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Abstract
This paper describes the actions taken in developing a framework that aims to improve the motion planning
of a manipulative robotic agent through reasoning based on semantic knowledge. The Semantic Web Rule
Language (SWRL) was employed to draw new insights from the existing information about the robotic
system and its environment. Recent ontology-based standards have been developed (IEEE 1872-2015;
IEEE 1872.2-2021; IEEE 7007-2021), and others are currently under development (IEEE P1872.1; IEEE
P1872.3) to improve robot performance in task execution. Ontological knowledge “semantic map" was
generated using a deep neural network trained to detect and classify objects in the environment where the
manipulator agent acts. Manipulation constraints were deduced, and the environment corresponding to the
agent’s manipulation workspace was created so the planner could interpret it to generate a collision-free
path. Several SPARQL queries were used to explore the semantic map and allow ontological reasoning.
The proposed framework was implemented and validated in a real experimental setting, using the ROSPlan
planning framework to perform the planning tasks. This ontology-based framework proved to be a
promising strategy. E.g., it allows the robotic manipulative agent to interact with objects, e.g., to choose a
mobile phone or a water bottle, using semantic information from the environment to solve the requested
tasks.
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1. Introduction

Within the ongoing advances of Industry 5.0, robotic systems are increasingly present in highly
dynamic environments, including environments shared with humans [1]. The description of
a Cyber-Physical Systems, like a Human-Robot Collaborative scenario, requires a model of
complex adaptive behaviors of involved agents from both a “local perspective" (i.e., the point of
view of an agent) and a “global perspective" (i.e., the point of view of the production and related
constraints and objectives) [2]. The need to find efficient paths (motion planning) for manipulator
robots, and new effective strategies to manipulate different objects to perform more complex
tasks, is crucial for various real-world applications.
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Traditionally, there are two approaches to the problem: offline planning, which assumes
a perfectly-known and stable environment, and online planning, which focuses on dealing
with environmental uncertainties. The majority of motion planning algorithms are based on
random sampling algorithms [3, 4, 5, 6, 7]. Recently, algorithms such as optimization-based
[8], Probabilistic Movement Primitives (ProMPs)-based [9, 10] and physics-based methods
[11, 12], have been shown to be more effective [13]. However, these methods used in trajectory
planning become limited if the actions required to perform the task are subject to strong geometric
constraints of the environment (lack of space to place objects, occlusions) and of the robot
(accessibility of objects, kinematic constraints of the manipulators) [14]. Ontologies have shown
great potential in improving the motion planning of agents in symbiotic work systems (e.g. a team
of robots can work together to assemble a product on the shop floor, each robot being responsible
for a specific task, without them clashing) [15, 16, 17].

The main goal of this paper is to develop a framework where motion planning is improved,
allowing the possibility to reconfigure the initially defined plan (e.g. recovery from a situation
where an unexpected obstacle appears on the path) for a robotics manipulative agent through
semantic knowledge and reasoning (about manipulation actions and the objects present in the
environment). A deep neural network was trained to detect and classify objects in the environment
where the robotic agent is located. This information created a semantic map (described in an
ontology) of the environment. The semantic maps deal with metainformation that models the
properties and relationships of relevant concepts in the domain encoded in a Knowledge Base
(KB). Semantic maps enable the execution of high-level robotic tasks efficiently, and several
strategies have been presented [18, 19]. The proposed domain ontology is based on the recently
developed ontology-based standards (IEEE 1872-2015; IEEE 1872.2-2021; IEEE 7007-2021);
others are currently under development (IEEE P1872.1; IEEE P1872.3). The proposed domain
ontology has as a foundational layer the top-level ontology DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) to follow the interpretation of some relevant concepts
and thus define an ontology (domain) with a high level of flexibility [20]. The Semantic Web
Rule Language (SWRL) [21] was employed to draw new insights from the existing information
about the robotic system and its environment. Several SPARQL queries were used to explore the
semantic map and allow ontological reasoning [22].

Several works have already presented strategies using ontologies to improve motion planning
in dynamic environments [23, 24, 25, 26]. However, these works present isolated approaches that
do not use an upper ontology as a base, making them difficult to reusable. The proposed ontology
intends to serve as a basis for future works which focus on improving motion planning because,
to date, existing approaches have not presented inference systems to increase the robot’s semantic
knowledge of the environment and the new objects that can arrive at the environment, in order to
improve motion planning.

Experimental validation is performed in a simple house environment based on a smart-home en-
vironment. Knowledge was inferred based on semantic knowledge, and the ROSPlan1 framework
was used to perform task planning based on the actions defined in the ontology.

The following section presents the robotic and semantic knowledge-based reasoning developed
to improve the motion planning of robotic manipulator agents in non-deterministic environments.

1https://kcl-planning.github.io/ROSPlan/
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Section 3 presents the conceptual framework of the global knowledge engine and an example of a
practical validation of the proposed framework in a real environment. The paper concludes with
conclusions and future work.

2. Robot and Semantic Knowledge-based Reasoning

2.1. Robot and Smart Home Description

Figure 1a illustrates the Autonomous Mobile Manipulator Robot (AMMR), used in the study.
The mobile platform holds a Universal Robot UR32 robotic manipulator. The robot manipulator
is equipped with a Robotiq 2f-1403 gripper, designed to handle objects. The mobile base is also
equipped with various sensors, including rear and front lasers, video cameras, and RGB-D camera.
These sensors enable autonomous navigation, obstacle detection, and recognition, allowing the
robot manipulator to perceive its working environment. The experimental validation is realized in
a simple house environment based on a smart-home environment built in the robotics laboratory
of Instituto Politécnico de Castelo Branco (Fig. 1b).

(a) AMMR. (b) Metric representation of the rooms.

Figure 1: Autonomous Mobile Manipulator Robot (AMMR) used in experimental validation and a
Smart-home environment [27].

2.2. Semantic Knowledge-based Reasoning

Recent ontology-based standards were developed (IEEE 1872-2015; IEEE 1872.2-2021; IEEE
7007-2021), and others are currently in development (IEEE P1872.1; IEEE P1872.3) to improve
robot performance while executing tasks. This is a very hot topic in current standardization efforts
worldwide. This section presents the first efforts to integrate the concepts defined in the standards
mentioned above, which has as a foundational layer the upper ontology DOLCE to accompany

2https://www.universal-robots.com/pt/produtos/ur3-robot/
3https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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the interpretation of some relevant concepts and thus builds a prototype ontology with a high
level of flexibility for the specific domain.

Figure 2: Snapshot of the ontology.

The ontology was created using the Protégé software, version 5.6.1 [28]. To ensure the
consistency of the ontology and inferring reasoning based on it, the Pellet logic Reasoner version
2.2.0 was used [29]. To access the developed OWL ontology, the Owlready2 library was utilized.
Owlready2 is a Python module that allows loading, modification, saving, and reasoning with OWL
2.0 ontologies [30]. Following the above-stated assumptions, figure 2 presents the hierarchical
class where the main concepts are defined in the proposed domain ontology. It was designed for
an agent to interpret and interact with its surrounding environment.

Several Object properties were created (e.g., hasCapability, part_of, Located_at, etc.),
to relate the concepts in ontology so that an agent can characterize its environment and Data
properties (e.g., position_x, Reach, state_voltage, BatteryLevel, etc.) for providing
relation to attaching an entity instance to some literal datatype value. Different concepts were
added to the ontology to confer modularity. In order to be possible to infer knowledge such as the
possible paths that a robot can take (FreePath; CollidingPath) and the possible trajectories
(FreeTrajectory; CollidingTrajectory). The concept TaskState, correlates the state
of different tasks: For example: ObjectState: FixedObject and ManipulableObject
in the environment to correctly identify if an object is manipulable (i.e. if it is within the
manipulator’s workspace); the different actions that agents can perform based on the agent type
(e.g. Mobile_actions, Manipulator_actions, Gripper_actions); etc.

SWRL are used to infer new knowledge. For example: based on the knowledge of the
dimensions of the rooms of the environment (Fig. 1b), the following SWRL rule (1) is used to
identify the space of the environment in which the agent is (e.g., the rule to check if the agent is
in the LivingRoom_1).



Agent(?Ag)∧ position_x(?Ag,?px)∧ position_y(?Ag,?py) ∧
swrlb : greaterT hanOrEqual(?px,0)∧ swrlb : lessT hanOrEqual(?px,3) ∧
swrlb : greaterT hanOrEqual(?py,−3) ∧ swrlb : lessT hanOrEqual(?py,2)

→ located_at(?Ag,LivingRoom_1) (1)

Throughout the plan execution, the properties of the specific instance of the manipulator
(ur3_arm) are continuously monitored and represented. These properties, known as data proper-
ties, are dynamically updated and stored in the framework’s database. This enables the overall
system to have real-time information about the current state and status of the manipulator. By
constantly updating and storing the data properties, the framework ensures that the global system
is aware of any changes or updates in the state of the manipulator robot, facilitating effective
coordination and decision-making during the execution of the plan.

Considering the information about the distance of an object at the manipulator agent and
the reach of the manipulator, we can formulate an SWRL rule using the concepts from the
ontology to automatically determine the objects present in the workspace, specifically in the
ManipulationRegion (See SWRL (2)).

AllOb jects(?ob j) ∧ robotic_arm(?r) ∧ Reach(?r,?re)

∧ EuclideanDistance(?ob j,?dist) ∧ swrlb : lessT han(?dist,?re)

→ located_at(?Ob j,ManipulationRegion) (2)

3. Global Knowledge Engine Conceptual Framework

The proposed framework comprises different main modules. The “Knowledge-based reasoning
engine (Ontology)" has previously been described. The module “Hardware-level of robotic
agent (Robotic manipulator)” is composed of two toolboxes, one for the robotic manipulator
UR3 (toolbox_ur3) and another for the gripper 2f-140 from Robotiq (toolbox_gripper), these
were developed to work on the ROS. They are written based on the ur-rtde 4 library, which
communicates with the UR3 via the real-time data exchange protocol (RTDE). The “Perception
(object detection)" module uses a deep neural network to detect and classify objects in the
environment where the robotic agent is. Based on this information, a semantic map was created.
The YOLO v3 object detection algorithm [31] from Darknet for ROS was used for object detection
[32]. The main module of the framework is titled “Task Manager (Behavior tree)", it is composed
of a Behavior Tree (BT), which is designed to perform all the management of the framework
presented in this paper. BT is a graphical representation of the control logic for autonomous
agents. This module is also composed of all the architecture used in the trajectory planning
of the manipulator; the Probabilistic Roadmap Method (PRM) algorithm was used, which was
applied based on the Robotics Library (RL) [33]. Semantic knowledge was used to improve
the motion planning of the manipulator agent. The ontology is queried to identify all objects

4https://sdurobotics.gitlab.io/ur_rtde
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and their properties (e.g. dimensions, weight, position on the map, etc.) in the robot’s working
area. Based on the semantic information, the scenario around the manipulator agent is created
to create a collision-free path and replan a new path if a change in the environment makes
the initial path unfeasible. The ROSPlan [34] framework was used to perform the planning
tasks in this framework based on a PDDL (Planning Domain Definition Language) problem and
domain. It is a high-level tool proven well for planning in the ROS environment. The PDDL
problem file is then defined using the instances of the ontology for the specific task needed to be
performed by the robot. The information for each one of the instances is stored using a MongoDB
database. Different action interfaces have been written to control the AMMR (Fig. 1a), i.e.,
its Mobile agent actions, Manipulator agent actions, and Gripper actions for
proper interaction with the robot presented previously. These interfaces are constantly listening to
the action ROSPlan messages. Moreover, the MongoDB database was used for semantic memory
storage, e.g., fixed locations, robots, objects and their properties, goal parameters, etc.

All the software developed to control the robot is developed using Robot Operating System
(ROS) Noetic and Ubuntu 20.04.4 LTS operating system with an Intel® Core™ i7-7740X CPU
@ 3.30 GHz × 8 processor, 16 GB RAM, and Quadro P2000/PCIe/SSE2 Graphics. The input
video is obtained using Intel® RealSense™ D415i Depth Camera.

3.1. Validation of the Proposed Framework in a Real Environment

An experiment was conducted to validate the proposed framework using the experimental setup
shown in Figure 3a. The goal of the experiment was to pick an object called cell_phone_1,
which had been previously identified (as seen in Figure 3b). The information about this object
and the robot’s location in the living room was previously stored in the knowledge base. To
create a challenging scenario, an object named bottle_1 was deliberately placed in front of
the target object, making it impossible to pick up the cell_phone_1 without colliding with
the obstructing object. This obstruction also made the cell_phone_1 object unobservable, as
shown in Figure 3c.

Figure 3: Pratical evaluation setup. a) Apparatus overview. b) First observation of the environment. c)
Final observation of the environment, where the cell phone is no longer observed, as a bottle was placed
covering it [27].

A simple pick and place plan can be generated in the scenario depicted in Figure 3b. The



initial plan is shown in Figure 4a. However, in the scenario shown in Figure 3c, the initial plan
fails because the position of the bottle_1 object obstructs the picking movement, rendering the
initial plan invalid. The ontology is queried to determine if the obstructing object; i.e., the object
is located_at in ManipulationRegion of manipulator agent based on SWRL (2). Can be
manipulated based on the manipulator and gripper characteristics (as shown in listing 1). The
query confirms the object is manipulable (Fig. 5).

(a) Generated initial plan. (b) Generated final plan.

Figure 4: Generated PDDL plans [27].

Based on this information, a new problem is formulated in PDDL to generate a plan that allows
the successful retrieval of the cell_phone_1 object without any collision (as shown in Figure
4b). The revised plan consists of three sets of tasks: perceive_object, pick, and drop. The
first task involves moving the obstacle (bottle_1) to a known position at the base of the mobile
agent, which is stored in the knowledge base (e.g., right_platform). The second task is to
pick up the cell_phone_1 and place it at another known position in the mobile agent’s base
(e.g., left_platform). Finally, the last task involves returning the bottle_1 object to its
initial position where it was initially observed.

Listing 1: Question. Are the objects present manipulable?

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX on: <http://www.semanticweb.org/idmind_ur3#>
SELECT ?arm ?obj ?obj_dim_x ?obj_dim_y
WHERE { ?arm rdf:type on:robotic_arm. ?arm on:hasCapability ?tool.

?arm rdf:type on:CandidateForMission.
?tool on:Grasping ?tool_grasping.
?obj rdf:type on:ManipulationRegion.

?obj on:box_xmin ?obj_box_xmin. ?obj on:box_xmax ?obj_box_xmax.
?obj on:box_ymin ?obj_box_ymin. ?obj on:box_ymax ?obj_box_ymax.

BIND((?obj_box_xmax − ?obj_box_xmin) AS ?obj_dim_x)
BIND((?obj_box_ymax − ?obj_box_ymin) AS ?obj_dim_y)

BIND(IF((obj_dim_x<?tool_grasping)||(obj_dim_y<?tool_grasping),
"TRUE","FALSE") AS ?manipulable)



Figure 5: Response of query listing in 1.

By re-planning the movement, the initial objective is successfully achieved. Although the
newly generated plan takes 67.52% more time compared to the initial plan, it eliminates the
need for manual intervention to remove the obstacle, which would have resulted in higher costs.
It should be noted that the presented framework has a limitation in that it only works if the
objects causing the collision are manipulable. If an unmanipulable object were responsible for
the collision, the system would send an error message indicating that the goal cannot be reached,
and a solution would require changing the position of the AMMR base to a location that allows
the retrieval of the cell_phone_1. However, implementing such behavior using the mobile
base capability is beyond the scope of this work and will be a focus of future research.

4. Conclusions and Future Work

This paper presented an ontological framework to improve the motion planning process, giving
the possibility to reconfigure the initially defined trajectory (e.g. recovery from a situation where
an unexpected obstacle appears on the path) for a robotic manipulator agent. A deep neural
network trained to detect and classify objects in the environment where the robotic agent acts
where used to create a semantic map of the environment (using some concepts from IEEE 1872.2-
2021 standard). The semantic map and SWRL rules were used to infer new knowledge based on
the known environment and the robotic system. Several SPARQL queries were used to explore
the semantic map and allow ontological reasoning. The proposed framework was implemented
in a real scenario using the ROSPlan, and its potential was proven through a real manipulation
situation. Efforts are underway to complete the reasoning framework; it is imperative to develop
solutions that exploit the capabilities of an AMMR agent, for example, that optimise manipulation
tasks based on the movement of the mobile base of the robotic agent, etc.
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