVALUATION

The graph depicted in Figure 6.1 illustrates that upon the inclusion of just four li-

braries (@enterprise-ds/components, @angular/core, @angular/cdk, and @angular/-

common), the largest bundle size of the application falls below the recommended 250

KB threshold set by Webpack for a single bundle. The @enterprise-ds/components

library generates two sizable bundles. While these bundles are loaded once and

subsequently reused across various components, their substantial size may be caused

from the inability to tree-shake components from this library. This limitation could

be attributed to the absence of secondary entrypoints in the library, leading to the

inclusion of all components regardless of their actual usage within the application.

An update to this library to incorporate secondary entrypoints might align its

behavior with that of @angular/cdk, which efficiently divides into multiple smaller

bundles that can be lazy-loaded as required.

It’s also observed that by sharing just six components, the application bundle

size is reduced to 229.7 KB from an initial 481.96 KB. However, this reduction in

bundle size also translates to an increase in network requests, the implications of

which will be further discussed in chapter 6.4.3.

In order to understand the feasibility of sharing every library through Module

Federation, a new test was conducted. This involved deploying versions of all

web components (Angular-Web-Components and Widgets) without any shared

libraries and subsequently adding one library at a time to the configuration of

Module Federation in a cumulative way. Due to an issue happening at runtime,

the libraries @angular/core and @angular/common were added together in a single

test and therefore are the first ones to be tested. The process was then repeated

for @enterprise-ds/components and other libraries. The outcomes, showcasing the

90

CHAPTER 6. EXPERIMENTS AND EVALUATION

cumulative size of transferred JavaScript files post the integration of those libraries

with Module Federation, are presented in Figure 6.2.

Figure 6.2: Graph bar of cumulative size of transferred JavaScript files after.

There was a notable reduction in the final bundle size of JavaScript files, decreasing

from 14.8 MB to 9.1 MB. It was observed that after sharing the library ngx-device-

detector, subsequent shared libraries had a minimal impact on the final bundle size

of the application. These are the libraries that have a raw size below 50 KB as

presented in Table 6.1.

To assess whether sharing libraries could enhance the application’s loading speed,

the load time was also measured and the graph presenting the measurements are

illustrated in Fig 6.3.

91

CHAPTER 6. EXPERIMENTS AND EVALUATION

Figure 6.3: Box plot of cumulative size of transferred Javascript files.

From the analysis of the graph in Figure 6.3 it is observed a decrease in the loading

time as more libraries are shared. However, the loading time starts to stay more

consistent after adding @angular/forms library.

The load time, which represents the time taken for the application to load, exhibited

a range of values with some big outliers. Outliers in data can significantly skew the

mean, potentially leading to misleading interpretations, therefore the median, being

the middle value of a sorted dataset, offers a more robust measure of central tendency

as it remains unaffected by extreme values and provides a more representative

snapshot of the typical load time. Given the presence of these outliers in the

load time data, the decision was made to utilize the median as a more accurate

92

CHAPTER 6. EXPERIMENTS AND EVALUATION

representation for the calculation of the Pearson Correlation Coefficient. This

coefficient is a measure that quantifies the linear relationship between two datasets

and was used to analyze the correlation between library size and transfer size and

between library size and load time

For the relationship between library size and total transferred bundles size, the

Pearson correlation coefficient was calculated to be 0.42. This indicates a moderate

positive correlation between the library size and the transferred size. This suggests

that as the size of a library increases, there is a tendency for the transferred size to

decrease.

On the other hand, when analyzing the library size and median load Time, the cor-

relation coefficient was found to be 0.61. This denotes a strong positive correlation

between the library size and the load time. It implies that sharing larger libraries

tend to have smaller load times, emphasizing the significant impact of library size

on load performance.

6.4 Number of Applications vs. Impact Analysis

This sub-chapter evaluates the performance implications of integrating web compo-

nents using Module Federation. The methodology employed for this assessment is

both iterative and cumulative. Starting with a baseline code-base, a single web

component was integrated using Module Federation. Subsequent to this integra-

tion, key performance metrics were measured and documented. Following this,

another web component was added to the mix, and the same set of metrics were

measured again. This process was repeated for each web component, ensuring that

93

CHAPTER 6. EXPERIMENTS AND EVALUATION

every subsequent measurement captured not just the impact of the newly added

component, but the cumulative effect of all previously integrated components as

well. This entire evaluation was conducted within a controlled Test environment

that mimics the Production environment. This environment was chosen to provide

a consistent baseline for all measurements, ensuring that external variables were

kept to a minimum. However, like in all controlled environments, variables such as

internet speed fluctuations, server response times, or other environmental nuances

could introduce variations in the results. As such, while the Test environment

offers a stable platform for evaluation, results interpretation should take a degree

of caution, acknowledging the potential for such external influences. Furthermore,

to ensure consistency in the evaluation process and to isolate the impact of Module

Federation as the primary variable, all tests and measurements were derived from

the same foundational code-base. No other changes, modifications, or optimizations

were introduced to the code during this evaluation. This approach was adopted

to guarantee that any observed performance variations or anomalies could be

confidently attributed to the cumulative integration of Module Federation.

6.4.1 Initial Load Time

The initial load time of a web application is a critical metric, as it directly impacts

the user’s first impression. With the integration of Module Federation, there might

be changes in how components are loaded, which can influence this metric. Figure

6.4 depicts a box plot with the results of the initial load time per addition of web

component.

94

CHAPTER 6. EXPERIMENTS AND EVALUATION

Figure 6.4: Box plot comparing load times before and after module federation
integration.

In the box plot illustrated in Figure 6.4, the data does not immediately suggest a

correlation between the integration of Module Federation and the initial load time.

However in order to understand if there is a statistically significant difference in

the initial load time made after integrating module federation compared to the

baseline, a one-sample t-test was executed.

Hypothesis Testing

• H0: The integration of module federation does not significantly affect the

initial load time.

• H1: The integration of module federation significantly affects the initial load

time.

From the data, there appears to be a general reduction in load times after the

integration of module federation, which aligns with the alternative hypothesis

(H1). However, in order to validate this observation with a 95% confidence level,

95

CHAPTER 6. EXPERIMENTS AND EVALUATION

a t-test was conducted. With a T-statistic value of 1.685 and a P-value of 0.095,

which is greater than the threshold of 0.05, the analysis indicates that there isn’t a

statistically significant difference in load times before and after the incorporation

of module federation.

6.4.2 Total Javascript Files Load Time

The time taken to load all JavaScript files can influence the interactivity and

responsiveness of the application. With module federation, the way JavaScript files

are bundled and loaded is different. This metric and the provided data represents

the load time of Javascript files under different configurations of Module Federation.

The initial set of values represents the load times without any module federation.

Subsequent sets of values represent load times after introducing module federation

to various components of the application.

Hypothesis Testing

• H0: The integration of module federation does not significantly affect the

total JavaScript files load time.

• H1: The integration of module federation significantly affects the total

JavaScript files load time.

In order to determine whether to reject the null hypothesis or not, a paired t-

test will be used. It will be compared the mean load times before and after

introducing Module Federation for each component in a cumulative manner. Figure

6.5 illustrates the box plot for the values read of total load times of Javascript files.

96

CHAPTER 6. EXPERIMENTS AND EVALUATION

Figure 6.5: Box plot comparing total load times of Javascript files before and after
module federation integration.

These results were also mapped to a line graph, represented in Figure 6.6 that

represents the mean at each stage of the migration to module federation.

Figure 6.6: Line Graph comparing total load times of Javascript files before and
after Module Federation integration.

97

CHAPTER 6. EXPERIMENTS AND EVALUATION

The observed decrease in total load time suggests an improvement. To substantiate

this observation with a 95% confidence level, a paired t-test was used. This test

compared the baseline load times with those recorded after the integration of

module federation into each component. Each data point in the Baseline set was

systematically paired with a corresponding data point in the Module Federation

set for every component. The detailed results are documented in Table 6.4. It was

also calculated the percentage improvement in the loading of JavaScript files using

the Equation 6.1.

Percentage Improvement = Mean of Baseline − Mean of Component
Mean of Baseline ∗ 100 (6.1)

Upon integrating all web components with module federation, there was a improve-

ment of 43.70% in JavaScript file load times. The results of the paired t-test are

presente in Table 6.4.

Table 6.4: Cumulative improvement of adding web components sharing dependen-
cies.

Component Improvement P-value
AP 5.61% 0.55
DM 10.59% 0.54
DA 11.42% 0.51
MS 14.18% 0.56
AB 15.75% 0.22
SE 24.60% 0.05
SM 22.99% 0.07
IDC 27.01% 0.04

Component Improvement P-value
CW 27.75% 0.17
MT 28.99% 0.07
TW 32.67% 0.05
TRW 37.35% 0.02
TLW 42.49% 0.01
WCW 40.27% 0.01
ECW 42.73% 0.01
MYT 43.70% 0.01

98

CHAPTER 6. EXPERIMENTS AND EVALUATION

As highlighted in the table, by the inclusion of the 10th web component, the P-value

is consistent less than or equal to 0.05. This result leads to the rejection of the null

hypothesis. It signifies that the improvement in load times, post the integration of

Module Federation for a specific number of components, is statistically significant.

6.4.3 Number of Requests

The number of requests made by a web application can influence its performance,

especially on slower networks. With module federation, components are loaded

differently, potentially changing the number of requests. The results of the number

of requests made by the different web components compared with the baseline is

presented in the Figure 6.7.

Figure 6.7: Cumulative number of requests made after adding web components
using Module Federation.

99

CHAPTER 6. EXPERIMENTS AND EVALUATION

The graphic in Figure 6.7, presents that as more components are integrated with

module federation, the number of requests consistently increases. The initial jump

in requests when the first module federation is added to the first component is

noticeable, and subsequent additions of module federation to other components

result in incremental increases in the number of requests. This pattern suggests that

each integration of module federation contributes to the overall increase in requests.

The one-sample t-test was conducted to determine if there was a statistically

significant difference in the number of requests made after integrating module

federation compared to the baseline.

Hypothesis Testing

• H0: The mean number of requests after integrating module federation is

equal to the number of requests without module federation.

• H1: The mean number of requests after integrating module federation is

different from the number of requests without module federation.

The t-statistic value obtained was 29.83, and the associated p-value was close to

zero. Given a significance level of 0.05, the p-value is considerably smaller. This

leads to the rejection of the null hypothesis. The results indicate that there is

a statistically significant difference in the number of requests after integrating

module federation. Specifically, the number of requests made after the integration

of the first web component using Module Federation is significantly higher than

the baseline.

100

CHAPTER 6. EXPERIMENTS AND EVALUATION

6.4.4 Total Data Transferred in MB (JS files)

The total data transferred, especially for JavaScript files, can impact load times

and user experience, especially on limited or metered connections. The measured

data transfer size zis presented in Figure 6.8.

Figure 6.8: Data Transferred with Module Federation Integration

Without the use of Module Federation the data transfer size 14.8 MB. As each

component is integrated with Module Federation, there is a consistent reduction

in the data transferred, after all integrations with Module Federation, the data

transfer has reduced to 9.1 MB. This trend suggests that module federation is

effective in reducing the amount of data transferred, which can lead to faster load

times and a more efficient application.

The integration of Module Federation into the application has presented impact on

101

CHAPTER 6. EXPERIMENTS AND EVALUATION

its performance metrics. Starting with the total data transferred in MB (Javascript

files), there was a noticeable reduction in the amount of data transferred as more

components used Module Federation. This reduction suggests a more efficient

code-sharing mechanism and potentially faster load times due to fewer data being

fetched. However, when observing the number of requests, there was a consistent

increase as more components were integrated with Module Federation. This rise in

requests could introduce potential network overhead, especially in unstable network

conditions.

In terms of the total Javascript Files load time, the application experienced a

significant improvement, which directly contributes to a better user experience.

Lastly, the initial load time of the application, which is a critical metric for

user engagement, showed varying results. Overall the integration of the Module

Federation into the web components led to less initial load times

6.5 Summary

This chapter assessed the effects of Module Federation on application performance.

Through experiments, the relationship between shared dependencies, bundle sizes,

and loading speeds was explored. Metrics were analyzed, and statistical tools were

used to validate findings. The chapter provided insights into the practical benefits

and challenges of implementing module federation.

102

Chapter 7

Conclusions

This chapter presents the conclusions from the study on the benefits and challenges

of using module federation. It also provides recommendations and outlines the

next steps.

7.1 Performance and Bundle Size

One of the most significant findings from this study is the advantage Module

Federation offers in reducing application bundle sizes. A smaller bundle size

translates to quicker load times, enhancing the user experience, however, these

benefits only occur when multiple applications share dependencies. This implies

that for organizations with a suite of interconnected applications, Module Federation

can be used for enhancing applications load time. As the number of shared libraries

increases, the benefit in terms of application loading speed diminishes for smaller

libraries. While the loading speed might not show a noticeable difference, the

103

CHAPTER 7. CONCLUSIONS

overhead of additional requests becomes evident. This is an essential consideration

for application’s owners, as the balance between the number of shared libraries and

the associated overhead needs careful calibration. Figure 7.1 illustrates a network

print screen after the integration of Module Federation in the application.

Figure 7.1: Network print screen after adding Module Federation.

104

CHAPTER 7. CONCLUSIONS

One of the technical leaders of the team added that the implementation and

experience with “Module Federation minimizes the memory footprint of our micro-

frontends and drastically improves the performance of our application integration

platform, which is crucial for our users to have a joyful and efficient experience”.

In conclusion, Module Federation offers some benefits in terms of code efficiency

and certain aspects of load performance, it also introduces challenges in the form

of increased requests. Even with a increasing number of requests, the load times

were being reduced after the use of Module Federation, potentially meaning that

the use of this technology would only make sense to project applications that make

a heavy use of Module Federation with the use of multiple federated components.

7.2 Implementation and Team Collaboration

From an implementation perspective, module federation stands out for its simplicity

and comprehensibility. Developers can integrate it into their applications with

relative ease, making it an attractive option for teams looking to optimize their

applications without a big learning curve.

However, the introduction of module federation does necessitate a shift in team

dynamics and collaboration. When different teams manage various parts of an

interconnected application ecosystem, a consensus on shared dependencies becomes

crucial. This is especially true for Angular related dependencies, given the project

stipulation to maintain at least the same major version across shared dependencies.

Such collaboration ensures consistency and prevents potential conflicts or bugs

arising from version mismatches.

105

CHAPTER 7. CONCLUSIONS

7.3 Future Recommendations

While module federation offers numerous advantages, it’s essential to keep an eye

on emerging technologies and standards. One such recommendation is the adoption

of import maps. Being a native solution now supported by all major browsers,

including those used by the company, import maps present a promising alternative.

Their native nature ensures optimal performance and compatibility, making them

a worthy successor to the current implementation without being bonded to any

compiler tool.

Other recommendation is to create either a Command-line Interface (CLI) tool or

a angular generator to create widgets supporting Module Federation, so external

teams can create their federated applications without the need to spend time

understanding the processes behind Module Federation.

In conclusion, Module Federation emerges as a easy to use tool for modern web

development, offering benefits in performance optimization and total bundle size

reduction. However, like all tools, its effective utilization requires a understanding

of its strengths, limitations, and the broader ecosystem in which it operates. With

careful implementation and collaboration, module federation can significantly

elevate the performance and efficiency of web applications.

106

References

Angular. (2022). What is angular? Retrieved from https://angular.io/guide/what-

is-angular

Bevacqua, N. (2020). Mastering modular javascript (O’Reilly, Ed.). O’Reilly.

browserify. (2023). Browserify [Webpage]. Retrieved from https://browserify.org/

Cannavacciuolo, C., & Mariani, L. (2022, February). Smoke testing of cloud systems.

https://doi.org/10.1109/ICST53961.2022.00016

Chauhan, V. K. (2014, February). Smoke testing. 4. Retrieved from https:

//api.semanticscholar.org/CorpusID:198952328

Clark, L. (2018). ES modules: A cartoon deep-dive [Webpage]. online.

Concept. (2023). Retrieved from https://webpack.js.org/concepts/

Critical TechWorks. (2023). We are changing the way the world moves. Retrieved

from https://www.criticaltechworks.com/

devtools-fm. (2022). Zack jackson - module federation. Retrieved from https:

//www.youtube.com/watch?v=XpeD4FtlMg4

Ebey, J. (n.d.). Module federation. Retrieved from https://module-federation.git

hub.io/

Farrell, B. (2019). Web components in action. Manning Publications Co.

Fowler, M. (2001). Reducing coupling. IEEE Software, 01 (0740-7459).

Fowler, M. (2004). StranglerFigApplication. Retrieved from https://martinfowler.c

om/bliki/StranglerFigApplication.html

CHAPTER 7. CONCLUSIONS

Ghadyani, K. (2021). Webpack module federation in-depth w/ zach jackson

#codeconversation. Retrieved from https://www.youtube.com/watch?v=d1SS

7KAsbdY&t=205s

Grini, H. (2021). Micro frontends with webpack module federation. Retrieved from

https://www.teliacompany.com/en/about-the-company

Herbold, S., & Haar, T. (2022). Smoke testing for machine learning: Simple

tests to discover severe bugs. Empirical Software Engineering, 27. https:

//doi.org/10.1007/s10664-021-10073-7

Herrington, J., & Jackson, Z. (2023). Practical module federation (2nd ed.).

ScriptedAlchemy.

Housing. (2023). Welcome to housing. Retrieved from https://housing.com/about

Jackson, Z. (2020). Streaming code and payloads in multi-threaded, parallel servers

with module federation. Retrieved from https://www.youtube.com/watch?v=

kOuoSBTCzl4

Jackson, Z. (2021). Module federation, how do we create unit tests for distributed

code?! Retrieved from https://scriptedalchemy.medium.com/module-federation-

how-do-we-create-unit-tests-for-it-bd0d73c999bc

Jackson, Z. (2021). Next.js 11, module federation, and ssr - a brave new world.

Retrieved from https://javascript.plainenglish.io/next-js-11-module-federation-

and-ssr-a-whole-new-world-6da7641a25b4

Jackson, Z. (2022). When should you leverage module federation, and how? [Web-

page]. Retrieved from https://scriptedalchemy.medium.com/when-should-you-

108

CHAPTER 7. CONCLUSIONS

leverage-module-federation-and-how-2998b132c840

Jackson, Z. (2023a). Module federation examples. Retrieved from https://github.c

om/module-federation/module-federation-examples

Jackson, Z. (2023b). Module federation: The federated applications revolution.

Retrieved from https://www.infoq.com/presentations/module-federation/

Jartarghar, H. A., Salanke, G. R., R, A. K. A., S, S. G., & Dalali, S. (2022). React

apps with server-side rendering: Next.js. Retrieved from https://jtec.utem.edu.

my/jtec/article/view/6192/4083

Koppers, T. (2023). Code splitting. Retrieved from https://webpack.js.org/guides/

code-splitting/

Latendresse, J., Mujahid, S., Costa, D., & Shihab, E. (2022). Not all dependencies

are equal: An empirical study on production dependencies in npm. https:

//doi.org/10.48550/arXiv.2207.14711

LeSS. (2023). Teams [Webpage]. Retrieved from https://less.works/less/structure/

teams

Maida, K. (2017). Migrating an angularjs app to angular. Auth0. Retrieved from

https://assets.ctfassets.net/2ntc334xpx65/4I8HgPbZjq4GMMi2SM4mmG/8

478dd9123d80a91ee2c997ed5c1befa/migrating-to-angular.pdf

McClamrock, R. (2006). Modularity. https://doi.org/10.1002/0470018860.s00168

MDN contributors. (2023a). Import(). Retrieved from https://developer.mozilla.or

g/en-US/docs/Web/JavaScript/Reference/Operators/import

MDN contributors. (2023b). JavaScript modules. Retrieved from https://develope

109

CHAPTER 7. CONCLUSIONS

r.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

Mezzalira, L. (2019). Micro-frontends decisions framework. Retrieved from https:

//lucamezzalira.medium.com/micro-frontends-decisions-framework-ebcd2225

6513

Microsoft. (2023). Strangler fig pattern. Retrieved from https://learn.microsoft.co

m/en-us/azure/architecture/patterns/strangler-fig

Mohan, M., & Prusty, N. (2018). Learn ecmascript - second edition. Packt

Publishing.

Mozilla. (2023a). IIFE [Webpage]. Retrieved from https://developer.mozilla.org/

en-US/docs/Web/API/Web_components

Mozilla. (2023b). IIFE [Webpage]. Retrieved from https://developer.mozilla.org/

en-US/docs/Glossary/IIFE

Mozilla. (2023c). Import maps. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/script/type/importmap

Nishizu, Y., & Kamina, T. (2022). Implementing micro frontends using signal-

based web components. Journal of Information Processing, 30, 505–512. https:

//doi.org/10.2197/ipsjjip.30.505

Node.js. (2023). Node.js v19.6.0 documentation [Webpage]. Retrieved from

https://nodejs.org/api/modules.html

npm. (2021). About semantic versioning. Retrieved from https://docs.npmjs.com

/about-semantic-versioning

NPM Trends. (2023). Esbuild vs parcel vs rollup vs webpack. Retrieved from

110

CHAPTER 7. CONCLUSIONS

https://npmtrends.com/esbuild-vs-parcel-vs-rollup-vs-webpack

Nrwl. (2023). Share your cache. Retrieved from https://nx.dev/core-features/sha

re-your-cache

Parcel. (2021). Announcing parcel v2! Retrieved from https://parceljs.org/blog/

v2/

Parcel. (2023). Parcel. Retrieved from https://parceljs.org/

Polylith. (2022). Polylith in a nutshell [Webpage]. Retrieved from https://polylith

.gitbook.io/polylith/introduction/polylith-in-a-nutshell

Possumato, M., Tomlin, N., Andree, J., Shim, A., & Pilani, R. (2021). How we build

micro frontends with lattice. Retrieved from https://netflixtechblog.com/how-

we-build-micro-frontends-with-lattice-22b8635f77ea

Preston-Werner, T. (n.d.). Semantic versioning 2.0.0. Retrieved from https:

//semver.org/

Rauschmayer, A. (2022). JavaScript for impatient programmers ecmascript 2022

edition. exploringjs.com.

Richardson, C. (2023). Pattern: Strangler application. Retrieved from https:

//microservices.io/patterns/refactoring/strangler-application.html

Rivian. (2023). Our company. Retrieved from https://rivian.com/our-company

RollupJs. (2023). Introduction. Retrieved from https://rollupjs.org/introduction/

Saini, N. (2023). Module federation pipeline — part 1. Retrieved from https://medi

um.com/engineering-housing/module-federation-pipeline-part-1-6c81ea15fe16

111

CHAPTER 7. CONCLUSIONS

Silva, R. A. P. da. (2021). A micro frontends solution - analyzing quality attributes.

ISEP - Instituto Superior de Engenharia do Porto.

Single-Spa. (2023a). Concept: Microfrontends. Retrieved from https://single-

spa.js.org/docs/microfrontends-concept

Single-Spa. (2023b). Frequently asked questions. Retrieved from https://single-

spa.js.org/docs/faq/

Single-Spa. (2023c). The recommended setup. Retrieved from https://single-

spa.js.org/docs/recommended-setup

Steyer, M. (2022a). Announcing native federation 1.0. Retrieved from https:

//www.angulararchitects.io/en/blog/announcing-native-federation-1-0/

Steyer, M. (2022b). Import maps: The next evolution step for micro frontends.

Retrieved from https://www.angulararchitects.io/en/blog/import-maps-the-

next-evolution-step-for-micro-frontends-article/

Steyer, M. (2023). Beyond micro frontends - three additional things module federa-

tion makes possible. NG-DE Conference; video.

Taibi, D., & Mezzalira, L. (2022). Micro-frontends: Principles, implementations,

and pitfalls. ACM SIGSOFT Software Engineering Notes, 47, 25–29. https:

//doi.org/10.1145/3561846.3561853

Telia. (2023). We are telia. Retrieved from https://www.teliacompany.com/en/ab

out-the-company

Thompson, M. (2023). Discontinued Long Term Support for AngularJS [Blog].

Retrieved from https://blog.angular.io/discontinued-long-term-support-for-

112

angularjs-cc066b82e65a

Unbounce. (n.d.). The ultimate guide to a/b testing. Retrieved from http:

//www.datascienceassn.org/sites/default/files/A-B%20Testing%20Guide.pdf

Wallace, E. (2023). Why is esbuild fast? Retrieved from https://esbuild.github.io/

faq/

Walsh, D. (2019). How to design and analyze online a/b tests within decentralized

organizations. Retrieved from http://purl.stanford.edu/yv309nh2575

Webpack. (2023a). Module federation [Webpage]. Retrieved from https://webpack.

js.org/concepts/module-federation/

Webpack. (2023b). Performance [Webpage]. Retrieved from https://webpack.js.o

rg/configuration/performance/

Zaikin, V. (2023). You might not need module federation: Orchestrate your mi-

crofrontends at runtime with import maps. Retrieved from https://www.merc

edes-benz.io/2023/01/05/you-might-not-need-module-federation-orchestrate-

your-microfrontends-at-runtime-with-import-maps/

Attachment I

Table 7.1: Mapping of web components acronyms with full names.

Acronym Full Name
AP Apps Menu
DM Dashboards Menu
DA Dashboards
MS MWP-Store
AB Announcements Banner
SE Search
SM Settings Menu
IDC ID Card

Acronym Full Name
CW Countdown Widget
MT My Teams Widget
TW Timeline Widget
TRW Timer Widget
TLW Translator Widget
WCW World Clock Widget
ECW E-Codes Widget
MYT My Tasks Widget

ii

