
Visual Processing and Latent Representations
in Biological and Artificial Neural Networks

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
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Summary

The human visual system performs the impressive task of converting light arriving
at the retina into a useful representation that allows us to make sense of the visual
environment. We can navigate easily in the three-dimensional world and recognize
objects and their properties, even if they appear from different angles and under dif-
ferent lighting conditions. Artificial systems can also perform well on a variety of
complex visual tasks. While they may not be as robust and versatile as their biologi-
cal counterpart, they have surprising capabilities that are rapidly improving. Study-
ing the two types of systems can help us understand what computations enable the
transformation of low-level sensory data into an abstract representation. To this end,
this dissertation follows three different pathways.

First, we analyze aspects of human perception. The focus is on the perception in the
peripheral visual field and the relation to texture perception. Our work builds on a
texture model that is based on the features of a deep neural network. We start by
expanding the model to the temporal domain to capture dynamic textures such as
flames or water. Next, we use psychophysical methods to investigate quantitatively
whether humans can distinguish natural textures from samples that were generated
by a texture model. Finally, we study images that cover the entire visual field and
test whether matching the local summary statistics can produce metameric images
independent of the image content.

Second, we compare the visual perception of humans and machines. We conduct three
case studies that focus on the capabilities of artificial neural networks and the poten-
tial occurrence of biological phenomena in machine vision. We find that comparative
studies are not always straightforward and propose a checklist on how to improve
the robustness of the conclusions that we draw from such studies.

Third, we address a fundamental discrepancy between human and machine vision. One
major strength of biological vision is its robustness to changes in the appearance of
image content. For example, for unusual scenarios, such as a cow on a beach, the
recognition performance of humans remains high. This ability is lacking in many
artificial systems. We discuss on a conceptual level how to robustly disentangle at-
tributes that are correlated during training, and test this on a number of datasets.
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Zusammenfassung

Das menschliche Sehsystem ist in der Lage auf der Netzhaut eintreffendes Licht in
eine abstrakte Repräsentation umzuwandeln, welche es erlaubt sich in einer drei-
dimensionalen Welt zurechtzufinden und Objekte sowie deren Eigenschaften unter
verschiedensten Blickwinkeln und Lichtverhältnissen zu erkennen. Auch künstliche
Systeme sind in der Lage, eine Vielzahl komplexer visueller Aufgaben zu bewältigen.
Sie sind zwar nicht so robust und vielseitig wie das biologisches Gegenstück, verfügen
aber über überraschende Fähigkeiten, die sich stetig verbessern. Die Verwendung
beider Systemarten ermöglicht es, die Mechanismen zu verstehen, die es erlauben
sensorische Daten in eine sinnvolle abstrakte Repräsentation zu verwandeln. Diese
Dissertation verfolgt dazu drei Ansätze:

Zuerst analysieren wir Aspekte des menschlichen Sehens. Der Fokus liegt auf der
Wahrnehmung im peripheren Gesichtsfeld und der Zusammenhang mit der Wahr-
nehmung von Texturen. Unsere Arbeit baut auf einem Texturmodell auf, welches die
gelernten Muster eines neuronalen Netzes nutzt. Zuerst erweitern wir dieses Modell
auf den zeitlichen Bereich, um dynamische Texturen wie Flammen oder Wasser zu er-
fassen. Anschließend untersuchen wir mit psychophysikalischen Methoden, ob Men-
schen natürliche und synthetisierte Texturen unterscheiden können. Schließlich un-
tersuchen wir Bilder, die das gesamte Gesichtsfeld abdecken und testen ob Metamere
entstehen, wenn die lokalen Statistiken mit denen des Originalbilds übereinstimmen.

Zweitens vergleichen wir die visuelle Wahrnehmung von Mensch und Maschine. Da-
zu führen wir drei Fallstudien durch, welche die Fähigkeiten von künstlichen neuro-
nalen Netzwerken untersuchen, und testen, ob Phänomene die aus dem biologischen
Sehen bekannt sind auch in künstlichen Systemen auftreten. Wir zeigen Probleme
auf, die bei Vergleichsstudien auftreten können und erstellen eine Checkliste um ro-
bustere Schlussfolgerungen zu ziehen.

Drittens befassen wir uns mit einer grundlegenden Diskrepanz zwischen dem mensch-
lichen und dem maschinellen Sehen. Das biologische Sehen ist weitestgehend robust
gegenüber Veränderungen im Erscheinungsbild und erlaubt auch ungewöhnlichere
Bilder zu verstehen, wie beispielsweise das Foto einer Kuh am Strand. Diese Fähigkeit
fehlt in vielen künstlichen Systemen. Wir erörtern auf konzeptueller Ebene, wie man
Attribute, die während des Trainings korreliert sind, robust entkoppeln kann und
testen unseren Ansatz auf verschiedenen Datensätzen.
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Introduction

We humans rely heavily on our sense of sight. We trust that our brains are capable of
capturing visual information and providing us with a rich picture of the environment.
We use this inner picture to navigate in the physical environment, to recognize objects
from great distance and to assess their properties. Even more, we can learn new
objects and visual concepts from just a few observations and can identify them even in
unfamiliar scenarios. But how does this powerful visual representation come about?
Is it really as truthful and robust as we think? What mechanisms are involved in
processing visual information and are they generally required for visual systems, be
they biological or artificial?

These and similar questions are studied by several disciplines. On one hand, psy-
chophysics studies behavioral properties by testing, for example, which stimuli can
just be perceived. Neuroscience, on the other hand, examines neural data and tries
to recognize patterns in this data. And finally, computer vision and machine learn-
ing research develop artificial systems that achieve good performance on a range of
visual tasks. Combining observations and methodologies from the different fields is
likely to be a fruitful way to learn about vision.

Here we follow three different pathways that comprise methods from the different
fields. First, we analyze aspects of human perception. Second, we compare the visual
perception of biological and artificial systems. And third, we investigate fundamen-
tal discrepancies between human and machine vision at a more conceptual level by
studying how to achieve robust disentanglement. This set of approaches can help to
learn about the mechanisms used by visual systems, and can shed light on whether
certain components are necessary or just one of many possible solutions for visual
processing.

This thesis is structured as follows. The first section introduces the relevant back-
ground and the research questions addressed in this dissertation. Section 2 describes
the publications that resulted from my research and Section 3 discusses the findings
at a more general level and previews future research directions.
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1 Background

1.1 Texture Perception in Humans

Humans can perceive small details when focusing on specific parts in an image. On
the other hand, we can build efficient representations of image content when it is not
important to know all details. For example, think of a wall made of stones. Humans
do not need to know the shape, color or exact position of each single stone to assess
certain properties of the wall. Such properties may be the stability of the wall or the
type of stone from which the wall is made, such as granite, limestone, sandstone,
or fieldstone. Sometimes, we can even tell at a glance in what period and for what
purpose a wall was built. In other words, we are able to perceive textural properties.

Visual textures form a substantial part of our visual input. The bark of a tree, the
gravel in the yard, or the pattern of a dress are all examples of textures. Characteristic
of textures is their homogeneity. From a mathematical point of view, textures can be
described as statistically stationary (Petrou and Kamata, 2006). This means that the
texture has the same local properties everywhere in the image. Or in other words,
the statistical properties do not change when considering different parts of a texture
image.

Understanding human perception of textures is of great interest to vision science
(Balas, 2021; Rosenholtz, 2014). Humans are sensitive to small differences in visual
textures, which allows to extract the properties of materials (Adelson, 2001). This can
be very helpful, for example, when we need to judge whether a floor might be wet.
Subtle differences in textures inform us about the orientation of surfaces, which is rel-
evant for making inference about 3D shape (Li and Zaidi, 2000). Texture perception
also allows us to locate the boundaries between objects. This is important for image
segmentation and for distinguishing between figure and ground (Malik and Perona,
1990).

Being able to generate textures artificially and in a controlled manner is critical to the
study of texture perception. Stimuli have evolved greatly over time. As nicely listed
by Rosenholtz (2014), texture stimuli were initially created by hand: Researchers pho-
tographed wallpaper (Gibson, 1950), filled cells of tables to obtain random patters
(Attneave, 1954), attached self-sticking black tape to white cardboard (Beck, 1967), or
drew stimuli by hand with ink (Olson and Attneave, 1970). With access to computers,
it became easier to generate stimuli in a more systematic and rapid manner (Julesz,
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1962, 1965).

While early approaches focused on testing specific hypotheses by arranging line seg-
ments or designing patterns in controlled ways, later efforts focused on studying
more natural textures. For example, textures were created by repeating sections of
an original texture over larger areas (Efros and Freeman, 2001). Later, more sophis-
ticated texture models were developed. The subset of parametric texture models is
particularly interesting, because it allows systematic modification of specific aspects
of a given texture as well as interpolation between different source textures. Two
well-known texture models of this type are the Portilla and Simoncelli texture model
(PS-model) (Portilla and Simoncelli, 2000) and a texture model based on the features
of a deep convolutional neural network (DNN texture model) (Gatys et al., 2015). In
both approaches, new samples of a given source texture are synthesized by iteratively
changing random noise until their statistics match those of the original source image.
The main differences between these models lies in the features that are matched. The
PS-model relies on a steerable pyramid, while the features of the DNN texture model
result from training a deep convolutional neural network for object recognition.

Textures can also extend to the temporal dimension. Examples for dynamic textures
include the motion of flames or leaves moving in the wind. Now, the statistics are not
only stationary in position, but also in time. In other words, for dynamic textures,
the statistics are consistent for different time steps. The first research goal of this
dissertation (P1) was to extend the DNN texture model to the temporal domain to
generate dynamic textures.

Overall, the goal of texture models is to synthesize new samples of naturalistic tex-
tures that match human texture appearance. Visual inspection of the resulting tex-
tures can give a first impression of their quality. However, for a quantitative compar-
ison of texture models, it is crucial to apply the precise methods of psychophysics.
A number of such investigations was performed by Balas and colleagues on the PS-
model (Balas, 2006, 2012). In their experiments they tested whether humans could tell
the difference between original textures and the ones generated by a texture model.
With this, they analyzed under which conditions the PS-model could match human
texture appearance. A major finding of this work was that the model captured the
appearance of texture better in the periphery than in the fovea. Our second research
goal (P2) was to perform a similar analysis for the more recent DNN texture model
(Gatys et al., 2015) and to test whether the more complex feature space increases the
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perceptual quality of the synthesized textures.

Understanding texture perception in humans is an exciting goal in itself. Natural
scenes, however, do not consist of only one texture. The next section deals with the
perception of more complex scenes that fill the entire visual field.

1.2 Perception of Full-Field Scenes

Natural scenes often consist of inhomogenous image content. Different textures can
occur in different areas of the image and, in addition, there is often image content
that cannot be classified as texture. An example would be a beach scene with a water
texture in the top half of the image, a sand texture in the bottom half of the image, and
a deckchair in the middle. Besides the inhomogeneities in image content, the human
visual system also exhibits inhomogeneities. While we can perceive a lot of details in
the fovea, the perception in the periphery is much fuzzier. So the question is, how do
these two types of inhomogeneity interact?

Essentially, there are two hypothesis that describe how full-frame scenes are pro-
cessed. On the one hand, there could be a mechanism at play that segments the
different parts of the image and processes them separately in a content-based man-
ner. On the other hand, processing could be independent of image content and only
depend on the peripheral eccentricity. Here, the hypothesis is that in the peripheral
visual field, information is represented by texture-like statistics and that higher brain
areas have access only to a summary statistical representation. With that, the rele-
vance of texture representations would extend beyond texture-like image content. In
the literature this idea is referred to as compulsory texture perception (Parkes et al., 2001;
Lettvin et al., 1976; Rosenholtz, 2014).

Compulsory texture perception can explain human performance on a number of vi-
sual tasks. An example is the ability of humans to easily judge summary statistics of
visual displays such as the average size or orientation of a group of elements (Ariely,
2001; Dakin and Watt, 1997). In another line of research, stimuli were texturized using
the texture models described in the previous section. With that, researchers could de-
termine by visual inspection which aspects of appearance cannot be recovered from
a texture-like representation. Using this approach, it has, for example, been shown
that the difficulty of visual search tasks can be largely explained by texture models of
peripheral vision (Rosenholtz et al., 2012b).
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Having access to only summary statistics is also interesting from the perspective of
compression (Rosenholtz et al., 2012a). The visual system is thought to have at least
one bottleneck (Nakayama, 1990), meaning that intermediate processing layers have
limited capacity and cannot represent all the information presented to the eyes. The
substantial loss of information that is associated with the computation of summary
statistics is consistent with this bottleneck idea. In other words, the computation of
summary statistics may originate naturally from the constraints posed by the archi-
tecture of the visual system (Balas et al., 2009). The idea of compressing information
in intermediate representations also exists in machine learning. Autoencoders rely
precisely on this idea, and there are approaches to use the information bottleneck
principle for training DNNs (Amjad and Geiger, 2019; Tishby and Zaslavsky, 2015).

The phenomenon of visual crowding is also thought to be related to the hypothe-
sis that one has only access to a summary statistic representation. As early as the
1920s, it was observed that a peripheral stimulus that would be recognizable if it
stood alone cannot be perceived when similar visual content is nearby (Korte, 1923;
Flom et al., 1963). Bouma’s law (Bouma, 1970, 1973) describes this in a more quan-
titative way by specifying at which distance flankers can influence the perception of
individual objects. Specifically, as retinal eccentricity increases, the size of the area
where the flankers take effect increases. More recently, crowding has been associated
with the hypothesis of compulsory texture perception. In particular, crowding could
be explained by the computation of summary statistics within regions of a size ap-
proximately equal to Bouma’s law (Rosenholtz et al., 2012a; Balas et al., 2009; Levi,
2008).

Freeman and Simoncelli (2011) connected these ideas with observations from phys-
iology. The relevant property here is the receptive field, which denotes the spatial re-
gion of the input that can influence the activity of a given neuron. The diameter of
the receptive fields increases linearly with eccentricity, and the scale factor describing
this linear increase varies for the different brain areas. In particular, the scale factor
is larger for regions located higher up in the ventral visual stream. The scale factor
thus provides a signature that distinguishes different areas from each other. This is
exciting because it could allow to allocate crowding to a specific brain area in the
ventral visual stream. To this end, Freeman and Simoncelli (2011) have developed
a model that computes summary statistics in local visual areas whose sizes increase
with spatial eccentricity. Their model allows the synthesis of samples that locally
match the summary statistics of original images. If the visual system represented the
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periphery using summary statistics, these images would be indistinguishable when
viewed centrally (they would be metamers). Freeman and Simoncelli found that this
was indeed the case and that the scaling at which two synthesized images could not
be told apart corresponded to the scale factor of visual area V2 and also matched the
approximate value of Bouma’s Law. This is an exciting finding, as it is thought to link
receptive field scaling, crowding zones, and our perceptual experience (Cohen et al.,
2016; Movshon and Simoncelli, 2014).

However, there are still two missing pieces to draw this conclusion. First, Freeman
and Simoncelli compared only two synthesized samples with another. They never
tested whether the synthesized images are metameric to the original images. Second,
the scale factor at which two images can not be told appart must hold for all possible
images. For these reasons, it is not yet clear whether summary statistic models can
generate metamers for natural images. The third research question (P3) is directed
towards this question.

The research on texture perception is an example of how artificial systems can be used
to learn about human perception. The next part discusses the use of artificial systems
as models for human vision more broadly.

1.3 Artificial Neural Networks as Models for Human Vision

Artificial systems have been considered as models for human vision for a long time.
As early as 1943, McCulloch and Pitts (1943) created a basic model of a brain cell.
Later, Rosenblatt (1958) extended it to a single-layer neural network called “percep-
tron”. However, only linearly separably problems could be solved with this single
layer (Minsky and Papert, 1969). A groundbreaking discovery was the existence of
two major cell types in biological brains, namely simple and complex cells (Hubel and
Wiesel, 1962). This finding was incorporated into the “neocognition” of Fukushima
(1980), which consisted of multiple layers of simple and complex cells. This model
already used location-invariant feature extractors. Another important step was the
invention of backpropagation, which made it possible to optimize stacked layers
(Rumelhart et al., 1986). Eventually, LeCun et al. (1989) introduced convolutional
layers, similar to the ones that are nowadays used in many models that perform vi-
sual tasks. Other hierarchical models followed, one of them being the HMAX-model
(Fukushima, 1980; Riesenhuber and Poggio, 1999). Building on these fundamentals,
deep neural networks (DNNs) have become increasingly powerful and are now able
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to perform well on a range of complex tasks.

One main advantage of DNNs is that they learn suitable features instead of relying
on their manual design. Interestingly, by training on natural images, features are
learned that simile the ones implemented in biological systems. For example, the
features in the first layers resemble Gabor filters and color blobs (Krizhevsky et al.,
2012). Furthermore, it was shown that the activity of real neurons could be predicted
from the artificial units (Yamins et al., 2014) and that networks that performed better
in object recognition also predicted neural activity better (Tacchetti et al., 2017). These
findings raised the question of the extent to which DNNs resemble biological systems
and could serve as models for biological vision (Lindsay, 2020; Majaj and Pelli, 2018).

Understanding where and how artificial and biological processing differ is an of-
ten pursued goal. Here, I will give a short, non-comprehensive overview over ap-
proaches used to judge the similarities of human and machine vision. In neuro-
science, the representational similarity analysis (Kriegeskorte et al., 2008) and dis-
similarity matrices (Khaligh-Razavi and Kriegeskorte, 2014) are commonly used. The
Brain-Score (and the brain hierarchy score) evaluates how well DNN unit activation
patterns can predict neuronal responses in primate visual areas (Schrimpf et al., 2020;
Nonaka et al., 2021). Another set of approaches are visualization techniques that
can reveal to some extent which image features are encoded by specific units or lay-
ers (Krizhevsky et al., 2012). On the behavioral level, the predictive performance on
out-of-distribution data is used to measure the behavioral difference between human
and machine vision (Geirhos et al., 2021). Other approaches study whether DNNs
and humans match in how the similarity of images is perceived (King et al., 2019;
Rosenfeld et al., 2018; Jozwik et al., 2017). The analysis of prediction errors can also
provide valuable insights (Rajalingham et al., 2018). Golan et al. (2020) probe the dis-
crepancies between models and human perception by studying images for which the
predictions of machine models disagree. While some comparison studies measure
the similarity on a very general level (as the one mentioned above), others are tar-
geted to specific visual phenomena. As an example, psychological concepts such as
the Gestalt principles are tested (Kim et al., 2019, 2021). One way to test perceptual
phenomena known from vision is to rephrase them such that they can be measured
in terms of the distance of two images in the latent space (Jacob et al., 2021). Other
research addresses very specific phenomena such as the recognition gap, which stud-
ies whether there are “atoms” of vision (Ullman et al., 2016). The study of illusions is
also of particular interest (Gomez-Villa et al., 2019). Other research questions target
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the relevance of texture and shape for object recognition (Geirhos et al., 2019), crowd-
ing (Roig et al., 2018; Doerig et al., 2020), the perception of gloss (Storrs et al., 2021)
or the ability to perform visual reasoning tasks (Kim et al., 2018; Yan and Zhou, 2017;
Johnson et al., 2017).

Overall, comparing the visual processing of humans and machines is not straightfor-
ward. The basic architectural functionality of DNNs, namely the hierarchical stacking
of neural connections, as well as their remarkable performance on a large range of vi-
sual tasks, support that DNNs could model biological neural networks. On the other
hand, large differences in architectural and behavioral properties make it difficult to
align the systems. This includes weight sharing and the learning mechanisms used
in artificial models (such as backpropagation), as well as the discrepancy with the
spiking properties of biological brains and Dale’s law (ratio of inhibitory and excita-
tory weigths). On the behavioral side, DNNs cannot conquer with the versatility of
the human system. They often lack generalization abilities and robustness (Geirhos
et al., 2018), rely on spurious information (Geirhos et al., 2020a), are susceptible to
adversarial noise (Szegedy et al., 2014), and have difficulty learning abstract concepts
(Stabinger et al., 2016; Kim et al., 2018; Yan and Zhou, 2017; Johnson et al., 2017).

Given the differences on the behavioral and functional level, researchers have thought
about how to compare DNNs to the human visual system. Suggestions include the
usage of short stimulus presentation times as correspondence of a forward pass in a
DNN (Tang et al., 2018), and the use of challenging set-ups (Wichmann et al., 2017).
The fourth research project of this dissertation (P4) contributes to discussions cen-
tering around the question “how” to compare human and machine perception. We
conduct three case studies and present a checklist that can help avoid common pit-
falls.

When studying visual perception of humans and machines, it can be particularly
insightful to focus on the resulting internal representations. The analysis of visual
representations and their properties is a main aspect of the summary statistics idea
and the scene metamers described in Section 1.2. The comparison of internal repre-
sentations is also common in neuroscience (Kriegeskorte et al., 2008; Khaligh-Razavi
and Kriegeskorte, 2014) and is an essential part of many comparative studies between
biological and artificial systems (Golan et al., 2020; Jacob et al., 2021). In the final part,
I will delve further into latent representations, focusing on a property called disen-
tanglement. An example of disentanglement is the separation of content and style as
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done by Gatys et al. (2016). Here, texture statistics of one image (see Section 1.1) are
combined with the content of another image allowing for transferring the style of one
image to another.

1.4 Latent Representations and Disentanglement

As nicely described by DiCarlo and Cox (2007), there are two different ways to look
at visual perception. On one hand, the computations can be viewed as “complex de-
cision functions [. . . ] that operate on the retinal image representation”. On the other
hand, the process of visual perception can be divided into two steps, so that it can be
recast as “finding operations that progressively transform this retinal representation
into a new form of representation, followed by the application of relatively simple
decision functions”. The latter view allows for treating visual tasks as a problem of
finding useful data representations also denoted as internal or latent representations.
Due to the progressive transformation of information, the resulting intermediate rep-
resentations form a hierarchical structure. More specifically, in the human visual sys-
tem, the retinal image passes through different visual areas such as V1 and V2 before
arriving in the IT cortex. Similarly, DNNs consist of multiple layers resulting in repre-
sentations at increasingly abstract levels (LeCun et al., 2015). For both biological and
artificial networks, the information encoded in the upper and lower layers differs sig-
nificantly. In particular, along the depth of DNNs, features transition from general to
task specific (Yosinski et al., 2014; Long et al., 2015).

The field of representation learning aims at finding “useful” representations of the in-
put data. A natural question is what constitutes a good representation and how to de-
termine whether one representation is better than another (Bengio et al., 2013). Most
research agrees that a useful representation enables good performance on down-
stream tasks, that it leads to robustness to changes that are not relevant for a chosen
task, that it “untangles” attribute manifolds (DiCarlo and Cox, 2007), and that it is
more compact with respect to the input data. Contrastive learning (Zimmermann
et al., 2021; Oord et al., 2018; Islam et al., 2021) is one approach to find meaningful
representations and does so by encouraging a property that is intuitively important:
Similar samples (positive pairs) should have similar representations, i.e., be close to
each other in the embedding space, while distinct samples (negative pairs) should be
far away. Another useful feature of representations could be to disentangle certain
attributes: It may be beneficial to encode different attributes, such as the identity of
an object and its appearance, in separate parts of the latent representation.
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Disentanglement is often motivated by the vision as inverse graphics paradigm (Mans-
inghka et al., 2013; Kulkarni et al., 2015). In computer graphics, images are rendered
based on a compact description of the scene that defines properties such as the lo-
cation, shape, pose and, texture of the objects, as well as the lighting conditions and
camera parameters. This resembles the physical process that is responsible for gener-
ating images in the real world. Vision is sometimes described as approximate inverse
graphics, meaning that it tries to reverse-engineer this generative process (Loper and
Black, 2014) to find the generative factors. This is closely related to blind source sepa-
ration (Cardoso, 1989; Jutten and Herault, 1991), where the goal is to recover source
signals that have been mixed with an unknown mixing function. The question of
identifiability is relevant in this context as it addresses whether it is theoretically pos-
sible to recover the source variables for a given mixing function and model.

Another way to motivate disentanglement is to consider the transformations that can
be applied to the input data without changing the identity of an object. Examples of
such transformations include changing the illumination, angle of view or color of an
object. The attributes associated with these transformations are often referred to as
nuisance factors. A good property of a representation is to be invariant to such transfor-
mations, meaning that the transformations should not affect the property of interest
such as the identity of an object. One way to handle this is to drop the nuisance fac-
tors during visual processing so that they are no longer present in the more compact
latent representation. This was the case with the metamer idea discussed earlier. The
more sophisticated approach is to explicitly encode the nuisance variables. This is
called equivariance. Here, the nuisance variables are still present in the latent repre-
sentation, but are encoded in separate parts. While for both versions the application
of the transformation to the input data does not affect the identity of the object, in
the equivariance approach the knowledge about the nuisance variables is preserved.
This corresponds to the fact that people are able to recognize the color of an object,
although the color has no influence on their ability to recognize the object. Deriving
disentanglement from the invariance against transformations is similar to the study
of symmetry in physics (Cohen and Welling, 2014; Higgins et al., 2018). In physics,
symmetry transformations led to the discovery of new concepts, as transformations
that leave certain properties invariant yield exploitable structure. Similarly, disen-
tangled representations should capture the “symmetry transformations of the world
state” (Higgins et al., 2018).

Disentangled representations could have a number of practical benefits. Humans can
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do combinatorial generalization (Fodor and Pylyshyn, 1988), meaning that they can
still identify the color of a red elephant even if they have never seen this combina-
tion of attributes before. Disentangled representations could facilitate robustness to
new attribute values or combinations of attribute values not seen in the training data
(Montero et al., 2021; Madan et al., 2020; Schott et al., 2021). In addition, disentan-
glement can improve interpretability, as one can better predict how the source image
would change if the representation were varied and vice versa. In a disentangled set-
ting, applying a transformation in the input space (for example by rotating an object),
should produce the same result as applying the transformation in the latent space
(for example by modifying the subspace encoding the rotation). Furthermore, disen-
tanglement is useful in the light of fairness, could improve the ability to perform well
on downstream tasks and could improve the robustness against changes in the test
domain.

Most works on disentanglement consider the independent and identically distributed
(i.i.d.) setting. However, correlations are common in the real world. As an example,
the foreground and the background of images is highly correlated. The “cow on the
beach” is a well known example: Since most pictures of cows are taken in grassy
environments, networks have difficulty recognizing the cow when it is pictured in an
unusual setting such as a beach or next to a boat. This is an example of how training
on a correlated dataset can lead to problems, as missclassifications are likely for out-
of distribution data (Beery et al., 2018; Arjovsky et al., 2019). Another example is that
it is likely that there are multiple objects in an image (Beyer et al., 2020; Tsipras et al.,
2020). In natural images, their occurrence is not random, and certain objects tend to
appear together. For example, keyboards and monitors are often in the same image.
Importantly, correlated data and correlation shifts in the test data can occur in areas
that affect people’s lives, including healthcare and fairness applications.

Such questions are typically addressed in domain adaptation and domain generalization
(Zhao et al., 2019). Here one has access to multiple labeled source domains (and in the
adaptation case, also to images of the target domain). The goal is to generalize to the
target domain, which is attempted by finding an intermediate representation that is
invariant between the source and target domains. Another approach to improve out-
of-distribution (ood) robustness is to train on counterfactual data (Sauer and Geiger,
2020).

However, the study of correlated attributes is also interesting in terms of disentan-
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glement. More recently, it has been pointed out that disentangling correlated factors
can be problematic. In the experiment of Träuble et al. (2021), two attributes were
correlated in the training data. After training a variational auto encoder on this data,
the resulting latent subspace encoded a mixture of these attributes. Moreover, they
found that common disentanglement metrics could not reveal such pairwise corre-
lations. To counter this, they introduced partial supervision as a solution to cope
with correlations. The fifth research topic (P5) follows up on this research. We show
that minimizing mutual information between latent subspaces can fail even with full
supervision. Therefore, we discuss what should be the correct objective for disentan-
glement in the face of correlations.
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2 Publications

This dissertation follows three pathways to learn about visual perception and the la-
tent representations in biological and artificial neural networks. It starts from analyz-
ing texture perception in human vision (P1-P3). Then it compares the visual percep-
tion of humans and machines (P4). And finally it studies fundamental discrepancies
between human and machine vision on a principled level by discussing the require-
ments for robust disentanglement (P5). The five publications that resulted from this
work will be summarized in the following. Each study will be motivated, the main
results described and the implications discussed. The full publications and the de-
scription of the authors’ contributions can be found in the Appendix.

2.1 Synthesis of Dynamic Textures (P1)

This section summarizes:

Christina M. Funke*, Leon A. Gatys*, Alexander S. Ecker, Matthias Bethge
(2017). Synthesising dynamic textures using convolutional neural networks.
arXiv:1702.07006.
The full publication and author contributions can be found in the appendix on page 79.
* joint first authors

Motivation

The work of Gatys et al. (2015) has significantly advanced the generation of visual
textures by employing the feature space of a DNN for texture synthesis. The resulting
model can create new samples of a given texture that have a high visual quality. Here,
we extend the DNN texture model to the temporal domain. While the original model
captures static textures, we now aim at generating samples for dynamic textures,
also denoted as texturized motion (Wang and Zhu, 2002). Examples for such dynamic
textures are leaves that are moving in the wind or the characteristic motion of water
and flames.

Previous works used a range of different approaches to synthesize dynamic tex-
tures. One class of approaches are physics-based alogrithms which simulate the dy-
namic behaviour by building a physical model (Ebert et al., 1994). Another class of
approaches are image-based approaches. While some works combine existing im-
age patches in a smart way such that they form a dynamic texture (Kwatra et al.,
2003; Schödl et al., 2000), other approaches attempt to model the statistical proper-

27



ties (Szummer and Picard, 1996; Wei and Levoy, 2000; Wang and Zhu, 2002; Doretto
et al., 2003). Most recently, Xie et al. (2017) used a generative ConvNet to synthesize
dynamic textures. Our approach falls into the category of image-based approaches
that capture statistical properties.

Results

We developed a model that captures second-order dependencies between spatial fea-
tures. Our model was similar to the static DNN texture model (Gatys et al., 2015),
but computed the statistics over multiple consecutive frames. These spatio-temporal
summary statistics were then used for the generation of new textures. Similar to the
static approach, we synthesized new samples via gradient descent to match the fea-
tures extracted from the source texture. We tested our model on a range of source
textures and found that in most cases the results already looked decent when only
two frames of the original texture were used to synthesize new samples. In an addi-
tional experiment, we varied the size of the temporal window over which the sum-
mary statistics were computed and found that this parameter had little effect on the
quality of the resulting videos.

Discussion

We developed a simple model that captures second order dependencies between spa-
tial features and showed that we can reach good synthetic results using as little as
two adjacent frames of the original texture. Unlike previous work (Xie et al., 2017),
our model did not require the network to be re-trained for each new source texture.
Our model had difficulty capturing more complex dynamic textures where the spa-
tial and/or temporal dependencies extend over larger areas. Subsequent studies im-
proved the generation of dynamic textures by factorizing spatial appearance and dy-
namics using optical flow prediction (Tesfaldet et al., 2018) and by accounting for
long range dependencies (Zhang et al., 2021).
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2.2 Perceptual Quality of Texture Models (P2)

This section summarizes:

Thomas S.A. Wallis, Christina M. Funke, Alexander S. Ecker, Leon A. Gatys,
Felix A. Wichmann, Matthias Bethge (2017). A parametric texture model based
on deep convolutional features closely matches texture appearance for humans.
Journal of Vision,17(12), 5–5.
The full publication and author contributions can be found in the appendix on page 89.

Motivation

The goal of texture models is to synthesize new samples of naturalistic textures.
While a visual inspection of the synthesized texture images can be a first test bed,
only a thorough experimental investigation can provide information on whether a
model really matches human texture appearance.

A number of such investigations were performed by Balas and colleagues (Balas,
2006, 2012) on the PS-model (Portilla and Simoncelli, 2000). In these experiments a
set of texture images was shown to human observers, from which they had to select
the image that differed from the others (the “oddball”). The oddball could be either
a crop of the original image or a crop of the synthesized image. This experimental
design ensured that all stimuli were physically different. So instead of measuring
whether a human could detect differences at the pixel level, the subjective appearance
was tested. By performing this kind of experiments under foveal and peripheral
presentation, Balas and colleagues could draw conclusions about the ability of the
PS-model to model human texture appearance. In our study we perform a similar
analysis for the more recent DNN texture model (Gatys et al., 2015). In particular,
we are interested in whether the more complex feature space increases the perceptual
quality of the synthesized textures.

Results

We selected twelve images showing natural textures such as gravel, crumpled pa-
per, or roof tiles. For each source texture, we synthesized new images using the PS-
texture model and the DNN texture model. In a three-alternative oddity paradigm
procedure, we tested whether humans could distinguish the model-generated tex-
tures from the original textures. Importantly, all three stimuli were physically differ-
ent: Two of them were crops of the original image and one was a crop of the synthetic
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image (or vice versa). This procedure allowed us to test whether the appearance of
the textures matches, rather than testing whether individual samples of the same tex-
ture could be distinguished. We assessed the discriminablity under two presentation
conditions, namely a parafoveal condition (short presentation time) and an inspec-
tion condition (long presentation time).

We found that both texture models were good in matching appearance in the para-
foveal condition. In the inspection condition, the DNN texture model performed
better than the PS-model on average. At the level of individual source textures, we
found that the DNN-model was successful for nine original textures, whereas the
PS-model was successful on five textures. For one texture, the PS-model performed
better than the DNN-model and for two textures, both models failed.

A total of three textures were difficult for the DNN model. A closer inspection of these
textures revealed that they could be considered “quasiperiodic”, i.e., they contained
a regular structure extending across the entire image (e.g., the roof tiles). In a follow-
up experiment, we found that for two of these textures, the appearance could be
improved by using a DNN model that additionally captured the power spectrum
(Liu et al., 2016). In a control analysis, we ensured that the good results were not due
to the models simply learning to copy the source images.

Discussion

Our results showed that the PS texture model (Portilla and Simoncelli, 2000) was good
when the stimuli where shown only briefly in the parafovea, but was less successful
under inspection. The DNN texture model (Gatys et al., 2015) was a good model of
texture appearance for most textures, even when viewed foveally. Finally, we found
that adding a power spectrum constraint improved the results for source textures
with long-range structures.
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2.3 Summary Statistic Approach for Scene Metamers (P3)

This section summarizes:

Thomas S.A. Wallis*, Christina M. Funke*, Alexander S. Ecker, Leon A. Gatys,
Felix A. Wichmann, Matthias Bethge (2019). Image content is more important
than Bouma’s Law for scene metamers. ELife,8, e42512.
The full publication and author contributions can be found in the appendix on page 119.
* joint first authors

Motivation

Freeman and Simoncelli (2011) tested the hypothesis that the downstream visual sys-
tem in the periphery has access only to a summary statistic representation. For this
goal, they synthesized images that match the summary statistics of an original im-
ages in pooling regions of a certain size. They found that two synthesized samples
could not be told apart for pooling regions that corresponded to the scaling of visual
area V2, i.e., a scale factor of 0.5. This work led to much excitement in the community,
as it was perceived as linking crowding zones, receptive field scaling, and perceptual
experience. However, this conclusion relies on the assumption that the introduced
summary statistic model produces metamers for natural scenes at a scale factor of
0.5. We question this for two reasons.

First, we argue that it is necessary to compare the synthesized samples to the original
image, rather than only comparing two synthesized samples to another. While it may
be a necessary condition that synthesized samples are metameric, this is not a suffi-
cient condition for the summary statistic hypothesis. If the system had only access
to summary statistics, the synthesized samples should also be indistinguishable from
the original image.

Second, we argue that the critical scale must be considered across all possible images.
The critical scale is the maximal scale factor that still allows for metamerism. For
each individual image, the critical scale may vary. However, if the visual system
computes a summary statistic representation and has access only to this compressed
representation, there must be a scale factor (the system critical scale) that holds for all
images — be they texture-like or scene-like.
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Results

In total, we estimated the critical scale for 20 images. These images were selected
based on a pilot experiment such that half of them could be described as “texture-
like” and the other half as “scene-like”. For each original image, we used the FS-
model to synthesize multiple versions with different scale factors. In a three alter-
native oddity paradigm, we measured human discrimination performance and used
these results to estimate the critical scale for each image.

We conducted this study for two comparison conditions. A model synthesis was
compared either to another model synthesis (which had a different initialization) or to
the corresponding original image. When comparing two model syntheses with each
other, we found only a small difference in the critical scale factor between texture-like
and scene-like images, which is consistent with the study of Freeman and Simoncelli
(2011). However, when comparing to the original image, the average critical scale
was lower for scene-like images than for texture-like images. In other words, it was
easier to distinguish the synthesis from the original when the image had scene-like
image content. For two of the scene-like images, human performance was nearly
perfect even at a scale factor of only 0.25. Importantly, in both image categories the
critical scale was below 0.5.

Our selection of the scene-like and texture-like images, however, is questionable be-
cause our selection was based on a pilot experiment. Moreover, this distinction makes
only limited sense for whole images, since most images contain both types of image
content in different regions of the images. Therefore, in a second experiment, we
distorted only small patches of the images, as these were easier to assign to one cat-
egory or the other. The distortion was obtained by averaging the summary statistics
of the DNN texture model (Gatys et al., 2015) only for these small image regions. We
found that their visibility was strongly dependent on the type of the image content.
Even small distortions were highly visible in scene-like regions, while large distor-
tions could go unnoticed in texture-like regions.

Discussion

In summary, we found that the critical scale factor is smaller than previously thought
and that this factor depends strongly on the image content. Similar results were found
by contemporary work by Deza et al. (2017). In particular, our estimate for the crit-
ical scale was smaller than the V2 scaling and rather corresponded to the scaling of
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V1 or less. This is in contrast to the popular idea that appearance matching can be
described by summary statistics computed on a scale similar to the size of V2’s re-
ceptive field. Also, the strong dependence on image content contradicts the notion
that the human system has access only to summary statistic, and thereby discards
non-textural information. Based on these findings, we hypothesized that the sole
computation of summary statistic may not be the right approach to capture human
visual appearance.

We identified three caveats to this hypothesis. First, it might be possible that meta-
merism can be achieved for smaller scale factors. However, we argued that the
induced compression for such small pooling regions is very limited (the syntheses
hardly differ from the original), which in turn calls into question the relevance of the
summary statistic approach. Second, the summary statistics computed by Freeman
and Simoncelli (2011) may not be the ones used by the human visual system. This
is a legitimate concern, since matching the “wrong” features can obviously result in
images that are not metamers for humans. This limitation is difficult to overcome
because one cannot prove the non-existence of a correct set of features. However, the
analysis of two additional summary statistics models that rely on the features of a
DNN (namely the NeuroFovea model of Deza et al. (2017) and an additional DNN
model that we introduce in our paper) can remove some doubts: None of these mod-
els was able to capture the appearance of scenes and they also depended on the im-
age content. Third, all models we considered use an optimization procedure to find
syntheses that match the statistics of the original image. This entails that in many
cases the final losses are different from zero, which implies that the features may not
have been accurately matched. In our study, we addressed this issue by performing
a control analysis, which showed that the observed difference between texture-like
and scene-like images could not be explained by the final loss value alone. Neverthe-
less, further studies on the effects of the optimization procedure would help to shed
further light on this issue.

However, if our hypothesis above is correct despite these concerns, it would imply
that one component is missing to capture the appearance of scenes. One candidate
is mechanisms responsible for perceptual organization, such as segmentation and
grouping mechanisms. This is consistent with other research (Herzog et al., 2015;
Clarke et al., 2014; Manassi et al., 2013).
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2.4 On the Methodology of Comparison Studies (P4)

This section summarizes:

Christina M. Funke*, Judy Borowski*, Karolina Stosio, Wieland Brendel†,
Thomas S.A. Wallis†, Matthias Bethge† (2021). Five points to check when com-
paring visual perception in humans and machines. Journal of Vision, 21(3),
16–16.
The full publication and author contributions can be found in the appendix on page 163.
* joint first authors, † joint senior authors

Motivation

Comparative psychology and psychophysics have a long history of performing cross-
species comparisons. In these fields, researchers have thought a lot about what can
be learned about one system by studying the other (Romanes, 1883; Köhler, 1925;
Koehler, 1943; Haun et al., 2011; Boesch, 2007; Tomasello and Call, 2008). With the
wave of excitement about DNNs as a new model of the human visual system, again
it is important to discuss how to compare the fundamentally different systems (Majaj
and Pelli, 2018; Barrett et al., 2019; Cichy and Kaiser, 2019; Buckner, 2019).

In our work, we discuss how to draw robust conclusions from such studies. To this
end, we conducted three case studies comparing humans and machines on specific
tasks. The first case study concerns the perception of closed contours in humans and
machines. While at first glance there appear to be similarities, a closer look reveals
that the two systems are not so similar at all. The other two case studies concern
experiments that seem to reveal discrepancies between human and machine vision.
We show, however, that the discrepancies can be largely eliminated by changing the
experimental design.

Results

• Closed Contour Detection. In our first case study, we tested how well humans
and DNNs can distinguish closed from open contours. For this purpose, we
created a custom dataset consisting of two classes of images that differed only
in whether they contained a closed contour. To ensure that the task could not
be solved based on differences in the number of dark pixels, the image in both
cases contained a main contour consisting of 3 to 9 straight line segments. Ad-
ditionally, lines with one or two segments were added to make the task more
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difficult. In psychophysical experiments, we confirmed that humans can distin-
guish the two classes. When testing a standard DNN on this task, we found that
it could achieve similar high performance as humans. However, simply com-
paring accuracy does not tell us whether the model uses the same decision mak-
ing process as humans. To better understand this, we tested the model without
further training on variations of the dataset. If our DNN solved the task sim-
ilar to humans, it should also be able to perform well on these generalization
test that are still clear to humans. In fact, we found that the model general-
ized well to variations of the dataset that we considered to be challenging. For
example, the model still made the correct predictions when the main contour
was no longer a polygon but was generated by a radial frequency function. On
the other hand, testing the model on further, seemingly easy, variations of the
dataset revealed that the decision making process must be different from the
one of humans: Varying the thickness or color of the lines caused a severe drop
in performance. In a second experiment, we analyzed the importance of local
and global features. Intuitively, detecting whether a contour line is closing re-
quires access to large portions of an image, since the line could have a gap at any
position. This is in contrast to the type of information preferred by DNNs, as
they often rely on local image content (Geirhos et al., 2019). For this reason, we
investigated the importance of global processing by using a constrained model
that only has access to small image patches only (Brendel and Bethge, 2019). We
found that this model still performed well on our task, suggesting that, contrary
to our original assumption, global features were not required to perform well
on the task we designed.

• Synthetic Visual Reasoning Test. Humans are very good at solving tasks that re-
quire abstract visual reasoning. An interesting research question is how well
machines can perform such tasks. One dataset to study this is the Synthetic
Visual Reasoning Test (SVRT) (Fleuret et al., 2011). While humans can easily
solve all 23 problems in this dataset, DNNs were found to have difficulty with
a subset of them. Specifically, lower performance was obtained when the task
required judging whether two shapes were the same (same-different tasks), as
opposed to judging the spatial arrangement of shapes (spatial tasks) (Stabinger
et al., 2016; Kim et al., 2018). Using a parameterized version of the SVRT dataset,
Kim et al. (2018) analyzed this further and found a difference in the learning
curves of feedforward models: Same-different tasks were more difficult to learn
than spatial tasks. In further experiments, they showed that an attentive version
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of the model was able to learn both types of tasks. Based on these findings, the
authors concluded that feedback mechanisms, as present in biological systems,
are likely important for efficiently performing same-different tasks. However,
we argued that despite the large number of experiments, one still cannot con-
clude that DNNs without feedback mechanisms are not capable of performing
well on same-different tasks. First, the observed difference in learning complex-
ity is no evidence that one type of task is harder than another: Humans could
also have different learning curves, but these differences would not show up
when testing adults who have been exposed to visual input throughout their
lives. Second, the differences in the learning complexity could also be explain-
able by other differences between biological and artificial systems or by a poor
choice of network architecture or training procedure. Third, the finding that a
model with an attentive mechanism can perform well on same-different tasks
should not be taken as evidence that feedback is required. For these reasons, we
argued that it is not yet clear whether feedback mechanisms are necessary for
same-different tasks. In fact, we showed that DNNs can indeed perform well
on all SVRT tasks if an appropriate architecture and training scheme are chosen.

• Recognition Gap. When an image is reduced in size, the content becomes un-
recognizable after a certain point. Interestingly, this drop in recognition perfor-
mance is very sharp. In particular, there is a certain subimage for which further
reduction of the image renders it unrecognisable to a large percentage of ob-
servers (Ullman et al., 2016). This sharp drop in performance is referred to as
a “recognition gap”. Ullman et al. (2016) investigated whether a similar perfor-
mance drop exists for DNNs. To this end, they tested a DNN on the image pairs
for which humans experienced the recognition gap. They found no recognition
gap and concluded “that the human visual system uses features and processes
that are not used by current models and that are critical for recognition”. While
we agreed with the conclusion that DNNs may not use the same features as
humans, we disagreed with the statement that these features are “critical for
recognition”. To gain further insights, we modified the experiment to allow a
fairer comparison with humans. Instead of evaluating the model on image pairs
that were selected by humans, the model could select its own patches in an iter-
ative process similar to that used when testing humans. In this setup, we found
a recognition gap similar to that in humans. This showed that the machines
were also very sensitive to even small reductions in image size; only the precise
minimal features differed from those used by humans.
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Discussion

This project started when we studied the closed contour detection task to compare
the inductive biases and decision making processes between humans and machines.
In this process we noticed that the conclusions drawn from such comparisons can de-
pend severely on small details in the design, analysis, and interpretation. This obser-
vation was also true for our two additional case studies on SVRT and the recognition
gap. While our findings on each case study are certainly insightful for the respective
research questions, the main contribution of this work is our systematic assessment
of common pitfalls that can arise in comparative studies. In particular, we identified
aspects that may influence the outcome of comparison studies and structured them
in the form of a checklist.

As outlined in Section 1.3, there is a long history in comparative psychology of study-
ing model systems such as monkeys or mice and discussing how to draw conclusions
from such comparisons. Our checklist builds on these results, but is tailored to the
peculiarities of artificial systems. A such, it complements discussions of the method-
ology of human-machine comparisons (Majaj and Pelli, 2018; Barrett et al., 2019; Ci-
chy and Kaiser, 2019; Buckner, 2019). Addressing the individual points of our check-
list can sometimes be very difficult and certainly there are more aspects than those
we mention. Nevertheless, taking these points in account when planning, analyzing
and interpreting experiments can improve the robustness of conclusions drawn from
comparative studies between humans and machines. In the following, I will describe
the individual points of our checklist using the three case studies as well as other
examples from the literature.

1. Isolating implementational or functional properties. By their very nature, the
human and machine systems exhibit a wide variety of differences. Therefore,
it is difficult to isolate a particular component responsible for a given observa-
tion. For example, as pointed out in the SVRT case study, the difference in the
learning behavior between humans and machines may hinder the usefulness
of the learning complexity as a tool for comparing the difficulty of task types.
A promising approach for isolating specific aspects can be to constrain the net-
work such that it differs only in one dimension, as was done when comparing
ResNets to BagNets on ImageNet (Brendel and Bethge, 2019) and also on our
closed contour study.

2. Aligning experimental conditions for both systems. A fair comparison re-
quires a good alignment of experimental conditions. Accounting for the plethora
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of differences between the human and machine visual system is important to
ensure equivalent settings. The case study on the recognition gap is an example
of how the alignment of experimental conditions can change the outcome of a
study. The critical point here was the selection procedure of the patches used
in the machine experiment. Instead of using the patches found in the experi-
ments on humans, we used the performance of the machines for patch selection.
Other challenges in aligning the experimental conditions between humans and
machines include the mismatch of stimuli presentation times (DiCarlo et al.,
2012; Serre et al., 2007; VanRullen, 2007) and differences in the hardware such
as memory or capacity of the systems (Firestone, 2020).

3. Differentiating between necessary and sufficient mechanisms. In many cases,
there are several ways to solve a task. Therefore, one must be careful not to be
biased to assume that one way is better than another. The studies on SVRT and
closed contour detection showed that multiple mechanisms can enable good
performance. In particular, our results on SVRT showed that recurrent pro-
cesses are not necessary to perform well on same-different tasks. Similarly, we
showed that global processing was not the only way to solve our closed contour
detection task. Instead, contrary to our intuitions, local features could also lead
to high performance. Similarly, for object classification, both texture and shape
features can allow for high performance (Kubilius et al., 2016; Geirhos et al.,
2019).

4. Testing generalization of mechanisms. The decisions of an artificial system can
be very sensitive to small changes in the dataset or task. Thus, it is important to
specify for which settings a result is intended to hold. Assessing whether a sys-
tem has learned the underlying concept is particularly difficult. Generalization
tests, such as those conducted for the closed contour task, can provide some
insights into whether the features used are similar to those that humans use to
make decisions (Yan and Zhou, 2017). One could also ask for the SVRT study
whether our model understood the concept. We intentionally did not test this
in our study because we were only interested in whether a good performance
on the tasks could be reached, which was not clear at the time. Nevertheless, it
is an interesting question whether the concept of sameness was learned. This
was addressed by Puebla and Bowers (2021), who found that our model did not
perform well on most generalization tests, suggesting that it did not learn the
underlying concept.

5. Resisting human bias. Our human reference point can influence the design of

38



studies and the interpretation of results. The closed contour study illustrates
the difficulty of overcoming our human bias. Although it would be tempting
to conclude from initial results that a model has learned a human-like concept,
several additional experiments may be required to find alternative solutions
as it was done in the closed contour study. The study on the recognition gap
showed how a bias in the experimental design, namely the selection of stimuli,
can affect the outcome of a study. The selection of stimuli and labels has also
been shown to be important when studying adversarial examples (Dujmović
et al., 2020). Other examples for the influence of our human reference point are
Braitenberg vehicles (Braitenberg, 1984), the effect of anthromorphizing (Buck-
ner, 2019), and the experimenter outcome-bias (Rosenthal and Fode, 1961).
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2.5 Disentanglement and Generalization under Correlation Shifts
(P5)

This section summarizes:

Christina M. Funke*, Paul Vicol*, Kuan-Chieh Wang, Matthias Kümmerer†,
Richard Zemel†, Matthias Bethge† (2022). Disentanglement and generaliza-
tion under correlation shifts. Oral presentation at Conference on Lifelong Learning
Agents, 2022.
The full publication and author contributions can be found in the appendix on page 187.
* joint first authors, † joint senior authors

Motivation

One remarkable property of human vision is its robustness. We can easily recognize
objects or animals in new environments. Artificial algorithms, on the other hand, rely
heavily on the structure present in the training data. As a result, they often fail for
unseen or rare situations, such as a cow on the beach (Beery et al., 2018). Under-
standing the concept of background and foreground and the ability to disentangle
them could be important to achieve robustness to changes in the environment. The
goal of our work was to identify the objective that allows for learning disentangled
representations in settings with correlated training data.

Disentanglement methods, such as variational auto encoders, typically minimize the
mutual information between latent subspaces. However, Träuble et al. (2021) found
that for these methods, training on correlated data results in subspaces that encode
a mixture of the correlated attributes. Furthermore, they found that common disen-
tanglement metrics cannot detect pairwise correlations. As a solution, they propose
partial supervision. Here we show that even with full supervision, the objective of
minimizing the mutual information between latent subspaces may fail. We discuss
how the objective needs to be adapted to support learning disentangled representa-
tions for correlated training data.

More formally, the problem we want to target can be described as follows 1. Suppose
we observe noisy data x 2 Rm obtained from an (unknown) generative process x =

g(s) where s = (s1, s2, . . . , sK) are the underlying factors of variation, also called source
variables or attributes, which may be correlated with each other. We wish to find a
transformation f : Rm ! Rn to a latent space f (x) = z = (z1, z2, . . . , zK) such that

1The problem statement was taken almost verbatim from our corresponding paper.
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each of the original attributes sk can be recovered from the corresponding subspace
zk by a linear mapping Rk, e.g., ŝk = Rkzk. We consider three different objectives for
learning the latent subspaces: 1) minimizing a supervised loss L (e.g., mean squared
error or cross-entropy), ÂK

k=1 L(ŝk, sk); 2) minimizing the unconditional mutual informa-
tion between subspaces in addition to the supervised loss, Âk L(ŝk, sk) + I(z1, . . . , zK);
and 3) minimizing the conditional mutual information between subspaces conditioned on
observed attributes, in addition to the supervised loss, Âk L(ŝk, sk) + I(zk; z�k | sk). We
denote by z�k the set of subspaces {z1, . . . , zk�1, zk+1, . . . , zK}. After optimizing the
models for these three objectives, we evaluated them on data where the underlying
attributes were differently correlated.

Results

First, we demonstrated that the problem of disentangling correlated attributes arises
even in simple problems such as linear regression of Gaussian data. For this, we
assumed the following setup: The generation process is given by x = g(s) = As + n,
where s ⇠ N (0, Cs) are the underlying source variables with covariance matrix Cs

and n ⇠ N (0, Cn) is i.i.d. Gaussian noise. A is a linear transformation (in the simplest
case A = I). The latent representation is given by z = f (x) = Wx and the predictions
of the model can obtained linearly by ŝk = Rkzk. In this example, the optimal W and R
for the three objectives as well us the corresponding performances under correlation
shift can be computed analytically. In short, we found that

• minimizing only the regression loss does not lead to disentanglement. More
precisely, we found that optimal linear regression does not equal the inverse
A�1 of the generative model but depends on Cs and Cn. In other words, the
correlation structure Cs is exploited to overcome the noise, leading to wrong
predictions when the correlation structure changes.

• minimizing the MI between latent subspaces in addition to the regression loss
does not help. The reason is that this constraint forces the model to remove all
correlations between the latent subspaces. However, since the source variables
are correlated, this leads to poor predictive performance — even on the training
data.

• minimizing the CMI in addition to the regression loss leads to robustness under
correlation shift. In contrast to unconditional independence, conditional inde-
pendence retains the shared information necessary to account for the correlation
between the source variables. In particular, we found that for optimal regres-
sion under the constraint of conditional independence, the underlying system
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matrix is recovered (W = A�1).

In addition to the regression task, we compared the three different objectives on a
toy classification task. For both tasks, we examined the dependence on the noise level
and the strength of the correlation present in the training data. We found that for
the baseline model, the drop in performance under correlation shift was largest for
strong correlations and intermediate noise levels. When enforcing conditional inde-
pendence, accuracy remained high under correlation shift for all noise and correlation
levels.

Next, we presented a method for minimizing CMI for more complex cases. In short,
this method selects samples that match a particular attribute value (e.g., ak = 0) and
batch-wise shuffles their latent spaces such that only the subspace corresponding to
the attribute remains unchanged. A discriminator is trained to distinguish the orig-
inal samples p(z1, . . . , zK | ak) from the shuffled ones p(zk | ak)p(z�k | ak). By
adversarial training, we teach the encoder to fool the discriminator. This enforces
p(z1, . . . , zK | ak) = p(zk | ak)p(z�k | ak) which corresponds to the CMI being mini-
mized. This optimization is done for all attributes and all their possible values simul-
taneously.

We applied this method to two classification tasks with unknown generation pro-
cesses. In one of them, we placed two handwritten digits (LeCun et al., 1998) side
by side so that the identity of the digits was correlated during training. Noise was
induced by partial occlusion of the images. For the second task, we used a sub-
set of the CelebA dataset (Liu et al., 2015) containing faces for which the attributes
Male|Female and Smiling|Not Smiling were correlated during training. For both
datasets, we found that conditional independence leads to improved robustness un-
der correlation shift compared to the baseline objectives. In addition, we evaluated
common disentanglement metrics (Locatello et al., 2019) on the uncorrelated test data
to confirm our findings and showed that our results also hold for weakly supervised
settings.

Discussion

The main contribution of this work was to establish conditional mutual information
(CMI) as correct objective for disentanglement in the presence of correlations. In par-
ticular, we showed that the usual approach of minimizing mutual information is con-
ceptually incorrect in this setting. This became apparent when evaluating the predic-

42



tive performance under correlation shift. While the CMI objective showed its benefit
most clearly for highly correlated attributes, it is still relevant in terms of fairness
for weaker correlations. We saw that the baseline models made use of the structure
present in the training data to improve their performance. Or in other words, dat-
apoints were systematically treated incorrectly based on biases present in historical
data. This can be very problematic when the correlations involve sensitive attributes
such as gender or ethnicity. The CMI objective, on the other hand, prohibits the ex-
ploitation of such undesirable correlations in the training data.

In summary, we have shown that minimizing CMI is the correct objective in the face
of correlations. However, our method for minimizing CMI has a few limitations.
First, it requires labels for the attributes. Second, it is only applicable to categori-
cal attributes. Third, it increases the computational cost and can be challenging to
train. An advantage of our method is that it operates on the latent space and is there-
fore agnostic to the encoder architecture. Future work could consider combining our
approach with other methods such as Invariant Risk Minimization (Arjovsky et al.,
2019) or ideas regarding the information bottleneck (Sauer and Geiger, 2020).
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3 General Discussion

In this dissertation, three paths were taken to improve our understanding of visual
processing and the resulting internal representations. In the first part of the thesis,
we analyzed aspects of human vision. For this, we conducted psychophysical ex-
periments with stimuli generated by artificial models to learn about human texture
perception and peripheral vision. The second line of research focused on the com-
parison between human and machine perception. We discussed at a methodological
level how to draw robust conclusions from comparative studies and conducted three
case studies, on closed contour detection, visual reasoning tasks, and a phenomenon
called recognition gap. In the third approach, we addressed a fundamental discrep-
ancy between humans and machine vision and made it computationally explicit. In
particular, we targeted the robustness to correlation shifts and established conditional
independence as the correct objective for disentanglement in correlated settings.

The general discussion is divided into two parts. The first part focuses on the method-
ological level and addresses how we can gain knowledge about visual perception (Sec-
tion 3.1). The second part discusses what we have learned about visual processing and
the mechanisms that might be crucial (Section 3.2).

3.1 Methodology of Vision Studies

One major question is how to learn about vision. Our checklist for comparative stud-
ies (P4) contributes to this ongoing discussion. Here, I will discuss the methodology
of understanding vision on a broader level. I selected three major questions and will
discuss my research in this context. The three questions are at which levels can vi-
sion be analyzed (Section 3.1.1), what approaches can a researcher take to learn about
vision (Section 3.1.2), and what types of stimuli can be used (Section 3.1.3).

3.1.1 Levels for Analyzing Vision

David Marr’s seminal work in the 1970s identified three levels for analyzing vision
(Marr and Poggio, 1976; Poggio, 1981). In this multi-level description, the principal
problem that is attempted to be solved is termed as computational level. The strate-
gies to realize these computations form the algorithmic level. Finally, the building
blocks used to implement these algorithms are denoted as the implementational level.
Although the distinction between these levels is not always straightforward, it is im-
portant to consider carefully which level of description is suitable for the research
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goal at hand. When modeling the human system with artificial systems, there is of-
ten no intention to adopt all aspects of the implementation. For example, it is neither
feasible nor desirable to mimic the chemical processes of biological vision. Instead,
performing the analysis on the algorithmic or even the computational level is more
fruitful.

My research often targets the intersection of the computational and algorithmic level
and makes use of having access to two fundamentally different systems that can per-
form visual tasks, namely biological and artificial systems. In the study on peripheral
vision (P3) the goal of compressing the image in the periphery could be considered
as the computational level, while the strategy of computing specific summary statis-
tics would correspond to the algorithmic level. Whether this is done with synapses or
computer code would then be the implementational level. The ideas discussed in (P4)
mainly concern the algorithmic level. One point of our checklist highlights that mul-
tiple solutions can allow for good performance on a given task. Here, we emphasize
the importance of distinguishing between necessary and sufficient mechanisms and
pointed out that multiple solutions can allow for good performance. In particular,
the solution used by the human visual system need not be the only one or even the
best one. We illustrated this with our closed contour detection task, where we saw
that multiple approaches, namely global and local processing, can lead to good per-
formance. Similarly, when discussing the challenge of making same-different judg-
ments, we discussed the importance of one possible mechanism, namely recurrency.
And finally, in the work on disentanglement (P5), we targeted the computational
level. In particular, we envisioned robustness to correlation shift and proposed to
implement it by minimizing the conditional MI objective, which is likely to be very
different from the way robustness is achieved in biological systems.

A common objection raised with respect to studies comparing humans and machines
is that such comparisons do not make sense given the many differences at the im-
plementational level. These claims neglect that comparisons are also possible at the
algorithmic and computational level, which can be largely independent of the exact
implementation. When trying to identify the fundamental components that are impor-
tant for successful visual processing, it may actually be an advantage that the systems
differ at the implementational (or even the algorithmic) level. Access to multiple sys-
tems that perform visual tasks in different ways can help distinguish the critical com-
ponents from mere design choices or solutions that evolution has produced (Nilsson,
2021).

46



3.1.2 Understanding Vision: Analyzing vs. Constructing

In vision research, the various fields take different approaches to learning about vi-
sion. Psychophysics and neuroscience analyze existing systems to derive knowledge.
Typically behavioral or neural data is collected, and researchers attempt to find mod-
els that reproduce biological phenomena. While this is an exciting goal, it underes-
timates the challenge of modeling the functional properties of the brain. Computer vi-
sion, on the other hand, aims more at achieving a high performance on specific tasks.
Here, biological phenomena are of little interest, although they may provide some
inspiration. Often the starting point is to define benchmarks for a task of interest
and to compare a range of models on these benchmarks. This can lead to an under-
standing of what characterizes good and bad models, providing the researcher with
a good starting point for further model improvement. This idea of understanding by
constructing follows the famous dictum of the physicist Richard Feynman “What I
cannot create, I do not understand”. For further discussion see also Anderson and
Kreiman (2011).

This dissertation took three approaches to learning about vision that incorporate
methods of different fields of vision research. Specifically, we analyzed aspects of bio-
logical vision, we compared biological and artificial neural networks and we addressed
fundamental discrepancies between these systems. All three approaches incorporated
ideas from both the analyzing and constructing concepts described above. While the
studies on texture perception and peripheral vision (P1-P3) focused on the analysis
of human processing, the development of texture models was a major part. Here, the
generation of textures that appear natural to humans is closely related to the aspect
of constructing. The comparison of visual systems (P4), on the other hand, involved
extensive analysis of the individual systems. Finally, we addressed a fundamental
discrepancy between biological and artificial systems (P5). For this, we examined the
problem on a conceptual level, constructed a solution that incorporated the resulting
ideas and analyzed whether this closed the gap in performance.

Overall, it is important to have a wide set of methods available to obtain a compre-
hensive picture of visual processes. From this point of view, the different fields of
vision research complement each other and it is worth combining their approaches.
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3.1.3 Types of Stimuli

In traditional psychophysics, vision is being studied with artificial stimuli such as
bars, sinusoidal gratings, or ensembles of simple stimuli. With the upcoming of
more computational power it became feasible to experiment with more natural stim-
uli. Such studies concerned, for example, the usability of image statistics for animal
recognition (Torralba and Oliva, 2003; Wichmann et al., 2010) or studied the orien-
tation of contours in natural images (Coppola et al., 1998). The use of natural and
ecologically relevant stimuli is promising, as this is thought to provide a more mean-
ingful test of neural models (Felsen and Dan, 2005; Olshausen and Field, 2005). From
an intuitive point of view, it makes sense to use natural images, as the biological
visual system has also evolved to process natural images. Furthermore, the design
of artificial stimuli always involves assumptions about the stimulus parameters that
might be relevant to the research question. Therefore, the designed stimuli lack the
richness of natural stimuli, which can prevent us from filling gaps in our knowledge
about vision.

There are also voices arguing for the benefits of synthetic stimuli (Rust and Movshon,
2005; Martinez-Garcia et al., 2019). For one, their properties can be better controlled,
which allows for testing specific hypotheses. This can shed light on why a model
might have failed on natural images. In addition, natural image datasets can also
be biased and even misrepresent basic visual phenomena (Torralba and Efros, 2011).
Since the photographer already decides which aspect of reality to capture in a picture,
such datasets might be less natural than one might expect (Adams, 1980; Wichmann
et al., 2010). Similar concerns apply to the “natural” datasets that are commonly
used for training DNNs, such as ImageNet (Deng et al., 2009). The naturalness of
the images, the choice of classes and the labeling of the images is highly debatable.
However, there are some recent attempts to improve the ecological relevance of such
datasets (Mehrer et al., 2021). In summary, for all kinds of stimuli, the selection is
likely biased by our human perspective. The closed contour detection and detection
gap studies (P4) are examples of how stimulus selection has a large impact on the
result.

There are use cases for a wide range of stimuli. Sometimes, even mathematical ex-
amples like Gaussian distributions are well suited. This was the case in our study on
disentanglement (P5), in which we targeted conceptual questions. Specially designed
stimuli on the other hand may be suitable to test whether DNNs learned abstract
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concepts (P4) or whether they are susceptible to visual illusions. Parametric models
(such as the texture models used in P1-P3) can help to generate stimuli that share
important properties with natural stimuli, but at the same time can be synthesized in
a well-controlled manner. Another promising avenue is the generation of synthetic
images using 3D CAD models (Aubry et al., 2014). Natural images can also be useful
for a variety of studies. An example for the superiority of natural images is provided
by Borowski et al. (2020). A typical way to visualize the features of DNNs is to syn-
thesize images that maximally activate specific layers or neurons (Erhan et al., 2009).
However, Borowski et al. (2020) have shown that the resulting images are actually
less informative than natural images. Overall, choosing the right kind of stimuli is a
difficult, yet very crucial task.

One approach used in this dissertation are metamers. This kind of stimulus is par-
ticularly interesting, and thus it is worth reviewing the underlying idea and its im-
plications in some more detail. For non-bijective models, multiple input images can
result in the same representation. This effect is called metamerism. A typical exam-
ple for metamerism is human color perception (Wyszecki and Stiles, 1982; Cohen and
Kappauf, 1982). Here, certain color stimuli are perceived as identical, although their
spectral power distributions differ. Systematic study of these color metamers has re-
vealed the three dimensions of human color vision, which is implemented by three
types of cones, each responding to a range of wavelengths. While color metamers
arise from retinal properties, it is likely that metamers also exist further down the
ventral stream. Their study, in a similar way as for the color metamers, could shed
light on how visual information is processed. One candidate is the metamers of pe-
ripheral vision, for which it is assumed that information is discarded by computing
summary statistics (Freeman and Simoncelli, 2011, P3). Metamerism can also occur in
other domains. For example, ocean sound recorded at different times may be indis-
tinguishable. Studying which stimuli produce the same responses at some stage of a
network’s representation can be very insightful and this approach has gained interest
in recent years. In particular, Feather et al. (2019) have promoted to use metamers
of neural networks to show deviations from the human system. The idea is that
metamers can reveal to which image features an encoder is invariant. From this point
of view, adversarial examples have been described as complementary. As phrased
by Feather et al. (2019), “adversarial examples are metameric (perceived similarly)
for humans but are not metameric to the network they are derived for, demonstrat-
ing that the network lacks some invariances present in humans”. This is explored in
detail by Jacobsen et al. (2019).
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3.2 Mechanisms Underlying Visual Processing

Another major question in vision research concerns the computations that produce
a visual representation that enables the robust and efficient performance of visual
tasks. The role of specific mechanisms is not yet fully understood and the topic in the
vision community. Among other topics, such discussions revolve around the ques-
tion whether information is processed locally or globally (Section 3.2.1), the potential
benefits of recurrent mechanisms (Section 3.2.2) and the factors that are important for
generalization and robustness (Section 3.2.3).

3.2.1 Local versus Global Processing

The question of whether visual perception is based on local or global features has a
long history in psychology. Wilhelm Wundt and Edward Titchener established the
structural psychology, proposing that perception could be explained by identifying
the individual components and putting them together to describe complex processes
(Titchener, 1929; Biederman, 1987). This view changed with the emerge of the Gestalt
theory (Koffka, 1922) following the premise “the whole is greater than the sum of
its parts” (Aristotle). One main implications is that the arrangement of items can
influence the perception of the individual parts. This finding is summed up by the
famous statement that we see the “forest before trees” (Navon, 1977; Kimchi, 1994).

The importance of global structure for humans is evident from a number of studies.
It is, for example, well known that context has a strong influence on our perception.
One and the same local patch can be perceived very differently depending on the
surrounding image content. Even more, in low-resolution images where only the gist
of an object is visible, people hallucinate objects that fit into the scene. For example,
people assume that the blackish area below a computer monitor must be a keyboard,
even though there are no local features to support this hypothesis (Torralba et al.,
2010; Murphy et al., 2006). The study of two-tone images revealed the importance
of context in the form of prior knowledge. Here, the local structure of images was
removed by limiting the images to black and white pixels (Hayes, 1988). The recog-
nizability of these two-tone images was found to be strongly influenced by high-level
prior knowledge (Teufel et al., 2018). The importance of global structure for human
perception is also evident in children’s learning behavior. When learning words for
new objects, the shape of the objects is weighted more heavily than their size or tex-
ture (Landau et al., 1988). Furthermore, objects that have the texture characteristics of
one category and the shape of another (so-called cue-conflict images), revealed that
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humans are biased towards shape when classifying objects (Geirhos et al., 2019). Fi-
nally, it has been shown that people ignore features that are highly predictable and
clearly visible, relying instead on less predictable global features (Malhotra et al.,
2021).

With the advent of artificial systems it is debated whether machine vision has a simi-
lar preference for global information. While some studies report a shape-bias similar
to humans (Ritter et al., 2017; Kubilius et al., 2016), most work has found that local
cues are more important for DNNs. First, the success of DNN features in predict-
ing neural responses was found to be due to the textural properties rather than con-
tour properties (Laskar et al., 2018; Long and Konkle, 2018). Second, while context is
important for human perception, machines have been shown to lack awareness for
context. In search tasks, humans were found to often miss targets when their size is
inconsistent with the rest of the scene (Eckstein et al., 2017). This was not the case for
the DNNs tested, which was explained by their reliance on local features. Third, it
was found that standard DNNs trained for object classification on ImageNet have a
texture-bias for cue-conflict images (Geirhos et al., 2019). However, it should be noted
that the training data has a strong influence on this preference (Geirhos et al., 2019;
Hermann et al., 2020; Hosseini et al., 2018). Finally, DNNs restricted to local informa-
tion were still able to perform surprisingly well in image classification (Gatys et al.,
2015; Brendel and Bethge, 2019). Similarly, our research (P4) has shown that a locally
constrained network can perform well on a closed contour detection task where one
would have intuitively assumed that the task would not be solvable without access
to global features.

The question of local and global processing is also prevalent in discussions about pe-
ripheral vision. The loss of visual information in the periphery and effects such as
crowding are often explained by the pooling of visual features in local areas. The
hypothesis is that higher layers have only access to these summary statistics (Rosen-
holtz, 2014; Freeman and Simoncelli, 2011). Our work, however, has shown that
this local summary statistic approach does not capture appearance. In particular,
we found that long-range spatial dependencies pose a problem. This became al-
ready evident in our study of the perceptual quality of texture models (P2), where
we found that textures with long-range dependencies, such as roof tiles, were prob-
lematic. Similarly, for dynamic textures, we found that the global structure was not
captured by the purely local representation (P1). Most directly, however, the problem
of long-range structures showed in our third study (P3). We found that the sum-
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mary statistics approach could not produce full field metamers when the synthesized
images were compared to the original image. Instead, we found that the ability to
generate metamers depended strongly on the image content. In particular, we found
that features that span over large areas of the image are indeed relevant. This is con-
sistent with previous findings showing that flankers far away from the target can in
fact affect how the target is perceived. These phenomena are known as uncrowding
(Manassi et al., 2013, 2016) and supercrowding (Vickery et al., 2009). As summarized
by Herzog et al. (2015), “the spatial configuration across the entire visual field deter-
mines crowding”.

Later work aimed to improve the foveated models to better capture the appearance
of scenes across the field of view. While some researchers focused on increasing the
speed and usability of the models (Walton et al., 2021; Long et al., 2018), others dis-
cussed how to include additional methods to incorporate global aspects (Herrera-
Esposito et al., 2021; Doerig et al., 2019). A number of recent papers made use of
the resulting stimuli to investigate the relation between local versus global process-
ing, foveation operations, and the properties of resulting representations (Harrington
and Deza, 2021; Ziemba and Simoncelli, 2021; Deza and Konkle, 2020). The work of
Jagadeesh and Gardner (2022) is particularly interesting, as it offers a different per-
spective on whether human perception of objects is based on texture or shape. More
specifically, they find that the human visual cortex also represents texture-like infor-
mation, but unlike CNNs, is sensitive to the spatial arrangement of the features.

Overall, there is widespread agreement that many human visual processes can not
be explained by combining local features alone. Mechanisms that support grouping
and segmentation such as attention and recurrency, are promising additions (Doerig
et al., 2020; Linsley et al., 2018a; Spoerer et al., 2019). A relatively recent development
in this vein are transformer architectures (Vaswani et al., 2017), which allow flexible
allocation of attention over larger spatial scales. These architectures have been suc-
cessfully used for visual tasks (Parmar et al., 2018; Dosovitskiy et al., 2020) and can
overcome the texture-bias on cue-conflict images (Tuli et al., 2021).

3.2.2 Importance of Recurrent Mechanisms

The human brain is known to have connections not only from lower to higher visual
areas. Rather, the higher visual areas can influence the activation of neurons in lower
visual areas. Also, there exist connections between neurons of the same visual area
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(Lamme and Roelfsema, 2000). Often, feedforward-only processing is associated with
pre-attentive vision, whereas recurrent processing corresponds to attentive vision. In
this sense, a feedforward sweep is thought to provide an initial coarse visual repre-
sentation sufficient for rapid categorization tasks (Serre et al., 2007; VanRullen, 2007).
The feedback mechanisms and lateral connections, on the other hand, are thought to
be important for perceptual organization and segmentation.

Unlike biological brains, many standard DNNs have only feedforward connections.
However, the inclusion of recurrent mechanisms may be important for visual pro-
cessing (O’Reilly et al., 2013; Lindsay, 2020; Nayebi et al., 2018) and can help over-
come observed differences between humans and machines (Kar et al., 2019; Kietz-
mann et al., 2019; Kim et al., 2018; Linsley et al., 2018b). For example, Spoerer et al.
(2017) has found that object recognition in the presence of clutter and occlusions can
be improved by lateral and feedback connections. Recurrent mechanisms and atten-
tion can also help for tasks with long-range dependencies (Linsley et al., 2019; Kim
et al., 2020). This becomes evident in transformer architectures, which, in a targeted
manner, take larger spatial regions into account (see previous section).

In terms of Marr’s level of description, the question arises whether recurrency is an
implementational choice or a functional property. While the literature listed in the
previous section seems to favor the latter, there is also evidence for the former hypoth-
esis. For one, any finite-time recurrent network can be unrolled into a feedforward
network with weight sharing (Liao and Poggio, 2016; van Bergen and Kriegeskorte,
2020). For another, the error patterns of recurrent and feedforward models are re-
markably similar (Geirhos et al., 2020b). Furthermore, our study on the SVRT dataset
(P4) has shown that, contrary to previous assumptions, feedback mechanisms are
not necessary to perform well on same-different tasks: While previous studies found
that recurrent connections could be crucial for efficient performance of these tasks
(Kim et al., 2018), we argued that they are not required to reach a good performance
and showed that a standard DNN, namely ResNet-50, could perform well on same-
different tasks. This supports the hypothesis that recurrency is an implementational
choice rather than a functional property.

Since we published our work, the importance of recurrency has been further explored
and researchers found that recurrent networks can have some advantages over feed-
forward architectures in practice. Recurrent architectures are thought to be more
computationally efficient (e.g., if the hardware is limited), more flexible (e.g., if the
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task or dataset changes), and allow exploitation of temporal dependencies in the data
(van Bergen and Kriegeskorte, 2020; Kreiman and Serre, 2020).

In particular, it has been discussed whether attentive mechanisms might be beneficial
when considering performance on data outside of the training distribution. For this,
a range of architectures with attentive mechanisms were tested on the SVRT same-
different tasks, namely ResNets with attention modules (Vaishnav et al., 2021), Re-
current Vision Transformers (Messina et al., 2021), Relation Networks (Santoro et al.,
2017; Kim et al., 2018) and Siamese architectures (Kim et al., 2018). Vaishnav et al.
(2021) analyzed the dependence on the number of training examples more system-
atically, created a taxonomy of the SVRT tasks and discussed their computational
demands. Importantly, they distinguished between feature learning and rule learn-
ing. Feature learning tests whether a high accuracy can be reached on the test set,
whereas rule learning tests whether the underlying concept has been learned (simi-
lar to P4, where we tested whether the concept of closedness has been learned). The
researchers found that attention processes contribute to rule learning. This may in-
dicate that while feedforward processing works well in feature learning, recurrent
mechanisms may facilitate learning the abstract rule. This is consistent with the find-
ing of Puebla and Bowers (2021) who showed that the pure ResNet model that we
used in our experiments does not perform well on a range of generalization tests.

While these findings seem to suggest that recurrency is a functional property for
learning the rule of sameness, there are still debatable points. For one, Puebla and
Bowers (2021) showed that the Relation Network suffers from the same limitation as
ResNet, even though it was designed for relational reasoning problems. Moreover,
as will be elaborated in the next section, it is questionable what can be inferred from
generalization tests for rule learning abilities.

3.2.3 What Drives Generalization?

Often DNNs achieve good accuracy on the task for which they were trained, but
have problems on test data that has other properties. Such data is denoted as out-of-
distribution (ood) data and the change of the distribution is often denoted as domain
shift. One can vaguely distinguish between two types of shifts in the test distribution.
First, the appearance of the scene or image can be affected, which means that the
low-level image statistics change. This pixel-wise structure is typically assumed to be
encoded in the lower layers of neural networks. In the real world, this corresponds
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to variations in lighting conditions or camera settings (DiCarlo and Cox, 2007; Cox,
2014). Such effects can be simulated by adding noise, by blurring the image or by
changing its contrast (Geirhos et al., 2018; Ghodrati et al., 2014). Another example for
a change in the appearance is the modification in color or thickness of the lines in the
closed contour case study (P4). Second, the shifts may be more at the level of objects.
Loosely speaking, this would refer to features that are sometimes thought to be en-
coded in higher layers of neural networks. Returning to the closed contour example,
this corresponds to generalization tests that modify the shape of the contours. An-
other example could be a change of the probability for co-occurrence of objects in the
same image (Beery et al., 2018) — or more generally the correlation structure between
attributes (P5).

Testing humans and machines on a range of different test datasets can be exciting,
as the differences in the generalization performance can teach us something about
the similarities and differences in the decision making process. We (P4) and other
researchers (Zhang et al., 2018, 2019; Puebla and Bowers, 2021) have used this idea to
discuss whether machines have learned the same concept that humans use to make
their decision. Such concepts include closedness, sameness or counting abilities. The
idea here is that if machines fail on generalization tests that humans can do easily, it
is unlikely that they have “understood” the concept.

However, drawing conclusions about what a model has or has not understood is
not easy. Suppose a model performs well on all variants of a dataset designed by a
researcher. Would this be sufficient evidence that the model understood the abstract
relationship? In our closed contour example, and in the aforementioned study of
Puebla and Bowers (2021), all variants had in common that they consisted of simple
lines and basic shapes. Wouldn’t a model that understood the concept also have to
work for images that contain photographs of real objects? Would failure on these test
sets automatically mean that the model did not understand the abstract relation? In a
sense, no one would be surprised if a model trained on line segments had difficultiy
with such complex images, because one could argue that the domain shift was too
large and that the model simply could not handle that kind of input. In other words,
there seems to be a threshold for how large the differences between training and
testing domain may be in order to still allow for testing whether a concept has been
learned without obscuring the results by other factors. In this sense, in our study
on closed contour detection, as in the study on same-different tasks, it could be the
case that the model understood the rule, even though it failed on some generalization
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tests. This discussion is closely related to the ideas of Firestone (2020) who address
the distinction between performance and competence.

With all these concerns in mind, one major question remains, namely, what factors
drive generalization. It is well known that the biases of a network determine general-
ization abilities (Mitchell, 1980), but it is not yet clear what “good” biases are and how
they can be obtained. Overall, there are three aspects that have a large impact on bi-
ases and generalization performance: 1) the data used for training, 2) the architecture
of the model, and 3) the training objective.

First, the data that a visual system faces has a large impact. For example, if the train-
ing data allows for shortcuts, it is not surprising that a model will use of these easier
solutions and have difficulty if the shortcuts are not available in the test environment
(Geirhos et al., 2020a; Malhotra et al., 2021). A striking example is the closed con-
tour task (P4), where we have found that there are distinctive features that are not
obvious to human observers. We saw that exploiting these features allowed for a rea-
sonable performance on within-distribution data, but led to errors in ood data. One
can take advantage of the strong influence of data on the generalization performance
to improve robustness. A common method to do this is data augmentation.

Second, the architecture of the visual system affects the generalization performance.
A large body of research is directed towards finding good model architectures (Li
et al., 2017; Ding and Fu, 2017). The results of Geirhos et al. (2020b), on the other hand,
indicate that the decision boundaries are hardly affected by the choice of architecture,
which implies that the generalization performance depends less on the architecture
as one may have expected.

Third, the functional goal of the visual system is of great importance for generaliza-
tion abilities. The research on shortcut learning (Geirhos et al., 2020a) has shown that
generalization performance decreases if a manipulation of the dataset affects a prop-
erty that was used by a system to make its decision. If only features or correlation
structures that were not used for decision making are changed, performance is not
affected. This was also the case for the many successful generalization tests in the
closed contour study (P4). Overall, the demands on a visual system can strongly in-
fluence on which features a model relies on. For a machine learning model that has
the single goal of classifying objects on the ImageNet dataset, there is no need to be-
come robust against changes in illumination, viewpoint or background. For humans,
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on the other hand, this robustness is highly beneficial (DiCarlo and Cox, 2007; Cox,
2014). Conversely, DNNs are hardly affected by changes where texture statistics re-
main intact, such as the shuffling of small patches of the image (Brendel and Bethge,
2019). Since such a shuffling of the image content does not occur in real life scenarios,
it is not surprising that humans have not developed robustness to such modifica-
tions. Changing the demands on the artificial systems can go a long way toward
improving robustness (Carlucci et al., 2019). In a similar way, we have seen (P5) that
choosing the correct objective function can counteract the exploitation of unwanted
correlations and thereby improve generalization under correlation shift.
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3.3 Conclusion

The processing of visual information has evolved over many million years, leading
to a multitude of biological visual systems. Together with the diversity of artificial
systems, researchers now have access to a variety of neural networks that perform
well on visual tasks. By comparing their similarities and differences we are closer
than ever to understanding the computations that enable the transformation of low-
level information into meaningful abstract representations.

This dissertation follows three pathways to learn about visual processing and thereby
combines methods from psychophysics, computer vision and machine learning. The
first set of studies analyzes human texture perception. The next study addresses com-
parisons between human and machine perception. And finally, a fundamental dis-
crepancy between human and machine vision is explored at a principled level by
discussing the requirements for robust disentanglement.

This series of studies made it possible to gain insights into the importance of cer-
tain mechanisms. The focus was on three mechanisms, namely local versus global
processing (Section 3.2.1), recurrent mechanisms (Section 3.2.2) and factors that drive
generalization (Section 3.2.3). In addition, the dissertation addresses the methodolog-
ical side of learning about these mechanisms. It puts a particular emphasis on three
aspects, namely the levels at which vision can be analyzed (Section 3.1.1), possible
approaches to learn about vision (Section 3.1.2) and the types of stimuli that can be
used (Section 3.1.3).

Despite the great advance in computer vision and machine learning, biological vi-
sion is in many ways superior to artificial systems. Human representation of visual
information is usually both robust and efficient. We can grasp concepts, understand
underlying structures, and learn new tasks from very little training data. A key dif-
ference is that machine systems often only have access to limited training data, which
might prevent them from learning a more universal feature space. Machine models
could benefit from the prerequisites that humans have during their visual develop-
ment, namely the ability to navigate and explore a three-dimensional environment. It
will be exciting to see if recent ideas on continual and active learning can bridge the
gap between biological and artificial systems.

58



References

Adams, A. (1980). The camera. New Ansel Adams Photography Series. New York Graphic
Society.

Adelson, E. H. (2001). On seeing stuff: the perception of materials by humans and
machines. In Human vision and electronic imaging VI, volume 4299, pages 1–12. In-
ternational Society for Optics and Photonics.

Amjad, R. A. and Geiger, B. C. (2019). Learning representations for neural network-
based classification using the information bottleneck principle. IEEE transactions on
pattern analysis and machine intelligence, 42(9):2225–2239.

Anderson, W. S. and Kreiman, G. (2011). Neuroscience: What we cannot model, we
do not understand. Current Biology, 21(3):R123–R125.

Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological
science, 12(2):157–162.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893.

Attneave, F. (1954). Some informational aspects of visual perception. Psychological
review, 61(3):183.

Aubry, M., Maturana, D., Efros, A. A., Russell, B. C., and Sivic, J. (2014). Seeing 3d
chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3762–3769.

Balas, B. (2012). Contrast negation and texture synthesis differentially disrupt natural
texture appearance. Frontiers in psychology, 3:515.

Balas, B. (2021). Texture perception. In Oxford Research Encyclopedia of Psychology.

Balas, B., Nakano, L., and Rosenholtz, R. (2009). A summary-statistic representation
in peripheral vision explains visual crowding. Journal of vision, 9(12):13–13.

Balas, B. J. (2006). Texture synthesis and perception: Using computational models to

59



study texture representations in the human visual system. Vision research, 46(3):299–
309.

Barrett, D. G., Morcos, A. S., and Macke, J. H. (2019). Analyzing biological and arti-
ficial neural networks: challenges with opportunities for synergy? Current opinion
in neurobiology, 55:55–64.

Beck, J. (1967). Perceptual grouping produced by line figures. Perception & Psy-
chophysics, 2(11):491–495.

Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in terra incognita. In
Proceedings of the European conference on computer vision (ECCV), pages 456–473.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828.
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Abstract

Here we present a parametric model for dynamic textures. The model

is based on spatiotemporal summary statistics computed from the feature

representations of a Convolutional Neural Network (CNN) trained on ob-

ject recognition. We demonstrate how the model can be used to synthesise

new samples of dynamic textures and to predict motion in simple movies.

1 Introduction

Dynamic or video textures are movies that are stationary both in space and
time. Common examples are movies of flame patterns in a fire or waves in
the ocean. There exists a long history in synthesising dynamic textures (e.g.
[1, 2, 3, 4, 5, 6, 7]) and recently spatio-temporal Convolutional Neural Networks
(CNNs) were proposed to generate samples of dynamic textures [8]. In this note
we introduce a much simpler approach based on feature spaces of a CNN trained
on object recognition [9]. We demonstrate that our model leads to comparable
synthesis results without the need to train a separate network for every input
texture.

⇤Corresponding Author: christina.funke@bethgelab.org
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Figure 1: Illustration of the components of the Gram matrix for �t=3. On
the diagonal blocks are the Gram matrix of the frames, which are identical to
the ones of the static texture model from [10]. The other blocks contain the
correlations between the adjacent frames.

2 Dynamic texture model

Our model directly extends the static CNN texture model of Gatys et al. [10]. In
order to model a dynamic texture, we compute a set of spatio-temporal summary
statistics from a given example movie of that texture. While the static texture
model from [10] only captures spatial summary statistics of a single image, our
model additionally includes temporal correlations over several video frames.

We start with a given example video texture X consisting of T frames xt, for
t 2 {1, 2, ...T}. For each frame we compute the feature maps F`(xt) in layer ` of
a pre-trained CNN. Each column of F`(xt) is a vectorised feature map and thus
F`(xt) 2 RM`(xt)⇥N` where N` is the number of feature maps in layer ` and
M`(xt) = H`(xt) ⇥ W`(xt) is the product of height and width of each feature
map.

In the static texture model from [10], a texture is described by a set of
Gram Matrices computed from the feature responses of the layers included in
the texture model. A Gram Matrix from the feature maps in layer ` in response
to image x is defined as G`(x) =

1
M`(x)

F`(x)>F`(x).
To include temporal dependencies in our dynamic texture model we combine

the feature maps of �t consecutive frames and compute one large Gram Matrix
from them (Fig.1). We first concatenate the feature maps from the �t frames
along the second axis: F`,�t(x1,x2, ...,x�t) = [F`(x1),F`(x2), ...,F`(x�t)] such
that F`,�t 2 RM`⇥�tN` . Then we use this large feature matrix to compute a
Gram Matrix G`,�t = 1

M`
F>

`,�tF`,�t that now also captures temporal depen-
dencies of the order �t (Fig.1). Finally this Gram Matrix is averaged over all
time windows �ti for i 2 [1, T � (�t�1)]. Thus our model describes a dynamic
texture by the spatio-temporal summary statistics

G`,�t(X) =
1

M`

T�(�t�1)X

i=1

F>
`,�tiF`,�ti (1)
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computed at all layers ` included in the model. Compared to the static texture
model [10] this increases the number of parameters by a factor of �t

2.

3 Texture generation

After extracting the spatio-temporal summary statistics from an example movie
they can be used to generate new samples of the video texture. To that end
we sequentially generate frames that match the extracted summary statistics.
Each frame is generated by a gradient based pre-image search that starts from
a white noise image to find an image that matches the texture statistics of the
original video.

Thus, to synthesise a frame x̂t given the previous frames [x̂t��t+1, ..., x̂t�1]
we minimise the following loss function with respect to x̂t:

L =
X

`

w`E`(x̂t) (2)

E`(x̂t) =
1

4N2
`

X

ij

(G`,�t+1(x̂t��t, ..., x̂t)�G`,�t(X))2ij (3)

For all results presented here we included the layers ‘conv1 1’, ‘conv2 1’,
‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ of the VGG-19 network [9] in the texture
model and weighted them equally (wl = w).

The initial �t -1 frames can be taken from the example movie, which allows
the direct extrapolation of an existing video. Alternatively they can be gener-
ated jointly by starting with �t randomly initialised frames and minimising L
jointly with respect to x̂1, x̂2, ..., x̂�t.

In general this procedure can generate movies of arbitrary length because
the extracted spatio-temporal summary statistics naturally do not depend on
the length of the source video.

4 Experiments and Results

Here we present dynamic textures generated by our model. We used example
video textures from the DynTex database [11] and from the Internet. Each
frame was generated by minimising the loss function for 500 iterations of the
L-BFGS algorighm [12]. All source textures and generated results can be found
at https://bethgelab.org/media/uploads/dynamic_textures/.

First we show the results for �t = 2 and random initialisation of the initial
frames (Fig. 2). We extracted the texture parameters from either T = 42 frames
of the source movie or just from a pair of frames T = 2. Surprisingly we find
that extracting the texture parameters from only two frames is often su�cient
to generate diverse dynamic textures of arbitrary length (Fig. 2, bottom rows).
However, the entropy of the generated frames is clearly higher for T = 42 and
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frame 1 frame 2 frame 10 frame 20 frame 30 frame 40

original

T=42

T=2

frame 1 frame 2 frame 10 frame 20 frame 30 frame 40

original

T=42

T=2

Figure 2: Examples of generated video textures for �t = 2 and two example
textures. In the top rows frames of the original video are shown. For the
frames in the middle rows, 42 original frames were used. For the frames in the
bottom rows two original frames were used (the ones in the black box). The
full videos can be found at https://bethgelab.org/media/uploads/dynamic_
textures/figure2/.
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T=42
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Figure 3: Examples of generated videos for �t = 2 (middle rows) and �t = 4
(bottom rows). In the top rows frames of the original video are shown. 42 orig-
inal frames were used. The global structure of the motion is not preserved. The
full videos can be found at https://bethgelab.org/media/uploads/dynamic_
textures/figure3/
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for some videos (example: water) greyish regions appear in the generated tex-
ture if only two original frames are used.

Next we explored the e↵ect of increasing the size of the time window �t .
Here we show results for �t = 2 and �t = 4. In general we noted that for
most video textures varying the size of the time window �t has little e↵ect.
We observed di↵erences, however, in cases where the motion is more structured.
For example, given a movie of a branch of a tree moving in the wind (Fig. 3,
top row), the leaves are only moving slightly up and down for �t = 2 (Fig. 3,
middle row), whereas for �t = 4 the motion extends over a larger range (Fig.
3, bottom row).

Still, even for �t = 4, the generated video fails to capture the motion of
the original texture. In particular, it fails to reproduce the global coherence
of the motion in the source video. While in the source video, all leaves move
together with the branch up or down, in the synthesised one some leaves move
up while some move down at the same time. The disability to capture the global
structure of the motion is even more apparent in the second example in Fig. 3
and illustrates a limitation of our model.

Finally, instead of generating a video texture from a random initialisation,
we can also initialise with �t� 1 frames from the example movie. In that way
the spatial arrangement is kept and we are predicting the next frames of the
movie based on the initial motion. We use three frames of the original video
were to define the texture statistics (�t = 3, T = 3) (Fig. 4). The first two
frames of the new movie are taken from the example and the following frames
were sequentially generated as described in section 3. In the resulting video the
di↵erent elements keep moving in the same direction: The squirrel continues
flying to the top left, while the plants move upwards. If an element disappears
from the image, it reappears somewhere else in the image. The generated movie
can be arbitrarily long. In this case we used only the initial 3 frames to generate
over 600 frames of a squirrel flying through the image and did not observe a
decrease in image quality.

5 Discussion

We introduced a parametric model for dynamic textures based on the feature
representations of a CNN trained on object recognition [9]. In contrast to the
CNN-based dynamic texture model by Xie et al. [7], our model can capture a
large range of dynamic textures without the need to re-train the network for
every given input texture.

Surprisingly we find that even when the temporal dependencies are extracted
from as little as two adjacent frames our model still produces diverse looking
dynamic textures (Fig. 2). This is also true for non-texture movies with simple
motion. We see that in this case we can generate a theoretically infinite movie
repeating the same motion (Fig. 4.).

However, our model fails to capture structured motion with more complex
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frame 1 frame 2 frame 3

frame 5 frame 10 frame 15

frame 20 frame 25 frame 30

frame 35 frame 40 frame 45

Figure 4: Initialisation of the new video with the original frames. The
first three frames shown are the original frames, the others are generated by
our model. The full video can be found at https://bethgelab.org/media/
uploads/dynamic_textures/figure4/.
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temporal dependencies (Fig. 3). Possibly spatio-temporal CNN features or the
inclusion of optical flow measures [13] might help to model temporal dependen-
cies of that kind.

In general though we find that for many dynamic textures the temporal
statistics can be captured by second order dependencies between complex spatial
features leading to a simple yet powerful parametric model for dynamic textures.
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Tübingen, Germany

Alexander S. Ecker

Werner Reichardt Center for Integrative Neuroscience,
Eberhard Karls Universität Tübingen,
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Tübingen, Germany

Our visual environment is full of texture—‘‘stuff’’ like
cloth, bark, or gravel as distinct from ‘‘things’’ like
dresses, trees, or paths—and humans are adept at
perceiving subtle variations in material properties. To
investigate image features important for texture
perception, we psychophysically compare a recent
parametric model of texture appearance (convolutional
neural network [CNN] model) that uses the features

encoded by a deep CNN (VGG-19) with two other
models: the venerable Portilla and Simoncelli model and
an extension of the CNN model in which the power
spectrum is additionally matched. Observers
discriminated model-generated textures from original
natural textures in a spatial three-alternative oddity
paradigm under two viewing conditions: when test
patches were briefly presented to the near-periphery
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(‘‘parafoveal’’) and when observers were able to make
eye movements to all three patches (‘‘inspection’’).
Under parafoveal viewing, observers were unable to
discriminate 10 of 12 original images from CNN model
images, and remarkably, the simpler Portilla and
Simoncelli model performed slightly better than the CNN
model (11 textures). Under foveal inspection, matching
CNN features captured appearance substantially better
than the Portilla and Simoncelli model (nine compared
to four textures), and including the power spectrum
improved appearance matching for two of the three
remaining textures. None of the models we test here
could produce indiscriminable images for one of the 12
textures under the inspection condition. While deep CNN
(VGG-19) features can often be used to synthesize
textures that humans cannot discriminate from natural
textures, there is currently no uniformly best model for
all textures and viewing conditions.

Introduction

Textures are characterized by the repetition of
smaller elements, sometimes with variation, to make up
a pattern. Significant portions of the visual environ-
ment can be thought of as textures (‘‘stuff’’ as distinct
from ‘‘things’’; Adelson & Bergen, 1991): your neigh-
bor’s pink floral wallpaper, the internal structure of
dark German bread, the weave of a wicker basket, the
gnarled bark of an old tree trunk, a bowl full of prawns
ready for the barbie. Texture is an important material
property whose perception is of adaptive value
(Adelson, 2001; Fleming, 2014). For example, we can
readily discriminate wet from dry stones (e.g., Ho,
Landy, & Maloney, 2008), separating the underlying
spatial texture from potentially temporary characteris-
tics like glossiness. Where surfaces of different textures
form occlusion boundaries, texture can provide a
powerful segmentation cue; conversely, occlusion
borders of similarly textured surfaces can camouflage
the occlusion (hiding a tiger among the leaves). Given
the importance and ubiquity of visual textures, it is
little wonder that they have received much scientific
attention, not only from within vision science but also
in computer vision, graphics, and art (see Dakin, 2014;
Landy, 2013; Pappas, 2013; Rosenholtz, 2014, for
comprehensive recent reviews of this field).

Studying texture perception with parametric
texture models

Seminal early work on visual texture perception
includes that by Gibson (Beck & Gibson, 1955; Gibson,
1950) and by Julesz (Julesz, 1962, 1981; Julesz, Gilbert,
& Victor, 1978). Julesz’s thinking remains an important

influence on approaches to texture perception, in
particular the idea that there exists some set of statistics
(parameters in a parametric model) that are both
necessary and sufficient for matching the appearance of
textures (see also Portilla & Simoncelli, 2000). For
computer vision applications, where a goal might be to
match the appearance of some region of texture to
facilitate image compression, the most effective ap-
proaches can be nonparametric—for example, by
quilting repetitions of a base level crop over the area of
the texture (e.g., Efros & Freeman, 2001). However,
nonparametric approaches have little to teach us about
the human visual system because they make no explicit
hypotheses about what features are represented. In this
paper we will therefore focus on parametric texture
models.

Parametric models that aim to match the appearance
of natural textures are typically assessed by examining
artificial textures synthesized by the model (Heeger &
Bergen, 1995; Portilla & Simoncelli, 2000; Safranek &
Johnston, 1989; Safranek, Johnston, & Rosenholtz,
1990; Zhu, Wu, & Mumford, 1998). The statistics of a
model are first computed on a target image, then a new
image is synthesized to approximately match the
statistics of the target image (often via gradient
descent). This approach carries forward Julesz’s ‘‘nec-
essary and sufficient statistics’’ idea by assuming that
texture appearance can be captured by the coefficients
of some specified set of image statistics. Note that this
focus on naturalistic appearance is distinct from a
complementary approach which starts from local
analysis of luminance distributions to posit an ‘‘alpha-
bet’’ of independent microtexture dimensions (Victor,
Thengone, & Conte, 2013), but does not seek to match
the appearance of natural textures.

A number of parametric texture models operate by
assuming a plausible image representation for the early
primate visual system, decomposing the target image
into some number of frequency and orientation bands
(Cano & Minh, 1988; Heeger & Bergen, 1995; Malik &
Perona, 1990; Porat & Zeevi, 1989; Portilla &
Simoncelli, 2000; Simoncelli & Portilla, 1998; Zhu et
al., 1998). The spatially averaged responses in some
combination of these bands form the parameters of the
model, whose values are then matched by the synthesis
procedure. The parametric texture model of Portilla
and Simoncelli (Portilla & Simoncelli, 2000; Simoncelli
& Portilla, 1998) extended this approach by addition-
ally matching the correlations between channels and
other statistics, producing more realistic appearance
matches to textures. This model has since had broad
impact on the field of human perception and neuro-
science: the texture statistic representation may provide
a fruitful way to understand the processing in mid-
ventral visual areas (Freeman & Simoncelli, 2011;
Freeman, Ziemba, Heeger, Simoncelli, & Movshon,
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2013; Movshon & Simoncelli, 2014; Okazawa, Tajima,
& Komatsu, 2015; Ziemba, Freeman, Movshon, &
Simoncelli, 2016), and it has been argued to provide a
good approximation of the type of information
encoded in the periphery, and thus a model for tasks
such as crowding and visual search (Balas, Nakano, &
Rosenholtz, 2009; Freeman & Simoncelli, 2011; Kesh-
vari & Rosenholtz, 2016; Rosenholtz, 2011; Ro-
senholtz, Huang, & Ehinger, 2012; Rosenholtz, Huang,
Raj, Balas, & Ilie, 2012)—though other evidence
questions the more general adequacy of this represen-
tation for explaining crowding and peripheral appear-
ance (Agaoglu & Chung, 2016; Clarke, Herzog, &
Francis, 2014; Herzog, Sayim, Chicherov, & Manassi,
2015; Wallis, Bethge, & Wichmann, 2016).

How, though, does it perform as a model of texture
appearance in humans? Balas and colleagues (Balas,
2006, 2008, 2012; Balas & Conlin, 2015) have reported
a number of psychophysical investigations using the
Portilla and Simoncelli (hereafter, PS) texture model
that are relevant to this question. Balas (2006)
quantified the relative importance of subsets of the PS
statistics compared to the full set for matching the
appearance of different classes of texture (periodic,
structured, or asymmetric). He used a task in which
human observers chose the ‘‘oddball’’ image from a set
of three (a three-alternative oddity task) that were
presented briefly to the near-periphery. Two of the
images were drawn from original textures whereas the
oddball was drawn from a model synthesis matched to
the original texture (or vice versa; the oddball could be
either original or synthetic). Importantly, all three
images were physically different from each other
(consisting of subcrops of larger images). The oddity
judgment therefore concerns the subjective dissimilarity
of the images—which image is ‘‘produced by a different
process’’—rather than exact appearance matching. In
this study, the importance of different parameter
subsets depended on the class of texture, and including
the full set of statistics brought average discrimination
performance quite close to chance (around 40% correct
on average), showing that the PS statistics do a
reasonably good job in capturing texture appearance
under brief peripheral viewing conditions.

Balas (2012) used a four-alternative oddity task to
investigate the discriminability of real and synthetic
textures. Observers were allowed to view each stimulus
array for unlimited time and to foveate the images.
Under these viewing conditions, observers could easily
discriminate original natural textures and PS-synthe-
sized images from each other, whether the oddball was
real or synthetic (average performance 85%–90%).
However, when the original images were sourced from
abstract artworks rather than photographs of fruits and
vegetables, performance for discriminating real from
PS-synthesized images was worse and depended on

whether the oddball was real or synthesized (with
performance around 55% for the former and 65% for
the latter). Together with the results of Balas (2006),
these results suggest that the PS model better captures
texture appearance in the periphery than in the fovea,
and that the perceptual fidelity of the matching depends
on the image or texture type.

Finally, Balas and Conlin (2015) assessed whether
the influence of illumination change on human texture
perception could be captured by PS synthesis. Observ-
ers performed a match-to-sample task, in which they
decided which of two match images depicted the same
texture as a previously presented sample. Performance
was quite high (above 90%) when the illumination
between the sample and correct match image was
constant (in this case, the match image was physically
identical to the sample), whether the images were real
or synthesized. When the correct match image was
presented with different illumination to the sample,
performance declined to around 70% correct for
synthetic images but remained high for real images.
That is, observers could easily ignore illumination
changes when matching real textures, but their
judgments were impaired by illumination change when
discriminating synthesized images. Note that the foil
images (the nontarget match image) were selected to be
‘‘approximately visually matched’’ by the experiment-
ers; it is likely that the results (but perhaps not
conclusions) will depend on this choice. Similar results
were obtained after equalizing the luminance and
power spectra of the images, and when match and
sample images were physically different (cropped from
different areas of the same texture). These results show
that the PS feature space does not perfectly preserve the
necessary statistics to match texture appearance across
changes in illumination.

Together, the experiments show that while aspects of
human texture perception are not captured by or fall
outside the scope of the PS feature space, it does
succeed in capturing key aspects of texture appearance
for many classes of natural texture. The PS feature
space is based on the idea—amply supported by
psychophysical and neurophysiological evidence—that
the human visual system decomposes an image into a
number of spatial and orientation subbands. To what
extent will a more complex feature space improve on
the PS model?

A new parametric texture model based on deep
features

Gatys, Ecker, and Bethge (2015) recently introduced
a new parametric texture model that produces subjec-
tively high-quality matches to texture appearance, and
whose features can be used to separate the ‘‘style’’ of an

Journal of Vision (2017) 17(12):5, 1–29 Wallis et al. 3

Downloaded from jov.arvojournals.org on 06/02/2021



image from its content (Gatys, Ecker, & Bethge, 2016).
This texture synthesis procedure (see ‘‘CNN texture
model’’ section) is based on the pretrained features of a
deep convolutional neural network (the VGG-19;
Simonyan & Zisserman, 2015; Figure 1) that achieves
near state-of-the-art performance on the Imagenet
Large Scale Visual Recognition Challenge (Russakov-
sky et al., 2015): basically, returning labels for the likely
objects present in an image. Due to their success on
benchmarks like the Imagenet Large Scale Visual
Recognition Challenge, CNNs have become the dom-
inant approach to many visual inference problems in
the field of computer vision, with some networks
showing impressive transfer learning performance
(doing well on new tasks with only minimal changes to
the network; e.g., Donahue, Jia, & Vinyals, 2013).

Briefly, a single-layer convolutional neural network
(CNN) learns (via supervised training) the weights of
filters that are convolved with input images, creating a
spatial feature map of activations, similar to a
traditional bank of Gabor filters familiar to vision
scientists. Using convolutional filters allows the detec-
tion of spatial patterns at any position in the image
(translation equivariance), and also facilitates learning
through weight sharing—the intuition here is that
features useful to know about at one spatial location
are likely to be useful for all spatial locations. All
convolutional layer activations are then passed through
a pointwise nonlinearity, typically a rectified linear
(‘‘relu’’) function f (x)¼max(0, x). These feature maps
can then be pooled (in VGG by taking the maximum of
activations in a small area), creating local spatial

invariance, and combined with downsampling to
reduce the spatial dimensions of the feature maps (see
Figure 1). Stacking such operations repeatedly (passing
the outputs of one convolutional or max-pool layer as
the input to another, creating a ‘‘deep’’ CNN with at
least one hidden layer) has several effects. The spatial
area of the input image to which features respond are
larger for higher layers (analogous to the increase in
receptive field size from V1 to IT cortex), and the
features to which higher convolutional layers respond
becoming increasingly nonlinear functions of the input
pixels (analogous to the feature selectivity from V1 to
IT cortex). It is this accumulating nonlinear behavior
that allows complex properties such as object identity
(and many other properties; Hong, Yamins, Majaj, &
DiCarlo, 2016) to be linearly decoded from the higher
network layers. For more comprehensive recent re-
views, see Kietzmann, McClure, and Kriegeskorte
(2017); LeCun, Bengio, and Hinton (2015); and Yamins
and DiCarlo (2016).

CNNs are interesting for the study of human vision
first and foremost because they perform interesting
tasks. Until recently, there was only one known class of
system (‘‘biological brains’’) that could detect and
recognize objects in photographic images with high
accuracy; now there are two. The second reason that
human vision researchers might be curious about
CNNs is that there is growing evidence that the way in
which CNNs perform these tasks has intriguing
similarities to some biological visual systems. For
example, there is now quantitative evidence that
performance-optimized CNN features predict ventral

Figure 1. The architecture of the VGG-19 convolutional neural network (Simonyan & Zisserman, 2015), whose pretrained features are
used by the Gatys, Ecker, and Bethge (2015) texture model. The network consists of stacks of convolutional stages followed by max
pooling. In higher network layers, the feature map sizes decrease (depicted as the increasingly small panels), the corresponding
‘‘receptive field’’ sizes of the units increase, and the number of feature maps (k) increase. In this article we synthesize textures using
the first convolutional layer from each stack after the max pooling.
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stream brain signals in monkeys and humans using the
stimulus input better than existing models built
explicitly for that purpose (Cadieu et al., 2014; Cichy,
Khosla, Pantazis, & Oliva, 2016; Cichy, Khosla,
Pantazis, Torralba, & Oliva, 2016; Guclu & van
Gerven, 2015; Hong et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins, Hong, Cadieu, & DiCar-
lo, 2013; Yamins et al., 2014). CNN models also show
similarities to human psychophysical object recognition
performance under brief presentation conditions (Hong
et al., 2016; Yamins et al., 2014). A recent paper
reported that CNNs trained on ImageNet (natural
photos) can still partially recognize objects from
silhouette information only, and show other human-
similar shape biases (Kubilius, Bracci, & Op de Beeck,
2016). There are of course important ways that current
CNNs are unlike primate visual systems. For example,
a subtle modification of an image that is nearly
imperceptible to a human can cause a deep network to
misclassify an object with high confidence (Szegedy et
al., 2013; see Yamins & DiCarlo, 2016, for additional
discussion). Furthermore, human object recognition
remains remarkably robust in images degraded by
white noise, whereas the original VGG network is
strongly impaired (Geirhos et al., 2017). Bearing these
caveats in mind, an exciting possibility is that the study
of CNNs may help to elucidate some fundamental
mechanisms of human perception.

In this article we pursue a less lofty goal: to measure
how well humans can discriminate textures synthesised
by the Gatys et al. (2015) model from natural textures.
How well do CNN texture features match the
appearance of the original textures? To address this
question we compare the model of Gatys et al. (2015) to
the PS model (Portilla & Simoncelli, 2000) and to a
recent modification of the Gatys model (Liu, Goussau,
& Xia, 2016). Experimentally, we closely follow the
approach of Balas (2006), described above.1 Using
images that are all physically different measures the
extent to which model syntheses are categorically or
structurally lossless (in that they could both be
considered samples from original images; Pappas,
2013), as opposed to being perceptually lossless (unable
to be told apart) compared either to each other
(Freeman & Simoncelli, 2011) or the original source
images (Wallis et al., 2016). Perceptual losslessness
could be important for understanding visual encoding
in general but categorical losslessness is arguably more
useful for understanding the perceptual representation
of texture.

In addition to assessing the discriminability of brief,
peripherally presented textures (as in Balas, 2006), we
are also interested in how this changes when longer
foveal comparison is possible (as in Balas, 2012). We
therefore include two presentation conditions: a para-
foveal condition and an inspection condition.2 Note

that depending on the spatial scale of the most
informative differences, sensitivity to some aspects of
texture can be better in the parafovea than in the fovea
under some conditions (Gurnsey, Pearson, & Day,
1996; Kehrer, 1987, 1989). Therefore, differences in
psychophysical performance between these conditions
are informative about the extent to which the texture
models under consideration capture, or fail to capture,
features that are important for both foveal and near
peripheral texture perception.

General methods

All stimuli, data, and code to reproduce the figures
and statistics reported in this article are provided online
(raw data and code at http://doi.org/10.5281/zenodo.
836726, stimuli at http://doi.org/10.5281/zenodo.
438031). This document was prepared using the knitr
package (Xie, 2013, 2015) in the R statistical environ-
ment (Arnold, 2016; Auguie, 2016; R Core Develop-
ment Team, 2016; Wickham, 2009, 2011; Wickham &
Francois, 2016) to improve its reproducibility.

Apparatus

Stimuli were displayed on a VIEWPixx 3D LCD
(VPIXX Technologies, Saint-Bruno-de-Montarville,
Quebec, Canada; spatial resolution 1920 3 1080 px,
temporal resolution 120 Hz, operating with the
scanning backlight turned off in high-bitdepth gray-
scale mode). Outside the stimulus image the monitor
was set to mean gray. Observers viewed the display
from 60 cm (maintained via a chinrest) in a darkened
chamber. At this distance, pixels subtended approxi-
mately 0.0248 on average (41 px per degree of visual
angle [dva]). The monitor was linearized (maximum
luminance 260 cd/m2) using a Konica-Minolta LS-100
photometer (Konica-Minolta Inc., Tokyo, Japan).
Stimulus presentation and data collection was con-
trolled via a desktop computer (Intel Core i5-4460
CPU, AMD Radeon R9 380 GPU) running Ubuntu
Linux (16.04 LTS), using the Psychtoolbox Library
(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli,
1997, version 3.0.12) and our internal iShow library
(http://dx.doi.org/10.5281/zenodo.34217) under MAT-
LAB (R2015b; The Mathworks, Inc., Natick, MA).

Source images

Twelve unique texture images3 (see Figure 2) were
selected to provide a variety of texture-like structure
(including some with obvious periodicity and others
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that were asymmetric) but were also chosen to exhibit
some nontexture naturalistic structure (such as the size
gradient visible in the flowerbed image). Images were
converted to grayscale using scikit-image’s io.imread
function (van der Walt et al., 2014), then cropped to the
largest possible square from the center of the image.
The original images all had at least one dimension of
1024 px. We then downsampled all images to 2563 256
px using the cubic interpolation of skimage.trans-
form.resize. To preserve the naturalistic appearance of
the images we did not standardize the mean or variance
of intensities. Since all texture models considered here
also match the low-level image statistics, this will not
impact our results. For each image model (conv1–
conv5 and PS for Experiment 1, conv5, PS and
powerspec in Experiment 2; see below) we generated 10
unique synthesised images of size 256 from each
original image, resulting in a final stimulus set of 732
images for Experiment 1 and 372 images for Experi-
ment 2. All images were stored as 16-bit .png files.

CNN texture model

The CNN texture model (Gatys et al., 2015) uses the
pretrained features of the VGG-19 network (Simonyan
& Zisserman, 2015), which shows near state-of-the-art
performance on the object recognition ImageNet
challenge (Russakovsky et al., 2015). While there are
now CNN models that outperform the VGG network

on object recognition, the VGG network remains
appealing because of its relatively simple architecture
(Figure 1), and because it produces more introspec-
tively appealing textures and style transfer than those
networks that currently perform better on ImageNet. It
consists of two operations, stacked many times:
convolutions with k 33 3 filters (where k is the number
of input feature maps) followed by a 23 2 max-pooling
in nonoverlapping regions. The model uses five pooling
and 16 convolutional layers (plus three fully connected
layers which we do not use here). The layers are
typically labeled with the stack (e.g., ‘‘convl’’ or
‘‘pool1’’) with an underscore denoting the sublayer. For
example, ‘‘conv1_1’’ refers to the first convolutional
layer of the network, whereas ‘‘conv3_2’’ would be the
second convolutional layer of the third stack (Figure 1).
We use a subset of these feature maps for texture
synthesis (see below). The code was implemented in
Theano using the Lasagne framework, and may be
downloaded from https://github.com/leongatys/
DeepTextures. The weights of the VGG-19 network are
scaled such that the mean activation of each filter over
images and positions is equal to 1.

The first step of the texture synthesis algorithm is to
pass the original image through the network, generat-
ing responses in all network layers. For the feature
responses of a subset of layers (described below) the
Gram matrices are computed (the Gram matrix is the
dot product of the vectorized feature maps; each entry
in the resulting matrix is the correlation between two

Figure 2. The 12 original texture images used in the experiments. Arranged to correspond to Figure 7. These images are copyrighted
by www.textures.com (used with permission).
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features in response to a particular input image). The
basic idea of the texture synthesis is to create an image
with the same Gram matrix representation via gradient
descent (the same synthesis principle as in Portilla and
Simoncelli (2000) using different features). We start
with a white noise image and minimize the mean-
squared distance between the entries of the Gram
matrices of the original image and the Gram matrix of
the image being generated. For the optimization we use
the L-BFGS method from the the SciPy package
(Jones, Oliphant, & Peterson, 2001) using 1,000
iterations, which was sufficient to bring the loss to an
acceptable (but usually nonzero) value. Note that this
procedure (using a unique random initialization and
converging on nonzero loss) can therefore generate an
effectively infinite number of physically unique syn-
thesised images. We discuss the gradient descent further
in the Appendix. After gradient descent, the intensity
histogram of the resulting image was matched to the
intensity histogram of the original image (ensuring that
the images have the same global luminance, contrast,
skew, and kurtosis).

The network was trained on RGB images and
expects three-channel input. We duplicated the gray-
scale original images into three channels, and to ensure
that the outputs of the synthesis remained grayscale, we
averaged the gradients of each color channel during
optimization. The layers conv1_1, conv2_1, conv3_1,
conv4_1, and conv5_1 were used for texture synthesis
by taking the activations after rectification. For
simplicity, we label the texture models used below with
the name of the highest convolutional stack used. We
match all the Gram matrices cumulatively up to the
named layer (e.g., the model we label ‘‘conv3’’ below
matches Gram matrices for layers conv1_1, conv2_1
and conv3_1). For each layer l with nl feature maps,
nl(nl + 1) / 2 parameters are matched (division by two
is because the Gram matrices are symmetrical). The
approximate number of parameters in each CNN
texture model are shown in Figure 5. Outputs were
saved as 16-bit .png images. Example syntheses can be
seen in Figure 3.

CNN plus power spectrum model

To capture long-range correlations (such as contours
that extend over large sections of the image) the model
can be extended by additionally matching the power
spectrum of the original image when performing the
gradient descent to find texture syntheses (Liu et al.,
2016). The new loss function is L ¼ LCNN þ bLspe and
the new gradient is D ¼ DCNN þ bDspe, where LCNN is
the loss function and DCNN is the gradient from the
pure CNN texture model, Lspe and Dspe are related to
the distance between the current image and the target

Fourier spectrum, and b¼ 105. That is, the additional
constraints are simply added into the loss function and
gradient (see Liu et al., 2016, for further details).

To synthesize these stimuli we used code provided by
Liu et al. (2016). There are a number of differences
between the implementation of the power spectrum
model and the base CNN model described above. First,
the code is written using Matconvnet instead of
Lasagne. The network and the images are normalized to
[0, 1] and the stopping criterion of the optimization
process is different. In the power spectrum model we
used up to 2,000 iterations (as distinct to 1,000
iterations for the base model). The power spectrum
model matches different layers of the VGG compared to
our CNN model: Conv1_1, Pooling1, Pooling2, Pool-
ing3, and Pooling4. The power spectrum constraint
adds 32,768 parameters (half the size of the image
because phase is discarded), yielding a total of 209,408
parameters (Figure 5). While we have not run extensive
experiments, we argue that the most consequential
change between the models for the results we report is
the inclusion of the power spectrum matching con-
straint rather than other implementation differences.

PS texture model

Portilla and Simoncelli (2000) texture images were
generated using the publically available MATLAB
toolbox (http://www.cns.nyu.edu/lcv/texture/). The
texture synth representation we used consisted of four
spatial scales and orientations, and a spatial neighbor-
hood of 11 px (these are the most common settings used
in the literature where reported (e.g., Balas et al., 2009;
Freeman & Simoncelli, 2011). The gradient descent
procedure was based on 50 iterations. The PS model
matches approximately 1,000 parameters (Figure 5).
Outputs were saved as 16-bit .png images.

Procedure and design

On each trial observers were presented with three
physically different image patches. Two were from the
original image and one from a model synthesis image
matched to that original image (or vice versa—two
patches could come from the same model synthesis and
one patch from the original image). That is, the oddball
image could be either original or synthesized with equal
probability, so a ‘‘pick the natural-looking image’’
strategy would not succeed. The three image patches
(size 128 3 128 px) were cropped from a larger image
(size 256). To obtain two nonoverlapping crops from
the same physical image (for the nontarget intervals)
one could simply use the image quadrants. To increase
the physical variation in the images across trials we
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Figure 3. Example experimental stimuli used in Experiment 1 (PS, conv1–conv5) and Experiment 2 (PS, conv5 and powerspec).
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instead chose two adjacent crops drawn from non-
overlapping but otherwise jittered image sections. On
half of the trials the crops were from adjacent ‘‘rows’’
with the vertical dimension randomly sampled, whereas
on the other half the crops were from adjacent columns
with horizontal dimension randomized. This strategy
eliminated the possibility that observers could match
specific features of the images within a trial (as in Balas,
2006).

The oddball image could appear at any one of three
locations with equal probability (see Figure 4). The
observers’ task was to report which of three simulta-
neously presented images was different to the other
two, in that it was ‘‘generated by a different process’’
(rather than being physically the same). Observers
fixated a spot (best for steady fixation from Thaler,
Schütz, Goodale, & Gegenfurtner, 2013) in the center
of the screen, and the images were arranged around the
fixation in a downward-pointing equilateral triangle
configuration. The images were windowed by a circular
cosine, ramping the contrast to zero in the space of 6
px. The distance between the fixation point and the
nearest edge of the image was 3 dva, and the image
patches subtended 3.1 dva.

The stimulus display was presented for either 200 ms,
with observers instructed to maintain fixation (the
parafoveal condition) or for 2000 ms with observers
allowed to make eye movements freely (the inspection
condition). Observers then had 1200 ms to respond
(responses could also be made while the stimulus
remained on the screen). The intertrial interval was 400

ms. To reduce the possibility that observers could learn
specific strategies for different images based on
familiarity, no trial-to-trial feedback was provided.
Instead, a break screen was presented every 72 trials
telling the observer their mean performance on the
previous trials.

Within a block of trials observers saw five repetitions
of the 72 combinations of image model (six levels) and
source image (12 levels), for a total of 360 trials per
block. Trials were pseudorandomly interleaved
throughout a block, with the constraint that trials using
the same source image were required to be separated by
at least two intervening trials. Presentation condition
was blocked to allow observers to anticipate the trial
timing and adjust their strategy accordingly.

At the beginning of the experiment, naive observers
performed 30 trials with a 2-s presentation time to
allow them to become familiar with the task. All
observers then performed a practice session of 30 trials
at the relevant presentation time for the upcoming
block.

Data analysis

We analyzed the data using a logistic generalized
linear mixed model, estimated using Bayesian inference.
Experimentally manipulated fixed effects of presenta-
tion condition and image model were estimated along
with random effects for observer and image. The model

Figure 4. Example experimental display (not to scale). Distance
bar not shown in actual experiment.

Figure 5. Approximate number of parameters matched by each
texture model assessed in the present paper. The dashed line
shows the number of pixels in a 256 px2 image. Models above
the line are overcomplete.
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parameters were given conservative, weakly informa-
tive prior distributions such that we assumed no effects
of our experimental manipulations (by using priors for
regression parameters centered on zero) but with high
uncertainty. This biases the model against finding
spuriously large effects. Bayesian model estimation
offers two practical advantages here: first, posterior
credible intervals over model parameters have an
intuitively appealing meaning (they represent our belief
that the ‘‘true’’ parameter lies within some interval with
a given probability, conditioned on the priors, model
and data). Second, the priors act to sensibly regularize
the model estimates to ensure all parameters are
identifiable. More details and analysis are provided in
the Appendix.

Experiment 1: Original texture
model

This experiment compares textures produced by the
CNN texture model to the PS model under two
observation conditions. This experiment was conducted
on two groups of observers. The first (Experiment 1a)
consisted of two of the authors, who were familiar with
the stimuli, experienced with the psychophysical task,
and optically corrected as appropriate. The authors
completed five experiment sessions (each consisting of
one parafoveal and one inspection block), for a total of
3,600 trials each. The order of presentation conditions
was pseudorandomly determined for each author in each
experiment session. The dataset consisted of 7,200 trials.

The second group (Experiment 1b) consisted of ten
naive observers4 (median age 25 years, min¼ 21, max¼
36), who completed only one experimental session each
(i.e., one block of each presentation time).5 They were
paid 10 EUR for the 1-hr session. Half the observers
saw the parafoveal condition first, whereas the other
half performed the inspection condition first. All
protocols conformed to Standard 8 of the American
Psychological Associations Ethical Principles of Psy-
chologists and Code of Conduct (2010) and to the
Declaration of Helsinki (with the exception of Article
35 concerning preregistration in a public database). The
final dataset consisted of 7,200 trials.

Results

Performance as a function of image model and
presentation time, averaging over images, is shown in
Figure 6. More complex CNN models (matching more
parameters) tend to produce poorer psychophysical
performance (i.e., better matches to natural appear-
ance), and the performance in the parafoveal condition
is poorer than the inspection condition. The PS model
produces better psychophysical performance (i.e., is not
as good at matching appearance) than the higher layer
CNN models under the inspection condition but not
under the parafoveal condition. The average pattern of
results for the 10 naive observers is qualitatively similar
to the data shown by the two authors, with the
exception that performance is slightly lower. The figure
additionally demonstrates what might be believed
about the ‘‘population of texture images’’ from our
results. Estimates and credible intervals from the
mixed-effects model are shown as lines and shaded

Figure 6. Performance as a function of image model in Experiment 1, averaging over images. For the authors (CF and TW), points
show the mean proportion correct and error bars show 95% bootstrapped confidence intervals. Each data point represents 300 trials.
Solid lines show mixed-effects model predictions for this observer (mean of posterior regression line), ignoring random effects of
image. For naive observers (right panel, N ¼ 10), points show grand mean and 95% bootstrapped confidence intervals based on
individual observer means; lines represent mixed-effects model predictions and uncertainty for the population fixed effects, ignoring
random effects of observer and image. The dashed horizontal lines in all panels show chance performance. Shaded regions in all
panels show 95% credible intervals for the given model. Note these are independent, and so overestimate the uncertainty for making
any pairwise comparison between conditions (see Appendix for details).
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areas in Figure 6 (further details and quantification are
provided in the Appendix).

We observe distinctly different effects of image
model and presentation time at the level of individual
images (Figure 7). Five images (beans, bricks, flowers,
grass, and scrap) show a similar pattern of results as in
the average data. Unlike the first five images, the PS
model also succeeds in matching appearance for carpet,
cracks, gravel, and paper under the inspection condi-
tion. In addition, for these images there is less evidence
of a difference between the parafoveal and inspection
conditions after the conv1 model. These results suggest
these four images are easier for all models to synthesize
than the first five images. Conversely, all models fail to
match the appearance of metal and candy under the
inspection condition (psychophysical performance well
above chance), whereas the parafoveal condition has a
marked effect such that performance drops nearly to
chance for the higher convolutional and PS models.
Finally, the Tiles image is interesting because here the

PS model produces better matches to appearance than
the CNN models (the syntheses are more difficult to
discriminate).

Experiment 2: Power spectrum
constraint

In Experiment 1, the CNN texture model failed to
match textures that could be considered ‘‘quasiperiod-
ic,’’ in that they contain global regularities spaced
across the whole texture image (for example, the roof
tiles or the metal floor textures). Liu et al. (2016)
recently showed that such textures can be more closely
modeled by adding a power spectrum constraint to the
synthesis procedure in CNN texture models. That is,
the gradient descent procedure now aims to match both
the CNN features and the global Fourier power

Figure 7. Performance for each image in Experiment 1. Points show the grand mean of all observer means (based on 25 trials for
authors and 5 trials for naives). Error bars on points show 61 SEM. Lines show mixed-effects model estimates (posterior mean,
including random effects of image but excluding random effects of subject) and shaded regions show 95% credible intervals. That is,
the model predicts mean performance to lie in the shaded area with 95% probability, if the image was shown to an average, unknown
subject. Images have been arranged according to consistent patterns of results (reading left-to-right). The original images can be seen
in Figure 2.
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spectrum of the original image. In an image like the
tiles, the periodic regularity shows up as a strong
orientation-and-frequency component in the power
spectrum. Matching this improves the perceptual
quality of such textures (see Figure 8). In this
experiment we seek to quantify this improvement with
respect to the unconstrained conv5 model and the PS
model for our 12 texture images, using the same
procedure as in Experiment 1.

Five observers participated in this experiment,
consisting of two authors (CF and TW) and three naive
observers, one of whom had participated in the first
experiment. All observers completed two experiment
sessions (each consisting of one parafoveal and one
inspection block) for a total of 1,440 trials, with the
exception of S1, who did not return for a second session
of testing and so completed only 720 trials.

Results

For average performance over images (Figure 9) and
at the individual image level (Figure 10), the results of
Experiment 2 are similar to those of Experiment 1 for
the conv5 and PS models. The powerspec model
produces similar performance to the conv5 model for

most images, with the possible exceptions of beans,
bricks, flowers, and grass, in which human performance
is slightly higher than for conv5 (i.e. the powerspec
model is less effective at matching appearance than
conv5). For images with significant long-range regular-
ities (metal and tiles) whose appearance failed to be
matched by conv5, the powerspec model drastically
reduced psychophysical performance. That is, the model
syntheses are now approximately matched to the visual
appearance of these original images even under foveal
inspection (see Appendix). Note, however, that one
observer (author TW) still achieved high accuracy for
the powerspec model of metal, showing that the model
fails to capture some important features that at least one
observer can see. Finally, all models fail to capture the
appearance of the candy image under inspection.

Control analysis: Cross-correlation of image
crops

The experiments reported above show that the CNN
texture model (specifically the power spectrum match-

Figure 8. Example experimental stimuli, Experiment 2. Original
texture images are copyrighted by www.textures.com (used
with permission).

Figure 9. Performance as a function of image model in
Experiment 2, averaging over images. Points show mean and
95% confidence intervals on performance (each based on 240
trials for all observers except S2). Lines show mixed-effects
model predictions for each observer (mean of posterior
regression line) and shaded regions show model 95% credible
intervals, ignoring random effects of image.
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ing variant) can match the appearance of a range of
textures even under foveal viewing. One concern with
this result is that the model may be overfitting on the
target texture image. Consider a ‘‘copy machine’’ model
that would exactly copy the image up to a phase shift.
Samples generated by this model would likely be
indistinguishable from the original image, because our
experimental design (taking nonoverlapping crops)
enforces the samples to be physically different. Conse-
quently, if a model was acting like a copy machine, this
could not show up in our existing results. If this were
the case, one could argue that the model has not
learned anything about the structure of textures per se
but rather how to copy pixels.

To investigate this issue, we computed the normal-
ized maximum cross-correlation between different
texture samples and the corresponding original texture.
If the algorithm simply copies and phase-shifts the
image, the maximum cross-correlation with the original
will be one. Specifically, for each of the 10 unique
texture samples of size 256 3 256 synthesized by each
model in Experiment 2, we took one N3N crop of the
center plus 10 additional random crops of edge N px,

for each of N ¼ {32, 64, 128}. Each crop is then
normalized to have zero mean and unit variance, before
computing the cross-correlation function between crop
and original and taking the maximum. Finally, we take
the average of this maximum across the 11 crops.

For certain textures however, it may be the case that
a synthesis algorithm needs to act like a copy machine
(up to a spatial shift) to match the appearance of the
texture. For example, textures with strong periodicities
and little variation between individual texture elements
(e.g., metal or tiles) might require copying for
appearance to be matched, whereas the appearance of
less regular structure (grass or beans) might be
sufficiently captured by far less. To account for this
image-specific variation, we additionally computed the
maximum cross-correlation between an N 3 N center
crop from the original texture, and the full 2563256 px
image itself (after excluding shifts of 616 px around
the center, which would trivially return one). This value
can be seen as a measure of self-similarity.

The maximum cross-correlation values for the
images used in this paper are shown in Figure 11. This
result shows that crops of synthesized textures are not

Figure 10. Performance for each image in Experiment 2. Points show means and 61S EM over observer means. Faint lines link
individual observer mean performance (based on 20 trials for all observers except S2). Solid lines show mixed-effects model estimates
(posterior mean) and shaded regions show 95% credible intervals.
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more similar to the best matching crop in the
corresponding original image than are any two crops
taken from the original image. Thus, none of the
models are simply copying the original images at any of
the spatial scales we tested. The metal and tiles images
are the most self-similar (gray bars) at all scales, and
these were also the images for which adding the power
spectrum constraint to the CNN texture model helped
most (compare conv5 and powerspec cross-correlation
values).

General discussion

We have shown that the CNN texture model of
Gatys et al. (2015) can produce artificial images that are
indiscriminable from a range of source textures even
under foveal viewing. That is, images synthesised from
the Gatys model could pass as natural materials, at
least for nine of the 12 images we test here and for
similar viewing conditions. A model that matches both
a selection of deep CNN features and the power
spectrum of the original image (Liu et al., 2016) greatly
improves the perceptual fidelity of two of the remaining
three images not captured by the Gatys model
(Experiment 2). These results were not attributable to
simply copying the target images (Figure 11). The most
popular existing parametric texture model (PS; Portilla
& Simoncelli, 2000) can capture texture appearance for

many images briefly presented to the parafovea, but is
less successful under foveal inspection (matching
appearance for four of the images—see Figure 7).
These results regarding the PS model corroborate the
findings of Balas (2006) and Balas (2012) respectively.
Taken together, our results show that the natural image
statistics represented by the CNN model (and the
power spectrum variant) can capture important aspects
of material perception in humans, but are not sufficient
to capture the appearance of all textures.

The patterns of performance in Figures 7 and 10
suggest that for the purposes of assessing parametric
texture models, natural textures may be parsed into at
least four clusters.6 First, one cluster of images (beans,
bricks, flowers, grass, and scrap) can be matched by the
CNN texture model’s higher layers even for foveal
inspection, but only for parafoveal viewing by the PS
model. These images feature readily discernable texture
elements that do not follow a regular periodic
arrangement. The second cluster (carpet, cracks, gravel,
and paper) can be matched by all but the simplest CNN
texture model under both parafoveal and inspection
conditions. For these images, it is possible that
individual textons (single texture elements; Julesz,
1981) were difficult to resolve even foveally, allowing
models that failed to capture individual textons to
nevertheless sufficiently match appearance. Third, the
metal and tiles images include regular structure that can
only be effectively matched by the CNNþpowerspec-
trum model. These are both strongly periodic textures

Figure 11. Controlling for texture model overfit. Points show the average maximum cross-correlations between crops of model
syntheses (colors) and the original images, for three different crop sizes (32, 64, and 128 px; panels). If the model simply copied and
phase-shifted the original, these values would be approximately one. Bars show the baseline of a crop from the original image
correlated to itself. Some images are more self-similar, and thus require some degree of copying to match appearance.
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with easily resolvable textons. Finally, the candy image
cannot be matched by any of the models tested here for
foveal inspection. It contains large textons with
interesting material properties (glossiness)7 as well as
occlusions and shading suggesting depth. These clusters
may provide useful test cases for parametric texture
models in the future. In particular, a single image from
each class may be sufficient to provide a generalizable
test of a texture model. More generally, psychophysics
may offer an approach to find equivalence classes of
textures that are useful for discriminating between
texture models.8 The failure of all models we test here
to capture the candy image shows that the CNN
features we test here are still not sufficient to capture
the appearance of all textures.

An additional noteworthy feature of the data is that
for many images, the conv5 model is slightly worse at
matching appearance (psychophysical performance is
better) than the conv4 model (e.g., Figure 12). This is
particularly evident for example for the candy and tiles
images under inspection (Figure 7, though note these
data points are also affected by large oddball type
biases—see Figure 16). Assuming this effect is robust, it
could be related to the observation that the conv5
model results in higher final total loss values after
optimization than the conv4 model (Figure 18).

Model complexity versus feature complexity

Why do the features used in the CNN texture model
often succeed in capturing texture appearance? One
possibility is that training to recognize objects in images
causes deep CNNs to abstract a set of statistics from
images that support quite general visual inferences
(transfer learning; Donahue et al., 2013). An alternative
possibility is suggested by Ustyuzhaninov, Brendel,
Gatys, and Bethge (2016), who found that single-layer
CNNs using many filters with random weights could
produce textures of surprisingly good perceptual
quality (assessed via introspection). That is, high-
quality texture synthesis from CNNs may require
neither a hierarchical (deep) representation nor filters
learned on any particular task—many random filters
could instead be sufficient (the random-multiscale
model from that paper uses about 2 million random
parameters, which is significantly more than all models
in this paper—Figure 5). If the latter is the case, this
would suggest that the improved appearance matching
as more convolutional layers are included is because
there are simply more features, not that they are
‘‘better.’’

However, we do not believe the improved appear-
ance matching is only due to the number of parameters
matched. Gatys et al. (2015) showed that the number of
parameters in the CNN model could be reduced by

computing Gram matrices on only the first k principle
components of each network layer. Textures synthe-
sized using approximately 10,000 parameters from
VGG layers conv1_1, conv2_1, conv3_1, conv4_1, and
conv5_1 produced (introspectively) much higher qual-
ity textures than only using all parameters from
conv1_1 and conv2_1 (about 12,000). A second piece of
evidence that speaks to this point is that having more
parameters—even having more parameters than pixels
(i.e., being overcomplete)—does not necessarily result
in introspectively high-quality textures (Ustyuzhaninov
et al., 2016). Thus, features from the higher network
layers seem to improve texture synthesis because they
are ‘‘better’’ features, not simply because they add more
parameters.

Why are higher layer network features (with the
possible exception of conv5_1; see above) better? Recall
that deep convolutional networks stack nonlinearities
(Figure 1), allowing increasingly complex functions of
the input image to be explicitly (linearly) decoded.
Higher layers might therefore be better for texture
synthesis because they learn to represent complex
information. Alternatively, it could just be that higher
layers have larger receptive fields than lower layers, and
a model that includes both high and low layer
information improves because of its multiscale struc-
ture. Ustyuzhaninov et al. (2016) showed that having
features at multiple scales improves texture synthesis.
On one hand, the fact that trained features produce
(introspectively) better textures than the random
multiscale network using fewer parameters implies that
our texture models including higher VGG layers are
not better exclusively because they model information
at more spatial scales. Another possibility is that it is
easier to optimize trained features than random
features, which leads to better texture synthesis but
does not mean deep features are ‘‘better’’ for para-
metric texture modelling in general.

Ultimately we think the models in this article
perform well due to a mixture of both more numerous
and more complex features, and that this is not simply
a function of including information at multiple scales.
Future psychophysical comparisons could be used to
add quantitative rigor to this discussion. For example,
comparing the perceptual quality of the random-filter
and trained CNN model textures (with and without
compression) would quantify the importance of learned
features. Similarly, comparing hierarchical (cumula-
tive) and nonhierarchical models could be used to
quantify the importance of scale information.

Finally, we would like to emphasize that for those
textures the CNN model can mimic, the model features
likely represent a superset of the necessary statistics.
One important challenge now is to compress these
representations into a minimal set of features, in order
to develop a parsimonious and intuitive description of

Journal of Vision (2017) 17(12):5, 1–29 Wallis et al. 15

Downloaded from jov.arvojournals.org on 06/02/2021



the critical aspects of the feature space. As noted above,
Gatys et al. (2015) showed that qualitatively reasonable
results could be obtained for a principle component
analysis-reduced feature space with 10,000 parameters,
compared to the 175,000 of the conv4 or 306,000 of the
conv5 models used here. Of course, the PS model
matches substantially fewer (about 1,000) parameters
than even this, and so its performance for parafoveal
images is impressive. The difference between the two
models, more substantively quantified, could yield
insights into the differences in foveal and peripheral
encoding of texture.

Categorical losslessness

Our experiments show that humans cannot tell
which of three physically different images were
‘‘generated by a different process’’ (for all but one of
the images we test). This condition could be termed
‘‘categorical’’ or ‘‘structural’’ losslessness (Pappas,
2013): Under our experimental conditions, the model
syntheses can pass as natural textures (they are
perceived as the same category). Images that are
perceptually equivalent along some dimension can also
be called ‘‘eidolons’’ (Koenderink, Valsecchi, van
Doorn, Wagemans, & Gegenfurtner, 2017). Achieving
categorical losslessness in an image-computable model
is an important step toward understanding human
material perception, because the model encodes suffi-
cient statistics for capturing the appearance of these
textures. Categorical losslessness must, however, be
distinguished from perceptual losslessness: humans are
likely able to tell that the three images in our
experiments are different from each other (and thus we
avoid using the term metamer here, which refers to
physically different images that cannot be told apart).
The latter criterion may be important for understand-
ing information loss in the visual system more generally
(Freeman & Simoncelli, 2011; Koenderink & van
Doorn, 1996; Wallis et al., 2016; Wandell, 1995).

Caveats

Three caveats should be borne in mind when
interpreting our results. First, we have considered only
one relationship between input image size and CNN
feature scaling (specifically, we used input images of
2563 256 px, which is close to the 2243 224 px images
on which the VGG features were learned). Because the
network layers have a fixed receptive field size (the
pixels of the original image associated with a given
unit), downsampling or upsampling the input images
will cause the same network layers to respond to
different image structure. For example, it is possible

that there is a relationship between the degree to which
texture appearance is successfully captured by the
model and the size of the texture elements in the image.
One possible reason that the candy image (Figure 2)
fails to be matched for foveal viewing is that the textons
(individual candies) and their overlap are too large to
be captured by single filters at some critical layer within
the network, even though features in the highest layers
are large enough to cover groups of candies. We have
tried rescaling the images but this did not seem to
improve the syntheses, indicating that this relationship
is perhaps not trivial.

A second caveat is that the fidelity of the resulting
textures could depend on the number of iterations of
the gradient descent used to minimize the loss between
the original and the new image (see Appendix, Figure
18). Because this loss is never exactly zero for the more
complex models, more iterations could only improve
synthesis fidelity—though in our experience, the coarse
structure of the images is largely fixed within 200
iterations, and further iterations mostly reduce high-
spatial frequency noise. In theory, as long as all
features are perfectly matched (i.e., if the loss is exactly
zero), more features can only lead to more similar
patterns. However, given that the optimization of
texture synthesis algorithms typically yields a residual
loss, more features do not necessarily improve percep-
tual quality, and the design of good features is not
straightforward and may depend on various factors
including the type of textures to be synthesized. As it
stands, different models are ideal for different purpos-
es. For peripheral texture perception the PS model
achieves best performance with relatively small number
of parameters, for random fields with pairwise inter-
actions the scattering network provides a very compact
representation for texture synthesis (Joan Bruna,
personal communication) and for foveal inspection of
textures the VGG features seem particularly useful.

Finally, in our experiments we closely followed the
oddity method used by Balas (2006). We believe this
paradigm has many desirable properties as a measure
of categorical losslessness, but our results also point to
a caveat. By cropping from inhomogeneous images
(e.g., the flowers image, which contains a size gradient)
we introduce greater perceptual variability in the
stimuli shown to subjects. Depending on the relative
(in)homogeneity of original and synthesized images,
this may lead to differences in performance depending
on the class of the oddball and potentially to below-
chance performance (e.g., in the flowers image). We
discuss these issues and present further analysis in the
Appendix. While we believe this property will have
little effect on our overall conclusions, it is nevertheless
useful to consider for future studies.
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Conclusion

We have shown that the texture model of Gatys et al.
(2015), which uses the features learned by a convolu-
tional neural network trained to recognize objects in
images, provides a high-fidelity model of texture
appearance for many textures even in the fovea.
Overall, however, our results do not identify a
uniformly best parametric model for matching texture
appearance. Instead, different models may be appro-
priate for different use cases. The PS model is the best
(and the most simple) model to use if textures are
intended to be viewed briefly in the parafovea. For
textures intended to be foveated, incorporating the
power spectrum constraint will be critical for textures
with strong periodicities (Liu et al., 2016), whereas the
CNN model (conv4) performs best for most other
textures we test here. It would obviously be desirable to
identify a uniformly best model in future work, and the
single failure case we identify here (the candy image)
may provide a useful benchmark for testing such
models.

Keywords: spatial vision, natural scenes, texture
perception, peripheral vision
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Footnotes

1 As Balas (2006) writes, ‘‘The 3AFC [three-alter-
native forced-choice procedure] task presented here
represents a modest contribution towards the formu-
lation of texture discrimination tasks that make explicit
the importance of local texture analysis in the human
visual system.’’ We agree.

2 These are analogous to Balas’ preattentive and
attentive conditions, but we consider these terms
somewhat of a historical misnomer: Because there is no
spatial or temporal uncertainty, observers can pre-
sumably accurately deploy spatial attention to the
stimuli in both cases.

3 These images are copyrighted by www.textures.
com (used with permission). Copies of the texture
images used in the experiments are available with the
online materials of this article (redistributed with
permission).

4 Ten was chosen a priori based on pilot testing.
5 Observer S9 completed 144 trials of the inspection

condition before this data was lost due to computer
malfunction. The observer repeated the full testing
session; thus this observer had more practice and
exposure to the images than the other observers.

6 Since we have only used 12 texture images in the
present study, it is likely that a number of additional
clusters exist that were not represented in the set of
images we used.

7 While the structure of the candy image is never
successfully captured by the CNN model, one intrigu-
ing feature of the syntheses is that they appear glossy as
for the original image (compare for example the conv3
and conv4 syntheses in Figure 3). This glossy appear-
ance is not captured by the PS model.

8 Balas (2006) subjectively delineated three texture
categories: pseudoperiodic (containing strongly periodic
structure), structured (repeated structural elements with
no periodicity), and asymmetric (containing asymmet-
ric lighting giving the impression of depth). Our cluster
containing metal and tiles is equivalent to Balas’
pseudoperiodic textures, but our other three data-
determined clusters do not trivially map onto Balas’
other categories (e.g., bricks and grass are structured,
whereas flowers, beans, and scrap contain asymmetric
lighting and other depth cues).

9 A three-alternative forced-choice procedure as we
use here has a chance performance rate of 1/3. If we
were interested in estimating some ‘‘threshold’’ of a
psychometric function, the standard logistic link
function might be considered inappropriate for these
data: It could predict that performance falls below 0.33,
which if it occurs in observed data can only be due to
measurement error or to observers incorrectly switch-
ing responses (and is therefore not a desirable
prediction to make in general; though see our third
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caveat in the General discussion). However, we are not
estimating thresholds here, but rather we wish to
quantify performance differences between discrete
levels and also the extent to which performance is
different to chance performance. The standard logistic
link function is therefore more desirable.
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Appendix

Bayesian multilevel modelling

To analyze the data, we first made the (standard)
assumptions that the observers’ responses on each trial
(correct/incorrect) reflected a Bernoulli process, and
that the response on a given trial was not dependent on
previous responses. We estimate the success probability
of this Bernoulli process using a generalized linear
mixed-effects model with a logistic link function whose
parameters were estimated in a Bayesian framework.9

A mixed-effects model (a type of hierarchical or
multilevel model) includes some number of ‘‘fixed’’

effect parameters that quantify how the response
depends on the predictor variables at a population
level, and some ‘‘random’’ (also called group-level)
effects that allow the fixed effect coefficients to vary
over discrete levels that are assumed to be nonexhaus-
tive samples from a larger population. Our model
contains two fixed-effect factors: the image model (with
six levels, entered into the model design matrix using
successive difference coding using contr.sdif from the
MASS package for R; Venables & Ripley, 2002) and
the presentation condition (with two levels, parafoveal
and inspection, coded with sum contrasts [1, #1]). We
included the interaction terms between these factors
such that the model consisted of 12 fixed effect
coefficients. The variation caused by observers and
images are modeled as random effects, which are coded
as offsets added to the fixed effect coefficients whose
variance is estimated. Note that we make an additional
simplifying assumption by ignoring other sources of
variance, such as the synthesized image used on a trial
and the random crop location (see Methods). We
assume that each fixed effect coefficient can vary by
observer or by image, and that the variance could be
correlated. The specification of the model in R formula
syntax (lme4 / brms) was

model formula ,#correct ;

image model $ presentation condþ
image model $ presentation condjsubjð Þþ
image model $ presentation condjimage codeð Þ

We used conservative, weakly informative prior
distributions in the sense that they bias estimates
towards the middle of the range of possible values and
away from indicating large effects. Consider that the
model coefficients are defined on the linear predictor
scale, whose effective range runs from approximately
#5 (returning an expected success probability of 0.007)
to 5 (returning 0.993; a linear predictor value of zero
gives 0.5). We therefore expect that no standardized
fixed-effect coefficient to be larger than 65 (i.e., the
difference between two factor levels runs from the
lowest to the highest observable success probabilities,
other effects being equal), and they will very likely be
smaller than this. We therefore place Gaussian priors
over all fixed-effect coefficients for factors with mean
zero (i.e., our a priori expectation is for no effect),
standard deviation of 2 (indicating a weak implausi-
bility of large coefficients). These are therefore weak,
but not flat (uniform) prior distributions. We also place
priors over the variation in random effects; following
the logic for effective range of the linear predictor we
expect that the effect sizes of our fixed effects are
unlikely to vary by more than two on average (i.e., the
standard deviation is very unlikely to be larger than 2).
We use half-Cauchy priors (i.e., with a lower bound of
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zero, as recommended by Gelman & Hill, 2007) over
the standard deviation parameters for each random
effect, with a mode of zero (i.e., our maximum a priori
assumption is that subjects and images are no different)
and a standard deviation of 1, reflecting large
uncertainty. Finally, we set a prior over the correlation
matrix for observer and image-level offsets in the fixed
effects that assumes that smaller correlations are
slightly more likely than larger ones (an ‘‘lkj[2]’’ prior,
see Lewandowski, Kurowicka, & Joe, 2009; Stan
Development Team, 2015, for details). While the priors
we use here are informed by the scale of the model and
by common practice for Bayesian regression models
(see for example Gelman, 2006; Gelman & Hill, 2007;
Kruschke, 2011), the specific choices we make are
somewhat arbitrary. As we see above, the model
provides a good fit to the data, but the reader should
bear in mind that as always, our inferences depend on
the model we assume.

We estimate the posterior distribution over model
parameters using a Markov Chain Monte Carlo
procedure implemented in the Stan language (version
2.15.1; Carpenter et al., 2017; Hoffman & Gelman,
2014; Stan Development Team, 2017), using the model
wrapper package brms (version 1.7.0; Bürkner, in press)
in the R statistical environment. The brms package
allows the specification of flexible mixed-effects Stan
models using formula syntax similar to the popular
lme4 package (Bates, Mächler, Bolker, & Walker,
2015). Samples were drawn using the NUTS sampling
algorithm (Hoffman & Gelman, 2014) with six
independent chains, each sampled with 30,000 samples
of which 10,000 were used to adaptively tune the
sampler (warmup). To reduce the final file size we saved
every sixth sample. This procedure resulted in a final
total of 20,000 postwarmup samples. Chain conver-
gence was assessed using the bR statistic (Gelman &
Rubin, 1992) and visual inspection of trace plots.
Readers are encouraged to consult the online code for
further details.

The resulting posterior distribution is summarized as
Bayesian credible intervals on marginal parameter
values and predictions. Unlike frequentist confidence
intervals in general, credible intervals have the desirable
property that they represent a coherent statement of
belief about the parameters’ likely values, given the
model, priors and data. A 95% credible interval means
that the ‘‘true’’ parameter value (conditioned on model,
prior, and data) has a 95% probability of lying within
the interval (see Miller & Ulrich, 2015; Morey,
Hoekstra, Rouder, Lee, & Wagenmakers, 2015; Morey,
Hoekstra, Rouder, & Wagenmakers, 2015, for recent
discussion on this issue), which many readers will find
intuitively appealing. We report 95% credible intervals
(rather than 67% or 82% or any other interval) merely
as convention. The model’s belief about the data is

represented by the full posterior distribution, which can
be summarized into arbitrary intervals (see McElreath,
2016, p. 58 for related discussion). Readers should
avoid mental hypothesis testing (rejecting null values
that lie outside the interval). Using Bayesian credible
intervals to reject null values in this way suffers two of
the same problems as null hypothesis significance
testing using p values: It can only reject but never
accept a null value, and if used with optional stopping
of data collection it will always reject null values even if
they are true (Kruschke & Liddell, 2017). Instead, the
credible intervals serve to give information about the
magnitude and precision of likely effects.

Another advantage of a Bayesian approach in this
context is that the weakly informed priors we use act as
a regularizer for the model, ensuring that parameters
are identifiable (indeed, in our hands the lme4 package
had troubles fitting this model). Using zero-centered
prior distributions on regression parameters biases the
parameters against finding spuriously large effects. One
caveat is that credible intervals in general, unlike
confidence intervals, are not guaranteed to result in a
prespecified error rate for binary inferences (e.g., effect/
no effect) in the long run. Given that some decisions
about our analyses were made after seeing the data
(making this exploratory research), frequentist p values
would not have their nominal false-alarm rates in any
case. For these reasons we report a Bayesian analysis
here; readers wishing to apply other analyses are
encouraged to do so using the raw data provided
online.

Where it makes sense to compare discrete models, we
do so using an approximation to the out-of-sample
(leave-one-out) prediction error provided by the R
package loo (v 1.1.0; Vehtari, Gelman, & Gabry, 2016).
Loosely, this value estimates the ability of the model to
predict new data (smaller values are better). We report
differences between models and their standard errors
on the deviance scale (–2 times the expected log
pointwise predictive density estimated by the loo
package, called LOOIC).

Experiment 1

Figure 6 shows model predictions for both individual
observers (authors CF and TW) and for the average of
the naive observers. For the individual observer model
estimates (CF and TW) we show the model prediction
conditioned on observer. The observer’s mean perfor-
mance is 95% likely to lie within the shaded area for an
average, unknown image (Baayen, Davidson, & Bates,
2008). The ‘‘naive’’ panel shows the average perfor-
mance for the naive observers. The model predictions
here exclude both observer and image random effects:
Mean performance has a 95% probability to lie within
the shaded area for an average, unknown image and an

Journal of Vision (2017) 17(12):5, 1–29 Wallis et al. 23

Downloaded from jov.arvojournals.org on 06/02/2021



average, unknown subject. Note that the model
uncertainties shown in Figure 6 depict the expected
spread of population averages across images, but are
not appropriate for comparing between presentation
conditions because they do not take into account the
paired nature of these data (the design was within-
subjects and within-images).

To quantify the differences between conditions more
appropriately we examine the mixed-effects model
coefficients. First, we quantify the performance differ-
ence between the inspection and parafoveal conditions,
marginalizing over image models and all random
effects variance. The posterior median of the difference
between these conditions on the linear predictor scale is
1.23. Considering the exponent of this value as log
odds, this means that correct trials are exp(1.23)¼ 3.41
times more likely under the inspection condition than
the parafoveal condition, if all other effects are held at
zero. In other words, for every 10 correct responses in
the parafoveal condition we expect about 34 correct
responses in the inspection condition, on average. The
95% credible interval tells us to believe that the
difference has a 95% probability (conditioned on the
data, model and prior) of lying between 0.65 and 1.82.
To indicate the likely sign of an effect we report the
posterior probability that the coefficient is negative (if
this value is small, the coefficient is likely positive; if the
value is 0.5 then the coefficient is equally likely to be
positive or negative). The inspection condition is very
likely to elicit higher performance than the parafoveal
condition, because the coefficient coding their differ-
ence has only a small probability of being negative, p(b
, 0)¼ 9.998e-05. To make future quantifications more
concise, for the remainder of this section we report
them as (b ¼ 1.23, 95% CI ¼ [0.65, 1.82], p[b , 0] ,
0.001).

Next, we examine whether the differences between
image models depended on the presentation condition.
An interaction is clearly evident in Figure 6. This
subjective impression was supported by a model
comparison between a linear and an interaction model
using a measure of each model’s ability to generalize to
new data (the LOOIC; the interaction model had a
lower LOOIC by 294 [SE ¼ 33]). We therefore further
consider the differences between image models condi-
tioned on the presentation condition.

For the parafoveal condition, image models above
conv2 and also the PS model produced performance at
approximately chance level (see below). Our model
quantifies the sequential differences between the
models, with the coefficients coding the difference
between two models on the linear predictor scale.
Performance in conv2 was worse than convl, b¼#1.35,
95% CI¼ [#1.94,#0.78], p(b , 0) . 0.999, and conv3
was worse than conv2, b¼#0.26, 95% CI ¼ [#0.58,
0.06], p(b , 0)¼ 0.947. However, because performance

was now approximately at chance, there was no
evidence that conv4 was different to conv3, b¼ 0, 95%
CI¼ [#0.26, 0.29], p(b , 0)¼ 0.487, or that conv5 was
different to conv4, b¼#0.02, 95% CI ¼ [#0.25, 0.21],
p(b , 0)¼ 0.561. Similarly, the PS model was also not
different to conv5, b¼#0.01, 95% CI ¼ [#0.51, 0.52],
p(b , 0) ¼ 0.508.

The inspection condition showed similar results as
the parafoveal condition with two exceptions: First,
performance remained approximately above chance,
and psychophysical performance was better for the PS
model than the conv5 model (i.e., synthesized and
natural textures were easier to discriminate). The conv2
model produced worse performance than conv1, b¼
#3.08, 95% CI¼ [#3.87,#2.32], p(b , 0) . 0.999, and
conv3 produced worse performance than conv2, b¼
#0.62, 95% CI ¼ [#0.98,#0.26], p(b , 0) ¼ 0.999.
Conv4 produced worse performance than conv3 in that
the coefficient coding their difference was likely to be
negative, b¼#0.38, 95% CI¼ [#0.68,#0.09], p(b , 0)¼
0.995. Performance for the conv5 model was approx-
imately equal to conv4, b ¼ 0.19, 95% CI ¼ [#0.05,
0.43], p(b , 0) ¼ 0.056. Finally, there was weak
evidence that PS model produced better psychophysical
performance than the conv5 model when observers
could inspect the images, b ¼ 0.82, 95% CI ¼ [0.09,
1.54], p(b , 0) ¼ 0.014.

To summarize, the two most important characteris-
tics of these data are first, that psychophysical
performance is effectively at chance for the parafoveal
condition for the conv4, conv5, and PS models. Second,
under inspection the PS model produces poorer
matches to appearance (better psychophysical perfor-
mance) than the conv5 and conv4 CNN texture models.
Taken together, the data show that the PS model
features are sufficient to capture the appearance of
natural textures under brief, parafoveal viewing con-
ditions, but that the increased complexity of the CNN
model features improves appearance-matching perfor-
mance under inspection.

The attentive reader may wonder why the model’s
uncertainty estimates in Figure 6 are so large relative to
the confidence intervals on the data (particularly in the
author plots, which are quite precisely measured). We
believe this highlights a particular strength of mixed
modeling for psychophysical data (Cheung, Kallie,
Legge, & Cheong, 2008; Knoblauch & Maloney, 2012;
Moscatelli, Mezzetti, & Lacquaniti, 2012): Multiple
sources of variability can be accounted for and
incorporated into predictions at various levels (e.g., the
observer and image level, or the subject level ignoring
images, or the population level). In this case, averaging
over the images and displaying credible intervals that
ignore the pairwise experimental design (as in Figure 6)
disguises the fact that different images show distinctly
different effects of image model and presentation time.
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For example, for each fixed-effect coefficient we can
ask whether more variance in the data is caused by
variation over observers or images. On average, the
variance associated with images is 2.1 times greater
than that associated with observers. The linear
predictor difference between PS and conv5 averaged
over presentation condition is associated with about 3.3
times more variance from images than from observers.
That is, this difference tends to depend strongly on the
image (Figure 7). The model uncertainties in Figure 6
are large because the ‘‘average’’ or population-level
behavior is uncertain in light of this; indeed, it may
make little sense to talk about a ‘‘population level’’ over
images from these data. In contrast, Figure 7 shows
model estimates that are far more constrained relative
to Figure 6, because the uncertainty in the estimates
now reflects between-subject variability rather than
between-image variability.

Chance performance in the oddity task indicates the
original and synthesized images are not discriminable
from each other. To what degree do our data suggest
observers perform above chance for each image and

viewing condition? One way to quantify this is to
compute the proportion of posterior probability
density lying above chance performance. This esti-
mates, for every condition, the probability of observers
being sensitive to the difference between original and
synthesized textures. Conditions that lie above the
dashed horizontal line are those for which we can be
more than 95% certain (conditional on model and
priors) that observers are sensitive to the difference
between original and synthesized images. These dashed
lines are provided as a guide rather than to encourage
dichotomous decision making about ‘‘different or not.’’
The posterior probabilities confirm, in general, our
qualitative statements made in the manuscript (Figure
12).

Experiment 2

The results of Experiment 2 for the conv5 and PS
models replicate the results of Experiment 1. When
stimuli are presented briefly to the parafovea, observers
are effectively at chance to discriminate both conv5 and

Figure 12. Posterior probability that performance for discriminating each image and image model in Experiment 1 lies above chance.
Conditions falling above the dashed horizontal line at 0.95 have a greater than 95% probability of being discriminable, conditions
falling below the dashed horizontal line at 0.05 are more than 95% likely to be below-chance. Conditions for which the model predicts
exactly chance performance would fall at 0.5.
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PS from the original textures, and there was evidence
that the models did not differ, b¼ 0.15, 95% CI¼ [#0.4,
0.71], p(b , 0)¼0.275, whereas under inspection the PS
model was easier to discriminate from the original
images than the conv5 model, b¼ 1.45, 95% CI¼ [0.48,
2.41], p(b , 0) ¼ 0.003. Additionally matching the
power spectrum (‘‘powerspec’’ model) produced simi-
larly indistinguishable performance from the PS model
in the parafovea, b¼#0.13, 95% CI¼ [#0.63, 0.36], p(b
, 0)¼0.712, but better performance than the PS model
under inspection, b ¼#1.64, 95% CI ¼ [#2.35, #0.95],
p(b , 0) . 0.999.

Posterior probabilities that performance lies above
chance for each image and viewing condition are shown
in Figure 13. As for Experiment 1, these values
generally support our qualitative statements made in
the manuscript.

Performance as a function of oddball type

Consider that some data points appear to be reliably
below chance performance (see for example the conv3
model in the flowers image). Below-chance perfor-
mance in a forced-choice task generally only occurs in

observed data due to measurement error or to
observers incorrectly switching responses. However, in
our experiments, it is also possible that below-chance
performance could be caused in part by cropping from
inhomogeneous images. For example, the original
flowers image (Figure 2) contains a size gradient such
that flowers on the bottom are larger and sparser than
flowers on the top of the image, and this size gradient
may result in greater inhomogeneity in the synthesized
textures. More generally it may be the case that
performance will depend on the relative (in)homoge-
neity of the original or synthesized images.

To investigate this further we computed performance
for trials where the oddball image was an original
compared to a model synthesis. When averaging over
observers and images (Figure 14), performance is
generally slightly higher if the oddball image is a model
synthesis rather than an original image. The size of this
effect depends on the particular image. For example, in
the parafoveal viewing condition (Figure 15) the
advantage for synthetic oddballs is quite strong for
metal and tiles. Similarly, under inspection (Figure 16)
observers remain highly sensitive to oddball candy and
tile syntheses, whereas their performance is relatively
poor when the oddball is an original image. This seems

Figure 13. Posterior probability that performance for each image in Experiment 2 lies above chance. Plot elements as in Figure 12.
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Figure 14. Performance in Experiment 1 according to whether the oddball image was an original or a model synthesis (‘‘synth’’),
averaging over images. Points show grand mean across observer means, error bars show SEM.

Figure 15. Parafoveal performance in Experiment 1 according to whether the oddball image was an original or a model synthesis
(‘‘synth’’), for each image. Points show grand mean across observer means, error bars show SEM.
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particularly strong for the conv4 model, explaining the
lower average performance under this model condition.

These differences according to oddball type are
generally consistent with the perceptual variability
account above. If crops from the synthesized images
appear different to each other and to the original, but
crops from the original are quite self-similar, then on
trials with an original oddball each of the three images
looks different to the others. One of the synthesized
images may appear ‘‘most different’’ (Figure 17a), and
the observer incorrectly chooses that. Conversely, on
trials where the synthesized image is the oddball, the
two intervals containing the original images look
similar to each other but different to the synthesized
image (Figure 17b), making the task easier. This
perceptual variability explanation is particularly ap-
pealing for images where the model fails to match
appearance, such as for candy, metal, and tiles, and is
also consistent with the larger self-similarity of those
images (Figure 11). Other, not mutually exclusive
possibilities include that observers are influenced by
nonperceptual factors, such as the use of a suboptimal
decision strategy (‘‘pick the unnatural-looking image’’)
on some trials, or of exogenous orienting of spatial

attention to unnatural images. Whatever the cause(s) of
the oddball differences we observe, note that traditional
observer models for the oddity paradigm assume both
unbiased responding and that the stimulus classes have
equal variance (Macmillan & Creelman, 2005, p. 235);
thus, computing d’ from our data with the intention of
comparing sensitivity to other paradigms should be
performed cautiously or with a model explicitly
including bias/variance terms for each trial type.

Loss

For the stimuli used in this study, the CNN texture
models conv4, conv5, and powerspec are overcomplete
(have more parameters than pixels in the image). Thus
the loss of the gradient descent for those models does
not converge to zero, but ends in a local minimum.
Figure 18A shows a typical convergence function,
where the gradient descent for conv1 terminates early
(after reaching convergence within tolerance) but for
more complex models (conv3–conv5) loss appears to
find a local minimum, remaining relatively stable after
750 iterations. The final loss after 1,000 iterations is

Figure 16. Inspection performance in Experiment 1 according to whether the oddball image was an original or a model synthesis
(‘‘synth’’), for each image. Points show grand mean across observer means, error bars show SEM.
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superlinear (Figure 18B): for example, conv5 has a little
less than double the number of parameters as conv4,
but about 23 times higher final loss.

Given that we interleaved 10 unique syntheses for
each original image within our experiment, it would be
interesting to assess whether a correlation exists
between the final loss of each synthesis and psycho-
physical performance. A positive correlation between
loss and performance would mean that images that

show greater difference to the original under the model
would also be easier for humans to discriminate.
Unfortunately however, we did not save the final loss of
the images after gradient descent but prior to histogram
matching. Because histogram matching substantially
alters the loss values under the model, including
changing the order of syntheses, we are unable to assess
a correlation between performance and final loss in this
dataset.

Figure 17. A depiction of an oddball ‘‘original’’ trial (a) and an oddball ‘‘synth’’ trial (b). In both cases the oddball is the top image. All
images are physically different. When model syntheses look different to the original and each other, and the original images are very
self-similar, then the perceptual variability of all stimulus intervals is larger on oddball original than oddball synth trials.

Figure 18. (a) Decrease of the loss over iterations on a logarithmic scale for ten syntheses (lines) of one example image (Bricks). Loss
for simple models (e.g., conv1) converges to zero whereas for more complex models (conv3, conv4 and conv5) it stabilizes in a local
minimum. (b) Final loss (logarithmic scale) for the synthesized images in (a) as a function of number of parameters in the model.
Points show individual syntheses, lines link means within a model. Final loss is superlinear in the number of parameters.
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Image content is more important than
Bouma’s Law for scene metamers
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Leon A Gatys1‡, Felix A Wichmann5, Matthias Bethge3,4,6

1Werner Reichardt Center for Integrative Neuroscience, Eberhard Karls Universität
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Abstract We subjectively perceive our visual field with high fidelity, yet peripheral distortions
can go unnoticed and peripheral objects can be difficult to identify (crowding). Prior work showed
that humans could not discriminate images synthesised to match the responses of a mid-level
ventral visual stream model when information was averaged in receptive fields with a scaling of
about half their retinal eccentricity. This result implicated ventral visual area V2, approximated
‘Bouma’s Law’ of crowding, and has subsequently been interpreted as a link between crowding
zones, receptive field scaling, and our perceptual experience. However, this experiment never
assessed natural images. We find that humans can easily discriminate real and model-generated
images at V2 scaling, requiring scales at least as small as V1 receptive fields to generate metamers.
We speculate that explaining why scenes look as they do may require incorporating segmentation
and global organisational constraints in addition to local pooling.
DOI: https://doi.org/10.7554/eLife.42512.001

Introduction
Vision science seeks to understand why things look as they do (Koffka, 1935). Typically, our entire
visual field looks subjectively crisp and clear. Yet our perception of the scene falling onto the periph-
eral retina is actually limited by at least three distinct sources: the optics of the eye, retinal sampling,
and the mechanism(s) giving rise to crowding, in which our ability to identify and discriminate objects
in the periphery is limited by the presence of nearby items (Bouma, 1970; Pelli and Tillman, 2008).
Many other phenomena also demonstrate striking ‘failures’ of visual perception, for example change
blindness (Rensink et al., 1997; O’Regan et al., 1999) and inattentional blindness (Mack and Rock,
1998), though there is some discussion as to what extent these are distinct from crowding (Rose-
nholtz, 2016). Whatever the case, it is clear that we can be insensitive to significant changes in the
world despite our rich subjective experience.

Visual crowding has been characterised as compulsory texture perception (Parkes et al., 2001;
Lettvin, 1976) and compression (Balas et al., 2009; Rosenholtz et al., 2012a). This idea entails that
we cannot perceive the precise structure of the visual world in the periphery. Rather, we are aware
only of some set of summary statistics or ensemble properties of visual displays, such as the average
size or orientation of a group of elements (Ariely, 2001; Dakin and Watt, 1997). One of the appeals
of the summary statistic idea is that it can be directly motivated from the perspective of efficient
coding as a form of compression. Image-computable texture summary statistics have been shown to
be correlated with human performance in various tasks requiring the judgment of peripheral
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information, such as crowding and visual search (Rosenholtz et al., 2012a; Balas et al., 2009;

Freeman and Simoncelli, 2011; Rosenholtz, 2016; Ehinger and Rosenholtz, 2016). Recently, it has

even been suggested that summary statistics underlie our rich phenomenal experience itself—in the

absence of focussed attention, we perceive only a texture-like visual world (Cohen et al., 2016).
Across many tasks, summary statistic representations seem to capture aspects of peripheral vision

when the scaling of their pooling regions corresponds to ‘Bouma’s Law’ (Rosenholtz et al., 2012a;

Balas et al., 2009; Freeman and Simoncelli, 2011; Wallis and Bex, 2012; Ehinger and Rosenholtz,

2016). Bouma’s Law states that objects will crowd (correspondingly, statistics will be pooled) over

spatial regions corresponding to approximately half the retinal eccentricity (Bouma, 1970; Pelli and

Tillman, 2008; though see Rosen et al., 2014). While the precise value of Bouma’s law can vary sub-

stantially even over different visual quadrants within an individual (see e.g. Petrov and Meleshke-

vich, 2011), we refer here to the broader notion that summary statistics are pooled over an area

that increases linearly with eccentricity, rather than the exact factor of this increase (the exact factor

becomes important in the paragraph below). If the visual system does indeed represent the periph-

ery using summary statistics, then Bouma’s scaling implies that as retinal eccentricity increases,

increasingly large regions of space are texturised by the visual system. If a model captured these sta-

tistics and their pooling, and the model was amenable to being run in a generative mode, then

images could be created that are indistinguishable from the original despite being physically differ-

ent (metamers). These images would be equivalent to the model and to the human visual system

(Freeman and Simoncelli, 2011; Wallis et al., 2016; Portilla and Simoncelli, 2000;

Koenderink et al., 2017).
Freeman and Simoncelli (2011) developed a model (hereafter, FS-model) in which texture-like

summary statistics are pooled over spatial regions inspired by the receptive fields in primate visual

cortex. The size of neural receptive fields in ventral visual stream areas increases as a function of reti-

nal eccentricity, and as one moves downstream from V1 to V2 and V4 at a given eccentricity. Each

eLife digest As you read this digest, your eyes move to follow the lines of text. But now try to
hold your eyes in one position, while reading the text on either side and below: it soon becomes
clear that peripheral vision is not as good as we tend to assume. It is not possible to read text far
away from the center of your line of vision, but you can see ‘something’ out of the corner of your
eye. You can see that there is text there, even if you cannot read it, and you can see where your
screen or page ends. So how does the brain generate peripheral vision, and why does it differ from
what you see when you look straight ahead?

One idea is that the visual system averages information over areas of the peripheral visual field.
This gives rise to texture-like patterns, as opposed to images made up of fine details. Imagine
looking at an expanse of foliage, gravel or fur, for example. Your eyes cannot make out the
individual leaves, pebbles or hairs. Instead, you perceive an overall pattern in the form of a texture.
Our peripheral vision may also consist of such textures, created when the brain averages information
over areas of space.

Wallis, Funke et al. have now tested this idea using an existing computer model that averages
visual input in this way. By giving the model a series of photographs to process, Wallis, Funke et al.
obtained images that should in theory simulate peripheral vision. If the model mimics the
mechanisms that generate peripheral vision, then healthy volunteers should be unable to distinguish
the processed images from the original photographs. But in fact, the participants could easily
discriminate the two sets of images. This suggests that the visual system does not solely use textures
to represent information in the peripheral visual field. Wallis, Funke et al. propose that other factors,
such as how the visual system separates and groups objects, may instead determine what we see in
our peripheral vision.

This knowledge could ultimately benefit patients with eye diseases such as macular degeneration,
a condition that causes loss of vision in the center of the visual field and forces patients to rely on
their peripheral vision.
DOI: https://doi.org/10.7554/eLife.42512.002
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visual area therefore has a signature scale factor, defined as the ratio of the receptive field diameter

to retinal eccentricity (Freeman and Simoncelli, 2011). Similarly, the pooling regions of the FS-

model also increase with retinal eccentricity with a definable scale factor. New images can be syn-

thesised that match the summary statistics of original images at this scale factor. As scale factor

increases, texture statistics are pooled over increasingly large regions of space, resulting in more dis-

torted synthesised images relative to the original (that is, more information is discarded).
The maximum scale factor for which the images remain indistinguishable (the critical scale) charac-

terises perceptually-relevant compression in the visual system’s representation. If the scale factor of

the model corresponded to the scaling of the visual system in the responsible visual area, and infor-

mation in upstream areas was irretrievably lost, then the images synthesised by the model should be

indistinguishable while discarding as much information as possible. That is, we seek the maximum

compression that is perceptually lossless:

scritðIÞ ¼ max
s: dðÎs; IÞ¼0

s;

where scritðIÞ is the critical scale for an image I, Îs is a synthesised image at scale s and d is a percep-
tual distance. Larger scale factors discard more information than the relevant visual area and there-

fore the images should look different. Smaller scale factors preserve information that could be

discarded without any perceptual effect.
Crucially, it is the minimum critical scale over images that is important for the scaling theory. If

the visual system computes summary statistics over fixed (image-independent) pooling regions in

the same way as the model, then the model must be able to produce metamers for all images. While

images may vary in their individual critical scales, the image with the smallest critical scale deter-

mines the maximum compression for appearance to be matched by the visual system in general,

assuming an image-independent representation:

ssystem ¼min
I

scritðIÞ

Freeman and Simoncelli showed that the largest scale factor for which two synthesised images
could not be told apart was approximately 0.5, or pooling regions of about half the eccentricity. This

scaling matched the signature of area V2, and also matched the approximate value of Bouma’s Law.

Subsequently, this result has been interpreted as demonstrating a link between receptive field scal-

ing, crowding, and our rich phenomenal experience (e.g. Block, 2013; Cohen et al., 2016,

Landy, 2013, Movshon and Simoncelli, 2014, Seth, 2014). These interpretations imply that the FS-

model creates metamers for natural scenes. However, observers in Freeman and Simoncelli’s experi-

ment never saw the original scenes, but only compared synthesised images to each other. Showing

that two model samples are indiscriminable from each other could yield trivial results. For example,

two white noise samples matched to the mean and contrast of a natural scene would be easy to dis-

criminate from the scene but hard to discriminate from each other. Furthemore, since synthesised

images represent a specific subset of images, and the system critical scale ssystem is the minimum

over all possible images, the ssystem estimated in Freeman and Simoncelli (2011) is likely to be an

overestimate.
No previous paper has estimated ssystem for the FS-model using natural images. Wallis et al.,

2016 tested the related Portilla and Simoncelli (2000) model textures, and found that observers

could easily discriminate these textures from original images in the periphery. However, the Portilla

and Simoncelli model makes no explicit connection to neural receptive field scaling. In addition, rela-

tive to the textures tested by Wallis et al., 2016, the pooling region overlap used in the FS-model

provides a strong constraint on the resulting syntheses, making the images much more similar to the

originals. It is therefore still possible that the FS-model produces metamers for natural scenes for

scale factors of 0.5.

Wallis et al. eLife 2019;8:e42512. DOI: https://doi.org/10.7554/eLife.42512 3 of 43

Short report Neuroscience



Results

Measuring critical scale in the FS-model
We tested whether the FS-model can produce metamers using an oddity design in which the
observer had to pick the odd image out of three successively shown images (Figure 1E). In a three-
alternative oddity paradigm, performance for metamerism would lie at 1/3 (dashed horizontal line,
Figure 1F). We used two comparison conditions: either observers compared two model syntheses
to each other (synth vs synth; as in Freeman and Simoncelli, 2011) or the original image to a model
synthesis (orig vs synth). As in the original paper (Freeman and Simoncelli, 2011) we measured the
performance of human observers for images synthesised with different scale factors (using Freeman
and Simoncelli’s code, see Materials and methods). To quantify the critical scale factor we fit the
same nonlinear model as Freeman and Simoncelli, which parameterises sensitivity as a function of
critical scale and gain, but using a mixed-effects model with random effects of participant and image
(see Materials and methods).

We used 20 images to test the FS model. These images are split into two classes of ten images
each, which we labelled ‘scene-like’ and ‘texture-like’. The distinction of these two classes is based
on the results of a pilot experiment with a model we developed, which is inspired by the FS model
but based on a different set of image features (those extracted by a convolutional neural network;
see Materials and methods and Appendix 2—figure 1). In this pilot experiment, we found that
some images are easier to discriminate than others (Appendix 2—figure 7—figure 9). Easily-dis-
criminable images tended to contain larger areas of inhomogenous structure, long edges, borders
between different surfaces or objects, and angled edges providing perspective cues (‘scene-like’).
Difficult images tended to contain more visual textures: homogenous structure, patterned content,
or materials (‘texture-like’“). For example, images from the first class tended to contain more struc-
ture such as faces, text, skylines, buildings, and clearly segmented objects or people, whereas
images from the second class tended to contain larger areas of visual texture such as grass, leaves,
gravel, or fur. A similar distinction could also be made along the lines of ‘human-made’ versus ‘natu-
ral’ image structure, but we suspect the visual structure itself rather than its origin is of causal impor-
tance and so used that level of description.

While our labelling of images in this way is debatable (for example, ‘texture-like’ regions contain
some ‘scene-like’ content and vice versa) and to some degree based on subjective judgment, we
hypothesised that this classification distinguishes the types of image content that are critical. If the
visual system indeed created a texture-like summary in the periphery and the FS-model was a suffi-
cient approximation of that process, then we should observe no difference in the average critical
scale factor of images in each group (because image content would be irrelevant to the distribution
of scritðIÞ).

We start by considering the condition where participants compared synthesised images to each
other—as in Freeman and Simoncelli (2011). Under this condition, there was little evidence that the
critical scale depended on the image content (see curves in Figure 1F, synth vs synth). The critical
scale (posterior mean with 95% credible interval quantiles) for scene-like images was 0.28, 95% CI
[0.21, 0.36] and the critical scale for texture-like images was 0.37, 95% CI [0.27, 0.5] (Figure 1G).
Though these critical scales are lower than those reported by Freeman and Simoncelli (2011), they
are within the range of other reported critical scale factors (Freeman and Simoncelli, 2013). There
was weak evidence for a difference in critical scale between texture-like and scene-like images, with
the posterior distribution of scale differences being 0.09, 95% CI [$0.03, 0.24], pðb< 0Þ ¼ 0:078

(where pðb< 0Þ is the posterior probability of the difference being negative; symmetrical posterior
distributions centered on zero would have pðb< 0Þ ¼ 0:5). However, this evidence should be inter-
preted cautiously: because asymptotic performance never reaches high values, critical scale esti-
mates are more uncertain than in the orig vs synth condition below (Figure 1G). This poor
asymptotic performance may be because we used more images in our experiment than Freeman
and Simoncelli, so participants were less familiar with the distortions that could appear. To make
sure this difference did not arise due to different experimental paradigms (oddity vs. ABX), we
repeated the experiment using the same ABX task as in Freeman and Simoncelli (Appendix 1—fig-
ure 4). This experiment again showed poor asymptotic performance, and furthermore demonstrated
no evidence for a critical scale difference between the scene- and texture-like images. Taken
together, our synth vs synth results are somewhat consistent with Freeman and Simoncelli, who
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Figure 1. Two texture pooling models fail to match arbitrary scene appearance. We selected ten scene-like (A) and ten texture-like (B) images from the

MIT 1003 dataset (Judd et al., 2009, https://people.csail.mit.edu/tjudd/WherePeopleLook/index.html) and synthesised images to match them using

the Freeman and Simoncelli model (FS scale 0.46 shown) or a model using CNN texture features (CNN 32; example scene and texture-like stimuli

shown in (C) and (D) respectively). Images reproduced under a CC-BY license (https://creativecommons.org/licenses/by/3.0/) with changes as described

in the Methods. (E): The oddity paradigm. Three images were presented in sequence, with two being physically-identical and one being the oddball.

Participants indicated which image was the oddball (1, 2 or 3). On ’orig vs synth’ trials participants compared real and synthesised images, whereas on

’synth vs synth’ trials participants compared two images synthesised from the same model. (F): Performance as a function of scale factor (pooling region

diameter divided by eccentricity) in the Freeman-Simoncelli model (circles) and for the CNN 32 model (triangles; arbitrary x-axis location). Points show

grand mean %2 SE over participants; faint lines link individual participant performance levels (FS-model) and faint triangles show individual CNN 32

performance. Solid curves and shaded regions show the fit of a nonlinear mixed-effects model estimating the critical scale and gain. Participants are

still above chance for scene-like images in the original vs synth condition for the lowest scale factor of the FS-model we could generate, and for the

CNN 32 model, indicating that neither model succeeds in producing metamers. (G): When comparing original and synthesised images, estimated

critical scales (scale at which performance rises above chance) are lower for scene-like than for texture-like images. Points with error bars show

population mean and 95% credible intervals. Triangles show posterior means for participants; diamonds show posterior means for images. Black

squares show critical scale estimates of the four participants from Freeman and Simoncelli (2011) (x-position jittered to reduce overplotting); shaded

regions denote the receptive field scaling of V1 and V2 estimated by Freeman and Simoncelli (2011). Data reproduced from Freeman and Simoncelli

(2011) using WebPlotDigitizer v. 4.0.0 (Rohatgi, A., software under the GNU Affero General Public License v3, https://www.gnu.org/licenses/agpl-3.0.

en.html).

DOI: https://doi.org/10.7554/eLife.42512.003

The following figure supplement is available for figure 1:

Figure supplement 1. The ten scene-like and ten texture-like images used in our main experiments, along with example syntheses from the FS-0.46

and CNN 32 models (best viewed with zoom).

DOI: https://doi.org/10.7554/eLife.42512.004
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reported no dependency of scritðIÞ on image. It seems likely that this is because comparing synthes-

ised images to each other means that the model has removed higher-order structure that might

allow discrimination. All images appear distorted, and the task becomes one of identifying a specific

distortion pattern.
Comparing the original image to model syntheses yielded a different pattern of results. First, par-

ticipants were able to discriminate the original images from their FS-model syntheses at scale factors

of 0.5 (Figure 1F). Performance lay well above chance for all participants. This result held for both

scene-like and texture-like images. Furthermore, there was evidence that critical scale depended on

the image type. Model syntheses matched the texture-like images on average with scale factors of

0.36, 95% CI [0.29, 0.43]. In contrast, the scene-like images were quite discriminable from their

model syntheses even at the smallest scale we could generate (0.25). The critical scale estimated for

scene-like images was 0.22, 95% CI [0.18, 0.27]. Texture-like images had higher critical scales than

scene-like images on average (scale difference = 0.13, 95% CI [0.06, 0.22], pðb< 0Þ ¼ 0:001).
This difference in critical scale was not attributable to differences in the success of the synthesis

procedure between scene-like and texture-like images. Scene-like images had higher final loss (dis-

tance between the original and synthesised images in model space) than texture-like images on

average (see Materials and methods). This is a corollary of the importance of image content: since a

texture summary model is a poor description of scene-like content, the model’s optimisation proce-

dure is also more likely to find local minima with relatively high loss. We checked that our main result

was not explained by this difference by performing a control analysis in which we refit the model

after equating the average loss in the two groups by excluding images with highest final loss until

the groups were matched (resulting in four scene-like images being excluded; see Materials and

methods). The remaining scene-like images had a critical scale of 0.24, 95% CI [0.2, 0.28] in the orig

vs synth condition, texture-like images again showed a critical scale of 0.36, 95% CI [0.3, 0.42] and

the difference distribution had a mean of 0.12, 95% CI [0.06, 0.19], pðb< 0Þ< 0:001. Thus, differences

in synthesis loss do not explain our findings.
As noted above, the image with the minimum critical scale determines the largest compression

that can be applied for the scaling model to hold (ssystem). For two images (Figure 2A and E) the

nonlinear mixed-effects model estimated critical scales of approximately 0.14 (see Figure 1G, dia-

monds; the minimum critical scale after excluding high-loss images in the control analysis reported

above was 0.19). However, examining the individual data for these images (Figure 2D and H) reveals

that these critical scale estimates are largely determined by the hierarchical nature of the mixed-

effects model, not the data itself. Both images were easy to discriminate from the original even for

the lowest scale factor we could generate. This suggests that the true scale factor required to gener-

ate metamers may be even lower than estimated by the mixed-effects model.
Our results show that smaller pooling regions are required to make metamers for scene-like

images than for texture-like images. Human observers can reliably detect relatively small distortions

produced by the FS-model at scale factors of 0.25 in scene-like image content (compare Figure 2B

and F at scale 0.25 and C and G at scale 0.46 to images A and B). Thus, syntheses at these scales

are not metamers for natural scenes.

Local image structure determines the visibility of texture-like
distortions
In our first experiment we found that scene-like images yielded lower critical scales than texture-like

images. However, this categorisation is crude: ‘texture-ness’ in photographs of natural scenes is a

property of local regions of the image rather than the image as a whole. In addition, the classifica-

tion of images above was based in part on the difficulty of these images in a pilot experiment.
We therefore ran a second experiment to test the importance of local image structure more

directly (Bex, 2010; Koenderink et al., 2017; Valsecchi et al., 2018; Wallis and Bex, 2012), using a

set of images whose selection was not based on pilot discrimination results. Participants detected a

localised texture-like distortion (generated by the texture model of Gatys et al., 2015) blended into

either a scene-like or texture-like region (Figure 3A–C). These image regions were classified by

author CF (non-authors showed high agreement with this classification—see Materials and methods).

The patches were always centered at an eccentricity of six degrees, and we varied the radius of the

circular patch (Figure 3D). This is loosely analogous to creating summary statistics in a single pooling
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region (Wallis et al., 2016). Participants discriminated between the original image and an image

containing a local distortion in a 2IFC paradigm (Figure 3E).
The results showed that the visibility of texture-like distortions depended strongly on the underly-

ing image content. Participants were quite insensitive to even large texture-like distortions occurring

in texture-like image regions (Figure 3F). Performance for distortions of nearly five degrees radius

(i.e. nearly entering the foveal fixation point) was still close to chance. Conversely, distorting scene-

like regions is readily detectable for the three largest distortion patch sizes.

Discussion
It is a popular idea that the appearance of scenes in the periphery is described by summary statistic

textures captured at the scaling of V2 neural populations. In contrast, here we show that humans are

very sensitive to the difference between original and model-matched images at this scale (Figure 1).

A recent preprint (Deza et al., 2017) finds a similar result in a set of 50 images, and our results are

also consistent with the speculations made by Wallis et al. based on their experiments with Portilla

and Simoncelli textures (Wallis et al., 2016). Together, these results show that the pooling of tex-

ture-like features in the FS-model at the scaling of V2 receptive fields does not explain the appear-

ance of natural images.
One exciting aspect of Freeman and Simoncelli (2011) was the promise of inferring a critical

brain region via a receptive field size prediction derived from psychophysics. Indeed, aspects of this

promise have since received empirical support: the presence of texture-like features can discriminate

V2 neurons from V1 neurons (Freeman et al., 2013; Ziemba et al., 2016; see also Okazawa et al.,

2015). Discarding all higher-order structure not captured by the candidate model by comparing syn-

theses to each other, thereby isolating only features that change, may be a useful way to distinguish

the feedforward component of sequential processing stages in neurons.

Figure 2. The two images with smallest critical scale estimates are highly discriminable even for the lowest scale factor we could generate. (A) The
original image. (B) An example FS synthesis at scale factor 0.25. (C) An example FS synthesis at scale factor 0.46. Images in B and C reproduced from

the MIT 1003 Database (Judd et al., 2009), https://people.csail.mit.edu/tjudd/WherePeopleLook/index.html) under a CC-BY license (https://

creativecommons.org/licenses/by/3.0/) with changes as described in the Methods. (D) The average data for this image. Points and error bars show

grand mean and %2 SE over participants, solid curve and shaded area show posterior mean and 95% credible intervals from the mixed-effects model.

Embedded text shows posterior mean and 95% credible interval on the critical scale estimate for this image. (E–H) Same as A–D for the image with the

second-lowest critical scale. Note that in both cases the model is likely to overestimate critical scale.

DOI: https://doi.org/10.7554/eLife.42512.005

The following figure supplement is available for figure 2:

Figure supplement 1. Images with the highest and lowest critical scale estimates within the scene-like and texture-like categories for the orig vs synth

comparison.

DOI: https://doi.org/10.7554/eLife.42512.006
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While texture-like representations may therefore be important for understanding neural encoding
(Movshon and Simoncelli, 2014), our results call into question the link between receptive field scal-

ing and scene appearance. If the peripheral appearance of visual scenes is explained by image-inde-

pendent pooling of texture-like features, then the pooling regions must be small. Consider that

participants in our experiment could easily discriminate the images in Figure 2B and F from those in

Figure 2A and E respectively. Therefore, images synthesised at a truly metameric scaling must

remain extremely close to the original: ssystem must be at least as small as V1 neurons, and perhaps

even lower (Figure 2). This may even be consistent with scaling in precortical visual areas. For exam-

ple, the scaling of retinal ganglion cell receptive fields at the average eccentricity of our stimuli (six

degrees) is approximately 0.08 for the surround (Croner and Kaplan, 1995) and 0.009 for the centre

(Dacey and Petersen, 1992). It becomes questionable how much is learned about compression in

the ventral pathway using such an approach, beyond the aforementioned, relatively well-studied lim-

its of optics and retinal sampling (e.g. Wandell, 1995; Watson, 2014).
A second main finding from our paper is that the ability of the FS-model to synthesise visual

metamers at a given scale factor depends on image content. Images containing predominantly

Figure 3. Sensitivity to local texture distortions depends on image content. (A) A circular patch of an image was replaced with a texture-like distortion.

In different experimental conditions the radius of the patch was varied. (B) Two example images in which a ’scene-like’ or inhomogenous region is

distorted (red cross). (C) Two example images in which a ’texture-like’ or homogenous region is distorted (red cross). (D) Examples of an original image

and the four distortion sizes used in the experiment. Images in B–D reproduced from the MIT 1003 Database (Judd et al., 2009), https://people.csail.

mit.edu/tjudd/WherePeopleLook/index.html) under a CC-BY license (https://creativecommons.org/licenses/by/3.0/) with changes as described in the

Methods. (E) Depiction of the 2IFC task, in which the observer reported whether the first or second image contained the distortion. (F) Proportion
correct as a function of distortion radius in scene-like (blue) and texture-like (red) image regions. Lines link the performance of each observer (each

point based on a median of 51.5 trials; min 31, max 62). Points show mean of observer means, error bars show %2 SEM.

DOI: https://doi.org/10.7554/eLife.42512.007
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‘scene-like’ content tended to be more difficult to match (requiring lower scale factors in the case of

the FS-model) than images containing ‘texture-like’ content (Figure 1F and G). In a second experi-

ment measuring the visibility of local texture distortions, we found that people can be quite insensi-

tive to even large texture-like distortions so long as these fall on texture-like regions of the input

image (Figure 3). This confirms the importance of the distinction between ‘things’ (scene-like con-

tent) and ‘stuff’ (texture-like content; Adelson, 2001) for peripheral scene appearance.
This result can be experienced via simple demonstration. The ‘China Lane’ sign in Figure 4A has

been distorted in Figure 4B (using local texture distortions as in Figure 3), and is readily visible in

the periphery (with central fixation on the circular bullseye). The same type of distortion in a texture-

like region of the image is far less visible (the brickwork in the image centre; FS-model result

Figure 4C), despite appearing in the parafovea. It is the image content, not retinal eccentricity, that

is the primary determinant of the visibility of at least some summary statistic distortions. Requiring

information to be preserved at V1 or smaller scaling would therefore be inefficient from the stand-

point of compression: small scale factors will preserve texture-like structure that could be com-

pressed without affecting appearance.
It may seem trivial that a texture statistic model better captures the appearance of textures than

non-textures. However, if the human visual system represents the periphery as a texture-like sum-

mary, and these models are sufficient approximations of this representation, then image content

should not matter—because scene-like retinal inputs in the periphery are transformed into textures

by the visual system.
Perhaps the V2 scaling theory holds but the FS-model texture features are insufficient to capture

natural scene appearance. To test whether improved texture features (Gatys et al., 2015) could

help in matching appearance for scenes, we developed a new model (CNN-model; see Materials

Figure 4. The visibility of texture-like distortions depends on image content. (A) ’Geotemporal Anomaly’ by Pete Birkinshaw (2010: https://www.flickr.

com/photos/binaryape/5203086981, re-used under a CC-BY 2.0 license: https://creativecommons.org/licenses/by/2.0/uk/). The image has been resized

and a circular bullseye has been added to the centre. (B) Two texture-like distortions have been introduced into circular regions of the scene in A (see

Figure 4—figure supplement 1 for higher resolution). The distortion in the upper-left is quite visible, even with central fixation on the bullseye,

because it breaks up the high-contrast contours of the text. The second distortion occurs on the brickwork centered on the bullseye, and is more

difficult to see (you may not have noticed it until reading this caption). The visibility of texture-like distortions can depend more on image content than

on retinal eccentricity (see also Figure 3). (C) Results synthesised from the FS-model at scale 0.46 for comparison. Pooling regions depicted for one

angular meridian as overlapping red circles; real pooling regions are smooth functions tiling the whole image. Pooling in this fashion reduces large

distortions compared to B, but our results show that this is insufficient to match appearance.

DOI: https://doi.org/10.7554/eLife.42512.008

The following figure supplement is available for figure 4:

Figure supplement 1. Higher-resolution versions of the images from Figure 4.

DOI: https://doi.org/10.7554/eLife.42512.009
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and methods and Appendix 2—figures 1–4) that was inspired by the FS-model but uses the texture
features of a convolutional neural network (VGG-19, Simonyan and Zisserman, 2015) that have pre-
viously been shown to better capture the appearance of some textures than the Portilla and Simon-
celli texture features (Wallis et al., 2017). As for the FS-model, discrimination performance becomes
poorer as pooling region sizes become smaller (Appendix 2—figure 3). The CNN 32 model shows
very similar behaviour to the FS-model such that human performance for scene-like images is higher
than for texture-like images (triangles in Figure 1D and Figure 2). Thus, the syntheses from both
models are not metamers for natural scenes. Nevertheless, our results cannot rule out that a hereto
unknown summary statistic model exists that will create metamers for all images at V2 scales or
higher. However, that two additional summary statistic models (the CNN-model and the NeuroFovea
model of Deza et al., 2017) also fail to capture scene appearance and show dependence on image
content adds some generality to our claim that these models are insufficient descriptions of periph-
eral visual scene appearance.

If this claim was correct, this begs the question: what is the missing ingredient that could capture
appearance while compressing as much information as possible? Through the Gestalt tradition, it
has long been known that the appearance of local image elements can crucially depend on the con-
text in which they are placed and their interpretation in the scene (for overviews of recent work, see
Jäkel et al., 2016; Wagemans et al., 2012a; Wagemans et al., 2012b). We speculate that mecha-
nisms of perceptual organisation (such as segmentation and grouping) need to be considered if one
wants to capture appearance in general—yet current models that texturise local regions do not
explicitly include these mechanisms (Herzog et al., 2015; Clarke et al., 2014). If segmentation and
grouping processes are critical for efficiently matching scene appearance, then uniformly computing
summary statistics without including these processes will require preserving much of the original
image structure by making pooling regions very small. A parsimonious model capable of compress-
ing as much information as possible might need to adapt either the size and arrangement of pooling
regions or the feature representations to the image content.

Local vs global mechanisms
These segmentation and grouping mechanisms could be mediated by local interactions between
nearby image features, global properties of the scene, or both. The present results do not allow us
to distinguish these alternatives.

In favour of the importance of local interactions, studies of contour integration in Gabor fields
show that the arrangement of local orientation structure can influence the discrimination of contour
shape (Dakin and Baruch, 2009) and contour localisation (Robol et al., 2012), and that these effects
are consistent with crowding (Robol et al., 2012). In these stimuli, crowding between nearby con-
tour elements is the primary determinant of global contour judgments (see also Dakin et al., 2009).
Specifically, contours consisting of parallel Gabor elements (‘snakes’) were more easily perceived
when adjacent Gabor elements were oriented perpendicularly to the main contour. A related study
(Van der Burg et al., 2017) used an evolutionary algorithm to select dense line element displays
that maximally alleviated crowding in an orientation discrimination task. Displays evolved using
human responses showed that a substantial reduction of crowding was obtained by orienting the
two line segments nearest the target (separated by only 0:75& at 6& eccentricity) to be perpendicular
to the target’s mean orientation (forming ‘T’ and/or ‘I’ junctions). In contrast, simulations based on
Bouma’s Law predicted that much larger areas of the display (relative to the human data) would
need to be adjusted. These results are consistent with our finding that humans can be far more sen-
sitive to image structure in the periphery than predicted by Bouma-like scaling.

The studies above suggest the possibility that T-junctions may be critical local cues to segmenta-
tion in the periphery. The potential importance of different junction types in segmentation and
grouping has long been noted (Biederman, 1987). In real scenes, T-junctions usually signal occlusion
edges between rigid surfaces, whereas Y-, L- and arrow-junctions are created by projecting the cor-
ners of 3D objects into 2D. Histograms of junction distributions are diagnostic of scene category
(Walther and Shen, 2014), with human-made scenes such as city streets and offices tending to con-
tain more T-junctions than more natural environments like beaches and mountains. A recent study
also highlights the importance of local contour symmetry for scene categorisation (Wilder et al.,
2019). Finally, Loschky et al. (2010) found that participants were extremely poor at classifying scene
category from Portilla and Simoncelli (2000) global textures of scene images. These results suggest
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that the Portilla and Simoncelli texture statistics (used in the FS-model) do not adequately preserve

junction information.
Taken together, these studies give rise to the following hypothesis: images with more junctions

(particularly T-junctions; Van der Burg et al., 2017) will require smaller pooling regions to match

and thus will show lower critical scale estimates in the FS-model. We applied the junction detection

algorithm of Xia et al. (2014) to each of the 20 original images used in our first experiment. Consis-

tent with the (post-hoc) hypothesis above, lower critical scales were associated with more frequent

junctions, particularly if ‘less meaningful’ junctions (defined by the algorithm) were excluded (T-junc-

tion correlation r ¼ $0:54; L-junctions r ¼ $0:63; Appendix 1—figure 3). If confirmed by a targeted

experiment (and dissociated from general edge density), this relationship would suggest a clear ave-

nue for future improvement of scene appearance models: they must successfully capture junction

information in images.
Other evidence supports the role of global information (the arrangement and organisation of

objects over large retinal areas) in segmentation and grouping. In crowding, Manassi et al. (2013)

found that configurations of stimuli well outside the region of Bouma’s law could modulate the

crowding effectiveness of the same flankers (see also Manassi et al., 2012; Saarela et al., 2009;

Vickery et al., 2009; Levi and Carney, 2009). Neri (2017) reported evidence from a variety of

experiments in support of a fast segmentation process, operating over large regions of space, that

can strongly modulate the perceptual interpretation of—and sensitivity to—local edge elements in a

scene according to the figure-ground organisation of the scene (see also Teufel et al., 2018). Our

findings could be explained by the fact that the texture summary statistic models we examine here

do not include any such global segmentation processes. The importance of these mechanisms could

be examined in future studies, and potentially dissociated from the local information discussed

above, by using image manipulations thought to disrupt the activity of global grouping mechanisms

such as polarity inversion or image two-toning (Neri, 2017; Balas, 2012; Teufel et al., 2018).

Summary statistics, performance and phenomenology
Our results do not undermine the considerable empirical support for the periphery-as-summary-sta-

tistic theory as a description of visual performance. Humans can judge summary statistics of visual

displays (Ariely, 2001; Dakin and Watt, 1997), summary statistics can influence judgments where

other information is lost (Fischer and Whitney, 2011; Faivre et al., 2012), and the information pre-

served by summary statistic stimuli may offer an explanation for performance in various visual tasks

(Rosenholtz et al., 2012b; Balas et al., 2009; Rosenholtz et al., 2012a; Keshvari and Rosenholtz,

2016; Chang and Rosenholtz, 2016; Zhang et al., 2015; Whitney et al., 2014; Long et al., 2016;

though see Agaoglu and Chung, 2016; Herzog et al., 2015; Francis et al., 2017). Texture-like sta-

tistics may even provide the primitives from which form is constructed (Lettvin, 1976)—after appro-

priate segmentation, grouping and organisation. However, one additional point merits further

discussion. The studies by Rosenholtz and colleagues primarily test summary statistic representations

by showing that performance with summary statistic stimuli viewed foveally is correlated with periph-

eral performance with real stimuli. This means that the summary statistics preserve sufficient informa-

tion to explain the performance of tasks in the periphery. Our results show that these summary

statistics are insufficient to match scene appearance, at least under the pooling scheme used in the

Freeman and Simoncelli model at computationally feasible scales. This shows the usefulness of scene

appearance matching as a test: a parsimonious model that matches scene appearance would be

expected to also preserve enough information to show correlations with peripheral task perfor-

mance; the converse does not hold.
While it may be useful to consider summary statistic pooling in accounts of visual performance, to

say that summary statistics can account for phenomenological experience of the visual periphery

(Cohen et al., 2016; see also Block, 2013; Seth, 2014) seems premature in light of our results (see

also Haun et al., 2017). Cohen et al. (2016) additionally posit that focussed spatial attention can in

some cases overcome the limitations imposed by a summary statistic representation. We instead

find little evidence that participants’ ability to discriminate real from synthesised images is improved

by cueing spatial attention, at least in our experimental paradigm and for our CNN-model (Appen-

dix 2—figure 6).
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Conclusion
Our results show that the appearance of scenes in the periphery cannot be captured by the

Freeman and Simoncelli (2011) summary statistic model at receptive field scalings similar to V2. We

suggest that peripheral appearance models emphasising pooling processes that depend on retinal

eccentricity will instead need to explore input-dependent grouping and segmentation. We speculate

that mechanisms of perceptual organisation (either local or global) are critical to explaining visual

appearance and efficient peripheral encoding. Models of the visual system that assume image con-

tent is processed in feedforward, fixed pooling regions—including current convolutional neural net-

works—lack these mechanisms.

Materials and methods
All stimuli, data and code to reproduce the figures and statistics reported in this paper are available

at http://dx.doi.org/10.5281/zenodo.1475111. This document was prepared using the knitr package

(Xie, 2013; Xie, 2016) in the R statistical environment (R Core Team, 2017; Wickham and Francois,

2016; Wickham, 2009, Wickham, 2011; Auguie, 2016; Arnold, 2016) to improve its

reproducibility.

Participants
Eight observers participated in the first experiment (Figure 1): authors CF and TW, a research assis-

tant unfamiliar with the experimental hypotheses, and five naı̈ve participants recruited from an online

advertisement pool who were paid 10 Euro per hr for two one-hour sessions. An additional naı̈ve

participant was recruited but showed insufficient eyetracking accuracy (see below). Four observers

participated in the second experiment (Figure 3); authors CF and TW plus two naı̈ve observers paid

10 Euro per hour. All participants signed a consent form prior to participating. Participants reported

normal or corrected-to-normal visual acuity. All procedures conformed to Standard 8 of the Ameri-

can Psychological Association’s ‘Ethical Principles of Psychologists and Code of Conduct’ (2010).

Stimuli
Images were taken from the MIT 1003 scene dataset (Judd et al., 2012; Judd et al., 2009). A

square was cropped from the center of the original image and downsampled to 512 ' 512 px. The

images were converted to grayscale and standardized to have a mean gray value of 0.5 (scaled [0,1])

and an RMS contrast (s=!) of 0.3. For the first experiment, images were selected as described in the

Results and Appendix 2—figure 7—figure 9.

Freeman and Simoncelli syntheses
We synthesised images using the FS-model (Freeman and Simoncelli, 2011, code available from

https://github.com/freeman-lab/metamers). Four unique syntheses were created for each source

image at each of eight scale factors (0.25, 0.36, 0.46, 0.59, 0.7, 0.86, 1.09, 1.45), using 50 gradient

steps as in Freeman and Simoncelli’s main experiment. Pilot experiments with stimuli generated with

100 gradient steps produced similar results. Freeman and Simoncelli (2011) computed the final loss

between original and synthesised images as ‘mean squared error, normalized by the parameter vari-

ance’. We take this to mean the following: for a matrix of model parameters from an original image

Xorig (rows are parameters and columns are pooling regions) and the corresponding parameters for

the synthesised image Xsynth, we compute the normalised MSE as

MSE ¼ meanððXorig $XsynthÞ2Þ=VarðXorigÞ. Freeman and Simoncelli report that this metric was

0.01 ± 0.015 (mean ± s.d.) across all images and scales in their experiment. For our experiment, the

same metric across all images and scales was 0.06 ± 0.2. These higher final loss values were driven

by the scene-like images, which had a mean loss of 0.11 ± 0.27 compared to the texture-like images

(0.01 ± 0.05). Excluding the four highest-loss images (all scene-like) reduced the average loss of the

scene-like category to 0.01 ± 0.02, which is similar to the range of the syntheses used by

Freeman and Simoncelli (2011) and to the texture-like images. A control analysis showed the differ-

ence in critical scale between the image categories remained after matching the average loss

(Results).
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To successfully synthesise images at scale factors of 0.25 and 0.36 it was necessary to increase
the central region of the image in which the original pixels were perfectly preserved (pooling regions

near the fovea become too small to compute correlation matrices). Scales of 0.25 used a central

radius of 32 px (0.8 dva in our viewing conditions) and scales 0.36 used 16 px (0.4 dva). This change

should, if anything, make syntheses even harder to discriminate from the original image. All other

parameters of the model were as in Freeman and Simoncelli. Synthesising an image with scale factor

0.25 took approximately 35 hr, making a larger set of syntheses or source images infeasible. It was

not possible to reliably generate images with scale factors lower than 0.25 using the code above.

CNN model syntheses
The CNN pooling model (triangles in Figure 1) was inspired by the model of Freeman and Simon-

celli, with two primary differences: first, we replaced the Portilla and Simoncelli (2000) texture fea-

tures with the texture features derived from a convolutional neural network (Gatys et al., 2015), and

second, we simplified the ‘foveated’ pooling scheme for computational reasons. Specifically, for the

CNN 32 model presented above, the image was divided up into 32 angular regions and 28 radial

regions, spanning the outer border of the image and an inner radius of 64 px. Within each of these

regions we computed the mean activation of the feature maps from a subset of the VGG-19 network

layers (conv1_1, conv2_1, conv3_1, conv4_1, conv5_1). To better capture long-range correlations in

image structure, we computed these radial and angular regions over three spatial scales, by comput-

ing three networks over input sizes 128, 256 and 512 px. Using this multiscale radial and angular

pooling representation of an image, we synthesised new images to match the representation of the

original image via iterative gradient descent (Gatys et al., 2015). Specifically, we minimised the

mean-squared distance between the original and a target image, starting from Gaussian noise out-

side the central 64 px region, using the L-BFGS optimiser as implemented in scipy (Jones et al.,

2001) for 1000 gradient steps, which we found in pilot experiments was sufficient to produce small

(but not zero) loss. Further details, including tests of other variants of this model, are provided in

Appendix 2.

Local distortion experiment
We identified local regions that were scene-like or texture-like, whose centre-of-mass was approxi-

mately 128 px (±5 px; approximately 6 degrees) from the centre of the image. Because we are not

aware of any algorithmic method to distinguish these types of image structure, these were chosen

based on our definition of scene-like and texture-like image content (see Results) by author CF. Spe-

cifically, a Python script was used to display the 1003 images of the MIT database with a circle of

radius 128 px superimposed. CF clicked on a point on the circle that lay in a texture- or scene-like

region; if no such region was identified this image was discarded. The coordinates of this point as

well as its classification were stored. This procedure resulted in 389 unique images, of which 229

contained a ‘scene-like’ region and 160 contained a ‘texture-like’ region.
Non-authors generally agreed with this classification. We conducted a pilot experiment to mea-

sure agreement in five participants. Participants were shown each of the 389 images above with a

circle (of radius 100 px) superimposed over the region defined by CF. They were instructed to clas-

sify the circled region as ‘scene-like’ (defined as ‘tend to contain larger areas of inhomogenous struc-

ture, long edges, borders between different surfaces or objects, and angled edges providing

perspective cues’) or ‘texture-like’ (defined as ‘homogenous structure, patterned content, or materi-

als’) in a single-interval binary response task. We found a mean agreement of 88.6% with CF’s classi-

fication (individual accuracies of 74.8, 90.2, 92.5, 92.8, 92.8%, mean d0 = 2.81, with a mean bias to

respond ‘scene-like’, logb = $1.39). In this experiment (conducted approximately two years after the

initial classification), CF showed a retest agreement of 97.4%.
For each image we perturbed a circular patch in the center of the texture/object region using the

texture model of Gatys et al. (2015). Note that this is the texture model not the CNN-model using

radial and angular pooling regions. For each original image, we generated new images containing

distortions of different sizes (radii of 40, 70, 85 and 100 px, corresponding to approximately 2, 3.4,

4.1 and 4.9 dva). The local texture features were computed as the (square) Gram matrices in the

same VGG-19 layers as used in the CNN-model over an area equal to the radius plus 24 px (square

side length 2ðr þ 24Þ). Texture synthesis was then performed via gradient descent as in the CNN-
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model, with the exception that the loss function included a circular cosine spatial windowing function

which ramped between the synthesised and original pixels over a region of 12 px, in order to

smoothly blend the texture distortion with the surrounding image structure. Some example images

are shown in Figure 3. In total we therefore used 389 unique images and 389*4 synthesised images

as stimuli in this experiment.

Equipment
Stimuli were displayed on a VIEWPixx 3D LCD (VPIXX Technologies Inc, Saint-Bruno-de-Montarville,

Canada; spatial resolution 1920 ' 1080 pixels, temporal resolution 120 Hz, operating with the scan-

ning backlight turned off in normal colour mode). Outside the stimulus image the monitor was set to

mean grey. Participants viewed the display from 57 cm (maintained via a chinrest) in a darkened

chamber. At this distance, pixels subtended approximately 0.025 degrees on average (approxi-

mately 40 pixels per degree of visual angle). The monitor was linearised (maximum luminance 260

cd=m2) using a Konica-Minolta LS-100 (Konica-Minolta Inc, Tokyo, Japan). Stimulus presentation and

data collection was controlled via a desktop computer (Intel Core i5-4460 CPU, AMD Radeon R9

380 GPU) running Ubuntu Linux (16.04 LTS), using the Psychtoolbox Library (version 3.0.12, Brai-

nard, 1997; Kleiner et al., 2007; Pelli, 1997), the Eyelink toolbox (Cornelissen et al., 2002) and

our internal iShow library (http://dx.doi.org/10.5281/zenodo.34217) under MATLAB (The Mathworks

Inc, Natick MA, USA; R2015b). Participants’ gaze position was monitored by an Eyelink 1000 (SR

Research) video-based eyetracker.

Procedure
In the first experiment, participants were shown three images in succession on each trial. Two

images were identical, one image was different (the ‘oddball’, which could occur first, second or

third with equal probability). The oddball could be either a synthesised or a natural image (in the

orig vs synth condition; counterbalanced), whereas the other two images were physically the same

as each other and from the opposite class as the oddball. In the synth vs synth condition (as used in

Freeman and Simoncelli), both oddball and foil images were (physically different) model synths. The

participant identified the temporal position of the oddball image via button press. Participants were

told to fixate on a central point (Thaler et al., 2013) presented in the center of the screen. The

images were centred around this spot and displayed with a radius of 512 pixels (i.e. images were

upsampled by a factor of two for display), subtending » 12.8˚ at the eye. Images were windowed by

a circular cosine, ramping the contrast to zero in the space of 52 pixels. The stimuli were presented

for 200 ms, with an inter-stimulus interval of 1000 ms (making it unlikely participants could use

motion cues to detect changes), followed by a 1200 ms response window. Feedback was provided

by a 100 ms change in fixation cross brightness. Gaze position was recorded during the trial. If the

participant moved the eye more than 1.5 degrees away from the fixation spot, the trial immediately

ended and no response was recorded; participants saw a feedback signal (sad face image) indicating

a fixation break. Prior to the next trial, the state of the participant’s eye position was monitored for

50 ms; if the eye position was reported as more than 1.5 degrees away from the fixation spot a

recalibration was triggered. The inter-trial interval was 400 ms.
Scene-like and texture-like images were compared under two comparison conditions (orig vs

synth and synth vs synth; see main text). Image types and scale factors were randomly interleaved

within a block of trials (with a minimum of one trial from another image in between) whereas com-

parison condition was blocked. Participants first practiced the task and fixation control in the orig vs

synth comparison condition (scales 0.7, 0.86 and 1.45); the same images used in the experiment

were also used in practice to familiarise participants with the images. Participants performed at least

60 practice trials, and were required to achieve at least 50% correct responses and fewer than 20%

fixation breaks before proceeding (as noted above, one participant failed). Following successful

practice, participants performed one block of orig vs synth trials, which consisted of five FS-model

scale factors (0.25, 0.36, 0.46, 0.59, 0.86) plus the CNN 32 model, repeated once for each image to

give a total of 120 trials. The participant then practiced the synth vs synth condition for at least one

block (30 trials), before continuing to a normal synth vs synth block (120 trials; scale factors of 0.36,

0.46, 0.7, 0.86, 1.45). Over two one-hour sessions, naı̈ve participants completed a total of four
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blocks of each comparison condition in alternating order (except for one participant who ran out of
time to complete the final block). Authors performed more blocks (total 11).

In the second experiment, observers discriminated which image contained the distortion in a
2IFC paradigm. Each image was presented for 200 ms with a 1000 ms inter-stimulus interval, after
which the observer had 1200 ms to respond. The original, unmodified image could appear either
first or second; the other image was the same but contained the circular distortion. Observers fix-
ated a spot (Thaler et al., 2013) in the centre of the screen. Feedback was provided, and eyetrack-
ing was not used. All observers performed 389 trials. To avoid effects of familiarity with the
distortion region, each observer saw each original image only once (that is, each original image was
randomly assigned to one of the four distortion scales for each observer). While authors were famil-
iar with the images, naı̈ve observers were not. The consistency of effects between authors and naı̈ves
suggests that familiarity does not play a major role in this experiment.

Data analysis
In the first experiment, we discarded trials for which participants made no response (N = 66) and
broke fixation (N = 239), leaving a total of 7555 trials for further analysis. The median number of
responses for each image at each scale for each subject in each condition was 4 trials (min 1, max 7).
The individual observer data for the FS-model averaged over images (faint lines in Figure 1F) were
based on a median of 39 trials (min 20, max 70) for each scale in each condition. The individual
observer performance as a function of condition (each psychometric function of FS-scale) was based
on a median of 192.5 responses (min 136, max 290).

In the second experiment we discarded trials with no response (N = 8), and did not record eye
movements, leaving 1548 trials for further analysis.

To quantify the critical scale as a function of the scale factor s, we used the same 2-parameter
function for discriminability d0 fitted by Freeman and Simoncelli:

d0ðsÞ ¼ a 1$ s2c
s2

! "

; s> sc

0; s) sc

(

consisting of the critical scale sc (below which the participant cannot discriminate the stimuli) and a
gain parameter a (asymptotic performance level in units of d0). This d0 value was transformed to pro-
portion correct using a Weibull function as in Wallis et al., 2016:

pðcorrectÞ ¼
1

m
þð1$

1

m
Þð1$ expð$ðd0=lÞkÞ

with m set to three (the number of alternatives), and scale l and shape k parameters chosen by mini-
mising the squared difference between the Weibull and simulated results for oddity as in Cra-

ven (1992). The posterior distribution over model parameters (sc and a) was estimated in a
nonlinear mixed-effects model with fixed effects for the experimental conditions (comparison and
image type) and random effects for participant (crossed with comparison and image type) and image
(crossed with comparison, nested within image type), assuming binomial variability. Note that sc
here is shorthand for a population-level critical scale and group-level offsets estimated for each par-
ticipant and image; scritðIÞ is the image-specific sc estimate. Estimates were obtained by a Markov
Chain Monte Carlo (MCMC) procedure implemented in the Stan language (version 2.16.2,
Stan Development Team, 2017; Hoffman and Gelman, 2014), with the model wrapper package
brms (version 1.10.2, Bürkner, 2017; Bürkner, 2018) in the R statistical environment. MCMC sam-
pling was conducted with four chains, each with 20,000 iterations (10,000 warmup), resulting in

40,000 post-warmup samples in total. Convergence was assessed using the R̂ statistic (Brooks and
Gelman, 1998) and by examining traceplots. The model parameters were given weakly-informative
prior distributions, which provide information about the plausible scale of parameters but do not
bias the direction of inference. Specifically, both critical scale and gain were estimated on the natural
logarithmic scale; the mean log critical scale (intercept) was given a Gaussian distribution prior with
mean $0.69 (corresponding to a critical scale of approximately 0.5—that is centred on the result
from Freeman and Simoncelli) and sd 1, other fixed-effect coefficients were given Gaussian priors
with mean 0 and sd 0.5, and the group-level standard deviation parameters were given positive-trun-
cated Cauchy priors with mean 0 and sd 0.1. Priors for the log gain parameter were the same,
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except the intercept prior had mean 1 (linear gain estimate of 2.72 in d0 units) and sd 1. The poste-
rior distribution represents the model’s beliefs about the parameters given the priors and data. This
distribution is summarised above as posterior mean, 95% credible intervals and posterior probabili-
ties for the fixed-effects parameters to be negative (the latter computed via the empirical cumulative
distribution of the relevant MCMC samples).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.42512.011

Additional experiments with the Freeman and Simoncelli
model

Stimulus artifact control
During the course of our testing we noticed that synthesised images generated with the code
from http://github.com/freeman-lab/metamers contained an artifact, visible as a wedge in the
lower-left quadrant of the synthesised images in which the phases of the surrounding image
structure were incorrectly matched (Appendix 1—figure 1A). The angle and extent of the
wedge changed with the scale factor, and corresponded to the region where angular pooling
regions wrapped from 0–2p (Appendix 1—figure 1B–C). The visibility of the artifact
depended on image structure, but was definitely due to the synthesis procedure itself because
it also occurred when synthesising matches to a white noise source image (Appendix 1—
figure 1D–E). The artifact was not peculiar to our hardware or implementation because it is
also visible in the stimuli shown in Deza et al. (2017).

Appendix 1—figure 1. Our results do not depend on an artifact in the synthesis procedure. (A)
During our pilot testing, we noticed a wedge-like artifact in the synthesis procedure of
Freeman and Simoncelli (highlighted in red wedge; image from https://github.com/freeman-
lab/metamers and shared under a CC-BY license (https://creativecommons.org/licenses/by/3.
0/)). The artifact occurred where the angular pooling regions wrapped from 0 to 2p (B)
pooling region contours shown with increasing greyscale to wrap point, (C) overlayed on
scene with artifact. (D) The artifact was not driven by image content, because it also occurred
when synthesising to match white noise (shown with enhanced contrast in (E)). If participants’
good performance at small scale factors was due to taking advantage of this wedge, removing
it by masking out that image region should drop performance to chance. (F) Performance at
the two smallest scale factors replotted from the main experiment (left) and with a wedge
mask overlayed (right) in the orig vs synth comparison. Points show average (±2SE) over
participants; faint lines link individual participant means. Performance remains above chance
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for the scene-like images, indicating that the low critical scales we observed were not due to
the wedge artifact.

DOI: https://doi.org/10.7554/eLife.42512.012

Participants in our experiment could have learned to use the artifact to help discriminate
images, particularly synthesised images from original images (since only synthesised images
contain the artifact). This may have boosted their sensitivity more than might be expected
from the model described by Freeman and Simoncelli, leading to the lower critical scales we
observed. To control for this, we re-ran the original vs synth condition with the same
participants, with the exception that the lower-left quadrant of the image containing the
artifact was masked by a grey wedge (in both original and synthesised images) with angular
subtense of 60 degrees. We used only the lowest two scale factors from the main experiment,
and participants completed this control experiment after the main experiment reported in the
paper. We discarded trials for which participants made no response (N = 9) or broke fixation
(N = 57), leaving a total of 1014 trials for further analysis. If the high sensitivity at low scale
factors we observed above were due to participants using the artifact, then their performance
with the masked stimuli should fall to chance for low scale factors.

This is not what we observed: while performance with the wedge was slightly worse
(perhaps because a sizable section of the image was masked), the scene-like images remained
above chance performance for the lowest two scale factors (Appendix 1—figure 1F). This
shows that the low critical scale factors we observed in the main experiment are not due to
the wedge artifact.

We performed one additional artifact control experiment. The FS algorithm preserves a
small central region of the image exactly in order to match foveal appearance. If there is any
image artifact produced by the synthesis procedure at the border of this region, participants
could have used this artifact to discriminate the stimuli in the original vs synth condition.
Authors TW and CF performed new oddity discrimination trials in which a grey annular
occluding zone (inner radius 0.4 deg, outer radius 1.95 deg) was presented over all images. If
the low scale factors we find are because participants used a stimulus artifact, then
performance at the low scales should drop to chance.

The results of this additional experiment are shown in Figure (Appendix 1—figure 2). Both
participants can still discriminate real and synthesised scene-like images better than chance
even after superposition of the occluding annulus, indicating that any central artifact is not a
crucial determinant of discriminability.
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Appendix 1—figure 2. Our results do not depend on any potential annular artifact resulting
from the synthesis procedure. Performance at the three smallest scale factors replotted from
the main experiment (left) and with an annular mask overlayed (right) in the orig vs synth
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comparison for authors TW and CF. Points show average performance (error bars show 95%
beta distribution confidence limits). Performance remains above chance for the scene-like
images, indicating that the low critical scales we observed were not due to a potential annular
artifact.

DOI: https://doi.org/10.7554/eLife.42512.013

Junctions in original images
For each of the 20 original images used in our first experiment, we used the junction detection
algorithm of Xia et al. (2014) to identify junctions in the image (with algorithm parameter
rmax ¼ 36). We subdivided all three-edge junctions into T-, Y- and arrow-junctions according to
the angle criteria used in Walther and Shen (2014), and excluded all junctions that fell outside
the circular region of the image shown in our experiment.

We find that scene-like images tend to contain more junctions than texture-like images
(Appendix 1—figure 3A). This relationship became stronger when we excluded ‘less
meaningful’ junctions (using a ‘meaningfulness’ cutoff of logðNFAÞ ¼ $20, Xia et al. (2014);
Appendix 1—figure 3C). Images with smaller critical scales are associated with the presence
of junctions (Appendix 1—figure 3B), and this association gets stronger when small and weak
junctions are excluded (Appendix 1—figure 3D).

If junction information is important for scene appearance and the FS-model fails to
adequately capture this information, we would expect such a negative relationship between
junctions and critical scales. Of course, the analysis above does not support a specific causal
role for junction information: for example, it may be correlated with simple edge density.
Future studies could confirm (or reject) this relationship using a larger and more diagnostic
image set.
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Appendix 1—figure 3. The number of junctions present in original images may be related to
critical scale estimates. (A) Distribution of arrow (A), L-, T-, X- and Y-junctions at all scales and all
levels of ‘meaningfulness’ (Xia et al., 2014) in scene-like and texture-like images. Each small
point is one image; larger points with error bars show mean ±2 SE. Points have been jittered
to aid visibility. (B) Correlations between number of junctions of each type with critical scale
estimates for that image from the main experiment. Grey line shows linear model fit with
shaded region showing 95% confidence area. Pearson correlation coefficient shown below.
Note that the x-axis scales in the subplots differ. (C) Same as A but for junctions defined with a
more strict ‘meaningfulness’ cutoff of logðNFAÞ ¼ $20 (Xia et al., 2014). (D) Same as B for
more ‘meaningful’ junctions as in C.

DOI: https://doi.org/10.7554/eLife.42512.014

ABX replication
Participants in our experiment showed poor performance in the synth vs synth condition even
for large scale factors (highest accuracy for a participant at the largest scale of 1.45 was 0.8,
average accuracy 0.58), leading to relatively flat psychometric functions (Figure 2F of main
manuscript). In contrast, most participants in Freeman and Simoncelli (2011) achieved
accuracies above 90% correct for the highest scale factor they test (1.45 as in our experiment).
One difference between our experiment and Freeman and Simoncelli (2011) is that they used
an ABX task, in which participants saw two images A and B, followed by image X, and had to
report whether image X was the same as A or B. Perhaps our oddity task is simply harder: due
to greater memory load or the cognitive demands of the comparison, participants in our
experiment were unable to perform consistently well.
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To assess whether the use of an oddity task lead to our finding of lower critical scales and/
or poorer asymptotic performance in the synth vs synth condition, we re-ran our experiment as
an ABX task. We used the same timing parameters as in Freeman and Simoncelli. Six
participants participated in the experiment, including a research assistant (the same as in the
main experiment), four naÃve participants and author AE (who only participated in the synth
vs synth condition). We discarded trials for which participants made no response (N = 61) or
broke fixation (N = 442), leaving a total of 7537 trials for further analysis. The predicted
proportion correct in the ABX task was derived from d0 using the link function given by
Macmillan and Creelman (2005), (229–33) for a differencing model in a roving design:

pðcorrectÞ ¼F
d0ðsÞ

ffiffiffi

2
p

$ %

F
d0ðsÞ

ffiffiffi

6
p

$ %

þF
$d0ðsÞ

ffiffiffi

2
p

$ %

F
$d0ðsÞ

ffiffiffi

6
p

$ %

where F is the standard cumulative Normal distribution.

As in our main experiment with the oddity task, we find that participants could easily
discriminate scene-like syntheses from their original at all scales we could generate
(Appendix 1—figure 4). Critical scale factor estimates were similar to those in the main
experiment, indicating that the ABX task did not make a large difference to these results.
Critical scale estimates were slightly larger, but much more uncertain, in the synth vs synth
condition. This uncertainty is largely driven by the even poorer asymptotic performance than
in the main experiment. This shows that the results we report in the primary manuscript are
not particular to the oddity task.
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Appendix 1—figure 4. Results from the main paper replicated under an ABX task. (A)
Performance in the ABX task as a function of scale factor. Points show grand mean ±2 SE over
participants; faint lines link individual participant performance levels. Solid curves and shaded
regions show the fit of a nonlinear mixed-effects model estimating the critical scale and gain.
(B) When comparing original and synthesised images, estimated critical scales (scale at which
performance rises above chance) are lower for scene-like than for texture-like images. Points
with error bars show population mean and 95% credible intervals. Triangles show posterior
means for participants; diamonds show posterior means for images. Black squares show
critical scale estimates of the four participants from Freeman and Simoncelli reproduced from
that paper (x-position jittered to reduce overplotting); shaded regions denote the receptive
field scaling of V1 and V2 estimated by Freeman and Simoncelli.

DOI: https://doi.org/10.7554/eLife.42512.015

What explains the discrepancy between asymptotic performance in our experiment vs
Freeman and Simoncelli? One possibility is that the participants in Freeman and Simoncelli’s
experiment were more familiar with the images shown, and that good asymptotic
performance in the synth vs synth condition requires strong familiarity. Freeman and Simoncelli
used four original (source) images, and generated three unique synthesised images for each
source image at each scale, compared to our 20 source images with four syntheses.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.42512.011

CNN scene appearance model
Here we describe the CNN scene appearance model presented in the paper in more detail, as
well as additional experiments concerning this model.

To create a summary statistic model using CNN features, we compute the mean activation
in a subset of CNN layers over a number of radial and angular spatial regions (see
Appendix 2—figure 1). Increasing the number of pooling regions (reducing the spatial area
over which CNN features are pooled) preserves more of the structure of the original image.
New images can be synthesised by minimising the difference between the model features for
a given input image and a white noise image via an iterative gradient descent procedure (see
below). This allows us to synthesise images that are physically different to the original but
approximately the same according to the model. We did this for each of four pooling region
sizes, named model 4, 8, 16 and 32 respectively after the number of angular pooling regions.
These features were matched over three spatial scales, which we found improved the model’s
ability to capture long-range correlations.

Appendix 2—figure 1. Methods for the CNN scene appearance model. (A) The average
activations in a subset of CNN feature maps were computed over non-overlapping radial and
angular pooling regions that increase in area away from the image centre (not to scale), for
three spatial scales. Increasing the number of pooling regions (CNN 4 and CNN 8 shown in
this example) increases the fidelity of matching to the original image, restricting the range
over which distortions can occur. Higher-layer CNN receptive fields overlap the pooling
regions, ensuring smooth transitions between regions. The central 3˚ of the image (grey fill) is
fixed to be the original. (B) The image radius subtended 12.5˚. (C) An original image from the
MIT1003 dataset. (D) Synthesised image matched to the image from C by the CNN 8 pooling
model. (E) Synthesised image matched to the image from E by the CNN 32 pooling model.
Fixating the central bullseye, it should be apparent that the CNN 32 model preserves more
information than the CNN 8 model, but that the periphery is nevertheless significantly
distorted relative to the original. Images from the MIT 1003 dataset (Judd et al., 2009),
(https://people.csail.mit.edu/tjudd/WherePeopleLook/index.html) and reproduced under a
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CC-BY license (https://creativecommons.org/licenses/by/3.0/) with changes as described in the
Materials and methods.

DOI: https://doi.org/10.7554/eLife.42512.017

In Experiment 1, we tested the discriminability of syntheses generated from the four
pooling models in a set of 400 images that were novel to the participants. Experiment 2
examines the effect of image familiarity by repeatedly presenting a small number of source
images. Experiment 3 tested the effect of cueing spatial attention on performance.

CNN model methods

Radial and angular pooling
In the texture synthesis approach of Gatys et al. (2015), spatial information is removed from
the raw CNN activations by computing summary statistics (the Gram matrices of correlations
between feature maps) over the whole image. In the ‘foveated’ pooling model we present
here, we compute and match the mean of the feature maps (i.e. not the full Gram matrices)
over local image regions by dividing the image into a number of radial and angular pooling
regions (Appendix 2—figure 1). The radius defining the border between each radial pooling
region is based on a given number of angular regions N" (which divide the circle evenly) and
given by

ri ¼ r0 1$
sinðp

N"
Þ * 2

a

$ %i

;

where ri is the radius of each region i, r0 is the outermost radius (set to be half the image size),
and a is the ratio between the radial and angular difference. Radial regions were created for
all i for which ri + 64~px, corresponding to the preserved central region of the image (see
below). We set a ¼ 4 because at this ratio N" »Ne (where Ne is the number of radial regions) for
most N". The value of N" corresponds to the model name used in the paper (e.g. ‘CNN 4’ uses
N" ¼ 4).

We now apply these pooling regions to the activations of the VGG-19 deep CNN
(Simonyan and Zisserman, 2015). For a subset of VGG-19 layers (conv1_1, conv2_1, conv3_1,
conv4_1, conv5_1) we compute the mean activation for each feature map j in each layer l
within each (radial or angular) pooling region p as

wl
pj ¼

1

Nl

X

k2p
ðFl

kjÞ;

where is Nl the size of the feature map of layer l in pixels and k is the (vectorised) spatial

position in feature map Fl
j . The set of all wl

pj provides parameters that specify the foveated

image at a given scale. Note that while the radial and angular pooling region responses are
computed separately, because they are added together to the loss function during
optimisation (see below) they effectively overlap (as depicted in Appendix 2—figure 1).

In addition, while the borders of the pooling regions are hard-edged (i.e. pooling regions
are non-overlapping), the receptive fields of CNN units (area of pixels in the image that can
activate a given unit in a feature map) can span multiple pooling regions. This means that the
model parameters of a given pooling region will depend on image structure lying outside the
pooling region (particularly for feature maps in the higher network layers). This encourages
smooth transitions between pooling regions in the synthesised images.

Multiscale model
In the VGG-19 network, receptive fields of the units are squares of a certain size, and this size
is independent of the input size of the image. That is, given a hypothetical receptive field
centred in the image of size 128 ~ px square, the unit will be sensitive to one quarter of the
image for input size 512 ~ px but half the image for input size 256. Therefore, the same unit in
the network can receive image structure at a different scale by varying the input image size,
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and in the synthesis process the low (high) frequency content can be reproduced with greater
fidelity by using a small (large) input size.

We leverage this relationship to better capture long-range correlations in image structure
(caused by for example edges that extend across large parts of the image) by computing and
matching the model statistics over three spatial scales. This is not a controversial idea: for
example, the model of Freeman and Simoncelli (2011) also computes features in a multiscale
framework. How many scales is sufficient?

We evaluated the degree to which the number and combination of scales affected
appearance in a psychophysical experiment on authors TW and CF. We matched 100 unique
images using seven different models: four single-scale models corresponding to input sizes of
64, 128, 256 and 512 pixels, and three multiscale models in which features were matched at
multiple scales ([256, 512 , 128, 256, 512] and [64, 128, 256, 512]). The foveated pooling
regions corresponded to the CNN 32 model. Output images were upsampled to the final
display resolution as appropriate. We discarded trials for which participants made no response
(N = 2) or broke fixation (N = 5), leaving a total of 1393 trials for further analysis.

Appendix 2—figure 2 shows that participants are sensitive to the difference between
model syntheses and original images when features are matched at only a single scale.
However, using two or three scales appears to be sufficient to match appearance on average.
As a compromise between fidelity and computational tractability, we therefore used three
scales for all other experiments on the CNN appearance model. The final model used three
networks consisting of the same radial and angular regions described above, computed over
sizes 128, 256 and 512 ~ px square. The final model representation W therefore consists of the

pooled feature map activations over three scales: W ¼ fwl
pj;128;w

l
pj;256;w

l
pj;512g.
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Appendix 2—figure 2. Performance for discriminating model syntheses and original scenes for
single- and multi-scale models (all with pooling regions corresponding to CNN 32) for partici-
pants CF and TW. Points show participant means (error bars show ±2 SEM), dashed line shows
chance performance. The multiscale model with three scales produces close-to-chance
performance.

DOI: https://doi.org/10.7554/eLife.42512.018

Gradient descent
As in Gatys et al. (2015), synthesised images are generated using iterative gradient descent,
in which the mean-squared distance between the averaged feature maps of the original image
and the synthesis is minimized. If T and W are the model representations for the synthesis and
the original image respectively, then the loss for each layer is given by

Lð~xt; ~xgÞ ¼
X

l;s

1

Mls * ðN"þNeÞ
X

p;j

ðWl
pjs$Tl

pjsÞ
2;
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where ~xt and ~xg are the vectorised pixels of the original and new image respectively, Ml;s is the

number of feature maps for layer l in scale s. A circular area in the middle of the image (radius
64 ~ px) is preserved to be the original image. Tiling pooling regions even for the centre of
the image created reasonable syntheses but is prohibitively costly in generation time. To
preserve the pixels in the circular area, the initialisation image of the gradient descent is
identical to the original image. Outside the central area the gradient descent is initialised with
Gaussian noise. The gradient descent used the L-BFGS optimiser (scipy implementation,
Jones et al., 2001) for 1000 iterations.

Experiment 1: Discriminability of CNN model syntheses for 400
unique images
This experiment measured whether any of the variants of the CNN scene appearance model
could synthesise images that humans could not discriminate from their natural source images,
and if so, identify the simplest variant of this model producing metamers. We chose a set of
400 images and had participants discriminate original and model-generated images in a
temporal oddity paradigm.

Methods
The methods for this and the following psychophysical experiments were the same as in the
main paper unless otherwise noted.

Participants

Thirteen participants participated in this experiment. Of these, ten participants were
recruited via online advertisements and paid 15 Euro for a 1.5 hr testing session; the other
three participants were authors AE, TW and CF. One session comprised one experiment using
unique images (35 mins) followed by and one of repeated images (see below; 25 mins). All
participants signed a consent form prior to participating. Participants reported normal or
corrected-to-normal visual acuity. All procedures conformed to Standard 8 of the American
Psychological Association’s ‘Ethical Principles of Psychologists and Code of Conduct’ (2010).

Stimuli

We used 400 images (two additional images for authors, see below) from the MIT 1003
database (Judd et al., 2012; Judd et al., 2009). One of the participants (TW) was familiar with
the images in this database due to previous experiments. New images were synthesised using
the multiscaled (512 px, 256 px, 128 px) foveated model described above, for four pooling
region complexities (4, 8, 16 and 32). An image was synthesised for each of the 400 original
images from each model (giving a total stimulus set including originals of 2000).

Procedure

Participants viewed the display from 60 cm; at this distance, pixels subtended
approximately 0.024 degrees on average (approximately 41 pixels per degree of visual angle)
– note that this is slightly further away than the experiment reported in the primary paper
(changed to match the angular subtense used by Freeman and Simoncelli). Images therefore
subtended »12.5˚ at the eye. As in the main paper, the stimuli were presented for 200 ms,
with an inter-stimulus interval of 1000 ms, followed by a 1200 ms response window. Feedback
was provided by a 100 ms change in fixation cross brightness. Gaze position was recorded
during the trial. If the participant moved the eye more than 1.5 degrees away from the fixation
spot, feedback signifying a fixation break appeared for 200 ~ ms after the response feedback.
Prior to the next trial, the state of the participant’s eye position was monitored for 50 ms; if
the eye position was reported as more than 1.5 degrees away from the fixation spot a
recalibration was triggered. The inter-trial interval was 400 ms.

Each unique image was assigned to one of the four models for each participant
(counterbalanced). That is, a given image might be paired with a CNN 4 synthesis for one
participant and a CNN 8 synthesis for another. Showing each unique image only once ensures
that the participants cannot become familiar with the images. For authors, images were
divided into only CNN 8, CNN 16 and CNN 32 (making 134 images for each model and 402
trials in total for these participants). To ensure that the task was not too hard for naı̈ve
participants we added the easier CNN 4 model (making 100 images for each model version
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and 400 trials in total). The experiment was divided into six blocks consisting of 67 trials (65
trials for the last block). After each block a break screen was presented telling the participant
their mean performance on the previous trials. During the breaks the participants were free to
leave the testing room to take a break and to rest their eyes. At the beginning of each block
the eyetracker was recalibrated. Naı̈ve participants were trained to do the task, first using a
slower practice of 6 trials and second a correct-speed practice of 30 trials (using five images
not part of the stimulus set for the main experiment).

Data analysis

We discarded trials for which participants made no response (N = 81) or broke fixation
(N = 440), leaving a total of 4685 trials for further analysis.

Performance at each level of CNN model complexity was quantified using a logistic mixed-
effects model. Correct responses were assumed to arise from a fixed effect factor of CNN
model (with four levels) plus the random effects of participant and image. The model (in lme4-
style notation) was
correct - model + (model | subj) + (model | im_code)

with family = Bernoulli(‘logit’), and using contr.sdif coding for the CNN model
factor (Venables and Ripley, 2002).

The posterior distribution over model parameters was estimated using weakly-informative
priors, which provide scale information about the setting of the model but do not bias effect
estimates above or below zero. Specifically, fixed effect coefficients were given Cauchy priors
with mean zero and SD 1, random effect standard deviations were given bounded Cauchy
priors with mean 0.2 (indicating that we expect some variance between the random effect
levels) and SD 1, with a lower-bound of 0 (variances cannot be negative), and correlation
matrices were given LKJ(2) priors, reflecting a weak bias against strong correlations
(Stan Development, 2015). The model posterior was estimated using MCMC implemented in
the Stan language (version 2.16.2, Stan Development Team, 2017; Hoffman and Gelman,
2014), with the model wrapper package brms (version 1.10.2, Bürkner, 2017) in the R
statistical environment. We computed four chains of 15,000 steps, of which the first 5000 steps
were used to tune the sampler; to save disk space we only saved every 5th sample.

Results and discussion
The CNN 32 model came close to matching appearance on average for a set of 400 images.
Discrimination performance for ten naı̈ve participants and three authors is shown in
Appendix 2—figure 3 (lines link individual participant means, based on at least 64 trials,
median 94). All participants achieve above-chance performance for the simplest model (CNN
4), indicating that they understood and could perform the task. Performance deteriorates as
models match the structure of the original image more precisely.
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Appendix 2—figure 3. The CNN model comes close to matching appearance on average.
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Oddity performance as a function of the CNN image model. Points show mean over
participants (error bars ±2 SEM), coloured lines link the mean performance of each participant
for each pooling model. For most participants, performance falls to approximately chance
(dashed horizontal line) for the CNN 32 model. Black line and shaded regions show the mean
and 95% credible intervals on the population mean derived from a mixed-effects model.

DOI: https://doi.org/10.7554/eLife.42512.019

To quantify the data, we estimated the posterior distribution of a logistic mixed-effects
model with a population-level (fixed-effect) factor of CNN model, whose effect was nested
within participants and image (i.e. random effects of participant and image). Regression
coefficients coded the difference between successive CNN models, expressed using
sequential difference coding from the MASS package (Venables and Ripley, 2002), and are
presented below as the values of the linear predictor (corresponding to log odds in a logistic
model). Mean performance had a greater than 0.99 posterior probability of being lower for
CNN 8 than CNN 4 (-0.48, 95% CI [$0.74,–0.23], pðb< 0Þ> 0:999), and for CNN 16 being lower
than CNN 8 (-0.43, 95% CI [$0.68,–0.18], pðb< 0Þ ¼ 0:999); whereas the difference between
the 16 and 32 models was somewhat smaller ($0.17, 95% CI [$0.37, 0.03], pðb< 0Þ ¼ 0:951).
Most participants performed close to chance for the CNN 32 model (excluding authors, the
population mean estimate had a 0.88 probability of being greater than chance; including
authors this value was 0.96). Therefore, the model is capable of synthesising images that are
indiscriminable from a large set of arbitrary scenes in our experimental conditions, on average,
for naı̈ve participants. However, one participant (author AE) performs noticably better than the
others, even for the CNN 32 model. AE had substantial experience with the type of distortions
produced by the model but had never seen this set of original images before. Therefore, the
images produced by the model are not true metamers, because they do not encapsulate the
limits of visible structure for all humans.

Experiment 2: Image familiarity and learning tested by repeated
presentation
It is plausible that familiarity with the images played a role in the results above. That is, the
finding that images become difficult on average to discriminate with the CNN 32 model may
depend in part on participants having never seen the images before. To investigate the role
that familiarity with the source images might play, the same participants as in the experiment
above performed a second experiment in which five of the original images from the first
experiment were presented 60 times, using 15 unique syntheses per image generated with the
CNN 32 model (Appendix 2—figure 4A).
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Appendix 2—figure 4. Familiarity with original image content did not improve discrimination
performance. (A) Five original images (top) were repeated 60 times (interleaved over 4 blocks),
and observers discriminated them from CNN 32 model syntheses (bottom). (B) Proportion of
correct responses for each image from A. Some images are easier than others, even for the
CNN 32 model. (C) Performance as a function of each 75-trial session reveals little evidence
that performance improves with repeated exposure. Points show grand mean (error bars show
bootstrapped 95% confidence intervals), lines link the mean performance of each observer for
each pooling model (based on at least 5 trials; median 14). Black line and shaded region
shows the posterior mean and 95% credible intervals of a logistic mixed-effects model
predicting the population mean performance for each image. Images from the MIT 1003
dataset (Judd et al., 2009, https://people.csail.mit.edu/tjudd/WherePeopleLook/index.html)
and reproduced under a CC-BY license (https://creativecommons.org/licenses/by/3.0/) with
changes as described in the Materials and methods.

DOI: https://doi.org/10.7554/eLife.42512.020

Methods
Participants

The same thirteen participants participated as in Experiment 1.

Stimuli

We selected five images from the set of 400 and generated 15 new syntheses for each of
these images from the CNN 32 model (yielding a stimulus set of 80 images).

Procedure

Each pairing of unique image (5) and synthesis (15) was shown in one block of 75 trials
(pseudo-random order with the restriction that trials from the same source image could never
follow one another). Participants performed four such blocks, yielding 300 trials in total (60
repetitions of each original image).

Data analysis

We discarded trials for which participants made no response (N = 63) or broke fixation
(N = 294), leaving a total of 3543 trials for further analysis. Model fitting was as for Experiment
1 above, except that the final posterior was based on four chains of 16,000 steps, of which the
first 8000 steps were used to tune the sampler; to save disk space we only saved every 4th
sample.

The intercept-only model (assuming only random effects variation but no learning) was
specified as
correct - 1 + (1 | subj) + (1 | im_name)
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and the learning model was specified as
correct - session + (session | subj) + (session | im_name)

We compare models using an information criterion (LOOIC, Vehtari et al., 2016; see also
Gelman et al., 2014; McElreath, 2016) that estimates of out-of-sample prediction error on
the deviance scale.

Results and discussion
While some images (e.g. House) could be discriminated quite well by most participants
(Appendix 2—figure 4B), others (e.g. Graffiti) were almost indiscriminable from the model
image for all participants (posterior probability that the population mean was above chance
performance was 0.61 for Graffiti, 0.93 for Market, and greater than 0.99 for all other images).
This image dependence shows that even the CNN 32 model is insufficient to produce
metamers for arbitrary scenes.

Furthermore, there was little evidence that participants learned over the course of sessions
(Appendix 2—figure 4C). The population-level linear slope of session number was 0.02, 95%
CI [$0.1, 0.15], pðb< 0Þ ¼ 0:326, and the LOOIC comparison between the intercept-only model
and the model containing a learning term indicated equivocal evidence if random-effects
variance was included (LOOIC difference 3.3 in favour of the learning model, SE = 6.1) but
strongly favoured the intercept model if only fixed-effects were considered (LOOIC difference
$23.3 in favour of the intercept model, SE = 1.7). The two images with the most evidence for
learning were Children (median slope 0.04, 95% CI [$0.08, 0.17], pðb< 0Þ ¼ 0:247) and Sailboat
(0.04, 95% CI [$0.08, 0.17], pðb< 0Þ ¼ 0:269). Two authors showed some evidence of learning:
AE (0.17, 95% CI [$0.03, 0.37], pðb< 0Þ ¼ 0:047), and CF (0.22, 95% CI [0.03, 0.44],
pðb< 0Þ ¼ 0:008). Overall, these results show that repeated image exposures with response
feedback did not noticably improve performance.

Experiment 3: Spatial cueing of attention
The experiment presented in the primary paper showed that the discriminability of model
syntheses depended on the source images, with scene-like images being easier to discriminate
from model syntheses than texture-like images for a given image model. This finding was
replicated in an ABX paradigm (above) and the general finding of source-image-dependence
was corroborated by the data with repeated images (Appendix 2—figure 3). One possible
reason for this image-dependence could be that participants found it easier to know where to
attend in some images than in others, creating an image-dependence not due to the summary
statistics per se. Relatedly, Cohen et al. (2016) suggest that the limits imposed by an
ensemble statistic representation can be mitigated by the deployment of spatial attention to
areas of interest. Can the discriminability of images generated by our model be influenced by
focused spatial attention?

To probe this possibility we cued participants to a spatial region of the scene before the
trial commenced. We computed the mean squared error (MSE) between the original and
synthesised images within 12 partially-overlapping wedge-like regions subtending 60˚. We
computed MSE in both the pixel space (representing the physical difference between the two
images) and in the feature space of the fifth convolutional layer (conv5_1) of the VGG-19
network, with the hypothesis that this might represent more perceptually relevant information,
and thus be a more informative cue.

We pre-registered the following hypotheses for this experiment (available at http://dx.doi.
org/10.17605/OSF.IO/MBGSQ; click on ‘View Registration Form’). For the overall effect of
cueing (the primary outcome of interest), we hypothesised that

. performance in the Valid:Conv5 condition would be higher than the Uncued condition and

. performance in the Invalid condition would be lower than the Uncued condition

These findings would be consistent with the account that spatial attention can be used to
overcome ensemble statistics in the periphery, providing that it is directed to an informative
location. This outcome also assumes that our positive cues (Conv5 and Pixels) identify
informative locations.
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Alternative possibilities are

. if focussed spatial attention cannot influence the ‘resolution’ of the periphery in this task,
then performance in the Valid:Conv5 and Invalid conditions will be equal to the Uncued
condition.

. if observers use a global signal (‘gist’) to perform the task, performance in the Uncued condi-
tion would be higher than the Valid:Conv5 and Invalid conditions. That is, directing spatial
attention interferes with a gist cue.

Our secondary hypothesis concerns the difference between Valid:Conv5 and Valid:Pixel
cues. A previous analysis at the image level (see below) found that conv5 predicted image
difficultly slightly better than the pixel space. We therefore predicted that Valid spatial cues
based on Conv5 features (Valid:Conv5) should be more effective cues, evoking higher
performance, than Valid:Pixel cues.

Methods
Participants

We pre-registered (http://dx.doi.org/10.17605/OSF.IO/MBGSQ) the following data
collection plan with a stopping rule that depended on the precision (Kruschke, 2015).
Specifically, we collected data from a minimum of 10 and a maximum of 30 participants,
planning to stop in the intermediate range if the 95% credible intervals for the two parameters
of interest (population fixed-effect difference between Valid and Uncued, and population
fixed-effect difference between Invalid and Uncued) spanned a width of 0.3 or less on the
linear predictor scale.

This value was determined as 75% of the width of our ‘Region of Practical Equivalence’ to
zero effect (ROPE), pre-registered as [$0.2, 0.2] on the linear predictor scale (this corresponds
to odds ratios of [0.82, 1.22]). We deemed any difference smaller than this value as being too
small to be practically important.

As an example, if the performance in one condition is 0.5, then an increase of 0.2 in the
linear predictor corresponds to a performance of 0.55. The target for precision was then
determined as 75% of the ROPE width, in order to give a reasonable chance for the estimate
to lie within the ROPE (Kruschke, 2015).

We tested these conditions by fitting the data model (see below) after every participant
after the 10th, stopping if the above conditions were met. However, as shown in
Appendix 2—figure 5, this precision was not met with our maximum of 30 participants, and
so we ceased data collection at 30, deeming further data collection beyond our resources for
the experiment. Thus our data should be interpreted with the caveat that the desired
precision was not reached (though we got close).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0.2

0.3

0.4

0.5

0.6

10 15 20 25 30

N participants

W
id

th
 o

f 
9
5
%

 C
I

●

●

●

Conv5 − Pixels

Conv5 − Uncued

Uncued − Invalid

Appendix 2—figure 5. Parameter precision as a function of number of participants. (A) Width
of the 95% credible interval on three model parameters as a function of the number of
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participants tested. Points show model fit runs (the model was not re-estimated after every
participant due to computation time required). We aimed to achieve a width of 0.3 (dashed
horizontal line) on the linear predictor scale, or stop after 30 participants. The Uncued - Invalid
parameter failed to reach the desired precision after 30 participants. Lines show fits of a
quadratic polynomial as a visual guide.

DOI: https://doi.org/10.7554/eLife.42512.021

An additional five participants were recruited but showed insufficient eyetracking accuracy
or training performance (criteria pre-registered). Of the 30, three were lab members unfamiliar
with the purpose of the study, the other 27 were recruited online; all were paid 15 Euro for
the 1.5 hr testing session. Of these, three participants did not complete the full session due to
late arrival, and eyetracking calibration failed in the second last trial block for an additional
participant.

Stimuli

This experiment used the same 400 source images and CNN 8 model syntheses as
Experiment 1.

Procedure

The procedure for this experiment was as in Experiment 1 with the following exceptions.
The same 400 original images were used as in Experiment 1, all with syntheses from the CNN
8 model. A trial began with the presentation of a bright wedge (60 degree angle, Weber
contrast 0.25) or circle (radius 2 dva) for 400 ~ ms, indicating a spatial cue (85% of trials) or
Uncued trial (15%) respectively (Appendix 2—figure 6A). A blank screen with fixation spot
was presented for 800 ms before the oddity paradigm proceeded as above. On spatial cue
trials, participants were cued to the wedge region containing either the largest pixel MSE
between the original and synthesised images (35% of all trials), the largest conv5 MSE (35%),
or the smallest pixel MSE (an invalid cue, shown on 15% of all trials). Thus, 70% of all trials
were valid cues, encouraging participants to make use of the cues rather than learning to
ignore them. Participants were also instructed to attend to the cued region on trials where a
wedge was shown. For Uncued trials they were instructed to attend globally over the image.
Cueing conditions were interleaved and randomly assigned to each unique image for each
participant. The experiment was divided into eight blocks of 50 trials. Before the experiment
we introduced participants to the task and fixation control with repeated practice sessions of
30 trials (using 30 images not used in the main experiment and with the CNN 4 model
syntheses). Participants saw at least 60 and up to 150 practice trials, until they were able to
get at least 50% correct and with 20% or fewer trials containing broken fixations or blinks.

Appendix 2—figure 6. Cueing spatial attention has little effect on performance. (A) Covert
spatial attention was cued to the area of the largest difference between the images (70% of
trials; half from conv5 feature MSE; half from pixel MSE) via a wedge stimulus presented
before the trial. On 15% of trials the wedge cued an invalid location (smallest pixel MSE), and
on 15% of trials no cue was provided (circle stimulus). (B) Performance as a function of cueing
condition for 30 participants. Points show grand mean (error bars show %2 SE), lines link the
mean performance of each observer for each pooling model (based on at least 30 trials;
median 65). Blue lines and shaded area show the population mean estimate and 95% credible
intervals from the mixed-effects model. Triangle in the Uncued condition replots the average
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performance from CNN 8 in Figure 3 for comparison. Images from the MIT 1003 dataset
(Judd et al., 2009, https://people.csail.mit.edu/tjudd/WherePeopleLook/index.html) and
reproduced under a CC-BY license (https://creativecommons.org/licenses/by/3.0/) with
changes as described in the Materials and methods.
DOI: https://doi.org/10.7554/eLife.42512.022

Data analysis
We discarded trials for which participants made no response (N = 141) or broke fixation

(N = 1398), leaving a total of 10261 trials for further analysis.
This analysis plan was pre-registered and is available at http://dx.doi.org/10.17605/OSF.IO/

MBGSQ (click on ‘view registration form’). We seek to estimate three performance differences:

1. The difference between Invalid and Uncued
2. The difference between Valid:Conv5 and Uncued
3. The difference between Valid:Conv5 and Valid:Pixels

The model formula (in lme4-style formula notation) is
correct - cue + (cue | subj) + (cue | im_code)

with family = Bernoulli(‘logit’). The ‘cue’ factor uses custom contrast coding (design
matrix) to test the hypotheses of interest. Specifically, the design matrix for the model above
was specified as

b0 b1 b2 b3

Invalid 1 -1 0 0

Uncued 1 1 -1 0

Valid:Conv5 1 0 1 1

Valid:Pixels 1 0 0 -1

Therefore, b1 codes Uncued - Invalid, b2 codes Valid:Conv5 - Uncued, b3 codes Valid:
Conv5 - Valid:Pixels and b0 codes the Intercept (average performance). Note that the
generalised inverse of this matrix was passed to brms (Venables and Ripley, 2002).

Each of these population fixed-effects is offset by the random effects of participant (subj)
and image (im_code). We also assume that the offsets for each fixed effect can be
correlated (denoted by the single pipe character |). The model thus estimates:

1. Four fixed-effect coefficients. The coefficients coding Valid:Conv5 – Uncued and Uncued –
Invalid constitute the key outcome measures of the study. The final coefficient is the analysis
of secondary interest.

2. Eight random-effects standard-deviations (four for each fixed-effect, times two for the two
random effects).

3. Twelve correlations (six for each pairwise relationship between the fixed-effects, times two
for the two random effects).

These parameters were given weakly-informative prior distributions as for Experiment 1
(above): fixed-effects had Cauchy(0, 1) priors, random effect SDs had bounded Cauchy(0.2,
1) priors, and correlation matrices had LKJ(2) priors.

To judge the study outcome we pre-defined a region of practical equivalence (ROPE)
around zero effect (0) of [$0.2, 0.2] on the linear predictor scale. This corresponds to odds
ratios of [0.82, 1.22]. Our decision rules were then:

. If the 95% credible interval of the parameter value falls outside the ROPE, we consider
there to be a credible difference between the conditions.

. If the 95% credible interval of the parameter value falls fully within the ROPE, we consider
there to be no practical difference between the conditions. This does not mean that there
is no effect, but only that it is unlikely to be large.

. If the 95% credible interval overlaps the ROPE, the data are ambiguous as to the conclusion
for our hypothesis. This does not mean that the data give no insight into the direction and
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magnitude of any effect, but only that they are ambiguous with respect to our decision
criteria.

For more discussion of this approach to hypothesis testing, see (Kruschke, 2015).

Results and discussion
The results of this experiment are shown in Appendix 2—figure 6B. While mean
performance across conditions was in the expected direction for all effects, no large
differences were observed. Specifically, the population-level coefficient estimate on the
linear predictor scale for the difference between the Valid:Conv5 cueing condition and the
uncued condition was 0.09, 95% CI [$0.05, 0.22], pðb< 0Þ ¼ 0:1. Given our decision rules
above, the coefficient does not fall wholely within the ROPE and therefore this result is
somewhat inconclusive; in general the difference is rather small and so large ‘true’ effects of
spatial cueing are quite unlikely. Similarly, we find no large difference between uncued
performance and the invalid cues (0.09, 95% CI [$0.07, 0.25], pðb< 0Þ ¼ 0:141). Based on our
pre-registered cutoff for a meaningful effect size we conclude that cueing spatial attention in
this paradigm results in effectively no performance change.

We further hypothesised that the conv5 cue would be more informative (resulting in a
larger performance improvement) than the pixel MSE cue. Note that for 269 of 400 images
the conv5 and pixel MSE cued the same or neighbouring wedges, meaning that the power of
this experiment to detect differences between these conditions is limited. Consistent with
this and contrary to our hypothesis, we find no practical difference between the Valid:Conv5
and Valid:Pixels conditions, 0.04, 95% CI [$0.07, 0.14], pðb< 0Þ ¼ 0:253. Note that for this
comparison, the 95% credible intervals for the parameter fall entirely within the ROPE,
leading us to conclude that there is no practical difference between these conditions in our
experiment.

To conclude, our results here suggest that if cueing spatial attention improves the
‘resolution’ of the periphery, then the effect is very small. Cohen et al. (2016) have
suggested that an ensemble representation serves to create phenomenal experience of a
rich visual world, and that spatial attention can be used to gain more information about the
environment beyond simple summary statistics. The results here are contrary to this idea, at
least for the specific task and setting we measure here.

Note however that other experimental paradigms may in general be more suitable for
assessing the influence of spatial attention than a temporal oddity paradigm. For example, in
temporal oddity participants may choose to reallocate spatial attention after the first interval
is presented (e.g. on invalid trials pointing at regions of sky). In this respect a single-interval
yes-no design (indicating original/synthesis) might be preferable. However, analysis of such
data with standard signal detection theory would need to assume that the participants’
decision criteria remain constant over trials, whereas it seems likely that decision criteria
would depend strongly on the image. To remain consistent with our earlier experiments we
nevertheless employed a three-alternative temporal oddity task here; future work could
assess whether our finding of minimal influence of spatial cueing depends on this choice.

Selection of scene- and texture-like images
As discussed in the main paper, we used the results of a pilot experiment (Experiment 3,
above) to help select images to provide a strong test of the FS-model. Briefly, 30 observers
discriminated 400 images from syntheses produced by the CNN 8 model. Each image was
paired with only one unique synthesis (see Experiment 3 above for further details on the
experiment).

In an exploratory analysis of that data, we found that there was a large range of difficulty
for individual images (as in Experiment 2, above). Appendix 2—figure 7 shows the image-
specific intercepts estimated by the model described above. We examine this rather than the
raw data because cueing conditions were randomly assigned to each image for each subject,
meaning that the mean performance of the images will depend on this randomisation
(though, given our results, the effects are likely to be small). The image-specific intercept
from the model estimates the difficulty of each image, statistically marginalising over cueing
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condition. While the posterior means for some images were close to chance, and the 95%
credible intervals associated with about 100 images overlapped chance performance,
approximately 30 images were easily discriminable from their model syntheses, lying above
the mean performance for all images with the CNN 8 model.
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Appendix 2—figure 7. Estimated difficulty of each image in Experiment 3 (syntheses with the
CNN 8 model) and the images chosen to form the texture- and scene-like categories in the
main experiment. Solid black line links model estimates of each image’s difficulty (the
posterior mean of the image-specific model intercept, plotted on the performance scale).
Shaded region shows 95% credible intervals. Dashed horizontal line shows chance
performance; solid blue horizontal line shows mean performance. Red and blue points
denote the images chosen as texture- and scene-like images in the main experiment
respectively. The red point near the middle of the range is the ‘graffiti’ image from the
experiments above.

DOI: https://doi.org/10.7554/eLife.42512.024

Appendix 2—figure 8. The 50 easiest images from Appendix 2—figure 7 where difficulty
increases left-to-right, top-to-bottom. Images chosen for the main experiment as ‘scene-like’
are circled in blue. Images from the MIT 1003 dataset (Judd et al., 2009, https://people.
csail.mit.edu/tjudd/WherePeopleLook/index.html) and reproduced under a CC-BY license
(https://creativecommons.org/licenses/by/3.0/).

DOI: https://doi.org/10.7554/eLife.42512.025
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Our final selection of ten images per category was made by examining the easiest and
hardest images from this experiment (Appendix 2—figure 7) and selecting ten images we
subjectively judged to contain scene-like or texture-like content. The final images used in the
first experiment of the main paper are shown in Appendix 2—figure 7 as coloured points.
The 50 easiest and 50 hardest images are shown in Appendix 2—figures 8,9 respectively.

Appendix 2—figure 9. The 50 hardest images from Appendix 2—figure 7 where difficulty
decreases left-to-right, top-to-bottom. Images chosen for the main experiment as ‘texture-like’
are circled in red. Images from the MIT 1003 dataset (Judd et al., 2009, https://people.csail.
mit.edu/tjudd/WherePeopleLook/index.html) and reproduced under a CC-BY license
(https://creativecommons.org/licenses/by/3.0/).

DOI: https://doi.org/10.7554/eLife.42512.026

Predicting the difficulty of individual images
As shown above, some images are easier than others. We assessed whether an image-based
metric considering the difference between original and synthesised images could predict
difficulty at the image level. Specifically, we asked whether the mean squared-error (MSE)
between the original and synthesised images in two feature spaces (conv5 and pixels) could
predict the relative difficulty of the source images. Note that we performed this analysis first
on the results of Experiment 1 (Appendix 2—figure 3), and that these results were used to
inform the hypothesis regarding the usefulness of conv5 vs pixel cues presented in
Experiment 3, above. We subsequently performed the same analysis on the data from
Experiment 3. We present both analyses concurrently here for ease of reading, but the
reader should be aware of the chronological order.

Methods
We computed the mean squared error between the original and synthesised images in two
feature spaces. First, the MSE in the pixel space was used to represent the physical
difference at all spatial scales. Second, the difference in feature activations in the conv5 layer
of the VGG network was used as an abstracted feature space which may correspond to
aspects of human perception (e.g. Kubilius et al., 2016, see also Geirhos et al., 2019). Both
are also correlated with the final value of the loss function from our synthesis procedure. As a
baseline we fit a mixed-effects logistic regression containing fixed-effects for the levels of the
CNN model and a random effect of observer on all fixed effect terms. As a ‘saturated’ model
(a weak upper bound) we added a random effect for image to the baseline model (that is,
each image is uniquely predicted given the available data). Using the scale defined by the
baseline and saturated models, we then compared models in which the image-level predictor
(pixel or conv5 MSE, standardised to have zero mean and unit variance within each CNN
model level) was added as an additional linear covariate to the baseline model. That is, each
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image was associated with a scalar value of pixel/conv5 MSE with each synthesis. Additional
image-level predictors were compared but are not reported here because they performed
similarly or worse than the conv5 or pixel MSE.

As above, we compared the models using the LOOIC information criterion that estimates
out-of-sample prediction error on the deviance scale. Qualitatively similar results were found
using ten-fold crossvalidation for models fit with penalised maximum-likelihood in lme4.

Results
For the dataset from Experiment 1, the LOOIC favoured the model containing conv5
MSE over the pixel MSE (LOOIC difference 18.2, SE = 8.3) and the pixel MSE over the
baseline model (LOOIC difference 25.3, SE = 10.9)—see Appendix 2—figure 10A. The
regression weight of the standardised pixel MSE feature fit to all the data was 0.04 (95%
credible interval = 0.15–0.07), and the weight of the standardised conv5 feature was 0.04
(0.2–0.11; presented as odds ratios in Appendix 2—figure 10C). Therefore, a one
standard deviation increase in the conv5 feature produced a slightly larger increase in
the linear predictor (and thus the expected probability) than the pixel MSE, in agreement
with the model comparison.
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Appendix 2—figure 10. Predicting image difficulty using image-based metrics. (A) Expected
prediction improvement over a baseline model for models fit to the data from Experiment 1
(Appendix 2—figure 3), as estimated by the LOOIC (Vehtari et al., 2016). Values in
deviance units ($2 * log likelihood; higher is better). Error bars show ±2 1 SE. Percentages
are expected prediction improvement relative to the saturated model. (B) Same as A but for
the data from Experiment 3 (Appendix 2—figure 6). (C) Odds of a success for a one SD
increase in the image predictor for data from Experiment 1. Points show mean and 95%
credible intervals on odds ratio (exponentiated logistic regression weight). (D) As for C for
Experiment 3.

DOI: https://doi.org/10.7554/eLife.42512.027

Applying this analysis to the data from Experiment 3 lead to similar results
(Appendix 2—figure 10B,D). The LOOIC favoured the model containing conv5 MSE over
the pixel MSE (LOOIC difference 49.9, SE = 13.3) and the pixel MSE over the baseline
model (LOOIC difference 62.4, SE = 16.2). Note that the worse performance of the
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image metric models relative to the saturated model (compared to Appendix 2—figure
10A) is because the larger data mass in this experiment provides a better constraint for
the random effects estimates of image. The regression weight of the standardised pixel
MSE feature fit to all the data was 0.03 (95% credible interval = 0.14–0.08), and the
weight of the standardised conv5 feature was 0.03 (0.21–0.15).

These results show that the difficulty of a given image can be to some extent
predicted from the pixel differences or conv5 differences, suggesting these might prove
useful full-reference metrics, at least with respect to the distortions produced by our
CNN model.
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With the rise of machines to human-level performance
in complex recognition tasks, a growing amount of work
is directed toward comparing information processing in
humans and machines. These studies are an exciting
chance to learn about one system by studying the other.
Here, we propose ideas on how to design, conduct, and
interpret experiments such that they adequately support
the investigation of mechanisms when comparing
human and machine perception. We demonstrate and
apply these ideas through three case studies. The first
case study shows how human bias can affect the
interpretation of results and that several analytic tools
can help to overcome this human reference point. In the
second case study, we highlight the difference between
necessary and sufficient mechanisms in visual reasoning
tasks. Thereby, we show that contrary to previous
suggestions, feedback mechanisms might not be
necessary for the tasks in question. The third case study
highlights the importance of aligning experimental
conditions. We find that a previously observed

difference in object recognition does not hold when
adapting the experiment to make conditions more
equitable between humans and machines. In presenting
a checklist for comparative studies of visual reasoning in
humans and machines, we hope to highlight how to
overcome potential pitfalls in design and inference.

Introduction
Until recently, only biological systems could abstract

the visual information in our world and transform
it into a representation that supports understanding
and action. Researchers have been studying how to
implement such transformations in arti!cial systems
since at least the 1950s. One advantage of arti!cial
systems for understanding these computations is
that many analyses can be performed that would not
be possible in biological systems. For example, key
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Figure 1. i: The human system and a candidate machine system differ in a range of properties. Isolating a specific mechanism (for
example, feedback) can be challenging. ii: When designing an experiment, equivalent settings are important. iii: Even if a specific
mechanism was important for a task, it would not be clear if this mechanism is necessary, as there could be other mechanisms (that
might or might not be part of the human or machine system) that can allow a system to perform well. iv: Furthermore, the identified
mechanisms might depend on the specific experimental setting and not generalize to, for example, another task. v: Overall, our
human bias influences how we conduct and interpret our experiments. 1Brendel and Bethge (2019); 2DiCarlo et al. (2012); 3Geirhos,
Rubisch, et al. (2018); 4Kubilius et al. (2016); 5Golan et al. (2019); 6Dujmović et al. (2020).

components of visual processing, such as the role of
feedback connections, can be investigated, and methods
such as ablation studies gain new precision.

Traditional models of visual processing sought to
explicitly replicate the hypothesized computations
performed in biological visual systems. One famous
example is the hierarchical HMAX-model (Fukushima,
1980; Riesenhuber & Poggio, 1999). It instantiates
mechanisms hypothesized to occur in primate visual
systems, such as template matching and max operations,
whose goal is to achieve invariance to position, scale,
and translation. Crucially, though, these models never
got close to human performance in real-world tasks.

With the success of learned approaches in the past
decade, and particularly that of convolutional deep
neural networks (DNNs), we now have much more
powerful models. In fact, these models are able to
perform a range of constrained image understanding
tasks with human-like performance (Krizhevsky et al.,
2012; Eigen & Fergus, 2015; Long et al., 2015).

While matching machine performance with that of
the human visual system is a crucial step, the inner
workings of the two systems can still be very di"erent.
We hence need to move beyond comparing accuracies
to understand how the systems’ mechanisms di"er
(Geirhos et al., 2020; Chollet, 2019; Ma & Peters, 2020;
Firestone, 2020).

The range of frequently considered mechanisms
is broad. They not only concern the architectural

level (such as feedback vs. feed-forward connections,
lateral connections, foveated architectures or eye
movements, …), but also involve di"erent learning
schemes (back-propagation vs. spike-timing-dependent
plasticity/Hebbian learning, …) as well as the
nature of the representations themselves (such as
reliance on texture rather than shape, global vs. local
processing, …). For an overview of comparison studies,
please see Appendix A.

Checklist for psychophysical
comparison studies
We present a checklist on how to design, conduct,

and interpret experiments of comparison studies that
investigate relevant mechanisms for visual perception.
The diagram in Figure 1 illustrates the core ideas that
we elaborate on below.

i. Isolating implementational or functional properties.
Naturally, the systems that are being compared
often di"er in more than just one aspect, and hence
pinpointing one single reason for an observed
di"erence can be challenging. One approach is to
design an arti!cial network constrained such that
the mechanism of interest will show its e"ect as
clearly as possible. An example of such an attempt
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is Brendel and Bethge (2019), which constrained
models to process purely local information by
reducing their receptive !eld sizes. Unfortunately,
in many cases, it is almost impossible to exclude
potential side e"ects from other experimental
factors such as architecture or training procedure.
Therefore, making explicit if, how, and where
results depend on other experimental factors is
important.

ii. Aligning experimental conditions for both systems.
In comparative studies (whether humans and
machines, or di"erent organisms in nature), it can
be exceedingly challenging to make experimental
conditions equivalent. When comparing the two
systems, any di"erences should be made as explicit
as possible and taken into account in the design
and analysis of the study. For example, the human
brain pro!ts from lifelong experience, whereas a
machine algorithm is usually limited to learning
from speci!c stimuli of a particular task and
setting. Another example is the stimulus timing
used in psychophysical experiments, for which
there is no direct equivalent in stateless algorithms.
Comparisons of human and machine accuracies
must therefore be considered with the temporal
presentation characteristics of the experiment.
These characteristics could be chosen based on, for
example, a de!nition of the behavior of interest as
that occurring within a certain time after stimulus
onset (as for, e.g., “core object recognition”; DiCarlo
et al., 2012). Firestone (2020) highlights that as
aligning systems perfectly may not be possible due
to di"erent “hardware” constraints such as memory
capacity, unequal performance of two systems might
still arise despite similar competencies.

iii. Di!erentiating between necessary and su"cient
mechanisms. It is possible that multiple mechanisms
allow good task performance — for example, DNNs
can use either shape or texture features to reach high
performance on ImageNet (Geirhos, Rubisch, et al.,
2018; Kubilius et al., 2016). Thus, observing good
performance for one mechanism does not imply
that this mechanism is strictly necessary or that it is
employed by the human visual system. As another
example, Watanabe et al. (2018) investigated whether
the rotating snakes illusion (Kitaoka & Ashida,
2003; Conway et al., 2005) could be replicated in
arti!cial neural networks. While they found that this
was indeed the case, we argue that the mechanisms
must be di"erent from the ones used by humans, as
the illusion requires small eye movements or blinks
(Hisakata & Murakami, 2008; Kuriki et al., 2008),
while the arti!cial model does not emulate such
biological processes.

iv. Testing generalization of mechanisms. Having
identi!ed an important mechanism, one needs to
make explicit for which particular conditions (class

of tasks, data sets, …) the conclusion is intended to
hold. A mechanism that is important for one setup
may or may not be important for another one. In
other words, whether a mechanism works under
generalized settings has to be explicitly tested. An
example of outstanding generalization for humans
is their visual robustness against various variations
in the input. In DNNs, a mechanism to improve
robustness is to “stylize” (Gatys et al., 2016) training
data. First presented as raising performance on
parametrically distorted images (Geirhos, Rubisch,
et al., 2018), this mechanism was later shown to
also improve performance on images su"ering
from common corruptions (Michaelis et al., 2019)
but would be unlikely to help with adversarial
robustness. From a di"erent perspective, the work
of Golan et al. (2019) on controversial stimuli is
an example where using stimuli outside of the
training distribution can be insightful. Controversial
stimuli are synthetic images that are designed to
trigger distinct responses for two machine models.
In their experimental setup, the use of these
out-of-distribution data allows the authors to reveal
whether the inductive bias of humans is similar to
one of the candidate models.

v. Resisting human bias. Human bias can a"ect not
only the design but also the conclusions we draw
from comparison experiments. In other words, our
human reference point can in#uence, for example,
how we interpret the behavior of other systems,
be they biological or arti!cial. An example is the
well-known Braitenberg vehicles (Braitenberg,
1986), which are de!ned by very simple rules. To
a human observer, however, the vehicles’ behavior
appears as arising from complex internal states such
as fear, aggression, or love. This phenomenon of
anthropomorphizing is well known in the !eld of
comparative psychology (Romanes, 1883; Köhler,
1925; Koehler, 1943; Haun et al., 2010; Boesch,
2007; Tomasello & Call, 2008). Buckner (2019)
speci!cally warns of human-centered interpretations
and recommends to apply the lessons learned in
comparative psychology to comparing DNNs
and humans. In addition, our human reference
point can in#uence how we design an experiment.
As an example, Dujmović et al. (2020) illustrate
that the selection of stimuli and labels can have
a big e"ect on !nding similarities or di"erences
between humans and machines to adversarial
examples.

In the remainder of this article, we provide concrete
examples of the aspects discussed above using three
case studies1:

(1) Closed contour detection: The !rst case study
illustrates how tricky overcoming our human bias
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can be and that shedding light on an alternative
decision-making mechanism may require multiple
additional experiments.

(2) Synthetic Visual Reasoning Test: The second
case study highlights the challenge of isolating
mechanisms and of di"erentiating between
necessary and su$cient mechanisms. Thereby, we
discuss how human and machine model learning
di"er and how changes in the model architecture
can a"ect the performance.

(3) Recognition gap: The third case study illustrates
the importance of aligning experimental
conditions.

Case study 1: Closed contour
detection
Closed contours play a special role in human visual

perception. According to the Gestalt principles of
prägnanz and good continuation, humans can group
distinct visual elements together so that they appear
as a “form” or “whole.” As such, closed contours
are thought to be prioritized by the human visual
system and to be important in perceptual organization
(Ko"ka, 2013; Elder & Zucker, 1993; Kovacs & Julesz,
1993; Tversky et al., 2004; Ringach & Shapley, 1996).
Speci!cally, to tell if a line closes up to form a closed
contour, humans are believed to implement a process
called “contour integration” that relies at least partially
on global information (Levi et al., 2007; Lo%er et al.,
2003; Mathes & Fahle, 2007). Even many #anking, open
contours would hardly in#uence humans’ robust closed
contour detection abilities.

Our experiments

We hypothesize that, in contrast to humans, closed
contour detection is di$cult for DNNs. The reason
is that this task would presumably require long-range
contour integration, but DNNs are believed to process
mainly local information (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019). Here, we test how well
humans and neural networks can separate closed from
open contours. To this end, we create a custom data
set, test humans and DNNs on it, and investigate the
decision-making process of the DNNs.

DNNs and humans reach high performance

We created a data set with two classes of images:
The !rst class contained a closed contour; the second
one did not. In order to make sure that the statistical
properties of the two classes were similar, we included
a main contour for both classes. While this contour

line closed up for the !rst class, it remained open for
the second class. This main contour consisted of 3–9
straight-line segments. In order to make the task more
di$cult, we added several #ankers with either one or
two line segments that each had a length of at least 32
pixels (Figure 2A). The size of the images was 256 × 256
pixels. All lines were black and the background was
uniformly gray. Details on the stimulus generation can
be found in Appendix B.

Humans identi!ed the closed contour stimulus
very reliably in a two-interval forced-choice task.
Their performance was 88.39% (SEM = 2.96%) on
stimuli whose generation procedure was identical to
the training set. For stimuli with white instead of
black lines, human participants reached a performance
of 90.52% (SEM = 1.58%). The psychophysical
experiment is described in Appendix B.

We !ne-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on the
closed contour data set. Similar to humans, it performed
very well and reached an accuracy of 99.95% (see
Figure 2A [i.i.d. to training]).

We found that both humans and our DNN reach
high accuracy on the closed contour detection task.
From a human-centered perspective, it is enticing to
infer that the model had learned the concept of open
and closed contours and possibly that it performs a
similar contour integration-like process as humans.
However, this would have been overhasty. To better
understand the degree of similarity, we investigated
how our model performs on variations of the data sets
that were not used during the training procedure.

Generalization tests reveal differences
Humans are expected to have no di$culties if the

number of #ankers, the color, or the shape of lines
would di"er. We here test our model’s robustness on
such variants of the data set. If our model used similar
decision-making processes as humans, it should be able
to generalize well without any further training on the
new images. This procedure is another perspective to
shed light on whether our model really understood the
concept of closedness or just picked up some statistical
cues in the training data set.

We tested our model on 15 variants of the data set
(out of distribution test sets) without !ne-tuning on
these variations. As shown in Figure 2A, B, our trained
model generalized well to many but not all modi!ed
stimulus sets.

On the following variations, our model achieved
high accuracy: Curvy contours (1, 3) were easily
distinguishable for our model, as long as the diameter
remained below 100 pixels. Also, adding a dashed,
closed #anker (2) did not lower its performance. The
classi!cation ability of the model remained similarly
high for the no-#ankers (4) and the asymmetric
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Figure 2. (A) Our ResNet-50-model generalized well to many data sets without further retraining, suggesting it would be able to
distinguish closed and open contours. (B) However, the poor performance on many other data sets showed that our model did not
learn the concept of closedness. (C) The heatmaps of our BagNet-33-based model show which parts of the image provided evidence
for closedness (blue, negative values) or openness (red, positive values). The patches on the sides show the most extremely,
nonoverlapping patches and their logit values. The logit distribution shows that most patches had logit values close to zero (y-axis
truncated) and that many more patches in the open stimulus contributed positive logit values. (D) Our BagNet- and ResNet-models
showed different performances on generalization sets, such as the asymmetric flankers. This indicates that the local decision-making
process of the substitute model BagNet is not used by the original model ResNet. Figure best viewed electronically.

#ankers condition (6). When testing our model on main
contours that consisted of more edges than the ones
presented during training (5), the performance was also
hardly impaired. It remained high as well when multiple
curvy open contours were added as #ankers (7).

The following variations were more di$cult for
our model: If the size of the contour got too large, a
moderate drop in accuracy was found (8). For binarized
images, our model’s performance was also reduced (9).
And !nally, (almost) chance performance was observed
when varying the line width (14, 10, 13), changing the
line color (11, 12), or using dashed curvy lines (15).

While humans would perform well on all variants of
the closed contour data set, the failure of our model
on some generalization tests suggests that it solves the
task di"erently from humans. On the other hand, it
is equally di$cult to prove that the model does not
understand the concept. As described by Firestone
(2020), models can “perform di"erently despite similar
underlying competences.” In either way, we argue
that it is important to openly consider alternative
mechanisms to the human approach of global contour
integration.

Our closed contour detection task is partly
solvable with local features

In order to investigate an alternative mechanism
to global contour integration, we here design an
experiment to understand how well a decision-making
process based on purely local features can work. For this
purpose, we trained and tested BagNet-33 (Brendel &
Bethge, 2019), a model that has access to local features
only. It is a variation of ResNet-50 (He et al., 2016),
where most 3 × 3 kernels are replaced by 1 × 1 kernels
and therefore the receptive !eld size at the top-most
convolutional layer is restricted to 33 × 33 pixels.

We found that our restricted model still reached
close to 90% performance. In other words, contour
integration was not necessary to perform well on the
task.

To understand which local features the model relied
on mostly, we analyzed the contribution of each
patch to the !nal classi!cation decision. To this end,
we used the log-likelihood values for each 33 × 33
pixels patch from BagNet-33 and visualized them as a
heatmap. Such a straightforward interpretation of the
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Figure 3. (A) For three of the 23 SVRT problems, two example images representing the two opposing classes are shown. In each
problem, the task was to find the rule that separated the images and to sort them accordingly. (B) Kim et al. (2018) trained a DNN on
each of the problems. They found that same-different tasks (red points), in contrast to spatial tasks (blue points), could not be solved
with their models. Our ResNet-50-based models reached high accuracies for all problems when using 28,000 training examples and
weights from pretraining on ImageNet.

contributions of single image patches is not possible
with standard DNNs like ResNet (He et al., 2016) due
to their large receptive !eld sizes in top layers.

The heatmaps of BagNet-33 (see Figure 2C) revealed
which local patches played an important role in the
decision-making process: An open contour was often
detected by the presence of an endpoint at a short
edge. Since all #ankers in the training set had edges
larger than 33 pixels, the presence of this feature was an
indicator of an open contour. In turn, the absence of
this feature was an indicator of a closed contour.

Whether the ResNet-50-based model used the same
local feature as the substitute model was unclear.
To answer this question, we tested BagNet on the
previously mentioned generalization tests. We found
that the data sets on which it showed high performance
were sometimes di"erent from the ones of ResNet (see
Figure 7 in the Appendix B). A striking example was
the failure of BagNet on the ”asymmetric #ankers”
condition (see Figure 2D). For these images, the
#ankers often consisted of shorter line segments and
thus obscured the local feature we assumed BagNet
to use. In contrast, ResNet performed well on this
variation. This suggests that the decision-making
strategy of ResNet did not heavily depend on the local
feature found with the substitute BagNet model.

In summary, the generalization tests, the high
performance of BagNet as well as the existence of
a distinctive local feature provide evidence that our
human-biased assumption was misleading. We saw that

other mechanisms for closed contour detection besides
global contour integration do exist (see Introduction,
“Di!erentiating between necessary and su"cient
mechanisms”). As humans, we can easily miss the many
statistical subtleties by which a task can be solved. In
this respect, BagNets proved to be a useful tool to test
a purportedly “global” visual task for the presence
of local artifacts. Overall, various experiments and
analyses can be bene!cial to understand mechanisms
and to overcome our human reference point.

Case study 2: Synthetic Visual
Reasoning Test
In order to compare human and machine

performance at learning abstract relationships between
shapes, Fleuret et al. (2011) created the Synthetic Visual
Reasoning Test (SVRT) consisting of 23 problems
(see Figure 3A). They showed that humans need only
few examples to understand the underlying concepts.
Stabinger et al. (2016) as well as Kim et al. (2018)
assessed the performance of deep convolutional
neural networks on these problems. Both studies
found a dichotomy between two task categories:
While high accuracy was reached on spatial problems,
the performance on same-di"erent problems was
poor. In order to compare the two types of tasks
more systematically, Kim et al. (2018) developed a
parameterized version of the SVRT data set called
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PSVRT. Using this data set, they found that for same-
di"erent problems, an increase in the complexity of the
data set could quickly strain their models. In addition,
they showed that an attentive version of the model
did not exhibit the same de!cits. From these results,
the authors concluded that feedback mechanisms as
present in the human visual system such as attention,
working memory, or perceptual grouping are probably
important components for abstract visual reasoning.
More generally, these studies have been perceived and
cited with the broader claim of feed-forward DNNs not
being able to learn same-di"erent relationships between
visual objects (Serre, 2019; Scho!eld et al., 2018) – at
least not “e$ciently” (Firestone, 2020).

We argue that the results of Kim et al. (2018) cannot
be taken as evidence for the importance of feedback
components for abstract visual reasoning:

(1) While their experiments showed that same-di"erent
tasks are harder to learn for their models, this might
also be true for the human visual system. Normally
sighted humans have experienced lifelong visual
input; only looking at human performance with
this extensive learning experience cannot reveal
di"erences in learning di$culty.

(2) Even if there is a di"erence in learning complexity,
this di"erence is not necessarily due to di"erences
in the inference mechanism (e.g., feed-forward vs.
feedback)—the large variety of other di"erences
between biological and arti!cial vision systems
could be critical causal factors as well.

(3) In the same line, small modi!cations in the learning
algorithm or architecture can signi!cantly change
learning complexity. For example, changing the
network depth or width can greatly improve learning
performance (Tan & Le, 2019).

(4) Just because an attentive version of the model
can learn both types of tasks does not prove that
feedback mechanisms are necessary for these tasks
(see Introduction, “Di!erentiating between necessary
and su"cient mechanisms”).

Determining the necessity of feedback mechanisms
is especially di$cult because feedback mechanisms
are not clearly distinct from purely feed-forward
mechanisms. In fact, any !nite-time recurrent network
can be unrolled into a feed-forward network (Liao &
Poggio, 2016; van Bergen & Kriegeskorte, 2020).

For these reasons, we argue that the importance of
feedback mechanisms for abstract visual reasoning
remains unclear.

In the following paragraph we present our own
experiments on the SVRT data set and show that
standard feed-forward DNNs can indeed perform well
on same-di"erent tasks. This con!rms that feedback
mechanisms are not strictly necessary for same-di"erent
tasks, although they helped in the speci!c experimental

setting of Kim et al. (2018). Furthermore, this
experiment highlights that changes of the network
architecture and training procedure can have large
e"ects on the performance of arti!cial systems.

Our experiments

The !ndings of Kim et al. (2018) were based on
rather small neural networks, which consisted of up
to six layers. However, typical network architectures
used for object recognition consist of more layers and
have larger receptive !elds. For this reason, we tested a
representative of such networks, namely, ResNet-50.
The experimental setup can be found in Appendix C.

We found that our feed-forward model can in fact
perform well on the same-di"erent tasks of SVRT (see
Figure 3B; see also concurrent work of Messina et al.,
2019). This result was not due to an increase in the
number of training samples. In fact, we used fewer
images (28,000 images) than Kim et al. (2018) (1 million
images) and Messina et al. (2019) (400,000 images).
Of course, the results were obtained on the SVRT
data set and might not hold for other visual reasoning
data sets (see Introduction, “Testing generalization of
mechanisms”).

In the very low-data regime (1,000 samples), we
found a di"erence between the two types of tasks. In
particular, the overall performance on same-di"erent
tasks was lower than on spatial reasoning tasks. As
for the previously mentioned studies, this cannot be
taken as evidence for systematic di"erences between
feed-forward neural networks and the human visual
system. In contrast to the neural networks used in
this experiment, the human visual system is naturally
pretrained on large amounts of visual reasoning tasks,
thus making the low-data regime an unfair testing
scenario from which it is almost impossible to draw
solid conclusions about di"erences in the internal
information processing. In other words, it might very
well be that the human visual system trained from
scratch on the two types of tasks would exhibit a
similar di"erence in sample e$ciency as a ResNet-50.
Furthermore, the performance of a network in the
low-data regime is heavily in#uenced by many factors
other than architecture, including regularization
schemes or the optimizer, making it even more di$cult
to reach conclusions about systematic di"erences in the
network structure between humans and machines.

Case study 3: Recognition gap
Ullman et al. (2016) investigated the minimally

necessary visual information required for object
recognition. To this end, they successively cropped
or reduced the resolution of a natural image until
more than 50% of all human participants failed to

Downloaded from jov.arvojournals.org on 06/02/2021



Journal of Vision (2021) 21(3):16, 1–23 Funke et al. 8

identify the object. The study revealed that recognition
performance drops sharply if the minimal recognizable
image crops are reduced any further. They referred
to this drop in performance as the “recognition gap.”
The gap is computed by subtracting the proportion of
people who correctly classify the largest unrecognizable
crop (e.g., 0.2) from that of the people who correctly
classify the smallest recognizable crop (e.g., 0.9). In
this example, the recognition gap would evaluate to
0.9 − 0.2 = 0.7. On the same human-selected image
crops, Ullman et al. (2016) found that the recognition
gap is much smaller for machine vision algorithms (0.14
± 0.24) than for humans (0.71 ± 0.05). The researchers
concluded that machine vision algorithms would not
be able to “explain [humans’] sensitivity to precise
feature con!gurations” and “that the human visual
system uses features and processes that are not used by
current models and that are critical for recognition.”
In a follow-up study, Srivastava et al. (2019) identi!ed
“fragile recognition images” (FRIs) with an exhaustive
machine-based procedure whose results include a
subset of patches that adhere to the de!nition of
minimal recognizable con!gurations (MIRCs) by
Ullman et al. (2016). On these machine-selected FRIs, a
DNN experienced a moderately high recognition gap,
whereas humans experienced a low one. Because of the
di"erences between the selection procedures used in
Ullman et al. (2016) and Srivastava et al. (2019), the
question remained open whether machines would show
a high recognition gap on machine-selected minimal
images, if the selection procedure was similar to the one
used in Ullman et al. (2016).

Our experiment
Our goal was to investigate if the di"erences in

recognition gaps identi!ed by Ullman et al. (2016)
would at least in part be explainable by di"erences in
the experimental procedures for humans and machines.
Crucially, we wanted to assess machine performance
on machine-selected, and not human-selected, image
crops. We therefore implemented the psychophysics
experiment in a machine setting to search the
smallest recognizable images (or MIRCs) and the
largest unrecognizable images (sub-MIRCs). In
the !nal step, we evaluated our machine model’s
recognition gap using the machine-selected MIRCs and
sub-MIRCs.

Methods
Our machine-based search algorithm used the deep

convolutional neural network BagNet-33 (Brendel &
Bethge, 2019), which allows us to straightforwardly
analyze images as small as 33 × 33 pixels. In the !rst
step, the classi!cation accuracy was evaluated for
the whole image. If it was above 0.5, the image was

successively cropped and reduced in resolution. In
each step, the best-performing crop was taken as the
new parent. When the classi!cation probability of all
children fell below 0.5, the parent was identi!ed as the
MIRC, and all its children were considered sub-MIRCs.
In order to evaluate the recognition gap, we calculate
the di"erence in accuracy between the MIRC and the
best-performing sub-MIRC. This de!nition is more
conservative than the one from Ullman et al. (2016),
who evaluated the di"erence in accuracy between the
MIRC and the worst-performing sub-MIRC. For more
details on the search procedure, please see Appendix D.

Results
We evaluated the recognition gap on two data sets:

the original images from Ullman et al. (2016) and a
subset of the ImageNet validation images (Deng et al.,
2009). As shown in Figure 4A, our model has an average
recognition gap of 0.99 ± 0.01 on the machine-selected
crops of the data set from Ullman et al. (2016). On
the machine-selected crops of the ImageNet validation
subset, a large recognition gap occurs as well. Our
values are similar to the recognition gap in humans and
di"er from the machines’ recognition gap (0.14 ± 0.24)
between human-selected MIRCs and sub-MIRCs as
identi!ed by Ullman et al. (2016).

Discussion
Our !ndings contrast claims made by Ullman et

al. (2016). The latter study concluded that machine
algorithms are not as sensitive as humans to precise
feature con!gurations and that they are missing features
and processes that are “critical for recognition.” First,
our study shows that a machine algorithm is sensitive
to small image crops. It is only the precise minimal
features that di"er between humans and machines.
Second, by the word “critical,” Ullman et al. (2016)
imply that object recognition would not be possible
without these human features and processes. Applying
the same reasoning to Srivastava et al. (2019), the
low human performance on machine-selected patches
should suggest that humans would miss “features and
processes critical for recognition.” This would be an
obviously overreaching conclusion. Furthermore, the
success of modern arti!cial object recognition speaks
against the conclusion that the purported processes are
“critical” for recognition, at least within this discretely
de!ned recognition task. Finally, what we can conclude
from the experiments of Ullman et al. (2016) and from
our own is that both the human and a machine visual
system can recognize small image crops and that there
is a sudden drop in recognizability when reducing the
amount of information.

In summary, these results highlight the importance
of testing humans and machines in as similar settings
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Figure 4. (A) BagNet-33’s probability of correct class for decreasing crops: The sharp drop when the image becomes too small or the
resolution too low is called the “recognition gap” (Ullman et al., 2016). It was computed by subtracting the model’s predicted
probability of the correct class for the sub-MIRC from the model’s predicted probability of the correct class for the MIRC. As an
example, the glasses stimulus was evaluated as 0.9999 − 0.0002 = 0.9997. The crop size on the x-axis corresponds to the size of the
original image in pixels. Steps of reduced resolution are not displayed such that the three sample stimuli can be displayed coherently.
(B) Recognition gaps for machine algorithms (vertical bars) and humans (gray horizontal bar). A recognition gap is identifiable for the
DNN BagNet-33 when testing machine-selected stimuli of the original images from Ullman et al. (2016) and a subset of the ImageNet
validation images (Deng et al., 2009). Error bars denote standard deviation.

as possible, and of avoiding a human bias in the
experiment design. All conditions, instructions, and
procedures should be as close as possible between
humans and machines in order to ensure that observed
di"erences are due to inherently di"erent decision
strategies rather than di"erences in the testing
procedure.

Conclusion
Comparing human and machine visual perception

can be challenging. In this work, we presented a
checklist on how to perform such comparison studies in
a meaningful and robust way. For one, isolating a single
mechanism requires us to minimize or exclude the e"ect
of other di"erences between biological and arti!cial
and to align experimental conditions for both systems.
We further have to di"erentiate between necessary and
su$cient mechanisms and to circumscribe in which
tasks they are actually deployed. Finally, an overarching
challenge in comparison studies between humans and
machines is our strong internal human interpretation
bias.

Using three case studies, we illustrated the application
of the checklist. The !rst case study on closed contour
detection showed that human bias can impede the
objective interpretation of results and that investigating
which mechanisms could or could not be at work may
require several analytic tools. The second case study
highlighted the di$culty of drawing robust conclusions
about mechanisms from experiments. While previous
studies suggested that feedback mechanisms might be

important for visual reasoning tasks, our experiments
showed that they are not necessarily required. The
third case study clari!ed that aligning experimental
conditions for both systems is essential. When adapting
the experimental settings, we found that, unlike the
di"erences reported in a previous study, DNNs and
humans indeed show similar behavior on an object
recognition task.

Our checklist complements other recent proposals
about how to compare visual inference strategies
between humans and machines (Buckner, 2019; Chollet,
2019; Ma & Peters, 2020; Geirhos et al., 2020) and helps
to create more nuanced and robust insights into both
systems.
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Appendix A: Literature overview of
comparison studies

A growing body of work discusses comparisons of
humans and machines on a higher level. Majaj and Pelli
(2018) provide a broad overview how machine learning
can help vision scientists to study biological vision, while
Barrett et al. (2019) review methods on how to analyze
representations of biological and arti!cial networks.
From the perspective of cognitive science, Cichy and
Kaiser (2019) stress that deep learning models can serve
as scienti!c models that not only provide both helpful
predictions and explanations but that can also be used
for exploration. Furthermore, from the perspective of
psychology and philosophy, Buckner (2019) emphasizes
often-neglected caveats when comparing humans and
DNNs such as human-centered interpretations and calls
for discussions regarding how to properly align machine
and human performance. Chollet (2019) proposes a
general arti!cial intelligence benchmark and suggests
to rather evaluate intelligence as “skill-acquisition
e$ciency” than to focus on skills at speci!c tasks.

In the following, we give a brief overview of studies
that compare human and machine perception. In order
to test if DNNs have similar cognitive abilities as
humans, a number of studies test DNNs on abstract
(visual) reasoning tasks (Barrett et al., 2018; Yan &
Zhou, 2017; Wu et al., 2019; Santoro et al., 2017;
Villalobos et al., 2020). Other comparison studies focus
on whether human visual phenomena such as illusions
(Gomez-Villa et al., 2019; Watanabe et al., 2018; Kim et
al., 2019) or crowding (Volokitin et al., 2017; Doerig et
al., 2019) can be reproduced in computational models.
In the attempt to probe intuition in machine models,
DNNs are compared to intuitive physics engines, that
is, probabilistic models that simulate physical events
(Zhang et al., 2016).

Other works investigate whether DNNs are sensible
models of human perceptual processing. To this
end, their prediction or internal representations are
compared to those of biological systems, for example,
to human and/or monkey behavioral representations
(Peterson et al., 2016; Schrimpf et al., 2018; Yamins
et al., 2014; Eberhardt et al., 2016; Golan et al.,
2019), human fMRI representations (Han et al., 2019;

Khaligh-Razavi & Kriegeskorte, 2014) or monkey cell
recordings (Schrimpf et al., 2018; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014; Cadena et al.,
2019).

A great number of studies focus on manipulating
tasks and/or models. Researchers often use
generalization tests on data dissimilar to the training
set (Zhang et al., 2018; Wu et al., 2019) to test whether
machines understood the underlying concepts. In
other studies, the degradation of object classi!cation
accuracy is measured with respect to image degradations
(Geirhos et al., 2018) or with respect to the type of
features that play an important role for human or
machine decision-making (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019; Kubilius et al., 2016;
Ullman et al., 2016; Ritter et al., 2017). A lot of e"ort
is being put into investigating whether humans are
vulnerable to small, adversarial perturbations in images
(Elsayed et al., 2018; Zhou & Firestone, 2019; Han et
al., 2019; Dujmović et al., 2020), as DNNs are shown
to be (Szegedy et al., 2013). Similarly, in the !eld of
natural language processing, a trend is to manipulate
the data set itself by, for example, negating statements
to test whether a trained model gains an understanding
of natural language or whether it only picks up on
statistical regularities (Niven & Kao, 2019; McCoy et
al., 2019).

Further work takes inspiration from biology or uses
human knowledge explicitly in order to improve DNNs.
Spoerer et al. (2017) found that recurrent connections,
which are abundant in biological systems, allow for
higher object recognition performance, especially
in challenging situations such as in the presence of
occlusions—in contrast to pure feed-forward networks.
Furthermore, several researchers suggest (Zhang
et al., 2018; Kim et al., 2018) or show (Wu et al.,
2019; Barrett et al., 2018; Santoro et al., 2017) that
designing networks’ architecture or features with
human knowledge is key for machine algorithms to
successfully solve abstract (reasoning) tasks.

Appendix B: Closed contour
detection

Data set
Each image in the training set contained a main

contour, multiple #ankers, and a background image.
The main contour and #ankers were drawn into an
image of size 1, 028 × 1, 028 pixels. The main contour
and #ankers could be straight or curvy lines, for which
the generation processes are respectively described
in the next two subsections. The lines had a default
thickness of 10 pixels. We then resized the image to
256 × 256 pixels using anti-aliasing to transform the
black and white pixels into smoother lines that had
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Figure 5. Closed contour data set. (A) Left: The main contour
was generated by connecting points from a random sampling
process of angles and radii. Right: Resulting line-drawing with
flankers. (B) Left: Generation process of curvy contours. Right:
Resulting line-drawing.

gray pixels at the borders. Thus, the lines in the resized
image had a thickness of 2.5 pixels. In the following, all
speci!cations of sizes refer to the resized image (i.e., a
line described of !nal length 10 pixels extended over 40
pixels when drawn into the 1, 028 × 1, 028-pixel image).
For the psychophysical experiments (see Appendix B,
Psychophysical experiment), we added a white margin
of 16 pixels on each side of the image to avoid illusory
contours at the borders of the image.

Varying contrast of background. An image from the
ImageNet data set was added as background to the
line drawing. We converted the image into LAB color
space and linearly rescaled the pixel intensities of the
image to produce a normalized contrast value between
0 (gray image with the RGB values [118, 118, 118]) and
1 (original image) (see Figure 8A). When adding the
image to the line drawing, we replaced all pixels of the
line drawing by the values of the background image for
which the background image had a higher grayscale
value than the line drawing. For the experiments in the
main body, the contrast of the background image was
always 0. The other contrast levels were used only for
the additional experiment described in Appendix B,
Additional experiment: Increasing the task di$culty by
adding a background image.

Generation of image pairs.. We aimed to reduce the
statistical properties that could be exploited to solve
the task without judging the closedness of the contour.
Therefore, we generated image pairs consisting of an
“open” and a “closed” version of the same image. The
two versions were designed to be almost identical and
had the same #ankers. They di"ered only in the main
contour, which was either open or closed. Examples
of such image pairs are shown in Figure 5. During
training, either the closed or the open image of a pair
was used. However, for the validation and testing, both
versions were used. This allowed us to compare the
predictions and heatmaps for images that di"ered only
slightly but belonged to di"erent classes.

Line-drawing with polygons as main contour
The data set used for training as well as some of

the generalization sets consisted of straight lines. The
main contour consisted of n ∈ {3, 4, 5, 6, 7, 8, 9}
line segments that formed either an open or a closed
contour. The generation process of the main contour is
depicted on the left side of Figure 5A. To get a contour
with n edges, we generated n points, which were de!ned
by a randomly sampled angle αn and a randomly
sampled radius rn (between 0 and 128 pixels). By
connecting the resulting points, we obtained the closed
contour. We used the python PIL library (PIL 5.4.1,
python3) to draw the lines that connect the endpoints.
For the corresponding open contour, we sampled two
radii for one of the angles such that they had a distance
of 20 to 50 pixels from each other. When connecting the
points, a gap was created between the points that share
the same angle. This generation procedure could allow
for very short lines with edges being very close to each
other. To avoid this, we excluded all shapes with corner
points closer to 10 pixels from nonadjacent lines.

The position of the main contour was random, but
we ensured that the contour did not extend over the
border of the image.

Besides the main contour, several #ankers consisting
of either one or two line segments were added to each
stimulus. The exact number of #ankers was uniformly
sampled from the range [10,25]. The length of each
line segment varied between 32 and 64 pixels. For
the #ankers consisting of two line segments, both
lines had the same length, and the angle between the
line segments was at least 45◦. We added the #ankers
successively to the image and thereby ensured a minimal
distance of 10 pixels between the line centers. To ensure
that the corresponding image pairs would have the
same #ankers, the distances to both the closed and
open version of the main contour were accounted for
when re-sampling #ankers. If a #anker did not ful!ll
this criterion, a new #anker was sampled of the same
size and the same number of line segments, but it was
placed somewhere else. If a #anker extended over the
border of the image, the #anker was cropped.

Line-drawing with curvy lines as main contour
For some of the generalization sets, the contours

consisted of curvy instead of straight lines. These were
generated by modulating a circle of a given radius rc
with a radial frequency function that was de!ned by
two sinusoidal functions. The radius of the contour was
thus given by

r(φ) = A1 sin( f1(φ + θ1))
+A2 sin( f2(φ + θ2)) + rc, (1)

with the frequencies f1 and f2 (integers between 1 and
6), amplitudes A1 and A2 (random values between 15
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and 45), and phases θ1 and θ2 (between 0 and 2π ).
Unless stated otherwise, the diameter (diameter =
2 × rc) was a random value between 50 and 100 pixels,
and the contour was positioned in the center of the
image. The open contours were obtained by removing a
circular segment of size φo = π

3 at a random phase (see
Figure 5B).

For two of the generalization data sets, we used
dashed contours that were obtained by masking out
20 equally distributed circular segments each of size
φd = π

20 .

Details on generalization data sets
We constructed 15 variants of the data set to test

generalization performance. Nine variants consisted
of contours with straight lines. Six of these featured
varying line styles like changes in line width (10, 13,
14) and/or line color (11, 12). For one variant (5), we
increased the number of edges in the main contour.
Another variant (4) had no #ankers, and yet another
variant (6) featured asymmetric #ankers. For variant
9, the lines were binarized (only black or gray pixels
instead of di"erent gray tones).

In another six variants, the contours as well as the
#ankers were curved, meaning that we modulated a
circle with a radial frequency function. The !rst four
variants did not contain any #ankers and the main
contour had a !xed size of 50 pixels (3), 100 pixels
(1), and 150 pixels (8). For another variant (15), the
contour was a dashed line. Finally, we tested the e"ect
of di"erent #ankers by adding one additional closed,
yet dashed contour (2) or one to four open contours (7).

Below, we provide more details on some of these data
sets:

Black-white-black lines (12). For all contours, black
lines enclosed a white one in the middle. Each of these
three lines had a thickness of 1.5 pixels, which resulted
in a total thickness of 4.5 pixels.

Asymmetric #ankers (6). The two-line #ankers
consisted of one long and one short line instead of two
equally long lines.

W/ dashed #anker (2). This data set with curvy
contours contained an additional dashed, yet closed
contour as a #anker. It was produced like the main
contour in the dashed main contour set. To avoid
overlap of the contours, the main contour and the
#anker could only appear at four determined positions
in the image, namely, the corners.

W/ multiple #ankers (7). In addition to the curvy
main contour, between one and four open curvy
contours were added as #ankers. The #ankers were
generated by the same process as the main contour. The
circles that were modulated had a diameter of 50 pixels
and could appear at either one of the four corners of
the image or in the center.

Psychophysical experiment

To estimate how well humans would be able to
distinguish closed and open stimuli, we performed a
psychophysical experiment in which observers reported
which of two sequentially presented images contained
a closed contour (two-interval forced choice [2-IFC]
task).

Stimuli
The images of the closed contour data set were

used as stimuli for the psychophysical experiments.
Speci!cally, we used the images from the test sets that
were used to evaluate the performance of the models.
For our psychophysical experiments, we used two
di"erent conditions: The images contained either black
(i.i.d. to the training set) or white contour lines. The
latter was one one of the generalization test sets.

Apparatus
Stimuli were displayed on a VIEWPixx 3D LCD

(VPIXX Technologies; spatial resolution 1, 920 ×
1, 080 pixels, temporal resolution 120 Hz, operating
with the scanning backlight turned o"). Outside the
stimulus image, the monitor was set to mean gray.
Observers viewed the display from 60 cm (maintained
via a chinrest) in a darkened chamber. At this distance,
pixels subtended approximately 0.024◦ on average
(41 pixels per degree of visual angle). The monitor
was linearized (maximum luminance 260 cd/m2 using
a Konica-Minolta LS-100 photometer. Stimulus
presentation and data collection were controlled
via a desktop computer (Intel Core i5-4460 CPU,
AMD Radeon R9 380 GPU) running Ubuntu Linux
(16.04 LTS), using the Psychtoolbox Library (Pelli
& Vision, 1997; Kleiner et al., 2007; Brainard &
Vision, 1997, version 3.0.12) and the iShow library
(http://dx.doi.org/10.5281/zenodo.34217) under
MATLAB (The Mathworks, Inc., R2015b).

Participants
In total, 19 naïve observers (4 male, 15 female,

age: 25.05 years, SD = 3.52) participated in the
experiment. Observers were paid 10€ per hour for
participation. Before the experiment, all subjects had
given written informed consent for participating. All
subjects had normal or corrected-to-normal vision. All
procedures conformed to Standard 8 of the American
Psychological 405 Association’s “Ethical Principles of
Psychologists and Code of Conduct” (2010).

Procedure
On each trial, one closed and one open contour

stimulus were presented to the observer (see Figure 6A).
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Figure 6. (A) In a 2-IFC task, human observers had to tell which of two images contained a closed contour. (B) Accuracy of the 20 naïve
observers for the different conditions.

The images used for each trial were randomly picked,
but we ensured that the open and closed images shown
in the same trial were not the ones that were almost
identical to each other (see Appendix B, Generation
of image pairs). Thus, the number of edges of the
main contour could di"er between the two images
shown in the same trial. Each image was shown for
100 ms, separated by a 300-ms interstimulus interval
(blank gray screen). We instructed the observer to
look at the !xation spot in the center of the screen.
The observer was asked to identify whether the image
containing a closed contour appeared !rst or second.
The observer had 1,200 ms to respond and was given
feedback after each trial. The intertrial interval was
1,000 ms. Each block consisted of 100 trials and
observers performed !ve blocks. Trials with di"erent
line colors and varying background images (contrasts
including 0, 0.4, and 1) were blocked. Here, we only
report the results for black and white lines of contrast
0. Upon the !rst time that a block with a new line color
was shown, observers performed a practice session with
48 trials of the corresponding line color.

Training of ResNet-50 model

We !ne-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on
the closed contour task. We replaced the last fully
connected, 1,000-way classi!cation layer by layer with
only one output neuron to perform binary classi!cation
with a decision threshold of 0. The weights of all layers
were !ne-tuned using the optimizer Adam (Kingma
& Ba, 2014) with a batch size of 64. All images were
preprocessed to have the same mean and standard
deviation and were randomly mirrored horizontally
and vertically for data augmentation. The model was
trained on 14,000 images for 10 epochs with a learning
rate of 0.0003. We used a validation set of 5,600 images.

Generalization tests. To determine the generalization
performance, we evaluated the model on the test sets

without any further training. Each of the test sets
contained 5,600 images. Poor accuracy could simply
result from a suboptimal decision criterion rather than
because the network would not be able to tell the stimuli
apart. To account for the distribution shift between the
original training images and the generalization tasks,
we optimized the decision threshold (a single scalar) for
each data set. To !nd the optimal threshold for each
data set, we subdivided the interval, in which 95% of all
logits lie, into 100 sub points and picked the threshold
that would lead to the highest performance.

Training of BagNet-33 model

To test an alternative decision-making mechanism
to global contour integration, we trained and tested
a BagNet-33 (Brendel & Bethge, 2019) on the closed
contour task. Like the ResNet-50 model, it was
pretrained on ImageNet (Deng et al., 2009) and
we replaced the last fully connected, 1,000-way
classi!cation layer by layer with only one output
neuron. We !ne-tuned the weights using the optimizer
AdaBound (Luo et al., 2019) with an initial and !nal
learning rate of 0.0001 and 0.1, respectively. The
training images were generated on-the-#y, which meant
that new images were produced for each epoch. In total,
the !ne-tuning lasted 100 epochs, and we picked the
weights from the epoch with the highest performance.

Generalization tests. The generalization tests were
conducted equivalently to the ones with ResNet-50.
The results are shown in Figure 7.

Additional experiment: Increasing the task
difficulty by adding a background image

We performed an additional experiment, where we
tested if the model would become more robust and
thus generalized better if we trained on a more di$cult
task. This was achieved by adding an image to the
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Figure 7. Generalization performances of BagNet-33.

Figure 8. (A) An image of varying contrast was added as background. (B) Generalization performances of our models trained on
random contrast levels and tested on single contrast levels.

background, such that the model had to learn how to
separate the lines from the task-irrelevant background.

In our experiment, we !ne-tuned our ResNet-50-
based model on images with a background image of
a uniformly sampled contrast. For each data set, we
evaluated the model separately on six discrete contrast
levels {0, 0.2, 0.4, 0.6, 0.8, 1} (see Figure 8A). We found
that the generalization performance varied for some
data sets compared to the experiment in the main body
(see Figure 8B).

Appendix C: SVRT

Methods

Data set. We used the original C-code provided by
Fleuret et al. (2011) to generate the images of the SVRT
data set. The images had a size of 128 × 128 pixels. For
each problem, we used up to 28,000 images for training,
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Figure 9. Accuracy of the models for the individual problems. Problem 8 is a mixture of same-different task and spatial task. In
Figure 3, this problem was assigned to the spatial tasks. Bars replotted from Kim et al. (2018).

5,600 images for validation, and 11,200 images for
testing.

Experimental procedures. For each of the SVRT
problems, we !ne-tuned a ResNet-50 that was
pretrained on ImageNet (Deng et al., 2009) (as
described in Appendix B, Training of ResNet-50
model). The same preprocessing, data augmentation,
optimizer, and batch size as for the closed contour task
were used.

For the di"erent experiments, we varied the number
of training images. We used subsets containing 28,000,
1,000, or 100 images. The number of epochs depended
on the size of the training set: The model was !ne-tuned
for respectively 10, 280, or 2800 epochs. For each
training set size and SVRT problem, we used the
best learning rate after a hyper-parameter search on
the validation set, where we tested the learning rates
[6 × 10−5, 1 × 10−4, 3 × 10−4].

As a control experiment, we also initialized the
model with random weights, and we again performed
a hyper-parameter search over the learning rates
[3 × 10−4, 6 × 10−4, 1 × 10−3].

Results

In Figure 9, we show the results for the individual
problems. When using 28,000 training images, we
reached above 90% accuracy for all SVRT problems,
including the ones that required same-di"erent
judgments (see also Figure 3B). When using less
training images, the performance on the test set was
reduced. In particular, we found that the performance
on same-di"erent tasks dropped more rapidly than on
spatial reasoning tasks. If the ResNet-50 was trained
from scratch (i.e., weights were randomly initialized
instead of loaded from pretraining on ImageNet),
the performance dropped only slightly on all but one
spatial reasoning task. Larger drops were found on
same-di"erent tasks.

Appendix D: Recognition gap

Details on methods

Data set. We used two data sets for this experiment.
One consisted of 10 natural, color images whose
grayscale versions were also used in the original study
by Ullman et al. (2016). We discarded one image from
the original data set as it does not correspond to any
ImageNet class. For our ground truth class selection,
please see Table 1. The second data set consisted of
1,000 images from the ImageNet (Deng et al., 2009)
validation set. All images were preprocessed like in
standard training of ResNet (i.e., resizing to 256 ×
256 pixels, cropping centrally to 224 × 224 pixels and
normalizing).

Model. In order to evaluate the recognition gap, the
model had to be able to handle small input images.
Standard networks like ResNet (He et al., 2016) are
not equipped to handle small images. In contrast,
BagNet-33 (Brendel & Bethge, 2019) allows us to
straightforwardly analyze images as small as 33 ×
33 pixels and hence was our model of choice for this
experiment. It is a variation of ResNet-50 (He et al.,
2016), where most 3 × 3 kernels are replaced by 1 ×
1 kernels such that the receptive !eld size at the
top-most convolutional layer is restricted to 33 ×
33 pixels.

Machine-based search procedure for minimal
recognizable images. Similar to Ullman et al. (2016), we
de!ned minimal recognizable images or con!gurations
(MIRCs) as those patches of an image for which an
observer—by which we mean an ensemble of humans
or one or several machine algorithms—reaches ≥ 50%
accuracy, but any additional 20% cropping of the
corners or 20% reduction in resolution would lead
to an accuracy < 50%. MIRCs are thus inherently
observer-dependent. The original study only searched
for MIRCs in humans. We implemented the following
procedure to !nd MIRCs in our DNN: We passed
each preprocessed image through BagNet-33 and
selected the most predictive crop according to its
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Image WordNet Hierarchy ID WordNet Hierarchy description
Neuron number in ResNet-50

(indexing starts at 0)

fly n02190166 fly 308
ship n02687172 aircraft carrier, carrier, flattop, attack

aircraft carrier
403

n03095699 container ship, containership, container
vessel

510

n03344393 fireboat 554
n03662601 lifeboat 625
n03673027 liner, ocean liner 628

eagle n01608432 kite 21
n01614925 bald eagle, American eagle, Haliaeetus

leucocephalus
22

glasses n04355933 sunglass 836
n04356056 sunglasses, dark glasses, shades 837

bike n02835271 bicycle-built-for-two, tandem bicycle,
tandem

444

n03599486 jinrikisha, ricksha, rickshaw 612
n03785016 moped 665
n03792782 mountain bike, all-terrain bike, off-roader 671
n04482393 tricycle, trike, velocipede 870

suit n04350905 suit, suit of clothes 834
n04591157 windsor tie 906

plane n02690373 airliner 404
horse n02389026 sorrel 339

n03538406 horse cart, horse-cart 603
car n02701002 ambulance 407

n02814533 beach wagon, station wagon, wagon
estate car, beach waggon, station
waggon, waggon

436

n02930766 cab, hack, taxi, taxicab 468
n03100240 convertible 511
n03594945 jeep, landrover 609
n03670208 limousine, limo 627
n03769881 minibus 654
n03770679 minivan 656
n04037443 racer, race car, racing car 751
n04285008 sports car, sport car 817

Table 1. Selection of ImageNet classes for stimuli of Ullman et al. (2016).

probability. See Appendix D, Selecting best crop when
probabilities saturate on how to handle cases where
the probability saturates at 100% and Appendix D,
Analysis of di"erent class selections and di"erent
number of descendants for di"erent treatments of
ground truth class selections. If this probability of the
full-size image for the ground-truth class was ≥ 50%,
we again searched for the 80% subpatch with the
highest probability. We repeated the search procedure
until the class probability for all subpatches fell below
50%. If the 80% subpatches would be smaller than
33 × 33 pixels, which is BagNet-33’s smallest natural
patch size, the crop was increased to 33 × 33 pixels

using bilinear sampling. We evaluated the recognition
gap as the di"erence in accuracy between the MIRC
and the best-performing sub-MIRC. This de!nition
was more conservative than the one from Ullman et
al. (2016), who considered the maximum di"erence
between a MIRC and its sub-MIRCs, that is, the
di"erence between the MIRC and the worst-performing
sub-MIRC. Please note that one di"erence between our
machine procedure and the psychophysics experiment
by Ullman et al. (2016) remained: The former was
greedy, whereas the latter corresponded to an exhaustive
search under certain assumptions.
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Figure 10. (A) Recognition gaps. The legend holds for all subplots. (B) Size of MIRCs. (C) Fraction of images that have MIRCS.

Analysis of different class selections and
different number of descendants

Treating the 10 stimuli from Ullman et al. (2016)
in our machine algorithm setting required two design
choices: We needed to both pick suitable ground truth
classes from ImageNet for each stimulus as well as
choose if and how to combine them. The former is
subjective, and using relationships from WordNet
Hierarchy (Miller, 1995) (as Ullman et al. [2016] did in
their psychophysics experiment) only provides limited
guidance. We picked classes to our best judgment (for
our !nal ground truth class choices, please see Table 1).
Regarding the aspect of handling several ground
truth classes, we extended our experiments: We tested
whether considering all classes as one (“joint classes,”

i.e., summing the probabilities) or separately (“separate
classes,” i.e., rerunning the stimuli for each ground
truth class) would have an e"ect on the recognition gap.
As another check, we investigated whether the number
of descendant options would alter the recognition
gap: Instead of only considering the four corner crops
as in the psychophysics experiment by Ullman et al.
(2016) (“Ullman4”), we looked at every crop shifted
by 1 pixel as a potential new parent (“stride-1”). The
results reported in the main body correspond to joint
classes and corner crops. Finally, besides analyzing the
recognition gap, we also analyzed the sizes of MIRCs
and the fractions of images that possess MIRCs for the
mentioned conditions.

Figure 10A shows that all options result in similar
values for the recognition gap. The trend of smaller
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MIRC sizes for stride-1 compared to four corner crops
shows that the search algorithm can !nd even smaller
MIRCs when all crops are possible descendants (see.
Figure 10B). The !nal analysis of how many images
possess MIRCs (see Figure 10C) shows that recognition
gaps only exist for fractions of the tested images: In
the case of the stimuli from Ullman et al. (2016), three
out of nine images, and in the case of ImageNet,
about 60% of the images have MIRCs. This means
that the recognition performance of the initial full-size
con!gurations was ≥ 50% for those fractions only.
Please note that we did not evaluate the recognition
gap over images that did not meet this criterion. In
contrast, Ullman et al. (2016) average only across
MIRCs that have a recognition rate above 65% and
sub-MIRCs that have a recognition rate below 20%
(personal communication, 2019). The reason why our
model could only reliably classify three out of the nine
stimuli from Ullman et al. (2016) can partly be traced
back to the oversimpli!cation of single-class attribution
in ImageNet as well as to the overcon!dence of deep
learning classi!cation algorithms (Guo et al., 2017):
They often attribute a lot of evidence to one class, and
the remaining ones only share very little evidence.

Selecting best crop when probabilities saturate

We observed that several crops had very high
probabilities and therefore used the “logit” measure
logit(p), where p is the probability. It is de!ned as the
following: logit(p) = log( p

1−p ). Note that this measure
is di"erent from what the deep learning community
usually refers to as “logits,” which are the values before
the softmax layer. In the following, we denote the latter
values as z. The logit logit(p) is monotonic w.r.t. to the
probability p, meaning that the higher the probability p,
the higher the logit logit(p). However, while p saturates
at 100%, logit(p) is unbounded. Therefore, it yields a
more sensitive discrimination measure between image
patches j that all have p(z j ) = 1, where the superscript
j denotes di"erent patches.
In the following, we will provide a short derivation

for the logit logit(p). Consider a single patch with the
correct class c. We start with the probability pc of class
c, which can be obtained by plugging the logits zi into
the softmax formula, where i corresponds to the classes
[0, …, 1,000].

pc(z) = exp(zc)
exp(zc) +

∑
i &=c

exp(zi )
(2)

Since we are interested in the probability of the
correct class, it holds that pc(z) &= 0. Thus, in the regime

of interest, we can invert both sides of the equation.
After simplifying, we get

1
pc(z)

− 1 =

∑
i &=c

exp(zi )

exp(zc)
. (3)

When taking the negative logarithm on both sides,
we obtain

⇔ −log
(

1
pc(z)

− 1
)

= −log





∑
i &=c

exp(zi)

exp(zc)



 (4)

⇔− log
(
1 − pc(z)
pc(z)

)
= −log




∑

i &=c

exp(zi )





− (−log(exp(zc))) (5)

⇔ log
(

pc(z)
1 − pc(z)

)
= zc − log




∑

i &=c

exp(zi)



 (6)

The left-hand side of the equation is exactly the
de!nition of the logit logit(p). Intuitively, it measures
in log-space how much the network’s belief in the
correct class outweighs the belief in all other classes
taken together. The following reassembling operations
illustrate this:

logit(pc) = log
(

pc(z)
1 − pc(z)

)

= log(pc(z))︸ ︷︷ ︸
log probability of correct class

− log(1 − pc(z))︸ ︷︷ ︸
log probability of all incorrect classes

(7)

The above formulations regarding one correct class
hold when adjusting the experimental design to accept
several classes k as correct predictions. In brief, the logit
logit(pC (z)), where C stands for several classes, then
states

logit(pC (z)) = −log
(

1
pc1 (z) + pc2 (z) + ... + pck (z)

− 1
)

= −log




1∑

k
pk(z)

− 1





= log

(
∑

k

pk(z)
)

︸ ︷︷ ︸
log probability of all correct classes
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− log

(

1 −
∑

k

pk(z)
)

︸ ︷︷ ︸
log probability of all incorrect classes

= log

(
∑

k

exp(zk)
)

− log




∑

i &=k

exp(zi )



 (8)

Selection of ImageNet classes for stimuli of
Ullman et al. (2016)

Note that our selection of classes is di"erent from
the one used by Ullman et al. (2016). We went through
all classes for each image and selected the ones that we
considered sensible. The 10th image of the eye does not
have a sensible ImageNet class; hence, only nine stimuli
from Ullman et al. (2016) are listed in Table 1.
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ABSTRACT
Correlations between factors of variation are prevalent in real-world data. Exploiting such correlations
may increase predictive performance on noisy data; however, often correlations are not robust (e.g.,
they may change between domains, datasets, or applications) and models that exploit them do
not generalize when correlations shift. Disentanglement methods aim to learn representations
which capture different factors of variation in latent subspaces. A common approach involves
minimizing the mutual information between latent subspaces, such that each encodes a single
underlying attribute. However, this fails when attributes are correlated. We solve this problem by
enforcing independence between subspaces conditioned on the available attributes, which allows
us to remove only dependencies that are not due to the correlation structure present in the training
data. We achieve this via an adversarial approach to minimize the conditional mutual information
(CMI) between subspaces with respect to categorical variables. We first show theoretically that CMI
minimization is a good objective for robust disentanglement on linear problems. We then apply our
method on real-world datasets based on MNIST and CelebA, and show that it yields models that are
disentangled and robust under correlation shift, including in weakly supervised settings.

1 INTRODUCTION

Disentangled representations can be useful for improving fairness (Locatello et al., 2019a), interpretability (Adel et al.,
2018), controllable generative modeling (He et al., 2019), and transfer to downstream tasks (Van Steenkiste et al.,
2019). In addition, they can improve robustness on out-of-distribution data (Higgins et al., 2017b) (e.g., for domain
adaptation (Ilse et al., 2020) and domain generalization (Ben-Tal et al., 2009)). Most research on disentanglement
has assumed that the underlying factors of variation in the data are independent (e.g., that factors are not correlated).
However, this assumption is often violated in real-world settings: for example, in domain adaptation, the class
distribution often shifts between domains (yielding a correlation between the class and domain); in natural images,
there is often a strong correlation between the foreground and background (Beery et al., 2018), or between multiple
foreground objects that tend to co-occur (e.g., a keyboard and monitor) (Tsipras et al., 2020; Beyer et al., 2020).
Importantly, correlated data occur in areas that affect people’s lives, including in healthcare (Chartsias et al., 2018) and
fairness applications (Madras et al., 2018; Creager et al., 2019; Locatello et al., 2019a), and correlation shifts in these
applications are common (e.g., demographics are likely to differ from one hospital to another).

The goal of disentanglement is to encode data into independent subspaces that preferably match the ground truth
generative factors. A common approach to achieve this (used in ICA, PCA, and VAEs) is to ensure that the latent
subspaces share as little information as possible, by minimizing the mutual information (MI) between subspaces.
However, recently it has been shown that this fails to disentangle correlated factors (Träuble et al., 2020). Several works
have sought to address this by introducing partial supervision (Träuble et al., 2020; Shu et al., 2019; Locatello et al.,
2020b). Here, we show that even with full supervision, minimizing the MI can fail: it is impossible to encode generative
factors into independent subspaces if they are correlated in the training data. To address this, we propose minimizing
the MI between subspaces conditioned on the correlated attributes.

We compare three objective functions for learning disentangled representations: 1) standard supervised losses (such
as mean-squared error or cross-entropy) that encourage each subspace to encode a specific attribute; 2) a supervised

⇤ Equal contribution. †Shared senior authors.
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loss plus unconditional MI minimization; and 3) a supervised loss plus conditional MI (CMI) minimization. We first
show that approaches (1) and (2) fail on correlated and noisy data: minimizing a supervised loss cannot enforce that
there is little information shared between subspaces; MI minimization is too strong a constraint to satisfy when the
underlying factors of variation are correlated, and thus minimizing MI leads to decreased performance. We then show
that minimizing CMI yields disentangled representations that are robust to correlation shifts.

Overall, we aim to establish conditional independence as the correct notion of independence between latent subspaces
when disentangling data with correlated factors of variation.

Contributions.

• Most disentanglement metrics used in the literature assume that the attributes are uncorrelated, and thus are
not directly applicable to correlated data. We propose to use the predictive performance under correlation
shift as a measure of disentanglement applicable to settings with correlated factors of variation.

• We analyze the behavior of each objective function on a linear regression problem where all quantities of
interest can be computed analytically (Section 3). We show that minimizing the CMI between latent subspaces
yields a solution robust to test-time correlation shifts, while minimizing the unconditional MI (or only a
supervised loss) does not.

• We describe an adversarial approach for learning conditionally disentangled representations (Section 4).
• Then, we apply our approach to CMI minimization to two tasks based on real-world datasets—a multi-digit

occluded MNIST task and correlated CelebA—and demonstrate improved performance under correlation shift
relative to baselines (Section 5).

• We investigate the interplay between correlation strength and noise level in the training data. When data are
noisy and have strong correlations, the noise forces the model to rely on correlations when making a prediction;
this leads to failures of the baseline approaches when correlations shift at test-time, and demonstrates the
benefits of CMI minimization, which performs well across correlation strengths and noise levels.

• We show that CMI minimization can be applied in the weakly supervised setting, and show significant gains
compared to baselines.

Our code is available on Github.

2 BACKGROUND & RELATED WORK

ICA/ISA. Disentanglement is related to blind source separation (BSS), as both problems revolve around the question
of identifiability. A classic approach to BSS is Independent Component Analysis (ICA) (Comon, 1994; Jutten &
Herault, 1991; Bell & Sejnowski, 1997; Olshausen & Field, 1996), which assumes statistical independence between the
source variables (Jutten & Herault, 1991; Jutten & Karhunen, 2003). Independent Subspace Analysis (ISA) (Hyvärinen
& Hoyer, 2000), or multidimensional ICA (Cardoso, 1998), is a generalization of ICA where each component is
a k-dimensional subspace; dimensions within a subspace may have dependencies, while dimensions from different
subspaces must be independent. Our work can be seen as a form of nonlinear ISA that enforces conditional independence
between subspaces.

Correlations Between Features. With roots in ICA, most research on disentanglement focuses on data that was gener-
ated by independent factors, including synthetic benchmarks such as dSprites (Matthey et al., 2017), Shapes3D (Burgess
& Kim, 2018), Cars3D (Reed et al., 2015), SmallNORB (LeCun et al., 2004), or MPI3D (Gondal et al., 2019). In
real-world datasets on the other hand, factors are often correlated (Welinder et al., 2010; Lin et al., 2014). Träuble et al.
(2020) pointed out the challenges that arise when attempting to learn disentangled representations on correlated data,
and performed a large-scale empirical evaluation of the effect of correlations on widely-used VAE-based disentangle-
ment models. They proposed two approaches to ameliorate the harmful effects of correlations: 1) introducing weak
supervision during training, and 2) labeling data post-hoc to “correct” a pre-trained encoder. We show that even with full
supervision, correlations are problematic when enforcing independence between latent subspaces. Causally-informed
modeling (Zhang et al., 2020) is another approach to learning disentangled representations and extracting invariant
features.To investigate the effect of correlations systematically, it is common to modify existing datasets to induce
correlations, for example by subsampling the data, or generating synthetic datasets with the desired properties (Dittadi
et al., 2020; Cimpoi et al., 2014; Jacobsen et al., 2018; Locatello et al., 2019b). We follow this approach in our
experiments.

Unsupervised and Weakly-Supervised Disentanglement. Disentangled representation learning is often studied
in the unsupervised setting, where the ground-truth factors of variation are unknown. Widely-used approaches for
this include variational autoencoders (VAEs) (Kingma & Welling, 2013) and their variants (beta-VAE (Higgins
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et al., 2017a), TC-beta-VAE (Chen et al., 2018), FactorVAE (Kim & Mnih, 2018), etc.). However, it was shown by
Locatello et al. (2019b) that the assumption of independent source variables (e.g., attributes) is questionable, and that
purely unsupervised disentanglement may not be possible. This spurred interest in weakly-supervised methods (Shu
et al., 2019; Locatello et al., 2020b), where weak supervision is provided in the form of partial labels or grouping
information (Bouchacourt et al., 2018; Nemeth, 2020; Klindt et al., 2020). In this paper, we focus on comparing MI and
CMI minimization in the fully-supervised setting, as this is already challenging and provides useful insights.

Domain Adaptation/Generalization. We use predictive performance under correlation shift as a measure for the
quality of disentanglement. This is closely related to the fields of domain adaptation and generalization, with the
difference that we assume access to one source domain only. The goal of most related work in this field is to learn
representations from multiple source domains that transfer to known (e.g., adaptation) or previously unseen (e.g.,
generalization) target domains. This is done by either learning domain-invariant representations which discard domain
information (Tzeng et al., 2017) or by learning disentangled representations, with latent subspaces that correspond to
the domain and the class, respectively (Peng et al., 2019; Ilse et al., 2020; Liu et al., 2018). For the latter approach,
disentanglement is achieved by minimizing the mutual information between latent subspaces (Cheng et al., 2020;
Gholami et al., 2020; Nemeth, 2020). Zhao et al. (2019) discuss fundamental problems inherent in learning domain-
invariant representations when there are correlations between classes and domains (e.g., when the class distribution
shifts in the target domain). The goal of Invariant Risk Minimization (Arjovsky et al., 2019) is to find correlations that
are invariant over multiple training domains in order to improve generalization to out-of-distribution data.

Fairness. An important application of disentanglement is fairness. As machine learning systems are typically trained
on historical data, they often inherit past biases (e.g., from human decision-makers). This may result in unfair treatment
on the basis of sensitive properties such as ethnicity, gender, or disability. Typically, this can be addressed by modifying
the training data to be unbiased or by adding a regularizer (e.g. based on mutual information) that quantifies and
minimizes the degree of bias (Kamiran & Calders, 2009; Kamishima et al., 2011; Zemel et al., 2013; Hardt et al., 2016;
Cho et al., 2020).

Mutual Information. The mutual information (MI) between two random variables x and y, denoted I(x;y), is
the KL divergence between the joint distribution p(x,y) and the product of the marginal distributions p(x)p(y):
I(x;y) = DKL[p(x,y)||p(x)p(y)]. Minimization of MI has been used to implement an information bottle-
neck (Alemi et al., 2016) and to factorize representations (Jacobsen et al., 2018). MI minimization is at the heart
of many approaches to disentanglement. The conditional mutual information (CMI) is defined as: I(x;y | z) =
Ez [DKL[p(x,y | z) || p(x | z)p(y | z)]. CMI measures the dependency between two variables given that we know the
value of a third variable. For example, there is a dependency between a country’s number of Nobel laureates per capita
and chocolate consumption per capita (Prinz, 2020). However, this dependency is largely explained by the wealth of a
country, thus I(nobel; chocolate | wealth) < I(nobel; chocolate). In general, the CMI can be smaller or larger than
the unconditional MI.

Estimating & Optimizing Mutual Information. Many approaches have been proposed for MI and CMI estimation
and optimization. The Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018) uses a lower-bound of the
MI based on the Donsker-Varadhan dual representation of the KL divergence (Donsker & Varadhan, 1983). Poole
et al. (2019) provide an overview of variational bounds that can be used to estimate MI; most are lower bounds, which
are useful in principle for maximizing MI, but which have also been used to minimize MI (even though minimizing a
lower bound is not guaranteed to decrease MI). CLUB (Cheng et al., 2020) introduced a variational upper bound of
MI, providing a more principled objective for minimizing MI. Several CMI estimators have been proposed, including
conditional-MINE (Molavipour et al., 2020a), C-MI-GAN (Mondal et al., 2020), CCMI (Mukherjee et al., 2020), and
an approach based on nearest neighbors (Molavipour et al., 2020b). Many approaches to MI minimization are based on
batchwise shuffling of latent subspaces, sometimes referred to as metameric sampling (Belghazi et al., 2018; Nemeth,
2020; Feng et al., 2018; Park et al., 2020; Peng et al., 2019). The approach we use in Section 4 follows this paradigm of
latent-space shuffling.

3 DISENTANGLEMENT WITH CORRELATED VARIABLES: MOTIVATING CMI

A summary of notation is provided in Appendix A.

Problem Statement. Suppose we observe noisy data x 2 Rm obtained from an (unknown) generative process
x = g(s) where s = (s1, s2, . . . , sK) are the underlying factors of variation, also called source variables or attributes,
which may be correlated with each other. We wish to find a mapping f : Rm ! Rn to a latent space f(x) = z =
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Base Base + MI Base + CMI

Variance Explained, Training (Corr = 0.8) 91.9% 69.8% 90.9%
Variance Explained, Test (Corr = 0) 87.6% 65.0% 90.9%

Regression Matrix M (where ŝ = Mx)
✓
0.81 0.14
0.14 0.81

◆ ✓
1.07 �0.46
�0.46 1.07

◆ ✓
1 0
0 1

◆

Table 1: Robustness of linear regression under correlation shift for each of the objectives Base, Base+MI, and Base+CMI. Here, the
observations and predictions are in R2. The performance of the Base model drops under correlation shift. The optimal solution under
the constraint of minimal MI, I(z1; z2) = 0, fails to model the in-distribution correlated training data. The solution with minimal
conditional MI, I(z1; z2 | s1) = I(z1; z2 | s2) = 0, maintains consistent performance under correlation shift. Note that because the
generative process is given by g(s) = As = Is, the inverse is A�1

= I. In the last row, we see that only Base + CMI recovers this
true inverse.

(z1, z2, . . . , zK) such that each attribute sk can be recovered from the corresponding latent subspace zk by a linear
mapping Rk, e.g., ŝk = Rkzk such that ŝk ⇡ sk. We denote by z�i the set of subspaces {z1, . . . , zi�1, zi+1, . . . , zK}.
We consider three different objectives for learning the latent subspaces: 1) minimizing a supervised loss L (e.g., mean
squared error or cross-entropy),

PK
i=1 L(ŝi, si), denoted “Base”; 2) minimizing the unconditional mutual information

between subspaces in addition to the supervised loss,
P

i L(ŝi, si) + I(z1, . . . , zK), denoted “Base+MI”; and 3)
minimizing the conditional mutual information between subspaces conditioned on observed attributes, in addition to
the supervised loss,

P
i L(ŝi, si) + I(zi; z�i | si) denoted “Base+CMI”. We wish to learn a model that is robust to

correlation shifts, e.g., if we train on data where corr(si, sj) > 0, then we desire that the resulting model will perform
similarly on uncorrelated data, corr(si, sj) = 0, or anticorrelated data, corr(si, sj) < 0.

In this section, we motivate the use of CMI minimization for learning robust disentangled representations. We use a
linear regression task that can be solved analytically, and for which all quantities of interest, including MI and CMI,
can be computed in closed form. This allows us to compare the solutions obtained via the vanilla mean-squared error
objective (Base) to the solutions obtained by minimizing the MSE under the constraint that the MI or CMI between
latent subspaces is minimized. This yields insight into the behavior of the objectives in the idealized case where the
constraints they prescribe (I(z1; z2) = 0 for MI or I(z1; z2 | s1) = I(z1; z2 | s2) = 0 for CMI) are exactly satisfied.

First, we show that the supervised loss alone does not yield robust disentangled representations. Then, we show that
additionally minimizing the unconditional MI forces the model to learn an even worse solution. Finally, we show that
minimizing the conditional MI yields appropriately disentangled representations that are robust to correlation shift.

3.1 FULL SUPERVISION DOES NOT YIELD DISENTANGLEMENT

Here, we introduce a linear regression problem with correlated attributes. First, we analyze the solution obtained by
optimizing only the Base objective, which in this case is the mean squared error. Consider a linear generative model
with correlated Gaussian source variables s, given by:

x = As+ n , s ⇠ N (0,Cs) , n ⇠ N (0,Cn)

where A is the ground-truth mixing matrix and Cs and Cn are the covariance matrices for the source and noise
variables, respectively. We assume that x is observed and wish to disentangle the underlying source variables s; this
corresponds to finding the mapping A�1 that inverts the data generating process. When we have access to the source
variables, a natural approach is to minimize a supervised loss to ensure that each subspace contains information about its
attribute. The optimal linear regression solution, both in the least squares sense and with respect to maximum likelihood,
is given by the posterior mean:

ŝ(x) = E [s | x] = CsxC
�1
x x (1)

where Csx and Cx are the following covariance matrices:

Csx = E
⇥
s(As+ n)>

⇤
= CsA

> (2)

Cx = ACsA
> +Cn (3)

The least-squares optimal mapping CsxC�1
x in Eq. 1 is not equal to the inverse A�1 of the generative model, as it is

biased by the correlation structure Cs and Cn towards directions of maximal signal-to-noise ratio. Thus, regression is
sensitive to noise, and this can lead to failures when evaluating the model on correlation-shifted data. For this Gaussian
problem, we can compute the expected mean squared error (and therefore the expected variance explained) analytically:

E
⇥
(s� ŝ(x))2

⇤
= Var (s) = Tr(Cs) (4)
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Figure 1: Minimizing unconditional MI for the Gaussian linear regression task. To enforce unconditional independence, we
choose W such that Cov(z) is diagonal. In our case this is easy: the principal components of x are x1 + x2 and x1 � x2. The
optimal regression loss with minimal MI is then given by whitening and rotating the result by angle �opt which leads to maximal
variance explained (�opt = �⇡/4 for positive correlations and A = I).
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ŝ �

Corr = 0.34

ŝ1
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Figure 2: Visualisation of targets s, input data x and the predictions ŝ made by models using each of the different objectives

{Base, Base+MI, Base+CMI }. For Base, the predictions are more correlated than the data, revealing that the correlation in the
training data is used to compensate for the noise. Base+MI leads to uncorrelated predictions. This cannot be the correct solution, as
the targets are correlated. Only for Base+CMI does the correlation between the predictions and data match for both training and test
data.

In Table 1, we see that in the two-dimensional case where s = (s1, s2) for A = I, Cn = 0.01 · I and the train-time
correlation is corr(s1, s2) = 0.8, ŝ explains 91.9% of the variance in s (column “Base”). However, when the correlation
between s1 and s2 shifts at test time, such that corr(s1, s2) = 0, then performance drops to 87.6%. This drop occurs
because the estimator ŝ tries to make use of the assumed correlation between s1 and s2 to counteract the information
lost due to noise, but this correlation is no longer present in the test data (see also Figure 2). The gap in performance
between correlated and uncorrelated data indicates that s1 and s2 have not been correctly disentangled.

3.2 UNCONDITIONAL DISENTANGLEMENT FAILS UNDER CORRELATION SHIFT

In the 2D linear case, we have:

z = (z1, z2) = Wx, bs1 = R1z1, bs2 = R2z2 (5)

where the matrix W encodes the observation into the latent space. The linear regression example in Sec. 3.1 corresponds
to W = CsxC�1

x and Rk = 1. In standard supervised objectives, there is no constraint preventing a subspace zk

from containing information about other source variables than sk. A common approach to enforce independence is to
minimize the MI between the latent subspaces z1 and z2 (Chen et al., 2018; Peng et al., 2019). In the Gaussian case,
random variables are independent if and only if they are uncorrelated. The optimal linear regression weights W that
yield I(z1; z2) = 0 (e.g., such that Cov(z) is diagonal) can be computed by whitening x and rotating the result by an
angle �opt which leads to maximal variance explained. For our example in Table 1, where we have positive correlation
and A = I, the optimal rotation is �opt = �⇡/4 (see Figure 1). However, the resulting model no longer performs
well on in-distribution data (Table 1, column “Base+MI”). There is correlation between the source variables s1 and
s2 and therefore I(s1; s2) > 0. By enforcing independence, at least one of the subspaces cannot contain all relevant
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information about its attribute and thus will have poor predictive performance. We make this precise in the following
proposition.
Proposition 3.1. If I(s1; s2) > 0, then enforcing I(z1; z2) = 0 leads to I(zk; sk) < H(sk) for at least one k.

Proof. The proof is provided in Appendix D.

3.3 CONDITIONAL DISENTANGLEMENT IS ROBUST TO CORRELATION SHIFT

I(z1; z2) > 0 I(z1; z2|s2) = 0

Figure 3: The graphical model for two sources s1, s2
and corresponding latent subspaces z1, z2. We as-
sume the source variables have a common cause c. In
(a), when none of the sources are observed, there is
a path from z1 to z2, so we have I(z1; z2) > 0; in
(b) we observe s2, which breaks the path, and thus
I(z1; z2 | s2) = 0.

We have seen that enforcing unconditional independence between the
latent spaces does not solve the disentanglement problem. However,
considering the graphical model in Figure 3, z1 and z2 are indepen-
dent conditioned on either of s1 or s2: assuming a common cause for
the correlation between s1 and s2, there is a connection in the graph-
ical model between z1 and z2 introducing a statistical dependence.
Observing either s1 or s2 disconnects z1 and z2. Here, we show that
enforcing independence conditioned on each of the source variables
is also sufficient to yield a robust disentangled representation. For
our 2D example, enforcing conditional independence corresponds to:

I(z1; z2 | s1) = 0 and I(z1; z2 | s2) = 0 (6)

Intuitively, if s1 and s2 are correlated, then I(s1; s2) > 0 and know-
ing s1 gives us information about s2. If we can predict s1 from z1,
and s1 tells us about s2, then it must be the case that z1 contains
information about s2.

We wish to ensure that z1 and z2 share as little information as possible
(given the ground-truth correlation), to improve robustness to shifts.
Since z1 necessarily contains some information about s2, we enforce
that it does not contain any more information about z2 than necessary via I(z1; z2|s2), which states that if we know s2,
then knowing z1 does not give us more information about z2.

This does not penalize z1 for containing information about s2 due to correctly predicting the correlated variable s1

(and vice versa). In contrast to MI, this removes only the shared information which is not robust under correlation
shift, but keeps the shared information which is necessary to account for the correlation between the source variables.
The optimal solution under the conditional independence constraint (Eq. 6) is achieved by the mapping W = A�1,
successfully recovering the underlying generative model. This demonstrates the usefulness of minimizing CMI for
generalization under correlation shifts in the case of linear regression with Gaussian variables and motivates us to
investigate CMI minimization for larger-scale tasks.

4 METHOD: MINIMIZING CMI
For simple cases such as linear regression, we can compute and minimize the MI and CMI analytically; however, for
most tasks, there is no closed form for the mutual information. In this section, we describe an approach to minimize
the CMI for general classification tasks. Suppose we have a dataset D = {(x(i)

, s(i))}Ni=1 where x(i) is an example
and s(i) is a vector of attribute labels — s(i)k is the label for the k

th attribute of the i
th example. We consider discrete

attributes, s(i)k 2 N. Let f✓ : x 7! z denote an encoder parameterized by ✓ that maps examples x 2 Rm to latent
representations z 2 Rn. We aim to learn one latent subspace per attribute, such that each subspace is independent from
all other subspaces conditioned on the attribute it encodes.

We have I(x;y | z) = 0 if p(x,y | z) = p(x | z)p(y | z). Our method enforces the latter condition using an
adversarial discriminator. To obtain samples from p(z1, . . . , zK | sk) and p(zk | sk)p(z�k | sk), we loop over values
of sk, and for each condition {sk = 0, sk = 1, . . . }, we select examples from the minibatch that satisfy the condition,
giving us samples from p(z1, . . . , zK | sk); then we shuffle the latent subspaces zj , 8j 6= k jointly batchwise (e.g.,
combining zk from one example with z�k from another) to obtain samples from p(zk | sk)p(z�k | sk). To enforce
p(z1, . . . , zK | sk) = p(zk | sk)p(z�k | sk), we train the encoder f adversarially against a discriminator trained to
distinguish between these two distributions. The discriminator takes as input a representation and predicts whether it is
“real” (e.g., drawn from the joint distribution) or “fake” (e.g., drawn from the product of marginals). One discriminator is
trained for each attribute sk, which receives samples from the two distributions and the attribute value it is conditioned
on. In practice, we use a conditional discriminator, effectively sharing parameters between the discriminators for each
of the attributes. This process is illustrated in Figure 4. Algorithm 1 describes the encoder training loop; Algorithm 5
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batchwise
shuffle

Train discriminator to distinguish these
& train the encoder adversarially

Encoder

Latent 
Space Classifiers

Inputs

MI Minimization Conditioned on

Figure 4: Adversarial minimization of conditional mutual information via latent-space shuffling. We minimize the CMI
between latent subspaces, I(z1; · · · ; zK | sk). Here, we illustrate the algorithm for four attributes with corresponding latent spaces
{z1, z2, z3, z4}, where we condition on attribute s2. See Sec. 4 for a description of the method.

Algorithm 1 Adversarial Learning of Conditionally Disentangled Subspaces — Training the Encoder

1: Input: {�1, . . . ,�K}, initial parameters for K linear classifiers R1, . . . , RK

2: Input: ✓, initial parameters for the encoder f
3: Input: ↵,� learning rates for training the encoder and linear classifiers
4: while true do

5: (x, {sk}Kk=1) ⇠ DTrain . Sample a minibatch of data with attribute labels
6: z f✓(x) . Forward pass through the encoder
7: {zk}Kk=1  SplitSubspaces(z,K) . Partition the latent space into K subspaces
8: L 

PK
k=1 Lcls(Rk(zk;�k), sk) . Cross-entropy for each attribute

9: for k 2 {1, . . . ,K} do . For each attribute/subspace
10: z0 ⇠ p(z1, . . . zK | sk) . Samples from the joint distribution
11: z00 ⇠ p(zk | sk)p(z�k | sk) . Samples w/ batchwise-shuffled subspaces
12: L L+ log (1�D!(z00)) + log (D!(z0)) . Add adversarial loss
13: end for

14: ✓  ✓ � ↵r✓L . Update encoder parameters
15: �k  �k � �r�kL , 8k 2 {1, . . . ,K} . Update classifier parameters
16: end while

in Appendix C describes the corresponding discriminator training loop. We formally describe the algorithms for the
baselines (Base and Base + MI) in Appendix C.

This approach is architecture-agnostic, and can be used to factorize the latent space of any classifier or generative model
(e.g., VAEs (Joy et al., 2020) or flow-based models (Kingma & Dhariwal, 2018)). However, some models (such as
VAEs) may have objectives that interfere with the goal of obtaining conditionally independent subspaces; for example,
the ELBO encourages independence between all latent dimensions. In our experiments, we used linear and MLP
encoders rather than VAEs to avoid this conflicting objective.

Because the latent space is typically low-dimensional, we have a choice of different distribution alignment techniques, in-
cluding maximum mean discrepancy (MMD) (Gretton et al., 2006) and adversarial approaches (Goodfellow et al., 2014).
Different GAN formulations can be interpreted as minimizing different divergences: the vanilla GAN (Goodfellow et al.,
2014) minimizes the Jensen-Shannon divergence; WGAN (Arjovsky et al., 2017) minimizes the Wasserstein distance,
which has been used to define an analogue of mutual information called the Wasserstein dependency measure (Ozair
et al., 2019); f -GAN (Nowozin et al., 2016) minimizes an arbitrary f -divergence, etc. Each of these divergence
measures will be 0 if and only if the subspaces are independent, however their training dynamics may differ. In practice,
we found the vanilla GAN formulation to work well across our experiments.

5 EXPERIMENTS

Our experiments aim to answer the following questions: 1) What is the effect of the train-time correlation strength
and noise level on the solutions found by training with each objective, Base, Base+MI, and Base+CMI? 2) Can we
successfully learn conditionally disentangled representations for classification tasks using Algorithm 1? and 3) Does
CMI minimization lead to improved correlation-shift robustness on natural image datasets including MNIST and
CelebA?
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(a) Toy linear regression.
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(b) Toy classification with ten attributes.

Figure 5: Synthetic linear regression (left) and linear classification (right) tasks. We measure the performance (variance
explained for regression and accuracy for classification) on the correlated training data (magenta) and on test data with a range of
correlation shifts (green, solid line is the uncorrelated test data). The performance of the Base model in the uncorrelated setting
serves as a reference in each plot (dashed black line) and facilitates the comparison of the performance of the different objectives
(columns). In both tasks, we find that, Base+CMI leads to robustness to correlation shift independent of the noise level (x-axis) and
the strength of the correlation in the training data (rows), while the other approaches do not.

First, we present results on the analytically-solvable linear regression example, illustrating the effect of the correlation
strength and noise level on the solution obtained by each objective. Then, we demonstrate that our findings also
hold for a synthetic classification task with multiple attributes. Next, we employ the method described in Section 4
and investigate two realistic tasks, a multi-digit MNIST task with occlusions and correlated CelebA, and show that
minimizing CMI can largely eliminate the gap in performance caused by test-time correlation shifts. Finally, we
evaluate common disentanglement metrics and apply Algorithm 1 in weakly supervised settings. Experimental details
and extended results are provided in Appendix B.

Linear Regression. Here, we revisit the linear regression problem from Section 3, to investigate the impact of the
train-time correlation strength and noise level on the models learned with each of the objectives Base, Base+MI, and
Base+CMI. The results are shown in Figure 5a. We found that Base+CMI yields robustness to correlation shift across
all correlation strengths and noise levels, while the baselines do not. The performance of Base drops most severely under
correlation shift for strong train-time correlations and intermediate noise levels; in this regime, Base+CMI improves
performance substantially.

Toy Multi-Attribute Classification. Next, we investigated whether these findings hold for classification tasks
with multiple attributes. Here, binary source attributes sk = ±1, 8k 2 {1, . . . ,K} generate the observed data via
x = As+ n (we set A = I for simplicity) with normally distributed noise n ⇠ N (0,Cn). We induced correlations
between the attributes ak, such that the number of datapoints differs for the different combinations of attribute values. In
the multi-attribute setting, the correlation strength refers to the pairwise correlation between all attributes. Similarly to
the regression task, we find that Base+CMI leads to robustness under correlation shift (see Figure 5b and Appendix B.1).

Multi-Digit Occluded MNIST. Next, we designed a larger-scale task to investigate whether these properties hold
in a more complex setting. We created a dataset by concatenating two MNIST digits side-by-side, where the aim is
to predict both the left- and right-hand labels. We generated occlusion masks using the procedure used by Chai et al.
(2021); examples from our synthetic dataset under a range of noise settings are shown in Figure 6a. We used a subset
of MNIST consisting of classes 3 and 8 (which are visually similar and can become ambiguous under occlusions).
This mimics multiple-object classification in a way that allows us to control the correlation strength and noise level
(via the amount of occlusion), allowing for systematic analysis. This task is a more complex analogue of the synthetic
classification task from Figure 5b. We added explicit occlusion noise because the MNIST data itself is simple, and has
too little “natural” noise to clearly observe the predicted effects (e.g., for low noise levels, the supervised loss already
does well). While this task would also be possible for colored MNIST and dSprites, one advantage of our task is its
symmetry, which allows us to exclude potential side-effects: here, the attributes have the same type (the digit identity),
whereas the attributes in colored MNIST (digit identity and color) and dSprites (shape, size, position, etc.) are more
diverse.

Similarly to the toy tasks, we train an encoder to map images onto a D-dimensional latent space, which is partitioned in
two equal-sized subspaces corresponding to the two digits; we train a linear classifier on each subspace to predict the
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(a) Correlated training data and anti-correlated test data.
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(b) Performance comparison.

Figure 6: Multi-digit occluded MNIST. (a) Examples of the correlated training data (where 3-3 and 8-8 pairs are frequent)
and anticorrelated test data (where 3-8 and 8-3 pairs are frequent), under a range of occlusion strengths. (b) Accuracies under
correlation shifts for different noise levels, achieved by training with each of the objective functions Base, Base+MI, and Base+CMI.
Base+CMI achieves consistent performance across correlation shifts. Similarly to Figure 5, here we show the reference performance
of the model trained on uncorrelated data (solid black line), the performance on correlated training data (magenta) and on a range of
test-time correlations in [0, 1] (shaded green region, where solid green denotes the uncorrelated test performance).

(a) Correlated train data. (b) Anti-correlated test data.
(c) Performance comparison.

Figure 7: Correlated CelebA. (a) Training examples with correlation 0.8 between attributes Male and Smiling, such that the
majority of men are smiling while the majority of women are not. (b) Anti-correlated test examples, where the majority of women
are smiling. (c) Accuracies of each method under a range of correlation strengths, for validation data with the same correlation as the
training data, uncorrelated test data, and anticorrelated test data.

respective class labels. We consider different correlation strengths between the left and right digits in the training set
(where strong correlation means that the digits often match, e.g., 3-3 or 8-8 are more common than 3-8 or 8-3). We
evaluate each model on test data with correlation strengths ranging from [�1, 1]. The results are shown in Figure 6b. We
found that the conclusions from the toy experiments hold in this setting: supervised learning with only the cross-entropy
loss, as well as with unconditional MI minimization, fail under test-time correlation shift, while minimizing CMI is
more robust. Experimental details and extended results are provided in Appendix B.2.

Correlated CelebA. Finally, we consider a realistic setting using the CelebA faces dataset (Liu et al., 2015). In
contrast to the multi-digit MNIST task, here we do not add any artificial observation noise (as CelebA is a more complex
dataset that naturally has noise in observations and/or labels). We selected two attributes that we know a priori are
not causally related, Male and Smiling, and we created subsampled datasets with a range of training correlations
{0, 0.2, 0.4, 0.6, 0.8}. We evaluated our models on both anti-correlated and uncorrelated test sets (Figures 7a and 7b).
Figure 7c compares the performance of the baseline classifier, unconditional MI model, and conditionally disentangled
model under a range of correlation strengths. We found that minimizing CMI has a larger effect for medium-to-high
correlation; however, CMI minimization does not hurt performance at low correlation strengths. Note that while the
unconditional model appears to have good performance on the anti-correlated test set, its performance is poor on
the validation set (that has the same correlation structure as the training set), so this model does not perform well
on in-distribution-data. In contrast, the Base+CMI model performs well on both in-distribution data and shifted test
distributions. Also note that the problem of disentangling correlated attributes does not occur only under correlation
shift, but is already present in the source domain where certain attribute combinations will reliably be treated incorrectly.
For example, Base fails to recognize the rare non-smiling male faces in 49% of the cases, while Base+CMI fails only in
25% of the cases. Additional details are in Appendix B.3.

Disentanglement Metrics. Locatello et al. (2020a) showed that common disentanglement metrics are not
suitable for the correlated setting. For this reason, we focused on comparing performance under correla-
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tion shift, which we consider more suitable for correlated data: if a model cannot predict a factor of vari-
ation well for certain values of another factor, then the model did not successfully disentangle those factors.

Figure 8: Weakly-supervised CelebA. The x-axis shows the
number of labels per attribute used during training; the rightmost
datapoint corresponds to full supervision. Base+CMI outperforms
the other objectives under correlation shift.

However, one can still make use of the disentanglement
metrics by evaluating them on uncorrelated data, using
models trained on correlated data. We performed this
analysis for the toy classification and CelebA tasks, and
found that Base+CMI leads to improved disentanglement
scores across a wide range of metrics, compared to Base
and Base+MI (Appendix B.4).

Extension to the Weakly Supervised Setting. Algo-
rithm 1 can be applied directly to weakly supervised set-
tings; it is not necessary for each datapoint to have labels
for all attributes. We find that when reducing the number
of labels, Base+CMI outperforms the other objectives
under correlation shift (see Figure 8 and Appendix B.5).

6 LIMITATIONS & FUTURE WORK

Our study mainly concerns the setting where the underlying factors of variation are known. Practical applications of
this setting can occur with respect to fairness, where one may wish to train a model such that correlations that exist in
the training data are not relied upon for prediction. Nonetheless, full supervision is a strong assumption and an exciting
goal for future work would be to look into relaxing this assumption. Our experiment with the weakly supervised version
of the CelebA experiment is a first step in this direction.

We have shown that minimizing CMI yields predictions that disregard correlations between attributes in the training
data, which is helpful when correlations shift between the training and test data. This approach relies on knowing a
priori which correlations should not be used. This is the case, for example, for fairness applications where a person’s
race or gender should not affect the results. A direction for future work would be to automatically determine which
correlations are more or less likely to shift in held-out data and to add this step before applying our approach of avoiding
the unwanted correlations. One may incorporate ideas from IRM (Arjovsky et al., 2019), which leverages multiple
environments at training time to discover which correlations tend to shift and which are stable—e.g., to distinguish
between causal and spurious correlations, the latter of which we wish to avoid relying on. A fruitful direction for future
work would be to combine IRM-style discovery of spurious correlations with our approach, which can be used to
control for these correlations when learning disentangled representations. In a related vein, there has been recent work
which aims to discover environments when none are given explicitly (Creager et al., 2021), which may be useful in
combination with our work.

While CMI is defined for both continuous and discrete attributes, our method of shuffling the latent subspaces is only
applicable to discrete attributes. Discrete attributes are prevalent in many settings: in domain adaptation, the class
and domain are discrete; in multi-object classification, the class of each object is a discrete attribute; the foreground
and background of natural images are discrete, etc. Nevertheless, finding methods to minimize CMI for continuous
attributes is an interesting direction for future work. Another caveat of our method for minimizing the CMI via latent
subspace shuffling is the increased computational cost relative to minimizing the unconditional MI: the cost for CMI
scales linearly with the number of attributes and attribute values, while the cost for MI is constant.

7 CONCLUSION

Correlations are prevalent in real-world data, yet pose a substantial challenge for disentangled representation learning.
Standard approaches learn to rely on these correlations, especially when data are noisy, as the correlations provide an
easy-to-learn signal with predictive power. When the attributes are not causally related, this leads to poor performance
under test-time correlation shift. Although for small correlations the effects may not be large, relying on these
correlations and thereby systematically treating a subset of the data incorrectly, can be catastrophic for fairness. We first
showed that supervised learning and unconditional mutual information minimization fail to learn representations robust
to such shifts. We then argued that the correct notion of disentanglement in such cases is conditional disentanglement,
and we proposed a simple approach to minimize the conditional mutual information between latent subspaces. We
showed that conditionally disentangled representations improve robustness to correlation shift in analytically solvable
linear tasks, as well as on natural images. Overall, we established CMI minimization as a more appropriate alternative
to MI minimization, which sets the stage for the development of more powerful objective functions for disentanglement.
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APPENDIX

This appendix is structured as follows:

• In Section A we provide an overview of the notation we use throughout the paper.
• In Section B we provide experimental details, as well as extended results.
• In Section C we provide the algorithms for the baseline methods, namely for classification-only training and

unconditional mutual information minimization.
• In Section D we provide a proof of Proposition 3.1.

A NOTATION

Symbol Meaning

x Observations
s Ground-truth latent factors
ŝ Predictions of factors
z Latent representation
W Linear regression weights

R1, R2 Linear readout from the latent space z to predictions ŝ
n Isotropic Gaussian noise, n ⇠ N (0,Cn) with Cn = �

2
I

A Square matrix used to generate observations for the linear task as x = As+ n
f Encoder function
f✓ Encoder function with parameters ✓

Table 2: Summary of the notation used in this paper.

B EXPERIMENTAL DETAILS AND EXTENDED RESULTS

Method Details. Note that the dimensions m and n are arbitrary—in particular, n does not need to be smaller than
m. In principle, each subspace can have different dimension (e.g., the linear readout layer for each attribute can have
arbitrary dimensions A⇥S where A is the attribute dimensionality and S is the dimensionality of a particular subspace).

Compute Environment. Our experiments were implemented using PyTorch (Paszke et al., 2019), and were run on
our internal clusters. The toy 2D experiments were run on a single NVIDIA RTX 2080 TI GPU, and took approximately
48 hours for all the results presented. The MNIST and CelebA experiments were run on NVIDIA Titan Xp GPUs. Each
run of the multi-digit MNIST and CelebA tasks for a given method and correlation strength (and noise level in the
MNIST case) took approximately 12 hours, and these were run in parallel.

B.1 TOY MULTI-ATTRIBUTE CLASSIFICATION
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Figure 9: Data used for linear classification with two at-
tributes (a1 and a2), visualized for a range of correlation
strengths and noise levels.

We performed this experiment with two, four and ten
binary attributes. The results for varying numbers of at-
tributes are shown in Figure 10. For two attributes we
illustrated the data x for different correlation strength
and noise levels (Figure 9). Here, increasing the corre-
lation strength means that data points with a1 = a2 are
increasingly more common relative to a1 6= a2. The
noise level on the other hand determines the overlap of
the distributions and therefore the difficulty of the task.

Experimental Details. We used a PacGAN-style
setup (Lin et al., 2018) for our toy experiments, where
the discriminator takes as input a concatenation of 50
samples.
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(a) Two attributes.
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(b) Four attributes.
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(c) Ten attributes.

Figure 10: Toy classification with different numbers of attributes. Strong negative correlations could not be generated
for multiple attributes; thus only positive test correlations were evaluated for (b) and (c).

• Base: We used Adam (Kingma & Ba, 2014) with a learning rate of 0.01.
• Base + MI: We used Adam to optimize the encoder, linear classifiers, and discriminators. After each step

of optimizing the discriminator and encoder, we optimized the linear classifiers (R) for 10 steps. The
disentanglement loss term was weighted by a factor of 100 relative to the classification loss. In preliminary
tests, we found that the optimal learning rate depended on noise level, correlation strength, and number of
attributes. The results in Figure 5b were obtained using one of the following learning rates for the discriminator
{1e� 4, 2e� 4, 5e� 4, 1e� 3, 5e� 3}. The learning rate of the generator and linear classifiers was chosen
to be 10 times smaller than the discriminator learning rate.

• Base + CMI: For A = I, no optimization was necessary, as we already know the optimal solution to be
W = A�1 = I. We confirmed experimentally that the discriminator could not get above chance performance
for this solution.

B.2 MULTI-OBJECT OCCLUDED MNIST

We used minibatch size 100, and latent dimension D = 10, yielding two subspaces each of dimension 5. As the encoder
model, we used a three-layer MLP with 50 hidden units per layer and ReLU activations. We trained for 400 epochs,
using Adam (Kingma & Ba, 2014) to optimize the encoder, linear classifiers, and discriminators, with separate learning
rates for each component chosen via a grid search over {1e� 5, 1e� 4, 1e� 3}.

Correlated Data Generation. We used the default MNIST training and test splits, and held out 10k of the original
training examples to form a validation set, yielding 50k, 10k, and 10k examples in the training, validation, and test
sets, respectively. Each digit is first rescaled to be 32⇥ 32 pixels. The correlated data was generated on-the-fly during
training. Each example in a minibatch was created by: 1) sampling the left-right digit combination (e.g., { 3-3, 3-8,
8-3, 8-8 }) from a joint distribution encoding the desired correlation; 2) choosing random instances of each of the
selected classes (e.g., a random image of a 3 and a random image of an 8); 3) applying occlusions separately to each
image; and 4) concatenating the images, yielding a 32⇥ 64 example. This procedure was performed for each training
and test minibatch, yielding a larger amount of data than would be possible with a fixed dataset generated a priori. To
generate occlusions, we use the approach from (Chai et al., 2021), which produces contiguous masks similar to Perlin
noise (Perlin, 2002). We used gray occlusions to remove a potential ambiguity that exists with black masks (which
blend into the MNIST background): a masked 8 can become identical to a 3, so one could not tell whether the image is
a noisy 8 or a clean 3.

B.3 CELEBA

For all experiments, we used minibatch size 100, and latent dimension D = 10. As the encoder model, we used a
three-layer MLP with 50 hidden units per layer and ReLU activations. Similarly to the MNIST setup, we trained for
200 epochs, using Adam to optimize the encoder, linear classifiers, and discriminators. For each method, we performed
a grid search over learning rates {1e� 5, 1e� 4, 1e� 3} separately for each of the encoder, discriminator(s), and linear
classification heads; we selected the best learning rates based on validation accuracy.

Correlated Data Generation. We first pre-processed all images by taking a 128⇥ 128 center crop, and then resizing
to 64⇥ 64. Pixel values were normalized to the range [0, 1]. We used the original training, validation, and test splits
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(a) Base (b) Base + MI (c) Base + CMI

Figure 11: Average cross-entropy loss for the left and right digit predictions, under the strongest correlation we consider,
c = 0.9, at noise level 0.6 (where the noise is parameterized by a factor that has range [0, 1]).

(a) Base (b) Base + MI (c) Base + CMI

Figure 12: Accuracies for the left digit, under the strongest correlation we consider, c = 0.9, at noise level 0.6 (where
the noise is parameterized by a factor that has range [0, 1]).

(a) Base (b) Base + MI (c) Base + CMI

Figure 13: Accuracies for the right digit, under the strongest correlation we consider, c = 0.9, at noise level 0.6 (where
the noise is parameterized by a factor that has range [0, 1]).

provided with the CelebA dataset. In order to enforce arbitrary correlations between specific attributes, we subsampled
the data such that we retained the maximum possible number of examples in each of the Train/Validation/Anticorrelated
Test/Uncorrelated Test splits, while satisfying precisely the desired correlation. The validation set has the same
correlation as the training set, and Figure 14 shows the number of examples in each of these sets for the strongest
correlation we consider, c = 0.8. Figures 15, 16, and 17 show the cross-entropy loss and accuracies on each of the
factors Male and Smiling (with training correlation 0.8) over the course of optimization, for each of the methods
we compare (classification-only, unconditional disentanglement, and conditional disentanglement). We see that the
conditional model substantially outperforms the baselines, with a much smaller gap between validation accuracy and
both anti-correlated (AC) and uncorrelated (UC) test accuracies. Figures 18, 19 and 20 show confusion matrices for
each method on the correlated validation set, anticorrelated test set, and uncorrelated test set, respectively. Finally,
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Tables 3 and 4 show the prediction error of the models trained with the different objectives for both the combinations
that were common and rare during training. These results shows that some attribute combinations (such as the rare
non-smiling male faces) are reliably treated incorrectly.

Figure 14: Numbers of examples in the subsampled CelebA datasets for the strongest correlation we consider, c = 0.8.

(a) Base (b) Base + MI (c) Base + CMI

Figure 15: Loss curves for each approach on the Male-Smiling CelebA task, under the strongest correlation we
consider, c = 0.8.

(a) Base (b) Base + MI (c) Base + CMI

Figure 16: Accuracies on the attribute Male for each approach on the Male-Smiling CelebA task, under the
strongest correlation we consider, c = 0.8.
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(a) Base (b) Base + MI (c) Baes + CMI

Figure 17: Accuracies on the attribute Smiling for each approach on the Male-Smiling CelebA task, under the
strongest correlation we consider, c = 0.8.

(a) Base (b) Base + MI (c) Base + CMI

Figure 18: Confusion matrices for each approach on the correlated validation set of the Male-Smiling CelebA task,
under the strongest correlation we consider, c = 0.8.

(a) Base (b) Base + MI (c) Base + CMI

Figure 19: Confusion matrices for each approach on the anti-correlated test set of the Male-Smiling CelebA task,
under the strongest correlation we consider, c = 0.8.
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(a) Base (b) Base + MI (c) Base + CMI

Figure 20: Confusion matrices for each approach on the uncorrelated test set of the Male-Smiling CelebA task,
under the strongest correlation we consider, c = 0.8.
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Common Combinations Rare Combinations

Female Male Female Male
+ + + +

Non-Smiling Smiling Smiling Non-Smiling

Base 4% 4% 29% 51%
Base + MI 23% 28% 12% 31%
Base + CMI 10% 9% 20% 29%

Table 3: Percentage of incorrect predictions per subgroup for CelebA, evaluated on natural data (e.g., data with
naturally-occurring correlations, that has not been subsampled to induce a specific correlation strength), using models
trained on correlated data with c = 0.8.

Common Combinations Rare Combinations

Female Male Female Male
+ + + +

Non-Smiling Smiling Smiling Non-Smiling

Base 4% 5% 33% 49%
Base + MI 24% 28% 11% 26%
Base + CMI 9% 9% 19% 25%

Table 4: Percentage of incorrect predictions per subgroup for CelebA, evaluated on validation data (c = 0.8), using
models trained on correlated data with c = 0.8.
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B.4 DISENTANGLEMENT METRICS

We evaluated common disentanglement metrics (Locatello et al., 2019b) on uncorrelated test data using models trained
on correlated data. We performed this analysis for two of our datasets and found in both cases that Base+CMI reached
better scores compared to the other objectives for almost all metrics.

Toy Classification: Disentanglement results for the toy classification task with ten attributes are shown in Table 5. We
obtained similar results for two and four attributes, which are not reported for brevity.

CelebA: Since the disentanglement metrics require that the factors of variation are each encoded in one-dimensional
subspaces, we set latent dimension D = 2 for this experiment. In Table 6, we report the average and 68% confidence
intervals for five models trained on data with correlation level 0.8.

Metric Base Base+MI Base+CMI

IRS (Suter et al., 2019) " 0.377 0.573 0.605

SAP (Kumar et al., 2017) " 0.118 0.470 0.477

MIG (Chen et al., 2018) " 0.179 0.939 0.975

DCI Disentanglement (Eastwood & Williams, 2018) " 0.413 0.980 0.998

Beta-VAE (Higgins et al., 2017a) " 0.996 1 1
Factor-VAE (Kim & Mnih, 2018) " 1 1 1
Gaussian Total Correlation # 10.073 0.485 0.025

Gaussian Wasserstein Corr # 12.905 0.373 0.027

Gaussian Wasserstein Corr Norm # 0.866 0.037 0.002

Mutual Info Score # 0.975 0.197 0.149

Table 5: Disentanglement metrics for toy classification with ten attributes. Metrics are evaluated on the uncorrelated
test set. Bold font indicates model with best disentanglement score.

Metric Base Base+MI Base+CMI

IRS " 0.524 ± 0.043 0.548 ± 0.038 0.531 ± 0.041
SAP " 0.306 ± 0.003 0.296 ± 0.046 0.389 ± 0.005

MIG " 0.506 ± 0.01 0.455 ± 0.074 0.674 ± 0.007

DCI Disentanglement " 0.46 ± 0.009 0.596 ± 0.038 0.807 ± 0.023

Beta-VAE " 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Factor-VAE " 1.0 ± 0.0 0.999 ± 0.003 1.0 ± 0.0

Gaussian Total Correlation # 0.222 ± 0.012 0.056 ± 0.061 0.011 ± 0.003

Gaussian Wasserstein Corr # 0.351 ± 0.039 0.01 ± 0.009 0.002 ± 0.001

Gaussian Wasserstein Corr Norm # 0.098 ± 0.005 0.006 ± 0.004 0.005 ± 0.001

Mutual Info Score # 0.302 ± 0.022 0.111 ± 0.052 0.042 ± 0.006

Table 6: Disentanglement metrics for CelebA. Metrics are evaluated on the uncorrelated test set. Bold font indicates
model with best disentanglement score.

B.5 WEAKLY SUPERVISED SETTING

For the fully supervised CelebA experiment, labels for both attributes were available for all 10260 images. For the
weakly supervised setting, we reduced the number of labels to 5130 (50% of the labels of the fully supervised dataset),
2565 (25%), 1026 (10%), or 513 (5%) for each attribute. This implies that some images had both labels, some had only
one label and some images had no labels (for example when using 50% of the labels the distinction is as follows: 25%
of the images had both labels; 25% had only labels for attribute 1; 25% had only labels for attribute 2; and 25% had no
labels). The three objectives can be applied to these weakly supervised settings. For Base, the cross-entropy loss for
each attribute was computed only for the images that had labels for the corresponding attribute. For Base+MI no labels
are required for the unconditional shuffling; thus this objective can be applied even for the images without labels. For
Base+CMI, our method shuffles only images that have the same value for a given attribute. This also works if the labels
of the other attribute are missing. We used the same training parameters as for the supervised experiment, except for
increasing the number of training epochs (up to 1200 epochs) and adapting the minibatch size to the number of labels.
In Figure 8 we report the average and 68% confidence intervals over three runs with different seeds.
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C ALGORITHMS

In this section, we provide formal descriptions of the baseline approaches we use. Algorithm 2 describes the
classification-only baseline, that trains separate linear classifiers to predict attributes sk from the corresponding
latent subspaces zk. Algorithm 3 and Algorithm 4 describe the unconditional disentanglement baseline, that ad-
versarially minimizes the discrepancy between samples from the joint distribution p(z1, . . . , zk) and the product of
marginals p(z1) · · · p(zk). Algorithm 5 describes the discriminator training loop for the CMI minimization approach
from Section 4.

Algorithm 2 Supervised Learning on Subspaces

1: Input: {�1, . . . ,�K}, initial parameters for K linear classifiers R1, . . . , RK

2: Input: ✓, initial parameters for the encoder f
3: Input: ↵,� learning rates for training the encoder and linear classifiers
4: while true do

5: (x, {sk}Kk=1) ⇠ DTrain . Sample a minibatch of data with attribute labels
6: z f✓(x) . Forward pass through the encoder
7: {zk}Kk=1  SplitSubspaces(z, k) . Partition the latent space into k subspaces
8: L 

PK
k=1 Lcls(Rk(zk;�k), sk) . Cross-entropy for each attribute

9: ✓  ✓ � ↵r✓L . Update encoder parameters
10: �k  �k � �r�kL , 8k 2 {1, . . . ,K} . Update classifier parameters
11: end while

Algorithm 3 Learning Unconditionally Disentangled Subspaces — Training the Encoder

1: Input: {�1, . . . ,�K}, initial parameters for K linear classifiers R1, . . . , RK

2: Input: ✓, initial parameters for the encoder f
3: Input: ↵,� learning rates for training the encoder and linear classifiers
4: while true do

5: (x, {sk}Kk=1) ⇠ DTrain . Sample a minibatch of data with attribute labels
6: z f✓(x) . Forward pass through the encoder
7: {zk}Kk=1  SplitSubspaces(z, k) . Partition the latent space into k subspaces
8: L 

PK
k=1 Lcls(Rk(zk;�k), sk) . Cross-entropy for each attribute

9: z0 ⇠ p(z1)p(z2) · · · p(zk) . Samples w/ batchwise-shuffled subspaces
10: L L+ log (1�D!(z0)) + log (D!(z)) . Add adversarial loss
11: ✓  ✓ � ↵r✓L . Update encoder parameters
12: �k  �k � �r�kL , 8k 2 {1, . . . ,K} . Update classifier parameters
13: end while

Algorithm 4 Learning Unconditionally Disentangled Subspaces — Training the Discriminator
1: Input: !, initial parameters for the discriminator D
2: Input: �, learning rate for training the discriminator
3: while true do

4: (x, {sk}Kk=1) ⇠ DTrain . Sample a minibatch of data with attribute labels
5: z f✓(x) . Forward pass through the encoder
6: {zk}Kk=1  SplitSubspaces(z, k) . Partition the latent space into k subspaces
7: z0 ⇠ p(z1)p(z2) · · · p(zk) . Samples w/ batchwise-shuffled subspaces
8: L L+ log (D!(z0)) + log (1�D!(z)) . Add adversarial loss
9: !  ! � �r!L . Update discriminator parameters

10: end while
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Algorithm 5 Learning Conditionally Disentangled Subspaces Adversarially – Training the Discriminator
1: Input: !, initial parameters for the discriminator D
2: Input: �, learning rate for training the discriminator
3: while true do

4: (x, {sk}Kk=1) ⇠ DTrain . Sample a minibatch of data with attribute labels
5: z f✓(x) . Forward pass through the encoder
6: {zk}Kk=1  SplitSubspaces(z, k) . Partition the latent space into K subspaces
7: L 0 . L will accumulate the losses over all subspaces
8: for k 2 {1, . . . ,K} do

9: z0 ⇠ p(z1, . . . zK | sk) . Samples from the joint distribution
10: z00 ⇠ p(zk | sk)p(z�k | sk) . Samples w/ batchwise-shuffled subspaces
11: L L+ log (D!(z00)) + log (1�D!(z0)) . Add adversarial loss
12: end for

13: !  ! � �r!L . Update discriminator parameters
14: end while

25



Published at 1st Conference on Lifelong Learning Agents, 2022

D PROOF OF PROPOSITION 3.1

Proposition 3.1 If I(s1; s2) > 0, then enforcing I(z1; z2) = 0 means that I(zk; sk) < H(sk) for at least one k.

Proof. Assume that I(s1; s2) > 0 and at the same time I(zk; sk) = H(sk) (i.e., we are proving by contradiction).
Since I(z1; s1) = H(s1), we have H(s1 | z1) = 0 and with H(s1 | z1) = H(s1 | z1, s2) + I(s1; s2 | z1) (both
non-negative), it follows that H(s1 | z1, s2) = I(s1; s2 | z1) = 0. Since for the interaction information, by definition
I(s1; s2; z1) = I(s1; s2) � I(s1; s2 | z1), and I(s1; s2 | z1) = 0, we have I(s1; s2; z1) = I(s1; s2) > 0. Since we
also assume H(s2 | z2) = 0, we also have I(s1; s2; z2) = I(s1; s2) > 0.

We can use this to compute the fourth order interaction information I(s1; s2; z1; z2). By definition, we have
I(s1; s2; z1; z2) = I(s1; s2; z1) � I(s1; s2; z1 | z2). We just showed that I(s1; s2; z1) = I(s1; s2), and therefore
we have I(s1; s2; z1 | z2) = I(s1; s2 | z2). Together it follows that:

I(s1; s2; z1; z2) = I(s1; s2; z1)� I(s1; s2; z1 | z2) (7)
= I(s1; s2)� I(s1; s2 | z2) (8)
= I(s1; s2; z2) (9)
= I(s1; s2) > 0 (10)

On the other hand, we know that 0 = H(s1 | z1) = H(s1 | z1; z2) + I(s1, z2 | z1) and therefore I(s1, z2 | z1) = 0.
Therefore, the interaction information I(s1; z2; z1) = I(s1; z2)� I(s1; z2 | z1) = I(s1; z2) � 0. At the same time, we
assumed that I(z1; z2) = 0 and hence I(z1; z2; s1) + I(z1; z2 | s1) = 0, which shows that I(z1; z2; s1)  0. Together,
we see that I(z1; z2; s1) = I(s1; z2) = 0.

Now we can decompose I(s1; s2; z1; z2) in a different way: I(s1; s2; z1; z2) = I(s1; z1; z2)� I(s1; z1; z2 | s2). We
know that I(s1; z1; z2) = I(s1; z2) and therefore I(s1; z1; z2 | s2) = I(s1; z2 | s2) > 0 and that I(s1; z1; z2) = 0.
Therefore, it follows that:

I(s1; s2; z1; z2) = I(s1; z1; z2)� I(s1; z1; z2 | s2) (11)
= 0� I(s1; z2 | s2) (12)
 0 (13)

which is a contradiction with I(s1; s2; z1; z2) = I(s1; s2) > 0. Therefore, if I(s1; s2) > 0 and I(z1; z2) = 0, it must
hold that I(zk; sk) < H(sk) for at least one k, which we wanted to show.
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