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Abstract 
 

One of the major shortfall of biodiversity knowledge steams from an incomplete description of 

the geographical distribution of species. Overcoming this shortfall is essential for conserving 

nature and its services and it is a required first step to tackle more complex ecological processes 

(e.g. dispersal, speciation, disturbance, biotic interactions, etc.) in remote and poorly studied 

regions such as the deep sea. In a region such as the Azores (NE Atlantic), where the deep sea 

represents a dominant component of the seascape, it is essential to characterize patterns and 

processes of deep-sea biodiversity. In fact, only by understanding how species and marine 

resources distribute it is possible to correctly inform area- and ecosystem-based management 

and achieve the goals of policies aiming at reversing the cycle of decline in ocean health. In 

particular, the European Commission has adopted a number of policies to grant a sustainable 

use of nature space and resources which include the Marine Strategy Framework Directive 

(MFSD) and the Maritime Spatial Planning Directive (MSPD). The overall goal of this thesis is to 

bring together existing and new biodiversity data from recent scientific surveys to deepen our 

understanding of biodiversity and biogeographic patterns of deep-sea Vulnerable Marine 

Ecosystems (VMEs) indicator taxa. The focus is on deep-sea hard-substrate communities of the 

Azores and, in particular, on ecosystem engineer species of the Phyla Cnidaria and Porifera. Four 

major environmental drivers of deep-sea benthic engineer species are recognized in the Azores: 

(i) a latitudinal gradient in primary production strongly influenced by the Azores Current-Azores 

Front (AzC-AzF) system; (ii) the depth-wise succession of the regional water masses and their 

stratification into different isopycnal (vertical) layers; (iii) the spatial distribution of prominent 

geomorphic features such as seamounts ridges and island slopes; (iv) the availability of hard 

substrate for attachment. The recognition of these environmental drivers sets an interesting 

background for future ecological research, ecosystem-based management and spatial 

monitoring. The response of deep-sea species to these environmental drivers is explored in 

detail in the different chapters of the present manuscript.  

 

Keywords:  

Atlantic, biogeography, deep sea, species turnover, vunerable marine ecosystems, zonation  
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Resumo  
 

Um dos problemas fundamentais do conhecimento da biodiversidade deriva de uma descrição 

incompleta da distribuição geográfica das espécies. Superar esse déficit é essencial para a 

conservação da natureza e dos seus serviços e é um primeiro passo necessário para descrever 

processos ecológicos mais complexos (por exemplo, dispersão, especiação, perturbação, 

interações bióticas, etc.) em regiões remotas e pouco estudadas, como o mar profundo. Numa 

região como os Açores (Atlântico NE), onde o mar profundo representa uma componente 

dominante da paisagem marítima, é essencial caracterizar padrões e processos que influenciam 

a biodiversidade do mar profundo. De fato, somente entendendo como as espécies e os 

recursos marinhos se distribuem é possível informar corretamente a gestão baseada em 

ecossistemas e em áreas marinhas protegidas e atingir os objetivos das políticas que visam 

reverter o ciclo de declínio da saúde dos oceanos. Em particular, a Comissão Europeia adotou 

uma série de diretivas para garantir um uso sustentável do espaço maritimo e dos recursos 

naturais que incluem a Diretiva-Quadro de Estratégia Marinha e a Diretiva de Planejamento 

Espacial Marítimo. O objetivo geral desta tese é reunir dados de biodiversidade existentes e de 

novas pesquisas científicas para aprofundar a nossa compreensão da biodiversidade e dos 

padrões biogeográficos de táxons indicadores de Ecossistemas Marinhos Vulneráveis de águas 

profundas. O foco está nas comunidades de substrato duro do fundo do mar dos Açores e, em 

particular, nas espécies engenheiras dos Filos Cnidaria e Porifera. São reconhecidos nos Açores 

quatro grandes fatores ambientais que influenciam a distribuição das espécies engenheiras 

bentónicas de profundidade: (i) um gradiente latitudinal na produção primária fortemente 

influenciado pelo sistema Corrente-Frente dos Açores (AzC-AzF); (ii) a sucessão vertical das 

massas de água regionais e sua estratificação em diferentes camadas isopicnais (verticais); (iii) 

a distribuição espacial de feições geomórficas proeminentes, como cordilheiras de montes 

submarinos e encostas de ilhas; (iv) a disponibilidade de substrato duro para fixação. O 

reconhecimento desses fatores ambientais estabelece um cenário interessante para futuras 

pesquisas ecológicas, gestão baseada em ecossistemas e monitoramento espacial. A resposta 

das espécies de águas profundas a esses fatores ambientais é explorada em detalhes nos 

diferentes capítulos do presente manuscrito.  
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Chapter 1  
General Introduction  
 

 

1.1 Overview 

The deep seabed beyond continental shelf depths (≈200 m) is one of the largest biome on Earth covering 

an area of over 400 million km2 (Danovaro et al., 2014). Its remoteness and immensity has both fascinated 

and puzzled many ecologists whose attempts to describe natural processes and patterns have been 

frustrated by a chronic scarcity of data (Howell et al., 2020; McClain and Hardy, 2010; Ramirez-Llodra et 

al., 2010). Over the last decade, technological advances in seafloor mapping and biological sampling have 

provided a better understanding of the importance of deep-sea biodiversity and of the ecological services 

it provides (Danovaro et al., 2017, 2014; Thurber et al., 2014). There is now a great awareness that the 

deep sea is under multiple stressors including climate change, resource extraction and pollution (Halpern 

et al., 2019; Levin et al., 2019; Sweetman et al., 2017). These threats can be particularly severe for key 

ecosystem engineers such as deep-sea corals and sponges generally regarded as components of 

vulnerable marine ecosystems (VMEs) (FAO, 2009; Hogg et al., 2010; OSPAR, 2010; Ragnarsson et al., 

2017).  

Multiple international organizations have proposed a number of policies to reverse the cycle of decline in 

ocean health. The United Nations General Assembly proclaimed the Decade of Ocean Science for 

Sustainable Development (2021-2030) (United Nations, 2018). The European Commission has adopted a 

number of policies to grant a sustainable use of nature space and resources. These policies include the 

Maritime Spatial Planning Directive (MSPD) (EU Directive 2014/89/EU) and the Marine Strategy 

Framework Directive (MSFD) (EU Directive 2008/56/EC). In particular, the MSFD was adopted to achieve 

a Good Environmental Status (GES) in the EU's marine waters and to protect resources of socio-economic 

interest (e.g. Danovaro et al., 2020). It includes the deep-sea waters, seafloor and sub-seafloor of the 

Exclusive Economic Zones (EEZ). In general, these policies call on the scientific community to conduct 

research that advances understanding of marine ecosystems facilitating in this way the adoption of area-

based/ecosystem-based management approaches (Howell et al., 2020; Kirkfeldt et al., 2022). Although 

the exploration of the deep sea now proceeds at a fast pace (e.g. Dominguez‐Carrió et al., 2021; Swanborn 
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et al., 2022; Wölfl et al., 2019), the data about deep-sea communities still cover a limited portion of the 

seafloor constraining adequate ecosystem-based management approaches (Folkersen et al., 2019; Howell 

et al., 2020; Townsend et al., 2018). One of the strategy to partially overcome this issue and to promote 

and direct new collections of samples is the use of ecological maps. Maps represent a powerful tool to 

synthetize and communicate information about a geographic space (Coetzee et al., 2021). In the context 

of marine ecology, they are widely used to capture the environmental diversity and the distribution of 

species and communities (Buhl-Mortensen et al., 2015; Hogg et al., 2016; Howell, 2010; Ismail et al., 2015; 

Longhurst, 2007; Sayre et al., 2017; Sonnewald et al., 2020; Watling et al., 2013; Woolley et al., 2020). In 

general, ecological maps can be defined as a visual model (simplification) of complex ecological 

phenomena. They rely heavily on physical, spatial, or biological surrogates to describe biodiversity 

assuming that the biophysical patterns and processes observed for certain taxonomic groups or within 

particular environmental structures have a general relevance for ecological systems (Brown et al., 2011). 

The use of continuous coverage data layers is essential as they provide a mean to interpret patchy in situ 

observations, correlate the presence or the intensity of ecological phenomena with certain conditions and 

project such interpretations over large geographic areas (Brown et al., 2011).  

The current thesis aims at describing and mapping the distributional patterns and the environmental 

drivers of deep-sea hard-substrate communities in the Azores (NE Atlantic) with a special focus on 

ecosystem engineer species of the Phyla Cnidaria and Porifera. These species are key components of 

regional deep-sea communities that fall within the definition of vulnerable marine ecosystems (VMEs) 

(FAO, 2009; Hogg et al., 2010; OSPAR, 2010). Understanding how these important species distribute is of 

pivotal importance for effective area-based management and for the implementation of national and 

international policies aiming to reverse the cycle of decline in ocean health (e.g. Combes et al., 2021; 

Galparsoro et al., 2015; Gonçalves, 2021; Grehan et al., 2017; Kazanidis et al., 2020; Rice et al., 2012; 

Rueda et al., 2016; Tunnicliffe et al., 2020). In fact, these species have the characteristics of benthic 

foundation organisms (Crotty et al., 2019; Ellison, 2019). Acting as foundation species these taxa can be 

expected to mediate a crucial suite of biotic interactions essential to structure deep-sea benthic 

communities (Kikvidze and Callaway, 2009). Forming vulnerable marine ecosystems, they are, by 

definition, greatly affected by human induced disturbance (Carreiro-Silva et al., 2013; Clark and Tittensor, 

2010; Morato et al., 2020c; Ragnarsson et al., 2017; Vieira et al., 2020). In the Azores human-induced 

stressors can be particular severe. Climate change is expected to be particularly intense at the latitudes 

of the Azores (Levin et al., 2020; Morato et al., 2020c). The incredible amount of lost fishing gears that 
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were observed in recent surveys suggest a high fishing pressure (unpublished data from Dominguez‐Carrió 

et al., 2021) even at remote locations (Morato et al., 2021b). Finally, deep-sea mining will likely start in 

the region with detrimental consequences for benthic organisms (Lopes et al., 2019; Ribeiro et al., 2020; 

Van Dover et al., 2017). 

1.2 Study area and environmental patterns 

The Archipelago of the Azores consists of nine volcanic islands located close to the Mid-Atlantic Ridge 

(MAR) at the junction of the Eurasian, African, and North American plates (Figure 1.1) (Miranda et al., 

2018; Santos et al., 1995). Regional waters span over 1 million km2 and hold a range of seascapes that are 

quite unique when compared to other European seascapes. This region is characterized by a huge area of 

deep seafloor scattered across a complex array of plains, ridges, seamounts and island slopes (Mitchell et 

al., 2018; Peran et al., 2016; Tempera et al., 2012a). In general, these topographic features present large 

fractions of exposed bedrock and complex interactions with steady or variable flows, a setting that 

provides favorable conditions for thriving benthic communities dominated by filter feeders (Morato et al., 

2021b; Rogers, 2018). As a result, the Azores host a great diversity of deep-sea corals and sponges that 

form important and vulnerable communities (Braga-Henriques et al., 2013; Carreiro-Silva et al., 2013; 

Morato et al., 2020c; Sampaio et al., 2019a; Somoza et al., 2020; Xavier et al., 2021). Ocean circulation 

patterns in the Azores are complex (Bashmachnikov et al., 2004; Caldeira and Reis, 2017; Santos et al., 

1995). Large-scale circulation is dominated by eastward-flowing branches of the Gulf Stream: Gulf Stream 

and Gulf Stream Bifurcations in the north and the Azores Current (AzC) in the south. Eddies systems 

associated with these currents play an important role in the region (Caldeira and Reis, 2017; Sala et al., 

2016). These flows interact with the regional topography and with local winds altering surface 

temperatures and primary production (Amorim et al., 2017; Bashmachnikov et al., 2004; Caldeira and 

Reis, 2017). Warmer and less productive waters are located south-east, colder and more productive 

waters are located north-west of the archipelago. These differences suggest that the Azores is a 

transitional region between subtropical and temperate waters. The latitudinal gradient in primary 

production appears to be strongly influenced by the Azores Current-Azores Front (AzC-AzF) system 

(Caldeira and Reis, 2017; Frazão et al., 2022; Fründt and Waniek, 2012; Riou et al., 2016; Schiebel et al., 

2011).  
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Figure 1.1 – Azores study area. The islands from west to east are: Flores, Corvo, Faial, Pico, São Jorge, Graciosa, 
Terceira, São Miguel and Santa Maria. Only seafloor locations shallower than 2000 m are considered in the present 
manuscript (identified by the contour lines). Relief location: Mid-Atlantic Ridge (MAR), Central Seamounts (Central), 
Northeastern Seamounts (NE), Southeastern Seamounts (SE), Southern Seamounts (S). Important regional relieves: 
(1) Kurchatov N, (2) Kurchatov SE, (3) Kurchatov SW, (4) Oscar W, (5) Oscar, (6) G127, (7) Gigante, (8) Beta, (9) Cavala, 
(10) A6, (11) Picoto, (12) Alpha, (13) Voador, (14) A3, (15) Voador W, (16) Sarda, (17) Monte Alto, (18) Cavalo, (19) 
Cavalo W, (20) SW1, (21) SW2, (22) Princess Alice W, (23) Princess Alice, (24) Condor, (25) Açor, (26) Condor de Fora, 
(27) De Guerne, (28) Baixo São Mateus, (29) Graciosa West, (30) Perestrelo Hill, (31) Ridge SE Graciosa, (32) Mar da 
Fortuna, (33) Serreta, (34) João Leonardes, (35) Gaillard, (36) Sedlo, (37) Borda, (38) Esperance, (39) Albatroz, (40) 
São Jorge de Fora, (41) Agostinho, (42) Dom João de Castro S, (43) Dom João de Castro, (44) Mar da Prata W, (45) 
Alcatraz, (46) Mar da Prata, (47) Fouque, (48) Formigas, (49) Atlantis N, (50) Atlantis NW, (51) Atlantis, (52) Tryo.  
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Based on the work of Liu and Tanhua (2021), it is possible to identify the principal water masses around 

the Azores and approximate their vertical extent. In the Atlantic the different water masses are distributed 

in four main isopycnal (vertical) layers: upper, (ii) intermediate, (iii) deep and overflow and (iv) bottom 

layer. In the Azores, the influence of upper water masses goes down to about 1100 m. The Eastern North 

Atlantic Central Water (ENACW) has the widest vertical extent with its core at about 500 m depth. The 

Western North Atlantic Central Water (WNACW) and the Western South Atlantic Central Water (WSACW) 

are present within the upper 500 m of the water column. The intermediate layer is characterized by the 

Mediterranean Water (MW) and the Antarctic Intermediate Water (AAIW). Their core is at about 800 m 

depth. A third intermediate water mass, the Subarctic Intermediate Water (SAIW) has been reported in 

the northwestern portion of the study area (Bashmachnikov et al., 2015), however, given the lack of 

sampling stations in this area it was almost absent in the data provided by Liu and Tanhua (2021). In the 

deep and overflow layer, down to 2000 m, the Upper North Atlantic Deep Water (uNADW) is the 

predominant water mass with its core located at about 1600 m depth. It occupies a wide depth range in 

the north (500-2000+ m), while in the south it was observed only at depths below 1000 m. The Lower 

North Atlantic Deep Water (lNADW) and the Northeast Atlantic Bottom Water (NEABW) characterize the 

deepest portion of the considered bathyal range (200-2000 m) and extend well below 2000 m. 

Given the scarcity of biological sampling below 2000 m, this work focuses only on seafloor areas 

shallower than 2000 m. 

1.3 Hard-substrate benthic communities 

This work focuses on large deep-sea habitat-forming suspension feeders growing on hard substrate (Phyla 

Cnidaria and Porifera) characteristic of vulnerable marine ecosystems (VMEs) and builds on the many 

scientific surveys that have explored the deep sea of the Azores in recent years (e.g. Dominguez‐Carrió et 

al., 2021; Morato et al., 2021a, 2020b, 2019, 2018b; Morato and Taranto, 2019; Orejas et al., 2017). The 

first part of the manuscript gives particular attention to cold-water coral (CWCs) taxa (Figure 1.2). Since 

the OSPAR convention adopted a list of threatened and/or declining species and habitats (Agreement 

2008-6), and the United Nation General Assembly together with the Food and Agriculture Organization 

endorsed the concept of Vulnerable Marine Ecosystems (VMEs) (FAO, 2009), habitat-forming CWCs 

emerged as an important marine conservation target. CWCs belong to a diverse polyphyletic group of 

sessile cnidarians (classes Anthozoa and Hydrozoa) that generally inhabit deep, aphotic and cold marine 

waters. They are azooxanthellate (i.e., lacking symbiotic dinoflagellates), heterotrophs and characterized 
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by the production of a calcium carbonate or proteinaceous supporting axis (Cairns, 2007; Roberts et al., 

2009). CWCs are distributed globally down to depths of several thousands of meters. Some species can 

form large and long lasting colonies, build extensive reefs or occur in dense ‘deep-sea gardens’. The 

fascinating variety of CWC shapes and colors, together with their sensitivity to human disturbance, has 

put the deep sea in the spotlight, focusing society’s attention, research funds and conservation actions 

(Armstrong et al., 2019). Increasing evidence suggests that CWC aggregations can influence local current 

regimes (Cyr et al., 2016; Juva et al., 2020; Mienis et al., 2019; Soetaert et al., 2016), regulate nutrient 

flows (Cathalot et al., 2015; Georgian et al., 2016; Middelburg et al., 2016; Rix et al., 2016), and provide 

habitat to other benthic and demersal species (Buhl-Mortensen et al., 2010, 2017; Klompmaker et al., 

2016; Linley et al., 2017). Such roles in ecological facilitation, community development and promotion of 

local biodiversity have led to CWCs being considered foundation species central to deep-sea benthic 

communities (Crotty et al., 2019; Ellison, 2019; Orejas and Jiménez, 2017). Finally, CWCs likely contribute 

to regulating, supporting and provisioning ecosystem services (Thurber et al., 2014). 

To date, 5.6% of the 3300+ CWC species estimated to exist worldwide (Roberts and Cairns, 2014) have 

been reported in the Azores, which occupies 0.25% of the world’s ocean (Braga-Henriques et al., 2013; 

Sampaio et al., 2019a). Such high species diversity establishes this region as an important biodiversity 

hotspot of CWCs (Sampaio et al., 2019a). Most habitat-forming species belong to the orders Scleractinia 

(stony corals) and Antipatharia (black corals), the subclass Octocorallia (soft corals, gorgonians and sea 

pens) and the family Stylasteridae (lace corals) (Roberts et al., 2009).  In the Azores the subclass 

Octocorallia reaches the highest species diversity recorded so far in the North Atlantic (Sampaio et al., 

2019a). Recent video surveys performed with a portable drift cam system and with other underwater 

vehicles (Dominguez‐Carrió et al., 2021; Morato et al., 2021a, 2020b, 2019, 2018b, 2018a; Orejas et al., 

2017; Somoza et al., 2020) have reported that Octocorallia and Antipatharia species form dense 

aggregations both on island slopes and on offshore relieves (e.g. Morato et al., 2021b, 2020b; Somoza et 

al., 2020; Tempera et al., 2012b). Octocorallia and Antipatharia include some of the most important 

habitat-forming corals existing in the region. Reef-forming Scleractinia species have also been reported in 

the Azores (Lophelia pertusa, Madrepora oculata and Solenosmilia variabilis) (Braga-Henriques et al., 

2013; Sampaio et al., 2012).  
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Figure 1.2 – Cold water coral taxa selected to develop habitat suitability models and to define the regional ecoscapes 
of the Azores. These species were selected considering their vulnerability to human activities and their potential as 
foundation species. © MEDWAVES, ATLAS project (Leiopathes cf. expansa, N. bellissima, N. versluysi, D. pertusum 
and M. oculata); © IMAR/OKEANOS-UAz, Drift camera (C. verticillata, P. josephinae, Coralliidae sp., E. dabneyi); © 
ROV Luso / EMEPC / 2018 Oceano Azul Expedition, organized by Oceano Azul Foundation & partners (V. flagellum, 
Acanthogorgia sp. and D. aff. meteor); © EMEPC/Luso/Açores/2013 (S. variabilis).  
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The video footage currently available shows that in the region, down to 2000 m, these species mostly exist 

as single colonies, resembling the categories II and III of Flögel et al. (2014). However, they are not in 

complete isolation, they rather tend to be embedded within multi-species coral gardens. Finally, in the 

Stylasteridae family there is the only habitat-forming coral species that appears to be endemic to the 

Azores, Errina dabneyi (Braga-Henriques et al., 2011; Zibrowius and Cairns, 1992). 

The second part of the manuscript integrates CWC positional data with deep-sea sponge (Phylum Porifera) 

positional data. Species of the Phyla Cnidaria and Porifera represent one of the most important 

constituents of regional hard-substrate communities. Sponges are common members of many marine 

benthic communities and they may form dense aggregations (i.e. sponge grounds) that can be constituted 

by single or mixed species assemblages (Hogg et al., 2010; Maldonado et al., 2015). Sponge grounds 

contributes to the provision of various ecosystem goods and services (e.g. habitat provision, 

benthic−pelagic coupling, biogeochemical cycling, and biotechnological potential) (Afoullouss et al., 2022; 

Bart et al., 2021; Beazley et al., 2013; Henderson et al., 2020; Hogg et al., 2010; Maldonado et al., 2015). 

Thus far, the characterization of deep-sea sponges in the Azores is still in a preliminary phase and much 

of the work has focused on the order Lithistida (Carvalho et al., 2020; Xavier et al., 2021). However, great 

efforts have been placed in the taxonomic characterization of this group and new works should soon be 

available in literature. 

1.4 Bioregionalization  

The distribution of species is a dynamic process influenced by several interacting drivers operating at 

different scales (D’Amen et al., 2017; Hortal et al., 2015; Myers and Giller, 1988). Understanding how 

these drivers operate and how biodiversity changes over space and time is a central theme in ecology and 

biogeography and it is essential for nature management. This task is quite challenging in the context of 

the deep sea, the most remote and the largest ecosystem on Earth (Folkersen et al., 2018; Glover et al., 

2018; Morato et al., 2013; Smith et al., 2020). Species-environment relationships tend to be easier to 

measure at regional scales and are often the only proxy readily available to estimate the distribution of 

species. In this study several bioregionalization approaches are used to understand how key species of 

hard-substrate communities respond to regional environmental gradients. Bioregionalization is the 

process of identifying bioregions which are defined by Woolley et al. (2020) as “a model of the true 

distribution of multiple species that share a similar ecological and abiotic preference and sometimes an 

evolutionary history”. A bioregion covers a particular geographic area mapping simultaneously biological 
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and physical phenomena. It defines a meaningful spatial unit that can be used as a basis for research, 

ecosystem-based management and spatial monitoring (Howell et al., 2020; Rice et al., 2011; Whittaker et 

al., 2005). The bioregionalization approaches used are: habitat suitability models, species archetype 

models and an expert-driven ecological zonation.  

1.5 Objectives and thesis outline 

The main objective of this thesis is to understand how regional environmental drivers influence deep-sea 

benthic communities. The focus is on habitat-forming benthic organisms characteristics of hard-substrate 

communities. Many of the described patterns are of general interest as they seem to be caused by 

environmentally driven processes that most likely affect the functioning and the structure of several 

components of deep-sea ecosystems in the Azores. Understanding the distributional patterns of 

foundation and vulnerable taxa is of pivotal importance to adequately inform ecosystem-based 

management. In addition, by understanding the major distributional patterns of these species it is possible 

to better design monitoring strategies and to better frame new ecological questions.  

This thesis is organized in several chapters:  

Chapter 2 employs habitat suitability models (HSMs) to estimate the regional distribution of the most 

common and vulnerable habitat-forming CWCs of the Azores. Geographic and bathymetric distributional 

gradients are explored in the light of regional environmental patterns.  

Chapter 3 represents one of the first statistical bioregionalization of deep-sea benthic communities in the 

Azores (NE Atlantic). It focuses on habitat-forming filter feeder species (Phyla Cnidaria and Porifera) 

known to represent a critical component of hard-substrate communities in the region. Species archetype 

models were developed to simultaneously analyze and combine biological and environmental data into 

meaningful bioregions following a one-stage classification approach.  

Chapter 4 presents a new R package scapesClassification designed to translate users’ perceptions of 

landscapes and seascapes into computer representation. Particular points of views are encoded in a 

transparent and explicit manner, can be reproduced on different machines and, ultimately, can be 

considered as task- or domain-oriented ontologies.  

Chapter 5 provides a synthesis of the distributional patterns and of the environmental drivers of deep-sea 

hard-substrate communities in the Azores (NE Atlantic) with a special focus on ecosystem engineer species 

of the Phyla Cnidaria and Porifera. It builds on the results of Chapter 2 and 3. The software developed in 
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Chapter 4 is used to perform a geomorphological classification of prominent seafloor features (i.e. 

seamounts, ridges, island slopes). It investigates the role of the Azores Current-Azores Front (AzC-AzF) 

system in structuring deep-sea biodiversity patterns.  

Finally, Chapter 6 provides a general overview of the main results obtained by the present work.  
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Chapter 2   
Infer bathymetric and geographic gradients of key cold-water 
corals in the Azores (NE Atlantic): strengths and caveats of habitat 
suitability models 
 

 

2.1 Abstract 

Habitat-forming cold-water corals (CWCs) represent a key component of deep-sea communities and a 

priority target for conservation. Although mounting efforts are trying to identify drivers of CWC 

distributions much remain unknown because of the scarcity of available ecological data. The present work 

employs habitat suitability models (HSMs) to estimate the regional distribution of the most common and 

vulnerable habitat-forming CWCs of the Azores, a hotspot of coral diversity in the Atlantic. Geographic 

and bathymetric distributional gradients are explored in the light of regional environmental patterns. Our 

results suggest that the Azores Current could define two ecological provinces in the study area. The depth 

zonation of CWCs is shaped by regional water masses. In particular, the modelled CWCs form four groups 

of species: species restricted to upper waters, species extending down from upper waters, species 

restricted to intermediate waters and species extending up from deep waters. These results have 

important implications for the regional management of deep-sea benthic communities and, in particular, 

for the design of representative networks of protected areas. A careful assessment of our models provided 

four take home messages that can help in the design and in the interpretation of future models targeting 

deep-sea species: (i) models can have a different capacity to correctly detect distributional patterns along 

geographic and bathymetric gradients; (ii) the lack of readily available variables acting as a meaningful 

proxy of the pelagic–benthic coupling hinders the detection of important geographic patterns; (iii) 

unconventional variables mimicking known regional structures or processes can enhance model 

predictions; (iv) variables with low model importance can be of great importance in the interpretation of 

model results. 
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2.2 Introduction 

Data about the distribution of species, especially vulnerable and foundation species, are important to 

inform marine management strategies and to better understand ecological and evolutionary processes. 

However, in the deep sea distributional data are scarce. Thus, habitat suitability models (HSMs) are often 

used to estimate geographic distributions by correlating available distributional data to environmental 

conditions (Elith and Leathwick, 2009). Although the relation of organisms with the abiotic environment 

is only one of the factors shaping species ranges (D’Amen et al., 2017), species environment relationships 

tend to be easier to measure at regional scales and are often the only proxy readily available to estimate 

the distribution of species in space and time. The abiotic environment constitutes one of the ecological 

filters driving community assembly (D’Amen et al., 2017). At a regional scale, environmental filtering can 

be considered as an intermediate process between those defining the regional pool of species and those 

structuring realized communities (D’Amen et al., 2017; Kraft et al., 2015). In particular, the term 

environmental filtering, sensu stricto, refers to abiotic conditions that prevent a species from establishing 

and surviving (Kraft et al., 2015). Only species able to tolerate similar environmental conditions can coexist 

at a site. Although it is challenging to distinguish environmental filtering from other ecological and 

evolutionary processes using observational data (Cadotte and Tucker, 2017), it should be possible to 

deduce a direct or an indirect role of the environment in structuring regional biodiversity if the 

environmental conditions of a region show a clear structure to which distinct pools of species correspond. 

This correlation should be easier to detect considering sessile species such as cold-water corals (CWCs).  

Since the OSPAR convention adopted a list of threatened and/or declining species and habitats 

(Agreement 2008-6), and the United Nation General Assembly together with the Food and Agriculture 

Organization endorsed the concept of Vulnerable Marine Ecosystems (VMEs) (FAO, 2009), habitat-

forming CWCs emerged as an important marine conservation target. CWCs belong to a diverse 

polyphyletic group of sessile cnidarians (classes Anthozoa and Hydrozoa) that generally inhabit deep, 

aphotic and cold marine waters. They are azooxanthellate (i.e., lacking symbiotic dinoflagellates), 

heterotrophs and characterized by the production of a calcium carbonate or proteinaceous supporting 

axis (Cairns, 2007; Roberts et al., 2009). CWCs are distributed globally down to depths of several 

thousands of meters. Some species can form large and long lasting colonies, build extensive reefs or occur 

in dense ‘deep-sea gardens’. The fascinating variety of CWC shapes and colors, together with their 

sensitivity to human disturbance, has put the deep sea in the spotlight, focusing society’s attention, 

research funds and conservation actions (Armstrong et al., 2019). Increasing evidence suggests that CWC 
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aggregations can influence local current regimes (Cyr et al., 2016; Juva et al., 2020; Mienis et al., 2019; 

Soetaert et al., 2016), regulate nutrient flows (Cathalot et al., 2015; Georgian et al., 2016; Middelburg et 

al., 2016; Rix et al., 2016), and provide habitat to other benthic and demersal species (Buhl-Mortensen et 

al., 2010, 2017; Klompmaker et al., 2016; Linley et al., 2017). Such roles in ecological facilitation, 

community development and promotion of local biodiversity have led to CWCs being considered 

foundation species central to deep-sea benthic communities (Crotty et al., 2019; Ellison, 2019; Orejas and 

Jiménez, 2017). Finally, CWCs likely contribute to regulating, supporting and provisioning ecosystem 

services (Thurber et al., 2014). 

To date, 5.6% of the 3300+ CWC species estimated to exist worldwide (Roberts and Cairns, 2014) have 

been reported in the Azores, which occupies 0.25% of the world’s ocean (Braga-Henriques et al., 2013; 

Sampaio et al., 2019a). Such high species diversity establishes this region as an important biodiversity 

hotspot of CWCs (Sampaio et al., 2019a). Most habitat-forming species belong to the orders Scleractinia 

(stony corals) and Antipatharia (black corals), the subclass Octocorallia (soft corals, gorgonians and sea 

pens) and the family Stylasteridae (lace corals) (Roberts et al., 2009).  In the Azores the subclass 

Octocorallia reaches the highest species diversity recorded so far in the North Atlantic (Sampaio et al., 

2019a). Recent video surveys performed with a portable drift cam system and with other underwater 

vehicles (Dominguez‐Carrió et al., 2021; Morato et al., 2021a, 2020b, 2019, 2018b, 2018a; Orejas et al., 

2017; Somoza et al., 2020) have reported that Octocorallia and Antipatharia species form dense 

aggregations both on island slopes and on offshore relieves (e.g. Morato et al., 2021b, 2020b; Somoza et 

al., 2020; Tempera et al., 2012b). Octocorallia and Antipatharia include some of the most important 

habitat-forming species existing in the region. Reef-forming Scleractinia species have also been reported 

in the Azores (Lophelia pertusa, Madrepora oculata and Solenosmilia variabilis) (Braga-Henriques et al., 

2013; Sampaio et al., 2012). The video footage currently available shows that in the region, down to 2000 

m, these species mostly exist as sparse colonies, resembling the categories II and III of Flögel et al. (2014). 

However, they are not in complete isolation, they rather tend to be embedded within multi-species coral 

gardens. Finally, in the Stylasteridae family there is the only habitat-forming coral species that appears to 

be endemic to the Azores, Errina dabneyi (Braga-Henriques et al., 2011; Zibrowius and Cairns, 1992). 

The present work employs habitat suitability models (HSMs) to estimate the regional distribution of the 

most common and vulnerable habitat-forming CWCs of the Azores. Geographic and bathymetric 

distributional gradients are explored in the light of regional environmental structures. Since the modelled 

species represent a structuring and a prevalent element of the benthic communities in the region, 
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understanding how they distribute and how their composition change along environmental gradients will 

improve policies attempting to preserve vulnerable marine ecosystems (VMEs) and will help defining new 

ecological questions. Based on a careful review of model predictions several take home messages are 

provided. Hopefully, these messages will help in the design and in the interpretation of future models 

targeting deep-sea species. To our knowledge, this the first work to specifically model key cold-water 

corals in the Azores and the first work that specifically modelled the octocorals Acanthogorgia spp., 

Dentomuricea aff. meteor, Narella bellissima, Narella versluysi, Paracalyptrophora josephinae and 

Paragorgia johnsoni, the black coral Leiopathes cf. expansa and the lace coral Errina dabneyi. 

 

2.3 Materials and Methods 

2.3.1 Study area 

Spanning over 1 million km2 on the northern Mid-Atlantic Ridge (MAR) (Figure 2.3 a-b), the Azores hold a 

range of seascapes unique to European waters. Volcanic islands, ridges and seamounts rise from plains 

several kilometers deep and support different habitats across all the regional bathymetric range (Mitchell 

et al., 2018; Peran et al., 2016; Tempera et al., 2012b). Oceanography in the Azores is influenced by two 

eastward currents branching from the Gulf Stream: The North Atlantic Current in the north and the Azores 

Current in the south (Bashmachnikov et al., 2009; Caldeira and Reis, 2017). Eddies systems associated 

with these currents play an important role in the region (Caldeira and Reis, 2017; Sala et al., 2016). The 

permanent influence of the Azores high pressure system and the consequent sustained Elkman transport 

determine a confluence zone with different regimes northeast and southwest of the Archipelago (Caldeira 

and Reis, 2017) with potential implication for larval dispersal, marine colonization and speciation (Sala et 

al., 2016). Surface waters present a northwest-southeast gradient in productivity and other 

environmental parameters, with cooler and more productive waters located north and warmer less 

productive waters located south of the archipelago (Amorim et al., 2017; Caldeira and Reis, 2017; Palma 

et al., 2012). This environmental gradient is correlated to the spatial distribution of distinct planktonic 

assemblages in the region (Silva et al., 2013). Given the scarcity of biological sampling below 2000 m, this 

work focuses only on seafloor areas shallower than 2000 m (Figure 2.3c). 
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Figure 2.3 – Azores study area (a). The islands from west to east are: Flores, Corvo, Faial, Pico, São Jorge, Graciosa, 
Terceira, São Miguel and Santa Maria. Habitat suitability models consider only seafloor locations shallower than 
2000 m (identified by the contour lines). Relief location: Mid-Atlantic Ridge (MAR), Central Seamounts (Central), 
Northeastern Seamounts (NE), Southeastern Seamounts (SE), Southern Seamounts (S). (b) Position of the Azores in 
the NE Atlantic. (c) Number of sampling events (SE) within the modelled area aggregated on a 30x30 km grid. 
Sampling events include video transects, longline surveys and bycatch data from fishing observers. Important 
regional relieves: (1) Kurchatov N, (2) Kurchatov SE, (3) Kurchatov SW, (4) Oscar W, (5) Oscar, (6) G127, (7) Gigante, 
(8) Beta, (9) Cavala, (10) A6, (11) Picoto, (12) Alpha, (13) Voador, (14) A3, (15) Voador W, (16) Sarda, (17) Monte 
Alto, (18) Cavalo, (19) Cavalo W, (20) SW1, (21) SW2, (22) Princess Alice W, (23) Princess Alice, (24) Condor, (25) 
Açor, (26) Condor de Fora, (27) De Guerne, (28) Baixo São Mateus, (29) Graciosa West, (30) Perestrelo Hill, (31) Ridge 
SE Graciosa, (32) Mar da Fortuna, (33) Serreta, (34) João Leonardes, (35) Gaillard, (36) Sedlo, (37) Borda, (38) 
Esperance, (39) Albatroz, (40) São Jorge de Fora, (41) Agostinho, (42) Dom João de Castro S, (43) Dom João de Castro, 
(44) Mar da Prata W, (45) Alcatraz, (46) Mar da Prata, (47) Fouque, (48) Formigas, (49) Atlantis N, (50) Atlantis NW, 
(51) Atlantis, (52) Tryo. 
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2.3.2 Regional water masses 

The different water masses existing in the Atlantic Ocean have been recently described by Liu and Tanhua 

(2021) using conservative (temperature and salinity) and non-conservative (oxygen, silicate, phosphate 

and nitrate) water properties. Based on their work, at least five water masses can be identified in the 

Azores (Appendix A.1.1, Figure A.1). Regional water masses present a complex stratification and co-occur 

within specific depth intervals. They can be divided into different layers: upper, intermediate and deep 

layer. Within the upper 400 m of the water column, the upper water masses are prevalent. Below this 

depth, their importance decrease slowly down to a depth of 1200 m where their signature disappears. 

Intermediate water masses roughly occupy depths between 400 and 1600 m. Their core is at about 800 

m depth. The core of the deep water masses is located at about 1600 m depth and they extend from the 

deepest portion of the study area (2000 m) up to depths of 400 m.  

2.3.3 Selection of CWC species and occurrence data 

Traits characterizing relative vulnerability and ecological importance were used to define the final list of 

modelled CWCs (Table 2.1 and Figure A.2) following the approach described in Appendix A.1. The 

modelled species represent the most common coral engineers of the region. Preliminary analysis of 

underwater videos showed that all the selected species form monospecific or mixed coral gardens in the 

Azores (e.g. Dominguez‐Carrió et al., 2021; Morato et al., 2021b, 2018b). In addition, they are vulnerable 

to human activities (Carreiro-Silva et al., 2013; Morato et al., 2021b), appear to influence nutrient regimes 

(Rovelli et al., 2022, 2015), provide essential habitat to fish species (Gomes-Pereira et al., 2017) and one 

species (Errina dabneyi) seems to be endemic to the region (Braga-Henriques et al., 2011; Zibrowius and 

Cairns, 1992). Models were built at the genus or at the family level when species identifications were 

uncertain (see Appendix A.1).  

Presence records were obtained from the Azores’ Marine Biological Reference Collection and database 

(COLETA) which compiles information from three main sources: (i) bycatch obtained from regional 

longline surveys on-board the N/I “Arquipélago”; (ii) bycatch collected under regional observer programs; 

(iii) species annotations from underwater imagery (Table A.2) (Sampaio et al., 2019b). Data from literature 

compilations (Braga-Henriques et al., 2013) were excluded to reduce positional errors (Araújo et al., 

2019). Most of the presence records came from video annotation (76%), the remaining from longline and 

handline bycatch records (24%) (Figure A.3 and Figure A.4). The georeferenced quality of bycatch data 

was increased by: (i) retaining only presence records associated to georeferenced segments shorter than 
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1.5 km so that positional errors were comparable to the resolution of the model grid (1.13 x 1.11 km) and 

(ii) discarding bycatch records with no reported depth or with a depth mismatching our reference 

bathymetric grid by more than 200 m. After removing duplicate records falling in the same model grid 

cell, the number of records ranged from 23 (Errina dabneyi) to 161 (Viminella flagellum and 

Acanthogorgia spp.) (Table 2.1 and Figure A.3 and Figure A.4). For most species the number of records 

was well above 25, a conservative minimum threshold for the development of HSMs (van Proosdij et al., 

2016). An estimate of the regional sampling effort was produced combining all the scientific surveys that 

occurred in the region (Figure 2.3). 

 

Table 2.1 – Cold-water coral taxa selected for the modelling exercise. Relative abundance, 3D-structure and relative 
vulnerability were the three criteria used to select species with high vulnerability and with the characteristics of a 
foundation species. Evaluations were expert-driven, relative to each other and referred only to colonies occurring in 
the Azores. N: Number of records. 

Group Taxon 
Relative 
Abundance 

3D-structure 
Relative 
Vulnerability 

N 

Antipatharia Leiopathes cf. expansa Medium Large High 46 

Calcaxonia Callogorgia verticillata Medium Large High 98 

Calcaxonia Narella bellissima High Medium Low 42 

Calcaxonia Narella versluysi High Small Low 58 

Calcaxonia Paracalyptrophora josephinae Medium Large High 24 

Calcaxonia Viminella flagellum High Small Low 161 

Holaxonia Acanthogorgia spp. 1 High Medium Low 161 

Holaxonia Dentomuricea aff. meteor Medium Large High 51 

Scleractinia Desmophyllum pertusum 2 Low Large High 31 

Scleractinia Madrepora oculata Low Large High 63 

Scleractinia Solenosmilia variabilis Low Medium High 24 

Scleraxonia Coralliidae 3 Medium Medium High 128 

Scleraxonia Paragorgia johnsoni High Large High 51 

Stylasteridae Errina dabneyi Medium Medium High 23 

1 In the Azores it includes A. armata and A. hirsuta.  
 2 Resulted from a recent combination of the genus Desmophyllum and Lophelia and is used as a synonym of the well-
kwon reef-forming Lophelia pertusa.   
3 In the Azores it includes Pleurocorallium johnsoni, Hemicorallium niobe and Hemicorallium tricolor. 
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2.3.4 Environmental predictors 

The candidate environmental predictors considered in this study are presented in Table 2.2. Resource and 

direct predictors were preferred as explanatory variables (Araújo et al., 2019), but indirect predictors were 

considered when the former were not available. A cell size of a 1.13 x 1.11 km (UTM zone 26N) was 

adopted for the analysis. This resolution was considered a good compromise between the original 

resolution of environmental data and our capacity to resolve suitable and unsuitable areas within the 

same geomorphological feature using model predictions. Grid harmonization required the downscale of 

depth-derived variables and the upscale of environmental variables using bilinear interpolation.  

Following the approach adopted in similar studies (Anderson et al., 2016; Davies and Guinotte, 2011; 

Yesson et al., 2012), depth-derived variables were computed using the Benthic Terrain Modeler toolbox 

(Walbridge et al., 2018) and were considered as environmental predictors. Nutrients (silicate, phosphate 

and nitrate) and carbonate compounds (aragonite and calcite) are often used to model the distribution of 

CWCs (Davies and Guinotte, 2011; Yesson et al., 2012). In our case they were all highly correlated (Figure 

A.5). Principal Component Analysis (PCA) was used to reduce the high collinearity (Dormann et al., 2013). 

However, when two PCA were performed independently for nutrients and carbonate compounds their 

first principal components remained highly correlated (r > 0.9). Based on the fact that different water 

masses present different nutrient and carbonate concentrations (e.g. Azetsu-Scott et al., 2010; Fontela et 

al., 2020; González-Dávila et al., 2011; Liu and Tanhua, 2021), it was decided to join these variables into 

the same PCA. The first principal component (named ‘seawater chemistry’) explained 90% of the variance. 

It was used as a predictor variable with the intention to detect an eventual correlation existing between 

the distribution of CWCs and the distribution of different water masses. Figure A.6 shows the relations of 

‘seawater chemistry’ with nutrient concentrations and with aragonite and calcite saturation states. 

Undersaturated conditions are located below the modelled depth range (0-2000 m) (Figure A.6e). The 

particulate organic carbon (POC) flux was computed based on Lutz et al. (2007) using the net primary 

productivity values reported in Amorim et al. (2017).  

Correlation and importance in preliminary models provided the criteria to identify the final set of variables 

used in the HSMs (Table 2.2). Correlation among predictors (Figure A.5) was maintained at acceptable 

levels (r ≤ 0.7) (Dormann et al., 2013) by removing those variables less meaningful for coral distribution, 

as inferred from the literature. Temperature and ‘seawater chemistry’ (r = 0.72) were the exceptions as 

they both appeared to be relevant in preliminary model outputs. Depth was excluded because it 

represented an indirect predictor showing a high correlation with other variables (Figure A.5).  
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Table 2.2 – Environmental layers considered in this study. The final set of layers used to develop habitat suitability 
models is presented in bold. Mean and SD refer to seafloor values at locations shallower than 2000 m. (‡) Depth-
derived layers computed in ArcGIS using the Benthic Terrain Modeler toolbox (Walbridge et al., 2018); (†) Seafloor 
conditions derived from the VIKING20 oceanographic model computed as the mean of monthly values for the period 
1989-2009 (Böning et al., 2016). BPI is the bathymetric position index (sensu Walbridge et al., 2018); POC is the 
particulate organic carbon flux computed based on Lutz et al. (2007). All layers from Amorim et al. (2017), Böning et 
al. (2016) and Morato et al. (2020c) refers to seafloor conditions. BPI is bathymetric position index, POC is particulate 
organic carbon.  

Available predictors 
Original 

resolution 
Mean and SD Units Source 

Depth 115 m -1507 ± 415 m EMODnet, 2018 

BPI (5 km radius)‡ 115 m 29.6 ± 107.5 - - 

BPI (20 km radius) ‡ 115 m 158.4 ± 316.3 - - 

Slope‡ 115 m 6.2 ± 4.9 ° - 

Ruggedness (5km radius)‡ 115 m 0.0016 ± 0.0025 - - 

Eastness‡ 115 m 0.00 ± 0.55 - - 

Northness‡ 115 m 0.01 ± 0.56 - - 

Temperature†  0.05° 5.6 ± 2.5 °C Böning et al., 2016 

Salinity†  0.05° 26.40 ± 0.19 PSU Böning et al., 2016 

Current speed†  0.05° 0.01 ± 0.008 m s-1 Böning et al., 2016 

Aragonite 1° 1.33 ± 0.27 Ω Morato et al., 2020 

Calcite 1° 2.07 ± 0.43 Ω Morato et al., 2020c 

Nitrate 1° 17.74 ± 1.90 µmol/l Amorim et al., 2017 

Phosphate 1° 1.14 ± 0.13 µmol/l Amorim et al., 2017 

Silicate 1° 12.64 ±1.85 µmol/l Amorim et al., 2017 

Dissolved Oxygen 1° 5.58 ± 0.51 ml/l Amorim et al., 2017 

Oxygen Saturation  1° 79.40 ± 4.76 % Amorim et al., 2017 

Oxygen Utilization 1° 1.44 ± 0.29 ml/l Amorim et al., 2017 

Seawater chemistry  1° 3.01 ± 1.74 - - 

POC flux 9 km 14.92 ± 1.52 mg Corg m-2 d-1 - 
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Based on preliminary models, we excluded predictors that consistently showed little importance (sensu 

Thuiller et al., 2009) (eastness, northness and ruggedness). The final set of predictors included: 

bathymetric position index – a measure of the relative elevation of a location above the seafloor – 

computed with two different radius (5 km and 20 km) (see Lundblad et al., 2006; Walbridge et al., 2018), 

seafloor current speed, seawater chemistry, seafloor oxygen saturation, POC flux, slope and seafloor 

temperature (Table 2.2). These layers are plotted in Figure A.7.  

2.3.5 Software 

All analyses were performed in the R environment (version 4.2.0) (R Core Team, 2022). 

2.3.6 Habitat suitability models (HSMs) 

Habitat suitability models (HSMs) were built using two approaches: generalized additive models (GAMs) 

(Hastie and Tibshirani, 1990) and maximum entropy algorithms (Maxent) (Phillips et al., 2017). Models 

were built using the functions ‘gam’ from the R package mgcv (Wood, 2011) and ‘maxent’ from the R 

package dismo (Hijmans et al., 2022). GAMs were computed using the binomial family and a maximum 

basis dimension (k) equal to 4. An attempt to change the default parameter of the function ‘maxent’ was 

made, however, no improvement in model predictions could be detected. Therefore, default parameters 

were used. The general workflow followed to develop HSMs and combine their results is synthetized in 

Figure 2.4. Study area and model background were limited to depths shallower than 2000 m where most 

of the sampling events took place (Figure 2.3) so that the sampling-bias could be mitigated (Phillips et al., 

2009).  

Pseudo-absences and background points. Models were trained using a sampling-bias corrected set of 

10,000 pseudo-absences and background points (following Barbet-Massin et al., 2012; Hertzog et al., 

2014; Phillips and Dudík, 2008). As the sampling-bias was mostly depth related, raster locations were 

grouped into five depth strata and the probability of selection of pseudo-absences and background points 

was correlated to the sampling effort that occurred in each depth stratum. The geographic region for the 

generation of GAM pseudo-absences was further limited using environmental profiling based on presence 

data (function ‘OCSVMprofiling’ from the R package MOPA, Iturbide et al. 2018). The nu (or v) parameter 

of ‘OCSVMprofiling’ controls the error percentage of suitable locations misclassified as unsuitable by a 

support vector machine classifier – the higher the value of nu, the higher is the error tolerance (Drake et 

al., 2006; Schölkopf et al., 2001). The nu parameter was set to a value of 0.9 because with lower nu values 

pseudo-absences were not generated over large regions and this caused less plausible model outputs.  
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Predictor variables and response curves.  From the final set of predictor variables (Table 2.2), only a 

subset was used to build the GAMs, while all predictor variables were used for Maxent models. For each 

CWC taxa, GAMs were fitted using all the possible combinations of the predictor variables. The model 

presenting the lowest Akaike Information Criterion (AIC, Symonds and Moussalli, 2011) was selected 

(function dredge in the R package MuMIn, Bartoń, 2022). Variable importance was estimated following 

the permutation approach (n = 100) implemented by the function ‘variables_importance’ (R package 

Biomod2) described in Thuiller et al. (2022, 2009). Response curves were built considering changes in 

habitat suitability indices (HSI) when a focal predictor varied at 100 points across its range while all other 

predictors were kept at their mean value (Elith et al., 2005). Finally, we tried to assess if similar pools of 

variables contributed the most to individual GAM and Maxent models. Subsets of variables were defined 

based on two conditions: (i) they ranked within the top four and (ii) they had a permutation importance 

greater than 10%. Shared important variables (SIVs) corresponded to those present in both Maxent and 

GAM subsets. 

5-seed 5-fold spatial block cross validation. Spatial block cross-validation is considered the best practice 

when no independent datasets are available to validate model predictions (Araújo et al., 2019). Presence 

and pseudo-absences/background points were assigned to different spatial bocks using the function 

‘spatialBlock’ (R package blockCV, Valavi et al., 2019). The function ‘spatialAutoRange’ was used to define 

the block size (Valavi et al., 2019). Each block was then assigned randomly to one of five folds. At turns, 

each fold is used for cross-validation and the remaining four are used for model fitting. The random 

grouping of spatial blocks into folds can influence the cross validation. In order to have more conservative 

evaluation scores, the entire process was repeated five times setting different random seeds (5-seed 5-

fold spatial block cross-validation). Averaged values of area under the curve (AUC) and of true skill 

statistics (TSS) provided estimates of the overall confidence of model predictions (Allouche et al., 2006). 

According to these statistics, models can be classified as good (AUC > 0.8; TSS > 0.6), fair (0.7 ≤ AUC ≤ 0.8; 

0.4 ≤ TSS ≤ 0.6) or poor (AUC < 0.7; TSS < 0.4) (Landis and Koch, 1977). Final models were built using all 

presence records and produced binary predictions based on the sensitivity‐specificity sum maximization 

(MSS) threshold (Liu et al., 2005). 

Spatial autocorrelation. Spatial autocorrelation in model residuals was investigated using the global 

Moran's I coefficient (Dormann et al., 2007) computed with the R package ape (Paradis and Schliep, 2019). 

All Moran's I coefficients were close to zero and non-significant (p-value > 0.05).  
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Bootstrapping. A bootstrap process (n = 100) evaluated the local confidence of model predictions. Each 

bootstrap iteration sampled with replacement the input data, fitted GAM and Maxent models and 

produced binary suitability maps based on the MSS threshold (Liu et al., 2005). Local suitability confidence 

was then estimated by the number of times individual raster cells were classified as suitable: low [1-30%), 

medium [30 70%) or high [70 100%] confidence cell.  

Fuzzy Matching and Fuzzy Kappa. The level of similarity between the spatial distribution of GAM and 

Maxent binary predictions (low, medium and high confidence cells) was measured using both a local 

(Fuzzy Matching) and an overall (Improved Fuzzy Kappa) measure of similarity (Hagen-Zanker, 2009; 

Hagen, 2003). Measures of local similarity specify for each raster cell the degree of similarity between 

GAM and Maxent predictions on a scale of 0 (totally different) to 1 (identical). These measures were based 

on two membership functions (Hagen, 2003): category similarity, which assumed that some categories 

were more similar than others (Table A.3); distance decay, which defined the fuzzy similarity of two cells 

as (i) identical if they matched perfectly, (ii) linearly decreasing with distance if the matching category was 

found within a 2-cell radius (~2 km) or (iii) totally different when no matching category was found within 

a 2-cell radius. Hagen (2003) provides the details to combine membership functions and compute local 

fuzzy similarity. The overall similarity of GAM and Maxent predictions was measured using two Improved 

Fuzzy Kappa scores (Hagen-Zanker, 2009): (i) the first measured the correspondence of all GAM and 

Maxent predictions (Fk); (ii) the second measured only the correspondence of the high-confidence cells 

(FkHC). Areas consistently predicted as suitable with high confidence by both modelling approaches were 

considered the best suited to characterize and describe CWC habitats. Therefore, we decided to use the 

FkHC index to measure the overall level of similarity of model predictions. Following the classification 

adopted for kappa type statistics, the overall similarity of habitat suitability predictions was considered as 

good (FkHC > 0.6), fair (04 ≤ FkHC ≤ 0.6) or poor (FkHC < 0.4) (Landis and Koch, 1977).  

Combined suitability maps and overall confidence in habitat suitability estimates. GAM and Maxent 

predictions were combined and each raster cell predicted as suitable was classified as follow:  

i. high confidence suitable cell, raster cell predicted as suitable with high confidence by both GAM 

and Maxent models;  

ii. medium confidence suitable cell, raster cell predicted as suitable with medium or high confidence 

by GAM, Maxent or both and with a local fuzzy similarity greater than 0.5;  

iii. low confidence suitable cell, any other cell predicted as suitable by GAM or Maxent.  
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The overall confidence of combined suitability maps was defined as good, fair or poor based on the lowest 

score among AUCGAM, TSSGAM, AUCMaxent, TSSMaxent and FkHC (Figure 2.4). 

 

 

Figure 2.4 – Habitat suitability models design and evaluation. Area under the curve (AUC); true skill statistics (TSS); 
improved Fuzzy Kappa for high-confidence suitable cells (FkHC).  
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2.3.7 Niche equivalence and similarity 

Pair-wise niche overlaps were measured using the Schoener’s D which ranges from 0 (no overlap) to 1 

(complete overlap) (Warren et al., 2008). This index evaluates the degree of shared environmental niche 

space among distinct species or populations (e.g. Aguirre‐Gutiérrez et al., 2015). In the present case it is 

used to identify niche equivalences and similarities based on the outputs of HSMs. Niches were quantified 

considering only the environmental conditions occurring at the high-confidence suitable cells of the 

combined suitability maps. Only variables describing water properties were used to quantify the niche 

space (i.e. seawater chemistry, POC flux, seafloor temperature, seafloor oxygen saturation and seafloor 

current speed). The idea was to verify if distinct pools of CWCs could be identified based on water 

properties alone.  

All niche analyses were implemented using the R package humboldt (Brown and Carnaval, 2019). This 

package builds on the analysis proposed by Warren et al. (2008) and Broennimann et al. (2012). The 

Schoener’s D was computed in the environmental space to reduce eventual geographic biases in habitat 

availability (Broennimann et al., 2012; Brown and Carnaval, 2019). The total environmental space was 

bounded by the minimum and maximum environmental values found across the suitable cells of all the 

modelled CWC taxa. The environmental dimensions were reduced using the principal component analysis 

and the first two components were considered to quantify the niches occupied by different species. The 

principal components were projected on a grid of 100 x 100 cells and a kernel density function was used 

to determine the smoothed density of occurrences in each cell of the grid (Broennimann et al., 2012; 

Brown and Carnaval, 2019). The analysis corrected the occurrence densities of each species by the 

prevalence of the environments in their range (Brown and Carnaval, 2019) and removed duplicate suitable 

cells in buffers of 5 km (distance chosen based on the spatial autocorrelation ranges of the environmental 

layers, function ‘spatialAutoRange’ from the R package blockCV, Valavi et al., 2019). The corrected 

densities of occurrences were used to measure the niche overlap of different species (Schoener’s D). We 

used the equivalence statistic to assess whether the ecological niches of pairs of CWCs were significantly 

different from each other. The observed Schoener’s D value was compared to values obtained when the 

occurrences of the two species were resampled (200 times). Significance was determined by the number 

of times the observed overlap was greater than the overlap of the reshuffled datasets. The hypothesis of 

niche equivalency was rejected with p-values < 0.05. We used the background statistic to assess if the 

niche overlap of two species was more similar than expected by chance given the underlying 

environmental conditions. The statistic compares the similarity of the niches of species 1 and 2 to the 
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similarity of species 1 and the random shifting of the spatial distribution of species 2 (and vice versa). The 

process is repeated 200 times and if the simulated overlap is consistently lower than the observed overlap 

(p value < 0.05) then the background test is significant. See Brown and Carnaval (2019) for more details 

about the equivalence and the background tests. 

2.4 Results 

2.4.1 Model evaluation 

Evaluation scores are shown in Table 2.3. The overall confidence score was good for 8 taxa and fair for 6. 

No model showed a low evaluation score nor a low similarity score. Evaluation scores were within the fair 

range only for Desmophyllum pertusum (AUCGAM = 0.78; AUCMaxent = 0.79; TSSGAM = 0.58; TSSMaxent =0.59), 

Leiopathes cf. expansa (AUCGAM = 0.76) and Madrepora oculata (TSSMaxent = 0.59). Maxent models and 

GAMs showed very similar performances with Maxent models being only slightly better. Five species 

showed similarity scores within the fair range: Errina dabneyi (FkHC = 0.58), L. cf. expansa (FkHC = 0.58), 

M. oculata (FkHC = 0.56), Paracalyptrophora josephinae (FkHC = 0.54) and Solenosmilia variabilis (FkHC = 

0.54). On average, the overall similarity of model predictions increased when only high-confidence cells 

were considered (average FkHC = 0.63; average Fk = 0.5). This suggests that similar areas are consistently 

predicted as suitable by both modelling approaches. The only exceptions were E. dabneyi and S. variabilis 

(FkHC and Fk almost equivalent) and P. josephinae (FkHC = 0.54; Fk = 0.63).  

The local confidence of GAM and Maxent models for Octocorallia appeared to be between good and fair 

(Figure A.8 and Figure A.9). In general, more than half of the areas identified as suitable were predicted 

as suitable consistently throughout the bootstrap process. The remaining areas were predicted as suitable 

fairly consistently. The main exceptions were Callogorgia verticillata and Dentomuricea aff. meteor in 

GAMs (Figure A.8 a and g) and Coralliidae in Maxent (Figure A.9h). These were also the species with the 

lowest local agreement between models predictions (Figure A.10 a, g and h). The agreement between the 

two modelling approaches seemed to be good for the remaining taxa (Figure A.10). Interestingly, the 

overall similarity score for high confidence cells resulted quite low for P. josephinae (FkHC = 0.54; Fk = 0.63) 

while the local fuzzy matching showed a good overlap in model predictions (Figure A.10d). The high fuzzy 

matching values show that the suitable areas predicted by the two models largely overlap, however the 

low FkHC shows that the uncertainties of the two models are distributed differently.  
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Suitable habitats estimated by GAMs for Scleractinia, Antipatharia and Anthoathecata showed a 

proportion of high, fair and low confidence cells similar to the results obtained for the Octocorallia (Figure 

A.11). The only exception was S. variabilis, which presented a high percentage of fair confidence cells 

(Figure A.11c). Maxent models appeared to be more influenced by the resampling process (Figure A.12) 

and to overestimate the suitable habitat of L. cf. expansa, M. oculata and S. variabilis when compared to 

the suitability maps produced by GAMs (Figure A.11 and Figure A.12 panels b, c and e). Habitat suitability 

predictions had the lowest overlap for L. cf. expansa and M. oculata (Figure A.13). E. dabneyi, showed 

good local fuzzy matching (Figure A.13d) and poor fuzzy kappa scores (both Fk and FkHC). This disagreement 

is likely caused by the fact that the two modelling approaches predict an important fraction of non-

overlapping suitable cells that are in close proximity. While this influences negatively the overall fuzzy 

kappa scores, local measurements of similarity can still be high if suitable cells are within the distance 

considered by the distance decay component of the fuzzy membership function. 

Table 2.3 – Area under the curve (AUC), true skill statistics (TSS) and fuzzy kappa scores. Highest scores between 
GAM and Maxent models in bold. N: number of records; Fk: improved fuzzy kappa; FkHC: improved fuzzy kappa 
computed for high-confidence cells; OC: overall confidence score of combined habitat suitability maps with levels 
good (G), fair (F) or poor (P). The lowest score among AUCGAM, TSSGAM, AUCMaxent, TSSMaxent and FkHC determines the 
overall confidence score. 

TAXA N TSSGAM AUCGAM TSSMaxent AUCMaxent Fk FkHC OC 

Acanthogorgia spp. 161 0.69 ± 0.12 0.90 ± 0.07 0.69 ± 0.12 0.90 ± 0.06 0.66 0.74 G 

C. verticillata 98 0.68 ± 0.09 0.90 ± 0.04 0.69 ± 0.09 0.90 ± 0.04 0.42 0.75 G 

Coralliidae spp. 128 0.75 ± 0.10 0.92 ± 0.05 0.74 ± 0.10 0.91 ± 0.05 0.4 0.71 G 

D. aff. meteor 51 0.76 ± 0.20 0.88 ± 0.14 0.80 ± 0.14 0.91 ± 0.09 0.38 0.64 G 

D. pertusum 31 0.58 ± 0.21 0.78 ± 0.13 0.59 ± 0.17 0.79 ± 0.10 0.5 0.61 F 

E. dabneyi 23 0.72 ± 0.23 0.85 ± 0.14 0.74 ± 0.19 0.85 ± 0.12 0.59 0.58 F 

L. cf. expansa 46 0.60 ± 0.26 0.76 ± 0.24 0.62 ± 0.22 0.80 ± 0.17 0.32 0.58 F 

M. oculata 63 0.61 ± 0.15 0.82 ± 0.10 0.59 ± 0.11 0.81 ± 0.09 0.42 0.56 F 

N. bellissima 42 0.74 ± 0.17 0.89 ± 0.08 0.74 ± 0.16 0.90 ± 0.07 0.59 0.67 G 

N. versluysi 58 0.73 ± 0.17 0.88 ± 0.08 0.74 ± 0.17 0.89 ± 0.08 0.53 0.62 G 

P. josephinae 24 0.86 ± 0.14 0.93 ± 0.07 0.85 ± 0.13 0.93 ± 0.08 0.63 0.54 F 

P. johnsoni 51 0.83 ± 0.09 0.94 ± 0.04 0.79 ± 0.08 0.93 ± 0.04 0.53 0.66 G 

S. variabilis 24 0.66 ± 0.20 0.80 ± 0.13 0.69 ± 0.20 0.82 ± 0.11 0.47 0.46 F 

V. flagellum 161 0.76 ± 0.07 0.93 ± 0.03 0.79 ± 0.06 0.94 ± 0.03 0.55 0.71 G 

Average 69 0.71 0.87 0.72 0.88 0.5 0.63 - 
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2.4.2 Variable importance and response curves 

The importance of variables for GAMs and Maxent models is shown in Figure 2.5. The most important 

variable was ‘seawater chemistry’ for both modelling approaches with a median permutation importance 

of 29.6% for GAMs and 36.5% for Maxent models. It ranked among the top variables for all models with 

the exception of the Paracalyptrophora josephinae and Solenosmilia variabilis (GAMs). Among the depth-

derived layers the most relevant variables were BPI 20 (bathymetric position index) and slope. BPI 20 

ranked among the top four variables with a permutation importance greater than 10% five times for GAMs 

and eight times for Maxent models, ‘slope’ five times for GAMs and 12 for Maxent models. Besides 

‘seawater chemistry’, among the variables describing water conditions, particulate organic carbon (POC) 

resulted important for most Maxent models, albeit it was relevant only for three GAMs: Desmophyllum 

pertusum, Madrepora oculata and Leiopathes cf. expansa. Seafloor water temperature also seemed to be 

quite relevant for nine of the modelled species: Coralliidae (both HSMs), D. pertusum (both HSMs), 

Dentomuricea aff. meteor (both HSMs), Errina dabneyi (both HSMs), L. cf. expansa (Maxent), Narella 

bellissima (GAM), P. josephinae (GAM), Paragorgia johnsoni (Maxent), Viminella flagellum (both HSMs). 

The least important variables were BPI 5, current speed and oxygen saturation. 

Response curves are shown in Appendix A.3, Figure A.14 to Figure A.21. In general, GAM and Maxent 

models showed comparable responses. Responses to the variable ‘seawater chemistry’ can be divided 

into two groups: ‘group 1’ associated to high ‘seawater chemistry’ values (D. aff. meteor, E. dabneyi, P. 

josephinae, V. flagellum and Callogorgia verticillata – Figure A.14a-e); ‘group 2’ associated to low 

‘seawater chemistry’ values (N. bellissima, Narella versluysi, P. johnsoni, L. expansa, D. pertusum, S. 

variabilis and M. oculata – Figure A.14f-n). Acanthogorgia spp. and Coralliidae spp. seemed to have 

responses in between these two groups. In GAMs, the responses to temperature showed that three 

species of ‘group 1’ preferred a narrow temperature range (Figure A.15a-c): D. aff. meteor, E. dabneyi and 

P. josephinae. In general, Maxent responses showed wider tolerance ranges. C. verticillata appeared to 

have its optimal habitat slightly below 10 ºC but showed wider tolerance ranges than to the other species 

of ‘group 1’ (Figure A.15d). The optimal temperature for V. flagellum appeared to at about 8 ºC (Figure 

A.15e). The optimal temperature for the octocorals and the black coral of ‘group 2’ was roughly between 

5 and 10 ºC. The scleractinian species either had an unimportant (S. variabilis and M. oculata) or a positive 

relationship with temperature (D. pertusum) (Figure A.15l-n). Particulate organic carbon (POC) flux was a 

shared important variable for three species: L. cf. expansa, D. pertusum and M. oculata (all showing a 

positive relationship with POC flux) (Figure A.16k-m). This variable had little importance for the remaining 
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GAMs while it was relevant for most Maxent models. In general, all taxa of ‘group 2’ avoided areas of low 

carbon fluxes (Figure A.16f-n) as well as D. aff. meteor of ‘group 1’ (Figure S3.15a). P. josephinae and V. 

flagellum had a bell-shaped response curve centered on low and intermediate flux values, respectively 

(Figure A.15c, e). POC flux was not relevant for the remaining models. The taxon Coralliidae was the only 

one to show a significant response to oxygen saturation in both HSMs, with suitability indices inversely 

correlated to saturation values (Figure A.17g). Oxygen saturation was the only variable with high 

permutation importance for the GAM model of S. variabilis (Figure A.17n). The Maxent model showed a 

negative response of V. flagellum to oxygen saturation (Figure A.17e). The habitat suitability index of 

almost all species was positively correlated with slope and fine-scale BPI values (Figure A.18 and Figure 

A.19). Most species preferred high coarse-scale BPI values (Figure A.20) with the exception of Coralliidae, 

P. johnsoni, and M. oculata associated both to high and low BPI values (Figure A.20 g, j, m). Bottom current 

speed appeared to have some relevance only for D. pertusum (Figure A.21l). 

 

 

Figure 2.5 – Variable permutation importance (PI) for (a) GAM and (b) Maxent models. Black dots in (a) identify the 
variables used to build GAMs; all variables were used for Maxent models. Red circles identify the shared important 
variables: variables that ranked within the top four and that had a permutation importance greater than 10% in both 
GAM and Maxent models.  
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2.4.3 Geographic distribution  

Considering high-confidence suitable cells of the combined suitability maps (Figure 2.6 and Figure 2.7), 

the potential habitat of the modelled CWCs covered about 23,000 km2, the 11% of the modelled area. 

Most of this habitat was in waters shallower than 1500 m (Figure 2.8b) and it was always associated to 

major geological relieves (islands, seamounts or ridges) (Figure 2.6 and Figure 2.7). All species had patches 

of suitable habitat on both sides of the Mid-Atlantic Ridge (MAR), even though habitat suitable for E. 

dabneyi was almost absent west of the MAR (Figure 2.7a). The scleractinian corals D. pertusum, M. oculata 

and the black coral L. cf. expansa showed some latitudinal gradient with high-confidence suitable cells 

mostly located in the north-northwestern portion of the study area (Figure 2.7b-d and Figure 2.8a). Raster 

cells suitable for 9 or more species were rare and scattered between the MAR (on most of the features 

highlighted in Figure 2.3a), the Central Seamounts (especially Condor, Baixo de São Mateus, Princess Alice 

W and De Guerne) and the South Eastern Seamounts (especially São Jorge de Fora, Dom João de Castro, 

Mar da Prata and Mar da Prata W) (Figure A.22). Overall, the Northeastern and the Southern Seamounts 

did not appear to have the potential to aggregate many of the modelled CWCs. The only exceptions were 

Graciosa West and the Ridge SE Graciosa (Northeastern Seamounts) (see Figure 2.3a for the features’ 

names). On island slopes, multi-species aggregations were more likely west of Corvo, southwest of Flores, 

west of Faial, Graciosa and Terceira, the westernmost and the easternmost tips of São Jorge, south and 

east of Pico and east and west of São Miguel. Santa Maria seemed to be the island less likely to aggregate 

the modelled CWCs.  

Based on high-confidence suitable cells, the modelled taxa could be divided into four groups (1, 1.5, 2, 

2.5). The first group (group 1) included the species presenting the smallest estimated distributions: E. 

dabneyi, P. josephinae and D. aff. meteor (Figure 2.6a-b and Figure 2.7a). The species showing the smallest 

distribution was E. dabneyi. It was mostly limited to the central group of seamount and islands and to the 

Southeastern Seamounts. Also P. josephinae models predicted a low proportion of suitable habitat, 

however it covered a greater area in the southern portion of the MAR and in the Southeastern Seamounts. 

It also covered part of the Southern Seamounts. The potential distribution of D. aff. meteor was similar to 

P. josephinae (Figure 2.6a), however it had larger patches of suitable habitats associated to island slopes, 

especially around São Miguel, Terceira, Graciosa, São Jorge, Flores and Corvo. It appeared to be absent in 

the Southern Seamounts and in Santa Maria. These three species were virtually absent from the 

Northeastern Seamounts and from the northernmost portion of the MAR.   
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Figure 2.6 – Combined suitability maps for the selected octocoral (Alcyonacea) taxa. Local confidence (LC): the 
percentage of cells classified as high, medium or low confidence. Overall confidence (OC): determined by the lowest 
score among AUCGAM, TSSGAM, AUCMaxent, TSSMaxent and FkHC. Area under the curve (AUC); true skill statistics (TSS); 
improved fuzzy kappa for high-confidence suitable cells (FkHC). In parenthesis the number of records used to fit the 
models. Species are ordered according to the mean depth of their estimated suitable habitat.  
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Figure 2.7 – Combined suitability maps for the selected Anthoathecata (Stylasteridae) (a), Antipatharia (b) and 
Scleractinia (c-e). Local confidence (LC): the percentage of cells classified as high, medium or low confidence. Overall 
confidence (OC): determined by the lowest score among AUCGAM, TSSGAM, AUCMaxent, TSSMaxent and FkHC. Area under 
the curve (AUC); true skill statistics (TSS); improved fuzzy kappa for high-confidence suitable cells (FkHC). In 
parenthesis the number of records used to fit the models. Species are ordered according to the mean depth of their 
estimated suitable habitat. 

 

A second group of taxa (group 2) included: N. bellissima, N. versluysi, Coralliidae spp., and P. johnsoni 

(Figure 2.6f-i). These species presented very similar habitat distributions. The biggest differences were 

that the habitat of N. bellissima covered a larger area in the Central Seamounts and was almost absent 

north of Corvo Island while the habitat of P. johnsoni was absent from the Southern Seamounts and 

covered a more limited area than each of the other thee taxa. These species presented little overlap with 

the species of group 1. The most relevant zones of potential co-occurrence were: Gigante and the 



Chapter 2 
 

 

33 

 

associated ridges, Cavala, Voador and Sarda on the MAR; Condor and De Guerne in the Central 

Seamounts; Mar da Prata and Fouque in the Southeastern Seamounts; slopes west of São Miguel, Terceira 

and Corvo Islands and the tips of São Jorge Island.  

A third group of taxa (group 1.5) included V. flagellum, C. verticillata and Acanthogorgia spp. (Figure 2.6c-

e). This group appeared to lay in-between group 1 and group 2. In fact, the combined suitable habitat of 

V. flagellum, C. verticillata and Acanthogorgia spp. could be divided in two parts. The first part overlapped 

and included almost entirely the combined habitat of the species of group 1 (with the exception of the 

flat areas of Princess Alice). The remaining portion of suitable habitat overlapped almost entirely with the 

combined habitat of the taxa of group 2, even though the taxa of group 2 could inhabit areas unsuitable 

for species of group 1.5. Considering each species individually, the habitat distribution of V. flagellum was 

more similar to the habitat distribution of species of group 1, however V. flagellum appeared to be absent 

from Santa Maria. The habitat of C. verticillata showed a distribution similar to V. flagellum, but it was 

more common in the Central and in the Southern Seamounts and it was present in Santa Maria. The 

habitat distribution of Acanthogorgia spp. seemed to be confined to areas having steeper slopes (Figure 

2.8d), to be more common on the MAR and to present a distribution more similar to the distribution of 

the taxa of group 2.  

Finally, D. pertusum, M. oculata and L. cf. expansa were assigned to group 2.5. Their predicted habitat 

almost never overlapped with the combined habitat of group 1 and very rarely with species of group 1.5. 

The most evident locations where it happened were: Gigante and associated ridges, Cavalo W, SW1 and 

SW2 on the MAR; Mar da Fortuna in the Northeastern Seamounts; Mar da Prata, Fouque, Dom João de 

Castro Alcatraz in the Southeastern Seamounts; the island slopes around São Miguel, Terceira, Graciosa 

and Corvo. Most of the habitat overlap was with Acanthogorgia spp. Overlapping habitats were more 

common among species of group 2 and 2.5. The habitats of D. pertusum, M. oculata and L. cf. expansa 

were very scarce in the Central Seamount Group and on the slopes south of Pico and Faial while they 

appeared on most of the remaining geomorphic features highlighted in Figure 2.3a.  

Predictions and responses of Solenosmilia variabilis, whose models were essentially fitted using bycatch 

data (Figure A.4c), seemed to be the least trustworthy, thus, were not associated to any particular group. 
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Figure 2.8 – Variable ranges within high-confidence cells of the combined suitability maps. (a) Latitude; (b) depth; 
(c-j) model predictors ordered by importance. Lines on the right side of the plots show the density distribution of 
each environmental predictor considering both suitable and unsuitable cells at seafloor locations shallower than 
2000 m (solid line) and shallower than 1000 m (dotted line). 
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2.4.4 Bathymetric distribution 

The estimated distributions of CWCs show a clear bathymetric zonation (Figure 2.8b). Environmental 

values at the locations of high-confidence suitable cells are shown in Figure 2.9. Regional values of nitrate, 

phosphate and silicate decrease down to about 800 m depth and then they become mostly stationary. At 

a similar depth there is an oxygen minimum zone in the study area. Temperature and saturation state of 

aragonite and calcite decrease with depth, but the decrease is gradual for the carbonate compounds and 

a bit inhomogeneous for the temperature (Figure 2.9). The bathymetric zonation of the modelled CWCs 

seemed correlated to these regional patterns. In particular, the taxa of group 2 (N. bellissima, N. versluysi, 

Coralliidae spp., and P. johnsoni) were tightly associated to areas presenting the minimum oxygen 

saturation and to nutrient concentrations matching the transition from decreasing to stationary 

background values (Figure 2.8I Figure 2.9c). Species of group 1 (E. dabneyi, P. josephinae and D. aff. 

meteor) only occurred above the oxygen minimum zone and were associated to a very narrow 

temperature range (11-12 ºC) (Figure 2.8e Figure 2.9a).  Species of group 1.5 (V. flagellum, C. verticillata 

and Acanthogorgia spp.) mostly occurred above and within the oxygen minimum zone. They appeared to 

tolerate a wide range of nutrient concentration but their suitable cells almost never occupy areas 

corresponding to the steady state of nutrient concentration below the oxygen minimum (Figure 2.8c 

Figure 2.9b). They also seemed to tolerate different oxygen saturation levels and wider temperature 

ranges than the species of group 1 (Figure 2.8e Figure 2.9b). Species of group 2.5 (D. pertusum, M. oculata 

and L. cf. expansa) mostly occurred below and within the zone of minimum oxygen and were tightly 

associated to the stationary state of nutrient concentrations (Figure 2.8c Figure 2.9d).  
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Figure 2.9 – Environmental values associated to high-confidence suitable cells plotted against depth. Plots of 
aragonite and calcite had a very similar profile, thus only aragonite is shown. The red line marks the minimum 
concentration of oxygen (~ 4.28 ml l−1 at 805 m). High-confidence suitable cells are combined into four groups. (a) 
Group 1 in red: Errina dabneyi, Paracalyptrophora josephinae and Dentomuricea aff. meteor. (b) Group 1.5 in green: 
Viminella flagellum, Callogorgia verticillata and Acanthogorgia spp. (c) Group 2 in purple: Narella bellissima, Narella 
versluysi, Coralliidae spp., and Paragorgia johnsoni. (d) Group 2.5 in blue: Desmophyllum pertusum, Madrepora 
oculata and Leiopathes cf. expansa. The darker the color, the denser are the suitable cells within a specific plot 
region. In grey are the regional background values. Seafloor areas below 2000 m depth were not modelled. 
Abbreviations: oxygen saturation (Ox. Sat.), temperature (Temp.), particulate organic carbon (POC). 

 

2.4.5 Niche overlap  

The pair-wise niche overlap and the results of niche equivalence and niche similarity tests are shown in 

Figure 2.10. Considering the taxa of group 1.5, the niches (i) V. flagellum and C. verticillata and (ii) V. 

flagellum and Acanthogorgia spp. were not more different from each other than expected by chance 

given the regional environmental conditions (i.e. they were equivalent niches). Considering the taxa of 

group 1, the niches of E. dabneyi and D. aff. meteor were equivalent. In addition, the niche of P. josephinae 

and the niche of D. aff. meteor were equivalent to the niche of C. verticillata. The niches of the taxa of 
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group 1 and 1.5 showed Schoener’s D overlap values between 0.4 and 0.6 (with 1 being the maximum). 

E. dabneyi and Acanthogorgia spp. showed, on average, the lowest overlap values niche with the 

remaining species of groups 1 and 1.5.   

The taxa of group 2 (N. bellissima, N. versluysi, Coralliidae spp., and P. johnsoni) were the ones showing 

the highest degree of niche overlap (Figure 2.10). They were significantly more similar among themselves 

than expected by chance, yet their niches were not equivalent. The taxa of group 2 showed a very low 

niche overlap with species of group 1 and low overlap with species of group 1.5. Between these groups, 

most of the similarity test were not significant (the niches of pairs of species were not more similar than 

expected by chance given the niche space they occupy and the regional environmental conditions).  

D. pertusum and M. oculata occupied an equivalent niche space and showed a very low niche overlap with 

species of groups 1 and 1.5 and a low overlap with species of group 2. L. cf. expansa presented a higher 

degree of overlap with species of group 2 than the remaining species of group 2.5 (i.e. D. pertusum and 

M. oculata). However most of the similarity tests between L. cf. expansa and the taxa of group 2 were not 

significant when keeping the occurrence values of L. cf. expansa while shifting the position of a species of 

group 2 (Figure 2.10).  
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Figure 2.10 – Niche overlap computed based on the predictors ‘seawater chemistry’, particulate organic carbon flux, 
temperature, oxygen saturation and current speed. Only high-confidence suitable cells were considered for the 
computation of the niches. The letter ‘E’ identifies pair of taxa whose niches were not significantly different from 
each other (equivalent niches) (α > 0.05). The black triangles identify pair of species whose niches were significantly 
(P < 0.05) more similar than expected by chance. Triangles in the bottom-left corners identify significant similarity 
tests of the row species when random shifting the spatial distribution of the column species. Triangles in the upper-
right corners identify significant similarity tests of the column species when random shifting the spatial distribution 
of the row species. 

 

 

2.5 Discussion 

2.5.1 Performance, caveats and plausibility 

Drawing general conclusion based on presence-only models is always a challenge as these models are 

affected by important limitations (Bowden et al., 2021). In our case, the lack of high resolution layers 

derived by an oceanographic model integrating tidal effects over topographic structures represented a 

major drawback. In fact, while communities at depths below the photosynthesis zone rely on food that 

sinks through the water column, the strength of this pelagic–benthic coupling depends on fluctuating 
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seabed currents (Jansen et al., 2018; Juva et al., 2020; Mohn et al., 2014). The layer of near-bottom current 

computed by VIKING20 (Böning et al., 2016) did not considered tidal effects and, hence, showed a limited 

utility as a predictor variable. The bathymetric grid we used is a mosaic of multibeam and non-multibeam 

data (EMODnet, 2018). The lack of fine-scale information in non-multibeam areas (e.g. Kurchatov Fracture 

Zone) may led to erroneous predictions. The coarse native resolution of the environmental layers (other 

than depth-derived layers) further limited the capacity of HSMs to discriminate between suitable and 

unsuitable areas. These limitations seemed more evident when assessing the latitudinal and longitudinal 

distribution of model predictions. On the contrary, HSMs seemed able to capture the major bathymetric 

patterns existing in the region. Community composition and environmental conditions show a greater 

change over depth than over latitude (McClain and Rex, 2015; Quattrini et al., 2017; Victorero et al., 2018). 

Likely, this enhanced variability was better captured by the variables available and, as a consequence, by 

our models.  

According to traditional performance indicators (AUC and TSS), GAM and Maxent models had good or fair 

performance. However, discriminatory scores alone have a limited utility in evaluating presence-only 

models without the use of independent datasets, thus the ecological plausibility of model predictions and 

other measures of model uncertainty should be taken into account (Araújo et al., 2019; Warren et al., 

2020). Uncertainties arising from alternative model structures and from biases in the response variables 

were addressed employing a bootstrap and a fuzzy matching approach. Models tended to better agree in 

areas where suitability predictions were less affected by the resampling of the input data (FkHC > Fk). Until 

new information become available, these ‘high-confidence’ zones are the safest to use to make inferences 

about CWCs distributions. Part of the noise in model predictions appeared to be caused by bycatch 

records. In fact, areas where bycatch records were the principal source of information (e.g. Princess Alice-

Açor) were associated to habitat suitability predictions presenting low or medium confidence. As new 

data become available, we suggest that future models should only use video records.  

Octocoral and Errina dabneyi models seemed ecologically sound and in line with the distributional 

patterns that are emerging form regional surveys (e.g. Dominguez‐Carrió et al., 2021; Morato et al., 2021a, 

2018b). Model predictions of Scleractinia species and of Leiopathes cf. expansa were more problematic. 

The models seemed to capture the vertical zonation but failed to capture the geographic distribution of 

these species. In particular, the wide geographic extension of their estimated habitat appears unrealistic 

when compared to field observations. As discussed earlier, our models lack environmental predictors able 

to correctly link surface productivity, current regimes and food availability at the seafloor. We used POC 
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fluxes as a proxy, however the pelagic–benthic coupling is way more complex than the simple sinking of 

organic matter (Jansen et al., 2018). The absence of such predictors probably reduces the predictive 

capacity of these models. The supply of organic matter mediated by flow dynamics is a determinant factor 

for the existence of deep-sea stony corals (Fink et al., 2015; Hebbeln et al., 2020; Juva et al., 2020; Raddatz 

et al., 2020). Similar evidence is also emerging for black coral species of the genus Leiopathes (Lim et al., 

2020). In general, flow dynamics and nutrient supply can be expected to be important for all CWCs, 

including Octocorallia and Stylasteridae species (Parrish and Oliver, 2020). Based on the previous 

considerations, it is likely that the proposed models picture reasonably well the bathymetric distribution 

of the modelled species. On the contrary, they allow only for cautious extrapolations about the latitudinal 

and longitudinal patterns existing in the region. 

2.5.2 Geographic gradients 

Our models suggest that almost all major geomorphic features and island host habitat suitable for the 

considered CWC taxa. Most of the suitable habitat occurs on the Mid-Atlantic Ridge (MAR), on the Central 

and on the Southeastern Seamounts and on island slopes (Figure 2.3a). However, the combined habitat 

of all the modelled species covers a tiny 11% of the study area. Setting this estimate in the context of the 

North East Central Atlantic, where large abyssal plains dominate the seascape (Figure 2.3b), the 

proportion of suitable habitats would shrink to a fraction of the total seabed. The fact that the Azores and 

the Mid-Atlantic Ridge are likely the only regions over a vast area able to sustain viable populations of the 

considered species suggests that these regions could be important in maintaining metapopulation 

dynamics (Addamo et al., 2021; Boavida et al., 2019) with implications for international conservation 

strategies (Badgley et al., 2017; Combes et al., 2021; Dunn et al., 2018). Indeed, Mironov et al. (2006) 

suggested that the Azores could be a centre of redistribution of marine fauna, i.e. an area where the 

faunas of different origins are mixing. 

In general, CWCs appear to be absent from flat areas and from areas not associated to topographical 

features. An unsurprising result as topographical features have long been known to be important drivers 

of CWC distributions (Roberts et al., 2009). In our models, this response was driven by slope and benthic 

position index (BPI5 and BPI20) with corals avoiding slopes below 5º and near zero BPI values. At the scale 

considered in the present analysis, these predictors act as a proxy for more direct explanatory variables. 

Over 1 km2 (the resolution of the model grid), measures of steepness and relative elevation act as a proxy 

of the likelihood of having rocky substrates and enhanced tidal and current regimes, essential factors for 
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the existence of CWC species (Baco et al., 2020; Juva et al., 2020; Mohn et al., 2014; Morato et al., 2021b). 

In addition, they provide an indication of seafloor complexity, another important driver of benthic species 

distributions (Henry et al., 2013; Levin et al., 2010). Direct information on surficial sediment types and 

habitat complexity would likely improve model predictions if finer scales were to be considered, however 

detailed seafloor characteristics averaged over coarse resolutions generally have low explanatory power 

(Anderson et al., 2016; Bennecke and Metaxas, 2017; Georgian et al., 2019). It is still important to consider 

that even if slope and BPI combined provide a valid indication of the availability of hard-substrate in a grid 

cell, preliminary video analyses in the region suggest that it is unlikely to have continuous rocky patches 

covering an entire area of 1 km2. Thus, our models tend to overestimate the extension of suitable habitat.  

Geographic gradients, other than those driven by the presence of topographical features and the 

avoidance of flat areas, appeared weak in the region. In line with previous studies (Braga-Henriques et al., 

2013), the modelled taxa seem to exist on both sides of the MAR, the only exception being Errina dabneyi 

mostly limited to the central portion of the study area. The concentration of suitable areas east of the 

MAR and at latitudes delimited by the northernmost (Corvo) and the southernmost (Santa Maria) islands 

is probably owed to the abundance of shallow elevations at these latitudes. Wide latitudinal and 

longitudinal ranges of CWCs have been reported in previous studies covering areas of similar sizes 

(Auscavitch et al., 2020; Barbosa et al., 2020; Georgian et al., 2019) and represent a general characteristic 

of deep-sea species (McClain and Rex, 2015).  

Different primary production regimes exist in the region with more productive waters located north and 

less productive waters located south of the archipelago (Amorim et al., 2017; Caldeira and Reis, 2017). 

The export of particulate organic carbon (POC) from the surface is one of the major factor shaping sub-

surface benthic communities (Woolley et al., 2016), therefore, these different regimes could influence the 

faunal composition of different topographic features. The role of POC flux was not totally clear in our 

models. It was a shared important variable (i.e. important both for GAM and Maxent models) for 

Desmophyllum pertusum, Madrepora oculata and Leiopathes cf. expansa and it seems to drive their 

preference toward high productivity regions in the northern part of the MAR. However, habitat suitable 

for these species was found also in the southern part of the study area. A second possibility is that 

enhanced carbon fluxes allow these species to inhabit deeper waters in the northern part of the study 

area resulting in most of their habitat being located there. This pattern emerges in Figure 2.9d. The control 

of food availability over tolerance ranges and coral fitness have been shown in previous studies (Flögel et 
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al., 2014; Hanz et al., 2019; Hebbeln et al., 2020). For the remaining GAMs carbon fluxes had low 

importance, but they still were an important predictor for most of the Maxent models.  

In general, all the considered taxa had patches of suitable habitat in the central portion of the study area. 

On the contrary, the Southern Seamounts and the slopes around Santa Maria, located in less productive 

waters, seem suitable only for few of the modelled species. This suggests that to the latitudinal gradient 

in productivity could correspond a gradual latitudinal turnover of species. A moderate rather than a sharp 

change in the composition of benthic assemblages over latitudinal gradients appears to be a common 

pattern in the deep sea (McClain and Rex, 2015). Caldeira and Reis (2017) found that the east group of 

islands and the Southern Seamounts are strongly influenced by the Azores Current and by its westward-

propagating eddies, while the remaining portion of the study area is under the influence of the North 

Azores Current. Silva et al. (2013) found a north-south gradient in the composition of phytoplanktonic 

species. Future studies taking into account population densities rather than simple presence and new 

explanatory variables better framing the pelagic–benthic coupling and the hydrodynamic existing in the 

region will be needed to confirm the existence of a latitudinal turnover of deep-sea benthic species in the 

region. 

2.5.3 Bathymetric gradient 

Even acknowledging the limitations of HSMs, our results show some interesting patterns that are worth 

taking into account in future works. In particular, one of the least important variable explaining the 

predictions of our models, oxygen saturation, is one of the most important variable for the interpretation 

of their outputs. The modelled taxa seemed to form distinct groups. One was strictly limited to the upper 

part of the water column at seafloor locations above the regional minimum concentration of dissolved 

oxygen (group 1). Temperature seems to be the most important abiotic factor controlling their 

distribution. A second group of corals results strikingly associated to areas presenting the minimum 

concentrations of oxygen (group 2). A third group, overlapping with both group 1 and group 2, seems to 

tolerate most of the abiotic conditions present above and within areas associated to the minimum values 

of oxygen saturation (group 1.5). Finally, a third group of species (group 2.5) appears to be specular to the 

species of group 1.5 with suitable habitat present at the oxygen minimum and below (group 2.5). 

Rephrasing Carney (2005) and his study on the zonation of deep biota on continental margins, these 

groups seems to represent species truly restricted to upper waters, species extending down from upper 

waters, species extending up from deep waters and species truly restricted to intermediate waters. In 
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fact, as discussed in the next paragraphs, the turnover of species around the oxygen minimum can be 

associated to the presence of stratified water masses.  

The reason why oxygen saturation has a poor explanatory value in the present study probably relates to 

the way its values change along the bathymetric gradient. Correlative models associate the presence of a 

species to particular values of a predictor variable. The fact that oxygen saturation and dissolved oxygen 

concentrations assume similar values above and below the oxygen minimum, at very different depths, is 

a confounding factor for correlative models. Thus, indirect predictors not affected by similar problems 

could emerge as better explanatory variables. In our case, ‘seawater chemistry’ was by far the most 

important predictor in all our models. The grouping of water nutrients with variables measuring seawater 

carbonate chemistry is unconventional. In fact, these variables have different physiological effects on 

CWCs. The saturation states of aragonite and calcite are critical parameters for the biomineralization of 

skeletal structures (Conci et al., 2021; Tambutté et al., 2011) and their importance as predictor variables 

was evident in studies modelling the distribution of coral species at global scales (Davies and Guinotte, 

2011; Yesson et al., 2012). However, the carbonate saturation horizons in the study area occur at greater 

depths than those modelled (Figure A.6e). Therefore, while the saturation states of aragonite and calcite 

can still play a role in determining the suitability of particular locations and the vertical turnover of species, 

it is unlikely that they represent the only factors explaining the observed depth zonation. Similarly, water 

nutrients influence the physiology of CWCs (Goldberg, 2018), however as far as I know, there is no study 

identifying the concentration of water nutrient as a key explanatory variable of CWC distributions. Instead, 

nutrient and carbonate chemistry variables were grouped to act as a proxy variable reflecting the depth 

zonation of the regional water masses.  

The variable ‘seawater chemistry’ seems to act as a proxy for the vertical stratification of the regional 

water masses. It also mimics oxygen concentrations above and below the regional oxygen minimum. 

When considering its individual components in relation to depth, it is possible to see that the 

concentration of nutrients increases from shallow waters down to a certain depth and then it becomes 

mostly stationary (Figure 2.9). The depth at which the nutrient concentrations change from declining to 

stationary corresponds to the depth of the regional minimum concentration of dissolved oxygen (ca. 4.3 

ml l−1) and to the depth where the core of intermediate waters occurs (ca. 800 m) (Figure A.1). Model 

predictions are structured around these patterns (Figure 2.9). 
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A water mass can be considered as an environmental envelop characterized by a particular combination 

of oceanographic parameters (Emery, 2001; Liu and Tanhua, 2021) that influences carbonate equilibria 

and food supply (Azetsu-Scott et al., 2010; Emery, 2001; Fontela et al., 2020; González-Dávila et al., 2011). 

The effects of water masses on the depth zonation of deep biota is supported by several studies and it is 

likely caused by multiple processes such as promotion or hampering of dispersal, environmental filtering, 

spatial segregation, speciation and physical phenomena altering the food supply (e.g. internal waves) 

(Carney, 2005; Puerta et al., 2020; Quattrini et al., 2017; Radice et al., 2016; Roberts et al., 2021; Victorero 

et al., 2018). These processes likely produce biodiversity and biogeographic patterns, even at local scales 

of several hundred meters (Carney, 2005; Puerta et al., 2020). In the Azores, Puerta et al. (2022) found 

that the regional stratification of the water column was useful to explain the vertical distribution of deep-

sea megabenthic assemblages, while Menezes et al. (2006) found that water-mass boundaries and oxygen 

content influenced the zonation of demersal fish assemblages. In line with these studies, our models 

suggest that regional water masses play a critical role in the zonation of deep biota and, in particular, of 

habitat-forming CWCs. In particular, one group of species was strongly associated to intermediate waters 

(group 2) and a second group of species was strongly associated with upper waters (group 1). Species of 

groups 1.5 and 2.5 seemed to be limited to upper and intermediate or to deep and intermediate waters, 

respectively. This suggest that water masses can act as strong or as soft environmental filters depending 

on the species. In this perspective, intermediate waters and their boundaries represent interesting areas 

where to explore patterns of α and β diversity of CWC assemblages. In fact, intermediate waters seem to 

host a distinctive group of species but, at the same time, they seem to act as a transition zone of shallow 

and deep coral species pretty much like the transition zones described by Carney (2005). While recent 

analyses provide a preliminary support to this idea (Arantes et al., 2009; Auscavitch et al., 2020; Puerta et 

al., 2022), the investigation of this hypothesis represents an interesting topic for future studies. 

2.5.4 Niche space 

The projection of model predictions into the niche space served to reduce eventual geographic biases in 

habitat availability (Brown and Carnaval, 2019) and to better evaluate the observed distributional 

patterns. It was not intended to fully characterize the niches of the different species. In fact, as discussed 

earlier, the absence of important environmental variables and the reduced sampling effort, especially in 

deep areas, hampers this task. Narella bellissima, Narella versluysi, Coralliidae spp. and Paragorgia 

johnsoni, the group of taxa associated with intermediate waters (group 2), showed the highest degree of 

niche overlap (Figure 8). Considering that the only variables used to compute the niche space were 



Chapter 2 
 

 

45 

 

variables describing water properties, this result suggests a strong association of these species with 

intermediate waters. Species of group 1.5 (Viminella flagellum, Callogorgia verticillata and Acanthogorgia 

spp.) presented equivalent niches, i.e. statistically not different based on the environmental condition 

considered (Brown and Carnaval, 2019). This suggests that most of the latitudinal and longitudinal changes 

observed in their estimated distribution are owed to terrain variables (terrain variables were not used to 

compute the niche space) and that important predictor variables are likely missing. In line with the 

previous paragraphs, we argue that the most important variable missing is one that could serve as a proxy 

for food supply and fluctuating seabed currents. Equivalent niches were also found between species of 

group 1 and group 1.5. Therefore, with respect to the environmental variability considered, it seems that 

CWC taxa associated to upper water masses present similar tolerance ranges. Within the group of species 

inhabiting the deepest portion of the modelled area (group 2.5), Desmophyllum pertusum and Madrepora 

oculata showed equivalent niches, while Leiopathes cf. expansa presented a similar degree of niche 

overlap both with species of group 2.5 and with species of group 2. When exploring niche differences 

instead of niche similarities, species restricted to the upper part of the water column (group 1) showed 

very little overlap with species of intermediate and deep waters. The species characterizing intermediate 

waters (group 2) showed some overlap both with deep (group 2.5) and with shallow species of group 1.5. 

Overall, the results obtained in the niche space confirm the idea that the regional water masses act as 

strong or soft environmental filters depending on the species and that certain species characteristics of 

deep or of upper water masses appear able to coexist in intermediate waters. 

2.5.5 Management 

The modelled corals represent indicator taxa of vulnerable marine ecosystems (FAO, 2009) and have the 

characteristics of benthic foundation organisms (Crotty et al., 2019; Ellison, 2019). Thus, they are of great 

importance in the region both for ecological research and for spatial management. Acting as foundation 

species these taxa can be expected to mediate a crucial suite of biotic interactions essential to structure 

deep-sea benthic communities (Kikvidze and Callaway, 2009). Forming vulnerable marine ecosystems, 

they are, by definition, greatly affected by human induced disturbance (Clark and Tittensor, 2010; 

Ragnarsson et al., 2017). In the region CWCs face several threats. Climate change is expected to be 

particularly severe at the latitudes of the Azores (Levin et al., 2020; Morato et al., 2020c). The incredible 

amount of lost fishing gears that were observed in recent surveys suggest an extremely high fishing 

pressure (unpublished data from Dominguez‐Carrió et al., 2021) even at remote locations (Morato et al., 
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2021b). Finally, deep-sea mining will likely start in the region with important consequences for benthic 

organisms (Lopes et al., 2019; Ribeiro et al., 2020; Van Dover et al., 2017).  

Spatial protection for these species is advised based on the threats they face and in the light of their small 

estimated habitat (ca. 11% of the modelled area). Because of the vertical zonation of the modelled CWCs, 

areas where they aggregate generally correspond to extremely steep sites that intersect the different 

water masses existing in the region (e.g. Gigante Seamount Complex). These are sites were environmental 

conditions present a rapid change over short distances allowing faunal assemblages of distinct depth 

zones to mix (McClain and Rex, 2015), therefore, they should represent priority targets for conservation. 

Our models suggest that the southeastern portion of the study area could harbor distinctive faunal 

assemblages. If spatial closures were to be implemented in the area following the representativity criteria 

(Stevens, 2002), networks of marine protected areas should cover all the water masses existing in the 

region, the interface of different water masses, as well as the two ecological regions that appear to be 

defined by the Azores Current (Caldeira and Reis, 2017).  

Special concern deserves Errina dabneyi. This species seems to have an extremely limited range and seems 

to be endemic to the Azores (Braga-Henriques et al., 2011; Zibrowius and Cairns, 1992). Active 

conservation actions in its favor should be a priority (Costello and Chaudhary, 2017). However, all the 

considered species were observed in dense coral gardens and we believe that they should be viewed as 

important conservation target. 

2.6 Conclusions 

Our results suggest that in the Azores habitat-forming CWCs are organized in two ecological regions 

defined by the Azores Current. The depth zonation of CWCs is shaped by regional water masses. Over the 

considered bathymetric range (0 - 2000 m), CWCs form four groups of species: species restricted to upper 

water masses, species extending down from upper water masses, species restricted to intermediate 

waters and species extending up from deep water masses. As all the modelled CWCs represent foundation 

species, these patterns can be expected to remain valid for all associated species. The geographic and 

bathymetric patterns identified have important implications for the spatial management of these 

important cold-water coral species. The Azores is one of the few regions off the Atlantic margins that 

presents large topographic features intersecting water masses located in the upper portion of the water 

column. It represents an oasis of suitable habitat for the modelled CWC taxa and likely represent a key 
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area for maintaining interconnected populations of CWCs with important implications for international 

conservation initiatives. 

Four take home messages emerged from a careful assessment of our models. These messages can help in 

the design and in the interpretation of future models targeting deep-sea species. One, models can have a 

different capacity to correctly detect distributional patterns along geographic and bathymetric gradients. 

Two, the lack of readily available variables acting as a meaningful proxy of the pelagic–benthic coupling 

hinders the detection of important geographic patterns. Three, unconventional variables mimicking 

known regional structures or processes can enhance model predictions (in our case ‘seawater chemistry’ 

as a proxy for water masses). Four, variables with low model importance can be of great importance in 

the interpretation of model results especially if they are correlated with other important variables (in our 

case ‘oxygen saturation’). 
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Chapter 3   
Isopycnal layers as meaningful marine bioregions in the Azores 
(NE Atlantic) 
 

 

3.1 Abstract 

This study represents one of the first statistical bioregionalization of deep-sea benthic communities in the 

Azores (NE Atlantic). It focuses on habitat-forming filter feeder species (Phyla Cnidaria and Porifera) 

known to represent a critical component of hard-substrate communities in the region. Species archetype 

models were developed to simultaneously analyze and combine biological and environmental data into 

meaningful bioregions following a one-stage classification approach. The depth-wise succession of the 

regional water masses and their stratification into different isopycnal (vertical) layers appears to explain 

much of the changes in species composition occurring with depth. The boundaries of the different layers 

seem to act as transitional ecoclines rather than as sharp biogeographic breaks. Our results suggest that 

the different isopycnal layers can be used as meaningful bioregions, setting an interesting background for 

ecological research, ecosystem-based management and spatial monitoring. In the region, the main 

changes in species composition occur at 500, 800 and 1600 m generally confirming the biogeographic 

boundaries identified in previous studies. Temperature exerts a strong control on the distribution of 

assemblages restricted to the upper layer. Intermediate water masses appear to be characterized by a 

distinctive fauna. Food availability seems to exert a strong control on the distribution of assemblages 

located in the deepest part of the study area. The latter result suggests that the regional productivity 

gradient in surface waters affects deep-sea assemblages. Many of the described patterns are of general 

interest as they seem to be caused by environmentally driven processes that most likely affect the 

functioning and the structure of several components of deep-sea ecosystem in the Azores as well as in 

other regions. 
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3.2 Introduction 

The distribution of species is a dynamic process influenced by several interacting drivers operating at 

different scales (D’Amen et al., 2017; Hortal et al., 2015; Myers and Giller, 1988). Understanding how 

these drivers operate and how biodiversity changes over space and time is a central theme in ecology and 

biogeography and it is essential for nature management. This task is quite challenging in the context of 

the deep sea, the most remote and the largest ecosystem on Earth (Folkersen et al., 2018; Glover et al., 

2018; Morato et al., 2013; Smith et al., 2020). Species-environment relationships tend to be easier to 

measure at regional scales and are often the only proxy readily available to estimate the distribution of 

species. Consequently, habitat suitability models are frequently used to investigate how environmental 

drivers shape individual species’ distributions. However, alternative methods that also combine biological 

and environmental data appear to be more useful when the focus is on assemblages and communities 

and, ultimately, on the bioregionalization (biogeographic classification) of a geographic space (Hill et al., 

2020; Hui et al., 2013; Woolley et al., 2020). Bioregionalization is the process of identifying bioregions 

which are defined by Woolley et al. (2020) as “a model of the true distribution of multiple species that 

share a similar ecological and abiotic preference and sometimes an evolutionary history”. A bioregion 

covers a particular geographic area mapping simultaneously biological and physical phenomena. It defines 

a meaningful spatial unit that can be used as a basis for research, ecosystem-based management and 

spatial monitoring (Howell et al., 2020; Rice et al., 2011; Whittaker et al., 2005).  

Among the bioregionalization approaches, quantitative biologically-driven approaches are the most 

promising (Kreft and Jetz, 2010; Warton et al., 2015; Woolley et al., 2020). In particular, one-stage 

statistical methods that simultaneously model biological and environmental data and cluster groups of 

species into bioregions present notable advantages (i.e. formal definition of bioregions, result 

interpretability and characterisation of uncertainty) (Hill et al., 2020; Woolley et al., 2020). For instance, 

Species Archetype Models (SAMs) identify groups of species showing similar responses to the 

environment (species archetypes) in a one-stage approach (Dunstan et al., 2011). SEMs have been 

proposed as a valid tool to address bioregionalization problems (Hill et al., 2020; Hui et al., 2013) and have 

been used several times to investigate biodiversity patterns in marine ecosystems (Foster et al., 2015; 

Jansen et al., 2020; Leaper et al., 2014; Murillo et al., 2018; O’Hara et al., 2020; Woolley et al., 2013). Here, 

SAMs are applied to deep-sea benthic species inhabiting one of the most isolated archipelago in the North 

Atlantic, the Azores (Morato et al., 2020a; Santos et al., 1995).  
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The scale addressed by the present study is located in-between ecology and biogeography, in the sphere 

of ecological biogeography (Jenkins and Ricklefs, 2011; Myers and Giller, 1988). The main objective is to 

understand how and if the composition of regional deep-sea benthic assemblages changes along 

environmental gradients. The focus will be on large habitat-forming filter feeders associated with rocky 

substrates (Phyla Cnidaria and Porifera), an important component of the regional biota whose study has 

been one of the main targets of recent scientific campaigns (e.g. Morato et al., 2021a, 2020b, 2019, 2018b; 

Morato and Taranto, 2019; Orejas et al., 2017). Of particular interest would be to recognize persistent 

environmental structures able to explain the observed distribution of such organisms and, therefore, able 

to act as a meaningful proxy of marine bioregions. If a clear relationship between hard substrate 

assemblages and environmental structures were to exist, it could be assumed that a similar relationship 

would remain valid for other types of regional benthic assemblages. Although this assumption would be 

of speculative nature, it would still be useful to direct the collection of new data, formulate scientific 

questions and inform spatial management until a more comprehensive understanding of the forces 

shaping deep-sea communities is achieved. 

Two major persistent environmental structures exist in the region. The first is a latitudinal gradient in 

productivity with more productive waters located north-west and less productive waters located south-

east of the archipelago (Amorim et al., 2017; Caldeira and Reis, 2017). Considering that carbon export 

from the surface is one of the major factors shaping sub-surface benthic communities (e.g. Jansen et al., 

2018; Juva et al., 2020; Woolley et al., 2016), it can be hypothesized that distinctive communities are 

associated with the two primary production regimes. The second persistent environmental structure is 

the vertical stratification of water masses and of all correlated environmental variables (Bashmachnikov 

et al., 2015; Liu and Tanhua, 2021). Water masses have long been recognized as one of the factors 

contributing to the vertical zonation of deep biota (Carney, 2005; Levin and Sibuet, 2012; Puerta et al., 

2020) and have already been used to define biogeographic regions (Chimienti et al., 2019; Salazar et al., 

2016; Watling et al., 2013). This far, few studies attempted a bioregionalization of deep-sea communities 

in the Azores region. In general, there is evidence that the depth-wise stratification of water masses 

influences the bathymetric zonation of the deep biota (Chapter 2, Braga-Henriques et al., 2013; Menezes 

et al., 2006; Puerta et al., 2022). The different production regimes appear to influence the distribution of 

phytoplankton assemblages (Silva et al., 2013), however they did not seem to have an effect on the 

composition of fish and coral assemblages at latitudes between 36 and 41º N (Braga-Henriques et al., 
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2013; Menezes et al., 2006). Considering slightly wider scales (33-42º N), cold-water corals seem to 

respond differently to the production regimes existing north and south of the region (Chapter 2).  

Besides environmental gradients, global biogeographic classifications suggest that a north-south 

biogeographical gradient could exist in the region. Following a traditional biogeographic method, in which 

current patterns of endemicity or cosmopolitanism of species are used to infer evolutionary processes 

(Myers and Giller, 1988; Sanmartín, 2012), Costello et al. (2017) identified several marine realms of 

endemicity using a two-dimensional approach (i.e. coastal, deep-sea, pelagic and benthic species were 

pooled together and depth was not considered in their analysis). Interestingly, the southernmost portion 

of the Azores region appears to be located at the boundary of different realms, the Offshore North and 

South Atlantic Realms. Following an alternative approach, Watling et al. (2013) classified the deep ocean 

floor using oceanographic proxies. They assumed that changes in key chemical, physical and 

environmental parameters, as well as water-mass connectivity, drive the turnover and distribution of 

marine species and communities. Again, the Azores region appears to be located at the boundary of 

different provinces but this time the boundary is located north of the archipelago. Even after a recent 

revision of the same classification based on the global distribution of anthozoans (Phylum Cnidaria) 

(Watling and Lapointe, 2022), the Azores still sit close to the boundary of two provinces: Boreal Northwest 

Atlantic and Northeast Atlantic. These classifications suggest that the Azores could represent a 

biogeographical transition zone and, thus, a place of high phylogenetic diversity where different 

evolutionary lineages coexist (Ferro and Morrone, 2014). Indeed, Mironov et al. (2006) suggested that the 

Azores could be a centre of redistribution of marine fauna, i.e. an area where the faunas of different 

origins are mixing. In general, the Azores are regarded as a hotspot of cold-water coral diversity (Clark and 

Tittensor, 2010; Sampaio et al., 2019a). Therefore, the composition of benthic assemblages located north 

and south of the archipelago could differ not only because of different environmental regimes, but also 

because of distinct evolutionary processes.  

The present work aims to: (i) produce species archetype models that correlate benthic fauna occurrence 

data and environmental gradients; (ii) assess whether the predicted distribution of the different 

archetypes supports the use of environmental proxies (i.e. primary production or water mass provinces) 

as meaningful bioregions in the Azores. Based on the data currently available, the study area is limited to 

bathyal depths (200 2000 m). 
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3.3 Materials and Methods 

3.3.1 Study area 

Located on the Mid-Atlantic ridge, the Azores region presents a complex geological setting characterized 

by volcanic islands, seamounts and crests (Mitchell et al., 2018; Peran et al., 2016) (Figure 3.1). In general, 

these topographic features present large fractions of exposed bedrock and complex interactions with 

steady or variable flows, a setting that provides favorable conditions for thriving benthic communities 

dominated by filter feeders (Morato et al., 2021b; Rogers, 2018). As a result, the Azores host a great 

diversity of deep-sea corals and sponges that form important and vulnerable communities (Braga-

Henriques et al., 2013; Carreiro-Silva et al., 2013; Morato et al., 2020c; Sampaio et al., 2019a; Somoza et 

al., 2020; Xavier et al., 2021). 

Ocean circulation patterns in the Azores are complex (Bashmachnikov et al., 2004; Caldeira and Reis, 2017; 

Santos et al., 1995). Large-scale circulation is dominated by eastward-flowing branches of the Gulf Stream: 

The North Atlantic Current in the north and the Azores Current in the south. Eddies systems associated 

with these currents play an important role in the region (Caldeira and Reis, 2017; Sala et al., 2016). These 

flows interact with the regional topography and with local winds altering surface temperatures and 

primary production (Amorim et al., 2017; Bashmachnikov et al., 2004; Caldeira and Reis, 2017). Warmer 

and less productive waters are located south-east, colder and more productive waters are located north-

west of the archipelago. These differences suggest that the Azores is a transitional region between 

subtropical and temperate waters.  

Based on the work of Liu and Tanhua (2021), it is possible to identify the principal water masses around 

the Azores and approximate their vertical extent (Figure 3.2). In the Atlantic the different water masses 

are distributed in four main isopycnal (vertical) layers: upper, (ii) intermediate, (iii) deep and overflow and 

(iv) bottom layer. In the Azores, the influence of upper water masses goes down to about 1100 m (Figure 

3.2a-c). The Eastern North Atlantic Central Water (ENACW) has the widest vertical extent with its core at 

about 500 m depth. The Western North Atlantic Central Water (WNACW) and the Western South Atlantic 

Central Water (WSACW) are present within the upper 500 m of the water column. The intermediate layer 

is characterized by the Mediterranean Water (MW) and the Antarctic Intermediate Water (AAIW) (Figure 

3.2d-e). Their core is at about 800 m depth. A third intermediate water mass, the Subarctic Intermediate 

Water (SAIW) has been reported in the northwestern portion of the study area (Bashmachnikov et al., 

2015), however, given the lack of sampling stations in this area (Figure 3.2f) it was almost absent in the 
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data provided by Liu and Tanhua (2021). In the deep and overflow layer, down to 2000 m, the Upper North 

Atlantic Deep Water (uNADW) is the predominant water mass with its core located at about 1600 m depth 

(Figure 3.2g). It occupies a wide depth range in the north (500-2000+ m), while in the south it was 

observed only at depths below 1000 m. The Lower North Atlantic Deep Water (lNADW) and the Northeast 

Atlantic Bottom Water (NEABW) characterize the deepest portion of the considered bathyal range (200-

2000 m) and extend well below 2000 m (Figure 3.2h-i). 

 

 

Figure 3.1 – Azores study area (ca. 33.5 to 42º N, 24 to 35º W). Deep-sea benthic video stations (video transects) 
considered in the present study aggregated on 30x30 km grid for better visualization (note that the model grid is 
smaller and has a resolution of about 1 km2). Only stations located at depths shallower than 2000 m are considered. 
The contour lines identify all the areas shallower than 2000 m.  
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Figure 3.2 – Principal water masses of the Azores based on Liu and Tanhua (2021). Upper layer: (a) Eastern North 
Atlantic Central Water (ENACW), (b) Western North Atlantic Central Water (WNACW), (c) Western South Atlantic 
Central Water (WSACW). Intermediate layer: (d) Mediterranean Water (MW), (e) Antarctic Intermediate Water 
(AAIW). Deep and overflow layer: (g) Upper North Atlantic Deep Water (uNADW), (h) Lower North Atlantic Deep 
Water (lNADW), (i) Northeast Atlantic Bottom Water (NEABW). Every sampling station is divided in 100 m bins over 
which water mass fractions are averaged. Only fractions greater than 0.2 are showed on the plots. (f) Sampling 
stations available in the study area; the grey background identifies seafloor depths shallower than 2000 m. 

 

 

3.3.2 Biological data 

Biological data were derived from the preliminary annotation of videos acquired from deep-sea cameras 

deployed using different platforms and systems (Appendix B, Table B.1 and Figure 3.1). Most of the recent 

imaging surveys in the region were directed toward areas of complex morphology expected to present a 

high percentage of hard substrates (Dominguez‐Carrió et al., 2021; Morato et al., 2021a, 2020b, 2019, 

2018b; Morato and Taranto, 2019; Orejas et al., 2017). Therefore, this study focuses on habitat-forming 

species of deep-sea corals and sponges (Phyla Cnidaria and Porifera) representative of regional hard-

substrate communities. 
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In order to reduce biases arising by different image annotators and sampling gears (de Mendonça and 

Metaxas, 2021; Durden et al., 2016; Sheehan et al., 2016), additional criteria were used to define the list 

of considered species. Small organisms were excluded because they tend to be hard to identify (Durden 

et al., 2016), a condition worsened by the use of different camera systems which can detect a small 

specimen in some cases (e.g. a remotely operated vehicle slowing down and getting closer to a coral 

patch) but not in some others (e.g. a drift-cam system on a windy day drifting at high speed). The main 

exception was Leptopsammia Formosa, characterized by a bright yellow color easy to identify in most 

conditions. In order to reduce as much as possible the problem of misidentification (Beisiegel et al., 2017; 

Howell et al., 2014), preference was given to species with physical specimens deposited in the local 

reference collection (Sampaio et al., 2019b). In general, there is good confidence about the taxonomic 

identity of the selected cold-water corals. The taxonomic identification of sponge species is still ongoing 

and the names used here should be considered only as putative names, at least for the non-lithistid 

sponges (Xavier et al., 2021). Only species with a peculiar and familiar morphotype, relatively easy to 

identify in the video annotation process, were considered in the analysis. This led to the exclusion of rare 

species and of set of species known to present very similar morphologies (e.g. corals of the genus 

Acanthogorgia and of the family Coralliidae).  

Biological data were aggregated on a model grid with a resolution of 30-arc second (∼1 km2, projection 

UTM 26N). A total of 1612 unique observations, 26 species (Table 3.1) and 281 locations of the model grid 

at depths between 200 and 2000 m (Table B.2) were used for the species archetype models (SEMs). Only 

species that occurred at 10 or more locations were retained. At each of these 281 locations, a species was 

marked as present (when observed in one or more video transects) or absent (when not observed in any 

video transect). 
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Table 3.1 – List of species considered by the species archetype models. Number of records (N) after aggregation on 
the model grid. Species archetype (SA) group, all membership probabilities (τ) were equal to 1. 

ID Phylum Class Subclass Order Species N SA 

1 Cnidaria Anthozoa Octocorallia Alcyonacea Acanella arbuscula 75 G.4 

2 Cnidaria Anthozoa Octocorallia Alcyonacea Callogorgia verticillata 65 G.2 

3 Cnidaria Anthozoa Octocorallia Alcyonacea Dentomuricea aff. meteor 40 G.1 

4 Cnidaria Anthozoa Hexacorallia Scleractinia Desmophyllum pertusum 30 G.4 

5 Cnidaria Anthozoa Hexacorallia Antipatharia Elatopathes abietina 44 G.1 

6 Cnidaria Anthozoa Hexacorallia Antipatharia Leiopathes cf. expansa 52 G.4 

7 Cnidaria Anthozoa Hexacorallia Antipatharia Leiopathes glaberrima 16 G.1 

8 Cnidaria Anthozoa Hexacorallia Scleractinia Leptopsammia formosa 82 G.3 

9 Cnidaria Anthozoa Hexacorallia Scleractinia Madrepora oculata 58 G.4 

10 Cnidaria Anthozoa Octocorallia Alcyonacea Narella bellissima 42 G.3 

11 Cnidaria Anthozoa Octocorallia Alcyonacea Narella versluysi 69 G.3 

12 Cnidaria Anthozoa Octocorallia Alcyonacea Paracalyptrophora josephinae 18 G.1 

13 Cnidaria Anthozoa Octocorallia Alcyonacea Paragorgia johnsoni 56 G.3 

14 Cnidaria Anthozoa Octocorallia Alcyonacea Viminella flagellum 139 G.2 

15 Porifera Demospongiae Heteroscleromorpha Tetractinellida cf. Characella pachastrelloides 114 G.2 

16 Porifera Demospongiae Heteroscleromorpha Tetractinellida cf. Craniella longipilis 61 G.2 

17 Porifera Demospongiae Heteroscleromorpha Haplosclerida cf. Haliclona magna 61 G.3 

18 Porifera Demospongiae Heteroscleromorpha Tetractinellida Leiodermatium cf. pfeifferae 38 G.1 

19 Porifera Demospongiae Heteroscleromorpha Tetractinellida Macandrewia cf. azorica 80 G.2 

20 Porifera Demospongiae Heteroscleromorpha Tetractinellida Neophrissospongia nolitangere 34 G.1 

21 Porifera Demospongiae Heteroscleromorpha Haplosclerida cf. Petrosia crassa 118 G.2 

22 Porifera Demospongiae Heteroscleromorpha Bubarida cf. Phakellia robusta 39 G.4 

23 Porifera Demospongiae Heteroscleromorpha Bubarida cf. Phakellia ventilabrum 21 G.4 

24 Porifera Hexactinellida Amphidiscophora Amphidiscosida Pheronema carpenteri 72 G.4 

25 Porifera Demospongiae Heteroscleromorpha Tetractinellida cf. Poecillastra compressa 120 G.3 

26 Porifera Hexactinellida Hexasterophora Lyssacinosida cf. Regadrella phoenix 68 G.4 

 

 

3.3.3 Environmental data 

A total a 16 variables were considered to select and develop the SAMs (Figure B.1). Depth values were 

obtained from an updated bathymetry grid for the Azores that integrates the Emodnet Digital Batimetry 

(EMODnet Bathymetry Consortium, 2018) with all the multibeam echosounder data available in the region 

(Luis Rodrigues, unpublished data). The bathymetry grid has a resolution of 30-arc second (∼1 km2). In 
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general, a large set of depth-related variables are considered to develop deep-sea species models (e.g. 

Anderson et al., 2016; Georgian et al., 2019; Lecours et al., 2016). In this case only three variables of this 

kind were considered. The rationale was to avoid generating overcomplicated models. Slope, coarse and 

fine scale bathymetric position index (BPI) were the terrain variables that contributed the most to models 

developed for regional cold-water corals (Chapter 2) and, therefore, they were the terrain variables 

considered here. They were computed using the Benthic Terrain Modeller toolbox (Walbridge et al., 

2018). For each cell in a surface, BPI is evaluated by finding the difference between the elevation value of 

the cell and the mean elevation of all cells in an annulus (Walbridge et al., 2018). It provides an indication 

of the relative position of a cell (e.g. crest, flat, valley) (Lecours et al., 2016) and it is a variable commonly 

used to model deep-sea species (e.g. Anderson et al., 2016; Georgian et al., 2019). The fine scale BPI was 

computed with a radius of 5 km (BPI5), the coarse scale with a radius of 20 km (BPI20). In both cases the 

inner radius was set to 1 km. Slope is generally used as proxy for the exposure of hard-substrate and for 

the local acceleration of currents (Lecours et al., 2016; Niedzielski et al., 2013).  

The other candidate variables included seafloor values of temperature (ºC), salinity (PSU), dissolved 

oxygen (mL L−1), oxygen saturation (%), oxygen utilization (mL L−1) and nutrient concentrations (µmol/l) 

(phosphate, silicate and nitrate) computed by Amorim et al. (2017); near seafloor aragonite (Ωar) and 

calcite (Ωca) saturation computed by Morato et al. (2020c); particulate organic carbon (POC; g m-2 d-1) flux 

estimated using the net primary productivity (NPP) computed by Amorim et al. (2017) and a productivity 

export model (Lutz et al., 2007). The seafloor variables computed by Amorim et al. (2017) were extracted 

from the World Ocean Atlas 2013 (Levitus et al., 2015) and seafloor conditions were interpolated using 

climatological means to create 30-arc second (∼1 km2) grids. The variables computed by Morato et al. 

(2020c) had a native resolution of 0.5° and were rescaled to a 3 x 3 km grid cell using universal kriging and 

depth as a covariate. The NPP layer had an original resolution of 9 km.  

All predictor variables were projected and rescaled on a 30-arc second grid (∼1 km2, UTM zone 26N) using 

bilinear interpolation. This resolution was selected to provide a balance between biological and 

environmental data. The use of coarser resolutions would imply extracting species absences and 

presences on areas much wider that those actually sampled with detrimental effects on model 

performance. The use of a finer grid would imply an excessive rescaling of the environmental variables.  

Highly correlated variables (Pearson’s r ≥ 0.7) were removed in order to produce interpretable models 

and reduce the effect of collinearity (Dormann et al., 2013). Most of the environmental variables were 
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highly correlated with depth (Figure B.1). Since depth and depth-related variables had the highest 

resolution, their choice was favored over other variables. BPI20 and BPI5 were also correlated. BPI20 was 

selected because, based on a previous study (Chapter 2), it seemed more appropriate to model the 

regional fauna at the scale considered here. Since all nutrient variables were highly correlated, it was 

decided to combine them using the principal component analysis (PCA) to reduce the high collinearity 

(Dormann et al., 2013). The first principal component (PC1 Nu), explaining 96%, of the variance was used 

as a predictor variable. Nutrient concentrations and PC1 Nu presented a direct correlation (Figure B.2). 

The same process was repeated for the highly correlated variables aragonite and calcite saturation. 

However, even after performing a PCA, the resulting first principal component was highly correlated with 

depth and with PC1 Nu. Therefore, it was discarded. The final set of variables used to develop the SAMs 

included six variables: depth, slope, BPI20, POC flux, bottom oxygen saturation and PC1 Nu (Figure B.3). 

3.3.4 Analysis 

All analyses were performed in the R environment (version 4.2.1) (R Core Team, 2022) using the R 

packages ‘EcoCluster’ (version 1.0.0) (Valle et al., 2022) and ‘SpeciesMix’ (version 0.3.4) (Dunstan et al., 

2016). At the time of writing, ‘SpeciesMix’ was archived because of incompatibilities with the most recent 

updates of R. After installing the archived version, one internal function presented an error 

(‘SpeciesMix.bernoulli’). The bit of code producing the error was fixed and the package was used without 

any further problem [old code: if(class(fmM.out$covar) != "try-error"); new code: 

if(class(fmM.out$covar)[1] != "try-error") ].  

Species archetype models (SAMs) were used to identify groups of species that respond in a similar fashion 

to the environment (Dunstan et al., 2013, 2011; Hui et al., 2013). This approach can cluster and predict 

species occurrence from presence/absence data using finite mixture models. Finite mixture models posit 

that underlying the total set of observations there is a mixture of subgroups each described by a 

probability distribution. Based on this assumption, the observed data can be explained combining a finite 

mixture of regression models (McLachlan and Peel, 2000). In the SAM framework, each subgroup is 

represented as a logistic generalized linear model (GLM). Species grouped together are described by the 

same GLM, share a statistically indistinguishable environmental response and, in this sense, represent an 

‘archetype’ (Dunstan et al., 2011; Leaper et al., 2014). Species are assigned to one or more archetype 

groups in a soft-manner (probabilistic) during model fitting (Dunstan et al., 2011; Hui et al., 2013). Once 
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fitted, SAMs can be used to make predictions on the occurrence probability of the different archetypes 

across the study area.  

Ultimately, SAMs represent a clustering method. In general, the ‘true’ number of latent groups in a 

particular dataset is unknown, therefore, a major challenge of clustering is to identify the optimal number 

of groups (referred to as archetypes in the case of SAMs) (Dunstan et al., 2011; McLachlan and Peel, 2000; 

Valle et al., 2022). The standard approach in SAMs and in other clustering methods is to systematically 

vary the number of groups and to determine the optimal number of groups based on a performance 

metric like the Bayesian information criterion (BIC) (Dunstan et al., 2013, 2011; Schwarz, 1978). An 

additional metric, suggested by Dunstan et al. (2011) in order to prevent fitting too many species 

archetypes, is the minimum mean membership probability [min(πi)]. This probability should never be 

smaller than the a priori probability of there being at least one species in a group. An alternative approach, 

directly reducing the chances of overestimating the optimal number of archetypes, has been suggested 

by Valle et al. (2022). These authors proposed the use of a particular type of sparsity-inducing prior 

(Ishwaran and James, 2001; Manrique‐Vallier, 2016; Sethuraman, 1994), the truncated stick-breaking 

(TSB) prior. An intuitive way to interpret this approach is to think about it as a sequential process in which 

every time an additional cluster k is considered, the probability that a sampling unit is assigned to cluster 

k (θ) depends on the probability that it is not assigned to any other cluster (1, 2, …, k – 1). For large values 

of k, the probability that a sampling unit is assigned to cluster k drops to values close to zero (Manrique‐

Vallier, 2016; Valle et al., 2022). Clusters accounting for a small portion of the observations can be ignored. 

The use of the TSB prior favors solutions with fewer clusters and has the advantage of determining the 

optimal number of clusters without fitting multiple models. The only requirement is to define a maximum 

number of groups to truncate the stick-breaking prior. The general advice is to set the maximum number 

of groups so that most of the posterior membership probability is concentrated on the initial components 

(i.e. a large number of cluster solutions should be associated with low membership probabilities) 

(Manrique‐Vallier, 2016; Valle et al., 2022). Both the BIC and the TSB prior approach are considered in the 

choice of the optimal number of species archetypes.  

Following the methods used in previous studies (Dunstan et al., 2011; Leaper et al., 2014; Murillo et al., 

2018; O’Hara et al., 2020), the choice of the optimal number of archetypes is performed fitting a model 

with all covariates and quadratic terms (1st and 2nd degree orthogonal polynomials). SAMs were fitted 

assuming a Bernoulli distribution with a logit link function (Dunstan et al., 2011). The TBS approach is 

implemented in a single step using the function ‘gibbs.SAM’ (R package ‘EcoCluster’). The BIC approach is 
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implemented using the function ‘SpeciesMix’ (R package ‘SpeciesMix’). In the latter case, the number of 

archetypes (G) is altered sequentially. For each number G, models are fitted multiple times with different 

initializations (50) and the best model (lowest BIC value) is selected. This is a standard computational 

approach for mixture models used to reduce the chances that the estimation of model parameters during 

the log-likelihood maximization results from local rather than global maxima (Dunstan et al., 2013, 2011; 

McLachlan and Peel, 2000). The BIC values of SAMs computed with different values of G are compared 

based on ΔBIC(G) = BIC(G) – BIC(G + 1) versus G. The first increase in ΔBIC(G), which is represented by the 

first negative value, indicates the optimal number of archetypes. Models are also evaluated considering 

that min(πi) should be greater than 1/S (S is the number of species).  

After selecting the optimal number of archetypes, the best set of covariates is determined following a 

stepwise approach to minimize the value of BIC while holding the number of groups constant (e.g. Dunstan 

et al., 2011; Leaper et al., 2014; Murillo et al., 2018; O’Hara et al., 2020). Again, for each set of covariates, 

models are fitted multiple times with different initializations (50). Models fitted with different sets of 

covariates are compared and the model with the lowest BIC value is selected. Parameter relative standard 

error (RSE) – the standard error (SE) of the absolute value of the parameter multiplied by 100 and divided 

by the estimated coefficient – is used to evaluate the strength of the relationships between each 

archetype and covariate. Using the SAM with the optimal number of groups and the optimal set of 

covariates, prediction across the study area are achieved using the ‘predict.archetype’ function. Finally, 

partial response curves are computed for all covariates (Dunstan et al., 2013). 

3.3.5 Dummy absences 

After running a complete analysis with the available data, it appeared evident that the complete lack of 

sampling over large flat areas biased model predictions. This was particularly true for archetypes occurring 

at depths below of 1500 m, where most of the plains without any biological sampling occur (Figure 3.1). 

All the selected species are sessile invertebrates mostly living on hard substrates. Thus, they are unlikely 

to colonize flat areas away from major relieves where the chances of having exposed bedrock are limited. 

In an attempt to improve model predictions, five cells of the model grid located within large plains with 

flat values (slope < 1º; -100 < BPI20 < 100) were considered as dummy sampling stations where all the 

considered taxa marked as absent. Using these dummy absences together with the available data SAMs 

predictions appeared to be more realistic. At the same time, the use of dummy absences did not change 

the optimal number of archetype groups, species memberships or the general shape of the response to 
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model covariates. The only notable change was that without the use of dummy absences the best model 

included the variable PC1 Nu, using dummy absences it included bottom oxygen saturation. These 

variables present a similar rate of change over depth and they do not display latitudinal trends (Figure 

B.3). Based on these considerations, it was decided to use the dummy absences. They are listed and 

plotted Appendix B.2 (Table B.3 and Figure B.4). 

3.4 Results 

3.4.1 Model selection 

A maximum of 16 archetype groups should be expected if the combination of the eight water masses 

(Figure 3.2) and of the two production regimes existing in the region were to produce distinct bioregions. 

Therefore, BIC values were computed fitting the species archetype models (SAMs) varying the number of 

species archetypes (G) from 1 to 16 and TBS values were computed setting the expected maximum 

number of groups to 16. The two traditional evaluation metrics of SAMs suggest that the optimal value of 

G is five. In fact, while the first increase in ΔBIC(G) occurred between 6 and 7 archetypes (Figure 3.3a), the 

value of min(πi) was above the a priori archetype membership probability (1/S) only selecting five groups 

(Figure 3.3b). Instead, the TBS approach suggests the existence of four archetype groups that, on average, 

account for 98.4% of all species (Figure 3.3c). Increasing G from four to five, three archetype groups 

remained practically unchanged. The species of the fourth group were divided into two distinct archetypes 

that showed similar environmental responses and a great overlap in their predicted distributions 

suggesting an overfitting of the data. Based on these results, four archetypes were considered to be the 

best solution for the available environmental and biological data. Performing the stepwise variable 

selection with G = 4, the model with the lowest BIC (6135) included five covariates (both linear and 

quadratic terms): depth, bathymetric position index (BPI20), particulate organic carbon (POC) flux, bottom 

oxygen saturation and slope (Table B.4). The 26 taxa in the SAMs were assigned to the four archetypes as 

follows: archetype 1 (G.1) 23%, archetype 2 (G.2) 23%, archetype 3 (G.3) 23% and archetype 4 (G.4) 31%. 

All species had a membership probability (τ) equal to one suggesting that the archetype groups effectively 

capture the main environmental responses of the considered taxa (Foster et al., 2015). Species archetype 

compositions can be seen in Table 3.1. 
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Figure 3.3 – Evaluation metrics of species archetype models (SAMs) with different numbers of archetype groups (G). 
Plots are (a) ΔBIC(G) vs. G, (b) min(πi) vs. G and (c) θ vs. G. The solid horizontal line in panel (a) is the ΔBIC(G) = 0, 
and in panel (b) is the min(π) = 1/S = 1/26. BIC is the Bayesian information criterion, S is the number of species, 
min(πi) is the archetype with the minimum value of mean membership probability, θ is the posterior probability of 
each archetype group computed using the truncated stick-breaking (TSB) prior.  

 

 

3.4.2 Environmental response 

The response of species archetypes to environmental variables is shown in Table 3.2, where model 

coefficients, standard errors (SE) and relative standard errors (RSE) are summarized. Figure 3.4, presents 

the partial effects for all covariates in the model. Depth appeared to be the single most important variable 

in defining the distribution of species archetypes. In fact, among the models fitted using a single covariate, 

depth models showed the lowest BIC value (Table B.4) and, in general, RSE of depth coefficient were low. 

Archetypes one and two showed a strong positive response to decreasing depths, but archetype two had 

no response to depth2. Archetype three responded more weakly to depth and was associated with 

intermediate depth values. Archetype four showed a strong response to increasing depth and was 

associated with the deepest portion of the modelled region. All archetype groups showed a preference 

for positive bathymetric position index (BPI20) values, suggesting that all the considered species are 

associated with regional relieves. Particulate organic carbon (POC) was the most important variable for 

archetype four which showed a strong preference for high carbon export values. Other groups showed a 

weaker response to POC and were generally associated with lower POC values then archetype four. 

Archetype three showed a strong negative response to bottom oxygen saturation. Archetype two 

preferred slightly more oxygenated waters than group three. Archetypes one and four were only weakly 
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correlated to bottom oxygen saturation. With the exception of group four, all archetypes avoided very 

low and very high slope values. Archetypes four showed a mild negative response to slope.   

 

Table 3.2 – Model coefficients, standard errors and relative standard errors. Abbreviations: archetype (arch.), 
proportion of species in each archetype (π), bathymetric position index with a 20 km radius (BPI20), particulate 
organic carbon (POC) flux, bottom oxygen saturation (B_Ox), linear term ([…].1), quadratic term ([…].2). 

Arch. π Intercept Depth.1 Depth.2 BPI20.1 BPI20.2 POC.1 POC.2 B_Ox.1 B_Ox.2 Slope.1 Slope.2 

  Coefficient values 

G.1 0.23 -3.2 30.73 6.65 -2.47 -7.39 -5.09 -1.4 0.49 -3.93 4.19 -3.2 

G.2 0.23 -1.29 26.15 -0.08 5.44 -10.11 -3.32 -4.08 -3.55 -3.77 3.11 -2.4 

G.3 0.23 -1.39 -3.14 -4.04 0.93 -6.54 2.86 -2.46 -11.48 -2.89 -6.15 -5.07 

G.4 0.31 -2.29 -23.85 -12.69 4.77 -3.68 8.45 2.98 -3.57 -0.62 -1.72 -1.3 

  Stand error of coefficient values 

G.1 0.23 0.26 8.21 5.81 3.09 2.8 1.84 2.25 2.35 1.57 1.86 1.86 

G.2 0.23 0.11 3.61 3.55 1.97 1.78 1.24 1.48 1.67 1.07 1.11 1.12 

G.3 0.23 0.07 1.67 1.6 1.51 1.5 1.14 1.43 1.92 1.52 1.24 1.43 

G.4 0.31 0.1 1.84 1.51 1.46 1.25 1.11 1.32 1.84 1.54 1.12 1.28 

  Relative stand error of coefficient values 

G.1 0.23 8.12 26.72 87.37 125.1 37.89 36.15 160.71 479.59 39.95 44.39 58.12 

G.2 0.23 8.53 13.8 4437.5 36.21 17.61 37.35 36.27 47.04 28.38 35.69 46.67 

G.3 0.23 5.04 53.18 39.6 162.37 22.94 39.86 58.13 16.72 52.6 20.16 28.21 

G.4 0.31 4.37 7.71 11.9 30.61 33.97 13.14 44.3 51.54 248.39 65.12 98.46 
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Figure 3.4 – Plot of partial effects for all covariates in the model. Each panel represents the effect of varying each 
covariate while holding all other covariates at the regional average values. Shaded areas represent the standard 
errors. Abbreviations and units of measurement: depth (m), bathymetric position index with a 20 km radius (BPI20), 
particulate organic carbon (POC) flux (mg Corg m-2 d-1), bottom oxygen saturation (B. Ox.; %) and slope (º). 

 

3.4.3 Benthic invertebrate archetype distributions 

There were a number of clear patterns in the spatial prediction of the species archetypes (Figure 3.5, 

Figure 3.6 Figure 3.7). In general, they showed a marked bathymetric zonation (Figure 3.7a), however they 

also showed a considerable spatial overlap (Figure 3.7b). Archetype one has the most limited distribution 

and it is associated with the shallowest relieves and with island slopes (Figure 3.5a). Archetype two has 

an extensive spatial overlap with archetype 1, but it is also found in deeper waters. In general, it prefers 

island slopes and the summits of seamounts and crests (Figure 3.5c). Archetype three is located slightly 

deeper than archetype two. It has a wider distribution than the other two archetypes, it is strongly 

associated with areas of complex topography, it does not show any latitudinal pattern and it spatially 

overlaps with archetypes two and four (Figure 3.6a). Archetype four is associated with the deepest 

relieves and slopes of the modelled area (Figure 3.6c). It presents a wide distribution throughout the study 

area, however, the highest probabilities of occurrence of this archetype are associated with high latitudes. 

In general, standard errors were greatest for species archetype one (Figure 3.5b). The high standard errors 

for this group could result from the fact that, overall, its species summed the smallest number of 

observations (Table 3.1).  



Chapter 3 
 

 

66 

 

 

Figure 3.5 – The probability of presence across the study area of species archetypes (a) G.1 and (c) G.2. Standard 
errors of model predictions of species archetypes (b) G.1 and (d) G.2. 
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Figure 3.6 – The probability of presence across the study area of species archetypes (a) G.3 and (c) G.4. Standard 
errors of model predictions of species archetypes (b) G.3 and (d) G.4.  
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Interesting patterns can be observed projecting the estimated probabilities of presence over two-

dimensional plots having depth on one axis and another environmental variable on the other axis (Figure 

3.8). In particular, the depth zonation and the partial overlap of the different archetypes become evident. 

Archetype one is distributed at depths between 200 (the shallowest limit of the study area) and 500 m, 

archetype two between 200 and 800 m, archetype three between 500 and 1600 m and archetype four 

between 800 and 2000 m. In general, the depth-wise stratification of the regional water masses matches 

quite neatly with the vertical succession of the different archetypes (Figure 8). Areas of probable 

occurrence of archetype one are restricted to a very narrow thermal range. Archetype two shares a similar 

depth range with archetype one, but it seems able to occupy most of the seafloor locations bathed by 

surface waters. Archetype three is strongly associated with areas characterized by the lowest 

oxygenation. These areas correspond to the core depth of intermediate waters. The bathymetric 

distribution of archetype four is mostly delimited by the core of the deepest limit of intermediate waters 

(800 – 1600 m). It shows a strong preference for areas presenting high POC flux values. In these areas its 

depth range extends down to a depth of about 2000 m (the deepest limit of the modelled area). 

 

 

 

Figure 3.7 – Spatial distribution of species archetypes. For each cell of the model grid, the archetype with the highest 
probability of presence (a) and the total number of archetypes (b) are shown. In panel (a), if all archetypes in a cell 
have probabilities smaller than 0.25, then no archetype is shown. In panel (b), only archetypes with probabilities 
greater than 0.25 are counted. 
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Figure 3.8 – Predicted probability of presence (fit) averaged over 50 two-dimensional bins for different 
environmental variables against depth. Note that bottom oxygen saturation (Bott. Ox.) and particulate organic 
carbon (POC) flux were used as model covariates, bottom temperature (Bott. T) and the principal component of 
sweater nutrients (PC1 nutrients) were not. The horizontal lines show the vertical stratification of the regional water 
masses. The solid lines identify the core of water masses, the dashed lines delimit the water masses. Each color is 
associated with one or more water masses: (pink) Western North Atlantic Central Water and Western South Atlantic 
Central Water; (green) Eastern North Atlantic Central Water; (red) Mediterranean Water and Antarctic Intermediate 
Water; (purple) Upper North Atlantic Deep Water. The depth range considered is between 200 and 2000 m. 
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3.5. Discussion 

One of the major shortfall of biodiversity knowledge steams from an incomplete description of the 

geographical distribution of species (Hortal et al., 2015). Overcoming this shortfall is essential for 

conserving nature and its services and it is a required first step to tackle more complex ecological 

processes (e.g. dispersal, speciation, disturbance, biotic interactions, etc.) in remote and poorly studied 

regions such as the deep sea (Hortal et al., 2015; McClain and Hardy, 2010; Whittaker et al., 2005). This 

study undertakes one of the first statistical bioregionalization of deep-sea benthic assemblages in the 

Azores. By combining environmental and biological data it provides a simplified model of the distribution 

of multiple species that, hopefully, will be of help in framing research questions, sampling designs and 

conservation strategies. Species archetype models (SAMs) are a particularly appealing method that 

classifies species based on their environmental response and, in this way, simplifies complex multi-species 

analysis (Dunstan et al., 2011). They implicitly assume that, at certain scales, the observed distribution of 

a pool of species is mainly driven by the environment and that species within particular geographic regions 

have a statistically indistinguishable environmental response. These assumptions can be framed within 

the concepts of environmental filtering and regional species pool (Cornell and Harrison, 2014; Kraft et al., 

2015). Environmental filtering can be defined as the effect of environmental conditions selecting those 

species capable of survival and persistence at a given locale (Kraft et al., 2015). From this perspective, 

SAMs represent a way to evaluate how plausible is to have environmental filters that spatially sort the 

regional pool of species into discrete biological regions. Given the complexity of community assembly 

processes, studies performed exclusively with observational presence/absence data cannot provide 

conclusive evidence about the role of the environment in structuring regional communities (Cadotte and 

Tucker, 2017; Thompson et al., 2020; Vellend, 2010). However, acknowledging this limitation, they still 

provide an indication about the role of the environment and represent a valuable first step to describe 

regional biodiversity patterns (Woolley et al., 2020). In addition, the effects of the environmental filtering 

are generally expected to be of relevance at the regional scale addressed here and are particularly evident 

in marine systems (Levin et al., 2001; Soininen, 2014; Viana and Chase, 2019).  

Because of the nature of most of the biological data available, it was decided to focus exclusively on large 

benthic filter feeders found on hard substrates at depths between 200 and 2000 m (bathyal zone). 

Although a bioregionalization exercise based on a limited number of taxonomic groups may not be easily 

generalized (Costello et al., 2017), the use of few and carefully selected taxa presents its advantages. 

Limiting the analysis to hard substrate communities served to address the regional sampling bias that did 
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not allow for a proper description of soft substrate communities. Recent surveys (e.g. Dominguez‐Carrió 

et al., 2021; Morato et al., 2021a) confirm that most of the selected species represent a dominant 

component of coral and sponge aggregations throughout the study region. Cold-water corals and deep-

sea sponges tend to be long-lived and highly vulnerable to physical disturbance and climate change (e.g. 

Carreiro-Silva et al., 2013; Morato et al., 2021b, 2020c; Vieira et al., 2020), thus the species known to 

aggregate and enhance the structural complexity of deep-water habitats are generally treated as a priority 

target for conservation (FAO, 2009; OSPAR, 2010). Additionally, the sessile species considered here are 

likely to play a major role in building and maintaining deep-sea communities as they seem to possess some 

of the key characteristics of foundation species (Crotty et al., 2019; Ellison, 2019): (i) they represent a 

dominant element of hard substrate communities in the region reaching high local densities (e.g. Morato 

et al., 2021b; Tempera et al., 2012a); (ii) they likely mediate several non-trophic interactions especially via 

habitat provision and nutrient cycling (Beazley et al., 2013; Buhl-Mortensen et al., 2010, 2017; Maldonado 

et al., 2015; Orejas and Jiménez, 2017). Considering their importance for deep-sea communities, their 

sessile nature and their long lifespan, these species seem to be good candidates to guide a preliminary 

bioregionalization using biological and environmental data. Their sessile nature simplifies the 

identification of environmental structures of biological relevance. In fact, wherever they exist, we can 

reasonably infer that suitable conditions exist since the moment of their settlement up to the moment of 

their death. Given their long lifespan, if different pools of deep-sea corals and sponges are actually sorted 

by different environmental conditions, then we can assume that a long standing and biologically relevant 

environmental heterogeneity exists in the region. Such heterogeneity can be expected to influence, 

directly or indirectly, all the species interacting with the foundation species. Other components of the 

ecosystem are also likely to be influenced by the same heterogeneity. Based on these hypotheses, it is 

possible formulate new research questions and sampling designs addressing, for example, species 

abundance distributions, functional traits or intermittent interactions among species and relevant 

environmental structures (e.g. feeding behavior, diel migrations, interactions during particular life stages, 

etc.).  

The SAMs revealed a number of interesting spatial patterns. As reported in previous studies (Chapter 1, 

Braga-Henriques et al., 2013; Menezes et al., 2006; Tempera et al., 2012a, 2012b), the strongest 

distributional patterns in the region occur along the bathymetric gradient confirming, once again, the 

depth-wise zonation of deep biota (e.g. Carney, 2005; McClain and Rex, 2015). Liu and Tanhua (2021) 

characterized and mapped the major water masses in the Atlantic Ocean showing that they are distributed 
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in four main isopycnal (vertical) layers separated by surfaces of neutral density: (i) upper, (ii) intermediate, 

(iii) deep and overflow and (iv) bottom layer. In the Azores, several overlapping water masses exist within 

each layer (Figure 3.2). Consequently, it is not possible to detect a relationship between a specific 

archetype and a specific water mass with the data and the methodology used here. However, our results 

show a clear correlation between the vertical zonation of the regional benthic fauna and the depth-wise 

succession of the isopycnal layers. The boundaries of the different layers seem to act as transitional 

ecoclines rather than as sharp biogeographic breaks. In fact, according to model predictions, the 

distributions of the different archetypes present several overlapping regions along the depth gradient.  

Both archetype one and two were found within the upper layer with archetype one presenting a limited 

distribution and archetype two being more widespread (Figure 3.5). Temperature was not directly 

included as a model covariate, but it was considered in the interpretation of the results because of its high 

correlation with depth (r > 0.9). When plotting the predicted probabilities of occurrence of archetype one 

and two against depth and temperature, archetype one seems to be under a strong thermal control as all 

suitable locations occur within a narrow range of seafloor temperatures (9 – 15 ºC) (Figure 3.8). 

Temperature is a major driver of biodiversity because of its physiological importance and it is especially 

relevant at shallow depths where it likely represents the dominant form of energy (Carney, 2005; McClain 

and Rex, 2015; Woolley et al., 2016). Therefore, a strong thermal control over certain species inhabiting 

the uppermost part of the water column seems a reasonable model output. Furthermore, a thermal 

control over archetype one is supported by the pioneering work of Rakka et al. (2021) on the early life 

history of deep-sea octocorals. They showed that even small changes in temperature affect embryo 

development and larval behavior of Dentomuricea aff. meteor (archetype one). Increasing the incubation 

temperature from 13 to 15 ºC, the embryo developed faster and the larvae presented a higher swimming 

velocity and a longer pelagic phase. Species archetype one is mostly found within the upper 500 m of the 

water column, at depths where there is the largest influence of the water masses found in the upper layer 

(Liu and Tanhua, 2021; Puerta et al., 2020). Both at global and regional scales, this depth has been 

considered as an important boundary between coastal and deep-sea habitats (Carney, 2005; Costello et 

al., 2017; Glover et al., 2022). This study confirms the importance of such boundary and, rephrasing 

Carney (2005), suggests that it could represent the bathymetric limit of species truly restricted to the 

upper water masses. Note that previous studies on the distribution of demersal fishes and cold-water 

corals in the Azores position this bathymetric boundary slightly deeper (600 m), however they confirm the 

existence of a transition zone at a similar depth (Braga-Henriques et al., 2013; Menezes et al., 2006).  
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Archetype two has a wider thermal range than archetype one and a slightly preference for less oxygenated 

waters but, in general, it seems to tolerate most of the conditions existing in the topmost portion of the 

water column. Based on model predictions, archetype two can potentially co-occur at almost all locations 

suitable for archetype one and at certain locations with archetype three (Figure 3.5 and Figure 3.6). It was 

predicted to occur at depths between 200 and 800 m. At 800 m is located the core of the intermediate 

layer in the region and an oxygen minimum (ca. 4.3 mL L−1) (Amorim et al., 2017; Bashmachnikov et al., 

2015; Liu and Tanhua, 2021). As confirmed by previous studies (Braga-Henriques et al., 2013; Menezes et 

al., 2006), this depth seems to be another important biogeographic boundary in the region. Watling and 

Lapointe (2022) found a faunal transition at 1000 m in the North East Atlantic which is the same depth 

where, on average, is situated the core of the intermediate layer (Liu and Tanhua, 2021; Puerta et al., 

2020). In general, both regional and basin-scale patterns support the idea that intermediate water masses 

represent an important biogeographic boundary for benthic assemblages in this part of the Atlantic 

(Puerta et al., 2022, 2020). 

Setting aside the vertical zonation for a moment, it is worth to spend a few more lines about the spatial 

patterns that appear to be in place at depths between 200 and 500 m. As discussed earlier, there is a 

group of species strongly controlled by temperature and strictly located within the upper layer (200 – 500 

m). Warm and ‘shallow’ habitats tend to have the highest level of species richness (Costello and 

Chaudhary, 2017; Menegotto and Rangel, 2018; Saeedi et al., 2019). Within a similar depth range, there 

is a second group of species not showing any significant response to temperature or POC fluxes that 

apparently can colonize most of the rocky seafloor locations. Based on these results, we can set forward 

an interesting hypothesis to be addressed in future studies. Nestedness could be more important than 

spatial turnover in explaining the level of among-site variation (β-diversity) within the upper layer 

(Baselga, 2010; Ulrich and Almeida-Neto, 2012). Areas suitable for archetype one could represent areas 

where species restricted to the upper layer and species in-between the upper and the intermediate layer 

can coexist. These areas would present the highest number of species. Moving away from these locations 

the species restricted to the upper layer would be ‘lost’ and a nestedness pattern would arise. Preliminary 

observations confirm that species belonging to archetype one and two can coexist in very dense and 

particularly rich benthic aggregations, e.g. Dentomuricea aff. meteor (archetype 1) and Viminella flagellum 

(archetype 2) (Morato et al., 2020b, 2019). Environmentally driven nestedness has been shown in 

previous studies (e.g. Menegotto et al., 2019; Stuart et al., 2017).  
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Archetype three seems to occur only at locations bathed by intermediate water masses at depths between 

500 and 1600 m (Figure 3.2 and Figure 3.8). Archetype three showed a strong negative response to 

bottom-water oxygen saturation, suggesting that it is associated with the Antarctic Intermediate Water 

and with the Mediterranean Water. These are the most prominent intermediate water masses at the 

considered latitudes and longitudes and are both characterized by low oxygen concentrations 

(Bashmachnikov et al., 2015). As suggested by Menezes et al. (2006), the regional oxygen minimum could 

exert a direct control over demersal fish assemblages. However, a direct physiological role of bottom-

water oxygen concentrations on macrobenthic invertebrates was mostly ascribed to conditions of hypoxia 

or anoxia (less than 2 mL L−1) (Levin, 2003; Puerta et al., 2020; Rogers, 2000), while the water column 

throughout the Azores is oxygen-rich with oxygen levels always above 4.3 mL L−1 (Amorim et al., 2017). 

The recent publication of Puerta et al. (2022) confirms that the Mediterranean Water can locally influence 

the structure of deep-sea megabenthic communities and exert control over connectivity and 

biogeographic patterns at large spatio-temporal scales. These finding support the idea that species 

archetype three is composed of species truly restricted to intermediate water masses. In the North East 

Atlantic, Watling and Lapointe (2022) using distributional data of deep-sea coral (Class Anthozoa) found a 

fauna transition at around 1500 m which is very close to the deepest limit of the intermediate layer in the 

region (1600 m). 

Archetype four occurs in the deepest portion of the considered bathyal range, mostly at depths between 

the core and the lowest limit of the intermediate layer (800 – 1600 m). Based on model predictions, 

archetype four can potentially co-occur with archetype three. Preliminary video analysis confirms that 

species of these archetypes can coexist in dense assemblages, e.g. Narella versluysi (archetype 3) and 

Pheronema carpenteri (archetype 4) (Morato et al., 2020b). The sampling effort below 1500 m depth was 

very scarce and only three stations were available for the present analysis. Therefore, all results 

concerning the deepest portion of the study area should be considered cautiously as the maximum depth 

limit of this archetype and some of its environmental responses could change as new data become 

available. Nevertheless, we believe that sufficient data was available to correctly identify its minimum 

depth limit. Archetype four was the archetype showing the strongest response to POC flux. Because of 

this response, its predicted probabilities of occurrence reached the highest values at high latitudes, in 

accordance with the productivity gradient that exists in the region (Amorim et al., 2017; Caldeira and Reis, 

2017) (Figure 3.6 and Figure 3.8). Interestingly, archetype four seems able to colonize areas deeper than 

1600 m only when high carbon export values are present. In general, a high dependence on food supply 
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is a common pattern in the deep sea and, as depth increases, the chemical energy (export productivity) 

seems to be the main driver of deep-sea diversity (McClain and Rex, 2015; Woolley et al., 2016). A 

dependence on export productivity for many of the species included in archetype four has been confirmed 

by several studies (Fink et al., 2015; Hanz et al., 2021; Hebbeln et al., 2020; Howell et al., 2016; Juva et al., 

2020; Lim et al., 2020; Raddatz et al., 2020). Interestingly, Portilho-Ramos et al. (2022) showed that food 

supply controlled by export production and turbulent hydrodynamics at the seabed exerted the strongest 

impact on the vitality of Desmophyllum pertusum (archetype four) over the last 20,000 years. The high 

importance of POC flux for the archetype inhabiting the deepest portion of considered depth range seems 

ecologically sound. Further sampling will be required to confirm our findings. 

3.6 Conclusions 

This study represents one of the first statistical bioregionalization of deep-sea benthic communities in the 

Azores. It focuses on habitat-forming filter feeder species (Phyla Cnidaria and Porifera) known to 

represent a critical component of hard substrate communities in the region. Many of the described 

patterns are of general interest as they seem to be caused by environmentally driven processes that most 

likely affect the functioning and the structure of several components of deep-sea ecosystem in the Azores 

as well as in other regions. The depth-wise succession of the regional water masses and their stratification 

into different isopycnal layers appears to explain much of the changes in species composition occurring 

with depth. The ecological processes driving these patterns remain unclear. A water mass can be 

considered as an environmental envelop characterized by a particular combination of oceanographic 

parameters (Emery, 2001; Liu and Tanhua, 2021). They could exert a direct physiological control, influence 

connectivity or mediate food supply via internal waves or density-driven currents (Carney, 2005; Hanz et 

al., 2021; Lapointe et al., 2020; Puerta et al., 2020; Quattrini et al., 2017; Radice et al., 2016; Roberts et 

al., 2021). Regardless of the main ecological and evolutionary processes in place, our results suggest that 

the different isopycnal layers can be used as meaningful bioregions, setting an interesting background for 

ecological research, ecosystem-based management and spatial monitoring. In the region, the main 

changes in species composition occur at 500, 800 and 1600 m generally confirming the biogeographic 

boundaries identified in previous studies. Temperature is the main environmental factor controlling the 

distribution of assemblages truly restricted to the upper layer. A strong negative response to bottom-

oxygen concentrations identifies assemblages truly restricted to the intermediate layer. The isopycnal 

stratification appear to act as a soft ecological boundary for other species. Food export seems the main 

controlling factor for species associated with the deep layer (or with the lowest portion of the 
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intermediate layer), supporting the hypotheses that the regional productivity gradient in surface waters 

affects deep-sea assemblages. Increasing the study area further north and south will help clarify if there 

is a fauna transition owed to differences in primary productivity and the relative weight of this ecological 

gradient in the biogeographic boundaries that were described close to the Azores (Costello et al., 2017; 

Watling and Lapointe, 2022). Substrate complexity and, in particular, the spatial distribution of patches of 

hard substrates is likely to be an important distributional driver missing from this analysis. However, we 

believe that its importance is more evident at finer spatial scales than those considered here. The greatest 

drawbacks of this work were the paucity of sampling below 1500 m and the lack of a covariate measuring 

the strength of steady and variable flows at the seafloor. There is growing evidence that the distribution 

of deep-sea filter feeders is strongly controlled by vertical as well as lateral food supply mediated by 

hydrodynamic processes (e.g. Hanz et al., 2021; Jansen et al., 2018; Lim et al., 2020; Mohn et al., 2014). 

The development of a high resolution regional oceanographic model and new biological sampling in deep 

areas will largely benefit future ecological studies in the region. Species abundance distribution, functional 

trait, genetic, taxonomic and life history data should also be a priority if we want to understand how 

selection, drift, speciation, and dispersal (Vellend, 2010) interact at different scales and influence the 

community assembly process in the region. 
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Chapter 4   
Translate users’ perceptions of landscapes and seascapes into 
computer representation: The R package scapesClassification 
 

 

4.1 Abstract 

The R package scapesClassification was designed to translate users’ perceptions of landscapes and 

seascapes into computer representation. Particular points of views are encoded in a transparent and 

explicit manner, can be reproduced on different machines and, ultimately, can be considered as task- or 

domain-oriented ontologies. The proposed classification algorithms allow to encode mental 

conceptualization of spaces taking into account salient geographic features and expected topological 

relationships between classes. In doing so they mimic the way people schematize in their mind spatial 

configurations and shorten the distance between mental and computer representations. The proposed 

functions can be used for a range of purposes including: exploratory analyses, pattern retrieval, 

formalization of expert knowledge into ontology-like scripts, evaluation of automated classification 

methods, labelling of natural processes and integration of spatial analyses. It has a unique way of 

evaluating heuristic rules and it is able to bridge raster and object representations of geographic spaces. 

Ultimately, it represents an additional resource to perform spatial analysis within the R-environment.  
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4.2 Introduction 

The ever-increasing stream of geospatial data is restructuring the way geographic knowledge discovery is 

addressed (Mennis and Guo, 2009; Reichstein et al., 2019). Particular interest is given to computer based 

methods able to detect hidden patterns in spatial data and in automated or semi-automated classification 

processes able to synthetize large quantities of data. In general, it has been advocated that geosciences 

should be switching from a model-driven to a data-driven approach (Guo et al., 2014; Miller and 

Goodchild, 2015). Although data-driven science offers exciting opportunities for geosciences (and for the 

analysis of spatial data), it still poses some challenges such as (i) interpretability of results, (ii) inconsistent 

or implausible model predictions when assessed in the light of scientific laws or domain knowledge and 

(iii) conceptual difficulty in labelling natural features and processes – labels that are required for model 

training and cross-validation (Reichstein et al., 2019). The integration of expert knowledge in data driven 

models has been proposed to soften these limitations (Arvor et al., 2019; Karpatne et al., 2017). In 

addition, experts of several scientific domains are not familiar with automated or semi-automated 

analysis based on machine and deep learning (Farley et al., 2018). Yet, their knowledge remains valuable 

and when taken into account in a transparent and rigorous way offers a wide range of opportunities for 

improving research and decision-making processes (Drescher et al., 2013). 

One of the ways to capture expert knowledge and use it in the workflow of spatial analysis is to translate 

human perceptual knowledge into computer representations. As explained in Arvor et al. (2019), the 

formalization of spatial expert knowledge deals with several challenges. The same geographic concept 

can be defined in multiple ways and, generally, each definition represents a different point of view. For 

example, a forest can be defined based on functional, administrative or both functional and administrative 

attributes producing similar, yet different, representations. A second challenge relates with the duality of 

geographic concepts. For instance, a mountain can be conceptualized from its real-world physical 

properties (e.g. a natural elevation rising abruptly from the surrounding level) and from surrogate 

measures (e.g. topographic position index greater than a certain value). When surrogate measures are 

used, the definition of classification thresholds tends to be context- and user-specific. Finally, the 

semantics used to describe geographic concepts are interpreted differently by people having different 

cultural, social and professional backgrounds (i.e. semantic gaps).  

Studies in the area of geospatial semantics try to overcome the complexities inherent to spatial concepts 

using domain-level and task-oriented ontologies (Fonseca et al., 2002; Kokla and Guilbert, 2020; 
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Schuurman and Leszczynski, 2006). Ontologies are formal and explicit specifications of shared concepts in 

a machine-readable way that are used to (i) encode and share expert knowledge and to (ii) bridge human 

and computer representations (Sun et al., 2019). A practical application of spatial ontologies is to make 

expert views of geographic concepts explicit, transparent and sharable and to facilitate their integration 

into computer-based analysis (Arvor et al., 2019; Guilbert and Moulin, 2017). Guilbert and Moulin (2017) 

point out that people identify geographic entities through salient features that they recognize. For 

instance, a mountain is commonly perceived as a region of space having a peak and an island as a region 

of space characterized by a land-sea interface. They suggest that the notion of salient feature could help 

in the formal definition of spatial ontologies and in the development of general purpose classification 

software. Classifications can be implemented as multi-step processes where (i) salient features are used 

to identify a particular type of geographic object and (ii) additional descriptors at locations in the 

neighborhood or in continuity with the salient feature can be used to define the spatial extent of that 

object.  

Here, we present the open-source R package scapesClassification, designed to translate user mental 

models of seascapes and landscapes into computer representations (classifications). It allows users to 

encode their spatial perception of a geographic space using spatial data, salient geographic features and 

the spatial relationships existing among different classes or objects. Users can define flexible and multi-

step classification schemes by combining different functions. All classification steps are saved as 

reproducible outputs (i.e. R scripts) that can be regarded as sharable domain- or task-oriented ontologies. 

This package deals with raster data and its development was specifically directed toward the classification 

of digital terrain models (DTMs) for ecological applications. DTMs are surface elevation data providing 

digital representations of land surface topography (Lecours et al., 2016; Pike et al., 2009; Sofia, 2020). 

Geomorphological mapping is central to geomorphometry, the science of quantitative land-surface 

analysis (Lecours et al., 2016; Pike et al., 2009; Sofia, 2020). Geomorphometry plays a central role in 

landscape and seascape ecology where it helps studying how spatial patterns and spatial heterogeneity 

influence ecological processes at multiple scales (Pittman et al., 2021; Swanborn et al., 2022; Turner, 

2005). In the context of ecological sciences, the topographic setting plays a major role in altering 

environmental conditions such as climate or oceanic surface and near-bottom currents influencing in this 

way energy availability and spatial distributions of organisms and communities (e.g. Durden et al., 2020; 

Irl et al., 2015; Jackson, 2010). Geomorphological maps (classifications) have a wide spectrum of end-uses 

and are performed using a huge variety of techniques and algorithms (e.g. Jasiewicz and Stepinski, 2013; 
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Lecours et al., 2016; Pike et al., 2009; Seijmonsbergen et al., 2011; Sofia, 2020; Walbridge et al., 2018). 

This huge spectrum of classification methodologies is linked to different mental models of space generally 

representing different domain views useful to address particular aspects of natural phenomena (Freksa 

and Barkowsky, 1995; Kokla and Guilbert, 2020; Schuurman, 2006; Sofia, 2020). This package does not 

pretend to substitute well-established geomorphometry methodologies. On the contrary, it can be used 

to integrate them placing the focus on the end-user and on its specific needs in addressing domain- or 

task-oriented problems. The suit of functions and algorithms it provides can be used to classify and 

segment a geographic space using n-dimensional raster layers which can contain elevation and 

topography-derived layers. At the same time, classifications obtained with different methodologies can 

be integrated at any point during the classification process as categorical layers and used to direct 

classification steps.  

The software scapesClassification is based on few key concepts:  

 Landscapes and seascapes tend to have prominent features easy to identify. These features can 

be considered as anchor locations, locations around which a classification process can start and 

evolve. 

 A classification process can take into account the spatial relationships that are expected to exist 

among different classes or objects, i.e., where a segment of space or an object is expected to be 

in relation to other segments and objects. 

 Based on such relationships, it is possible to estimate where a certain class is expected to exist 

and to perform focal evaluations of classification rules: rules are only evaluated at suitable 

locations, thus, limiting possible misclassification cases. 

 A classification process is seen as multi-step: as new portions of a raster are classified they can be 

used to define new focal areas over which classification rules are evaluated. 

The software is illustrated through a study case. Seafloor features around the central part of the Azores 

archipelago (Figure 4.1) are classified from the point of view of a benthic ecologist. Results are evaluated 

and integrated by an unsupervised classification method. 

  



Chapter 4 
 

 

82 

 

 

Figure 4.1 – Study case. Central group (‘Triangle’) of the Azores Archipelago composed of São Jorge (NE), Faial (SW) 
and Pico (SE) Islands (a). Raster data used to identify seafloor structures (b-e). Panels (b-e) are projected to UTM 
26N.  

 

 

4.3 Materials and Methods 

4.3.1 The R environment 

R is a multiplatform and free software environment for statistical computing and graphics (R Core Team, 

2022). It is widely used for spatial analysis (Bivand, 2021) and it is well integrated in the workflow of 

ecological and environmental studies (Huang and Yang, 2022; Lai et al., 2019). Packages are the 

fundamental units of reproducible R code (Wickham, 2015). 

4.3.2 Software availability 

The latest scapesClassification release is available on the Comprehensive R Archive Network (CRAN) 

(https://cran.r-project.org/package=scapesClassification). The latest software development is available 

on github (https://github.com/ghTaranto/scapesClassification). Details about its implementation are 

included as function documentation and on the software page (https://ghtaranto.github.io/ 

scapesClassification/index.html). The code written for the study case and provided in Appendix C can be 

used as a tutorial guide (all input data are provided as part of the package). Finally, scapesClassification 

https://cran.r-project.org/package=scapesClassification
https://github.com/ghTaranto/scapesClassification
https://ghtaranto.github.io/%20scapesClassification/index.html
https://ghtaranto.github.io/%20scapesClassification/index.html
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depends on the R package terra (Hijmans, 2022) for reading, handling and plotting raster data. It does not 

have any other external dependency. 

4.3.3 (scapes)Classification 

The following sections present the general architecture and the logic behind scapesClassification. 

Classification are performed by assigning a numeric identifier to raster cells respecting user-defined 

conditions. The same numeric identifier can be assigned to all raster cells respecting user-defined 

conditions. In alternative, a different numeric identifier can be assigned to each discrete group of cells 

respecting user-defined conditions. In the latter case, each group of cells can be treated as a raster object 

characterized by identity, spatial embedding and attributes. In the context of scapesClassification, discrete 

groups of cells refer to two or more groups of raster cells respecting a set of conditions separated by raster 

cells not respecting the same set of conditions. Classifications can be implemented in a single-step or, 

more commonly, in a multi-step process. In a multi-step process, a class is firstly identified based on some 

salient feature or by its spatial proximity to another class that was previously identified. Next, every 

location mapped to a class can serve as an anchor location, a location around which classification rules 

are used to refine the class boundaries. Each step can be implemented using a classification or a raster 

object function. All the functions of scapesClassification are listed and briefly illustrated in Table 4.1. See 

the package documentation for more information (https://ghtaranto.github.io/scapesClassification/ 

index.html). 

4.3.3.1 Raster data 
A raster is a spatial data model that divides space in regular shaped and sized pieces (Peuquet, 1984) 

referred to as cells or pixels. Each cell stores one or more values describing quantitative or qualitative 

attributes of a geographic space. In the package terra, cells are numbered from the upper left cell to the 

upper right cell and then continuing on the left side of the next row, and so on until the last cell at the 

lower-right side of the raster (https://rspatial.org/). Functions in scapesClassification use this numbering 

to treat raster data as numeric vectors and data frames.  

The functions of scapesClassification (Table 4.1) segment raster space into distinct classes and identify 

and manipulate raster objects within a class. They can occasionally consider spatial vector data to highlight 

particular locations on a raster. Groups of raster cells are mapped to a class or to an object by a unique 

numeric identifier. User-defined classification rules take into account data stored as single or multi-layer 

raster.  

https://ghtaranto.github.io/scapesClassification/%20index.html
https://ghtaranto.github.io/scapesClassification/%20index.html
https://rspatial.org/
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Table 4.1 – List of scapesClassification functions. Additional details and visual examples are available in the reference 
documentation (accessible using the R functions ‘?’ or ‘help’) and on the documentation page (https:// 
ghtaranto.github.io/scapesClassification/reference/index.html). Cell refers to raster cell. Function type: format input 
function (FI); helper function (H); classification function (anchor cells) (Ca); classification function (user-conditions) 
(Cuc); classification function (seed cells) (Cs); classification function (neighbors only) (Cnbs); raster object functions 
(RO). Rule types: absolute test cell condition (ATC); absolute neighborhood condition (ANC); relative focal cell 
condition (RFC); relative neighborhood condition (RNC). 

Function name Function 
type 

Summary Rule types Focal 
evaluation 

attTbl()  FI Convert raster data into an attribute table N/A N/A 

ngbList()  FI Computes the neighborhoods of all cells included in 
the raster table 

N/A N/A 

conditions()  H Check for spelling and syntax errors in a condition 
string. Its documentation provide an overview of all 
rule types 

N/A N/A 

cv.2.rast()  H Convert a class vector to a raster N/A N/A 

anchor.svo()  Ca Returns a vector of raster cell numbers extracted at the 
locations of spatial vector objects 

N/A N/A 

anchor.cell()  Ca Converts a vector of cell numbers into a class vector N/A N/A 

peak.cell()  Ca Identify local maxima or minima on a raster surface N/A N/A 

cond.4.all()  Ca, Cuc  Evaluate conditions for all unclassified cells and classify 
them if conditions are true 

ATC NO 

anchor.seed() Ca, Cs, RO Returns a vector of cell numbers at the locations of 
seed cells and growth buffers 

ATC, RFC YES 

cond.4.nofn()  Cuc, RO Evaluate conditions for cells neighboring specific 
classes and classify them if conditions are true. With 
the argument ‘hgrowth = TRUE’ modifies RO 

ATC, ANC, 
RFC, RNC 

YES 

cond.reclass()  Cuc Evaluate conditions for cells of a class and reclassify 
them if conditions are true 

ATC, ANC YES 

reclass.nbs()  Cnbs Evaluate if members of two classes are contiguous and, 
if they are, one of them is reclassified 

N/A N/A 

classify.all()  Cnbs Classify all cells in that have not yet been classified 
assigning them to the same class of the nearest 
classified cell 

N/A N/A 

obj.border()  RO Identify the borders of raster objects N/A N/A 

obj.nbs()  RO Identify the shared borders of neighboring raster 
objects 

N/A N/A 

rel.pi()  RO Compute the relative position index of raster objects N/A N/A 

pi.sgm()  RO Segment raster objects based on position index values N/A N/A 

pi.add()  RO Add new raster objects based on position index values N/A N/A 

 

  

https://ghtaranto.github.io/scapesClassification/reference/attTbl.html
https://ghtaranto.github.io/scapesClassification/reference/ngbList.html
https://ghtaranto.github.io/scapesClassification/reference/conditions.html
https://ghtaranto.github.io/scapesClassification/reference/cv.2.rast.html
https://ghtaranto.github.io/scapesClassification/reference/anchor.svo.html
https://ghtaranto.github.io/scapesClassification/reference/anchor.cell.html
https://ghtaranto.github.io/scapesClassification/reference/peak.cell.html
https://ghtaranto.github.io/scapesClassification/reference/cond.4.all.html
https://ghtaranto.github.io/scapesClassification/reference/anchor.seed.html
https://ghtaranto.github.io/scapesClassification/reference/cond.4.nofn.html
https://ghtaranto.github.io/scapesClassification/reference/cond.reclass.html
https://ghtaranto.github.io/scapesClassification/reference/reclass.nbs.html
https://ghtaranto.github.io/scapesClassification/reference/classify.all.html
https://ghtaranto.github.io/scapesClassification/reference/obj.border.html
https://ghtaranto.github.io/scapesClassification/reference/obj.nbs.html
https://ghtaranto.github.io/scapesClassification/reference/rel.pi.html
https://ghtaranto.github.io/scapesClassification/reference/pi.sgm.html
https://ghtaranto.github.io/scapesClassification/reference/pi.add.html
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4.3.3.2 Format inputs 
In an initial step, the format input function ‘attTbl’ (Table 4.1) convert the raster data into a data frame 

(referred to as attribute table) and compute the neighborhood of every cell included in the attribute table. 

Format input functions ignore raster cells having missing values. Attribute tables come with a column 

named ‘Cell’. This column stores raster cell numbers and associates each row of the attribute table to a 

cell of the raster. The remaining columns store the data contained in the raster layers. The list of 

neighborhoods of each raster cells is computed using the function ‘ngbList’ and stored in memory to 

reduce the computational time of classification algorithms. In fact, as explained in the next sections, 

classification functions use cell neighborhoods to determine at what locations a classification rule has to 

be evaluated. The neighborhood of a raster cell with coordinates (x, y) counts 8 neighbors with 

coordinates (x±1, y), (x, y±1) and (x±1, y±1). Cells on the edge of the raster and cells adjacent to cells with 

missing values have less than 8 neighbors.  

4.3.3.3 Class vector 
Classification and object functions (Table 4.1) return seascapes or landscapes classifications in the form 

of a ‘class vector’. A class vector stores classification steps by mapping groups of raster cells to numeric 

classes (or to a missing value if a cell is unclassified). The nth element of a class vector corresponds to the 

raster cell stored in the nth row of the attribute table. Class vectors serve as both function input and 

output. Functions receiving a class vector as an input only evaluate classification rules for unclassified 

cells; previously classified cells retain their classes. This allows for a sequential update of a class vector 

and, thus, for multi-step classifications. In addition, class vectors can be added as new columns of the 

attribute table and used to focus particular classification steps within or outside specific areas. The helper 

function cv.2.rast converts a class vectors into a raster (Table 4.1). 

4.3.3.4 Rule evaluation 
One of the key features of scapesClassification is the focal evaluation of classification rules. The term focal 

refers to the fact that, in general, classification rules are evaluated only in the neighborhoods of cells of a 

particular set of classes (focal cells). Cells testing positive to the classification rules are classified as focal 

cells and the same set of rules is automatically applied to new neighboring unclassified cells. The process 

is repeated as long as new cells are classified as focal cells. In this way, cells that respect the same rule(s) 

and that are connected the same focal cells are joined into the same class. This process is referred to as 

class continuity in the software documentation. The documentation of the helper function ‘conditions’ 

(Table 4.1) provides a general overview of the type of rules that can be used and on how they are 
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evaluated. A more exhaustive explanation is provided on the software documentation page (https:// 

ghtaranto.github.io/scapesClassification/articles/ghp/scapesClassification_01_2_RulesEvalTypes.html) 

4.3.3.5 Classification rules 
Classifications are based on heuristic rules. Classification rules evaluate to either true or false and 

determine what raster cells have to be classified. They are passed to scapesClassification functions as a 

single character string and consist of any valid combination of variables, arithmetic (+, -, *, /, ^, %%, %/%), 

relational (>, <, >=, <=, ==, !=) and logic operators (&, |), and base R functions (e.g., abs(variable_name)). 

All variables included as columns of the attribute table can be accessed by name. For instance, if there is 

a column named “slope”, it is possible to build a classification rule such as “slope > 5”.  

Classification rules can be absolute or relative. Absolute conditions compare raster cells and threshold 

values. The simplest case is when the value of a test cell is compared against a threshold value and the 

cell is classified if the condition is true (e.g., “slope > 5”). This evaluation is referred to as absolute test cell 

condition in the software documentation. Absolute test cell conditions can be evaluated by the functions 

‘anchor.seed’, ‘cond.4.all’, ‘cond.4.nofn’ and ‘cond.reclass’ (Table 4.1). A second type of absolute condition 

(absolute neighborhood condition) compares the value of a test cell and of the cells in its neighborhood 

against a threshold value (nine evaluations). The test cell is classified if the number of positive evaluations 

is equal or greater than the ones specified by the argument peval (positive evaluations). This type of 

condition is flagged in a condition string by curly brackets (e.g., “slope {} > 5”). Absolute neighborhood 

condition can be evaluated by the functions ‘cond.4.nofn’ and ‘cond.reclass’ (Table 4.1). 

Relative conditions compare the value of a cell against the values of adjacent cells. In focal evaluations, 

classification rules are always tested in the neighborhood of a focal cell. A relative focal cell condition 

compares test and focal cell values. This type of condition is flagged by square brackets (e.g., “slope [] > 

slope”). Square brackets identify the focal cell. Relative focal cell conditions can be evaluated by the 

functions ‘anchor.seed’ and ‘cond.4.nofn’ (Table 4.1). A second type of relative condition (relative 

neighborhood condition) compares the value of the test cell against the values of the cells in its 

neighborhood (eight evaluations). The test cell is classified if the number of positive evaluations is equal 

or greater than the ones specified by the function argument peval (positive evaluations). This type of 

condition is flagged by curly brackets (e.g., “slope {} > slope”). Curly brackets identify the test cell 

neighborhood. Relative neighborhood conditions can be evaluated by the functions ‘cond.4.nofn’ and 

‘cond.reclass’ (Table 4.1).  
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Finally, using the argument min.bord – available for the function ‘cond.4.nofn’ – it is possible to specify 

that an unclassified cell is mapped to a class only if the classification rule is true and if it shares with that 

class a border of two or more cells. In this way, classes are less likely to present irregular boundaries.  

4.3.3.6 Classification functions 
Classification functions are used to map a raster cell to a specific class (Table 4.1). Anchor cell functions 

can be used to initialize the classification process by identifying salient features. The seed cell function 

(anchor.seed) can be used to identify a set of cells respecting a particular condition (seed cells) and to 

evaluate additional sets of conditions to compute growth or isolation buffers around seed cells. This 

function can also be used as a raster object function by assigning a unique numeric identifier to each 

discrete group of seed cells. User condition functions evaluate classifications rules at all locations on a 

raster grid (‘cond.4.all’), in the neighborhood of specific classes (‘cond.4.nofn’) or to reclassify particular 

groups of cells (‘cond.reclass’). The function ‘cond.4.nofn’ can also be used as a raster object function 

setting the argument homogenous growth (‘hgrowth’) as true. Neighbor only functions performs 

classification based on the neighborhoods of raster cells. They do not evaluate condition strings.  

4.3.3.7 Raster objects 
In the context of scapesClassification, a raster object is defined as a discrete patch of cells that share some 

common properties and that have the same numeric identifier (ID). Similar objects can be grouped into 

the same class. For example, the discrete elevations of an area constitute individual relieves; the set of all 

relieves constitutes the relief class. Raster object functions are presented in Table 4.1. 

The function ‘anchor.seed’ identifies raster objects in two steps: (i) it finds cells having specific attributes 

(e.g., cells surrounding a peak with a position index above a certain threshold); (ii) it assigns a unique 

identifier to each discrete group of cells (e.g., each discrete patch composed of a peak and of the cells 

surrounding the peak receives a different ID).  

The function ‘rel.pi’ computes the relative position index (rPI) of a variable within a raster object. Position 

index values are standardized or normalized and are computed using the formulas:  

 Standardized rPI = (x - mean(x)) / sd(x) 

 Normalized rPI = (x - min(x)) / (max(x) - min(x)) 
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Mean, sd, max and min refer to the mean, the standard deviation, the maximum and the minimum of the 

variable x within the raster object where the index is computed. Other position index functions can use 

the rPI to segment existing objects (‘pi.sgm’) or to identify new ones (‘pi.add’). 

The function ‘cond.4.nofn’ implements an algorithm for the homogeneous growth of raster objects 

(argument hgrowth = TRUE). As explained in the rule evaluation section, the evaluation of classification 

rules is an iterative process that happens in the neighborhood of focal cells. The homogeneous growth 

algorithm considers, at turn, every raster object as a focal object. Cells of the 1st object are considered as 

focal cells. Cells in their neighborhood respecting the classification rules are considered as part of the 

object and regarded as focal cells in the next iteration. Then, the algorithm considers the 2nd object, then 

the 3rd and so on until the last one. At this point the iteration is completed and a new iteration starts as 

long as new cells were classified in the previous iteration.  

The border function ‘obj.border’ identifies the borders of raster objects. The function ‘obj.nbs’ identifies 

the shared borders of neighboring raster objects.  

4.3.4 Case study 

The R package scapesClassification is presented through a study case. Seafloor features around the central 

part of the Azores archipelago (Figure 4.1a) are classified from the point of view of a benthic ecologist. 

Island shelf (ISU) and relief (RU) units are identified. Relief units are divided into discrete raster objects. 

All classification steps can be reproduced using the R scrips provided in Appendix C. In addition, every 

script has the code to generate an interactive map that facilitates the visualization of the classification 

results.  

The packages rassta (Fuentes et al., 2021) was used to complement and compare the user-defined 

classification with an unsupervised classification method. The packages data.table (Dowle and Srinivasan, 

2021), mapview (Appelhans et al., 2021) and leaflet (Cheng et al., 2021) were used to produce interactive 

maps of the classification results.  

4.3.4.1 Benthic ecology perspective 
The case study follows the perspective of a benthic ecologist. The classification was motivated by a 

hypothetical research question: besides being influenced by depth, the distribution of benthic 

communities changes with elevated features. Thus, elevated features with different shape, area and 

depth profile could host different communities. 
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Elevated features are mapped to two different classes the island shelf unit (ISU) and the relief unit (RU). 

The relief unit is segmented into distinct raster objects that could later be used to help in the design of 

ecology and spatial analysis, and management strategies.   

4.3.4.2 Descriptors 
Geomorphic features are identified using 4 raster layers that includes bathymetry and bathymetric 

derivatives (see Lundblad et al., 2006; Walbridge et al., 2018): 

 Bathymetry: depth values (m); 

 Local BPI: bathymetric position index (BPI) computed with an outer radius of 10px (ca. 5 km); 

 Regional BPI: bathymetric position index (BPI) computed with an outer radius of 40px (ca. 20 km); 

 Slope: slope values (º). 

The raster layers are plotted in Figure 4.1b-e and are available as part of the package data. They have a 

resolution of 500m and are projected to UTM zone 26N.  

4.3.4.3 Computer representations 
The next paragraphs describe the user mental model that guided the classification of the different seafloor 

geomorphic structures. The actual classification steps are presented as reproducible scripts in Appendix C.  

Island shelf unit (ISU). In a simplified representation, the ISU is composed of two main elements: (i) 

shelves (i.e., relatively flat areas surrounding islands) and (ii) slopes (i.e., areas that connect island shelves 

to the seafloor). Shelves are adjacent to an island by definition. This property can be considered as a 

salient feature of the ISU and can be used to identify an initial set of raster cells (anchor.cells) that are 

adjacent to land cells. Interconnected cells adjacent to anchor cells with a gentle slope (slope ≤ 5) are part 

of the shelf (flat cells). Finally, unclassified cells surrounded by shelf cells are also part of the shelf (hole 

cells). In this model a shelf is represented by anchor, flat and hole cells.  

Slopes can be considered as areas that connect the shelf to the seafloor. Seafloor and bottom slope areas 

in proximity of an elevated features generally have negative or near-zero BPI values (Walbridge et al., 

2018). Based on the previous properties, it is possible to define a slope cell as a cell that has positive BPI 

values and that is contiguous to a shelf or to a slope cell. 

Peak cell (PC).  Peak cells are used to identify RUs – each relief unit evolves around one or more peak 

cells. Peak cells are identified using the function peak.cell. The function uses a functional definition of local 

maxima: a raster cell constitutes a local maximum if its value is larger than the values of all the cells in its 
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neighborhood. Peaks on small relieves (low BPI values) and peaks within the ISU were excluded because 

they were not considered relevant for this benthic ecology perspective classification. 

Relief unit (RU). In a simplified representation, the RU can be conceptualized as set of discrete features 

that rise above the seafloor and that have one or more local peaks. Each discrete feature can be mapped 

to a unique identifier and be treated as an individual raster object. Using a simple set of rules, a cell can 

be considered to be part of an elevated feature if it is connected to a peak by cells of the same class and 

if it has a positive BPI value. These simple rules, implemented with the function anchor.seed, were 

adequate to identify the relief unit as a whole, but produced some large and some small relief objects. 

Position index functions (Table 4.1) were used to segment very large objects, remove very small objects 

and add objects having prominent ridge-like structures high local BPI values.  

Position index functions (e.g. ‘pi.sgm’, ‘pi.add’) can be used to remove cells below a certain relative 

positon index from a raster object. In this way, a single raster object can be segmented into two or more 

groups of cells. If the groups have a sufficient size (e.g. >40 cells), then each group become an independent 

object. After the segmentation, the removed cells can be reassigned to the closest raster object using the 

homogeneous growth algorithm implemented by the function ‘cond.4.nofn’.  

4.3.4.4 Self-organizing map 
The self-organizing map (SOM) is an artificial neural network in which neurons are typically arranged as a 

two-dimensional lattice (Kohonen, 1998). It facilitates the analysis of n-dimensional datasets and can be 

used to reduce the dimensionality of a dataset to facilitate the discovery of hidden patterns in data by 

enhancing data visualization. It can be coupled with a cluster analysis (CA) to identify groups of 

observations sharing a similar pattern (Kaufman and Rousseeuw, 1990). Here, SOM and CA were used for 

two simple tasks and their use was illustrative rather than exhaustive. SOM and CA were performed using 

the R package rassta (Fuentes et al., 2021) and the code of all the analysis is shared in Appendix C. The 

descriptors of Figure 4.1b-e were used as function inputs.  

The first task was to visually investigate if the user-defined classification captured the underlying 

heterogeneity existing in the spatial data. In particular, if it could discriminate accurately between 

elevated and non-elevated features. In this type of evaluation only two classification outcomes were 

considered (elevated, non-elevated), therefore, the maximum number of possible clusters was set to two. 

As this was considered to be a preliminary visual analysis, SOM and CA functions were left with default 

parameters. The SOM and CA algorithms were initialized 100 times. Every time, the resulting cluster 
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presenting the shallowest average depth was labelled as the ‘elevated feature cluster’. The number of 

times a cell is included within the ‘elevated feature cluster’ was considered as a data-driven measure of 

how likely it is that it actually belongs to an elevated feature.  

The second task was to assess if the spatial heterogeneity existing within the relief unit could be captured 

by meaningful clusters. Descriptor values were clipped to the extent of the relief unit, and the previous 

analysis was repeated. In this case no maximum number of cluster was expected. Therefore, the optimal 

number of clusters was estimated using the partitioning around medoids method (Kaufman and 

Rousseeuw, 1990) and the gap statistic (Tibshirani et al., 2001) as implemented in rassta. Again, this was 

considered to be an illustrative analysis, thus, SOM and CA functions were left with default parameters. 

4.4 Results  

The results of each classification script were saved and provided as part of the package data with the file 

names ISU_Cells.RDS, PKS_Cells.RDS and RU_obj.RDS. In addition, all classification steps and analysis can 

be reproduced with the scripts provided in Appendix C. 

 

 

 

Figure 4.2 – User-defined classification of the island shelf unit (ISU) and of the relief unit (RU). The ISU (a) is composed 
of anchor (ac), flat (fc), hole (hc) and slope cells (sc). The RU (b) is composed of 12 raster objects, each identifying a 
distinct elevated feature. Raster objects identifiers (IDs) are ordered from the shallowest to the deepest.  
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4.4.1 (scapes)Classification 

As expected, both the island shelf unit (ISU) and the relief unit (RU) overlaid areas characterized by 

positive regional BPI values (Figure 4.2). The ISU was composed of two discrete areas, one around São 

Jorge and one around Pico and Faial Islands (Figure 4.2a). The shelves around each island mostly counted 

‘flat cells’. ‘Anchor cells’ followed the boundaries of the island landmasses and defined the salient feature 

used to initialize the ISU classification. A small percentage of the ISU was composed of ‘hole cells’ (cells 

neither classified as anchor or flat cells but that were surrounded by cells of these classes). ‘Slope cells’ 

comprised the largest portion of the ISU mainly because of the shelf extending southeast of Pico Island. 

Probably this area would be better described by an additional class targeting ridges connected to an island 

shelf. However, this was out of the scope of the present classification. 

The RU was composed of twelve discrete features each considered as a distinct raster object (Figure 4.2b). 

The classification of raster objects consisted of four steps (Figure 4.3). In the first step, the function 

‘anchor.seed’ identified areas (i) outside the ISU, (ii) connected to a peak and (iii) with positive regional or 

local BPI values (Figure 4.3a). In the second step, the function ‘pi.sgm’ segmented the raster objects by 

removing cells with negative relative position index (rPI). In addition, it removed objects with less than 40 

cells (Figure 4.3b). In the third step, the function ‘pi.add’ identified one prominent features (>40 cells) 

unconnected to existing raster objects that had high local BPI values (local BPI > 100) (Figure 4.3c). Finally, 

the function ‘cond.4.nofn’ assigned raster cells having high local or regional BPI values (BPI > 100) to the 

closest raster object using the algorithm homogeneous growth (argument hgrowth = TRUE) (Figure 4.3c). 

The final object IDs were sorted based on depth values (the feature having the shallowest minimum depth 

has the ID number 1).  
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Figure 4.3 – Raster object segmentation of relief units (RU) using the functions ‘anchor.seed’ (a), ‘pi.sgm’ (b), ‘pi.add’ 
(c) and ‘cond.4.nofn’ (d). 

 

 

4.4.2 Self-organizing map and cluster analysis 

Raster cells outside the ISU and the RU were generally included in the non-elevated feature cluster (grey 

background, Figure 4.4). The few cells outside ISU and RU that were included in the elevated-feature 

cluster corresponded to objects that were removed along the classification process because of their small 

size (Figure 4.3). Cells within the RU and the ISU were assigned to the elevated-feature cluster with a 

certain consistency. Regions characterized by high regional or local BPI or by steep slopes showed the 

highest consistency. The group of flat cells with high BPI values was the second group of cells most 

consistently assigned to the elevated-feature cluster. Results for cells characterized by low BPI and slope 

values were more variable. This last group of cells likely correspond to a transition zone connecting rough 

and flat areas. Likely, it can be considered as a fuzzy boundary around elevated features.  
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Figure 4.4 – Number of times a cell was assigned to the ‘elevated feature cluster’ when performing an unsupervised 
classification based on the self-organizing map technique coupled with cluster analysis. Polygon lines identify the 
borders of the island shelf unit (ISU) and of the relief unit (RU). White cells are cells included in the ‘elevated feature 
cluster’ that were neither in the ISU or in the RU. 

 

 

In fact, the results of the SOM-CA performed within the RU (Figure 4.5) shows that cluster 4 mostly 

overlaps with this transition zones. It is characterized by high depth values and by low BPI and slope 

values. Cluster 1 includes relatively shallow and steep cells with high BPI values likely corresponding to 

shallow ridges. Cluster 2 has high slope and local BPI values, but low regional BPI values if compared to 

cluster 1. It likely corresponds to deep ridges and slopes. Finally, cluster 3 includes relatively shallow and 

flat cells characterized by high regional/low local BPI values. It likely corresponds to flat areas located near 

the summits of the elevated features.  

 

  



Chapter 4 
 

 

95 

 

 

Figure 4.5 – Unsupervised classification of raster the cells included within the relief units. Four clusters were 
identified (a), each having a distinct terrain signature (b-e). lBPI is local bathymetric position index and rBPI is 
regional bathymetric position index. 

 

 

4.5 Discussion 

The translation of mental models into computer representation and the retrieval of latent knowledge 

from spatial data has been a central theme in GIS science (Freksa and Barkowsky, 1995; Kokla and Guilbert, 

2020; Schuurman, 2006). Traditional approaches have focused mostly on the definition of general 

formalizations of perceptual knowledge, however, the importance of task and domain-oriented 

representations of space has been highlighted in literature (Janowicz et al., 2012; Sun et al., 2019). 

Different mental models of space generally represent different world views useful to address particular 

aspects of natural phenomena. The diversity of points of views challenges the knowledge transfer from 
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one discipline to another, yet it is required to solve particular domain problems (Schuurman and 

Leszczynski, 2006). In fact, a representation may be suitable for a purpose but unsuitable for another. 

The suit of functions available within the scapesClassification package provides a series of algorithms for 

the recovery of particular patterns form n-dimensional raster surfaces. Classifications are based on 

heuristic rules. While this was a traditional approach in the GIS community (Bishr, 1998), the way they are 

evaluated is unconventional. The idea of focal evaluations, with rules evaluated only at specific locations, 

allows users to encode into their classification the topological relationships they expect between and 

within classes. A particular class can be initially defined based on its salient feature following an innate 

cognitive process people use to schematize in their mind spatial configurations (Zelinsky-Wibbelt, 1990). 

In a second step, the class boundaries can be redefined by joining into the same class all the 

interconnected cells that respect a particular set of rules. Once a particular class is fully defined, it can be 

used to guide the identification of other classes expected to be adjacent to it. The use of spatial 

configurations to model geographic spaces represents a powerful method to translate user perceptions 

into computer representations (Chen et al., 2015). The proposed functions allow for an added flexibility 

in the encoding of users’ perceptions as they can evaluate relative rules (rules that compare the values of 

adjacent cells) and, therefore, take into account expected trends (i.e., a cell is classified as long as its value 

is decreasing, increasing or stationary when compared to the value of the focal cell). Another feature of 

scapesClassification is the possibility to segment a raster space into discrete features. The use of discrete 

spatial units allows for an alternative conceptualization of a study area moving the focus from the field 

(raster) to the entity (object) (Bishop et al., 2012; Cova and Goodchild, 2002). 

The retrieval of recognizable patterns from spatial data can help in the formulation and testing of research 

and management questions (look for recognizable principle, Andrienko and Andrienko, 2006). In fact, 

expert judgment is commonly used to develop and evaluate projects at the stages of hypothesis 

generation, sample design, model development, and interpretation of results (Fazey et al., 2005; Martin 

et al., 2012) and in the decision-making process (Drescher et al., 2013). In the case study, a deep sea 

benthic ecologist intends to study the distribution of the seafloor fauna associated with elevated features 

evaluating if features with different latitude, shape, area and depth profile could host different 

communities. He tacitly takes into account two other elements to design his classification. First, he knows 

that the environmental layers he will use to model species distributions have a coarse resolution. 

Therefore, clipping these data to regions having similar depth profiles could help him detecting hidden 

latitudinal trends or feature-specific trends (divide and group principle, Andrienko and Andrienko, 2006). 
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Second, he knows that the local government is planning to implement a new system of marine protected 

areas. Based on his previous experiences, he believes that the definition of discrete units (relief unit 

objects), easy to visualize, understand and include in management plans will improve his capacity to 

synthetize and present his and previous works (e.g., Combes et al., 2021) to policy-makers. While similar 

applications are available to classify a raster space based on heuristic rules such as the R package terra 

(Hijmans, 2022) or the Benthic Terrain Modeler (BTM) tool (ArcGIS 10.x) (Walbridge et al., 2018), these 

applications do not allow for an easy segmentation of the raster space into discrete units. On the contrary 

other applications are particularly suited to segment a geographic space into discrete spatial units such as 

software implementing Object-Based Image Analysis (OBIA) approaches (e.g. Arvor et al., 2013; Dekavalla 

and Argialas, 2017). However, in this latter case, while a user’s domain knowledge is used to classify the 

segmentation output, he/she has little control over the segmentation step implemented with the OBIA 

approach (Arvor et al., 2019). The R package scapesClassification does not aim at substituting these 

approaches. In fact, any type of raster layer can be included as an input to scapesClassification functions. 

In this way it is possible to integrate (scapes)classifications with other classification approaches, building 

classification rules that take into account, for example, the results of an OBIA segmentation to modify the 

individual objects based on users’ needs encoded in the form of heuristic rules.  

Empowering a user with a software that facilitates the retrieval of expected patterns from a spatial dataset 

represents a way to externalize his tacit knowledge (Fazey et al., 2005). Tacit knowledge is acquired by 

experience and its externalization is an important pre-requisite for data sharing and knowledge transfer 

(Chergui et al., 2020; Hampton et al., 2015; Martin et al., 2012). Based on his previous experiences, a 

particular user could be familiar with a dataset and, thus, expect in advance some pattern type. Having a 

tool to classify a geographical space based on his previous experience, he is likely to improve his capacity 

to tailor question oriented analysis. In addition, when using a command program like R to generate user-

defined classifications, all classification steps can be encoded into a reproducible script causing several 

immediate benefits. During the process of encoding and documenting classification steps, the user is 

forced to reflect about his mental representation and because of this reflection he is likely to recall and 

organize more effectively his knowledge (Fazey et al., 2005). Script-based classifications can be publicly 

evaluated and, thus, facilitate open science (Hampton et al., 2015). In the case study, the classification of 

seafloor structures from the perspective of a benthic ecologist could be considered as an artifact that do 

not reflect the real variability of the data. However, the classification was explicit and it could be tested 

(Figure 4.4). It seemed to approximate well the variability existing in the data and it is likely to represent 
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‘bona fidae’ boundaries (sensu Smith and Varzi, 2000). Finally, the sharable classification script can be 

considered as a task or as domain ontology which embed the view a user has of a space and translate it 

into a computer representation (Janowicz, 2012). Sharable and explicit ontologies represent a machine 

mediated communication between humans (Arvor et al., 2019; Janowicz, 2012) that favors the true 

reproducibility of scientific research (Hampton et al., 2015; Lowndes et al., 2017). In addition, it represent 

one of the mechanism to label environmental phenomena and include them into automated analysis (Sun 

et al., 2019). 

The R programming language is nowadays wieldy used for spatial analysis and data visualization (Bivand, 

2022, 2021; Boettiger et al., 2015; Kelleher and Braswell, 2021). A package like scapesClassification 

developed within the R environment facilitates the inclusion of users’ points of views into analytical 

workflows in an explicit and transparent manner. Considering the study case as an example, in a first step 

the user defined his objective-oriented classification of seafloor structures. In a second step he used the 

R package rassta to evaluate if meaningful cluster could be identified within the relief unit. The results 

give the user a general understanding of the relative position of hard-bottom (clusters 1 and 2) and of 

soft-bottom (clusters 3 and 4) areas, a key information for biodiversity studies on deep-sea benthos. The 

use of a scripted language to integrate different types of analysis facilitates the communication of a 

research workflow and of the ideas that sustain it, important aspects to grant the (re-)usability of scientific 

results (Chen et al., 2019). 

4.6 Conclusions 

The R package scapesClassification was designed to translate users’ perceptions of landscapes and 

seascapes into computer representation. Particular points of view are encoded in a transparent and 

explicit manner, can be reproduced on different machines and, ultimately, can be considered as task- or 

domain-oriented ontologies. The proposed functions can be used for a range of purposes including: 

exploratory analyses, pattern retrieval, formalization of expert knowledge into ontology-like scripts, 

evaluation of automated classification methods, labelling of natural processes and integration of spatial 

analyses. It has a unique way of evaluating heuristic rules and it is able to bridge raster and object 

representations of geographic spaces. Ultimately, it represents an additional resource to perform spatial 

analysis within the R-environment.  
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Chapter 5   
Distributional patterns and environmental drivers of 
hard-substrate benthic species from the deep sea of the Azores 
(NE Atlantic): a synthesis 
 

 

5.1 Abstract 

The deep seabed beyond continental shelf depths (≈200 m) is one of the largest biome on Earth covering 

an area of over 400 million km2 and it is currently threatened by multiple stressors such as climate change, 

resource extraction and pollution. These threats can be particularly severe for deep-sea corals and 

sponges (Phyla Cnidaria and Porifera), hard-substrate ecosystem engineer species generally regarded as 

key components of vulnerable marine ecosystems (VMEs). This study presents a synthesis of the 

distributional patterns and of the environmental drivers of deep-sea hard-substrate communities in the 

Azores (NE Atlantic) with a special focus on ecosystem engineer species of the Phyla Cnidaria and Porifera. 

In a first part, it assesses the regional gradient in primary production investigating if the existing literature 

supports the existence of two oceanic provinces in the Azores. In a second part, a new compilation of 

bathymetric data is used to identify the location of all the major geomorphic features (e.g. seamounts, 

ridges, slopes) present in the region and to estimate the total fraction of hard substrate on such features. 

Geomorphic features are extracted from the topographic surface as discrete spatial entities each with 

identity, spatial embedding and attributes. The representation of geomorphic features as discrete entities 

provides an object-oriented perspective that can be of help in communicating scientific results, designing 

local scale studies based on seascape ecology principles and in synthetizing current knowledge. Finally, all 

the major environmental drivers shaping hard-substrate benthic communities’ distributions are combined 

to produce in an ecological zonation of the seafloor of the Azores. Four major environmental drivers of 

deep-sea species distributions are recognized: (i) a latitudinal gradient in primary production strongly 

influenced by the Azores Current-Azores Front (AzC-AzF) system; (ii) the depth-wise succession of the 

regional water masses and their stratification into different isopycnal (vertical) layers; (iii) the spatial 

distribution of prominent geomorphic features such as seamounts ridges and island slopes; (iv) the 

availability of hard substrate for attachment.  
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5.2 Introduction 

The deep seabed beyond continental shelf depths (≈200 m) is one of the largest biome on Earth covering 

an area of over 400 million km2 (Danovaro et al., 2014). Its remoteness and immensity has both fascinated 

and puzzled many ecologists whose attempts to describe natural processes and patterns have been 

frustrated by a chronic scarcity of data (Howell et al., 2020; McClain and Hardy, 2010; Ramirez-Llodra et 

al., 2010). Over the last decade, technological advances in seafloor mapping and biological sampling have 

provided a better understanding of the importance of deep-sea biodiversity and of the ecological services 

it provides (Danovaro et al., 2017, 2014; Thurber et al., 2014). There is now a great awareness that the 

deep sea is under multiple stressors including climate change, resource extraction and pollution (Halpern 

et al., 2019; Levin et al., 2019). These threats can be particularly severe for deep-sea corals and sponges 

(Phyla Cnidaria and Porifera), hard-substrate ecosystem engineer species generally regarded as key 

components of vulnerable marine ecosystems (VMEs) (FAO, 2009; Hogg et al., 2010; OSPAR, 2010; 

Ragnarsson et al., 2017).  

Multiple international organizations have proposed a number of policies to reverse the cycle of decline in 

ocean health. The United Nations General Assembly proclaimed the Decade of Ocean Science for 

Sustainable Development (2021-2030) (United Nations, 2018). The European Commission has adopted a 

number of policies to grant a sustainable use of nature space and resources. These policies include the 

Maritime Spatial Planning Directive (EU Directive 2014/89/EU) and the Marine Strategy Framework 

Directive (EU Directive 2008/56/EC). In general, these policies call on the scientific community to conduct 

research that advances understanding of marine ecosystems facilitating in this way the adoption of area-

based/ecosystem-based management approaches (Howell et al., 2020; Kirkfeldt et al., 2022). Although 

the exploration of the deep sea now proceeds at a fast pace (e.g. Dominguez‐Carrió et al., 2021; Swanborn 

et al., 2022; Wölfl et al., 2019), the data about deep-sea communities still cover a limited portion of the 

seafloor constraining adequate ecosystem-based management approaches (Folkersen et al., 2019; Howell 

et al., 2020; Townsend et al., 2018). One of the strategy to partially overcome this issue and to promote 

and direct new collections of samples is the use of ecological maps. Maps represent a powerful tool to 

synthetize and communicate information about a geographic space (Coetzee et al., 2021). In the context 

of marine ecology, they are widely used to capture the environmental diversity and the distribution of 

species and communities (Buhl-Mortensen et al., 2015; Hogg et al., 2016; Howell, 2010; Ismail et al., 2015; 

Longhurst, 2007; Sayre et al., 2017; Sonnewald et al., 2020; Watling et al., 2013; Woolley et al., 2020). In 

general, ecological maps can be defined as a visual model (simplification) of complex ecological 
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phenomena. They rely heavily on physical, spatial, or biological surrogates to describe biodiversity 

assuming that the biophysical patterns and processes observed for certain taxonomic groups or within 

particular environmental structures have a general relevance for ecological systems (Brown et al., 2011). 

The use of continuous coverage data layers is essential as they provide a mean to interpret patchy in situ 

observations, correlate the presence or the intensity of ecological phenomena with certain conditions and 

project such interpretations over large geographic areas (Brown et al., 2011). 

The present work has the objective to visually synthetize and map what is currently known about the 

distributional patterns of hard-substrate benthic communities found in the deep sea of the Azores (NE 

Atlantic). The Archipelago of the Azores consists of nine volcanic islands located close to the Mid-Atlantic 

Ridge at the junction of the Eurasian, African, and North American plates (Miranda et al., 2018; Santos et 

al., 1995). This region is characterized by a huge area of deep seafloor scattered across a complex array 

of plains, ridges, seamounts and slopes (Mitchell et al., 2018; Peran et al., 2016; Tempera et al., 2012a). 

This work focuses on large deep-sea habitat-forming suspension-feeders (Phyla Cnidaria and Porifera) 

characteristic of vulnerable marine ecosystems (VMEs) and builds on the many scientific surveys that have 

explored the deep sea of the Azores in recent years (e.g. Dominguez‐Carrió et al., 2021; Morato et al., 

2021a, 2020b, 2019, 2018b; Morato and Taranto, 2019; Orejas et al., 2017). These surveys set the bases 

for a comprehensive characterization of the spatial distribution of deep-sea species (e.g. Morato et al., 

2021b) and provided valuable insights into the environmental drivers that shape hard-substrate 

communities (Chapters 2 and 3). Although the analysis of the collected data is still ongoing, several 

interesting patterns are emerging. The first and more obvious is the association of habitat-forming corals 

and sponges with seamounts, ridges and island slopes. These key topographical features present large 

fractions of exposed bedrock and complex interactions with steady or variable flows, a setting that 

provides favorable conditions for thriving benthic communities dominated by suspension feeders 

(Carvalho et al., 2020; Morato et al., 2021b; Rogers, 2018). The second pattern is that the depth-wise 

stratification of the regional water masses explains much of the changes in species composition occurring 

with depth (Chapters 2 and 3). The third pattern is somehow less clear than the previous two and 

additional research is required in order to confirm it, but it appears that the distribution of benthic 

deep-sea species can be influenced by the regional latitudinal gradient in primary production (Chapters 2 

and 3).  

The proposed work is composed of two parts. The first part addresses the latitudinal gradient in primary 

production investigating if previous publications support the idea that there are two distinct ecological 
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provinces in the Azores. The second part uses a new compilation of bathymetric data gridded at 500 m 

resolution (Rodrigues et al., unpublished data) to identify the location of all the raised features present in 

the Azores (e.g. seamounts, ridges, slopes). In doing so, it is possible to estimate the habitat available for 

hard-substrate communities and allocate it across the different depth zones that capture the vertical 

zonation of the regional deep biota. The elevated features are identified and segmented into discrete 

units using the newly developed software scapesClassification (Taranto, 2022) (Chapter 4). 

5.3 Materials and Methods 

5.3.1 Ecological provinces 

The existence of different ecological provinces in the Azores is investigated with a literature review. In a 

first part, articles providing information about in situ measurements of planktonic communities and 

production regimes are assessed. In a second part, articles providing global classification schemes for 

oceanic waters are investigated and set in the context of the Azores. 

5.3.2 Geomorphological classification and input data 

This study uses a new compilation of bathymetric data gridded at 500 m resolution (Rodrigues et al., 

unpublished data) (Figure 5.1) to perform a geomorphic characterization of the deep seafloor in the 

Azores. The updated bathymetry grid consists of a mosaic of data having different quality and native 

resolution that integrates publicly available datasets (EMODnet Bathymetry Consortium, 2018; GEBCO 

Compilation Group, 2022) with recently collected high-resolution multibeam data (e.g. Morato et al., 

2018b). It represents the best bathymetry data currently available for the region. Principles of 

geomorphology and geomorphometry are commonly used to classify the seafloor based on bathymetry 

data (Brown et al., 2011; Lecours et al., 2016; Swanborn et al., 2022). In fact, shape, complexity and depth 

of geomorphic features have a strong influence on the distribution of deep-sea communities both at local 

and regional scales (e.g. Corrêa et al., 2022; Durden et al., 2020; Pierdomenico et al., 2016; Wienberg et 

al., 2013). In a preliminary phase, geomorphological classifications were performed adopting two 

traditional approaches: Benthic Terrain Modeler (BTM) tool (ArcGIS 10.x) (Walbridge et al., 2018) and 

geomorphons (GRASS GIS) (Jasiewicz and Stepinski, 2013). The BTM is a GIS classification approach, which 

uses a combination of derived terrain attributes and a set of user defined rules to segment the seafloor 

into geomorphic classes. The geomorphon approach uses a multi-scale pattern recognition approach to 

classification and mapping of landforms. In short, the class of a particular raster cell is automatically 
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determined based on its relative elevation along the eight principal compass directions (see Jasiewicz and 

Stepinski, 2013).  

The outputs of such classifications did not seem fit for the purpose of the present manuscript. Especially 

for the BTM, the classifications appeared to be overly complicated for a synthesis work when traditional 

rulesets were applied (e.g. Jerosch et al., 2016). In addition, for both methods, it was difficult to determine 

the biological relevance of all the outputted classes which is a crucial step in classification works of this 

kind (Howell, 2010). Therefore, it was decided to opt for a different approach producing a more 

parsimonious output based on simple and ecologically meaningful rules. Recognizing the importance of 

raised geomorphic features (e.g. seamounts, ridges and island slopes) for the existence of habitat-forming 

benthic organisms, one of the classification steps was to extract such features from the bathymetric grid. 

This step was performed in the R environment (version 4.2.1) (R Core Team, 2022) using the R package 

scapesClassification (Taranto, 2022) (Chapter 4). Bathymetry and four terrain indices derived from 

bathymetry were used in this step: seafloor slope, broad-scale and fine-scale BPI (Bathymetric Position 

Index) and the standard deviation of depth values computed in a 9 X 9 moving window (Figure 5.1). Slope 

values are derived for each cell as the maximum rate of change from the cell to its neighbor (Lundblad et 

al., 2006). Slope values provide a proxy measure about the stability of sediments and the local acceleration 

of currents (Lecours et al., 2016). BPI values are computed as the elevation difference between a focal cell 

and the mean elevation of the surrounding cells within an inner and an outer radius (Lundblad et al., 

2006). Radii of different sizes are used to detect fine or broad benthic features. In general, a combination 

of broad-scale and fine-scale BPI is used in geomorphological classifications (Lundblad et al., 2006; 

Walbridge et al., 2018). Simplifying, positive BPI values identify ridges, negative values identify valleys and 

near-zero values identify flat areas (Lecours et al., 2016; Lundblad et al., 2006). However, near-zero or 

negative BPI values do not necessary mark the boundary of a raised feature. In regions of steep slopes 

and, thus, of large bathymetric variation, upslope BPI values are positive, while downslope BPI values tend 

to become negative moving toward the seafloor (Lundblad et al., 2006). In order to overcome this issue, 

the bathymetric variation in a 9 X 9 neighborhood (measured as the standard deviation of depth values) 

was considered. Seafloor slope, broad-scale and fine-scale BPI were computed with the BTM in ArcGIS 

10.5. Broad-scale BPI was computed with an inner and an outer radius of about 1 and 20 km, respectively. 

Fine-scale BPI was computed with an inner and an outer radius of about 0.5 and 5 km, respectively. These 

radii were selected considering that the study area spanned over a distance of more than 1000 km both 

in the latitudinal and in the longitudinal directions. The standard deviation of depth values was computed 

using the raster calculator of the R package ‘terra’ (Hijmans, 2022).  
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The R package scapesClassification implements raster classifications in a multi-step process (Chapter 4 

and GitHub documentation). It allows to classify and segment a raster surface based both on user-defined 

heuristic rules and on the topological relationships expected to exist within and between classes and 

objects. The functions and algorithms it offers were designed for the recovery of particular patterns form 

n-dimensional raster surfaces following the innate cognitive process people use to schematize in their 

mind spatial configurations (Chapter 4). In the context of the present study, we can imagine that island 

shelf (IS) areas are located next to an island landmass and are characterized by a gentle slope down to the 

shelf break. Similarly, a raised geomorphic feature (RF) can be conceptualized by firstly identifying its 

salient feature (the presence of one or more summit areas), and then by identifying all the slopes and 

plateaus that connect the summit area to the seafloor. In general, the classification functions of 

scapesClassification perform focal evaluations (i.e. heuristic rules are only evaluated at suitable locations) 

and take into account class continuity (i.e. the classification process continues as long as a set of rules is 

respected by contiguous cells)  (Chapter 4 and GitHub documentation). For instance, the existence of a 

flat area, per se, does not qualify an IS cell. However, a flat area next to an island landmass does qualify 

an IS cell. Unclassified cells adjacent to IS cells that present gentle slopes can also be considered as IS 

(based on class contiguity). Another feature of scapesClassification is that it allows to identify distinct 

raster objects (i.e. groups of raster cells identified by a unique ID) based on the discontinuity of certain 

properties or using segmentation algorithms. Each raster object can then be handled as an independent 

feature and can be modified using heuristic rules (see the section ‘Homogeneous growth’ in the 

documentation of the function ‘cond.4.nofn’). The software scapesClassification was used to identify RFs 

and to segment them into discrete geomorphic units (raster objects) each with identity, spatial 

embedding, and attributes. The use of discrete units allows for an alternative conceptualization of the 

study area moving the focus from the field (raster) to the entity (object) (Bishop et al., 2012; Cova and 

Goodchild, 2002). 

  

https://ghtaranto.github.io/scapesClassification/index.html
https://ghtaranto.github.io/scapesClassification/index.html
https://ghtaranto.github.io/scapesClassification/reference/cond.4.nofn.html
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Figure 5.1 – Study area and input layers. Bathymetry (a), coarse-scale BPI (b), fine-scale BPI (c), standard deviation 
of bathymetric values (d), slope (e), location of the study area in the NE Atlantic (g). BPI is bathymetric position index. 
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5.3.3 Ecological zonation of the seafloor of the Azores 

The information derived from the geomorphological classification and from the literature review are 

combined to produce an ecological zonation of the seafloor of the Azores mirroring the distributional 

patterns of regional hard-substrate communities. Besides geomorphology and productivity, two 

additional patterns are considered. The first is the regional depth zonation of benthic suspension feeders 

(Braga-Henriques et al., 2013; Tempera et al., 2012b). In particular, the distribution of deep-sea corals and 

sponges is influenced by the depth-wise stratification of different water masses with the main changes in 

species composition apparently occurring at depths of 500, 800 and 1600 m (Chapter 3). Watling and 

Lapointe (2022), using distributional data of anthozoans (Phylum Cnidaria), identified in the North Atlantic 

an additional fauna transition at 2200 m. These four depth zones are used to classify each raised feature 

into a different depth class. Finally, the likelihood of having patches of hard substrate is considered in the 

ecological zonation. Unfortunately, the lack of a continuous layer of backscatter data does not allow for a 

direct estimate of surficial sediment types (Brown et al., 2011). Instead, it is assumed that steep areas 

and/or areas on local ridges are the most likely to present patches of hard substrate. Based on the 

modelled distributions of benthic suspension feeders it appears that, at scales and resolutions similar to 

the ones considered here, these species avoid areas presenting slope values below five degrees (Chapters 

2 and 3). Therefore, raster cells with slope values below five degrees are considered as ‘flat’ and unsuitable 

for deep-sea corals and sponges growing on rocky substrates. The only exception to this rule are local 

ridges, i.e. areas rising abruptly from the surrounding seafloor that are more likely to present rocky 

substrates at the summit. This type of ridges can be identified by positive fine-scale BPI values (fine-scale 

BPI > 100) (e.g. Jerosch et al., 2016; Lundblad et al., 2006). The use of slope and of proxy measures of 

bathymetric variation to identify patches of hard substrate represents a form of tacit knowledge (Fazey 

et al., 2005). In fact, these proxy measures are implicitly used in the planning of video surveys targeting 

hard substrate communities and in general they tend to be quite successful (i.e. hard substrate patches 

are indeed found) (e.g. Morato et al., 2021a). 

5.4 Results 

5.4.1 Ecological provinces 

In the Azores, the oceanographic circulation is dominated by eastward flowing branches of the Gulf 

Stream: Gulf Stream and Gulf Stream Bifurcations in the north and the Azores Current (AzC) in the south 

(Caldeira and Reis, 2017; Frazão et al., 2022). The AzC seems to be particularly important in shaping 
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planktonic and microbial communities and in delimiting different biogeochemical provinces (Baltar and 

Arístegui, 2017; Frazão et al., 2022; Fründt and Waniek, 2012; Riou et al., 2016). It is part of the North 

Atlantic Subtropical Gyre, originates near the Grand Banks (40°N, 45°W) and flows south-eastward until it 

crosses the MAR at approximately 34°N, 37°W (Comas-Rodríguez et al., 2011; Frazão et al., 2022). On 

average, its core is located between 33°N and 36°N east of Mid Atlantic Ridge (Frazão et al., 2022). The 

AzC is associated with a thermohaline front – the Azores Front (AzF) – and with two westward 

countercurrents. The northern countercurrent is known as the Azores Countercurrent (AzCC) and is 

located at about 35.25°–36.25°N (Comas-Rodríguez et al., 2011; Frazão et al., 2022). The Azores Current-

Azores Front (AzC-AzF) system separates the warmer and saltier 18 ºC Western North Atlantic Water 

originating from the Sargasso Sea to the south from the colder Eastern North Atlantic Water to the north 

(Frazão et al., 2022; Fründt and Waniek, 2012). This system is extremely dynamic and the position of the 

AzF shows strong seasonal and interannual variability (Frazão et al., 2022; Fründt et al., 2013; Fründt and 

Waniek, 2012). Comas-Rodríguez et al. (2011) showed that the AzC and the AzCC could be particular 

relevant for deep sea organisms as they both reach intermediate water depths (down to ∼2000 m). 

Interestingly, the AzC-AzF system showed a progressive northward migration starting in the mid-1970s 

and continuing until 2005 possibly causing an expansion of the oligotrophic areas of the main gyres owed 

to global warming (Frazão et al., 2022; Fründt and Waniek, 2012; Yang et al., 2020). Several video 

observations show extensive seafloor areas covered by dead stony corals (Order Scleractinia) at different 

locations south of the Kurchatov Fracture Zone (~40 ºN) (unpublished data). These species are strongly 

influenced by food supply controlled by export production and turbulent hydrodynamics at the seabed 

(Portilho-Ramos et al., 2022). In the future, it would be interesting to assess if the high mortality of 

scleractinian corals and the decrease in primary production at surface are correlated.   

The AzCC appears to be of particular importance as it locally enhances subsurface productivity (Caldeira 

and Reis, 2017; Fründt and Waniek, 2012; Riou et al., 2016; Schiebel et al., 2011). It is associated with 

westward propagating eddies and with oceanic filaments that play an important role in sustaining high 

productivity at depths between 45 and 200 m (Caldeira and Reis, 2017; Riou et al., 2016; Silva et al., 2013). 

Schiebel et al. (2011) assessed the production and dispersion of coccolithophores in a N–S transect from 

47°N to 33°N at 20° W. Coccolithophores were most abundant at the northernmost (45°N–47°N) and 

southernmost (33°N–37°N) sites while they were least abundant in the middle part of the transect (39°N–

43°N). Across all sites Emiliania huxleyi was the most common species. However, the coccolithophore 

assemblages showed significant differences at the extremes of the transect. At the northern end, the 

second most abundant species was Gephyrocapsa muellerae a species that inhabits rather cool waters 
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under well mixed conditions (Schiebel et al., 2011). At the southern end of the transect, along with E. 

huxleyi, the most abundant species were Gephyrocapsa ericsonii and Florisphaera profunda. These species 

are indicative of Subtropical Mode Waters (Schiebel et al., 2011). Interestingly, Schiebel et al. (2011) 

noticed that F. profunda appears to occur at the intersection of decreasing light availability and increasing 

NO3 concentration. Riou et al. (2016) found that in the region of the AzCC, where the densities of F. 

profunda are the highest, the N2-fixation is particularly intense. Importantly, most of the productivity of 

coccolithophore observed by Schiebel et al. (2011) occurs in subsurface waters down to depths of 150 m. 

These authors noticed that this apparent bimodal pattern in productivity would have been hard to detect 

by satellite measurements as the coccolithophore assemblages were dispersed over expanded surface 

water layers with no significant signal at surface.  

In general, the AzC-AzF system seems to delimit distinct oceanic provinces. Its influence extends below 

surface waters and it appears to have a strong impact on deep ocean particle flux (Fründt and Waniek, 

2012). This system has an important effect on the regional latitudinal gradient in productivity. North of 

the Azores are located nutrient enriched waters sustaining high level of productivity. Moving southward 

there is a general decrease in primary production. However, at the AzF in the area of the AzCC, primary 

production seems to locally increase before decreasing again moving further south. Baltar and Arístegui 

(2017) directly suggested that the AzC-AzF system determines two different ecological regions as it causes 

sharp differences in the abundance of autotrophic and heterotrophic microbial assemblages with an 

abrupt decline in the abundance of picophytoplankton south of the front. Changes in microbial 

assemblages and enzymatic activities extends down to the bathypelagic zone (Baltar and Arístegui, 2017).  

The most known bioregionalization of the ocean is probably represented by the biogeochemical provinces 

of Longhurst (2007). This author assigned all the Azores region to the Northeast Atlantic subtropical gyral. 

However, Reygondeau et al. (2013) showed that the Longhurst biogeochemical provinces follow a strong 

seasonal and interannual dynamic. In particular, during summer months the Azores seems to be located 

at the interface of different provinces and this boundary roughly follows the path of the AzC (Reygondeau 

et al., 2013). Sonnewald et al. (2020) identified distinct ecological provinces based on a complex 

unsupervised learning method. Their classification considered the outputs of a numerical model defining 

planktonic assemblages (Dutkiewicz et al., 2015) and nutrient flux data. The final output was a nested set 

of eco-provinces. Again, at all nested levels, the Azores were located at the boundaries of distinct 

provinces and the boundary is approximatively at the latitudes of the AzC-AzF systems. Bock et al. (2022) 

produced a biogeographical classification of the Global Ocean using Biogeochemical Argo Floats. These 
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devices sample the water column down to a depth of 1000 m and were used by the authors to identify 

distinct phytoplankton biomes. Their study suggests that the southern portion of the Azores could be 

characterized by a seasonal deep chlorophyll maximum biome. This biome is characterized by strong 

seasonality and shows a bimodal distribution centered at 36.01° ± 3.20°N and 34.98° ± 8.10°S and is 

associated with 18 ºC Subtropical Mode Waters. At 36º N is approximatively located the AzCC. Finally, 

Sayre et al. (2017) produced a three-dimensional classification of the ocean based on an aspatial clustering 

of all the variables from the 2013 World Ocean Atlas. They divided the ocean into 37 ecological marine 

units (EMUs). When considering surface waters, their classification placed the Azores within a single 

province. However, moving at a depth of 100 m their classification seemed to follow the path of the AzC 

and divided the Azores region into two distinct provinces. It was decided to use this classification as an 

approximation of the different biogeochemical provinces existing in the Azores. 

5.4.2 Geomorphic units 

The geomorphic units of interests – raised features (RFs) – are identified in multiple phases, each 

characterized by several steps. All the classification steps are provided in Appendix D.1 in the form of an 

R script.  

In the first phase island shelf (IS) cells are identified considering that these cells are adjacent to island 

landmasses and that they are relatively flat. Based on the modelled distributions of benthic suspension 

feeders it appears that, at scales and resolutions similar to the ones considered here, these species avoid 

areas presenting slope values below five degrees (Chapters 2 and 3). Therefore, the flat areas of the IS are 

determined using a slope threshold of five degrees (Figure 5.2a). All areas classified as IS are excluded 

from subsequent classifications.  

In the second phase, peak cells are identified using the function ‘peak.cell’. This function identifies local 

maxima, i.e., raster cells whose elevation value is larger than the values of all the cells in its 3 X 3 

neighborhood. Peak cells identified within the IS, at locations adjacent to the IS or on small relieves (fine-

scale BPI < 100 or broad-scale BPI < 100) are removed.  

  

https://ghtaranto.github.io/scapesClassification/reference/peak.cell.html
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Figure 5.2 – Identification of raised features (RFs). Panel (a) show broad-scale BPI values in the background, island 
shelf (IS) cells in black and the zoom in area in red. Fist classification step (b): RFs are identified as discrete groups of 
cells connected to at least one peak cell having broad-scale BPI values > 100. Second classification step (c): RFs are 
segmented at negative values of relative position index (RPI). Values of RPI are computed independently for each RF 
using the formula RPI = [D – mean(D)] / sd(D), D is depth, mean(D) is the average depth of the RF, sd(D) is the 
standard deviation of depth of the RF. Third classification step (d): new discrete groups of cells having broad-scale 
BPI > 300 or > 400 are classified as RF. Fourth classification step (e): raster cells having broad-scale BPI > 100 or fine-
scale BPI > 100 or standard deviation of depth values > 150 are aggregated to the closest RF. BPI is bathymetric 
position index. Different colors in panels (b-e) identify different RFs. Note that small features (less than 50 raster 
cells) were excluded from the analysis. 

 

 

The identification of discrete RFs proceeds in several steps. In the first step groups of cells connected to 

at least one peak cell (class continuity) with broad-scale BPI > 100 are classified as RFs using the function 

‘anchor.seed’. Each discrete group of cells receives a different ID and, in this way, can be treated as an 

independent raster object (Figure 5.2b). This classification step identifies some very large RFs. Therefore, 

the initial set of RFs is modified in three subsequent steps. First, they are segmented using the functions 

‘rel.pi’ and ‘pi.sgm’. The function ‘rel.pi’ computes the relative position index (RPI) of each cell within a RF 

based on RPI = [D – mean(D)] / sd(D) [D is the depth of a focal cell, mean(D) is the average depth of the 

https://ghtaranto.github.io/scapesClassification/reference/anchor.seed.html
https://ghtaranto.github.io/scapesClassification/reference/rel.pi.html
https://ghtaranto.github.io/scapesClassification/reference/pi.sgm.html
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RF and sd(D) is the standard deviation of depth values within RF]. The function ‘pi.sgm’ is used to (i) 

remove from RFs raster cells presenting a negative RPI and (ii) to reassign a different ID to every discrete 

group of cells counting at least 50 cells (Figure 5.2c). Then, the function ‘pi.add’ is used twice, first to add 

features counting at least 50 cells with broad-scale BPI > 300 and then to add features having at least 50 

cells with broad-scale BPI > 400. The RFs added in the last steps are the features removed during the 

segmentation step. However, setting higher BPI threshold values it is possible to detect more groups of 

unconnected cells each receiving a different ID (Figure 5.2d). Note that in this context connected refers 

to contiguous cells sharing similar properties (e.g. BPI above a certain threshold); unconnected refers to 

two or more groups of contiguous cells sharing a particular property (e.g. BPI above a certain threshold) 

separated by cells not respecting a particular property (e.g. BPI below a certain threshold). Finally, the 

function ‘cond.4.nofn’ is used to manipulate RFs. Setting the argument ‘hgrowth = TRUE’, the function 

iteratively selects a RF, evaluates a set of conditions for raster cells adjacent to the selected RF (i.e. 

standard deviation of depth > 150 OR broad-scale BPI > 100 OR fine-scale BPI > 100) and aggregates all 

cells respecting the conditions to the RF. Then, the function selects a new RF and the process is repeated 

until all features are evaluated. The process restarts as long as at least one cell is aggregated to a RF. By 

evaluating sets of conditions only at locations adjacent to a RF in an iterative process, each RF grows 

homogeneously (‘hgrowth’). At the end of the evaluation, all raster cells respecting the set of conditions 

are aggregated to the closest RF (Figure 5.2e). All the mentioned functions are part of the R Package 

scapesClassification (Taranto, 2022) (Chapter 4). The final set of RFs is shown in Figure 5.3a.  

Once identified RFs can be treated as independent objects (Figure 5.3b-d). This can be useful to compare 

particular spatial patterns within and among distinct features. For example, the three features in Figure 

5.3b-d have different areas and shapes. The availability of hard-substrate was approximated using slope 

and BPI values. Even using this simple approximation, hard-substrate areas seem to have a very different 

configuration within the different features. Monte Alto is dominated by a flat plateau and most of the 

areas suitable for sessile hard-substrate suspension feeders are located on the eastern side of the 

seamount (Figure 5.3b). Gigante 127 is dominated by ridge-like structures (Figure 5.3c). Atlantis presents 

a flat plateau but it hosts wider patches of hard substrate than Monte Alto (Figure 5.3d).  

  

https://ghtaranto.github.io/scapesClassification/reference/pi.add.html
https://ghtaranto.github.io/scapesClassification/reference/cond.4.nofn.html
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Figure 5.3 – Raised features (RFs) of the Azores. Each RF is identified by a unique ID and can be treated as an 
independent raster object (a). Panels (b-d) highlight three distinct features: Monte Alto (b), Gigante 127 (c) and 
Atlantis (d). These features are shown in red in panel (a). In panel (a) colors are randomly assigned to individual RFs. 
In panels (b-d) grey shades identify slopes (> 5º), red shades identify local ridges (fine-scale BPI > 100) and black dots 
identify the summit of the RFs. 
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Table 5.1 – Statistics of three raised features (RFs): Monte Alto (MA), Gigante 127 (G127), Atlantis (AT). MinD is 
minimum depth (m). Area is the total area of the feature (km2). Perim. is the perimeter of the feature (km). SA is 
average roughness of a surface. SDR is surface area ratio. RDG is the area covered by local ridges (fine-scale BPI > 
100) (km2). SL is the area covered by slopes (> 5º) (km2). The remaining columns report the estimated availability of 
hard substrate (RDG + SL) in km2 within distinct depth zones: deeper than 2400 m (DZ 2400L), 2400 – 1600 m (DZ 
2400), 1600 – 800 m (DZ 1600), 800 – 500 m (DZ 800) and shallower than 500 m (DZ 500). Numbers in parenthesis 
are percentages of the total area.  

RF MinD Area Perim. SA SDR RDG SL DZ 2400L DZ 2400 DZ 1600 DZ 800 DZ 500 

MA 385 1068 212 368.9 0.07 176 (16.5) 367 (34.4) 0 (0) 156 (14.7) 297 (27.9) 87 (8.2) 1 (0.1) 

G127 228 597 231 173.5 0.20 220 (37) 262 (43.9) 0 (0) 6 (1) 423 (70.9) 40 (6.7) 13 (2.3) 

AT 266 1581 235 623.6 0.07 507 (32.1) 879 (55.6) 143 (9.1) 482 (30.5) 507 (32.1) 131 (8.3) 121 (7.7) 

 

 

Furthermore, each feature can be defined using metrics characteristics of seascape and landscape 

ecology. Traditional patch metrics can be used to capture the spatial configuration of discrete patches of 

hard substrate (Frazier and Kedron, 2017). Surface metrics represent an alternative set of metrics used to 

address spatial configurations on continuous surfaces (McGarigal et al., 2009). The package R package 

geodiv implements surface metrics in the R environment (Smith et al., 2021). As an example, Table 5.1 

presents some of the statistics of three different RFs (Figure 5.3b-d). It includes the surface metrics 

average roughness (SA) and surface area ratio (SDR) (‘sa’ and ‘sdr’ functions, R package geodiv) and 

presents the availability of hard substrate within different depth zones. Average roughness is the average 

absolute deviation of the surface heights from the mean (McGarigal et al., 2009). In this context it provides 

a measure of the bathymetric span of a RF. Surface area ratio is the ratio between the surface area to the 

area of the flat plane with the same x-y dimensions (McGarigal et al., 2009). In this context it can be 

intended as a measure of the complexity of a RF’s surface. Gigante 127 is the smallest seamount covering 

an area of 597 km2, has the smallest bathymetric span (SA ~173) and the greatest surface complexity (SDR 

= 0.2). Atlantis is the largest seamount (1581 km2) and has the largest bathymetric span (SA ~623). 

Compared to the other two features, Monte Alto has intermediate values (area ~1068 km2; SA ~368). 

Surface complexity is low for both Monte Alto and Atlantis (SDR = 0.07). The estimated percentage of hard 

substrates is ~51% for Monte Alto, ~81% for Gigante 127 and ~88 for Atlantis. Note that Atlantis is located 

in an area where bathymetry data have low quality and, as a consequence, all measurement in this area 

are more likely to bear errors. Gigante 127 and Monte Alto have a very small percentage of hard substrate 

at depths shallower than 500 m and none below 2400. For all three RFs, most of the hard substrate is 
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located between 1600 and 800 m depth. Probably this would be the most appropriate depth range to 

investigate how faunal assemblages change across these three RFs.  

5.4.3 Ecological Zonation 

Figure 5.4 presents a synthesis of the expected distributional patterns of key habitat forming species 

(Phyla Cnidaria and Porifera) in the region of the Azores. Table 5.2 presents an estimate of the habitat 

available for these species. A total area of more than 1.5 million km2 was considered in the present study. 

Of this area, the 11% (188,335 km2) can potentially host hard substrate communities. This value provides 

an estimate of the availability of hard substrate on the major geomorphic relieves of the region. 

Hard-substrate locations are assigned to two ecological provinces: 6.8 % of the total area north of the 

Azores Front-Azores Current system (AzF-AzC), 4.4 % of the total area south of the AzF-AzC system. At 

depths shallower than 500 m there is a very limited amount of area suitable for hard-substrate 

communities south of the AzF-AzC (3,890 km2, 0.2 % of the total area). These areas are associated with 

the Great Meteor Seamount Chain (Tucholke and Smoot, 1990). Depth zones below 500 m seem to host 

a similar percentage of hard substrate patches north and south of the AzF-AzC system. 

 

 

Table 5.2 – Estimated availability of hard substrate on major geomorphic features allocated across distinct depth 
zones and ecological provinces. TA is total area of the study region. HS is the area expected to host hard substrate. 
The area expected to host hard substrate is divided into five depth zones and two provinces. The depth zones are: 
deeper than 2400 m (DZ 2400L), 2400 – 1600 m (DZ 2400), 1600 – 800 m (DZ 1600), 800 – 500 m (DZ 800) and 
shallower than 500 m (DZ 500). The two provinces are: areas located north of the Azores Front-Azores Current 
system (North AzF-AzC), areas located south of the Azores Front-Azores Current system (South AzF-AzC). All 
percentage values are relative to the total area of the study region (TA).  

 TA HS  DZ 2400L DZ 2400 DZ 1600 DZ 800 DZ 500 

 km2 % km2 % km2 % km2 % km2 % km2 % km2 % 

All  1,669,749 - 188,335 11.3 67,417 4.0 22,033 1.3 51,534 3.1 23,477 1.4 23,875 1.4 

North 
AzF-AzC  

989,844 59.3 112,838 6.8 34,180 2.1 12,559 0.8 33,979 2.0 13,826 0.8 18,295 1.1 

South 
AzF-AzC   

675,302 40.7 73,808 4.4 33,238 2.0 9,474 0.6 17,556 1.1 9,650 0.6 3,890 0.2 
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Figure 5.4 – Estimated distributional patterns of deep-sea benthic communities on hard substrates. All regional 
raised features (RFs) (e.g. seamounts, ridges, island slopes) are highlighted. Island shelf are showed in black. White 
shades are local ridges. Dark shades are slopes (> 5º). Each RF is assigned to a different depth zone: deeper than 
2000 m (2200<), 2200 – 1600 m (2200+), 1600 – 800 m (1600+), 800 – 500 m (800+) and shallower than 500 m (500+). 
Each RF presents at least 2 km2 within the depth zone it is assigned to. The red line shows the boundaries of two 
ecological marine units (EMU11 in the north and EMU21 in the south) at a depth of 100 m (adapted from Sayre et 
al., 2017). This boundary approximates the path of the Azores Current-Azores Front system. The latitude marked in 
red (36 ºN) is the approximate latitude of the Azores Countercurrent west of the Mid-Atlantic Ridge. 
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5.5. Discussion 

This study presents a synthesis of the distributional patterns and of the environmental drivers of deep-

sea hard substrate benthic communities in the Azores (NE Atlantic) with a special focus on ecosystem 

engineers species of the Phyla Cnidaria and Porifera. It provides an estimate of the availability of 

hard-substrate habitats associated with prominent geomorphic features, identifies two distinct ecological 

regions likely to influence benthic deep-sea assemblages and provides and an ecological zonation of the 

Azores acknowledging the importance of the depth-wise stratification of the regional water masses.  

The AzC-AzF system defines two distinct ecological provinces. South of the front are located 18 ºC 

Subtropical Mode Waters, while north of the front are the more productive temperate Eastern North 

Atlantic Water (Frazão et al., 2022; Fründt and Waniek, 2012). Immediately north of the front, in the 

region of the Azores Countercurrent (AzCC) (~36º N), dynamic processes such as oceanic filaments or 

eddies seem able to raise the nutricline to the euphotic zone and to mix different planktonic assemblages 

enhancing carbon sequestration and deep ocean particle flux (Caldeira and Reis, 2017; Fründt and Waniek, 

2012; Riou et al., 2016; Schiebel et al., 2011; Silva et al., 2013). This complex system is highly dynamic with 

strong seasonal and interannual variability and its influence extends well below surface waters (Baltar and 

Arístegui, 2017; Comas-Rodríguez et al., 2011; Frazão et al., 2022; Fründt and Waniek, 2012; Reygondeau 

et al., 2013). Previous studies in the Azores either did not support the existence of a latitudinal turnover 

of species (Braga-Henriques et al., 2013; Menezes et al., 2006) or showed only preliminary evidence about 

the importance of the north-south gradient in productivity for benthic engineer species (Chapter 1 and 

2). Latitudinal changes in benthic bathyal assemblages should appear more evident considering wider 

latitudinal ranges extending further north and south of the front. In a northern section of the Mid-Atlantic 

Ridge between the Azores and Iceland (42º – 53º N), Gebruk et al. (2010) suggested that the observed 

turnover in benthic bathyal fauna was caused by the Sub-Polar Front –  located at ~52º N (Søiland et al., 

2008) – and by differences in food supply to the seafloor. A later study in the same region shared similar 

conclusions (Alt et al., 2019). Particularly interesting is the article of Yearsley et al. (2020). These authors 

studied the connectivity patterns of fragmented hydrothermal vent habitats along the Mid-Atlantic Ridge. 

They used biophysical models built on Argo floats data and, remarkably, they identified persistent barriers 

to connectivity at about 36°N and 37°N. Although the authors did not acknowledge the existence of the 

AzC-AzF system at these latitudes, their results strongly suggest that the frontal system can act as a 

dispersal barrier for deep-sea species. Overall, several studies confirm that the AzC-AzF system is a 

permanent oceanic feature causing abrupt changes in oceanic conditions. Much of these changes occur 
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in subsurface and deep waters and are often overlooked in analysis based on remote sensing data. Waters 

north and south of the system can be considered as distinct ecological provinces which are likely to 

influence and structure deep-sea communities. Future studies based on quantitative analysis and 

abundance data will be required to clarify the role of the AzC-AzF system for benthic deep-sea 

assemblages. Placing a clear boundary for a highly dynamic system such as the AzC-AzF seems somehow 

arbitrary. The three-dimensional unsupervised mapping of Sayre et al. (2017) at a depth of 100 m seemed 

to capture quite well the average location of the AzC-AzF system and, therefore, was used to place a 

boundary in Figure 5.4. This boundary should be intended as reminder that complex oceanographic 

processes take place approximately at these locations. These processes should be taken into account if 

we want to better understand the distributional patterns of the deep biota in the Azores as well as the 

latitudinal turnover in benthic bathyal fauna occurring along the Mid-Atlantic Ridge. 

Liu and Tanhua (2021) characterized and mapped the major water masses in the Atlantic Ocean showing 

that they are distributed in four main isopycnal (vertical) layers separated by surfaces of neutral density: 

(i) upper, (ii) intermediate, (iii) deep and overflow and (iv) bottom layer. In the Azores, there is a clear 

correlation between the vertical zonation of the regional benthic and demersal fauna and the depth-wise 

succession of the isopycnal layers (Chapter 2; Chapter 3; Braga-Henriques et al., 2013; Menezes et al., 

2006; Santos et al., 2021), suggesting that the different isopycnal layers can be used as meaningful 

bioregions (Chapter 3). In general, the influence of water masses on the biodiversity and biogeography of 

deep-sea benthic ecosystems is widely recognized (e.g. Carney, 2005; Lapointe et al., 2020; Puerta et al., 

2020; Roberts et al., 2021; Watling et al., 2013). At depths between 200 and 2000 m, the main changes in 

the composition of habitat-forming suspension feeders (Phyla Cnidaria and Porifera) occur at 500, 800 

and 1600 m (Chapter 3). Watling and Lapointe (2022) identified in the North Atlantic an additional fauna 

transition at 2200 m for species of the Phylum Cnidaria. This depth zonation was integrated in Figure 5.4. 

Only few geomorphic features intersect the upper layer (0-500 m) and only a fraction of these features is 

likely to presents surfaces characterized by hard substrate (~23,000 km2, 1.4% of the area considered in 

the present study) (Table 5.2). Therefore, areas of hard-substrate on shallow geomorphic features are 

likely to host regionally unique assemblages of cold-water corals and sponges, species representing key 

components of vulnerable marine ecosystems (VMEs) (FAO, 2009; Hogg et al., 2010). Considering the 

presence of unique and vulnerable benthic assemblages and the strong exposure to regional fisheries 

(Santos et al., 2021), shallow geomorphic features should be regarded as priority areas for conservation. 

In addition, these features are particularly indicated to investigate if and how fishery induced disturbance 

alter the density and composition of benthic habitat-forming species. Intermediate waters in the region 
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have their core at 800 m and extend down to an approximate depth of 1600 m (Bashmachnikov et al., 

2015; Liu and Tanhua, 2021). Along the segment of Mid-Atlantic Ridge included in this study, geomorphic 

features within this depth range are the most common (Figure 5.4). Therefore, studies specifically 

targeting this depth zone could be particularly important to effectively disentangle bathymetric, 

latitudinal and local gradients of diversity. Similarly, studies addressing faunal assemblages occurring on 

geomorphic features below intermediate waters could be particularly useful in exploring compositional 

changes east and west of the Mid-Atlantic Ridge (Figure 5.4). So far, these very deep areas are the least 

explored in the region (Chapter 2 and 3).  

The quantification of hard substrate availability and the geomorphological segmentation of regional 

raised features (i.e. seamounts, ridges and island slopes) was based on a simple approach and it has not 

the pretention to substitute more robust geomorphological analysis (Bishop et al., 2012; Lecours et al., 

2016). The total estimate of hard substrate area is likely affected by the presence of bathymetric artifacts 

and by the simple methodology used. However, this estimate is based on the best data currently available 

and represents a valid approximation of the total habitat available for hard-substrate communities. The 

allocation of hard-substrate areas across depth zones and marine provinces provides a simplified model 

of the major environmental drivers acting on hard substrate communities (Figure 5.4). Based on this 

model, it is possible to frame new research designs, conservation strategies and sampling programs. 

Additionally, an approximate measure of the total habitat available for hard-substrate communities can 

be considered as a preliminary step required to quantify regional conservation targets (e.g. 30% of hard 

substrate areas) and a way to move forward national and international conservation goals (e.g. Jetz et al., 

2022; Nicholson et al., 2019).  

This analysis has the value of being simple and easily interpretable, it can be integrated by nested and 

more advanced classifications and it provides a different perspective that can be of use in evaluating local 

and regional scale distributional drivers. The fundamental scope of landscape ecology and of its sister 

science, seascape ecology, is to determine how spatial and temporal structures influence ecological 

processes and ecosystem services (Lepczyk et al., 2021; Pittman et al., 2021; Swanborn et al., 2022; 

Turner, 2005). They tend to represent nature with distinct pattern-oriented constructs such as patches, 

patch mosaics, and spatial gradients (Pittman et al., 2021). The segmentation of geomorphic features into 

discrete units – each with identity, spatial embedding, and attributes – can facilitate the implementation 

of seascape analysis in the deep-sea. The topography of the Azores is very complex (Figure 5.1). When 

represented as a continuous surface it is very hard to discern the effect of local structures (e.g. 
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composition and distribution of substrate patches) on ecological processes (e.g. community assembly). 

Transforming this surface into discrete spatial entities – each likely to host complex assemblages of 

benthic engineer species – can provide a more suitable framework to address pattern–process 

relationships at multiple scales. For example, Figure 5.3b-d and Table 5.1 can be used to compare different 

seamounts and evaluate how the local spatial configuration of hard-substrate patches interacts with 

regional gradients in productivity and how this interaction influences benthic communities. Surely, the 

example provided is quite simple and relies on poor estimates of surficial sediment types. Nevertheless, 

even this simple classification suggests that the total amount of habitat available for the settlement of 

hard-substrate species changes drastically both between seamounts and between depth zones and this 

differences should be taken into account in evaluating spatial patterns of species distribution and 

abundance. If integrated with backscatter and fine-scale data, for example in areas where these data are 

available, this type of analysis can produce interesting results (e.g. Williams et al., 2010; Zarnetske et al., 

2019). In future greater efforts will be required to acquire multibeam bathymetry data in deep areas. 

Most of the geomorphic features at depths below 2000 m away from the Mid-Atlantic Ridge could be 

bathymetric artifacts caused by the lack of high quality multibeam data (Lecours et al., 2017). Excluding 

major ridges and prominent geomorphic features, the seafloor is generally assumed as homogeneous and 

sedimented. However, recent studies suggest that even abyssal plains could be rockier than expected 

(Riehl et al., 2020).  

The proposed segmentation of raised feature into discrete objects should not be considered as alternative 

to the classic raster representation of topographic surfaces, but rather as a mean to integrate different 

conceptual perspectives (Cova and Goodchild, 2002). As discussed, an object perspective can aid in the 

implementation of patch-based analysis, but it can also be of use in synthetizing and communicating 

scientific results. In fact, humans clearly perceive the geographic space as populated by discrete objects, 

to which they give names and ascribe behaviors (Goodchild et al., 2007). By segmenting the seafloor 

surface, complex conservation outputs (e.g. Combes et al., 2021) could be better shared with policy-

makers facilitating in this way the implementation of area-based conservation strategies. In addition, such 

segmentation could provide a way to organize and archive biological and environmental data. For 

instance, the interactive maps available on the GitHub page of the R Package ‘scapesClassification’ (link) 

could be populated with information about number of video transects stratified by depth, fishing 

intensity, taxonomic diversity backscatter data availability, etc. Such a map could also be useful for public 

outreach if the explored features were to be associated with deep-sea footage. In fact, the use of video 

data and interactive tool seems to be particularly effective for public engagement and education 

https://ghtaranto.github.io/scapesClassification/articles/ghp/scapesClassification_02_4_OBJ.html
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(Hoeberechts et al., 2015). Efforts aimed at exposing the public to the deep sea could increase awareness 

and support marine conservation and are particularly important in a region such as the Azores where the 

seascape is dominated by deep waters. 

5.6 Conclusions 

This study presents a synthesis of the distributional patterns and of the environmental drivers of deep-

sea hard substrate benthic communities in the Azores (NE Atlantic) with a special focus on ecosystem 

engineers species of the Phyla Cnidaria and Porifera. Understanding how these important species 

distribute is of pivotal importance for effective area-based management and for the implementation of 

national and international policies aiming to reverse the cycle of decline in ocean health (e.g. Combes et 

al., 2021; Galparsoro et al., 2015; Gonçalves, 2021; Grehan et al., 2017; Kazanidis et al., 2020; Rice et al., 

2012; Rueda et al., 2016; Tunnicliffe et al., 2020). Four major distributional drivers can be recognized in 

the region: (i) a latitudinal gradient in primary productivity strongly influenced by the Azores Current-

Azores Front (AzC-AzF) system; (ii) the depth-wise succession of the regional water masses and their 

stratification into different isopycnal (vertical) layers; (iii) the spatial distribution of prominent geomorphic 

features such as seamounts ridges and island slopes; (iv) the availability of hard substrate for attachment. 

The results provide an estimate of the availability of hard-substrate habitats associated with prominent 

geomorphic features (i.e. seamounts, ridges and island slopes), identify two distinct ecological regions 

likely to influence benthic deep-sea assemblages and synthetize the distributional patterns in an 

ecological zonation of the Azores acknowledging the importance of the depth-wise stratification of the 

regional water masses. The total fraction of rocky substrates on prominent geomorphic features available 

for the settlement of sessile suspension feeders was estimated to cover an area of about 188,000 km2 

(~11% of the study area). Geomorphic features are extracted from an updated bathymetric grid of the 

Azores and treated as discrete spatial entities. This approach adopts an object-oriented perspective about 

the major geomorphic features existing in the region and, in doing so, it provides a more suitable 

framework to address pattern–process relationships following seascape and landscape ecology strategies. 

Overall, several studies confirm that the AzC-AzF system is a permanent oceanic feature causing abrupt 

changes in oceanic conditions. Much of these changes occur in subsurface and deep waters and are often 

overlooked in analysis based on remote sensing data. The conditions imposed by the AzC-AzF system are 

likely to influence distribution and abundance of benthic organisms in the Azores. The different frontal 

systems occurring along the Mid-Atlantic Ridge could be particularly important in explaining latitudinal 

changes in species composition even at the seafloor. Previous works seem to confirm the importance of 
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the Sub-Polar Front (~52° N). Future studies will have to clarify the biogeographic role of the AzC-AzF 

system (~36º N). 
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Chapter 6  
General Discussion  
 

 

The Azores are strategically located to investigate and explore the deep sea. Thanks to regional, national 

and international research programmes the exploration of the deep sea in the region gained new 

momentum (e.g. Dominguez‐Carrió et al., 2021; Morato et al., 2021a, 2020b, 2019, 2018b; Morato and 

Taranto, 2019; Orejas et al., 2017). We now have a much better understanding of the different benthic 

habitats existing in the region and the many collected specimens will allow for a proper taxonomic 

description of the regional deep sea fauna. However, over the first years of my thesis work, I felt that 

there was very limited information to actually provide a useful evaluation of the environmental status of 

deep sea biodiversity in the region. I believe it will be possible to provide a scientifically sound evaluation 

of the environmental status of deep sea biodiversity in the Azores once all the collected data will be 

processed. Therefore, much of the efforts of this thesis were placed in describing the distributional 

patterns of species representing an important component of regional benthic communities, habitat-

forming suspension feeders of the Phyla Cnidaria and Porifera. Understanding how these important 

species distribute is of pivotal importance for effective area-based management and for the 

implementation of national and international policies aiming to reverse the cycle of decline in ocean 

health (e.g. Combes et al., 2021; Galparsoro et al., 2015; Gonçalves, 2021; Grehan et al., 2017; Kazanidis 

et al., 2020; Rice et al., 2012; Rueda et al., 2016; Tunnicliffe et al., 2020). In addition, many of the described 

patterns are of general interest as they seem to be caused by environmentally driven processes that most 

likely affect the functioning and the structure of several components of deep-sea ecosystem in the Azores. 

Chapter two described the distributional patterns of habitat-forming cold-water corals using habitat 

suitability models. It suggested that CWCs are organized in two ecological regions defined by the Azores 

Current and that the depth zonation of CWCs is shaped by regional water masses. Over the considered 

bathymetric range (0 - 2000 m), CWCs form four groups of species: species restricted to upper water 

masses, species extending down from upper water masses, species restricted to intermediate waters and 

species extending up from deep water masses. As all the modelled CWCs represent foundation species, 

these patterns can be expected to remain valid for all associated species. Because of the results of Chapter 

two it was decided to further investigate how hard substrate communities change along bathymetric and 
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latitudinal gradients and to evaluate if the results of Chapter two remained valid using additional biological 

data and a different modelling approach. Chapter three provides one of the first statistical 

bioregionalization of deep-sea benthic communities in the Azores. It used species archetype models and 

generally confirmed the results of Chapter two. The depth-wise succession of the regional water masses 

and their stratification into different isopycnal layers appears to explain much of the changes in species 

composition occurring with depth. The ecological processes driving these patterns remain unclear. A 

water mass can be considered as an environmental envelop characterized by a particular combination of 

oceanographic parameters. They could exert a direct physiological control, influence connectivity or 

mediate food supply via internal waves or density-driven currents. Regardless of the main ecological and 

evolutionary processes in place, the results suggest that the different isopycnal layers can be used as 

meaningful bioregions, setting an interesting background for ecological research, ecosystem-based 

management and spatial monitoring. In the region, the main changes in species composition occur at 500, 

800 and 1600 m generally confirming the biogeographic boundaries identified in previous studies. 

Temperature is the main environmental factor controlling the distribution of assemblages truly restricted 

to the upper layer. A strong negative response to bottom-oxygen concentrations identifies assemblages 

truly restricted to the intermediate layer. The isopycnal stratification appear to act as a soft ecological 

boundary for other species. Food export seems the main controlling factor for species associated with the 

deep layer (or with the lowest portion of the intermediate layer), supporting the hypotheses that the 

regional productivity gradient in surface waters affects deep-sea assemblages.  

In Chapter four I developed a new software (scapesClassification) to be used for the ecological zonation 

of Chapter five. While a number of methodologies are available to classify seascapes, I felt the need of 

using a knowledge-oriented approach that could capture and integrate the distributional drivers identified 

in Chapters two and three with an additional distributional driver of hard substrate communities, i.e. the 

availability of hard substrate on major topographical features. Traditional geomorphological classification 

methods generally rely on data that were not available at the time of writing (e.g. continuous backscatter 

layer) and tend to segment a seascape in many classes (or units) whose ecological meaning was hard to 

evaluate. A simple knowledge—oriented classification seemed to be more suitable to synthetize the 

distributional patterns of hard substrate communities in an ecological map.  
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Chapter five presents a synthesis of the distributional patterns and of the environmental drivers of deep-

sea hard substrate benthic communities in the Azores (NE Atlantic). Four major distributional drivers can 

be recognized in the region: (i) a latitudinal gradient in primary productivity strongly influenced by the 

Azores Current-Azores Front (AzC-AzF) system; (ii) the depth-wise succession of the regional water masses 

and their stratification into different isopycnal (vertical) layers; (iii) the spatial distribution of prominent 

geomorphic features such as seamounts ridges and island slopes; (iv) the availability of hard substrate for 

attachment. The results provide an estimate of the availability of hard substrate habitats associated with 

prominent geomorphic features (i.e. seamounts, ridges and island slopes), identify two distinct ecological 

regions likely to influence benthic deep-sea assemblages and synthetize the distributional patterns in an 

ecological zonation of the Azores acknowledging the importance of the depth-wise stratification of the 

regional water masses. The total fraction of rocky substrates on prominent geomorphic features available 

for the settlement of sessile suspension feeders was estimated to cover an area of about 188,000 km2 

(~11% of the study area). Geomorphic features are extracted from an updated bathymetric grid of the 

Azores and treated as discrete spatial entities. This approach adopts an object-oriented perspective about 

the major geomorphic features existing in the region and, in doing so, it provides a more suitable 

framework to address pattern–process relationships following seascape and landscape ecology strategies. 

Overall, several studies confirm that the AzC-AzF system is a permanent oceanic feature causing abrupt 

changes in oceanic conditions. Much of these changes occur in subsurface and deep waters and are often 

overlooked in analysis based on remote sensing data. The conditions imposed by the AzC-AzF system are 

likely to influence distribution and abundance of benthic organisms in the Azores. The different frontal 

systems occurring along the Mid-Atlantic Ridge could be particularly important in explaining latitudinal 

changes in species composition even at the seafloor. Previous works seem to confirm the importance of 

the Sub-Polar Front (~52° N). Future studies will have to clarify the biogeographic role of the AzC-AzF 

system (~36º N). 
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Figure 1.1 – Azores study area. The islands from west to east are: Flores, Corvo, Faial, Pico, São Jorge, 

Graciosa, Terceira, São Miguel and Santa Maria. Only seafloor locations shallower than 2000 m are 

considered in the present manuscript (identified by the contour lines). Relief location: Mid-Atlantic 

Ridge (MAR), Central Seamounts (Central), Northeastern Seamounts (NE), Southeastern Seamounts (SE), 

Southern Seamounts (S). Important regional relieves: (1) Kurchatov N, (2) Kurchatov SE, (3) Kurchatov 

SW, (4) Oscar W, (5) Oscar, (6) G127, (7) Gigante, (8) Beta, (9) Cavala, (10) A6, (11) Picoto, (12) Alpha, 

(13) Voador, (14) A3, (15) Voador W, (16) Sarda, (17) Monte Alto, (18) Cavalo, (19) Cavalo W, (20) SW1, 

(21) SW2, (22) Princess Alice W, (23) Princess Alice, (24) Condor, (25) Açor, (26) Condor de Fora, (27) De 

Guerne, (28) Baixo São Mateus, (29) Graciosa West, (30) Perestrelo Hill, (31) Ridge SE Graciosa, (32) Mar 

da Fortuna, (33) Serreta, (34) João Leonardes, (35) Gaillard, (36) Sedlo, (37) Borda, (38) Esperance, (39) 

Albatroz, (40) São Jorge de Fora, (41) Agostinho, (42) Dom João de Castro S, (43) Dom João de Castro, 

(44) Mar da Prata W, (45) Alcatraz, (46) Mar da Prata, (47) Fouque, (48) Formigas, (49) Atlantis N, (50) 

Atlantis NW, (51) Atlantis, (52) Tryo. ............................................................................................................ 4 

Figure 1.2 – Cold water coral taxa selected to develop habitat suitability models and to define the 

regional ecoscapes of the Azores. These species were selected considering their vulnerability to human 

activities and their potential as foundation species. © MEDWAVES, ATLAS project (Leiopathes cf. 

expansa, N. bellissima, N. versluysi, D. pertusum and M. oculata); © IMAR/OKEANOS-UAz, Drift camera 

(C. verticillata, P. josephinae, Coralliidae sp., E. dabneyi); © ROV Luso / EMEPC / 2018 Oceano Azul 

Expedition, organized by Oceano Azul Foundation & partners (V. flagellum, Acanthogorgia sp. and D. aff. 

meteor); © EMEPC/Luso/Açores/2013 (S. variabilis). .................................................................................. 7 

Figure 2.3 – Azores study area (a). The islands from west to east are: Flores, Corvo, Faial, Pico, São Jorge, 

Graciosa, Terceira, São Miguel and Santa Maria. Habitat suitability models consider only seafloor 

locations shallower than 2000 m (identified by the contour lines). Relief location: Mid-Atlantic Ridge 

(MAR), Central Seamounts (Central), Northeastern Seamounts (NE), Southeastern Seamounts (SE), 

Southern Seamounts (S). (b) Position of the Azores in the NE Atlantic. (c) Number of sampling events (SE) 

within the modelled area aggregated on a 30x30 km grid. Sampling events include video transects, 

longline surveys and bycatch data from fishing observers. Important regional relieves: (1) Kurchatov N, 

(2) Kurchatov SE, (3) Kurchatov SW, (4) Oscar W, (5) Oscar, (6) G127, (7) Gigante, (8) Beta, (9) Cavala, 

(10) A6, (11) Picoto, (12) Alpha, (13) Voador, (14) A3, (15) Voador W, (16) Sarda, (17) Monte Alto, (18) 

Cavalo, (19) Cavalo W, (20) SW1, (21) SW2, (22) Princess Alice W, (23) Princess Alice, (24) Condor, (25) 

Açor, (26) Condor de Fora, (27) De Guerne, (28) Baixo São Mateus, (29) Graciosa West, (30) Perestrelo 

Hill, (31) Ridge SE Graciosa, (32) Mar da Fortuna, (33) Serreta, (34) João Leonardes, (35) Gaillard, (36) 
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Appendix A   
Supplementary data Chapter 2 
 

A.1 Species selection and input data 

A.1.1 Regional water masses 

The water masses of the Atlantic Ocean have been recently described by Liu and Tanhua (2021) using 

conservative (temperature and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) 

measures. Based on their results, it is possible to identify the principal water masses occurring in the 

Azores (Appendix A.1.1, Figure A.1) and approximate the limits of the different water layers. The influence 

of upper water masses goes down to about 1200m (Figure A.1a-c). The Eastern North Atlantic Central 

Water (ENACW) has the widest vertical extent with its core at about 400 m depth. The Western North 

Atlantic Central Water (WNACW) and the Western South Atlantic Central Water (WSACW) are present 

within the upper 400 m of the water column. The intermediate layer is characterized by the 

Mediterranean Water (MW) and the Antarctic Intermediate Water (AAIW) (Figure A.1d-e). Their core is 

around 800 m depth. A third intermediate water mass, the Subarctic Intermediate Water (SAIW) has been 

reported in the northwestern portion of the study area (Bashmachnikov et al., 2015), however, given the 

lack of sampling stations in this area (Figure A.1f) it was almost absent in the data provided by Liu and 

Tanhua (2021). In the deep and overflow layer, down to 2000 m (Figure A.1g-i), the Upper North Atlantic 

Deep Water (uNADW) is the predominant water mass with its core located at about 1600 m depth. It 

occupies a wide depth range in the north (400-2000+ m), while in the south it only appears at depths 

below 1000 m. The Lower North Atlantic Deep Water (lNADW) and the Northeast Atlantic Bottom Water 

(NEABW) characterize the deepest portion of the considered depth range (0-2000m) and extend below 

2000 m, where they become the most abundant water masses. 
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Figure A.1 – Principal water masses of the Azores based on Liu and Tanhua (2021). Upper layer: (a) Eastern North 
Atlantic Central Water (ENACW), (b) Western North Atlantic Central Water (WNACW), (c) Western South Atlantic 
Central Water (WSACW). Intermediate layer: (d) Mediterranean Water (MW), (e) Antarctic Intermediate Water 
(AAIW). Deep and overflow layer: (g) Upper North Atlantic Deep Water (uNADW), (h) Lower North Atlantic Deep 
Water (lNADW), (i) Northeast Atlantic Bottom Water (NEABW). Every sampling station is divided in 100 m bins over 
which water mass fractions are averaged. Only fractions greater than 0.2 are showed on the plots. (f) Sampling 
stations available in the study area; the grey background identifies seafloor depths shallower than 2000 m. 
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A.1.2 Species selection and biological data 

A list of CWCs particularly vulnerable to human activities and with the characteristics of foundation 

species in the Azores was defined considering three traits: relative abundance, structural complexity and 

relative vulnerability to bottom longline and handline fishing, the main benthic extractive activities in the 

region. Traits could only be scored qualitatively adopting an expert-driven process, were relative and 

referred only to colonies formed in the Azores. Underwater videos and collected specimens informed the 

expert driven classification of CWC with respect to the three traits. The general criteria adopted to classify 

CWC are reported in Table A.1.  

Presence records were aggregated at higher taxonomic levels when species identifications were 

uncertain. This was the case for the genus Acanthogorgia (mostly A. armata and A. hirsuta in the region; 

Braga-Henriques et al., 2013) and the family Corallidae (Pleurocorallium johnsoni, Hemicorallium niobe 

and Hemicorallium tricolor; Sampaio et al., 2019).  

The modelled corals are shown in Figure A.2 and include: Leiopathes cf. expansa, Callogorgia verticillata, 

Narella bellissima, Narella versluysi, Paracalyptrophora josephinae, Viminella flagellum, Acanthogorgia 

spp., Dentomuricea aff. meteor, Desmophyllum pertusum, Madrepora oculata, Solenosmilia variabilis, 

Coralliidae, Paragorgia johnsoni and Errina dabneyi. From the initial pool of species considered, Candidella 

imbricata, c.f. Eguchipsammia sp. and Leptosammia sp. were excluded because of insufficient presence 

points. Most of the presence records (76%) were extracted form underwater images collected during the 

cruises reported in Table A.2. Additional presence records (24%) were extracted from longline and 

handline bycatch data (Figure A.3 and Figure A.4).  
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Table A.1 – Qualitative criteria adopted to define relative abundance, structural complexity and relative vulnerability 
of CWCs in the Azores. 

Trait Low/Small Medium High/Large 

Relative abundance When present the CWC 
species is generally not 
very abundant (e.g. 
Callogorgia verticillata) 

When present the CWC 
species is known to 
occasionally be the most 
abundant of the coral 
assemblage (e.g. 
Dentomuricea aff. 
meteor) 

When present the CWC 
species tends to be the 
most abundant of the 
coral assemblage (e.g. 
Viminella flagellum); 

Structural complexity Whip corals (e.g., Narella 
versluysi) 

Branched colonies of 
medium size (e.g., 
Narella bellissima) 

Branched colonies of 
large size (e.g. 
Paragorgia johnsoni) 

Relative vulnerability Colonies persist and 
dominate coral 
assemblages in heavily 
fished areas and do not 
show serious damages 
owed to longlines (e.g., 
Viminella flagellum and 
Acanthogorgia spp.) 

Not applicable Branched colonies with 
rigid supporting axes 
(e.g. Coralliidae); 
extensive damages to 
CWC colonies from 
longlines (e.g., 
Paracalyptrophora 
josephinae); very 
vulnerable life histories 
(e.g. Leiopathes spp.) 

 

 

Table A.2 – Video surveys that provided the data used in the present study. Remotely operated vehicle (ROV). 

Cruise name Vessel Year System Platform 
     

Meteor Cruise M 58/3 RV Meteor 2003 ROV QUEST  

EMEPC/LUSO/G3 NRP Gago Coutinho 2008 ROV LUSO 

Treasure 2014 RV Pelagia 2014 Tow-cam Hopper 

Biometore NI Arquipélago 2015 ROV LUSO 

MEDWAVES RV Sarmiento de Gamboa 2016 ROV Liropus 

Treasure 2016 RV Pelagia 2016 Tow-cam Hopper 

MapGES 2018 NI Arquipélago 2018 Drift-cam Azor 

Blue Azores 2018 NRP Gago Coutinho 2018 ROV LUSO 

Nico 2018 RV Pelagia 2018 Tow-cam Hopper 

Greenpeace Pole-to-Pole MV L’Esperanza 2019 ROV SEAEYE COUGAR-XT 

MapGES 2019 NI Arquipélago 2019 Drift-cam Azor 

Rainbow 2019 RV Pelagia 2019 Tow-cam Hopper 

iMAR 2021/Eurofleets+ RV Pelagia 2021 Tow-cam Hopper 
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Figure A.2 – Cold water coral taxa selected to develop habitat suitability models. These species were selected 
considering their vulnerability to human activities and their potential as foundation species. © MEDWAVES, ATLAS 
project (Leiopathes cf. expansa, N. bellissima, N. versluysi, D. pertusum and M. oculata); © IMAR/OKEANOS-UAz, 
Drift camera (C. verticillata, P. josephinae, Coralliidae, E. dabneyi); © ROV Luso / EMEPC / 2018 Oceano Azul 
Expedition, organized by Oceano Azul Foundation & partners (V. flagellum, Acanthogorgia spp. and D. aff. meteor); 
© EMEPC/Luso/Açores/2013 (S. variabilis). 
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Figure A.3 – Presence records of the selected octocoral (Alcyonacea) taxa. Suborders: (a-e) Calcaxonia; (f-g) 
Holaxonia; (h-i) Scleraxonia. In parenthesis the number of records used to fit the habitat suitability models. 
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Figure A.4 – Presence records of the selected Scleractinia (a-c), Anthoathecata (Stylasteridae) (d) and Antipatharia 
(e) species. In parenthesis the of number records used to fit the habitat suitability models. 
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A.1.3 Environmental data 

 

 

 

Figure A.5 – Pearson’s correlation coefficient among all the considered predictor variables. (*) Final set of predictor 
variables used in the modelling exercise. 
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Figure A.6 – Principal component analysis (PCA) of aragonite, calcite, nitrate, phosphate and silicate. (a-d) Locally 
weighted scatterplot smoothing (LOWESS) of the unscaled values of silicate, phosphate, nitrate, calcite and aragonite 
against the first principal component (‘seawater chemistry’). (e) Depths corresponding to aragonite and calcite 
undersaturation zones (Ω < 1). Seawater chemistry, concentration and saturation values refers to seafloor locations 
at depth shallower than 2000 m. 
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Figure A.7 – Environmental layers used in the habitat suitability models. (b) POC: Particulate organic carbon export. 
(d) Seawater chemistry: first principal component of the principal component analysis combining nitrate, phosphate, 
silicate, aragonite and calcite concentrations. (g-h) BPI: Bathymetric position index. 
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A.2 Model settings 

 

Table A.3 – Similarity matrix. Values of 1 mean that two categories are identical and values of zero that they are 
totally different. US: unsuitable cells; LC: low-confidence suitable cells; MC: medium-confidence suitable cells; HC: 
high-confidence suitable cells.   

 

 US LC MC HC 

US - 0 0 0 

LC - 1 0.6 0.3 

MC - - 1 0.6 

HC - - - 1 
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A.3 Model predictions 
 

 

Figure A.8 – Habitat suitability maps produced by GAMs for Octocorallia (Alcyonacea). Local confidence (LC): the 
number of times a cell is classified as suitable when models are fitted with resampled input data. Overall confidence 
(OC): determined by the lowest score among AUCGAM and TSSGAM – area under the curve (AUC); true skill statistics 
(TSS). In parenthesis the number of records used to fit the models.  
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Figure A.9 – Habitat suitability maps produced by Maxent models for Octocorallia (Alcyonacea). Local confidence 
(LC): the number of times a cell is classified as suitable when models are fitted with resampled input data. Overall 
confidence (OC): determined by the lowest score among AUCMaxent and TSSMaxent – area under the curve (AUC); true 
skill statistics (TSS). In parenthesis the number of records used to fit the models. 
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Figure A.10 – Fuzzy similarity of the habitat suitability maps produced by GAM and Maxent models for Octocorallia 
(Alcyonacea). Local fuzzy matching (LF): computes the fuzzy matching of GAM and Maxent suitable cells using two 
membership functions (i) category similarity and (ii) distance decay. Fuzzy matching values greater than 0.5 means 
that the two cells are more similar than different. Overall similarity (OS): determined by the improved fuzzy kappa 
score for high quality cells (FkHC). The score measures the degree of overlap of GAM and Maxent high confidence 
cells.  
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Figure A.11 – Habitat suitability maps produced by GAMs for Scleractinia (a-c), Anthoathecata (c) and Antipatharia 
(e). Local confidence (LC): the number of times a cell is classified as suitable when models are fitted with resampled 
input data. Overall confidence (OC): determined by the lowest score among AUCGAM and TSSGAM – area under the 
curve (AUC); true skill statistics (TSS). In parenthesis the number of records used to fit the models. 
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Figure A.12 – Habitat suitability maps produced by Maxent models for Scleractinia (a-c), Anthoathecata (c) and 
Antipatharia (e). Local confidence (LC): the number of times a cell is classified as suitable when models are fitted 
with resampled input data. Overall confidence (OC): determined by the lowest score among AUCMaxent and TSSMaxent 
– area under the curve (AUC); true skill statistics (TSS). In parenthesis the number of records used to fit the models.  
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Figure A.13 – Fuzzy similarity of the habitat suitability maps produced by GAM and Maxent models for Scleractinia 
(a-c), Anthoathecata (c) and Antipatharia (e). Local fuzzy matching (LF): computes the fuzzy matching of GAM and 
Maxent suitable cells using two membership functions (i) category similarity and (ii) distance decay. Fuzzy matching 
values greater than 0.5 means that the two cells are more similar than different. Overall similarity (OS): determined 
by the improved fuzzy kappa score for high quality cells (FkHC). The score measures the degree of overlap of GAM 
and Maxent high confidence cells. 
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Figure A.14 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor seawater chemistry. 
Percentage values represent the permutation variable importance (in bold values > 10 %). Shared important 
variables are colored in red. Species are ordered according to the mean depth of their estimated suitable habitat. 
HSI: Habitat Suitability Index.  
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Figure A.15 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor seafloor 
temperature. Percentage values represent the permutation variable importance (in bold values > 10 %). Shared 
important variables are colored in red. Species are ordered according to the mean depth of their estimated suitable 
habitat. HSI: Habitat Suitability Index.  
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Figure A.16 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor POC flux 
(Particulate Organic Carbon flux). Percentage values represent the permutation variable importance (in bold values 
> 10 %). Shared important variables are colored in red. Species are ordered according to the mean depth of their 
estimated suitable habitat. HSI: Habitat Suitability Index.  
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Figure A.17 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor oxygen saturation. 
Percentage values represent the permutation variable importance (in bold values > 10 %). Shared important 
variables are colored in red. Species are ordered according to the mean depth of their estimated suitable habitat. 
HSI: Habitat Suitability Index.  
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Figure A.18 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor slope. Percentage 
values represent the permutation variable importance (in bold values > 10 %). Shared important variables are 
colored in red. Species are ordered according to the mean depth of their estimated suitable habitat. HSI: Habitat 
Suitability Index.  
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Figure A.19 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor BPI 5 km 
(Bathymetric Position Index computed on a 5 km radius). Percentage values represent the permutation variable 
importance (in bold values > 10 %). Shared important variables are colored in red. Species are ordered according to 
the mean depth of their estimated suitable habitat. HSI: Habitat Suitability Index.  
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Figure A.20 – Response curves for GAM (solid lines) and Maxent (dashed lines) models, predictor BPI 20 km 
(Bathymetric Position Index computed on a 20 km radius). Percentage values represent the permutation variable 
importance (in bold values > 10 %). Shared important variables are colored in red. Species are ordered according to 
the mean depth of their estimated suitable habitat. HSI: Habitat Suitability Index.  
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Figure A.21 – Response curves for GAM (solid lines) and Maxent (dashed lines) models regarding the predictor 
bottom current speed. Percentage values represent the permutation variable importance (in bold values > 10 %). 
Shared important variables are colored in red. Species are ordered according to the mean depth of their estimated 
suitable habitat. HSI: Habitat Suitability Index.  
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Figure A.22 – Overlapping habitat suitability predictions. 
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Appendix B   
Supplementary data Chapter 3 
 

B.1 Input data 

 

Table B.1 – Video surveys that provided the data used in the present study. Remotely operated vehicle (ROV). 

Cruise name Vessel Year System Platform 

Meteor Cruise M 58/3 RV Meteor 2003 ROV QUEST  

EMEPC/LUSO/G3 NRP Gago Coutinho 2008 ROV LUSO 

Treasure 2014 RV Pelagia 2014 Tow-cam Hopper 

Biometore NI Arquipélago 2015 ROV LUSO 

MEDWAVES RV Sarmiento de Gamboa 2016 ROV Liropus 

Treasure 2016 RV Pelagia 2016 Tow-cam Hopper 

MapGES 2018 NI Arquipélago 2018 Drift-cam Azor 

Blue Azores 2018 NRP Gago Coutinho 2018 ROV LUSO 

Nico 2018 RV Pelagia 2018 Tow-cam Hopper 

Greenpeace Pole-to-Pole MV L’Esperanza 2019 ROV SEAEYE COUGAR-XT 

MapGES 2019 NI Arquipélago 2019 Drift-cam Azor 

Rainbow 2019 RV Pelagia 2019 Tow-cam Hopper 

iMAR 2021/Eurofleets+ RV Pelagia 2021 Tow-cam Hopper 
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Table B.2 – Sampling stations. Each station has the following characteristics: (i) it is represented by the central 
coordinates of a cell of the model grid (~1 km2); (ii) it can contain one or more video transects; (iii) it has at least one 
presence record. Species IDs are relative to Table 3.1. 

Station x y Depth Cruise Species IDs 

1 -29.19 42.46 -1079 iMAR 2021/Eurofleets+ 1; 9; 24 

2 -29.12 42.46 -1310 iMAR 2021/Eurofleets+ 1; 6; 22; 24; 26 

3 -29.2 42.45 -1039 iMAR 2021/Eurofleets+ 1; 4; 9; 22; 24; 25 

4 -29.19 42.45 -1040 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 22; 24; 25; 26 

5 -29.12 42.45 -1021 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 17; 22; 24; 25; 26 

6 -29.2 42.44 -855 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 22; 24; 25; 26 

7 -29.2 42.43 -825 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 11; 24; 25; 26 

8 -29.51 41.98 -1161 iMAR 2021/Eurofleets+ 1; 9; 22; 24 

9 -29.51 41.97 -1074 iMAR 2021/Eurofleets+ 1; 4; 6; 8; 9; 11; 13; 17; 22; 23; 24; 25; 26 

10 -29.51 41.96 -1209 iMAR 2021/Eurofleets+ 1; 6; 8; 9; 10; 11; 25 

11 -29.51 41.95 -1178 iMAR 2021/Eurofleets+ 8 

12 -29.43 41.93 -1061 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 13; 22; 24; 25; 26 

13 -29.43 41.92 -958 iMAR 2021/Eurofleets+ 1; 6; 9; 11; 13; 24; 25; 26 

14 -29.43 41.91 -967 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 11; 24; 26 

15 -29.52 40.75 -1119 iMAR 2021/Eurofleets+ 1; 6; 9; 24; 25 

16 -29.5 40.75 -1020 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 17; 24; 25; 26 

17 -29.69 40.74 -812 iMAR 2021/Eurofleets+ 8; 11; 21; 23; 24; 25 

18 -29.52 40.74 -1017 iMAR 2021/Eurofleets+ 1; 6; 9; 15; 17; 24; 25; 26 

19 -29.69 40.73 -844 iMAR 2021/Eurofleets+ 1; 6; 9; 11; 23; 24; 25; 26 

20 -29.68 40.73 -1105 iMAR 2021/Eurofleets+ 1 

21 -29.52 40.73 -974 iMAR 2021/Eurofleets+ 1; 6; 9; 15; 22; 24; 25; 26 

22 -29.68 40.72 -1264 iMAR 2021/Eurofleets+ 1; 9; 22; 25 

23 -29.35 40.46 -673 iMAR 2021/Eurofleets+ 2; 9; 10; 11; 13; 14; 24; 25; 26 

24 -29.36 40.45 -867 iMAR 2021/Eurofleets+ 14; 16; 17; 19; 21; 25 

25 -29.35 40.45 -732 iMAR 2021/Eurofleets+ 21 

26 -29.32 40.44 -813 iMAR 2021/Eurofleets+ 1; 6; 8; 9; 11; 13; 15; 17; 22; 23; 24; 25; 26 

27 -29.32 40.43 -973 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 11; 13; 22; 23; 24; 25; 26 

28 -29.32 40.42 -1049 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 13; 15; 20; 22; 24; 25; 26 

29 -29.32 40.41 -1019 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 11; 13; 15; 16; 17; 22; 24; 25; 26 

30 -29.72 40.4 -1844 iMAR 2021/Eurofleets+ 1; 4; 6; 8; 9; 17; 24; 25; 26 

31 -29.32 40.4 -1080 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 13; 24; 25; 26 

32 -29.72 40.39 -1800 iMAR 2021/Eurofleets+ 6; 8; 9; 17; 21; 25 

33 -29.88 39.74 -1171 iMAR 2021/Eurofleets+ 1; 6; 9; 24; 25; 26 

34 -29.86 39.72 -1229 iMAR 2021/Eurofleets+ 1; 9; 15; 22; 24; 25; 26 

35 -29.86 39.71 -1190 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 11; 13; 15; 22; 23; 24; 25; 26 

36 -29.87 39.7 -874 iMAR 2021/Eurofleets+ 1; 6; 8; 9; 11; 13; 15; 17; 19; 20; 22; 23; 24; 25; 26 
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Station x y Depth Cruise Species IDs 

37 -29.86 39.7 -1219 iMAR 2021/Eurofleets+ 1; 6; 9; 11; 23; 24; 25; 26 

38 -29.87 39.69 -807 iMAR 2021/Eurofleets+ 1; 8; 11; 23; 24; 25 

39 -29.44 39.63 -916 MapGES 2019 2; 8; 10; 11; 13; 14; 25 

40 -29.41 39.62 -725 MapGES 2019 2; 8; 10; 11; 25; 26 

41 -29.4 39.62 -787 MapGES 2019 2; 8; 10; 11 

42 -29.38 39.62 -901 MapGES 2019 2; 8; 10; 15 

43 -29.34 39.62 -874 MapGES 2019 2; 8; 11; 13 

44 -29.38 39.61 -739 MapGES 2019 2; 8; 10; 11; 13; 25 

45 -29.37 39.61 -643 MapGES 2019 8; 14; 15; 21 

46 -29.38 39.6 -756 MapGES 2019 8; 13; 14; 15; 16; 19; 21; 25 

47 -29.37 39.6 -584 MapGES 2019 8; 14; 16; 17; 21; 25 

48 -29.36 39.6 -600 MapGES 2019 8; 13; 14; 19 

49 -29.34 39.6 -588 MapGES 2019 14 

50 -29.33 39.6 -627 MapGES 2019 8 

51 -29.32 39.6 -769 MapGES 2019 8; 13; 15; 17; 25 

52 -29.36 39.59 -691 MapGES 2019 2; 14 

53 -29.34 39.59 -599 MapGES 2019 8; 14 

54 -29.32 39.59 -620 MapGES 2019 8; 13; 14; 15; 21; 25 

55 -29.7 39.3 -1055 iMAR 2021/Eurofleets+ 1; 10; 11; 22; 23; 24; 25; 26 

56 -29.71 39.29 -1029 iMAR 2021/Eurofleets+ 24 

57 -29.7 39.29 -991 iMAR 2021/Eurofleets+ 1; 8; 9; 10; 11; 19; 20; 22; 23; 24; 25; 26 

58 -29.78 39.27 -1276 iMAR 2021/Eurofleets+ 1; 13; 22; 25; 26 

59 -29.71 39.28 -917 iMAR 2021/Eurofleets+ 1; 8; 9; 11; 17; 22; 23; 24; 25; 26 

60 -29.78 39.26 -1253 iMAR 2021/Eurofleets+ 1; 4; 6; 9; 13; 22; 24; 25; 26 

61 -29.71 39.27 -830 iMAR 2021/Eurofleets+ 1; 19; 22; 23; 24; 25; 26 

62 -29.78 39.25 -1146 iMAR 2021/Eurofleets+ 1; 6; 9; 13; 15; 23; 24; 25; 26 

63 -29.91 39.05 -702 MapGES 2019 15; 17; 19; 21; 25; 26 

64 -29.91 39.04 -686 MapGES 2019 19; 21; 25 

65 -29.92 39.01 -789 Blue Azores 2018 2; 10; 11; 13; 14; 15; 16; 17; 19; 21; 24; 25; 26 

66 -29.9 39.01 -752 MapGES 2019 3; 14; 15; 18; 19; 21 

67 -29.92 39 -550 Blue Azores 2018 3; 5; 7; 14; 15; 17; 18; 19; 21; 25 

68 -29.9 39 -456 MapGES 2019 3; 5; 14; 15; 16; 18; 19; 20; 21 

69 -29.9 38.99 -275 MapGES 2019 2; 3; 7; 14; 15; 18; 19; 20; 21 

70 -29.88 38.99 -366 MapGES 2019 2; 3; 7; 14; 20; 21 

71 -29.92 38.98 -733 Blue Azores 2018 3 

72 -29.91 38.98 -509 MapGES 2019 3; 5; 6; 14; 15; 16; 18; 19; 20; 21 

73 -29.9 38.98 -404 MapGES 2019 6; 14; 15; 18; 21 

74 -29.88 38.98 -367 MapGES 2019 2; 3; 7; 14; 21 

75 -29.87 38.98 -305 MapGES 2019 2; 3; 7; 12; 14 
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Station x y Depth Cruise Species IDs 

76 -29.86 38.98 -373 Blue Azores 2018 14 

77 -29.85 38.98 -351 Blue Azores 2018 2; 3; 5; 14; 15; 18; 21 

78 -29.83 38.98 -657 Blue Azores 2018 2; 10; 11; 13; 14; 17; 19; 25; 26 

79 -30.11 38.97 -994 iMAR 2021/Eurofleets+ 1; 4; 9; 13; 15; 22; 23; 24; 25; 26 

80 -29.9 38.97 -680 MapGES 2019 6; 14; 15; 16; 21 

81 -29.86 38.97 -613 Blue Azores 2018 3; 5; 14; 15; 17; 18; 21; 24 

82 -29.84 38.97 -605 Blue Azores 2018 3; 24 

83 -30.11 38.96 -937 iMAR 2021/Eurofleets+ 1; 13; 21; 22; 23; 24; 25; 26 

84 -30.1 38.95 -826 iMAR 2021/Eurofleets+ 1; 8; 10; 11; 17; 19; 25; 26 

85 -30.12 38.94 -814 iMAR 2021/Eurofleets+ 8; 17; 25 

86 -30.1 38.94 -933 iMAR 2021/Eurofleets+ 2; 17; 19; 21; 25 

87 -30 38.92 -691 MapGES 2019 8; 11; 19; 25 

88 -30 38.91 -712 MapGES 2019 8; 10; 11; 17; 19; 24; 25; 26 

89 -30.11 38.87 -973 iMAR 2021/Eurofleets+ 1; 13; 22; 23; 24; 25; 26 

90 -30.11 38.86 -1152 iMAR 2021/Eurofleets+ 1; 6; 9; 13; 17; 22; 24; 25; 26 

91 -30.11 38.85 -1311 iMAR 2021/Eurofleets+ 1; 6; 9; 13; 22; 24; 25; 26 

92 -30.04 38.75 -757 Blue Azores 2018 11; 14; 19; 25; 26 

93 -30.04 38.74 -468 Blue Azores 2018 3; 5; 7; 14; 17; 19 

94 -30.02 38.74 -487 MapGES 2019 14; 19; 21 

95 -29.98 38.74 -639 MapGES 2019 14; 21 

96 -30.02 38.73 -306 MapGES 2019 2; 3; 7; 14; 15; 18; 19; 21 

97 -29.99 38.73 -264 MapGES 2019 2; 3; 14; 20; 21 

98 -30.22 38.71 -688 Blue Azores 2018 8; 11; 13; 14; 15; 16; 21; 25 

99 -30.02 38.72 -455 Blue Azores 2018 5; 14; 15; 16; 19; 21; 25 

100 -30 38.72 -389 
Blue Azores 2018; MapGES 
2019 3; 5; 14; 15; 19; 21 

101 -29.99 38.72 -361 MapGES 2019 5; 14; 15; 16; 19; 21 

102 -29.96 38.72 -359 Blue Azores 2018 2; 3; 5; 10; 14; 15; 18; 19; 20; 21 

103 -29.95 38.72 -625 Blue Azores 2018 15; 17; 21 

104 -30.24 38.7 -619 
Blue Azores 2018; MapGES 
2019 3; 5; 6; 8; 11; 14; 15; 16; 21 

105 -30.22 38.7 -682 Blue Azores 2018 3; 5; 8; 10; 13; 14; 15; 16; 21; 25 

106 -29.99 38.71 -667 MapGES 2019 14; 19 

107 -30.25 38.69 -647 MapGES 2019 3; 14; 15; 19; 21 

108 -30.24 38.69 -503 MapGES 2019 3; 5; 14; 15; 16; 17; 18; 19; 20; 21 

109 -30.25 38.68 -605 MapGES 2019 5; 8; 14; 15; 16; 21 

110 -30.24 38.68 -724 MapGES 2019 5; 14; 15; 16; 21 

111 -30.09 38.69 -616 MapGES 2019 25 

112 -30.25 38.67 -591 MapGES 2019 5; 8; 13; 14; 15; 21; 25 

113 -30.11 38.68 -757 MapGES 2019 14; 15; 16; 19; 21 
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114 -30.11 38.67 -542 MapGES 2019 8; 13; 14; 16; 21 

115 -27.35 38.67 -626 Nico 2018 14 

116 -26.86 38.67 -422 EMEPC/LUSO/G3 2; 7; 8; 14 

117 -27.35 38.66 -894 Nico 2018 1; 8 

118 -27.31 38.64 -793 Nico 2018 4; 8; 13 

119 -28.12 38.61 -908 EMEPC/LUSO/G3 6; 8; 9 

120 -28.1 38.61 -505 EMEPC/LUSO/G3 6; 8; 9; 11; 14 

121 -28.09 38.59 -1125 EMEPC/LUSO/G3 1; 4; 6; 8; 9; 13 

122 -28.08 38.59 -1072 EMEPC/LUSO/G3 8 

123 -29.05 38.55 -222 Greenpeace Pole-to-Pole 3; 14 

124 -27.45 38.55 -1094 Nico 2018 1 

125 -27.44 38.55 -1278 Nico 2018 1 

126 -27.93 38.53 -649 EMEPC/LUSO/G3 1; 6; 8; 9; 14 

127 -27.47 38.54 -788 Nico 2018 10; 11 

128 -27.45 38.54 -976 Nico 2018 1; 8; 10; 11 

129 -27.47 38.53 -744 Nico 2018 1; 2; 8; 10; 11; 14 

130 -27.48 38.52 -1200 Nico 2018 1 

131 -27.47 38.52 -1063 Nico 2018 1; 8 

132 -31.87 38.41 -1121 Meteor Cruise M 58/3 9 

133 -31.02 38.33 -632 MapGES 2019 2; 15; 16; 21; 25 

134 -30.69 38.34 -581 MapGES 2019 17; 25 

135 -30.67 38.34 -667 MapGES 2019 5; 13; 14; 15; 16; 18; 19; 21; 25 

136 -30.66 38.34 -905 iMAR 2021/Eurofleets+ 1; 11; 13; 16; 17; 25; 26 

137 -31.05 38.32 -687 MapGES 2019 2; 10; 11 

138 -31.03 38.32 -633 MapGES 2019 2; 5; 8; 10; 11; 13; 14; 15; 17; 20; 21; 25 

139 -31.02 38.32 -591 MapGES 2019 5; 8; 13; 14; 15; 16; 21; 25 

140 -30.69 38.33 -539 MapGES 2019 5; 8; 14; 15; 16; 21; 25; 26 

141 -30.67 38.33 -843 iMAR 2021/Eurofleets+ 1; 22; 25; 26 

142 -30.63 38.33 -627 MapGES 2019 5; 13; 14; 15; 16; 17; 19; 21; 25 

143 -31.06 38.31 -760 MapGES 2019 10; 11; 15 

144 -31.05 38.31 -654 MapGES 2019 2; 5; 8; 10; 11; 13; 14; 15; 17; 21; 25; 26 

145 -30.69 38.32 -645 iMAR 2021/Eurofleets+ 11; 25; 26 

146 -30.67 38.32 -799 iMAR 2021/Eurofleets+ 22; 23; 25; 26 

147 -30.66 38.32 -615 MapGES 2019 4; 5; 13; 14; 15; 16; 17; 21; 22; 24; 25 

148 -30.72 38.31 -455 MapGES 2019 5; 14; 15; 16; 17; 18; 19; 21 

149 -30.71 38.31 -423 MapGES 2019 3; 12; 14; 15; 19; 21 

150 -30.68 38.31 -691 iMAR 2021/Eurofleets+ 6; 9; 11; 17; 18; 22; 23; 25; 26 

151 -30.67 38.31 -718 MapGES 2019 17; 22; 25 

152 -30.66 38.31 -546 MapGES 2019 3; 5; 14; 15; 16; 19; 21 
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153 -30.54 38.31 -850 iMAR 2021/Eurofleets+ 1; 9; 11; 15; 24; 25; 26 

154 -28.28 38.36 -814 Blue Azores 2018 24 

155 -30.75 38.3 -737 MapGES 2019 24; 26 

156 -30.71 38.3 -518 MapGES 2019 14 

157 -30.7 38.3 -714 MapGES 2019 14; 15; 16 

158 -30.65 38.3 -415 MapGES 2019 5; 14; 15; 18; 19; 21 

159 -30.56 38.3 -955 iMAR 2021/Eurofleets+ 15; 24; 25 

160 -30.54 38.3 -749 iMAR 2021/Eurofleets+ 2; 10; 11; 15; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26 

161 -30.12 38.32 -458 MapGES 2019 10; 11; 13; 14; 15; 17; 19; 21; 24; 25; 26 

162 -28.27 38.35 -880 Blue Azores 2018 24 

163 -30.74 38.29 -501 MapGES 2019 5; 14; 15; 16; 19; 21; 25 

164 -30.72 38.29 -493 MapGES 2019 2; 3; 7; 12; 14; 15; 16; 18; 19; 20; 21; 25 

165 -30.63 38.29 -440 MapGES 2019 5; 8; 14; 25 

166 -30.55 38.29 -795 iMAR 2021/Eurofleets+ 11; 24 

167 -30.09 38.31 -473 MapGES 2019 2; 3; 12; 14; 15; 16; 18; 19; 21 

168 -30.1 38.29 -527 MapGES 2019 14; 15; 16; 19; 21 

169 -30.09 38.29 -578 MapGES 2019 2; 14; 15; 16; 17; 19; 21; 25 

170 -30.11 38.28 -756 MapGES 2019 10; 15; 21; 25; 26 

171 -30.09 38.28 -661 MapGES 2019 2; 14 

172 -30.33 38.21 -702 MapGES 2019 2; 8; 10; 11; 13; 17; 21; 25; 26 

173 -30.34 38.2 -641 MapGES 2019 2; 8; 10; 11; 14; 17; 19; 21; 25; 26 

174 -30.33 38.2 -589 MapGES 2019 8; 10; 11; 13; 17; 21; 25 

175 -30.42 38.19 -830 MapGES 2019 6; 17; 24; 25 

176 -30.34 38.19 -571 MapGES 2019 2; 5; 8; 14; 15; 16; 21 

177 -30.33 38.19 -611 MapGES 2019 2; 14 

178 -30.32 38.19 -652 MapGES 2019 8; 10; 11; 13; 15; 17; 18; 19; 21; 22; 24; 25 

179 -30.3 38.19 -780 MapGES 2019 10; 11; 25 

180 -26.62 38.24 -406 MapGES 2018 2; 3; 14 

181 -26.59 38.24 -373 MapGES 2018 2; 14 

182 -26.57 38.24 -586 EMEPC/LUSO/G3 14 

183 -26.56 38.24 -740 EMEPC/LUSO/G3 2; 4; 8; 11; 14 

184 -26.22 38.23 -502 MapGES 2018 2; 14 

185 -30.42 38.18 -738 MapGES 2019 6; 8; 10; 11; 15; 21; 25 

186 -26.22 38.22 -624 MapGES 2018 14 

187 -26.21 38.22 -659 MapGES 2018 14 

188 -26.57 38.21 -407 MapGES 2018 2; 3; 12; 14 

189 -26.56 38.21 -516 MapGES 2018 2; 3; 12; 14 

190 -31.23 37.87 -722 MapGES 2019 5; 14; 15; 16; 21; 25 

191 -31.22 37.87 -674 MapGES 2019 2; 14; 15; 16; 20; 21 
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192 -31.52 37.85 -960 EMEPC/LUSO/G3 4 

193 -31.23 37.86 -534 MapGES 2019 2; 14; 15; 16; 19; 20 

194 -31.21 37.86 -567 MapGES 2019 14; 21 

195 -31.23 37.85 -618 MapGES 2019 2; 14; 25 

196 -31.24 37.84 -827 MapGES 2019 8; 13; 14; 15; 16; 19; 21; 25 

197 -31.23 37.84 -641 MapGES 2019 2; 8; 13; 14; 15; 21; 25 

198 -30.85 37.78 -779 MapGES 2019 8; 13; 14; 15; 25 

199 -30.84 37.78 -687 MapGES 2019 8; 14; 15; 16; 17; 18; 21; 25 

200 -30.85 37.77 -515 MapGES 2019 8; 13; 14; 15; 16; 19; 21; 25 

201 -30.84 37.77 -583 MapGES 2019 14; 15; 16; 21; 25 

202 -30.84 37.76 -650 MapGES 2019 14; 15; 16; 21; 25 

203 -25.81 37.72 -432 EMEPC/LUSO/G3 2; 3; 7; 14 

204 -25.81 37.71 -600 EMEPC/LUSO/G3 14 

205 -30.79 37.53 -555 MapGES 2019 14; 15; 19; 21 

206 -30.77 37.53 -419 MapGES 2019 14; 15; 19; 21 

207 -30.76 37.53 -458 MapGES 2019 3; 7; 12; 14; 15; 18; 19; 20; 21 

208 -30.7 37.53 -438 MapGES 2019 14; 15; 18; 19; 20; 21 

209 -30.77 37.52 -412 MapGES 2019 2; 3; 7; 9; 12; 14; 15; 18; 19; 20; 21 

210 -30.76 37.52 -301 MapGES 2019 2; 3; 7; 12; 14; 15; 18; 20; 21 

211 -30.72 37.52 -413 MapGES 2019 2; 3; 7; 12; 14; 15; 17; 18; 19; 20; 21; 25 

212 -30.7 37.52 -592 MapGES 2019 2; 14; 15; 16; 18; 19; 20; 21 

213 -30.59 37.52 -495 MapGES 2019 14; 15; 16; 18; 19; 20; 21 

214 -30.58 37.52 -472 MapGES 2019 2; 14; 15; 16; 18; 19; 20; 21 

215 -30.72 37.51 -616 MapGES 2019 15; 16; 19; 20; 21 

216 -30.58 37.51 -593 MapGES 2019 14; 15; 19 

217 -30.85 37.49 -532 MapGES 2019 2; 5; 14; 15; 16; 17; 18; 19; 20; 21 

218 -30.81 37.49 -733 MapGES 2019 15; 16; 17; 19; 21; 25 

219 -32.9 37.4 -523 Rainbow 2019 2; 5; 12; 14; 15; 16; 18; 19; 21 

220 -30.86 37.48 -598 MapGES 2019 2; 5; 15; 16; 19; 20; 21; 25 

221 -30.85 37.48 -474 MapGES 2019 2; 5; 7; 12; 14; 15; 16; 18; 19; 20; 21 

222 -30.84 37.48 -632 MapGES 2019 2; 12; 14; 15; 19; 20; 21 

223 -32.97 37.38 -509 Rainbow 2019 3; 12; 14; 15; 16; 17; 18; 19; 20; 21 

224 -32.91 37.39 -585 Rainbow 2019 2; 5; 8; 12; 13; 14; 15; 21 

225 -32.9 37.39 -528 Rainbow 2019 2; 5; 12; 14; 15; 18; 19; 21 

226 -32.99 37.37 -469 Rainbow 2019 3; 14; 19; 21 

227 -32.97 37.37 -639 Rainbow 2019 3; 12; 14; 15; 19; 20; 21 

228 -32.92 37.38 -836 Rainbow 2019 6; 10; 11; 17; 18; 21; 24; 25; 26 

229 -32.91 37.38 -666 Rainbow 2019 2; 5; 8; 10; 11; 13; 14; 15; 16; 17; 18; 24; 25 

230 -32.03 37.41 -739 MapGES 2019 14; 16 
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231 -32.04 37.4 -551 MapGES 2019 5; 14; 15; 16; 21; 25 

232 -32.03 37.4 -571 MapGES 2019 5; 14 

233 -32.04 37.39 -562 MapGES 2019 5; 14; 15; 21 

234 -24.77 37.35 -1394 MedWaves 1 

235 -24.74 37.34 -1422 MedWaves 1 

236 -24.57 37.34 -971 MedWaves 9 

237 -24.77 37.34 -1085 MedWaves 1 

238 -24.74 37.33 -1274 MedWaves 1; 8; 9; 11 

239 -31.38 37.18 -582 MapGES 2019 15; 21 

240 -31.47 37.17 -525 MapGES 2019 14; 15; 17; 20; 21 

241 -31.46 37.17 -465 MapGES 2019 14; 15; 20; 21 

242 -31.43 37.17 -396 MapGES 2019 14; 15; 16; 18; 19; 20; 21 

243 -24.67 37.21 -607 MedWaves 4; 8; 10; 11 

244 -24.65 37.21 -645 MedWaves 1; 4; 8; 10; 11 

245 -24.62 37.21 -824 MedWaves 4; 8; 10; 11 

246 -24.63 37.2 -912 MedWaves 1; 4; 6; 8; 9; 10; 11 

247 -24.62 37.2 -952 MedWaves 1; 8; 9; 10; 11 

248 -24.63 37.19 -1185 MedWaves 1; 4; 6; 8; 9; 11 

249 -24.63 37.18 -1212 MedWaves 1; 6; 10; 11 

250 -24.63 37.17 -1261 MedWaves 1; 4; 6; 7; 8; 11; 24 

251 -24.63 37.16 -1333 MedWaves 1; 6; 11 

252 -25.64 37.17 -336 MapGES 2018 3; 14 

253 -24.63 37.15 -1500 MedWaves 1; 4; 6 

254 -25.65 37.15 -361 MapGES 2018 3; 14 

255 -25.64 37.15 -468 MapGES 2018 3; 14 

256 -32.55 36.82 -827 Nico 2018 2; 6; 8; 10; 11; 13; 15; 17; 19; 21; 22; 24; 25; 26 

257 -32.54 36.82 -605 Nico 2018 2; 6; 8; 13; 21; 25 

258 -32.56 36.81 -678 Nico 2018 2; 10; 11; 13; 15; 17; 21; 22; 24; 25 

259 -32.55 36.81 -732 Nico 2018 8; 10; 11; 13; 16; 17; 19; 21; 22; 24; 25; 26 

260 -33.87 36.45 -1026 Treasure 2014 1; 17; 24 

261 -33.87 36.44 -818 Treasure 2014 1; 8; 17; 18; 19; 21; 24; 25; 26 

262 -33.86 36.44 -608 Treasure 2016 8; 14; 16; 21 

263 -33.87 36.43 -538 Treasure 2014 5; 14; 15; 17; 18; 19; 20; 21 

264 -33.88 36.42 -651 Treasure 2016 5; 14; 15; 16; 19 

265 -33.87 36.42 -586 Treasure 2016 5; 14; 15; 19 

266 -33.89 36.41 -880 Treasure 2016 14 

267 -33.88 36.41 -613 Treasure 2016 2; 5; 8; 14; 15; 16; 17; 19; 21; 26 

268 -33.9 36.4 -1123 Treasure 2016 24 

269 -33.89 36.4 -774 Treasure 2016 1; 2; 8; 9; 11; 14; 15; 16; 17; 19; 21; 24; 25; 26 
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270 -33.89 36.39 -1096 Treasure 2016 8; 9; 17; 21; 22; 24; 25; 26 

271 -33.77 36.04 -1334 Treasure 2016 24; 26 

272 -33.76 36.04 -907 Treasure 2016 6; 24; 26 

273 -33.76 36.03 -804 Treasure 2016 2; 6; 13; 17; 19; 21; 23; 24; 25; 26 

274 -27.45 34.92 -1159 Biometore 1 

275 -30.31 34.15 -366 Biometore 2; 8; 9; 12; 14 

276 -30.32 34.1 -721 Biometore 1 

277 -28.38 33.99 -1101 Biometore 9 

278 -28.36 33.97 -837 Biometore 4; 9 

279 -28.35 33.96 -781 Biometore 9 

280 -30.15 33.91 -991 Biometore 1 

281 -28.35 33.95 -835 Biometore 9 
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Figure B.1 – Pair-wise Pearson’s correlation coefficient (r) among all candidate variables. (*) Variables used to select 
and develop the species archetype models. Abbreviations and units of measurement: depth (m), bathymetric 
position index (BPI), slope (º), particulate organic carbon (POC) flux (mg Corg m−2 d−1), temperature (ºC), dissolved 
oxygen (dissolved ox.; mL L−1), oxygen utilization (ox. utilization; mL L−1), oxygen saturation (ox. saturation; %), 
aragonite (Ωar), calcite (Ωca), 1st principal component of aragonite and calcite (PC1 carbonate), nitrate (µmol/l), 
phosphate (µmol/l), silicate (µmol/l) and 1st principal component of water nutrients (PC1 nutrients). 
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Figure B.2 – Circle of correlation after the principal component analysis of nutrient concentrations (nitrate, 
phosphate and silicate) with contributions of variables to PC1 and PC2 axes.  

  



APPENDIX B 
 

 

199 

 

 

Figure B.3 – Environmental layers used to select and develop the species archetype model. (a) depth (m); (b) 
bathymetric position index with a 20 km radius (BPI20); (c) slope (º); (d) particulate organic carbon (POC) flux (mg 
Corg m-2 d-1); (e) first principal component of the principal component analysis of water nutrients (nitrate, phosphate 
and silicate) (PC1 nutrients); bottom oxygen saturation (%). The plots display only locations shallower than 2000 m. 
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B.2 Dummy absences 

 

Table B.3 – Dummy absences used to develop the species archetype models. Abbreviations and units of 
measurement: depth (m); bathymetric position index with a 20 km radius (BPI20); slope (º); particulate organic 
carbon (POC) flux (mg Corg m-2 d-1); first principal component of the principal component analysis of water nutrients 
(nitrate, phosphate and silicate) (PC1 Nu); bottom oxygen saturation (BOX; %).   

ID x y Depth POC Slope BPI20 PC1 Nu BOX 

1 -31.53 39.22 -1470.56 14.73 0.5 25.28 -2.09 78.61 

2 -27.5 39.53 -1746.4 15.76 0.76 -35.05 -1.87 83.36 

3 -30.15 40.2 -1777.13 17.39 0.19 -88.41 -1.97 82.22 

4 -28.03 38.05 -1832.16 13.01 0.28 -38.89 -1.94 82.79 

5 -29.74 37.54 -1473.6 12.05 0.37 56.16 -1.94 72.41 

 

 

 

 

 

Figure B.4 – Locations of the dummy absences. In the background depth values (m). 
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B.3 Model selection 

 

Table B.4 – Forward selection of covariate terms with four archetype groups. The best model is highlighted in bold. 
Abbreviations: bathymetric position index with a 20 km radius (BPI20), particulate organic carbon (POC) flux, first 
principal component of water nutrients (PC1_Nu), bottom oxygen saturation (B_Ox), linear term ([…].1), quadratic 
term ([…].2).  

Order AIC BIC Formula 

1 6665.434 6679.273 ~1 + Depth.1 

2 7265.145 7278.984 ~1 + POC.1 

3 7345.18 7359.019 ~1 + Slope.1 

4 7268.388 7282.227 ~1 + BPI20.1 

5 6694.281 6708.12 ~1 + PC1_Nu.1 

6 7194.32 7208.159 ~1 + B_Ox.1 

7 6378.038 6396.91 ~1 + Depth.1 + Depth.2 

8 7111.653 7130.524 ~1 + POC.1 + POC.2 

9 7300.102 7318.973 ~1 + Slope.1 + Slope.2 

10 7100.954 7119.825 ~1 + BPI20.1 + BPI20.2 

11 6566.099 6584.97 ~1 + PC1_Nu.1 + PC1_Nu.2 

12 7179.786 7198.658 ~1 + B_Ox.1 + B_Ox.2 

13 6317.565 6341.469 ~1 + Depth.1 + Depth.2 + POC.1 

14 6352.609 6376.513 ~1 + Depth.1 + Depth.2 + Slope.1 

15 6359.739 6383.643 ~1 + Depth.1 + Depth.2 + BPI20.1 

16 6359.812 6383.716 ~1 + Depth.1 + Depth.2 + PC1_Nu.1 

17 6338.678 6362.581 ~1 + Depth.1 + Depth.2 + B_Ox.1 

18 6279.355 6308.291 ~1 + Depth.1 + Depth.2 + POC.1 + POC.2 

19 6315.514 6344.45 ~1 + Depth.1 + Depth.2 + Slope.1 + Slope.2 

20 6263.635 6292.571 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 

21 6317.991 6346.927 ~1 + Depth.1 + Depth.2 + PC1_Nu.1 + PC1_Nu.2 

22 6317.752 6346.688 ~1 + Depth.1 + Depth.2 + B_Ox.1 + B_Ox.2 

23 6194.54 6228.509 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 
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24 6237.729 6271.698 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + Slope.1 

25 6240.929 6274.897 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + PC1_Nu.1 

26 6225.765 6259.733 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + B_Ox.1 

27 6174.48 6213.481 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 

28 6220.147 6259.148 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + Slope.1 + Slope.2 

29 6203.672 6242.673 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + PC1_Nu.1 + PC1_Nu.2 

30 6206.785 6245.786 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + B_Ox.1 + B_Ox.2 

31 6144.278 6188.312 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + Slope.1 

32 6151.993 6196.026 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + PC1_Nu.1 

33 6140.086 6184.12 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 

34 6130.81 6179.876 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + Slope.1 + Slope.2 

35 6127.688 6176.753 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + PC1_Nu.1 + 
PC1_Nu.2 

36 6123.506 6172.572 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 

37 6091.94 6146.038 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
Slope.1 

38 6119.491 6173.589 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
PC1_Nu.1 

39 6076.733 6135.864 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
Slope.1 + Slope.2 

40 6119.011 6178.142 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
PC1_Nu.1 + PC1_Nu.2 

41 6074.108 6138.271 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
Slope.1 + Slope.2 + PC1_Nu.1 

42 6072.866 6142.061 ~1 + Depth.1 + Depth.2 + BPI20.1 + BPI20.2 + POC.1 + POC.2 + B_Ox.1 + B_Ox.2 + 
Slope.1 + Slope.2 + PC1_Nu.1 + PC1_Nu.2 
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Appendix C   
Supplementary data Chapter 4 
 

 

C.1 R code to identify the Island Shelf Unit (ISU) 

 

#####################################################################################

############## 

# User-defined classification of raster surfaces: The R package scapesClassification 

 

# ISU script 

# Author: Gerald Hechter Taranto 

 

# A detailed explanation of all classification steps is available on the documentation page  

# https://ghtaranto.github.io/scapesClassification/index.html 

 

 

# Results are plotted only if PLOT is TRUE 

PLOT <- T 

##################################################################################### 

 

#### 1. INSTALL REQUIRED PACKAGES #### 

# install.packages("scapesClassification") 

# install.packages("terra") 

 

# Required for interactive maps  

# install.packages("raster") 

# install.packages("mapview") 



APPENDIX C 
 

 

204 

 

# install.packages("leaflet") 

 

#### 2. LOAD LIBRARIES ####  

library(scapesClassification) 

library(terra) 

 

 

#### 3. PLOTS & INTERACTIVE MAPS 

library(mapview) 

library(leaflet) 

mapviewOptions(basemaps = c("Esri.OceanBasemap"), na.color = "grey88",  

               homebutton = FALSE, query.position = "bottomright", legend.opacity = 0.9, 

               fgb = FALSE) 

 

# palette for background raster  

palRYB <- c("#2892c7", "#fafa64", "#e81014") 

palYGB <- c("#ffff80" ,"#3dba65", "#0d1178") 

palBYR <- c("#4575b5", "#ffffbf", "#d62f27") 

 

#### 3. LOAD DATA ####  

grd <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T) 

grd <- grd[grepl("\\.grd", grd)] 

grd <- grd[!grepl("hillshade", grd)] 

rstack <- rast(grd) 

 

if(PLOT){ 

  plot(rstack, mar = c(3, 1.6, 1.6, 4), cex.main= 1.1, 

       main = c("(a) Bathymetry", "(b) Local BPI", "(c) Regional BPI", "(d) Slope")) 
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  readline(prompt = "Plot input data. Press [enter] to continue.") 

   

} 

 

##################################################################################### 

#### 4. FORMAT INPUTS #### 

##################################################################################### 

 

# COMPUTE ATTRIBUTE TABLE 

atbl <- attTbl(rstack, var_names = c("bathymetry", "local_bpi", "regional_bpi", "slope")) 

 

# COMPUTE NEIGHBORHOOD LIST 

nbs <- ngbList(rstack, rNumb = TRUE, attTbl = atbl) # neighbors are identified by row numbers (see 

?ngbList) 

 

##################################################################################### 

#### 5. ISLAND SHELF UNIT (ISU)  

##################################################################################### 

 

# LOAD SHAPE FILE 

shp <- system.file("extdata", "Azores.shp", package = "scapesClassification") 

 

# EXTRACT LAND POSITIONS 

anchorLAND <-  

  anchor.svo(r = rstack, dsn = shp, only_NAs = TRUE, fill_NAs = TRUE) 

 

# IDENTIFY ANCHOR CELLS 

anchorCELL <-  
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  anchor.cell(attTbl = atbl, r = rstack, anchor = anchorLAND, class = 1,  

              class2cell = FALSE, # class not attributed to land cells 

              class2nbs  = TRUE)  # class attributed to cell adjacent to land cells 

 

# FLAT CELLS 

flatCELLS <-  

  cond.4.nofn(atbl, nbs, rNumb = TRUE, classVector = anchorCELL, # update previous class vector  

              class = 2,          # flat cell class  

              nbs_of = c(1, 2),   # focal cells 

              cond = "slope <= 5",# condition (slope refers to the column `slope` of `atbl`) 

              min.bord = 0.2)     # a test cell is classified only if cond=TRUE AND 

# if at least 20% of its neighbors belong to a shelf cell class 

# HOLE CELLS 

holeCELLS <-  

  cond.4.nofn(atbl, nbs, rNumb = TRUE, classVector = flatCELLS, # update previous class vector 

              class = 3,          # hole cell class   

              nbs_of = c(1, 2, 3),# focal cells 

              cond = "TRUE",      # conditions are always true 

              min.bord = 0.6)     # a test cell is classified only if 60% of its neighbors  

# belong to a shelf cell class   

# SLOPE CELLS  

slopeCELLS <-  

  cond.4.nofn(atbl, nbs, rNumb = TRUE, classVector = holeCELLS, # update previous class vector 

              class = 4,           # slope cell class 

              nbs_of = c(1,2,3,4), # focal cells 

              cond = "regional_bpi > 100 | local_bpi{} > 100", # conditions 

              peval = 0.4)    # minimum number of positive evaluations (neighborhood condition, ?conditions) 
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##################################################################################### 

# 5.1 ISU Interactive map  

##################################################################################### 

 

if(PLOT){ 

 

  # Note that all raster classifications are converted into polygons (as.polygons()) before plotting  

  # for a better visualization. Note also that mapview do not support the terra package yet, therefore  

  # all objects of class terra are converted into objects of class raster before plotting  

  # (as(xx,"Spatial") OR raster::raster(XX)).  

   

  # Land shape file 

  island <- terra::vect(shp) 

   

  # Class vector slopeCELLS contains all classes as it is the last one to be updated 

  unique(slopeCELLS) 

   

  # class = 1, Anchor cell 

  # class = 2, Flat cell 

  # class = 3, Hole cell 

  # class = 4, Slope cell 

   

  # Class vector 2 raster 

  ISU  <- cv.2.rast(rstack, slopeCELLS)  

  LAND <- rstack[[1]]; LAND[]  <- NA; LAND[anchorLAND] <- 1 

   

  # Raster 2 polygon 

  ISU  <- as.polygons(ISU, dissolve = TRUE) 



APPENDIX C 
 

 

208 

 

  LAND <- as.polygons(LAND, dissolve = TRUE) 

  LAND$dummy <- 1 #trick map label 

   

  m <-  

    mapview(as(ISU,"Spatial"), alpha.regions = 0.8, col.regions = 

c("orange","#FFD700","#A0522D","cyan"), 

            layer.name = "ISU", popup = NULL, label = "ISU") + 

    mapview(as(LAND,"Spatial"), alpha.regions = 1,  

            col.regions = "black", layer.name = "Land cell", popup = NULL, label = "LAND") + 

    mapview(raster::raster(rstack[["regional_bpi_exm"]]), layer.name = "Regional BPI", col.regions = 

palBYR) + 

    mapview(raster::raster(rstack[["local_bpi_exm"]]), layer.name = "Local BPI", col.regions = palBYR) +  

    mapview(raster::raster(rstack[["slope_exm"]]), layer.name = "Slope (deg)", col.regions = palYGB) 

   

  m@map %>%  

    hideGroup(c("Local BPI", "Slope (deg)")) %>%  

    addLayersControl(overlayGroups = c("Land cell", "ISU", "Regional BPI", "Local BPI", "Slope (deg)"), 

                     position = "topleft", 

                     options = layersControlOptions(collapsed = TRUE))%>% 

    addMiniMap(tiles = "Esri.OceanBasemap", 

               position = "bottomleft", 

               toggleDisplay = TRUE, 

               zoomLevelOffset = -5) 

   

} 
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C.2 R code to identify the Peak Cells (PKS) 

 

 

# User-defined classification of raster surfaces: The R package scapesClassification 

 

# PKS script 

# Author: Gerald Hechter Taranto 

 

# A detailed explanation of all classification steps is available on the documentation page  

# https://ghtaranto.github.io/scapesClassification/index.html 

 

 

# Results are plotted only if PLOT is TRUE 

PLOT <- T 

##################################################################################### 

 

 

#### 1. INSTALL REQUIRED PACKAGES #### 

# install.packages("scapesClassification") 

# install.packages("terra") 

 

# Required for interactive maps  

# install.packages("raster") 

# install.packages("mapview") 

# install.packages("leaflet") 

 

#### 2. LOAD LIBRARIES ####  

library(scapesClassification) 
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library(terra) 

 

 

#### 3. PLOTS & INTERACTIVE MAPS 

library(mapview) 

library(leaflet) 

mapviewOptions(basemaps = c("Esri.OceanBasemap"), na.color = "grey88",  

               homebutton = FALSE, query.position = "bottomright", legend.opacity = 0.9, 

               fgb = FALSE) 

 

# palette for background raster  

palRYB <- c("#2892c7", "#fafa64", "#e81014") 

palYGB <- c("#ffff80" ,"#3dba65", "#0d1178") 

palBYR <- c("#4575b5", "#ffffbf", "#d62f27") 

 

# hillShade 

hs <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T) 

hs <- rast(hs[grepl("hillshade\\.grd", hs)]) 

 

#### 3. LOAD DATA ####  

grd <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T) 

grd <- grd[grepl("\\.grd", grd)] 

grd <- grd[!grepl("hillshade", grd)] 

rstack <- rast(grd) 

 

if(PLOT){ 

  plot(rstack, mar = c(3, 1.6, 1.6, 4), cex.main= 1.1, col = hcl.colors(50, palette =  "Zissou 1"), 

       main = c("(a) Bathymetry", "(b) Local BPI", "(c) Regional BPI", "(d) Slope")) 
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  readline(prompt = "Plot input data. Press [enter] to continue.") 

} 

 

# Load ISU classification  

ISU <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T, 

                  pattern = "ISU_Cells\\.RDS") 

 

##################################################################################### 

#### 4. FORMAT INPUTS #### 

##################################################################################### 

 

# COMPUTE ATTRIBUTE TABLE 

atbl <- attTbl(rstack, var_names = c("bathymetry", "local_bpi", "regional_bpi", "slope")) 

 

# Use ISU classification as an attribute table filter 

atbl$ISU <- readRDS(ISU) 

atbl$ISU[!is.na(atbl$ISU)] <- 1 # Class 1 identifies all ISU cells 

 

head(atbl) 

 

# COMPUTE NEIGHBORHOOD LIST 

nbs <- ngbList(rstack, rNumb = TRUE, attTbl = atbl) # neighbors are identified by row numbers (see 

?ngbList) 

 

head(nbs) 

 

##################################################################################### 

#### 5. PEAK CELLs (PC)  



APPENDIX C 
 

 

212 

 

##################################################################################### 

 

# PEAK CELL 

atbl$pc <- peak.cell(atbl, nbs, rNumb = TRUE, 

                     p_col = "bathymetry", # column on which local maxima are searched 

                     p_edge = FALSE)       # local maxima or minima are not searched on edge cells 

 

# FILTER PEAK CELL 

 

# Remove: 

# (i)  peak cell within the ISU            -> !is.na(ISU) 

# (ii) peak cell not on prominent features -> BPI < 100 

 

cond <- "regional_bpi < 100 | local_bpi < 100 | !is.na(ISU)" 

 

# Filter 

atbl$pc <- cond.reclass(atbl, nbs, rNumb = TRUE, classVector = atbl$pc, # filter class vector atbl$pc 

                        cond = cond,  # filter condition 

                        class = 1,    # peak cells meeting conditions... 

                        reclass = NA) # are reclassified as NA-cells 

 

##################################################################################### 

# 5.1 PKS Interactive map 

######################################################################### 

##################################################################################### 

 

if(PLOT){ 

 

  # Note that all raster classifications are converted into polygons (as.polygons()) before plotting  
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  # for a better visualization. Note also that mapview do not support the terra package yet, therefore  

  # all objects of class terra are converted into objects of class raster before plotting  

  # (as(xx,"Spatial") OR raster::raster(XX)).  

   

  # Load land cells  

  lc <- readRDS(list.files(system.file("extdata", package = "scapesClassification"),  

                           full.names = T, pattern = "Land_Cells.RDS")) 

  LAND <- rstack[[1]]; LAND[] <- NA; LAND[lc] <- 1 

   

  # Class vector 2 raster 

  PC <- cv.2.rast(rstack, atbl$pc) 

  ISU<- cv.2.rast(rstack, atbl$ISU) 

   

  # Raster 2 polygon 

  PC   <- as.polygons(PC,  dissolve = TRUE) 

  ISU  <- as.polygons(ISU, dissolve = TRUE) 

  LAND <- as.polygons(LAND,dissolve = TRUE) 

   

  PC$dummy   <- 1 #trick map label 

  ISU$dummy <- 1 #trick map label 

  LAND$dummy   <- 1 #trick map label 

   

  m <-  

    mapview(raster::raster(hs), col.regions = c("gray0", "gray50", "grey100"), alpha.regions=1,  

            legend = FALSE, label = FALSE) + 

    mapview(as(PC,"Spatial"), alpha.regions = 0.8,  

            col.regions = "black", layer.name = "Peak cell", popup = NULL, label = "Peak cell") +  

    mapview(as(ISU,"Spatial"), alpha.regions = 1, col.regions = c("gray"), 
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            layer.name = "ISU", popup = NULL, label = "ISU") + 

    mapview(as(LAND,"Spatial"), alpha.regions = 1,  

            col.regions = "black", layer.name = "Land cell", popup = NULL, legend = FALSE) + 

    mapview(raster::raster(rstack[["regional_bpi_exm"]]), layer.name = "Regional BPI", col.regions = 

palRYB) + 

    mapview(raster::raster(rstack[["bathymetry_exm"]]), layer.name = "Depth (m)", col.regions = palRYB) 

   

  m@map %>%  

    hideGroup(c("Depth (m)")) %>%  

    addLayersControl(overlayGroups = c("Peak cell", "ISU", "Regional BPI", "Depth (m)"), 

                     position = "topleft", 

                     options = layersControlOptions(collapsed = TRUE)) 

} 
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C.3 R code to identify the Relief Units (RUs) 

 

 

# User-defined classification of raster surfaces: The R package scapesClassification 

 

# RU script 

# Author: Gerald Hechter Taranto 

 

# A detailed explanation of all classification steps is available on the documentation page  

# https://ghtaranto.github.io/scapesClassification/index.html 

 

 

# Results are plotted only if PLOT is TRUE 

PLOT <- T 

##################################################################################### 

 

 

#### 1. INSTALL REQUIRED PACKAGES #### 

# install.packages("scapesClassification") 

# install.packages("terra") 

 

# Required for interactive maps & plots 

# install.packages("raster") 

# install.packages("mapview") 

# install.packages("leaflet") 

# install.packages("leafpop") 

# install.packages("data.table") 
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#### 2. LOAD LIBRARIES ####  

library(scapesClassification) 

library(terra) 

 

 

#### 3. PLOTS & INTERACTIVE MAPS 

library(data.table) 

library(mapview) 

library(leaflet) 

library(leafpop) 

 

mapviewOptions(basemaps = c("Esri.OceanBasemap"), na.color = "grey88",  

               homebutton = FALSE, query.position = "bottomright", legend.opacity = 0.9, 

               fgb = FALSE) 

 

# palette for background raster  

palRYB <- c("#2892c7", "#fafa64", "#e81014") 

palYGB <- c("#ffff80" ,"#3dba65", "#0d1178") 

palBYR <- c("#4575b5", "#ffffbf", "#d62f27") 

 

#### 3. LOAD DATA ####  

grd <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T) 

grd <- grd[grepl("\\.grd", grd)] 

grd <- grd[!grepl("hillshade", grd)] 

rstack <- rast(grd) 

 

if(PLOT){ 

  plot(rstack, mar = c(3, 1.6, 1.6, 4), cex.main= 1.1, col = hcl.colors(50, palette =  "Zissou 1"), 
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       main = c("(a) Bathymetry", "(b) Local BPI", "(c) Regional BPI", "(d) Slope")) 

   

  readline(prompt = "Plot input data. Press [enter] to continue.") 

} 

 

# Load ISU and PKS classification  

ISU <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T, 

                  pattern = "ISU_Cells\\.RDS") 

 

PKS <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T,  

                  pattern = "PKS_Cells\\.RDS") 

 

##################################################################################### 

#### 4. FORMAT INPUTS #### 

##################################################################################### 

 

# COMPUTE ATTRIBUTE TABLE 

atbl <- attTbl(rstack, var_names = c("bathymetry", "local_bpi", "regional_bpi", "slope")) 

 

# Use ISU and PKS classification as attribute table filters 

atbl$ISU <- readRDS(ISU) 

atbl$ISU[!is.na(atbl$ISU)] <- 1 # Class 1 identifies all ISU cells 

 

atbl$PKS <- readRDS(PKS) 

 

head(atbl) 

 

# COMPUTE NEIGHBORHOOD LIST 
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nbs <- ngbList(rstack, rNumb = TRUE, attTbl = atbl) # neighbors are identified by row numbers (see 

?ngbList) 

 

head(nbs) 

 

##################################################################################### 

#### 5. RELEF UNIT (RU)  

##################################################################################### 

 

# 1. ANCHOR.SEED 

# Tasks: 

# Identify raster cells on prominent features in connection with peak cells 

# that are not within island shelf units (ISU). 

atbl$RO <-  

  anchor.seed(atbl, nbs, rNumb = TRUE, silent = TRUE, 

                        

              class = NULL, # A new ID is assigned to every 

                            # discrete group of cells... 

                        

              cond.seed   = "PKS == 1", # ...in continuity with peak cells... 

                        

              cond.growth = "regional_bpi >= 100 | local_bpi >=100", # ...that are on prominent features. 

                        

              cond.filter = "is.na(ISU)") # Only consider non-ISU cells  

                                          # on prominent features.   

 

rRO1 <- cv.2.rast(rstack, atbl$RO) # store raster for plotting 

##################################################################################### 

 



APPENDIX C 
 

 

219 

 

# 2. REL.PI 

# Tasks:  

# Compute the standardized relative position index (`rPI`) of each raster object. 

atbl$rPI <- rel.pi(atbl, RO="RO", el="bathymetry") 

##################################################################################### 

 

# 3. PI.SGM 

# Tasks: 

# (i) Segment large raster objects that have negative rPI or negative local bpi; 

# (ii) Remove raster objects with less than 40 cells. 

atbl$RO <-  

  pi.sgm(atbl, nbs, rNumb = TRUE, RO = "RO", mainPI = "rPI", secPI = "local_bpi",  

         cut.mPI = 0, cut.sPI = 0, min.N = 40) 

 

rRO2 <- cv.2.rast(rstack, atbl$RO) # store raster for plotting 

##################################################################################### 

 

# 4. PI.ADD 

# Tasks: 

# Add new raster objects composed of cells with local_bpi>100;  

# An object is added only if it is disjoint from other objects, 

# if it has more than 40 cells and if it is not within the ISU. 

atbl$RO <- pi.add(atbl, nbs, rNumb = TRUE, RO = "RO", mainPI = "local_bpi", add.mPI = 100,  

                  min.N = 40, cond.filter = "is.na(ISU)") 

 

rRO3 <- cv.2.rast(rstack, atbl$RO) # store raster for plotting 

##################################################################################### 

 



APPENDIX C 
 

 

220 

 

# 4. COND.4.NOFN (HGROWTH) 

# Task: 

# Homogeneous growth of raster objects; 

# At turns, each raster object adds contiguous cells having  

# regional or local BPI values > 100 

IDs <- unique(atbl$RO)[!is.na(unique(atbl$RO))] 

 

atbl$RO <- cond.4.nofn(atbl, nbs, rNumb = TRUE, classVector = atbl$RO, 

                       nbs_of = IDs, class = NULL, 

                       cond = "regional_bpi > 100 | local_bpi > 100", 

                       hgrowth = TRUE)  

 

 

 

# Sort id based on depth 

atbl$RO <- anchor.seed(atbl, nbs, rNumb = TRUE, silent = TRUE, class = NULL, 

            cond.filter = "!is.na(RO)", # cell within RU class 

            cond.seed   = "!is.na(RO)", # cell within RU class 

            cond.growth = "RO[] == RO", # cell having the same class as the focal cell 

            sort.col    = "bathymetry", # order seed evaluation by bathymetry 

            sort.seed   = "max")        # cells with the highest bathymetric values are evaluated first  

 

 

rRO4 <- cv.2.rast(rstack, atbl$RO) # store raster for plotting 

 

##################################################################################### 

# 5.1 RU Static plots  

##################################################################################### 
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if(PLOT){ 

   

  # Classification steps 

  plot(c(rRO1,rRO2,rRO3,rRO4), type = "classes", mar = c(3, 1.6, 1.6, 4), cex.main= 1.1,  

       col = hcl.colors(50, palette =  "Spectral"),  

       main = c("(a) rRO1, anchor.seed", "(b) rRO2, pi.sgm", "(c) rRO3, pi.add",  

                "(d) rRO4, hgrowth")) 

   

  readline(prompt = "Classification steps. Press [enter] to continue.") 

   

} 

 

if(PLOT){ 

   

  # Position index  

  atbl$rPI <- rel.pi(atbl, RO="RO", el="bathymetry", type = "n") 

   

  # Shallowest peak for each RO 

  library(data.table) 

  atbl <- as.data.table(atbl) 

  atbl[!is.na(RO), mbat := bathymetry == max(bathymetry), by = "RO"] 

  pc <- atbl[which(mbat), Cell] 

  atbl$mbat <- NULL 

   

  # Plot 

  r_rPI <- cv.2.rast(rstack, atbl$rPI) # relative PI 
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  terra::plot(r_rPI, type="interval", breaks=seq(0,1,0.1),  

              plg = list(title="rPI", title.adj=0.1), 

              col = hcl.colors(50, palette =  "Terrain 2", rev=T), 

              main = "Normalized relative PI") 

   

  terra::points(xyFromCell(rstack, pc), pch=20, col="red", cex=1.3) 

  legend(ext(r_rPI)[2], ext(r_rPI)[4]-25000, legend=c("Peak"), bty = "n", xpd=TRUE, 

         col=c("red"), pch=20, cex=0.9, pt.cex = 1.5) 

   

  readline(prompt = "Normalized relative PI. Press [enter] to continue.") 

} 

 

##################################################################################### 

# 5.1 RU Interactive map  

##################################################################################### 

 

if(PLOT){ 

 

  # Note that all raster classifications are converted into polygons (as.polygons()) before plotting  

  # for a better visualization. Note also that mapview do not support the terra package yet, therefore  

  # all objects of class terra are converted into objects of class raster before plotting  

  # (as(xx,"Spatial")).  

   

  # CONVERT ATTRIBUTE TABLE TO ATTRIBUTE 'DATA' TABLE 

  atbl <- as.data.table(atbl) 

   

  # COMPUTE STATISTICS 

  RO_stat <- atbl[!is.na(RO),  
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                  .(N = .N,                           # NUMBER OF CELLS 

                    minD = round(max(bathymetry), 2), # MIN DEPTH 

                    avgD = round(mean(bathymetry), 2),# AVERAGE DEPTH 

                    maxD = round(min(bathymetry), 2), # MAX DEPTH 

                    sdD = round(sd(bathymetry), 2)),  # STANDARD DEVIATION 

                   

                  by = "RO"] 

   

  # RENAME AND RANK RO IDs BY MIN. DEPTH 

  new_IDs <- RO_stat[, data.table::frankv(minD, order = -1L)] 

  atbl[!is.na(RO), RO := new_IDs[match(RO, RO_stat$RO)] ] 

  RO_stat[, RO := new_IDs][order(RO)] 

   

  RO_stat 

   

  # Class vector 2 raster 

  rRO <- cv.2.rast(rstack, atbl$RO) 

  ISU <- cv.2.rast(rstack, atbl$ISU) 

   

  # Raster 2 polygon 

  rRO <- as.polygons(rRO, dissolve = TRUE) 

  ISU <- as.polygons(ISU, dissolve = TRUE) 

   

  ISU$dummy <- 1 #trick map label 

   

  # PEAKS 

  pcV <- vect(xyFromCell(rstack, pc), crs = crs(rRO)) 
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  # BUILD POP UP TABLE 

  names(rRO) <- "ID" 

   

  # Index vector IDs into RO_stat 

  ind <- match(rRO$ID, RO_stat$RO) 

   

  # Add columns 

  rRO$N    <- RO_stat$N[ind] 

  rRO$minD <- RO_stat$minD[ind] 

  rRO$avgD <- RO_stat$avgD[ind] 

  rRO$maxD <- RO_stat$maxD[ind] 

  rRO$sdD  <- RO_stat$sdD[ind] 

   

  m <-  

    mapview(as(rRO,"Spatial"), layer.name = "RO", zcol = "ID", alpha.regions = 0.8, legend = TRUE, 

            popup = popupTable(as(rRO,"Spatial"), feature.id = FALSE, row.numbers = FALSE), 

            col.regions = hcl.colors(length(rRO$ID), palette =  "Spectral")) + 

    mapview(as(pcV,"Spatial"), layer.name = "Peak", alpha.regions = 0.9, col.regions = "grey", legend= 

TRUE, 

            popup = FALSE) +  

    mapview(raster::raster(rstack[["bathymetry_exm"]]), layer.name = "Depth (m)", col.regions = palRYB) 

   

  m@map %>%  

    hideGroup(c("Depth (m)")) %>%  

    addLayersControl(overlayGroups = c("RO", "Peak", "Depth (m)"), 

                     position = "topleft", 

                     options = layersControlOptions(collapsed = TRUE))%>% 

    addMiniMap(tiles = "Esri.OceanBasemap", 



APPENDIX C 
 

 

225 

 

               position = "bottomleft", 

               toggleDisplay = TRUE, 

               zoomLevelOffset = -5) 

} 
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C.4 R code to compute the Self-Organizing Map (SOM) 

 

 

# User-defined classification of raster surfaces: The R package scapesClassification 

 

# SOM script 

# Author: Gerald Hechter Taranto 

# Journal:  

 

# A detailed explanation of all classification steps is available on the documentation page  

# https://ghtaranto.github.io/scapesClassification/index.html 

 

 

# Results are plotted only if PLOT is TRUE 

PLOT <- T 

##################################################################################### 

 

 

#### 1. INSTALL REQUIRED PACKAGES #### 

# install.packages("scapesClassification") 

# install.packages("terra") 

 

# Required for interactive maps & plots 

# install.packages("raster") 

# install.packages("mapview") 

# install.packages("leaflet") 

# install.packages("leafpop") 

# install.packages("data.table") 
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#### 2. LOAD LIBRARIES ####  

library(scapesClassification) 

library(terra) 

 

 

#### 3. PLOTS & INTERACTIVE MAPS 

library(data.table) 

library(mapview) 

library(leaflet) 

library(leafpop) 

 

mapviewOptions(basemaps = c("Esri.OceanBasemap"), na.color = "grey88",  

               homebutton = FALSE, query.position = "bottomright", legend.opacity = 0.9, 

               fgb = FALSE) 

 

# palette for background raster  

palRYB <- c("#2892c7", "#fafa64", "#e81014") 

palYGB <- c("#ffff80" ,"#3dba65", "#0d1178") 

palBYR <- c("#4575b5", "#ffffbf", "#d62f27") 

 

#### 3. LOAD DATA ####  

grd <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T) 

grd <- grd[grepl("\\.grd", grd)] 

grd <- grd[!grepl("hillshade", grd)] 

rstack <- rast(grd) 

 

if(PLOT){ 
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  plot(rstack, mar = c(3, 1.6, 1.6, 4), cex.main= 1.1, col = hcl.colors(50, palette =  "Zissou 1"), 

       main = c("(a) Bathymetry", "(b) Local BPI", "(c) Regional BPI", "(d) Slope")) 

   

  readline(prompt = "Plot input data. Press [enter] to continue.") 

} 

 

# Load ISU, PKS and RU classification  

ISU <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T, 

                  pattern = "ISU_Cells\\.RDS") 

 

PKS <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T,  

                  pattern = "PKS_Cells\\.RDS") 

 

RO <- list.files(system.file("extdata", package = "scapesClassification"), full.names = T, 

                 pattern = "RU_obj\\.RDS") 

 

 

##################################################################################### 

#### 4. FORMAT INPUTS #### 

##################################################################################### 

 

# COMPUTE ATTRIBUTE TABLE 

atbl <- attTbl(rstack, var_names = c("bathymetry", "local_bpi", "regional_bpi", "slope")) 

 

# Use ISU and PKS classification as attribute table filters 

atbl$ISU <- readRDS(ISU) 

atbl$ISU[!is.na(atbl$ISU)] <- 1 # Class 1 identifies all ISU cells 
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atbl$PKS <- readRDS(PKS) 

atbl$RO  <- readRDS(RO) 

 

head(atbl) 

 

# COMPUTE NEIGHBORHOOD LIST 

nbs <- ngbList(rstack, rNumb = TRUE, attTbl = atbl) # neighbors are identified by row numbers (see 

?ngbList) 

 

##################################################################################### 

#### 5. SELF ORGANIZING MAP #### 

##################################################################################### 

 

# install.packages("rassta") 

library(rassta) 

 

####################### 

#### 5.1 RO vs. SOM#### 

####################### 

 

# TIME CONSUMING!  

 

# SET SEED FOR REPRODUCIBILITY 

# set.seed(380) 

#  

# # SCALE VALUES 

# r <- terra::scale(rstack) 

#  

# # VARIABILITY ANALYSIS  
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# dt <- data.table(bat = values(rstack[[1]], mat=F)) 

# N <- rep(0, length = ncell(r)) 

#  

# itr <- 1 

# maxITR <- 100 

#  

# while(itr <= maxITR){ 

#    

#   print(itr) 

#    

#   # SOM WITH A MAXIMUM OF 2 CLUSTERS  

#   r.som <- som_gap(r, K.max = 2) 

#    

#   # RASTERIZATION of SOM  

#   r.sompam0 <- som_pam(ref.rast = r[[1]], kohsom = r.som$SOM, k = r.som$Kopt) 

#    

#   # plot(r.sompam0$sompam.rast[[2]], main = "Elevaton Units", 

#   #      type = "classes", col = hcl.colors(r.som$Kopt, "Mint", rev = TRUE), 

#   #      mar = c(1.5, 2, 1.5, 2.5)) 

#    

#   dt[, clu := values(r.sompam0$sompam.rast[[2]], mat=F)] 

#   cl <- dt[, mean(bat), by=clu] 

#   cl <- cl$clu[which.max(cl$V1)] 

#    

#   N[which(dt$clu == cl)] <- N[which(dt$clu == cl)] + 1 

#    

#   itr <- itr + 1 

#    



APPENDIX C 
 

 

231 

 

# } 

#  

# rt <- r[[1]]; rt[] <- NA; rt[] <- N 

# plot(rt) 

 

############################################ 

#### 5.2 DATA HETEREOGENEITY WITHIN RO #### 

############################################ 

 

# CROP RASTER DATA TO THE RO REGION 

rRO <- cv.2.rast(rstack, (atbl$RO)) 

r   <- terra::mask(rstack, rRO) 

 

# SCALE VALUES 

r <- terra::scale(r) 

 

# SET SEED FOR REPRODUCIBILITY 

set.seed(381) 

 

# SOM WITH A MAXIMUM OF 9 CLUSTERS  

r.som <- som_gap(r, K.max = 9) 

 

# RASTERIZATION of SOM  

r.sompam1 <- som_pam(ref.rast = r[[1]], kohsom = r.som$SOM, k = r.som$Kopt) 

 

plot(r.sompam1$sompam.rast[[2]], main = "Nested Features", 

     type = "classes", col = hcl.colors(r.som$Kopt, "Terrain 2"), 

     mar = c(1.5, 2, 1.5, 2.5)) 
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Appendix D   
Supplementary data Chapter 5 
 

 

D.1 R code to identify the geomorphic units of the Azores 

 

# LOAD PACKAGES 

library(scapesClassification) 

library(terra) 

library(data.table) 

library(scapesClassification) 

 

# 1. LOAD INPUT DATA AND CREATE FOLDERS 

 

# 1.1 RASTERS 

rasters <- character(6L) 

 

rasters[1] <- "./InputLayers/bathymetry_Luis.tif"      # bathymetry 

rasters[2] <- "./InputLayers/Slope_Luis.tif"           # slope 

rasters[3] <- "./InputLayers/geomorph_az_3_50_fl_2.tif"# gmorph 

rasters[4] <- "./InputLayers/bpi_2_100_Luis.tif"       # global bpi 

rasters[5] <- "./InputLayers/bpi_2_40_Luis.tif"        # regional bpi 

rasters[6] <- "./InputLayers/bpi_1_10_Luis.tif"        # local bpi 

 

rstack <- rast(rasters) 

names(rstack) <- c("bathymetry", "slope", "gmorph", "global_bpi", "regional_bpi", "local_bpi") 
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# 1.2 ATTRIBUTE TABLE 

dt <- attTbl(rstack, var_names = NULL) 

dt <- as.data.table(dt) 

 

# 1.3 8-NIGHBOR LIST 

# nbs <- ngbList(rstack, rNumb = TRUE, attTbl = dt) 

# saveRDS(nbs, file.path(out_dir, "nbs.RDS")) 

nbs <- readRDS(file.path(out_dir, "nbs.RDS")) 

 

# 1.4 CREATE FOLDERS TO SAVE OUTPUTS 

if(!dir.exists("./GMU_Class/01_GMU_IS")){dir.create("./GMU_Class/01_GMU_IS")} 

if(!dir.exists("./GMU_Class/01_GMU_IS/STEPS")){dir.create("./GMU_Class/01_GMU_IS/STEPS")} 

 

 

 

########################################################################### 

# 2. ISLAND SHELF #### 

########################################################################### 

 

# Rule-set 1 

# A) Extract anchor points from the Azores Islands shapefile 

anchor <- anchor.svo (r = rstack[[1]],  

                      dsn = "E:/Documents/GIS_LAYERS/Gerald_Taranto/General/Layers/Azores.shp",  

                      only_NAs = TRUE,  

                      fill_NAs = TRUE,  

                      plot = TRUE,  

                      saveRDS = "./GMU_Class/land_pixel_number.RDS",  

                      writeRaster = "./GMU_Class/01_GMU_IS/STEPS/IS_01_anchor.tif",  
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                      overWrite = TRUE) 

 

# B) Cells adjacent to landmasses are island shelf cells 

classVector1 <- anchor.cell(dt, rstack, anchor,  

                            class = 1, 

                            classVector = NULL, 

                            class2cell = F, 

                            class2nbs = T, 

                            overwrite_class = F, 

                            plot = TRUE, 

                            writeRaster = NULL, 

                            overWrite = FALSE)  

 

cv.2.rast(rstack[[1]], classVector1, index = dt$Cell, writeRaster = 

"./GMU_Class/01_GMU_IS/STEPS/IS_02_adj.tif", overWrite = T) 

 

# Rule-set 2 

# A) 

# Bathymetric data around Terceira Island are of poor quality and the shelf 

# break does not show sharp discontinuities in slope values. Set maximum 

# number of iteration and minimum border in the functions below to overcome this 

# problem. 

classVector2 <- cond.4.nofn(dt, nbs, rNumb  = T, 

                            classVector = classVector1,  

                            nbs_of = 1,  

                            cond = "slope <= 5",  

                            class = 1,  

                            max.iter = 5) 
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# B) Minimum border and max 30 iteration - avoid seafloor around Terceira to be 

# cataloged as shelf 

classVector3 <- cond.4.nofn(dt, nbs, rNumb = T, 

                            classVector = classVector2,  

                            nbs_of = 1,  

                            cond = "slope <= 5",  

                            class = 1, 

                            min.bord = 0.2,  

                            max.iter = 30) 

 

cv.2.rast(rstack[[1]], classVector3, dt$Cell, writeRaster = 

"./GMU_Class/01_GMU_IS/STEPS/IS_03_slopes.tif", overWrite = T) 

 

# Rule-set 3 

# Local_bpi increase as we approximate to the shelf break; use this property to  

# set shelf area boundaries 

classVector4 <- cond.4.nofn(dt, nbs, rNumb = T, 

                            classVector = classVector3,  

                            nbs_of = 1,  

                            cond = "slope <= 5 & local_bpi > local_bpi[]",  

                            class = 1) 

 

cv.2.rast(rstack[[1]], classVector4, dt$Cell, writeRaster = 

"./GMU_Class/01_GMU_IS/STEPS/IS_04_bpi.tif", overWrite = T) 

 

# Rule-set 4 

# Fill up classification holes (min.border = 60%) 

classVector5 <- cond.4.nofn(dt, nbs, rNumb = T, 

                            classVector = classVector4,  
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                            nbs_of = 1,  

                            cond = "TRUE",  

                            class = 1, 

                            min.bord = 0.6)  

 

cv.2.rast(rstack[[1]], classVector5, dt$Cell, writeRaster = "./GMU_Class/01_GMU_IS/IS_01_shelf.tif", 

overWrite = T) 

saveRDS(classVector5, "./GMU_Class/01_GMU_IS.RDS") 

  

########################################################################### 

# 3. PEAKS (PKS) #### 

########################################################################### 

 

# Rule-set 1 

# Find all local maxima 

dt$PKS <- peak.cell(dt, nbs, rNumb = TRUE, 

                   p_col = "bathymetry", # column on which local maxima are searched 

                   p_edge = FALSE)       # local maxima or minima are not searched on edge cells 

 

 

# Rule-set 2 

# Local maxima only on relieves and not within island shelves 

dt$PKS[dt$global_bpi < 100 | dt$local_bpi < 100 | !is.na(dt$SHELF)] <- NA 

 

# Rule-set 3 

# Remove local maxima adjacent to island shelves 

dt$PKS <- cond.reclass(dt, nbs, rNumb = TRUE,  

                       classVector = dt$PKS,  

                       class = 1, 
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                       reclass = NA, 

                       cond = "!is.na(SHELF{})", # RECLASS IF ANY NEIGHBOR IS A SHELF CELL 

                       peval = 0.01)  

 

cv.2.rast(rstack[[1]], dt$PKS, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_PKS/01_PKS_ALL.tif", overWrite = T) 

saveRDS(dt$PKS, "./GMU_Class/02_GMU_PKS.RDS") 

  

########################################################################### 

# 4. RAISED FEATURES (RO)  #### 

########################################################################### 

 

# 1.1 Raster objects (Regional BPI > 100) 

dt$RO <- anchor.seed(dt, nbs, rNumb = TRUE, silent = FALSE, 

                        

                       class = NULL, # A new ID is assigned to every 

                       # discrete group of cells... 

                        

                       cond.seed   = "PKS == 1", # ...in continuity with peak cells... 

                        

                       cond.growth = "regional_bpi >= 100", # ...that are on prominent features. 

                        

                       sort.col = "bathymetry", sort.seed = "max", # shallow relieves are identified first  

                        

                       cond.filter = "regional_bpi >= 100 & is.na(SHELF)") # Only consider non-ISU cells  

 

 

cv.2.rast(rstack[[1]], dt$RO, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/01_RO_ALL.tif", overWrite = T) 



APPENDIX D 
 

 

238 

 

 

# 1.2 Segment raster objects (Relative BPI < 0 and regional BPI < 200) 

dt$rPI <- rel.pi(dt, RO="RO", el="bathymetry", type = "s") 

dt$RO_1 <- pi.sgm(dt, nbs, rNumb = TRUE, 

                   RO = "RO",  

                   mainPI = "rPI", 

                   secPI = "regional_bpi",  

                   cut.mPI = 0,  

                   cut.sPI = 200, 

                   min.N = 40) 

 

cv.2.rast(rstack[[1]], dt$RO_1, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/02_RO_SGM.tif", overWrite = T) 

 

# 1.3 Segment large raster objects (N > 3000) (Relative BPI < 0 and regional BPI < 200) 

dt$rPI <- NULL 

dt[!is.na(RO_1), N := .N , by = "RO_1"] 

dt[N > 3000, RO_2 := RO_1] 

 

dt$rPI <- rel.pi(dt, RO="RO_2", el="bathymetry", type = "s") 

 

dt$RO_2 <- pi.sgm(dt, nbs, rNumb = TRUE, 

                  RO = "RO_2",  

                  mainPI = "rPI", 

                  cut.mPI = 0,  

                  min.N = 100) 

 

dt$RO_2b <- dt$RO_1 

dt[N > 2000, RO_2b := RO_2] 
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# Integrate new RO into the main RO class vector 

dt$RO_2c <- anchor.seed(dt, nbs, rNumb = TRUE, silent = FALSE, 

                      

                     class = NULL, # A new ID is assigned to every 

                     # discrete group of cells... 

                      

                     cond.seed   = "!is.na(RO_2b)", # ...in continuity with peak cells... 

                      

                     cond.growth = "RO_2b == RO_2b", # ...that are on prominent features. 

                      

                     sort.col = "bathymetry", sort.seed = "max") # shallow relieves are identified first  

                      

 

cv.2.rast(rstack[[1]], dt$RO_2c, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/03_RO_SGM.tif", overWrite = T) 

 

# 1.4 Add new RO with cells having regional BPI > 300 (non connected with existing raster objects) 

dt$RO_3 <- pi.add(dt, nbs, rNumb = TRUE, 

                   RO = "RO_2c", 

                   mainPI = "regional_bpi",  

                   add.mPI = 300,  

                   min.N = 50, 

                   cond.filter = "is.na(SHELF)") 

 

cv.2.rast(rstack[[1]], dt$RO_3, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/04_RO_ADD.tif", overWrite = T) 

 

# 1.5 Add new RO with cells having regional BPI > 400 (non connected with existing raster objects) 
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dt$RO_4 <- pi.add(dt, nbs, rNumb = TRUE, 

                  RO = "RO_3", 

                  mainPI = "regional_bpi",  

                  add.mPI = 400,  

                  min.N = 50, 

                  cond.filter = "is.na(SHELF)") 

 

cv.2.rast(rstack[[1]], dt$RO_4, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/05_RO_ADD.tif", overWrite = T) 

 

# 1.6 Homogeneous growth RO adding cells with decreasing bathymetry and regional_bpi > 100 

IDs <- unique(dt$RO_4)[!is.na(unique(dt$RO_4))] 

dt$RO_5 <- cond.4.nofn(dt, nbs, rNumb = TRUE, classVector = dt$RO_4, 

                       nbs_of = IDs, class = NULL, 

                       cond = "bathymetry < bathymetry[] & regional_bpi > 100 & is.na(SHELF)", 

                       hgrowth = TRUE)  

 

cv.2.rast(rstack[[1]], dt$RO_5, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/06_RO_GROW.tif", overWrite = T) 

 

# 1.7 Homogeneous growth RO adding cells with regional_bpi > 100 

IDs <- unique(dt$RO_5)[!is.na(unique(dt$RO_5))] 

dt$RO_6 <- cond.4.nofn(dt, nbs, rNumb = TRUE, classVector = dt$RO_5, 

                       nbs_of = IDs, class = NULL, 

                       cond = "regional_bpi > 100 & is.na(SHELF)", 

                       hgrowth = TRUE)  

 

cv.2.rast(rstack[[1]], dt$RO_6, index = dt$Cell, writeRaster = 

"./GMU_Class/02_GMU_RO/STEPS/07_RO_GROWb.tif", overWrite = T) 
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cv.2.rast(rstack[[1]], dt$RO_6, index = dt$Cell, writeRaster = "./GMU_Class/02_GMU_RO/RO.tif", 

overWrite = T) 

saveRDS(dt$RO_6, "./GMU_Class/03_GMU_RO.RDS") 

  

########################################################################### 

# 5. ROs (deep slopes & crests) #### 

########################################################################### 

 

# Deep slopes identified as areas of high bathymetry variation 

 

# Lower slopes adjacent to RO with a lower bathymetry 

IDs <- unique(dt$RO)[!is.na(unique(dt$RO))] 

dt$ROds <- cond.4.nofn(dt, nbs, rNumb = TRUE, classVector = dt$RO, 

                       nbs_of = IDs, class = NULL, 

                       min.bord = 0.2, 

                       directional = TRUE, 

                       cond = "bathymetry <= bathymetry{} & bat_sd  > 150 & is.na(SHELF)", 

                       hgrowth = TRUE, peval = 0.2)  

 

# Lower slopes adjacent to RO with a lower bathymetry 

IDs <- unique(dt$ROds)[!is.na(unique(dt$ROds))] 

dt$ROds <- cond.4.nofn(dt, nbs, rNumb = TRUE, classVector = dt$ROds, 

                       nbs_of = IDs, class = NULL, 

                       min.bord = 0.2, 

                       directional = TRUE, 

                       cond = "local_bpi > 100 & is.na(SHELF)", 

                       hgrowth = TRUE)  
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# Fill holes (unclassified cells surrounded by classified cells) 

IDs <- unique(dt$ROds)[!is.na(unique(dt$ROds))] 

dt$ROds <- cond.4.nofn(dt, nbs, rNumb = TRUE, classVector = dt$ROds, 

                       nbs_of = IDs, class = NULL, 

                       min.bord = 0.6, 

                       cond = "TRUE", 

                       hgrowth = TRUE)  

 

cv.2.rast(rstack[[1]], dt$ROds, dt$Cell, writeRaster = "./GMU_Class/04_GMU_ROds/ROds.tif", overWrite 

= T) 

saveRDS(dt$ROds, "./GMU_Class/04_GMU_ROds.RDS")
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