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Abstract

The elderly population faces difficulties in completing certain tasks independently, often re-
quiring supervision to not only assist them but also to mitigate and notify about potential
health risks. Falls, a prevalent and severe problem, pose a high risk of causing hospitaliza-
tions and fatalities. However, the aging population in developed countries is growing at an
unprecedented rate, while the proportion of active age individuals continues to decline. Con-
sequently, elderly care has become less accessible as caregivers are confronted with a larger
number of patients. Nonetheless, conventional fall detection methods, typically triggered
by victims themselves, are unreliable and inadequate. This thesis proposes an automatic
alternative to existing methods, presenting a computer vision-based Fall Detection System
(FDS) that utilizes a two-stream Inflated 3D Convolutional Neural Network (I3D) in con-
junction with a Recurrent Neural Network (RNN). To enhance the available datasets, a new
collection of simulated falls was created. Experimental evaluations demonstrate the superi-
ority of this hybrid model over state-of-the-art fall detection models, achieving an accuracy
of 94% and a recall value of 96%. By promptly and accurately detecting falls, a system
employing this model could significantly reduce the risk of severe injuries posed to the elderly
and physically disabled individuals.

Keywords: 3D CNN, automatic fall detection, computer vision, deep learning, I3D, RNN
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Resumo

Os idosos enfrentam dificuldades em completar certas tarefas sozinhos e precisam de su-
pervisão frequente, não só para assistí-los, mas também para mitigar e alertar para riscos
potenciais de saúde. Quedas são problemas prevalentes e sérios, muitas vezes resultando
em hospitalizações ou mortes. Contudo, nos países desenvolvidos, a população idosa está
a crescer e a proporção de cidadãos de idade ativa a diminuir. Por consequência, cuidados
a idosos tornam-se mais inacessíveis, já que enfermeiros são confrontados com um maior
número de pacientes. Não obstante, métodos convencionais de deteção de quedas, que
requerem, normalmente, a ativação por parte da vítima, não são confiáveis nem adequados.
Esta tese propõe uma alternativa automática a estes métodos na forma de um sistema de
deteção de quedas que incorpora uma rede neuronal convolucional 3D juntamente com uma
rede neuronal recorrente. Para melhorar os datasets já existentes, uma nova coleção de
vídeos de quedas foi criada. Este modelo híbrido revela ter performances superiores às de
outros modelos, conseguindo uma acurácia de 94% e uma sensitividade de 96%. Ao ser
capaz de detetar quedas precisa e imediatamente, um sistema que inclui este modelo poderá
reduzir drasticamente o risco de ferimentos graves aos idosos e pessoas com deficiências
físicas.

Palavras-chave: 3D CNN, automatic fall detection, computer vision, deep learning, I3D,
RNN
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Chapter 1

Introduction

This chapter gives a contextualization to fall detection and its importance in elderly and
disabled care, followed by a definition of the problem and its various restraints and require-
ments. Then, first, a list of the objectives of this thesis; second, the expected outcomes
of this project are presented, as well as the chosen approach to solve the automatic fall
detection problem. Finally, the overview of this report’s structure is explained.

1.1 Context

As general standards of living increase so does life expectancy. The average, healthy person
living in a developed country is expected to live well over 70 years, which, coupled with
declining fertility rates, results in significant population aging [1]. Comparing the ratio
between the elderly and young people segments of first-world populations over the last
half-century allows us to observe a noticeable, steady, ongoing growth – today, there are
fewer children per senior citizen than ever before [2]. Portugal has one of the most aged
populations in Europe [3]. According to [4], in the year 2000, there were approximately 99
elderly (65 and older) per 100 children (14 and younger). That number has increased to
155 in 2017 and to 178 in 2021, meaning that the Portuguese elderly population is about
to reach double the size of the children population in the following few years, if this growth
continues. Furthermore, the number of active age (15 to 64) people per elderly person,
referred to as the potential sustainability index, decreased from 4.2 in 2000, to 3.0 in 2017,
to 2.7 in 2021 [4]. This trend is now starting to appear also in developing countries, which
were once not as affected due to still maintaining high fertility rates. This creates a problem:
the number of elderly people is beginning to dwarf the number of people that can effectively
provide assistance and care to them. In 2019, 513,200 Portuguese seniors lived alone [5]1

and, in 2015, only 80,000 lived in nursing homes [7]. Portugal, in fact, has less solitary
elderly than the European average [8]. This is not ideal, and results in many situations
where senior citizens cannot look after themselves, but also do not have adequate access to
elderly care.

Elderly care strives to meet the physical and social requirements pertaining to aged citizens.
It can come in the form of social care, often performed by family members, friends and
non-professional caregivers, or of medical care, provided by trained medical personnel in
order to keep the elder person healthy and mobile. Impaired mobility is a major concern
for senior citizens – the inability to climb stairs or to rise from a chair makes one disabled.
This, unfortunately, is what makes falls more frequent and especially problematic, as a fall

1For reference, this number amounted to 5% of all Portuguese inhabitants and 21% of the elderly popu-
lation in 2019 [6]
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Figure 1.1: Indicators of population aging, Portugal [4].

can not only cause graver injuries than to younger adults but can also incapacitate them to
the point when the act of getting up becomes impossible. Even if a senior has not suffered
life-threatening impact trauma, the period of inactivity resulting from a fall is what often
leads to severe medical complications [9].

A timely response to falls is thus necessary to prevent serious injuries, which requires, in the
best-case scenario, the immediate detection of a fall event. Even in nursing homes, however,
with dedicated staff looking over their elderly, falls can remain undetected for long periods
of time, especially at secluded areas, for example, in a senior’s room at night. The senior
can resort to calling for help, if he can, but this is not sufficient. Nursing homes tend to
place manual alarms in seniors’ rooms, such as pull cord alarms, but these are stationary and
often out of reach. Victims of falls cannot be expected to activate them on every occasion,
much less in a timely fashion. As it stands, traditional, manual ways to detect falls, even
in controlled environments like nursing homes, are impractical and ineffective. Falls are also
a severe problem to the physically disabled, who might also suffer from debilitated mobility
and require constant medical assistance and supervision.

Nonetheless, technology can help automate elderly care, lessening the effects of an eventual
medical personnel shortage, and even improve seniors’ sense of independence, which most
hold in high regard [12]. For instance, instead of nurses periodically checking heart rate,
body temperature and blood pressure, these vital signs could be automatically and constantly
monitored by specialized sensors [13]–[16]; robots could assist in social interaction [17], [18]
or facilitate mobility [19], [20]. Finally, there is the concept of automatic fall detection,
which seeks to eliminate the human element in detecting and alerting to fall events. This is
not a new concept, but no consensus currently exists in regard to its implementation.

In conclusion, elderly citizens require special care which can only be provided by professional
personnel, which are derived from an ever-dwindling manpower pool. The probability that
seniors suffer critical medical emergencies unaccompanied is thus increasing. Falls suffered
by the elderly and physically disabled, for instance, tend to have drastic effects on their health

2



1.2. Problem

Figure 1.2: Pull cord placed next to a toilet. If the elderly falls outside the
bathroom, this alarm would never be activated [10].

Figure 1.3: A wearable emergency button. Wearable alarms are widely used,
but have their own set of issues [11].

and well-being. Being much more likely to result in severe injuries or death means that, in
the case of a fall, its occurrence must be detected immediately, and medical assistance must
be provided as soon as possible.

1.2 Problem

This thesis addresses the issue of elderly fall detection, as constant human supervision is
not feasible nor practical, and manual alarms are insufficient. Therefore, a way to detect
and alert to falls in real-time and automatically, meaning without any human interaction, is
required, and tackled by this dissertation.

Such contraption must function as independently and as unobtrusively as possible while still
providing accurate readings. The elder’s daily routine and comfort should not be disrupted
in any way, shape, or form either by the contraption’s set up, functions or outputs, and
should strive to threaten as little as possible the elder’s sense of independence. This means
that its presence should remain completely undetected unless the situation absolutely calls
for some sort of intervention. It should not be time-specific, or, in other words, it should

3



Chapter 1. Introduction

function throughout the day, continuously and without interruptions. It must be capable
of monitoring, at least, an entire average-sized indoor division and must also be capable of
being used in a number of different room configurations. The cost of obtaining the sensors,
as well as setting up and configuring the system and applying it to a standard living space,
should be reasonably low.

This thesis seeks to address certain issues present in other state of the art automatic fall
detection projects. These issues are mainly centered around the inefficient use of training
data, which translates into inaccurate and misleading performance results. Additionally, the
Artificial Intelligence (AI) model chosen to perform fall detection should be a clear improve-
ment on the ones utilized by other researchers, either through performance or efficiency. To
prove it, this model should be tested against other, more used models to see if there is a
positive difference.

1.3 Objectives

The objectives set for this project are as follows:

1. Literature search and review

• An investigation of the current advancements in the respective field, along with
a comprehensive scrutiny of the tools, methodologies, and approaches employed
by fellow researchers.

2. Analysis of existing Machine Learning (ML)/Deep Learning (DL) classification meth-
ods

• An exploration of various model configurations not only in the domain of auto-
matic fall detection but also in other related fields, with the objective of refining
the approach to be adopted.

3. Collection of existing fall detection datasets

• A compilation of openly accessible datasets, organized with the aim of generating
a sufficient quantity of training data.

4. Procurement of sensor(s) for building a dataset

5. Creation of custom, private dataset to use in addition to those collected in objective
3.

• While the compilation of available datasets offers a considerable volume of data,
the development of an original dataset facilitates the incorporation of previously
unexplored information. Consequently, it expands the existing collection further.

6. Data preprocessing and augmentation

• Alterations to the final raw dataset with the goal of increasing data compatibility
and diversity. Each data instance will be slightly altered, thus increasing variety
in the training, validation and testing sets. Modifications to the final raw dataset
in order to enhance data compatibility and diversity. Every data instance will
undergo minor alterations, thereby augmenting variety in the train, validation,
and testing sets.

7. Construction, training, and testing of fall detection models

4
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• Multiple model configurations will be developed, trained, and validated. Subse-
quently, the model exhibiting optimal performance during the validation phase
will undergo testing using new data. An analysis and discussion will ensue to
evaluate the model’s projected real-life performance.

1.4 Advocated approach and expected outcomes

AI has found consistent use in the detection and classification of human motions through
visual data. Falls can, evidently, be identified by characteristic movements, and as such,
this thesis advocates for the use of ML/DL techniques to develop a classification model
capable of differentiating falls from other innocuous actions through visual means (video
cameras). Models of this sort are specifically intended for elderly care, and must follow a
few requirements especially regarding data privacy, but since this thesis is confined to the
creation of AI models, practical implications are excluded from its scope.

ML/DL models need to be trained with a substantial amount of data to perform their
intended task. However, the training a model learns for one task can be appropriated for a
similar other, so called transfer learning. With this in mind, the hybrid model proposed by
this thesis includes a two-stream Inflated 3-Dimensional (I3D) Convolutional Neural Network
(CNN), pre-trained for general action recognition. It is theorized that its competency in
that field is transferable to fall detection. It is also thought that, since it offers the best
performance out of all CNNs in general action recognition, the I3D will outperform and be
more efficient than other CNNs in this field as well. However, this network comprises only
half of the complete model, being modified to only extract features from input videos. These
features are meant to be passed as input to a Recurrent Neural Network (RNN), which is
ultimately responsible for classification. Having two models work in conjunction this way
has been attempted in works by others researchers and is meant to improve the detection
rate of certain actions, of which falling is proposed to be one of them. Generally, this thesis
affirms that the I3D/RNN hybrid model is capable of providing the best results out of any
other model used for automatic fall detection at a more than adequate efficiency rate.

Furthermore, this exact hybrid model has not been used in any other visual Fall Detection
System (FDS), and is hypothesized to provide not only greater performances, but also, when
paired with a seldom seen method of data handling, more trustworthy results. As will be
elaborated in the following chapters, several other fall detection projects fail to recognize
certain limitations regarding training data, which, in turn, denigrate their system’s stated
results. The ensuing compilation of existing datasets alongside the creation of an original
dataset will grant the advocated model an edge over other projects, but more importantly,
the increased data amount gathered for this thesis allows the implementation of evalua-
tion methods in such a way as to extract performance metrics that are much closer to a
representation of the model’s functioning in the real world.

1.5 Report structure

This thesis commences with Chapter 2, wherein the current advancements in the field are
presented. Preceding this, a concise introduction outlines key theoretical topics such as
AI, ML, and DL. Additionally, it encompasses various models employed by other researchers
and the methodologies adopted to assess their efficacy. The latter portion of this chapter
is dedicated to delineating the diverse applications and approaches pertaining to automatic
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Chapter 1. Introduction

fall detection. Particularly, emphasis is placed on visual fall detection, encompassing an
examination of existing datasets and a comprehensive review of systems that employ a
similar approach.

Chapter 3 expounds upon the planned steps to be undertaken in order to fulfill the objectives
of this thesis. This is further supplemented by providing an elaborate account of the tools,
techniques, datasets, programs, and models utilized during the endeavor to construct an
accurate fall detection model.

Chapter 4 offers an in-depth analysis of the implemented models and the meticulous scrutiny
of their outputs. The findings from each detailed case study are duly presented. Subse-
quently, a comprehensive discussion ensues, encompassing an examination of the general
outcomes attained as well as a comparative analysis vis-à-vis the findings reported by au-
thors of other fall detection systems. Furthermore, salient remarks are made concerning the
robustness of their training methods.

In conclusion, Chapter 5 meticulously outlines the extent to which all the stated objectives
were accomplished, followed by a deliberation on potential avenues for future research.
Concluding this chapter is a succinct section expressing final appreciations.

6



Chapter 2

State of the Art

This chapter is divided into two parts, starting with a more theoretical section which explains
the concept of ML, how widely used classification models function, and how evaluation
techniques are employed. This is useful for giving some semblance of context to the topics
discussed in the second half, the exploration of existing fall detection systems and how
they are constructed. The second half begins with general overview of existing automatic
fall detection systems, followed by a subsection that offers descriptions of several public
datasets for visual fall detection. The last subsection focuses on systems similar to the one
presented by this thesis and, because of their resemblance, is separated from and goes more
in depth into their explanation than the previous subsection.

2.1 Theoretical introduction

Before any real exploration of technologies, tools, and their implementations in the field of
fall detection, it is worth going through a brief explanation of the concepts intrinsic to AI
and, more specifically, ML, as to gain a better understanding of how these systems function,
how they are developed, what are their strengths, shortcomings and how they compare to
each other. In this chapter, then, a quick rundown on the theory behind ML technology
will be provided, followed by a list of the more popular models used for classification and an
explanation of the methods used to evaluate the performance of classification models.

2.1.1 Machine Learning

As AI becomes more advanced, what was once mainly an academic field, with few, niche
practical applications, starts to become a valuable tool to tackle increasingly harder and
more complex problems. Mainly, it is now able to solve problems involving a huge amount
of data from an increasing number of sources. The 1970’s saw the first trend towards
using AI to solve real-life problems with the dissemination of expert systems, which, given
input data, would follow a set of rules, known as a knowledge base, and in doing so would
simulate the decision-making process of field experts [21]. This knowledge base would be
constructed from interviews with actual experts who would give insight into their thought
process – of course, this method is very subjective and is too dependent both on the human
expert’s availability and on their ability to adequately externalize that knowledge. This, added
to an inability of an expert system to expand its knowledge base past a certain threshold
due to performance issues, called for a novel approach to AI, one that would rely more on
autonomous and sophisticated techniques and less on human interaction [22, pp. 10–11]. An
approach which would gain prominence over expert systems, but not completely substitute,
in these last few decades.
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ML is strongly linked with AI but is also related to the fields of Data Mining, Computational
Statistics and Probability, Mathematics, and, unlike rule-based systems, is based on induc-
tion – the set of rules or functions become a hypothesis created from and influenced by
specific past experiences, which is then applied generally [23]. These experiences, grouped
in collections called datasets, are fed into ML algorithms. These algorithms extract patterns
and other useful knowledge from them in order to make predictions or descriptions, and as
such they tend to need numerous experiences to learn from - this way, they can adequately
represent relevant relations between features and a target output. However, as extensive
as the dataset is, the algorithm’s ability to adapt to unseen situations is still limited by the
same factors that limit inductive reasoning: if a set of past experiences is finite it cannot
hope to represent every possible future situation, so no inductive proposition can be proven
implicitly true, ergo, an inductive logic can only be approximate to fact. As such, when
training ML algorithms, it is necessary to minimize as much as possible bias, or failure to
detect relevant patterns which leads to the creation of an unsuitable solution to the problem
(underfitting), and variance, or hypersensitivity to the dataset’s characteristics which results
in the creation of a solution unable to adapt to situations outside that dataset (overfitting).
Finding a hypothesis of matching complexity to the target function is the best way to assure
the best performance and avoid under and overfitting.

The development and creation of more intricate, more sophisticated algorithms are still
ongoing, and ML has found use in an increasing number of fields and applications, which
include machine translation [24]–[26], autonomous vehicles [27]–[29], medical diagnosing
[30]–[32], sentiment analysis [33]–[35], recommender systems [36], [37], market analysis
[38], [39], and computer vision. Dividing ML are three main approaches:

• Reinforcement learning systems are based on the interactions between states, actions,
policies, and rewards. As the environment changes states, policies dictate what actions
the system ought to take, each resulting in a reward. The algorithm then analyzes the
received rewards and alters its policies in order to maximize future ones. Programs
like these can be found in self-driving cars and game AIs like chess [40] or Go [41].

• Unsupervised learning algorithms study unlabeled data and try to find recurring patterns
in them. Used in finding the probability density function or performing cluster analysis,
for instance.

• Supervised learning algorithms take training data made up of a set of instances which
contain input features and an associated target feature, or label. The algorithm iterates
through the train set and tries to learn a function that, when subject to new inputs,
calculates the new instance’s unseen target feature.

Supervised learning algorithms can themselves be divided into types: regression algorithms
output numerical values in a continuous range, such as calculating the next iteration of a
numerical sequence; similarity algorithms learn to compare two instances and measure their
similarity – they are used in recommender systems, visual identity tracking/verification and so
on; lastly, classification algorithms are much like regression algorithms, except these output
one of a finite set of values, which are normally named classes. These can be binary, when
the set of possible outputs contains only two values (for instance, a program that classifies
an email as spam or not spam), or multiclass, when the set contains more than two values
(a program that scans written text must associate every written symbol to a letter class).

8



2.1. Theoretical introduction

2.1.2 Popular classification models

The resulting set of functions and calculations of training a ML algorithm are contained in
what is known as a model. This chapter is dedicated to a brief explanation of the algorithms
that are most widely used for creating both binary and multiclass classification models.

Nearest Neighbor

Nearest Neighbor (NN) algorithms are one of the simplest and most straightforward classifi-
cation algorithms. They work by measuring the proximity between attributes of an instance
of unseen data and those of known instances and labeling that new instance according to
those nearest to it, following the assumption that similar instances are distributed close to
one another. They come in variations, depending on the number of neighbors considered for
classification. The simplest only checks the closest known instance and classifies the new
one as the same class, called 1-Neartest Neighbor, or 1-NN. Algorithms that take more than
one neighbor into consideration are collectively referred to as k-Nearest Neighbors (k-NNs),
with k standing for number of neighbors [42]. A 5-NN algorithm, for instance, calculates
the five nearest instances to new instance p and assigns it the class that is most prevalent
in its neighbors. If three neighbors are class “positive”, then p is “positive” as well.

To calculate proximity between instances implies defining a metric that represents distance.
If p and q are two instances of data and n is the number of features, this metric could be
Euclidean distance,

de(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2, (2.1)

or, to put it simply,

de(p, q) =

√√√√ n∑
i=1

(pi − qi)2, (2.2)

Manhattan distance,

de(p, q) =
n∑
i=1

|pi − qi |2. (2.3)

among other formulas like Hamming distance and Minkowski distance, which are not so
often used [43].

k-NN is a “lazy” model, meaning it stores train data in memory and only performs compu-
tations at the prediction stage, foregoing the traditional protracted training stage like those
of other algorithms. It is referred also as an instance- or memory-based method for this rea-
son. Choosing k is up to the user’s choice but some strategies like r-fold cross-validation1

could be employed to somewhat optimize k , odd numbers being obviously favored in order
to avoid ties. Generally, small k values are especially vulnerable to noise and outliers and
large k values result in increased computational loads. It is up to the user to find that happy
medium.

Despite its simplicity, this model has found its uses in rather complex problems and, due to
being “lazy”, training takes no time at all, which is a plus if the situation calls for learning
additional train data. On the other hand, as the amount of data increases, so does the

1Discussed in section 2.1.3
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1-NN: negative

3-NN: positive

𝑥

𝑦

?

- new data point?

Figure 2.1: Example of Nearest Neighbour classification and k’s influence on
the model’s performance.

computational load – past a certain dataset size, using k-NNs becomes impractical [22,
pp. 76–82].

Decision Trees

Decision Trees (DTs) are made up of several interconnected nodes that form a tree-like
structure, with end nodes being referred as “leaves”, the first (top, conventionally) node
as the “root node” and the connections as “branches”. Each node represents a conditional
operation that “tests” a variable and each branch coming out of that node represents one
of its outcomes. Starting from the root, a data instance has its features tested repeatedly
through several nodes and branches until a leaf is reached, which dictates the instance’s
class [44]. In a way, a DT decides which class an instance belongs to much the same way
as an expert system rationalizes its thought process: by eliminating outcome possibilities
through the application of a series of logical rules. Unlike expert systems, DTs form their
own rules in the training process.

The algorithm takes train data and splits the set along the outcomes of variable tests. It first
chooses a variable test to become the root node. Every outcome of that test is turned into
a branch and other variables are chosen to become the following nodes. After all variables
are tested, the final splits should contain only instances of a single class. If not, the process
is repeated from the beginning. Optimally, the root node has maximum “split goodness”
and allows the algorithm to gain the most amount of information and the algorithm does
employ some heuristics to determine the usefulness of a split: if the proportion of each class
remains the same after the split, it is useless; if all partitions contain instances of a single
class, it has maximum usefulness.

The algorithm, then, must discriminate between attributes on their ability to maximize
information gain and reduce uncertainty in predicting the target feature. Information gain
can be defined as the entropy difference of a partition before and after a split. Entropy is
defined as
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Weather

WindHumidity
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Cloudy

Rainy

Low High MildStrong

Figure 2.2: A simple decision tree that decides whether it is a good day to
play tennis, with triangles as classes, rectangles as variable tests and branches

as outcomes.

H(X) = −
n∑
i=1

P (xi)× logb P (xi) (2.4)

in which X is a set of values x1, x2, ..., xn, P (xi) is the probability of observing a certain value
and b is the logarithm base, most commonly 2, e or 10. The difference between entropies
of a node n and a candidate split s at that node is thus defined as information gain:

IG(n, s) = H(n)−H(s, n) (2.5)

DTs are robust, flexible models that stand out due to their great interpretability and efficiency
(O(n) = n× log n). Their relatively weak accuracy can be remedied by constructing several
DTs and selecting the most common output, a technique called Random Forest, although
these are harder to interpret [22, pp. 103–111].

Support Vector Machines

Support Vector Machines (SVMs) calculate a separation line, called a hyperplane, between
instances of data, consisting of vectors, in an p-dimensional space. When a new vector is
fed to an SVM, it is projected on that same feature space and classified based on which
side of the hyperplane the new vector lands on. If the problem is linearly separable, hard-
margin linear SVMs are used. Given a dataset X with n objects belonging to a yi ∈ Y class,
Y = {−1,+1}, the hyperplane is defined by

h(x) = w · x + b (2.6)

where w ∈ X is its normal vector and b
||w || is its offset from the origin. This separates the

feature space into two regions, w · x +b > 0 and w · x +b < 0, and a signal function is used
to classify new vectors

11



Chapter 2. State of the Art

Table 2.1: Common types of kernels and their respective functions

Type of kernel k(x,y) function

Linear Equation (2.10)
Radial Basis Function (RBF) – Gaussian exp(−σ||x − y ||2)
RBF - Laplace exp(−σ||x − y ||)
Polynomial (δ · (x − y) + κ)d
Sigmoidal tanh(δ(x · y) + κ)

g(x) = sign
(
h(x)

)
=

{
+1 if w · x + b > 0
−1 if w · x + b < 0

(2.7)

Equation (2.7) allows for the creation of an infinite number of hyperplanes. The optimal
hyperplane, however, is said to be one with the largest possible margin and whose closest
vectors satisfy the following equation:

|w · xi + b| = 1 (2.8)

Therefore, no training vectors are located in −1 ≤ w · xi + b ≥ 0, hence the name “hard-
margin”.

Unfortunately, most problems are not linearly separable, requiring the use of soft-margin
linear SVMs, which implement a hinge loss function, allowing vectors to violate equation
(2.7) to a certain point, or non-linear SVMs, which map the original feature space to a
higher-dimensional one where a linear hyperplane can be constructed with more ease. Of
course, this mapping process usually implies unreasonably costly operations, but non-linear
SVMs use what are called kernel tricks to keep computational costs down [45]. This mapping
can be represented as ϕ : RN → F , F being the higher-dimensional feature space, which is
defined as the dot product of the vector pair (x, y),

k(x, y) :=
(
ϕ(x) · ϕ(y)

)
(2.9)

These vector pairs can be defined in kernel functions, however, such as

k(x, y) = (x · y)d (2.10)

which correspond to equivalent mappings to linearly separable feature spaces, where the steps
a linear SVM takes to find a hyperplane can be replicated. The type of kernel chosen does,
in fact, affect the model’s performance. Table 2.1 includes some of the most commonly
used kernels.

SVMs generally have a good capacity for generalization, do a decent job when faced against
high-dimensional data, as opposed to other algorithms which tend to under or overfit, and
are efficient thanks the kernel trick technique. Nevertheless, they suffer from high sensibility
to outliers and low interpretability [46], [22, pp. 153–161].
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Figure 2.3: Mapping from a non-linearly separable feature space to a higher-
dimensional feature space.

Neural Networks

In an attempt to replicate the functioning and structure of naturally occurring neural net-
works on a basic level, researchers in the 1940’s and 1950’s theorized the concept of Artificial
Neural Networks (ANNs) and, in 1958, the perceptron was developed, becoming the first
ANN. They consist of interconnected nodes, or neurons, in constructs of one or more di-
mensions. Each neuron comes equipped with a function that transforms input data into
an output which is then transferred to the next neuron through connections called edges.
These nodes are arranged in ordered layers, the first being called the input layer, which
receives input data, the last being called the output layer, which presents the model’s final
output, and layers in between the two referred to as hidden layers, although these are not
obligatory. If all neurons of layer n are connected to every neuron of layer n+1 those layers
are considered fully-connected, if groups of neurons in n are connected to one neuron in
n + 1, those are called pooling layers. Data travelling between nodes is regulated by node
and edge weights that increase or decrease signal strength, representing the importance of
the operations performed by a certain connection. These weights are obtained, altered, and
optimized in the training process [47].

A neuron accepts the value resulting from

u =
d∑
i=1

xiwi (2.11)

with d being the number of incoming edges and xi and wi being an input value and a weight
value, respectively, that belong to one of the neuron’s incoming edges. u is then applied
to the neuron’s activation function, fa, and its output is sent to the next neurons. There
is a wide range of activation functions to choose from. For example, fa can be linear, with
fa(u) ∈ [−∞,+∞], binary step, fa(u) ∈ 0, 1 or −1, 1, sigmoidal, fa(u) ∈ [0, 1], or Rectified
Linear Unit (ReLU), fa(u) ∈ [0,+∞].

The type of ANN discussed so far is called a feedforward NN, or Multi-Layer Perceptron
(MLP), but some ANNs have special traits or constructs which allow them to perform
operations that MLPs cannot. In a RNN, neurons can be connected to neurons in the
following layer as well as to those in the same and even previous layers. These special
connections are called feedback loops and allow RNNs to capture patterns in sequential and
time-series data, making them especially suited to problems such as stock market predictions
and language processing. Long-Short Term Memory network (LSTM) are RNNs which
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Figure 2.4: An artificial neuron.

possess a special neuron layer called memory cells, which preserve or discard past data after
a certain amount of time, essentially “remembering” or “forgetting”. This process is regulated
with the help of input, output and forget gates. Gated Recurrent Unit networks (GRUs)
function similar to LSTMs with forget gates but require less parameters due to the lack of an
output gate. GRUs have been shown to perform better in some situations when compared
to LSTMs [48].

CNNs contain convolutional layers in addition to traditional fully-connected and pooling
layers. These NNs convolve filters, or kernels, across an image, for example, that activate
when patterns are detected in the area being analyzed, forming an activation map. Unlike
normal NNs, ANNs are capable of differentiating data based on features regardless of their
spatial location. Each neuron belonging to a convolutional layer is related to a subregion
of the input data, a receptive region. Despite this, CNNs are not more complex or larger
than the average NN, which makes them quite efficient at processing large amounts of data
without needing many additional computational resources [49].

dog …

convolutions

convolutions

subsampling

subsampling

output

Figure 2.5: Typical CNN operations.

Back propagation is an algorithm that is used for adjusting edge weights while training NNs.
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It works in two phases: a forward phase and a backwards phase. In the first phase, train
data is fed to the NN until all output layer neurons produce an output value which is then
compared to a desired value - the difference between the two values is the error. In the
second phase, the error value is used to adjust the connection weights of the output layer
and a new error value is calculated again for use in the previous layer. If calculating the
deviation of an output neuron using a quadratic error function is defined as

el =
1

2

k∑
i=1

(yi − f̂i)2, (2.12)

with el as the error of the l-nth neuron of an output layer containing k neurons, yi as the
actual output and f̂i as the desired output, then calculating the error value of the previous
layer’s neurons becomes

δl =

{
f
′
ael if nl ∈ coutput
f
′
a

∑
wlkδk if nl ∈ chidden

(2.13)

with δl being the error value of nl neuron, f
′
a being the derivative of the neuron’s activation

function (which is usually sigmoidal in NNs capable of backpropagation), wlk being the
connection weight between nl and nk of layer c(l+1). This phase starts all the way back from
the output layer, moves on to the input layer and uses δl to slightly adjust edge weights.
The entire process is then repeated.

ANNs are some of the best performing models for complex problems, especially deep NNs.
The big downside is their “black-box”-like nature, since their knowledge is based on an
enormous collection of parameters which are altered by complex mathematical formulas,
making their decisions entirely incomprehensible to humans [22, pp. 132–149].

Additionally, an ANNs could be referred to as a deep neural network if it contains several
hidden layers, at least two [50]. These networks are normally capable of performing more
advanced operations than the traditional, “shallow” ML algorithms, such as convolution or
recurrency. Therefore, CNNs and RNNs, including LSTM and GRU networks, as well as
deep belief networks [51], [52] and deep reinforcement learning methods [53], [54], are part
of a group of techniques called DL, a subset of ML. One of their core characteristics is the
ability to take raw, unaltered data and extract more complex, higher-level patterns [55].

Due to this ability, these algorithms are ideal solutions for problems that require the analysis
of large, high-dimensional data, such as speech and text recognition, computer translation or
computer vision. The scientific field of computer vision concerns itself with finding ways to
convert visual data into meaningful symbolic information [56] – in the form of object, motion
or event detection, video tracking or image restoration, for instance. While researchers are
not just limited to using DL techniques to accomplish these tasks, CNNs and RNNs have
been instrumental in advancing the field, producing results that far outclass other methods.

2.1.3 Quality evaluation methods of classification models

Once built and trained, these models have their performance measured using test data, which
is usually partitioned from the original dataset alongside train and, optionally, validation
data. The holdout method involves the separation of the whole dataset into a train set of
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proportion p and a test set of proportion (1−p). The proportion of the test set depends on
the type of model, size of dataset, task specific variables and is defined on a case-by-case
basis but is between 5%-20% the size of the train set in most cases. Unlike the other
sets, data from the test set is, supposedly, never exposed to the model during any step of
the model’s training stage – it is unseen data, in order to provide as much of an accurate
portrayal of the model’s behavior in a real-life situation, where all data is unknown to it.

The holdout method, however, is not perfect and might result in inadequate data partitions
to test the model with, either because of a lack of variety in data, imbalance in the number
of class instances or the overrepresentation of “easy”-to-predict data. Methods that seek to
rectify this include random subsampling and r-fold cross-validation, which consist in mea-
suring the model’s quality by the result average of several training and evaluation processes
done on random, repeated partitions of the same dataset. In the case of the former, holdout
is performed several times by random sampling to obtain several sets and, the latter, involves
splitting the dataset into r parts (folds) and choosing r − 1 folds to train the model and the
remaining one to test it, repeating the process until all folds have been used as the test set
[22, pp. 194–196].

Dataset

r = 3

Train sets Test sets

Figure 2.6: r-fold cross validation.

Classifiers can be divided into binary and multiclass. The former assign either one of two
classes to a specific object and these classes, even if already named to suit the task these
models are made for by the researchers for the sake of convenience, can nevertheless be
defined as Positive and False. Which class is which is at the discretion of the researcher
but should be self-evident (in the case of fall detection, most researchers consider a Positive
classification as an occurrence of a fall). After the model is tested and has classified all test
data, the results can be observed and analyzed using a confusion matrix:

Table 2.2: Confusion matrix

Predicted/Real P N

PP TP FP
PP FN TN
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In which True Positives (TP) is the number of instances of Positive predictions (PP) correctly
assigned to Positive objects (P), True Negatives (TN) are instances of Negative predictions
(PN) correctly assigned to Negative objects (N), False Positives (FP) are instances of
Positive predictions (PP) incorrectly assigned to Negative objects (N) and False Negatives
(FN) are instances of Negative predictions (PN) incorrectly assigned to Positive objects
(P). There are several metrics which allow researchers to evaluate and compare classifiers
on their performance and efficacy. Evaluation metrics are calculated from the values above:

Table 2.3: Binary evaluation metrics

Accuracy (Acc.) ACC = TP+TN
P+N = TP+TN

TP+TN+FP+FN

Sensitivity, recall or true positive rate (Sens.) TPR = TP
P =

TP
TP+FN

Specificity or true negative rate (Spec.) TNR = TN
N =

TN
TN+FP

Precision or positive predictive value (Prec.) PPV = TP
TP+FP

F1 score F1 = 2× PPV×TPRPPV+TPR =
2TP

2TP+FP+FN

Miss rate or false negative rate (miss.) FNR = FN
P =

FN
FN+TP = 1− TPR

Table 2.3 only includes a small sample of all useful metrics, but these are the most common.
The first five are widely used by researchers when evaluating their models, such that, in
most of their works, one or more of these is always used to gauge model performance, with
accuracy being the most common. In the scope of fall detection, however, miss rate is
usually absent and there are even cases when the researchers omit sensitivity values, despite
both being very important metrics which researchers should prioritize, since false negatives,
or failures to detect an actual fall, are much more serious errors than false positives, or
detecting falls when none has occurred.

Multiclass classifiers, on the other hand, cannot have the same metrics calculated in the
same manner, since there are more than two classes. A multiclass problem, however, while
not as obvious, could be seen as multiple binary classification problems instead. For instance,
a model could be trained to differentiate between pictures of dogs, cats, and horses, each of
these animals being one class. In this example, the model is classifying images simultaneously
as ’dog’ or ’other ’, as ’cat’ or ’other ’ and as ’horse’ or ’other ’. This way, we can calculate
the same metrics by combining each binary classification’s measures and taking their average.
Some metrics can also be calculated on a macro level, where each class is weighed equally,
and on a micro level, where each instance has equal weight and any discrepancy in the
number of instances of each class is ignored. Accuracy, however, is not calculated on either
level, and F1 score is only measured on the macro level. If k is the number of classes, M is
macro level and µ is micro level, then the same six metrics could be calculated as shown in
table 2.4.

2.2 Fall detection systems

Without any way to detect falls automatically, elderly, and disabled people who have suffered
a fall can only receive medical attention if the fall was witnessed by an observer, if someone
hears their calls for help, if they set off some sort of manual alarm such as a pull cord or
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Table 2.4: Multiclass evaluation metrics

Metric M µ

Accuracy (Acc.) ACC =

∑k

i=1

TPi+TNi
TPi+TNi+FPi+FNi

k

Sensitivity (Sens.) TPRM =

∑k

i=1

TPi
TPi+FNi
k TPRµ =

∑k

i=1
TPi∑k

i=1
(TPi+FNi )

Specificity (Spec.) TNRM =

∑k

i=1

TNi
TNi+FPi
k TNRµ =

∑k

i=1
TNi∑k

i=1
(TNi+FPi )

Precision (Prec.) PPVM =

∑k

i=1

TPi
TPi+FPi
k PPVµ =

∑k

i=1
TPi∑k

i=1
(TPi+FPi )

F1 score F1M = 2× PPVM×TPRMPPVM+TPRM
-

Miss rate (miss.) FNRM = 1− TPRM FNRµ = 1− TPRµ

if they got up and went to search for it themselves. Obviously, this is not ideal, as falls
are usually incapacitating, and caregivers cannot be expected to be constantly present. Pull
cords and other manually activated alarms are quite common, especially in nursing homes,
but are clearly not sufficient since, even if the affected person is not totally incapacitated,
these do not guarantee a timely activation. However, a system that could detect or even
predict falls without the need for human intervention would be certainly lifesaving.

There has been a substantial amount of research in this field in order to create and improve
such systems. Nowadays, this technology is still in its infancy and very few systems have
passed the prototype phase and progressed on to markets, with researchers producing new
implementations fairly regularly with vastly different approaches.

This section is dedicated to explaining these systems which, to present them in a more or-
ganized manner, have been categorized as being either a wearable system, an environmental
system, or a visual system, based on what kind of sensors they use. After this, a description
of visual public datasets (as in, free of charge and accessible without the need for any regis-
tration or permission) is given, as it pertains to the later section about systems which more
closely resemble this project and whose choice of dataset is important in their discussion.

2.2.1 Overview of fall detection technologies

Wearable systems

Wearable systems base their operations on data originating from wearable devices, or devices
that must be on one’s body to perform their intended function. These usually consist of
accelerometers, which measure a body’s acceleration in its own instantaneous rest frame, or
gyroscopes, which measure orientation and angular velocity. These sensors can be embedded
in belts, wrist, or ankle bracelets and recently, as they become more common, smartwatches
and smartphones.
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A big advantage of using these kinds of sensors is that systems based on them tend to be
rather simple and, as a result, cheap and accessible. Some of these use basic threshold algo-
rithms with some degree of success, such as in the work of Fudickar et al. [57]. Nowadays,
app stores feature a selection of threshold-based fall detection applications for smartphones
and smartwatches usually come packaged with one already built-in. A few systems even use
threshold and ML algorithms at the same time and in conjunction to improve accuracy, like
in Wolfe et al. [58]. However, it is apparent that ML algorithms are more robust and precise.
Waheed et al. [59] used RNNs to perform noise-tolerant detection of falls through the use
of Inertial Measurement Units (IMUs), which are wearables containing accelerometers, gy-
roscopes and, occasionally, magnetometers, in order to achieve an accuracy of 97.21%. Leu
et al. [60] installed triaxial accelerometers and gyroscopes on moblie phones, whose signals
are classified by a DT, along with being subdivided into six different types of falls, with an
accuracy of Activity of Daily Life (ADL) classification of 98.46% and fall classification of
96.57%. Yu et al. [61] used Hierarchical Attention-based CNNs with 98.59% precision and
97.58% sensitivity rates. These systems can also be used to predict falls, not just detect
them: in Shibuya et al. [62], subjects wear sensors on their backs or waists that can tell if
a fall is about to occur based on the subject’s gait.

Figure 2.7: Wireless Gait Analysis Sensor used by Shibuya et al. [62].

Despite being the most commercially abundant systems, wearables are inherently flawed.
Besides their lower accuracy, and oftentimes the cause for it, these systems are overly
sensitive to noise, especially if they are placed on the wrists or ankles, as the extremities
are subject to sudden jerking motions more frequently which confuse the sensors. On top
of that, they only work if they are worn, which is an issue as they tend to be uncomfortable
to wear and elderly people are rather prone to forget or refuse to put them on. Even if they
do not, they have to come off at some point during the day. Lastly, there is also a chance
that the device is broken as a result of the fall.

Environmental systems

Systems that use acoustic, vibration, pressure or (active, short wavelength) infrared sensors,
radars, and WiFi signals to detect falls are called environmental and surveil a single room
or division. Some researchers consider camera-based systems, the ones explained later, also
as being environmental, however, although there is some merit to their logic, it is worth
separating the two, since computer vision methods cannot be used in this type of systems.

Adnan et al. [63] and Droghini et al. [64] are examples of systems that use acoustic
sensors that pick up on sound wave patterns to differentiate falls from ADLs. Vibration
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sensors, which include piezoelectric and accelerometric sensors, are quite similar but capture
pressure waves transmitted through the floors and walls, such as in Alwan et al. [65], who
use a piezoelectric sensor, or in Muheidat et al. [66], who use pressure sensor pads covered
by a carpet to read the movements of the subject who treads on them. Infrared sensors
have been used by Fan et al. [67] to detect falls with LSTMs and GRU models and by
Nishiguchi et al. [68] not to detect falls, but to assess fall risk according to step speed and
accuracy measurements. More recently, radars and wireless signals have shown to have great
potential to detect falls by systems such as the ones by Tang et al. [69], which measures
distance between shoe-mounted radars and objects in front of them to prevent falls, Amin
et al. [70], which analyses the Doppler effect present in the radar signals corresponding to
a human’s motions, and Wang et al. [71], which performs activity recognition by measuring
Channel State Information phase difference between two common WiFi devices.

Figure 2.8: Acoustic signal analysis in Adnan et al. [63].

Environmental sensors are not intrusive nor obstructive and, unlike wearables, can detect
falls without the need to be adjusted or turned on every day, due to their “place-and-forget”
nature. On the other hand, their detection range is limited and their performance tends to
suffer from the existence of “blind spots” and a hypersensitivity to noise: infrared sensors
capture other heat sources and so readings can be often obfuscated by gases, unlike thermal
imaging; vibration sensors are too dependent on floor material and carpets to give accurate
readings and, like acoustic sensors, frequently mistake the fall of objects and miscellaneous
sounds both inside and outside a division as actual, human falls. Unfortunately, these dis-
advantages are normally ignored by researchers, and not nearly enough steps are taken to
remedy them.

Visual systems

Visual systems use computer vision algorithms to capture falls through camera feeds. These
feeds could originate from normal cameras, which fill every frame with pixels containing
color values (Red, Green, Blue (RGB), tentatively), thermal cameras or depth cameras.
Fall detection could function through frame/image analysis, such as pose recognition, or
frame sequence analysis, by examining the dynamic of certain movements frame by frame.
The possibility of using characterization, Feature Extraction (FE) and activity recognition
models, which have been perfected by implementations in other areas, and, through transfer
learning, adapting them for fall detection grants these systems an edge performance-wise.
Cameras are now cheaper and better than ever, which means implementation costs do not
have to be impractically high as before, as shown in De Miguel et al. [72].

However, costs are still high by comparison, especially in the case of thermal and, to a
lesser extent, depth cameras. In order to provide a better accuracy and eliminate blind
spots, more than one camera should be used which, together with having to place them in
several divisions (these systems are obviously limited by visual line-of-sight), drives up the
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cost significantly. DL algorithms, which are otherwise perfectly suitable to image data, are
also notoriously resource hogs, needing more computational power to function properly than
the average ML program, and, on top of that, they tend to be slow. If RGB cameras are
used then a big issue arises in the form of a serious breach of privacy, which has indeed
put many researchers off using them in favor of less intrusive methods. Thermal and depth
imaging are more than adequate solutions to this problem, but if the use of RGB cameras is
insisted on, then data protection methods must be employed. The choice of using thermal or
depth cameras over RGB cameras does alleviate the privacy issue, but comes at the cost of
effective range and image definition, which may result in worse accuracy scores. But unlike
thermal vision, whose main purpose (reading the temperatures of objects) is almost entirely
useless for fall detection, depth cameras possess the ability to better capture changes in
distances, which could be an advantage if the model is trained to adequately process that
information.

Nevertheless, while obtaining train data is difficult regardless of camera type, as the following
section explains, there are very few existing thermal or depth fall detection datasets, limiting
implementations of thermal/depth FDSs. A more in-depth exploration of visual FDSs is
made in section 2.2.3, after an enumeration of the currently available, public visual fall
detection datasets.

2.2.2 Public datasets for visual systems

As computer vision technologies become more advanced, the need for more extensive
datasets increases. Since the millennium, several of these were compiled from numerous
sources for a lot of different end uses. Some public datasets for image classification are
truly massive: the National Institute of Standards and Technology (NIST) Special Database
19 [73] contains handprinted sample forms from 3699 writers which add up to 814,255
images of isolated handwritten letters, originally released in 1995 by the american NIST
[74] but released again in 2016 as a second edition, and is widely used in testing computer
recognition of handwritten text, constructed from Special Database 1, 2 and 7; MNIST
[75], itself a 70,000 images sized, normalized subset of NIST SD-1 and -3, is very popular
among beginner AI developers; ImageNet [76] contains 14,197,122 labeled images organized
in the WordNet hierarchy with bounding box annotations and, while the full dataset can only
be used with permission from its developers, a subset of 2,025,721 images is available on
Kaggle [77]; the 80 Million Tiny Images dataset [78] is made up of 79,302,017 32x32 color
images labeled with 75,062 nouns, but has since been taken down by the developers.

There are plenty of video classification datasets as well, although not quite as big: Kinectics-
700 [79] has at least 700 video clips, extracted from Youtube, for each 700 classes; the
Cityscapes dataset [80] offers stereo video sequences from 50 cities with pixel annotations
of 5,000 frames and 20,000 weakly annotated frames; UCF-101 [81] has 13,320 videos of
101 action classes, collected, again, from Youtube. Unfortunately, even though these and
most general action recognition datasets cover a substantial number of different classes,
‘falling’ is seldom included. In fact, vision-based FDSs, whether these are based on RGB,
thermal or depth cameras, are dependent on publicly available datasets made specifically for
fall detection, of which there are few and whose quality is, excluding some, subpar.

None of the fall detection datasets include more than 1,200 videos, which is a hinderance in
a computer vision project, as DL algorithms in general need a huge amount of data to be
acceptably robust. What these datasets lack in size they should make up for it in diversity
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Figure 2.9: Handprinted sample form, NIST SD-19 [73].

of data, which means including different kinds of falls (falling backwards, forwards, side-
ways, falling from standing up, from sitting, from lying, while holding objects, while walking
with canes, crutches and walkers, so on), different backgrounds (different rooms, lightings,
camera angles, other people), different actors (body shapes, clothes, gaits), different kinds
of innocuous actions, or ADLs, obscured actions and active attempts to simulate falls as
realistically as possible, without putting the actor in the risk of injury – but in these aspects
most datasets also fall short.

Table 2.5 contains characteristics of all publicly available visual datasets designed around
fall detection in mind. Some, like UP-Fall [82], offer wearable data as well, making them
multimodal. By numbers alone, these pale in comparison to the aforementioned general
action recognition datasets: UP-Fall, the biggest, contains 510 falls and 612 ADLs for a
total of 1,122 videos; the smallest dataset, FOE.MMU [83] contains 21 fall events and 30
ADLs recorded with just one camera; altogether the collection of datasets has an average
of 178 falls and 101 ADLs per dataset and a total of 1,685 falls and 1,118 ADLs, not
counting Fall Detection Dataset from the University of Bournemouth [84]2 since, although
it is meant for detecting falls, offers no sequence of images of falls occurring, only 22,636
isolated frames of lying, standing, sitting, bending and crawling poses. Since falls cannot
be gathered from actual surveillance systems, due to privacy concerns, or reliably extracted
from Youtube videos, for instance, so fall events have to be painstakingly simulated and
recorded manually, so this shortcoming is to be expected from these kinds of datasets.

Fall diversity also leaves a lot to be desired: Multicam [85] only has 22 different scenarios
which include falls and ADLs and 2 scenarios dedicated solely to ADLs, which is compensated
by having eight cameras record every scenario from different angles. In fact, other datasets
make up for the lack of variety by having multiple cameras record the same events. Most
dataset creators also did not pay much attention to having a lot of fall type variety beyond
simple characteristics like direction, exceptions being eHomeSeniors [86], High Quality Fall
Simulation Data (HQFSD) [87] and FDDBg [88], which feature a great amount of variety.

2Since there are two datasets named “Fall Detection Dataset” from two universities, henceforth they will
be abbreviated as such: Fall Detection Dataset from the University of Bourgogne (FDDBg),Fall Detection
Dataset from the University of Bournemouth (FDDBm).
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2.2. Fall detection systems

Figure 2.10: Frame from FDDBg [88].

HQFSD and eHomeSeniors even go the extra mile in terms of authenticity as the former is
made up of accurate simulations of real-life events captured from surveillance cameras in an
elderly home and the latter includes falls performed by actors directed by a physiotherapist.

Thankfully, all but Multicam and FOE.MMU use more than one actor, which goes a long way
to ensure an adaptable classification model. HQFSD used 10 actors and UP-Fall used 17.
As for background variety, which is particularly important, UR-Fall and FDDBg in particular
feature videos recorded in several different rooms and lightings.

2.2.3 Visual/Deep Learning-based Fall Detection Systems

This section is dedicated to listing existing FDSs that make use of ML techniques, more
specifically DL or other computer vision methods, which are more closely related to the sys-
tem developed for this thesis. Table 2.6 lists fourteen systems which, in one way or another,
provided insight and reference for this project. The datasets used, FE/characterization
methods, classification models, type of cameras and test results are presented for each. All
of them are either visual systems or perform fall detection using one or more DL techniques.
They are sorted in ascending order by the average of their stated performance metrics, which
are almost unilaterally high - Khraief et al. [92] manage to achieve an accuracy of 99.72%
as their system sits on the bottom of the table, accordingly, and most systems place in the
90-100% bracket in at least one metric. That deep-learning-based visual systems are the
standard for accuracy seems to be evidenced by these results.

RGB-based systems are featured most prominently in this list, and all suffer from the issue
of intrusiveness. Depth and thermal cameras present a logical alternative, as these types of
imaging are less revealing but still detailed enough to be of use. Rafferty et al. [93] took
three approaches to detecting falls through thermal images: via logical processes, which first
detect and isolate blobs of thermal signatures that most likely represent a human and then
compare 3 sequential scenes in search of rapid blob expansions which, if its size increases
past a certain threshold, indicate the occurrence of a fall; via scene analysis, in which a three
layer CNN is trained to classify instances of single images on fall condition; via composite
scene analysis, in which a four layer CNN is trained to classify sequences of three images,
much like the first approach. The scene analysis approach provided the best results with a
detection rate of 80%, which pales in comparison to other systems, but might be excused
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by the lack of an adequate amount of train data. Composite scene analysis fared much
worse, with a detection rate of just 35%, which is justified by the authors, again, as the
result of having a limited dataset. The use of extremely simple three- and four-layered
CNNs is possibly also due to the small dataset size and in order to avoid overfitting, but
perhaps increasing the number of layers might have provided better results, especially for the
composite scene analysis approach, which indicates an obvious occurrence of underfitting.

These relatively poor results place this system at the top of the table but serve as an
example of how thermal cameras have good potential, since they capture images that are
detailed enough to have computer vision methods applied on them without threatening the
individual’s privacy.

The use of infrared sensors makes a system environmental and not conducive to computer
vision techniques, unlike thermal imaging. As mentioned earlier, environmental infrared sen-
sors typically use active infrared imaging by illuminating an area with a short wavelength
light. Thermal, on the other hand, operates in mid-to-long wavelengths and only captures
heat energy emanating from objects, and is thus called passive. This means that ther-
mal cameras do not record reflected lights and are unaffected by smoke, haze, dust, and
other sources of illumination. Infrared imaging can be detailed enough to match thermal
cameras but only from high-end, industrial sensors, which are not usually present in these
systems. The work of Fan et al. [67] appears in this section because, despite using one
low-resolution 8x8 IR sensor, they experimented with and tested several DL neural networks,
namely LSTMs and GRU networks with and without attention mechanisms, and compared
them to a conventional MLP and a pre-built k-NN model. The authors present two sets of
test results, one where the test data included only falls parallel to the sensor and the other
where all falls were perpendicular to sensor – as is to be expected, results vary a substantial
amount between the “easier” set and the “harder” set, respectively. In Table 6, the displayed
precision and sensitivity values had to be calculated by taking the average from these two
evaluations to get a sense of the system’s performance overall . The conclusions drawn
from this were that both LSTM and GRU models are roughly on par with each other, and
both outperform the MLP, introducing attention mechanisms does not necessarily improve
their detection rates and all models fared better in all aspects compared to the k-NN model.

Equally non-intrusive are depth cameras. Rahnemoonfar and Alkittaw [94] used these to
significant effect in training a 3D CNN with the SDUFall dataset [95], which contains
240 videos of falls and ADLs recorded with a Microsoft Kinect sensor. Two models were
created, a binary “fall or not” model and a 6-class model. Unsurprisingly, the binary model
achieved a better result of 97.58% accuracy, but, more importantly and more relevant to
this thesis, both accept as input a sequence of ninety-nine 160x120 frames. It would have
been interesting to see how fast and how many computational resources it takes to classify
one whole sequence, unfortunately the authors do not provide those numbers.

However, depth imaging is more commonly used in conjunction with RGB cameras. This
combination is possible and practical as the Kinect sensor, which is often used, provides
both types of imaging, being very cheap and accessible, even if its production was stopped
by Microsoft in favor of the Azure Kinect DK [96]. In theory, using multimodal data has its
advantages and could lead to an increase in classification quality. In this case both types of
images complement each other: human silhouettes are less affected by light and visual noise
in depth than in RGB images, but depth cameras have lesser range than RGB ones.
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Chapter 2. State of the Art

Figure 2.11: Thermal sequence which depicts a human first standing, in the
process of falling and, finally, lying on the floor [93].

As part of their project, Adhikari et al. [84] created the FDDBm and their system is built
around it, consisting of a CNN trained specifically to do pose recognition with just RGB,
just depth, and RGB/depth images with and without background subtraction. The model
performed best with RGB/depth imaging with background subtraction and scored 74%
accuracy on the test set. The authors admit that pose recognition is just part of their
concept of a complete, robust FDS: the next step would be developing a way to analyze
sequences of poses, their transition speed and end states, which would be the determining
factor in detecting falls. A couple of years later, in 2019, Adhikari would dedicate his
doctorate thesis [106] to continuing his previous work, abandoning, however, the idea of
pose estimation in favor of detecting groupings of joints belonging to stable regions of the
human body and feeding them to an LSTM to analyze their movements and detect falls.
This new system was able to achieve 88.33% accuracy.

Figure 2.12: Fall detection using RGB/depth imaging, Adhikari et al. [84].

Khraief et al. [92] combine the results of shape, RGB, depth, and motion analysis with
a four-stream CNN: the first stream, much like Adhikari et al., performs pose recognition
on a sequence of frames and models pose deformations; the second stream extracts visual
information from RGB and depth images and takes advantage of their complementarity;
the third stream focuses on optical flow and occurrences of sudden movements; the fourth
stream complements the third by measuring motion velocity and direction, based also on
optical flow. This method achieved excellent, almost perfect results, which the authors
expect to be improved further by adding an additional stream analysis of wearable data.

The remaining systems are all based on simple RGB imaging and do not differ significantly in
their approaches. De Miguel et al. [72] offer a relatively robust system without relying on DL
techniques, instead choosing simple FE methods and a k-NN for classification, surpassing
some more complex systems in performance and in being by far one of the cheapest to
build. Wang et al. [99] use a CNN on top of non-DL techniques for FE and an SVM for
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classification. The rest all use some sort of neural network for classification at least. The
model created by Lu et al. [104] is of special importance as it consists of a 3D CNN to
perform FE and an LSTM to classify sequences of frames. Its structure closely resembles
this project’s model, and the results presented by its authors definitely set a standard to look
up to.

Yet, despite the values indicating high performance, one must take these results given by
researchers with a grain of salt. Especially in the context of fall detection, traditional dataset
splicing (holdout and similar) by itself cannot recreate the necessary conditions to adequately
test and portray the model’s actual performance. This is mostly due to how fall detection
datasets are constructed - data variety is so low that using “unseen” test data from the same
dataset also used for training can produce misleading results. In other words, the model’s
capacity to adapt to new situations is rarely adequately tested. One way to abate, not solve,
this problem is to use an entire separate dataset just for validation and testing (for example,
using FDDBg for training, UR-Fall for validation, and HQFSD for testing). This method is
seldom used and is found even less commonly in the lower rows of Table NEED REF.

Adding to this, earnest comparisons between systems performance-wise cannot be made
in good faith unless the two systems use the same instance or collection of datasets for
testing. Contrasting general action recognition and image recognition, no standard dataset
for fall detection exists, like UCF101 or Kinetics. Researchers train and test their models
on whichever datasets they deem more appropriate, usually resulting in varying levels of
accuracy when introducing data from other datasets.

2.3 Privacy and data management guidelines in visual Fall De-
tection Systems

As visual FDSs rely on constant and systematic video surveillance of a subject and possibly
public or third-party spaces, the development and use of these systems must be scrutinized
and made to comply to regional or national legal frameworks regarding privacy laws, since
there are no international level set of regulations or guidelines that restrict general behav-
ior towards the handling of private data. In the European Union, the regulations stated in
the General Data Protection Regulation (GDPR) [107] dictate how sensitive data should
be collected, handled, and stored. The 3/2019 European Data Protection Board (EDPB)
guidelines on processing of personal data through video devices [108] provides substantial
insight into how to process and manipulate personal data in compliance with existing regu-
lations. According to Article 5 of the GDPR, visual data collected by an FDS, which must
be considered intensely intimate personal data, can:

• only be processed for the sole purpose of detecting human falls (Article 5 (1) (b))

• only contain information relevant for the detection of falls (Article 5 (1) (c), ‘data
minimization’)

• stored for long periods of time only if for scientific/statistical purposes, perhaps with
the end goal of improving the classification algorithm (Article 5 (1) (e))

• be processed only in a manner that ensures its security and protection from unlawful
and unauthorized access (Article 5 (1) (f))

Furthermore, on a more ethical note, data processing is lawful only with the full consent
of each data subject, who must be fully aware of its purpose (Article 6 (1) (a)). The
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controller (in this case, the FDS’s developer/distributor or an entity responsible for elderly
care) must be able to demonstrate that consent was, in fact, given by the data subject,
who has also been made aware of their right to, at any time and for any reason, withdraw
their consent (Article 7 (1), (3)). In the case that the data subject is physically or legally
incapable of providing consent and the controller is able to prove this, as well as justify that
this processing is in accordance with the subject’s vital interests, Article 9 (2) (c) could
theoretically be invoked [108, p. 17] (69).

FDSs should either fall in the category of black-box or real-time monitoring systems. The
difference between the two being that, in the case of the former, data is placed in storage
temporarily before deletion and can only be accessed in the event of an incident, while in the
latter no data is stored at all. Black-box solutions have the advantage of preserving some
data as evidence which, in the context of fall detection, could help researchers better under-
stand the algorithm’s performance and possibly improve it. Real-time monitoring solutions,
conversely, cannot recover data post analysis, but also do not run the risk of unauthorized
access to stored data. In both types of systems, it might still be possible for a third party
to illegally access the video feed. It is up to the system’s developers to choose what design
fits best to a given situation [108, p. 11] (29).

Regarding data minimization, several FE methods already involve eliminating extraneous
information from frames, such as background removal and optical flow. It could be argued
that the use of these techniques does ensure a less intrusive experience, but being operations
that occur during or after processing, the unaltered captured footage is still vulnerable. Ma
et al.’s [100] system goes one step further and automatically obscures any of the subject’s
identifiable facial traits at the video capturing stage. This method involves finding facial
features in thermal imaging first and generating a mask that is then applied to a spatial light
modulator, preventing light originating from the subject’s face from reaching the camera’s
RGB sensor. As result, the captured images themselves feature black shapes that hide the
subject’s face, whose identity is concealed throughout the fall detection process.

Figure 2.13: Different mask shapes in Ma et al. [100].

Although RGB-based FDSs’ main issue is their inherent breach of privacy, almost no project
article mentioned so far includes an in-depth description of procedures that prevent unautho-
rized access to data (either stored or captured). This is one aspect that researchers should
pay special attention to, particularly if the FDS in question is designed for actual real-life
use in mind.
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Chapter 3

Method and Implementation

This chapter provides a detailed account of the implementation process for an automated
fall detection system. It begins by announcing the method devised for this project. Following
this is a section elucidating the tools and technologies employed in this project, and sections
that address the subject of datasets, including the inherent limitations of fall detection
datasets, the compilation of multiple exisitng datasets, the creation of a new dataset, and
the techniques employed for data preprocessing and augmentation. A subsequent section
focuses on the software programs employed to extract segments from video recordings and
modify video characteristics. Furthermore, the chapter explores each model employed for
FE and classification, along with their respective functionalities. Finally, a brief explanation
is provided regarding the integration between the FE models and the classification model.

3.1 Method

This thesis proposes the implementation of DL algorithms and techniques, specifically com-
puter vision, to create a model capable of distinguishing falls from ADLs, the latter term
emcompassing all human actions and interactions that do not consist of falls. It should make
this distinction based on real-time data streams originating from standard RGB cameras and
should strive to be accurate, avoiding false predictions.

A careful exploration of the state of the art, including the of the state of both the fields of
camera-driven fall detection and general action recognition, was made with the objective of
encountering an optimal approach to this problem. This analysis resulted in the theory that
the implementation of the combination of two models - one responsible for FE, another for
classification - would be a promising subject, worthy of research. It was theorized that the
I3D, which recently has outperformed other CNNs on action recognition tasks in accuracy
and efficiency, would be the best candidate for an accurate, yet efficient FE model, and
that its use in conjunction with an RNN would provide the best accuracy results out of all
other techniques seen in other FDSs. This hybrid model must be built, trained and have its
performance compared to other FDSs.

Since DL algorithms need to be trained and tested with data and obtaining said data from
actual recorded falls of seniors is both challenging and unethical, said data must be created
from simulations of falls. These simulations must be numerous and of good variety, repre-
senting a good range of possible fall and ADL scenarios, in order to improve the model’s
performance and make it adequately robust for actual real-life use. A custom private dataset
must then be created, in tandem with existing public datasets, to provide even more data
diversity. This, of course, requires the procurement of cameras to record falls and ADLs
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with, in addition to the development of programs and algorithms to access the cameras’
feed, as well as to store and organize the newly captured videos.

Following its acquisition, the data must be preprocessed, as to, for one, be compatible with
the expected DL algorithm’s input. This includes truncating each video to a set duration,
discarding any unnecessary information. Several data augmentation techniques were also
used to also further improve the data’s quality and variety, thereby increasing the model’s
performance. This will be accomplished with the creation of other programs specifically
designed to slightly alter some of the videos’ characteristics such as contrast and orientation.

Once all data is collected and processed, the I3D/RNN hybrid model must be tested rig-
orously to prove its usefulness for real-life use. This involves putting it up against other
models features in other FDSs: a 2D CNN and a more traditional 3D CNN, two very com-
mon models in this field, were chosen to be compared to the I3D on their FE capabilities;
two RNNs, an LSTM and a GRU, along with a 2D CNN, will all be tested in classifying the
output of the FE models. Each experimented model being subject to various modifications
and tuning processes to increase their performance as much as possible.

The flux diagram shown in figure 3.1 presents the functioning of a hypothetical FDS which
would be capable of receiving the video stream originating from a camera, extracting video
segments from it, and send those to the model that has been incorporated into the system.

3.2 Tools and Technologies

In order to develop and implement an FDS based on RGB imaging, several tools and tech-
nologies were used. Concerning physical instruments, one Xiaomi home security camera was
acquired and modified to both record a dataset and for testing purposes, the author’s own
PC was used to access the camera feed and to store footage, and DevScope’s AI R&D lab,
which enables access to several computer units equipped with CUDA-compatible1 GPUs,
was used to build, train, and test DL models. Additionally, but less noteworthy, several
household objects served as props for the constructed dataset, as were some rooms of the
author’s house also used as background.

Regarding virtual technologies and programs:

• The programming language Python features heavily in the programs used to access
the video feed, store, and edit footage as well as in code related to the model’s
construction and testing.

• The OpenCV2 library was used to record, store, and edit videos and frame manipula-
tion.

• The camera was modified to create a RTSP (Real Time Streaming Protocol) server
at startup capable of streaming the camera’s feed. Scripts and other files were created
by GitHub user Filipowicz251 and five other contributors3 and altered as seen fit.

• The code related to building and testing the models was contained in Jupyter Note-
books.

1https://developer.nvidia.com/cuda-toolkit
2https://opencv.org/
3https://github.com/Filipowicz251/mijia-1080P-hacks
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Figure 3.1: Proposed system flow.

• PyTorch4, Tensorflow5, GluonCV6, their libraries and extensions, and frameworks built
on top of them, including Keras7, were used to develop both models.

• The models ran on CUDA-enabled GPU acceleration, greatly shortening training and
classification times.

3.3 Datasets

The development of a DL model requires the assembly of a dataset to train and test its
validity for real-world use. As discussed in section 2.2.2, one of the biggest hurdles in
constructing fall detection systems via visual sensors is obtaining enough data and ensuring
its quality. On one hand, existing public datasets are small and relatively homogeneous,
while, on the other, creating one must be done by methodically staging and simulating falls,
which implies employing actors and using several backgrounds and room layouts. Building

4PyTorch is “an open-source machine learning framework. . . ”: https://pytorch.org/
5Tensorflow is “an end-to-end machine learning platform”: https://www.tensorflow.org/
6“GluonCV: a Deep Learning Toolkit for Computer Vision”: https://cv.gluon.ai/contents.html
7Keras is a deep learning framework built on top of Tensorflow: https://keras.io/
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Figure 3.2: A Jupyter Notebook. This instance allows for feature extraction
using the I3D model

a dataset that is as big and as varied as the popular datasets for general action recognition
would necessitate such a level of preparedness and organization that it would require its
own expensive and time-consuming project. Yet, as it stands, a fall detection model trained
on one dataset would invariably lack generalization capabilities – one dataset cannot hope
to capture even a fraction of all possible variations in fall scenarios as to train a model
effectively.

One thing that can alleviate both issues of dataset size and variety is simply combining
several existing datasets into one. This has been carried out by several projects as pointed
out in section 2.2.3 and the same has been done here. But even this method might not be
foolproof: combining UP-Fall and HQFSD would provide more than 800 falls, not counting
ADLs, but only 2 different backgrounds. There is no way to ensure that an NN trained and
tested on these two datasets would not learn background patterns which are useless or even
detrimental to detecting falls in other instances, but which are over-represented due to how
repetitively they appear in data. A few datasets show actors falling exclusively on mattresses
or carpets, for instance, which might give the model “the wrong idea”.

Another point also briefly discussed in section 2.2.3 is a problem that arises from this lack
of variety. In using a homogeneous dataset, one cannot guarantee the validity of the test
results, as the data present in the test split, supposedly completely unknown to the model, is
too similar to the train data to reflect the model’s generalization performance - the model is
possibly already “familiar” with the test data, in other words. Even when combining several
datasets, in the case of fall detection this might be insufficient. One way to remedy this
would be to use one or more datasets in the train split and one or more whole separate
datasets for the validation and test split each. For instance, using FDDBg and HQFSD for
training, Multicam for validation and UR-Fall for testing. This cannot be done haphazardly,
however, as reserving an entire dataset for testing deprives the model of much needed data
and variety in training; while trying to avoid overfitting, one might be enabling underfitting
instead.

For this project, it was decided to combine several datasets in order to maximize variety,
number, and quality of data. On top of this, it was deemed necessary to record an original
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dataset to complement the compilation of existing datasets and to provide a more realistic
training process. In essence, two separate datasets were constructed - the first, a compilation
of publicly available datasets, and the second, the original, could supplement the training set
and “free” two smaller datasets for validation and testing. The question of which datasets
might be excluded from the training set is tackled in the following chapters.

3.3.1 Compilation of existing datasets

Videos from five datasets, UR-Fall [89], UP-Fall [82], HQFSD [87], Multicam [85], and FD-
DBg [88], were selected, half being videos depicting a fall and the other half including some
kind of ADL. Videos depicting what are considered to be “critical” ADLs were prioritized;
these are ADLs which might most visually resemble the movements of a fall, such as sitting,
bending down, kneeling, and lying.

The selection and arrangement of datasets for compiling was guided by three decision fac-
tors: data structure, quality, and balance. Firstly, the model exclusively accommodates
video segments, rendering the inclusion of FDDBm unfeasible due to its data consisting of
disjointed frames lacking temporal continuity. Secondly, certain datasets exhibit fall sce-
narios that more closely resemble real-life occurrences, and these were prioritized. Lastly,
the integration of a large dataset with a relatively smaller one may introduce an imbalance,
potentially compromising the model’s learning process. This concern was particularly rele-
vant in the case of UP-Fall, where its full inclusion would create said imbalance. The exact
distribution of each dataset (after preprocessing) is as follows:

• UR-Fall: 120 segments

• HQFSD: 504 segments

• FDDBg: 302 segments

• Multicam: 352 segments

• UR-Fall: 600 segments

Some fall videos from HQFSD and FDDBg were excluded, since these depicted falls that
were too obscured, not acceptably apparent, or even entirely absent: for instance, as every
fall in HQFSD was recorded with 5 cameras simultaneously, due to the actor’s positioning
some falls occurred completely out of some of the cameras’ field of vision. A little less than
half of UP-Fall was left out, due to the conclusion that these videos did not contain vital,
essential data and that their inclusion would create too much imbalance. A considerable
amount of ADL segments was extracted from the same ADL video and some even from
fall videos in order to increase the dataset’s size and to even out fall/ADL distribution, in a
process that is discussed more thoroughly in section 3.3.3. In total, this compilation contains
1,878 videos.

3.3.2 Construction of the original dataset

A Xiaomi MI Home Security Camera Basic 1080p [109]8 was procured and configured to
create a streaming server at startup through RTSP. This enables any computer within
the camera’s local network to access its feed without having to access it through Xiaomi

8This specific camera is not representative of the type of camera that should be used in an actual FDS,
or in anything but a prototype.
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Figure 3.3: Frames from all compiled datasets. Clockwise, starting from top
left, ending at middle: Multicam, UP-Fall, FDDBg, HQFSD, UR-Fall.

proprietary and closed software, making video capturing and editing possible. It was with
this camera that all videos used to construct the new, original dataset were recorded.

Besides the camera, the materials used are as follows: the only actor was this thesis’ author,
the six backgrounds were two bedrooms, bathroom, the dining room, the living room, and
foyer of the author’s residence. Crutches and several household items (clothing, blankets,
books) were also featured in some scenarios. Using the table in section 2.2.2 as reference,
this dataset would be described in the following manner:

• Number of

– Subjects: 1

– Falls: 514

– ADLs: 514

– Backgrounds: 6 (at least 2 lightings and angles each)

• Fall diversity: Diverse

• Sensors: 1 RGB camera

In terms of size, this dataset was held back by not having more than one camera. If one more
camera was available to capture an additional angle of each scenario it would be larger than
any other public dataset. Comparatively, however, this one is surpassed by no other dataset
in number of distinct fall and ADL scenarios, as every video contains a unique sequence of
movements. HQFSD, for instance, contains five videos for each of the mere 55 fall scenarios
and 17 ADL scenarios.
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Figure 3.4: Frame from original dataset.

The dataset’s size was limited by the absence of multiple cameras. Incorporating an addi-
tional camera to capture an extra angle for each scenario would make this dataset surpass
the size of any existing other. Nevertheless, when considering the number of distinct fall
and ADL scenarios, or videos in the dataset that showcase a distinct sequence of move-
ments, this dataset remains unparalleled. The presence of a singular subject throughout all
the videos hurts data diversity. In order to address this limitation, various attires were worn
during the filming process over multiple days, thus introducing a modest yet noteworthy level
of visual diversity. Recording videos on different days and at different hours of the day also
resulted in distinct levels of natural and artificial lighting and varying levels of illumination
intensity, from fully illuminated to completely dark. Furthermore, the camera’s night vision
capability was employed, resulting in some videos being black-and-white.

Special care was taken to walk and move while simulating physical impairment in order to
act out more realistic scenarios. Additionally, interactions with objects were included, such
as throwing, shaking, dropping, picking, manipulating, and otherwise interacting with books,
clothes, blankets, doors, drawers, furniture, crutches, and even a dog. These features are
seldom seen in other datasets. Some scenarios occurred in the scenic background and a few
obscured falls were incorporated, such that either only the subject’s body hitting the ground
can be seen or only the movements before hitting the floor are visually present. These
scenarios were expected to be very difficult for any model to accurately classify, especially
considering they rarely appear in the other datasets. However, it was deemed important
to include these videos, even if an actual FDS would make use of more than one camera
specifically to counteract the effects of blind spots and almost-out-of-frame movements, as
their use in training data increases adaptability at little to no cost to accuracy.

Most ADL videos were extracted from fall scenarios through preprocessing, in order to match
the number of fall videos, resulting in 1,028 videos in total. Again, this process is explained
more in depth in the following section.

3.3.3 Data preprocessing and augmentation

Before introducing the collected videos to the model, all videos were subject to an editing
process with the goal to 1) transform them into data resembling what is considered the
expected input of the model, 2) to reduce the amount of worthless or misleading information,
and 3) to further improve data variety.
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Figure 3.5: Frame from original dataset using the camera’s night vision func-
tion.

First, all videos were edited to only be of a set duration or shorter. This duration was decided
on the basis that all video segments, including those going to eventually be fed to the model
in final stage of the FDS’s development, should be just long enough to contain the subject’s
posture before, their movements during, and their position after the fall. Simultaneously,
segments should not be unnecessarily long and, by being so, decrease system performance.
Three seconds, as it stands, was found to be a perfectly adequate duration, and does
have the fortunate side effect of decreasing the dataset’s storage size. Quite a few HQFSD
1920x1080 videos were several minutes long, reaching over 20 minutes length in some cases.
Excluding many UR-Fall videos that were shorter than three seconds, and which were left
unedited, all other videos had to be shortened. With falls and “critical” ADLs, videos were
cut to only contain the most important motions, at slightly different starting points.

As stated previously, several videos, despite being labeled as falls by their respective dataset’s
original creators, contained severely or entirely obscured falls. If included in the train set,
these videos would negatively impact the model’s learning process. For this reason, if no
useful data could be otherwise extracted, the videos were simply excluded from the “fall”
label. Videos that had no human presence were labelled as “ADL”.

Lastly, in another effort to increase data diversity, several image augmentation methods
specific to each video were employed that alter the video’s hue, contrast, and color warmth
values, as well as occasionally mirroring and tilting every frame belonging to a single video
segment. This step was crucial in increasing the dataset’s variety.

After preprocessing, the two datasets add up to 2,906 video segments, 4.14 GB in storage
space, 1 hour, 12 minutes, 21 seconds of fall and 1 hour, 12 minutes, 23 seconds of ADL
footage, totaling 2 hours, 24 minutes, 44 seconds of 30 FPS footage, consisting of 260,520
individual frames.

3.4 Video capturing and editing programs

Several Python programs were written in the course of this project: one was used to access
the Xiaomi’s camera feed, record, and store footage to build the original dataset; another
was used to apply data augmentation techniques to the videos in both datasets; and a third
was developed to capture the camera’s feed, extract three second segments, pass these on
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to the fall detection model and emit an alarm, if necessary. The rest were written to aid in
preprocessing or aid in dataset construction and compilation.

Both programs responsible for accessing the video stream do so through OpenCV’s Video-
Capture function, which takes the camera’s RTSP server IP as parameter. As soon as a
connection is established the capture stream becomes active, the frame size is determined,
and OpenCV’s VideoWriter is used to save the video in memory. VideoWriter is run before
the feed is terminated by manual input, in the case of the first program, or called repeatedly
in three second intervals by two parallel threads, one of which is 1.5s ahead of the other.
This way, video segments overlap each other, minimizing the chance that a fall occurs be-
tween segments, too late in one segment and too early in the following segment for it to be
detected. This “sliding window” approach was tested and found to be sufficiently fast that
the model is able to classify segments slightly after the following segment is stored, ensuring
a timely, as close as real-time that is possible, alarm activation.

The second program starts by separating each video by frames. Following that, it performs
image augmentation techniques on all video frames, including randomly changing hue, con-
trast, and brightness values in addition to random image mirroring and perspective shifts.
These operations are performed on frame batches, which ensures that all the frame’s frames
are altered the exact same way. Tensorflow’s Image library was used to accomplish this.

Figure 3.6: Frames of video segment that underwent image augmentation.

Figure 3.7: Original frame and augmented frame side-by-side.
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The rest of the programs are very minor, serving as a way to automatically alter a large
number of videos’ frame rate, length, and filenames – essentially performing tasks that
would be too time-consuming if done manually.

3.5 Model structures

In this section, insight is given on how the fall detecting model is structured, what compelled
the choice of these types of DL models, and how they function. The first subsection is
dedicated to the I3D CNN, the two other alternative models, and their role as feature
extractors. The second lists the several classification models tested, namely GRU, LSTM,
CNNs, and how they function in order to classify the extracted features. The last subsection
presents a small summary explaining how these two parts interact and operate as a whole.

3.5.1 Feature extraction models

Videos are simply sequences of frames, so in order to classify human motions contained in
video, a computer program could, at some point, perform computations and analysis on
the image level and reach a conclusion drawn from them regarding the whole sequence.
Initially, the ML algorithm in charge of detecting falls (or other human acts) on video has
available to it, in essence, a sequence of matrices containing the color values of each of
the frame’s pixels. Unchanged, data formatted this way could be processed and combed for
signs indicating specific movements. However, FE helps single out and only consider patterns
that, in theory, are most important for the task at hand, ensuring cleaner and simpler data.
If the purpose is to detect human motion, it would be helpful for the algorithm to only focus
on human figures, for example.

CNNs are especially suited for FE due to their ability to find shapes and patterns in images
regardless of their position. Adequately trained, these models can consistently and accurately
detect a person’s outline and pose. But when using a CNN to process sequences of frames
for specific movements, on the other hand, there’s a risk that it will not be quite as precise
because the CNN is not able to learn time-specific information. The model combs through
frames individually and separately, ignoring any patterns that might exist “in-between” them.

To remedy this problem, adding a recurrent layer to a CNN model, such as an LSTM,
would allow it to process time distributed sequences and enable spatio-temporal classifi-
cations. Another solution, three-dimensional CNNs (3D CNNs) are, unlike traditional 2D
CNNs, specifically designed to perform the typical CNN operations on ordered sequences
– the added dimension being temporal in nature. Carreira and Zisserman’s work in “Quo
Vadis, Action Recognition?” [110] demonstrates the performance difference between the
two aforementioned solutions, a 3D-fused two-stream network, and their implementation
of a two-stream I3D on the popular HMDB-51 [111] and UCF-101 [81] action recognition
datasets. The results presented show clearly that the I3D outperforms any other type of
NN in action recognition.

For this reason, coupled with the fact that using a 3D CNN for FE is rare in prevailing
FDSs (and none has used the I3D), the exploration of an I3D and a RNN combination was
thought of as a promising subject of investigation in the field of fall detection. Consequently,
this hybrid model was implemented and subjected to rigorous testing, alongside other models
employed as benchmarks, to facilitate the evaluation of their respective performances. Thus,
three pre-trained FE models were tested: an I3D, a conventional 3D CNN, and a 2D CNN.
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Given that the I3D model has not been subject to extensive usage and evaluation like the
other two types of models, it is crucial for it to exhibit superior performance in order to
establish itself as the optimal solution for visual fall detection. In comparison to the I3D
model, these alternative models have been thoroughly employed and tested by numerous
researchers. Hence, for the I3D model to claim its position as the most effective solution,
it is imperative that it outperforms these established alternatives.

Regardless of the chosen model, each video produced a output structured as a tensor com-
prising a sequence of n elements. Each element within the tensor represented an array
consisting of 1,024 values respective to a frame of the input sequence. In instances where
the duration of a video was less than three seconds, resulting in a lower number of frames,
the output tensor would contain a reduced number of arrays. In such cases, the last array
was duplicated to ensure the tensor matched the expected length. On the contrary, in the
unlikely event that the video contained extra frames, and, as such, the output sequence
contained more than n elements, the sequence was truncated accordingly to conform to
the desired length. Initially, the raw video files automatically undergo a conversion process
wherein they are transformed into a series of image frames and subsequently subjected to
cropping and resizing operations, and then fed into the FE model.

Figure 3.8: The I3D’s standard output in ’flow’ mode. The input video was
divided into 20 equidistant frames.

Two-stream Inflated 3D CNN (I3D)

Training 3D CNNs from scratch can be computationally expensive due to the increased
number of parameters. The I3D model tackles this problem by taking pre-trained 2D CNNs
on large-scale image datasets, such as ImageNet, and inflating them to 3D. It initializes the
weights of the 3D CNN by copying the learned weights from the corresponding 2D CNN
layers. The I3D model is an extension of the Inception architecture specifically designed
for video understanding tasks, such as action recognition. Simply, by using the inflated
weights, and applying 3D convolutions to capture temporal dependencies across frames and
2D convolutions to extract spatial features within each frame, the I3D model can efficiently
learn spatio-temporal features from video clips. The network architecture consists of multiple
convolutional layers, followed by pooling, non-linear activation functions, and fully connected
layers for classification.
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Chapter 3. Method and Implementation

The I3D model has achieved impressive performance on various action recognition bench-
marks, including Kinetics [29]. It demonstrates the ability to recognize and classify actions
in videos by effectively modeling both spatial and temporal information. The pre-training
strategy with inflated 2D CNN weights enables the model to benefit from large-scale im-
age datasets, enhancing its ability to generalize and learn robust representations for video
understanding tasks.
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Figure 3.9: The inception module - the building block of the I3D [110].

The implementation of a pre-trained I3D model from the Kinetics-400 dataset, using Py-
Torch, derived from the work of Vladimir Iashin and three other contributors [112], was
utilized and modified for the purposes of this project. Aiming to use it as a feature ex-
tractor, its final layers were removed. Its two streams are capable of producing both RGB
features, in other words, features obtained from the RGB channels of images and videos,
and optical flow features, or features extracted through analysis of the velocity and direction
of objects present in the videos. The I3D can output one of these feature types at a time,
but it is meant to do both simultaneously. When the single stream mode is selected, the
model generates an output in the form of a tensor consisting of n arrays, with n representing
the number of frames within the sequence. Conversely, if both streams are chosen, the I3D
model produces two tensors for each type of feature.

Another I3D was also implemented with the intent to fine-tune it to also detect falls, as
opposed to merely extracting features. Architecture-wise, the only difference to the original
is the last layer, which was included, made trainable and whose output was changed to fit
the binary classification problem. For the sake of convenience, the GluonCV implementation
of a Kinetics-400 pre-trained I3D provided a quick and easy way of setting up, training, and
testing the altered model, but regarding the model’s functioning, it is exactly the same as
the previously mentioned PyTorch implementation – minus the output. Since it eschews a
dedicated FE model, the Fine-Tuned I3D (FT-I3D) was the only model that functions in
isolation. This FT-I3D was only tested with both feature types.
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3D ResNeXt-101 (3D CNN)

ResNeXt-101 is a deep learning model that belongs to the family of convolutional neural
networks (CNNs). It is an extension of the ResNet (Residual Network) architecture, which
has been widely used and highly successful in various computer vision tasks, such as image
classification and object detection. The ResNeXt-101’s original model structure is based
on the ResNet (Residual Network) architecture, and introduces a novel concept called "car-
dinality" to enhance the representational power of the network. Cardinality refers to the
number of parallel pathways, or "cardinal groups," in a network layer. In a ResNeXt-101,
each layer is composed of multiple cardinal groups, where each group operates indepen-
dently and learns diverse feature representations. The increased cardinality allows ResNeXt
to capture a wider range of feature patterns by jointly learning from multiple pathways. This
design choice improves the network’s ability to model intricate details and boosts its overall
performance. The "101" refers to the number of layers in the network, making this model
a very deep one.

Figure 3.10: The 3D ResNeXt-101 block [113].

With the exception of modifications made to ensure package compatibility and to the input
algorithm, the only alteration made to the model was the incorporation of an average pooling
layer.

The 3D CNN tested was adapted from the work of Hara et al. [113]. Specifically, the model
used was a ResNeXt-101, modified to incorporate 3D convolutional layers, and pre-trained on
Kinetics-400, which has achieved great results on various visual recognition tasks, including
image classification and object detection benchmarks like ImageNet - a capability which
might be transferable to fall detection. It has been widely adopted as a powerful backbone
architecture in many computer vision applications due to its impressive performance and
ability to learn rich representations from complex visual data.

Its projected performance was thought to be better than the 2D CNN’s, as the resulting
tensor would not only contain spatial, but also temporal features, providing a more com-
prehensive representation of the input data. Unlike the I3D, the ResNeXt is one-stream,
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indicating that the only feature type it is capable of generating is RGB type features.

EfficientNetV2 (2D CNN)

The EfficientNetV2 is a family of deep learning models designed to achieve state of the art
performance in image classification tasks while maintaining computational efficiency. It is
an extension and improvement over the original V1 models, which were already well known
for their accuracy to model size ratio. They are built using a compound scaling method that
optimizes the architecture’s depth, width, and resolution simultaneously. This compound
scaling allows the models to be more accurate by scaling up the dimensions while keeping
the model computationally affordable. The main idea behind EfficientNetV2 is to leverage
AutoML (Automated Machine Learning) techniques to search and optimize the architecture
automatically. This approach helps to identify the most effective network designs and model
configurations for a given task.

Figure 3.11: The MBConv and Fused-MBConv blocks that make up the
EfficientNet [114].

There exist several EfficientNetV2 models defined by their size, and the one specifically
used in this project is the "small" variant. The "medium" and "large" sizes are also avail-
able, but all models are designed to be lightweight, making them suitable for deployment
on computationally weaker devices like mobile phones. Their proficiency is similar, although
there is a slight increase in accuracy towards the "heavier" models when tested on Ima-
geNet [115]. EfficientNetV2 models also incorporate various advanced techniques such as
stochastic depth, drop-connect, and improved training schemes. These techniques enhance
the model’s generalization capabilities, reduce overfitting, and improve overall performance.
As a result from all of these qualities, these models have achieved state of the art results on
popular image classification benchmarks, ImageNet included, outperforming previous models.
They have, as such, become widely adopted in both research and practical applications.

The 2D CNN selected for this thesis was an EfficientNetV2 [114], pre-trained on the Im-
ageNet dataset. With an expanded and better-organized dataset, it was deemed valuable
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to compare the accuracy scores not just of the other FE models, but also of a previously
attempted fall detection approach, which saw the use of a MobileNet [116] 2D CNN for FE.

Despite the aforementioned accolades, it was theorized that, out of the three FE models,
the 2D CNN would fare the worst, in large part due to its inability to capture temporal
patterns, even when working in conjunction with an RNN. In fact, it was the only model
that required being inserted into a TimeDistributed layer, as its input only allows singular
images. Thanks to this workaround, it was then possible that from a sequence of frames a
sequence of feature tensors of the same size could be extracted, each element corresponding
to one input frame. Like the ResNeXt, this model only outputs RGB features.

3.5.2 Classification models

While 3D CNNs are well suited for image data, it has been found that they excel at extracting
low-level spatio-temporal features, information between sets of adjacent frames. Meanwhile,
recurrent networks such as LSTMs or GRUs are capable of modelling much higher-level, but
only temporal, features, being possibly more appropriate for detecting certain actions for this
reason. Wang et al. [117] demonstrate in their study that a combination of a pre-trained I3D
network, trained on the Kinetics dataset, and an LSTM model achieves superior accuracy
in classifying actions present in videos compared to other state of the art models. Notably,
the accuracy of this combined approach surpasses even that of an isolated I3D network.

For this thesis, it was deemed that such a pairing would give the best results, specifically
in terms of accuracy. However, there some doubts arose regarding the choice of DL model
that should be responsible for analyzing the extracted features and performing classification.
Two obvious alternatives, both examples of RNNs, were LSTM and GRU networks. Since
these are very similar in the way they are built and how they function, this was an opportunity
to see if their minor architectural differences would be reflected in some way in the accuracy
scores, in the context of fall detection.

Table 3.1: RNN initial structure (GRU, 12-length input sequence)

Layer type Output shape

Input Layer (None, 12, 1,024)
GRU (None, 12, 16)
GRU (None, 8)
[Dropout] (None, 8)
Dense (ReLU) (None, 8)
[Dropout] (None, 8)
Dense (softmax) (None, 2)

The initial layer composition, inspired by previous endeavors in visual action recognition, was
designed to resemble a relatively straightforward yet efficient RNN, as illustrated in table
3.1, which shows a GRU network configured to accept sequences of length 12. Dropout
layers are included in the table but were not always present in the models themselves, as
they were contingent upon the detection of overfitting during training. Should the need arise
to enhance the capacity of this structure in detecting pertinent patterns within the input
tensors, additional RNN and/or Dense layers may have been incorporated, or their outputs
modified. All parameters within the model were trainable. The output of this model consists
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of two numerical values ranging from 0 to 1, where the larger value signifies the class to
which the input video belongs.

The initial hypothesis suggested that RNNs would possess superior capabilities in detecting
fall-related motions due to their sequential nature. However, to examine this conjecture,
CNN models were also employed. Similar to RNNs, these CNN models had to remain
simple in order to prevent overfitting, considering the utilization of relatively uncomplicated
tensors as input objects. The existing sophisticated CNN architectures, such as ResNet
[118], EfficientNet, and Inception [119], were deemed unsuitable due to their complexity.
Consequently, a CNN model was constructed from scratch for this purpose.

Table 3.2 displays an initial configuration of the CNN. Similar to the RNNs, the composition
of the CNN underwent several iterations, involving the addition or removal of convolution and
dense layers. Additionally, the inclusion or exclusion of dropout layers was determined based
on the specific circumstances. The present architecture consists of a total of 3,204,178
trainable parameters.

Table 3.2: CNN initial structure (12-length input sequence)

Layer type Output shape

Conv2D (None, 12, 1,024, 32)
MaxPool2D (None, 6, 512, 32)
Conv2D (None, 6, 512, 64)
MaxPool2D (None, 3, 256, 64)
Conv2D (None, 3, 256, 64)
Flatten (None, 49,152)
[Dropout] (None, 49,152)
Dense (ReLU) (None, 64)
[Dropout] (None, 64)
Dense (ReLU) (None, 32)
[Dropout] (None, 32)
Dense (ReLU) (None, 16)
[Dropout] (None, 16)
Dense (softmax) (None, 2)

Naturally, both of these structures were altered more substantially throughout the course of
testing by changing the number of Dense, RNN, or convolutional layers. Table 3.3 exemplifies
one such variation, which was an attempt to build a slightly more complex LSTM compared
to the initial structure.

3.5.3 Final hybrid structure

Combining the truncated version of the FE models with either an RNN or CNN results in an
hybrid structure with upwards of 23,000,000 parameters. The program that incorporates this
model and used in the FDS is expected to access the camera’s stream and extract three-
second video segments which are then introduced to the model unchanged. The model
receives the video file and performs FE. According to observations taken during testing
several models on a computer running a NVIDIA GeForce GTX 1080 Ti, the time it takes
to feature extract three-second video files, assuming GPU acceleration is being applied,
averages at ∼1.3 seconds per video, which is well within the acceptable computing time
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Table 3.3: A more complex LSTM structure, nicknamed LSTM-MCQ2 (20-
length input sequence)

Layer type Output shape

Input Layer (None, 20, 1,024)
LSTM (None, 20, 64)
LSTM (None, 20, 32)
LSTM (None, 16)
[Dropout] (None, 16)
Dense (ReLU) (None, 16)
[Dropout] (None, 16)
Dense (ReLU) (None, 8)
[Dropout] (None, 8)
Dense (softmax) (None, 2)

range. Following that, the resulting tensor is inputted to the GRU network, which classifies
it – again assuming with GPU acceleration, this process is nigh instantaneous, but it is
expected that even without it the computing time should not be excessively long. The two
output values are compared, and class is immediately ascertained. If the video is classified as
a “fall”, then the program can proceed with raising the alarm. The model’s workflow can be
visualized in figure 3.12. Although the integration of two models in this way is a commonly
employed technique in current research, none of the existing systems have specifically utilized
the I3D model, despite its proven effectiveness.

Feature Extraction

[
    [0.29681239 0.86873388 0.15725447 …
    [0.27034098 0.76658106 0.15346982 …
    [0.47277412 0.69153214 0.18793136 …
    [ …
]

[0.36 0.64]

Classification

Inflated 3D CNN Class. network

adl fall

Figure 3.12: Fall detection hybrid model workflow.
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Chapter 4

Testing and Evaluations

This chapter focuses on the crucial component of an FDS, namely the fall detection model,
as it has the most influence on system performance. The analysis of various models and
the assessment of their accuracy, along with other pertinent metrics, are discussed herein.
The methodology employed for conducting these tests is initially elucidated, followed by an
exploration of the most meaningful metrics for fall detection. Subsequently, the case studies
are presented, along with the corresponding outcomes obtained.

4.1 Methodology

The datasets underwent preprocessing and augmentation prior to being used as input for the
FE models. These models produced tensors, which were combined with their corresponding
labels and filenames, resulting in separate dictionaries for each dataset. To determine the
allocation of datasets for training, validation, and testing, certain considerations were taken
into account. The original dataset, UP-Fall, and Multicam were deemed too large to exclude
from the train set, while HQFSD contained crucial quality scenarios that should not be
omitted. Consequently, out of the remaining datasets, FDDBg, for being the bigger dataset,
was designated as the validation set, and UR-Fall was chosen as the test set.

It is important to highlight that the datasets employed in this study still do not provide a
complete assessment of the model’s performance. Swapping the validation and test splits
would yield entirely different performance scores. Nonetheless, given the limited availability of
sufficient data, this approach was considered the minimum requirement. Prior to utilization,
all sets had their data shuffled to ensure randomness in the input to the model.

The primary focus of scrutiny in this investigation pertained to the classification models.
Regarding the functional aspects of the FE models, the only modification made was the ad-
justment of the frame skip value, determining the number of frames processed and the input
size of the classifier. The implementation of model checkpoints, facilitated by the utilization
of Keras’ callback library, allowed for automatic preservation of the model’s parameters in
case the validation results exhibited improvement during training. Consequently, at the con-
clusion of the training process, the weights acquired at the best epoch, based on validation
accuracy and loss, were loaded onto the model for the subsequent testing. Additionally, the
number of training epochs was subject to modification. Lastly, the optimizer and type of
loss were regarded as mutable parameters within the model’s compiler.

To summarize, the variables monitored or adjusted to assess and enhance the model’s per-
formance encompassed the following factors:

• FE models - Number of input frames sequences
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• Classification model structure, including:

– Number of dropout layers and percentage of neurons dropped

– Number and format of conv/RNN/dense layers

• Classification model compiler:

– Loss type

– Optimizer

– Learning rate (decay)

• Number of epochs

• Class weights

The collection of hyperparameters for a specific model configuration is designated as λ. λ
was altered as seen fit in order to increase validation accuracy as much as possible. The
configuration which managed to perform above all others was then tested on the test set.
When constructing an FDS, certain evaluation metrics hold greater importance than accu-
racy alone. The avoidance of false negatives (undetected falls) is of utmost importance.
Specifically, recall (also known as true positive rate) and its counterpart, miss rate (false
negative rate), were given higher priority during result analysis, following the logic laid out
in section 2.1.3. Nevertheless, accuracy, precision, specificity, and F1 score were also con-
sidered and exerted some influence when comparing different models.

The testing procedure entailed the utilization of one of the FE models, which processed all
datasets. This model was configured to partition each video into a predetermined number of
frames. The resulting outputs were then organized into train, validation, and test sets. To
ensure randomness, the order of elements within each set was randomized. Subsequently,
an initial iteration of the classification model was trained using the train set, and its per-
formance was assessed on the validation set. Various minor modifications were introduced
to the structure and/or compiler of the classification model, as well as adjustments to the
training process, such as altering the number of epochs or adjusting class weights. The
modified model was then trained and validated accordingly. This iterative process continued
until all possible modifications were exhausted. The validation outcomes across all model
iterations were compared, and the model that exhibited the best performance was subse-
quently evaluated using the test set. This comprehensive evaluation was conducted for each
classification model. Once the testing of all three classification models was completed, the
FE model was then modified, and the entire process was repeated. This iterative procedure
was conducted for all FE models employed in the study.

4.2 Case studies

One case study was developed for each of the tested FE models. These case studies include
comprehensive tests utilizing all the classification models previously mentioned so that every
possible feature model/classification model combination is tested. The output structure of
all FE models were homogenized, so that the classification models could be used in any
combination with minimal alterations. However, while the EfficientNetV2 and ResNeXt-101
are one-stream, in its related case study, the I3D was configured to use both its streams to
output RGB frames, optical flow frames, and both. Each feature type was tested with all
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Figure 4.1: Evolution of training accuracy (blue) and loss (orange) over 89
epochs - ResNeXt-101/LSTM(-MCQ).

classification models. Additionally, experiments with an intact, fine-tuned I3D were included,
but only using both feature types. The RNN models were fitted with a Flatten-imbued
TimeDistributed layer when necessary, as the extra dimension created by both feature types
is incompatible with its possible input shapes, unlike with the CNN and I3D.

As such, case studies include the following model combinations:

• 1st case study - EfficientNetV2

– ENet/LSTM

– ENet/GRU

– ENet/CNN

• 2nd case study - ResNeXt-101

– RNeXt/LSTM

– RNeXt/GRU

– RNeXt/CNN

• 3rd case study - I3D

– I3D-RGB

∗ I3D-RGB/LSTM

∗ I3D-RGB/GRU

∗ I3D-RGB/CNN

– I3D-OF (optical flow)

∗ I3D-OF/LSTM
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∗ I3D-OF/GRU

∗ I3D-OF/CNN

– I3D-Both

∗ I3D-Both/LSTM

∗ I3D-Both/GRU

∗ I3D-Both/CNN

– FT-I3D

4.2.1 1st case study - EfficientNetV2

Tables 4.1 and 4.2 show the results of each model combination’s validation and testing
processes, respectively. All metrics were taken from the same model, chosen by the greatest
overall validation performance belonging to each model combination: for instance, the results
presented by the ENet/LSTM in table 4.1 are from the same model as the metrics attributed
to ENet/LSTM in table 4.2. The model combination which achieved the highest F1 score
on the test set is highlighted in both tables.

Table 4.1: EfficientNetV2 - Validation results on FDDBg

Model Accuracy Recall Specificity Precision F1 score

ENet/LSTM 82.8% 87.4% 78.1% 80.0% 83.5%
ENet/GRU 90.0% 88.7% 91.4% 91.2% 89.9%
ENet/CNN 90.7% 90.0% 91.4% 91.3% 90.7%

Table 4.2: EfficientNetV2 - Test results on UR-Fall

Model Accuracy Recall Specificity Precision F1 score

ENet/LSTM 80.0% 85.0% 75.0% 77.3% 81.0%
ENet/GRU 75.0% 80.0% 70.0% 72.7% 76.2%
ENet/CNN 83.3% 81.7% 85.0% 84.5% 83.1%

Globally, all metrics average at a little below of 90% and present what could be considered
acceptable performances, barring the ENet/GRU which barely reaches a test accuracy of
80%. However, as can be seen in the studies to follow, these results are unusual in the sense
that the classification CNN managed to slightly outperform both RNN models. Compared
to the ENet/LSTM, the second-best model, the ENet/CNN achieves a 2% higher F1 score,
but also exhibits a 3.3% lower recall value. Since recall is a prioritized metric in this context,
one could argue that the LSTM is the preferable choice, despite the lackluster specificity
and precision scores. Unsurprisingly, the test results are overall lower than the validation
results.

4.2.2 2nd case study - 3D ResNeXt-101

Tables 4.3 and 4.4, similar to the previous two, show the results of each model combina-
tion’s validation and testing processes. The best-performing feature type for each model
combination (F1 score) is again highlighted in both tables.
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Table 4.3: ResNeXt-101 - Validation results on FDDBg

Model Accuracy Recall Specificity Precision F1 score

RNeXt/LSTM 92.4% 93.4% 91.4% 91.6% 91.6%
RNeXt/GRU 94.4% 92.1% 96.7% 96.5% 94.2%
RNeXt/CNN 92.4% 86.1% 98.7% 98.5% 91.9%

Table 4.4: ResNeXt-101 - Test results on UR-Fall

Model Accuracy Recall Specificity Precision F1 score

RNeXt/LSTM 83.3% 86.7% 80.0% 81.3% 83.9%
RNeXt/GRU 87.5% 90.0% 85.0% 85.7% 87.8%
RNeXt/CNN 81.7% 76.7% 86.7% 85.2% 80.7%

Unlike the previous case study, the classification CNN does slightly outperform the LSTM
on the validation set, but is the worst model on the test set, which is more in line with the
notion that the RNNs have a supposed edge when classifying data of this type. The GRU
now takes first place in both sets, displaying an 87.8% test F1 score and just breaking the
90% barrier in recall. The difference in validation and test scores is more pronounced.

4.2.3 3rd case study - I3D

The most effective feature type for each combination of models (as measured by F1 score)
is indicated in both 4.5 and 4.6. The performance observed on the validation set consistently
surpasses that of the test set, with the I3D/GRU combination attaining an impressive 98%
F1 score. Conversely, this same model configuration only achieves a 94.3% F1 score on the
test set. Although inferior to the I3D/LSTM combination in F1 score, the I3D/GRU exhibits
a recall score surpassing the latter by over 5%. Notably, while all models perform better
with both feature types or optical flow on the validation set, the test set yields the best
results exclusively with RGB features. This discrepancy further supports the notion that
outcomes significantly vary across datasets. The fine-tuned I3D model obtains relatively
lower F1 scores of 91% and 90.5%.

Table 4.5: I3D - Validation results on FDDBg

Model Feature type Accuracy Recall Specificity Precision F1 score

I3D/LSTM
RGB features 93.4% 92.1% 94.7% 94.6% 93.3%
Optical flow 94.4% 94.7% 94.0% 94.1% 94.4%
Both 95.7% 94.0% 97.4% 97.3% 95.6%

I3D/GRU
RGB features 92.1% 94.7% 89.4% 89.9% 92.3%
Optical flow 97.0% 96.0% 98.0% 98.0% 97.0%
Both 98.0% 97.4% 98.7% 98.7% 98.0%

I3D/CNN
RGB features 92.4% 90.7% 94.0% 93.8% 92.3%
Optical flow 94.7% 94.7% 94.7% 94.7% 94.7%
Both 94.4% 92.7% 96.0% 95.9% 94.3%

FT-I3D Both 91.4% 86.8% 96.0% 95.6% 91.0%
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Table 4.6: I3D - Test results on UR-Fall

Model Feature type Accuracy Recall Specificity Precision F1 score

I3D/LSTM
RGB features 95.8% 91.2% 100% 100% 95.6%
Optical flow 90.0% 93.3% 86.7% 87.5% 90.3%
Both 92.5% 95.0% 90.0% 90.5% 92.7%

I3D/GRU
RGB features 94.2% 96.7% 91.7% 92.1% 94.3%
Optical flow 82.5% 80.0% 85.0% 84.2% 82.1%
Both 89.0% 90.0% 88.3% 88.5% 89.2%

I3D/CNN
RGB features 92.5% 90.0% 95.0% 94.7% 92.3%
Optical flow 85.0% 76.7% 98.3% 92.0% 83.6%
Both 85.0% 81.7% 88.3% 87.5% 84.5%

FT-I3D Both 90.0% 95.0% 85.0% 86.4% 90.5%

4.3 Discussion of results

As hypothesized, the I3D model demonstrates superior performance compared to the other
FE models, while the RNN models exhibit higher accuracy than the CNN models (with
the the exception of the first case study) - this is thought to be due to the latter’s limited
ability to capture temporal patterns. A preliminary examination of misclassified videos by the
CNN model indicates a tendency to incorrectly classify actions involving getting up and lying
down, suggesting a difficulty in discerning these actions from falls. Despite the overall better
results achieved by the I3D-RGB/LSTM, the I3D-RGB/GRU exhibits a 5.5% higher recall
value, which can be considered a suitable compensation for the 1.3% difference in F1 score
and comparatively lower specificity and precision values. Consequently, the I3D-RGB/GRU
model should be regarded as the superior fall detection model.

However consistent throughout the last two case studies the results of each model combina-
tion were, the first case study stands out as being a striking exception. If the data contains
primarily temporal distinctions, and the EfficientNet is not capable of effectively capturing
it, it would be expected that the RNNs, which are designed to model temporal dependencies,
would be able to compensate for this limitation to some extent. The discrepancy could be
explained by realizing that, while the RNNs can capture temporal dependencies, both still
require compatible features as input. If the features extracted by the EfficientNet do not
contain relevant temporal information, the RNNs may not be able to fully exploit their capa-
bilities. In this case, the EfficientNet/CNN combination, which focuses on spatial features,
might perform better due to the nature of the available features.

Surprisingly, among the hyperparameters in λ, the number of frames in the input sequences
appears to have a negligible effect. The manipulation of the model’s input size, whether
increased or decreased, does not yield any noticeable improvement or deterioration in per-
formance, contrary to the theorized expectations. Various sequence lengths ranging from
10 to 20 were evaluated, yielding no discernible distinctions, except for the variation in FE
times, resulting in either slower or faster processing.

In contrast, the structure of the classification models holds significant sway over their perfor-
mance, favoring simpler models overall. The most successful model, incorporating a GRU,
mirrors the structure provided in table 3.1. It was compiled using an Adam optimizer with
a slightly augmented learning rate. Conversely, as the model complexity increased, with the

56



4.3. Discussion of results

inclusion of additional layers, its performance suffered unless accompanied by dropout layers
or reduced learning rates. The impact of learning rate decay was also minimal, exhibiting
limited discernible influence. Nonetheless, it was observed in other tests, most notably in the
second case study, that certain models exhibited improved performance when incorporating
more complex structures. Case in point, the most effective iteration of the GRU model
coupled with the ResNeXt employed the MCQ structure, which consisted of two GRU layers
and four dense layers, and used the Stochastic Gradient Descent (SGD) optimizer with a
slightly lower learning rate than default.

Regarding the influence of class weights, the outcomes were mixed. While in some cases
they succeeded in augmenting recall rates, in others, no discernible difference was observed,
or they even had an unintended inverse effect. It seems that, despite their overall simplicity,
the classification models were still complex enough to fit data despite the weights. An
examination of the training logs revealed there to be a small increase in effectiveness of the
class weights when applied to simpler models.

As previously mentioned, when examining all FE models, it is observed that the test results
generally exhibit inferior performance compared to the validation results. Nevertheless, it is
noteworthy to point out that the best validation outcomes do not correspond to the best
test outcomes. In the case of the I3D, the model’s accuracy on the test set is lower when
applied to optical flow or both features, which contradicts the behavior observed during
validation. This discrepancy emphasizes the significant impact of using different datasets,
as altering the datasets would likely yield considerably distinct results. Although the model
has demonstrated promising potential, it is crucial to acknowledge this aspect. The relatively
unsatisfactory outcomes of the fine-tuned I3D model can be attributed to its complexity,
whereby the limited availability of data hampers its effective tuning, resulting in poorer
performance when compared to the simpler RNN and CNN models.

Table 4.7 contains the results of this approach’s best model against those stated by the
authors of some of the more similar visual state of the art FDSs.

Table 4.7: Comparison between this approach and (some) state of the art
systems

FDS Model Accuracy Recall Specificity Precision F1 score

This approach I3D/GRU 94.2% 96.7% 91.7% 92.1% 94.3%
Adhikari et al. CNN 74% - - - -
Fan et al. Filters/LSTM - 91% - 92% 92%

Ma et al.
3D CNN/
Autoencoder

- 93.3% 92.8% - -

Rahnemoonfar
and Alkittaw

3D CNN
97.6%
93.2%

- - - -

Lu et al. 3D CNN/LSTM 99.1% - - - -
Khraief et al. Optical flow/CNN 99.7% - - - -

In general, the I3D/GRU demonstrates a good performance, surpassing several other FDSs.
However, as mentioned earlier, the FDSs listed in table 4.7 were either trained on a singular
dataset or neglected to implement appropriate measures for separating training and testing
sets, typically relying on the holdout method or similar approaches. Among the few FDSs
that did address this concern, such as Fan et al. [67], their results largely align with the
findings of this study. Notably, they achieved an impressive accuracy of 98% when evaluating
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the FDDBg dataset, yet their performance dropped to 74% and 63% when testing against
HQFSD and their own dataset, respectively. These outcomes emphasize the significant im-
pact of dataset variations on the apparent performance of alternative fall detection systems.
It is essential to recognize that the handling of data, along with the intrinsic characteristics
of the data itself during the stages of training, validation, and testing, can greatly influence
the performance metrics of such systems.

It is important to highlight that the presented results do not explicitly demonstrate the
EfficientNet’s ability to generate features more rapidly, thereby necessitating fewer com-
putational resources, in comparison to 3D CNNs. The efficiency is so pronounced that
utilizing GPU acceleration to maintain computation times under 3 seconds becomes unnec-
essary. This advantage, which makes up for its inferiority in other aspects, holds considerable
apparent significance. Conversely, it should be noted that even the most basic contemporary
computers are equipped with GPUs capable of acceleration. Consequently, the significance
of this advantage is contingent upon the manner in which a FDS implements the model.

To summarize, the outcomes obtained unequivocally demonstrate the potential of the hybrid
I3D/RNN model in the realm of visual fall detection, aligning with its outstanding perfor-
mance in general action recognition tasks. In direct comparison to other popular models
that underwent testing, the proposed model surpasses them in terms of both accuracy and
recall rates. Implementing a FDS based on this model would significantly enhance the safety
and quality of life for elderly individuals. By meticulously handling the training data, while
being mindful of its limitations, we can express greater confidence in the model’s ability
to generalize and perform effectively in unfamiliar real-world environments, surpassing the
capabilities of other FDSs.
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Chapter 5

Conclusions

In this final chapter, the project is reviewed as a whole first by examining if and to what
extent the goals set in the inception of this thesis were met. Then, comments are made
regarding the possible, eventual continuation of this project and the research herein, either
for the purpose of correcting any defects in the final result or improving its quality further.
Lastly, there are some observations and personal remarks concerning the results themselves,
reflections on the work done throughout this thesis and a few statements on the hurdles
met along the way.

5.1 Accomplished goals

In the course of preparation and planning for this thesis, the author set several objectives
with the end goal of building of an AI model which could consistently and accurately detect
human falls in videos. All objectives were accomplished, and this section details how and to
what extent each objective was met.

5.1.1 Objectives 1 and 2 - State of the art

An exploration of the state of the art of the automatic fall detection field allowed for the
formation of an hypothesis. This hypothesis states that the combination of the I3D’s FE
capabilities with a RNN would provide the greatest overall performance out of all other
models already implemented. The state of the art analysis revealed also glaring flaws related
to the methods with which most other researchers handled their training data. These
mistakes were caused by ignoring the inherent flaws of available data, flaws for which,
presently, there are no solutions, but only remedies.

5.1.2 Objectives 3, 4 and 5 - Datasets

To avoid repeating the aforementioned mistakes, to properly recognize these limitations, it
was first deemed necessary to compile data to create as varied, balanced and big a dataset
as possible. This was accomplished by accessing publicly available datasets, created by
other researchers, for fall detection in mind. On top of this, made possible by acquiring a
suitable RGB video camera, a substantial amount of videos were recorded and added to the
compilation datasets. The resulting dataset encompassed more than 2,900 videos, and it is,
to date1, the biggest and most diverse collection of fall detection video segments ever used
in the training of a fall detection model.

1June, 2023
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5.1.3 Objective 6 - Preprocessing and video augmentation

The videos, or sets of images, collected underwent an editing process with the goal to
further increase the dataset’s size, to remove unwanted data, and to standardize the re-
maining segments. Image augmentation techniques were applied to all videos, increasing
much needed diversity of data. In both of these steps, the compilation and creation of data,
several programs were written to automatize and streamline the processes of data collection
and organization.

5.1.4 Objective 7 - Model construction, training and testing

With data having been gathered, the model structure devised initially could then be built
and trained. In an effort to solidify the final results and challenge the I3D/RNN hypothesis,
several models were obtained or created with performance comparison in mind. A pre-trained
I3D was configured to extract features in RGB, optical flow, and two-stream modes, and was
paired with three types of classification models, LSTMs, GRUs, and CNNs. An additional
pre-trained I3D was fine-tuned to also perform classification. Two other FE models, prevalent
in other FDSs, were put up against the I3D: a 2D CNN, an EfficientNetV2, and a traditional
3D CNN, a modified ResNeXt-101, two models which have achieved impressive results in
general action recognition and fall detection tasks alike. The extra feature extractors were
used in conjunction with the three classifiers as well. To ensure that the results obtained
during testing were as representative to real-life use as possible, two entire datasets were
reserved for validation and testing - this was the only way one could ensure completely
unseen data at this stage of development.

5.1.5 Final results

The test results clearly demonstrate the potential of the novel I3D/RNN hybrid model in
the context of visual fall detection. In comparison with other popular visual-based models,
the proposed model often equals or outperforms in both accuracy and recall rates, but, by
going the extra mile to handle training data carefully, conscious of its limitations, the results
obtained by this model can be attested to with much more confidence than other FDSs.
The author is certain in stating that this model is a visible improvement on others similar,
and the implementation of an FDS utilizing this model would have a significant positive
and distinct impact on the safety and quality of life for elderly individuals and the physically
impaired.

5.2 Future work

Automatic fall detection, as a field of research, is very recent and using AI to achieve it is
a very novel idea still, but one that has shown promise over dependence on conventional
techniques. As ML technology itself starts to mature, new accurate, robust, and practical
solutions to old problems start to appear – when computers begin to be able to process
imagery intelligently, a myriad of new possibilities arise. But the problem plaguing the state
of automatic fall detection is the lack of data, which completely undermines ML-driven
solutions. It is possible to use ML for this goal to great effect as it does have the potential
to out-perform any other type of implementation, but without the data, it is hard to prove
it.
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Image or object recognition and, to a lesser but similar extent, general action recogni-
tion technologies, on the contrary, allow researchers access to not just huge datasets, but
datasets capable of setting an “industry” standard. Of course, researchers do not all use the
same datasets in the exact same way, but these datasets – UCF-101, Kinetics, ImageNet,
to name a few – offer the opportunity for accurate and transparent comparison. They are
good enough to train and test all kinds of models and allow for an accurate portrayal of
the model’s capabilities in the real world. The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC)2, for example, pits models trained on ImageNet (alone) against one
another to see which is best at object detection and to give researchers a chance to visualize
scientific progress in that field.

There is no ImageNet for visual fall detection so the field cannot hope to replicate this any
time soon, or at least with what it is available now. It is admittedly difficult to build a fall
dataset: data cannot be extracted online, nor outsourced, nor requested from hospitals and
institutions. Falls must be simulated, which necessitates planning, equipment, manpower,
time, even creativity. To create a dataset of the same level of size and quality as Kinetics
or UFC-101 requires a years-long project with actual funding. It is a herculean task, but
one that could be a gigantic step forward in progressing visual fall detection. Additionally,
perhaps creating a multimodal dataset would further the fall detection as a whole, not just
the visual subfield. But until this is done, it is unlikely that ML fall detection systems will
find use in the real world.

That being said, progress is possible, even if by brute force. The model developed for this
thesis, regardless of its performance, can never be too close to perfect. There is always work
to be done to tweak it, to obtain better train data, all in the name of improving accuracy and
sensitivity. Maybe an entirely different model is more suitable, perhaps a new FE technique
is the missing piece. Repeated experimentation and validation and keeping abreast of the
state of the art is a necessity in continuous ML development.

One more possibility for future work is discarding RGB imaging in favor of thermal, depth,
or radar sensors to preserve the elderly’s sense of privacy. With computer vision algorithms
becoming increasingly more robust, using them on imaging that is traditionally considered
less feature-rich or detailed than RGB becomes a real possibility.

5.3 Final appreciations

This project is influenced greatly by a previous fall detection project, developed two years ago
as part of the author’s licence degree in Software Engineering course. The techniques and
knowledge applied there had to be significantly improved upon in this one. In that project,
a few existing datasets were also compiled, although in much lesser number, with the total
amount of videos barely surpassing 500. Despite this, no original dataset was recorded
to compensate. Even worse, the entire dataset was simply divided, randomly, into train,
validation, and test sets. The model was a hybrid 2D CNN (MobileNet)/GRU, which, at
the time, was unprecedented in fall detection, but its performance was not compared to any
alternative model. Finally, testing was shallow and did not go much further than changing
the learning rate and inserting dropout layers. Nevertheless, the model was rated as 97%
accurate, surpassing most other FDSs. In hindsight, the amazing results obtained were

2Old website: https://www.image-net.org/challenges/LSVRC/, Kaggle: https://www.kaggle.com/
competitions/imagenet-object-localization-challenge/overview
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clearly the consequence of severe overfitting brought about by an extremely small dataset,
haphazardly distributed throughout the three sets.

Going in to this thesis, it was clear that if the same problem was to be tackled, that some
aspects had to be significantly improved. In an effort to be innovative, it was thought from
the get go that the amount of data had to be increased, and that an original dataset was to
be created. Following the state of the art’s exploration, the new model would similar to the
last, but the 2D CNN would be upgraded to 3D. Instead of just a GRU, several classification
models would be tried, and tested more thoroughly.

These measures by themselves were a big step up. However, after consulting with an expert,
it later became clear that even after enlarging the dataset, the validation/test sets had to
have more degrees of separation from the train set, which prompted the way data is used in
this project. The past project also became evidence that the accuracy of visual fall detection
models cannot be taken entirely at face value, not even with a large enough training set,
if no steps were taken to ensure the complete unfamiliarity of test data - an observation
repeated in many of the other FDSs. It was almost to be that the same mistakes would
be made here, if not for this correction from said expert, whose input caused a dramatic
change to course of this project.

Superficially, the I3D/GRU fall detection model, 94.2% accurate and 96.7% sensitive, might
seem to perform worse than the MobileNet/GRU, but, in reality, it is leaps and bounds
superior to its previous form. Thanks to this project, the newer model can be considered,
with great confidence, to have improved on the body of work preceded by it, of the author
and others, and have a use in actual elderly care. In conclusion, this author genuinely
hopes that, in the near future, even better models, tested responsibly, can transcend the
theoretical and experimental phase they find themselves in still and find their use in real-life
applications.
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