
Predictive Articulatory speech synthesis Utilizing
Lexical Embeddings (PAULE)

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Konstantin Florian Sering

aus Berlin

Tübingen
2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 16.10.2023
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter/-in: Prof. Dr. R. Harald Baayen
2. Berichterstatter/-in: Prof. Dr. Martin V. Butz
3. Berichterstatter/-in: Prof. Dr. Bernd Möbius

Zusammenfassung

Das Predictive Articulatory speech synthesis Utilizing Lexical Embeddings (PAULE)
Modell ist ein neues Modell zur Kontrolle des artikulatorischen Sprachsynthesizers
VocalTractLab (VTL) [15]. Mit PAULE lassen sich deutsche Wörter synthetisieren. Die
Wortsynthese kann entweder mit Hilfe eines semantischen Vektors, der die Wortbedeu-
tung kodiert, und der gewünschten Dauer der Wortsynthese gestartet werden oder es
kann eine Resynthese von einer Audiodatei gemacht werden. Die Audiodatei kann
beliebige Aufnahmen von Sprecher:innen enthalten, wobei die Resynthese immer über
den Standardsprecher des VTL erfolgt. Abhängig von der Wortbedeutung und der
Audiodatei variiert die Synthesequalität.

Neu an PAULE ist, dass es einen prädiktiven Ansatz verwendet, indem es aus
der geplanten Artikulation die dazugehörige perzeptuelle Akustik vorhersagt und
daraus die Wortbedeutung ableitet. Sowohl die Akustik als auch die Wortbedeutung
sind als metrische Vektorräume implementiert. Dadurch lässt sich ein Fehler zu einer
gewünschten Zielakustik und Zielbedeutung berechnen und minimieren. Bei dem
minimierten Fehler handelt es sich nicht um den tatsächlichen Fehler, der aus der
Synthese mit dem VTL entsteht, sondern um den Fehler, der aus den Vorhersagen eines
prädiktiven Modells generiert wird. Obwohl es nicht der tatsächliche Fehler ist, kann
dieser Fehler genutzt werden, um die tatsächliche Artikulation zu verbessern. Um das
prädiktive Modell mit der tatsächlichen Akustik in Einklang zu bringen, hört sich PAULE
selbst zu.

Ein in der Sprachsynthese zentrales Eins-Zu-Viele-Problem ist, dass eine Akustik durch
viele verschiedene Artikulationen erzeugt werden kann. Dieses Eins-Zu-Viele-Problem
wird durch die Vorhersagefehlerminimierung in PAULE aufgelöst, zusammen mit der
Bedingung, dass die Artikulation möglichst stationär und mit möglichst konstanter Kraft
ausgeführt wird. PAULE funktioniert ohne jegliche symbolische Repräsentation in der
Akustik (Phoneme) und in der Artikulation (motorische Gesten oder Ziele). Damit zeigt
PAULE, dass sich gesprochene Wörter ohne symbolische Beschreibungsebene model-
lieren lassen. Der gesprochenen Sprache könnte daher im Vergleich zur geschriebenen
Sprache eine fundamental andere Verarbeitungsebene zugrunde liegen. PAULE integriert
Erfahrungswissen sukzessive. Damit findet PAULE nicht die global beste Artikulation
sondern lokal gute Artikulationen. Intern setzt PAULE auf künstliche neuronale Netze
und die damit verbundenen Gradienten, die zur Fehlerkorrektur verwendet werden.

PAULE kann weder ganze Sätze synthetisieren noch wird somatosensorisches Feed-
back berücksichtigt. Zu Beidem gibt es Vorarbeiten, die in zukünftige Versionen integriert
werden sollen.

3

Abstract

The Predictive Articulatory speech synthesis Utilizing Lexical Embeddings (PAULE)
model is a new control model for the VocalTractLab (VTL) [15] speech synthesizer, a
simulator of the human speech system. It is capable of synthesizing single words in
the German language. The speech synthesis can be based on a target semantic vector
or on target acoustics, i.e., a recorded word token. VTL is controlled by 30 parameters.
These parameters have to be estimated for each time point during the production of
a word, which is roughly every 2.5 milliseconds. The time-series of these 30 control
parameters (cps) of the VTL are the control parameter trajectories (cp-trajectories). The
high dimensionality of the cp-trajectories in combination with non-linear interactions
leads to a many-to-one mapping problem, where many sets of cp-trajectories produce
highly similar synthesized audio.

PAULE solves this many-to-one mapping problem by anticipating the effects of cp-
trajectories and minimizing a semantic and acoustic error between this anticipation
and a targeted meaning and acoustics. The quality of the anticipation is improved by
an outer loop, where PAULE listens to itself. PAULE has three central design features
that distinguish it from other control models: First, PAULE does not use any symbolic
units, neither motor primitives, articulatory targets, or gestural scores on the movement
side, nor any phone or syllable representation on the acoustic side. Second, PAULE is a
learning model that accumulates experience with articulated words. As a consequence,
PAULE will not find a global optimum for the inverse kinematic optimization task it
has to solve. Instead, it finds a local optimum that is conditioned on its past experience.
Third, PAULE uses gradient-based internal prediction errors of a predictive forward
model to plan cp-trajectories for a given semantic or acoustic target. Thus, PAULE is an
error-driven model that takes its previous experiences into account.

Pilot study results indicate that PAULE is able to minimize an acoustic semantic and
acoustic error in the resynthesized audio. This allows PAULE to find cp-trajectories that
are correctly classified by a classification model as the correct word with an accuracy
of 60 %, which is close to the accuracy for human recordings of 63 %. Furthermore,
PAULE seems to model vowel-to-vowel anticipatory coarticulation in terms of formant
shifts correctly and can be compared to human electromagnetic articulography (EMA)
recordings in a straightforward way. Furthermore, with PAULE it is possible to condition
on already executed past cp-trajectories and to smoothly continue the cp-trajectories
from the current state. As a side-effect of developing PAULE, it is possible to create large
amounts of training data for the VTL through an automated segment-based approach.

Next steps, in the development of PAULE, include adding a somatosensory feedback
channel, extending PAULE from producing single words to the articulation of small
utterances and adding a thorough evaluation.

5

Acknowledgments

My main line of research, which this thesis summarizes, evolved over the last seven years.
In creating the Predictive Articulatory speech synthesis Utilizing Lexical Embeddings
(PAULE) model and in finding appropriate individual LSTM-based models, Paul Schmidt-
Barbo did an excellent job and I am very thankful and indebted to him. Thank you, Paul!
Besides working with me and for me as a student assistant, he added the ability to start
directly from semantic vectors to the PAULE model in his master thesis. When creating
PAULE would be seen like building a house, I am the architect of the PAULE model and
Paul Schmidt-Barbo is the foreman. The model and my thesis would not have the same
quality without him.

In the picture of building a house, my two main supervisors, R. Harald Baayen and
Martin V. Butz, are the building contractors that supplied me with enough time and
money to work on the house and give guidance whenever general design decisions were
needed. I am very happy and thankful that they allowed me to do things my way and
that they supported me over the full time of my research. Especially, in the beginning,
when I was still completely new to the field, they helped me to find my research niche
and connected me to collaborators in Frankfurt am Main and Edmonton.

My third supervisor Benjamin V. Tucker is the stress analyst of the house. He warned
me about the complexity of my self-selected task on the one hand and gave me valuable
advice on design decisions on the other hand. Additionally, Benjamin Tucker supplied
me with plenty of resources where I only used a small fraction in the end. Thank you
Ben for your support and that you were always available if the need arose.

My collaborators helped me as craftspeople to build and focus on different aspects of
the PAULE model and building PAULE without them would lack important aspects.
They are: Fabian Tomaschek, Sebastian Otte, Elnaz Shafaei-Bejestan, Petar Milin, and
Motoki Saito. I have to thank the secretary and lab manager Tineke Oushoorn, who
helped me with the paperwork that is needed to do research at a German university.

Thanks go to my colleagues in the Quantitative Linguistics and the Cognitive Modeling
groups, the organizers and participants of the ESSV conferences, and the Machine
Learning Cluster in Tübingen. All these people and institutions gave me a supportive
and critical surrounding, from which my research benefited a lot. Whenever I wanted it,
I found some researchers who listened to my scientific problems and the ideas on how
to solve them and supplied feedback or discussed the topic with me. Even if there is no
list of names here, I am very thankful to this not explicitly mentioned group of people
and the individual persons in it.

Special thanks go to Peter Birkholz, Simon Stone, and Yingming Gao from TU Dresden,
who developed the VocalTractLab (VTL) and supplied me with different versions of the
code and always were supportive and helpful when questions arose.

7

Thanks go to my excellent students that did projects with me or wrote a thesis under
my supervision. They worked on different aspects of the PAULE model or closely
connected topics. In chronological order they are: David-Elias Künstle, Marc Weitz, Niels
Stehwien, Hannah Schütt, Tobias Menge, Maïwenn Fleig, and Paul Schmidt-Barbo.

Thanks go to Michael Gschwender and Nora Wickelmaier for reading and correcting
my thesis. Both gave me valuable feedback on how to improve the structure of the thesis
and improved the readability, reduced the number of spelling errors, and pointed out
grammatical errors and incomplete sentences.

Finally, I thank my wife Nina and my three children Ella, Enno, Leo for being around
and supportive and always opening new perspectives on this fascinating world.

Financial support

This research was financially supported in parts by the state Baden-Württemberg through
the University Tübingen and the European Union through an ERC Advanced Grant
(no. 742545) awarded to R. Harald Baayen. At the time of writing, I am a member of the
Machine Learning Cluster of Excellence, EXC number 2064/1 – Project number 390727645.

8

Preface

After finishing my Diploma in Physics and my Diploma in Psychology, I joined R. Harald
Baayen’s Quantitative Linguistics group (Quantling) in 2015. I started with three months
of getting to know the Quantling group and learning what research was conducted
here. After this initial phase, Harald and I decided that my research should focus on
the modeling of human speech production. At that time, the symbolic foundation of
language was questioned and gradual, embedding, and learning-based methods were
applied to different aspects of human language perception and production. Different
learning algorithms were able to model psycholinguistic findings without the use of
symbolic atomic units like graphemes or phonemes. In the Quantling group, human
learning was modeled by predicting outcomes from cues. Outcomes and cues both
could be present or absent in a learning event and the predictive value of a cue to an
outcome was summarized in a weight matrix. These weights were updated using the
Rescorla-Wagner learning rule. While being present or absent, the cues and outcomes
still had some binary and symbolic notion. Still, the cues and outcomes used were
qualitatively different from classical symbolic units like graphemes and phonemes.

New to the field of linguistics and with a methods, programming, and statistics
background, I learned a lot and supported different researchers in different tasks in the
first years. I took over the maintenance and responsibility of the compute hardware
(servers, network attached storage, networking) and for the computers my colleagues
in the Quantling group were using. Furthermore, I became the maintainer of the two
R packages ndl [5] and ndl2 [100], which were used to learn the weights in the learning
models that model human language. Later, I reimplemented and improved the fast
learning algorithm of ndl2 in Python as the pyndl package [97], which allowed for better
utf-8 support and got rid of a size limitation on the size of the weights. Furthermore,
pyndl allowed to implement generalized versions of the Rescorla-Wagner learning rule
and allowed for gradual cues and outcomes. As teaching duties, I took over the statistics
course, which is the only course where general linguists are exposed to quantitative
statistical methods and where at the same time computer linguists should learn their
basics in statistics.

As my background in Physics and Psychology as well as the planned Ph.D. research
were perfectly matching a Cognitive Science track, I joined Martin V. Butz’s Cognitive
Modeling group and registered my Ph.D. in Cognitive Science in the science faculty. This
came with the added benefit that regulations from the science faculty applied to me,
which I already knew from my studies in Psychology and Physics.

As someone joining without any linguistics training, but with knowledge in Psychology,
Physics, and Computer Science, I neither wanted to believe everything new I learned
about language and speech production nor question everything fundamentally. Especially,

9

I wanted to withstand the urge of the physicist in me to know everything better. I attended
some courses and read some books, but my main way of getting into the field was
by supporting different research with my statistics and methods skills. This allowed
me to get some in-depth knowledge of the research without the need for substantial
domain knowledge. Nevertheless, my first attempts at modeling speech production
with an evolutionary algorithm failed. This failure was due to the huge size and high
dimensionality of the motor space, problems in defining a proper scoring function, and
my eagerness to include time sequences of variably length from the beginning.

Throughout the whole seven-year period, I balanced my work duties as a researcher
and scientist with my family duties as a father of now three children and a full-time
working wife. This balancing act was made possible by working only part-time between
20 to 24 hours a week and the possibility of my wife to work on Saturdays. As we have
no grandparents or uncles around, childcare was a challenge, especially in Corona and
during lock-down times. Due to my wife’s excellent organizational skills, we managed
to balance things out most of the time. In the end, I am thankful to my wife and happy
and proud of the result I achieved in the last seven years as a half-time scientist. The
downside of being a half-time scientist is that it is nearly never possible to fully dive
into a scientific topic and separate oneself from the outside world. The upside is that
every thought, scientific problem, and possible solution has more time to sink in and
that a healthy distance is kept to one’s research. These forces reflected decisions and
prioritizations about the next research steps.

In 2016, after attending the Tagung experimentell arbeitender Psychologen (TeaP) [3,30],
I attended a small and private workshop at the Frankfurt Institute for Advanced Studies
(FIAS) in Frankfurt am Main, Germany, about goal-directed speech production with
echo-state networks and the VocalTractLab (VTL) articulatory speech synthesizer [15] by
Peter Birkholz. Peter Birkholz is a very kind guy from TU Dresden. He shared the code
for the VTL with me and we developed some tooling together at the workshop to run
the VTL API on Linux and interface it with Python. This workshop directed my research
into creating a control model for the VTL. The workshop in Frankfurt was followed by a
lab visit in Edmonton, Alberta Canada, with the phonetician Benjamin V. Tucker, who
became my third supervisor besides R. Harald Baayen and Martin V. Butz. I learned more
about speech and speech processing and presented my first ideas for my Ph.D. program
for the first time to an audience that had in-depth knowledge of speech perception and
speech production [85]. The year 2016 was completed by a joint measurement of Schlieren
photography in front of the mouth and nose at the Deutsches Zentrum für Luft- und
Raumfahrt (DLR) in Lampoldshausen, which resulted in a small corpus [107].

After attending the Machine Learning Summer School in 2017, I decided to stop
pursuing the evolutionary algorithm to control the VTL and produce intelligible speech
and started working on an idea of a gradient-aware planning algorithm with Martin
V. Butz. During this time, the acoustic representation was still very much the one used
in [4], which showed good performances in perception but seemed to lack important
detail for speech production. I only realized in the upcoming years that the representation
in [4] lacks too much detail for speech production.

10

In 2018, Fabian Tomaschek and I did a joint measurement with colleagues from
the Max-Planck-Institut (MPI) Intelligent Systems in Tübingen and the Deutsches
Forschungszentrum für Künstliche Intelligenz (DFKI) in Saarbrücken, where we mea-
sured electromagnetic articulography (EMA) and 3-dimensional dynamic surface scans
of the head [102]. Later this year, I looked at a multi-label problem [90] together with
R. Harald Baayen and Petar Milin. For this research, the reimplementation of the learning
algorithm in Python with pyndl came in handy. Furthermore, this research supported
investigations into applying linear algebra and the delta-rule onto lexical embeddings
and language perception and production and resulted in the Linear Discriminative
Learning (LDL) model [7].

From 2019 onwards, I attended and presented the progress of my research at the
Konferenz zur elektronischen Sprachsignalverarbeitung (ESSV). My first contribution
was an automated method to generate large amounts of training data [94] for the VTL. My
research made progress and gradient-aware planning ideas were presented in different
contexts [86,87]. From 2020 to 2022 my project and progress to an integrated model of artic-
ulatory speech production that uses lexical embeddings for its gradient-aware planning,
were refined. Pilot studies were conducted and presented at the ESSV and International
Seminar on Speech Production (ISSP) conference meetings [95,93,82,96,81,91,92,88,89]. In this
period, some of my collaborations that are not related to my Ph.D. research came to an
end as well [108,31,10,107,8].

That Paul Schmidt-Barbo joined me in 2020 was very helpful for my research. Further-
more, I am happy that I had excellent students to supervise from the cognitive science
and machine learning programs and that enough financial and computational resources
had been at hand at all time. Due to funding through the European Union, I stopped
teaching in 2018, which helped to focus my working hours as a half-time scientist on my
research. My supportive role was still active by maintaining the computing infrastructure
of the Quantling group and by maintaining several software packages. This thesis will
introduce the Predictive Articulatory speech synthesis Utilizing Lexical Embeddings
(PAULE) model, the result of the collaborative work that I pursued in the last years as
a half-time scientist and which resulted in a fully-functioning cognitively motivated
and plausible speech production model with a high-dimensional articulatory speech
synthesizer, which is directly informed by the predicted meaning of the planned speech.

11

Contents

1 Introduction 15
1.1 Guiding principles . 17

1.1.1 The word is the smallest meaningful unit 18
1.1.2 Meaning is start and end of speech production 18
1.1.3 Speech production is goal directed 19
1.1.4 Speech production is adaptive and error driven 20
1.1.5 Speech production is learned behavior 21
1.1.6 Articulation is influenced by experience 22
1.1.7 Sublexical units like the phoneme are not necessary (no phonemes) 22
1.1.8 Gestural scores or movement targets are not necessary (no gestures) 24
1.1.9 The model should be as simple as possible, while still being able

to model some main features of human behavior 26
1.1.10 Using time-series to time-series and time-series to fixed-vector

models . 26
1.2 Human speech system . 27
1.3 The human ear . 29
1.4 Goal of the thesis . 31
1.5 Thesis overview . 31

2 Articulatory speech synthesis 33
2.1 Short history of speech synthesis . 33
2.2 VocalTractLab (VTL) . 36

3 Data structures 41
3.1 Control parameter (cp)-trajectories . 42

3.1.1 Initial cp-trajectories . 44
3.1.2 Planned cp-trajectories . 44
3.1.3 Segment-based cp-trajectories . 45

3.2 Acoustic representation . 45
3.2.1 Target acoustics . 47
3.2.2 Predicted acoustics . 47
3.2.3 Produced acoustics . 47

3.3 Semantic (lexical) embeddings . 49
3.3.1 Target semantics . 50
3.3.2 Predicted semantics . 50
3.3.3 Produced semantics . 51

13

Contents

4 Data sets 53
4.1 Segment-based Synthesis and the GECO corpus 56
4.2 Montreal Forced Aligner (MFA) and Mozilla Common Voice 58
4.3 Electromagnetic Articulography (EMA) and the Karl-Eberhard Corpus

(KEC) . 59
4.4 Ultrasound recordings and /babibabubaba/ 60

5 PAULE 63
5.1 Journey to PAULE . 64
5.2 Planning . 73

5.2.1 Initialization . 75
5.2.2 Internal loop . 76
5.2.3 Outer loop . 77

5.3 Theory . 78
5.3.1 Autograd & gradient-aware models 78
5.3.2 Long-Short-Term-Memory (LSTM) 80

5.4 Individual component models . 83
5.4.1 Predictive forward model . 84
5.4.2 Embedder . 90
5.4.3 Inverse model . 94
5.4.4 Cp-GAN & mel-GAN . 100

5.5 Baseline models . 109
5.5.1 Schwa-model . 109
5.5.2 PAULEmlp . 109
5.5.3 LSTM instead of GAN . 111

6 Results 113
6.1 Loss reduction & classification accuracies 114
6.2 Conditioning on past cp-trajectories . 119
6.3 Anticipatory coarticulation . 120
6.4 Mid-sagittal ultrasound data . 122
6.5 EMA data . 122
6.6 Articubench . 125

6.6.1 Results for tiny data set . 126
6.7 Environmental costs . 128

7 Discussion 131
7.1 Guiding principles . 132
7.2 Comparison DIVA and FACTS . 133
7.3 Future work . 134
7.4 Conclusion . 137

Abbreviations 145

14

1 Introduction

Derivation of meaning is hence the ultimate goal of language processing —
and meaning is the start of the production process.

Harley, 2013 [44]

Spoken language and spoken communication are a central part of human society,
culture and the human communicative system in general. Babies acquire the skills of
understanding short utterances in their mother tongue in the first year of life. Producing
intelligible and meaningful utterances can take as long as three to four years in normal
development and improves along the whole life span. [83,13,45]

The ability to speak, once acquired seems so natural and effortless to most of us that it
is, at first glance, surprising that it is still difficult to mimic or synthesize speech with
mechanical devices or computer-based simulators [110,66,104]. Huge improvements have
been made in the last couple of years with the application of machine learning techniques
and deep learning combined with signal processing to understand (written) language
better and use it to create a good synthesis of human speech [114]. But there is still some
way to go until machines will be able to speak and to communicate as naturally as
humans do.

When it comes to our understanding of the processes concerning language, most
of our knowledge stems from studies that use written language as their primary
source of information. This concerns, for example, our understanding of semantics [58],
morphology [74] and even phonology [23]. The basic skills to read and write are only
acquired by most humans by the age of 5 years to 10 years – and in some case, many
language users never master this skill in their whole life span. Around 5% to 10% of
the human population even in the most developed countries never fully master basic
reading and writing skills. In 2018, a survey estimated that 12 % of the German adult
population can only read and write at the word-level at best and cannot read or write
full sentences or texts [19,42]. This is in stark contrast to spoken language, which almost
all adults are proficient in. Furthermore, over the timeline of mankind, the cultural skill
to read and write and the use of reading and writing for a substantial part of daily
communication is rather young. Before using reading and writing to communicate on a
daily basis, the main use of written language were financial transactions, documenting
laws, recording myths and historical events, and communication through letters [32].

Many languages differ systematically and substantially between their written and
their spoken form [22,16,78]. Still, written and spoken forms have enough in common
to classify them as belonging to the same language. The variability between different
speakers and their variability over time is a lot higher in spoken language compared

15

Chapter 1. Introduction

to writing, for which strict orthographic norms are enforced (see [41,49,59,116] for speech
and [11,12] for orthography). Furthermore, changes to the writing system and in written
language are slower compared to systematic changes in spoken language [46,9]. This high
variability and change in spoken language let to the argument, that speech has to be seen
as something separate to language as it is too transient in its nature. It is claimed by [25]

that speech is an imperfect realisation of the underlying true formal language system. In
this thesis we will be more inclusive and count speech as part of language.

It is only in the informal contexts of texting that the natural variability in language use
re-emerges. This raises the question of why it is that spoken language is easier to learn,
more efficient to produce, and more prevalent in human communication, if it is at the
same time more variable, less predictable, and faster changing than written language.

A large body of current language research focuses on written language either by
creating Deep learning models for natural language understanding like GPT-3 [18] or
translation models such as google translate or deepl, which are both trained on texts ,
not on speech. In psycholinguistics, a substantial amount of research is conducted on
the visual modality (reading) and the hand motion and finger fine control in writing
tasks. Given the prevalence of human spoken communication in our daily lives, both the
acoustic domain (listening) and the production of speech with the human articulatory
system are underrepresented.

One of the reasons for the lack of prevalent speech and articulatory modeling research
is the difficulty of doing quantitative, replicable research on it. There is on the one hand
the transient nature of human speech [76].

Where a written word is easily archived and read over and over again, the human
speech signal is gone, if not recorded at the moment of speaking. On the other hand,
working with speech data was extremely time-consuming before we had speech editors
along with the computational power to process it; researchers had to work with tape
recordings, and "splicing" was done with tapes [26]. Still, there are branches in linguistics,
in engineering, in communication research, and in psychology that focus on the domains
of perceiving and producing spoken language and speech. This research has created
a few big data sets, like the MALD [112] and the Redhen [51] data sets. These branches
have been around for at least 100 years but faced until recently some big methodological
challenges.

The big challenges in this field have been the large amounts of storage needed to
store decent amounts of speech recordings; the computation power needed to crunch
through the data once it has been collected; the high variability in the data; inverse
problems like decomposing recordings that mix different speakers into one signal or
remove included ambient noise; and the lack of fully automatic tools to extract and
process big amounts of useful features from spoken language add to this challenge. Even
now, a lot of handcrafting and fine-tuning is needed for rather simple tasks such as
extracting pitches, aligning subtitles at the word level, and adding phonetic segment
transcriptions to an audio signal [105].

But there is progress, many of the obstacles that have been posing problems in the field
of speech technologies and spoken language processing have been solved technically

16

1.1. Guiding principles

or mitigated recently. Storage has become a lot cheaper and easily available in the last
decade, and with the rise of supercomputers and graphics cards, computations that used
to take huge amounts of energy and time can now be conducted on consumer hardware.
Furthermore, technological advances in lossy audio codecs (like mp3 or Vorbis) 1 but
also in building cochlea implants, improved our knowledge of how human auditory
perception and speech perception works. Therefore, it might be the right time to come
back to the old problem of building a machine that produces speech similar to how
humans produce their speech.

The focus of this thesis is on the investigation of the interaction of the human
speech system with its physical limitations and constraints and the learned behavior
of controlling and using this speech system to produce intelligible, natural speech. The
control of the speech system is inspired by models of motor control in arm and hand
movements and is developed along ten guiding principles (see next section). These
guiding principles assume that speech is acquired by humans in the same way as other
motor skills. The work in this thesis therefore can be seen as a proof of concept that the
control of the human speech system does not necessarily require any language specific
module or rule based symbolic representations. This approach is in stark contrast to most
linguistic approaches of this task [25,110,69]. The findings in this thesis therefore suggest that
speech at the word level does not necessary need any symbolic internal representations
nor any rules to concatenate symbolic units like motor gestures or phonemes.

1.1 Guiding principles

The framework of speech production that developed in this thesis and named Predictive
Articulatory speech synthesis Utilizing Lexical Embeddings (PAULE) is based on the
following ten guiding principles. After the list of principles each of the guiding principles
is shortly described, setting the scene for the rest of this thesis. The overall rationale
behind PAULE is coded and reflected in these principles.

The guiding principles are:

1. The word is the smallest meaningful unit

2. Meaning is the start and end of speech production

3. Speech production is goal-directed

4. Speech production is adaptive and error-driven

5. Speech is learned behavior

6. Articulation is influenced by experience

1As lossy audio codecs aim for the best compression, i.e. lowest information density or bit rate, while still
being intelligible or even encoding all acoustically perceptual information, the way the encoding and
decoding works, can tell us something about the human auditory system. Furthermore, the bit rate of
the audio codec can be used as an upper bound for information content in the signal.

17

Chapter 1. Introduction

7. Sublexical units like the phoneme are not necessary (no phonemes)

8. Gestural scores or movement targets are not necessary (no gestures)

9. The model should be as simple as possible, while still being able to model some
main features of human behavior

10. Using time-series to time-series and time-series to fixed-vector models

1.1.1 The word is the smallest meaningful unit

In this thesis, we assume that words are the smallest stand-alone meaningful unit.
Presenting a word in isolation conveys some meaning to the listener. Sub-word units like
morphemes or even single sounds in minimal pairs, like /pin/ and /bin/, are important
features of these words, which to some extent encode, through their systematic use over
the vocabulary in a language, some meaning on their own. Still presenting morphemes
or single phones or vocalizations in isolation often convey no clear intention or meaning.
Even for words presented in isolation, the intended meaning might vary a lot and the
intention of the speaker may not become clear to the listener especially when words
are realized with substantial reduction. Nevertheless, many words, even if spoken in
isolation, do carry a relatively distinct meaning. Note, that we will focus in this thesis
on spliced-out spoken word tokens that are extracted from conversational speech from
non-professional speakers. Presenting these word tokens to human listeners has a high
chance that the listener cannot understand or transcribe the word played to them. The
word error rate can be as high as 50% to 80% for human listeners [4].

1.1.2 Meaning is start and end of speech production

Language and speech are a means to an end. It is a cultural development of the human
race to efficiently communicate with mostly meaningful utterances. These utterances
transfer observations, emotions, or facts about our surroundings, perceived world, or our
inner feelings to another human being. Furthermore, speech can be recorded, stored, and
played back later. This is very common for recordings of music songs, which usually have
a high emotional information density. This view on speech and language emphasizes that
there is a speaker (or sender), who encodes some meaning into the speech signal, and a
listener (or receiver), who decodes the speech signal and constructs her own meaning
from the signal. [83,13,45,44]

The focus on the meaning of the synthesized word introduces a many-to-one mapping.
Different articulations and even different words, like synonyms are mapped to a
similar semantic meaning. Nevertheless, the meaning constitutes an evaluation on how
intelligible and useful the synthesized speech signal is. The evaluation on the meaning is
in contrast to evaluations that work on the audio signal like acoustical measures or on
the articulation of the articulators. Making the meaning important favors the synthesis
of intelligible and meaningful speech and helps reducing the mimicry of irrelevant noise
sounds in a target speech recording. In the end, the speech production model presented

18

1.1. Guiding principles

here starts from a target meaning and ensures that this target meaning is encoded in the
speech signal by listening and deriving the meaning from her own speech. In this sense
meaning is the start and the end of the speech production process.

In PAULE, this is implemented by allowing error to modify the articulatory trajectories
such that the resulting speech better expresses the intended meaning. As the meaning
representation lexical fastText Library for efficient text classification and representation
learning (fastText) [40] word embedding vectors are used. They are called semantic lexical
word embedding vectors (semantic vectors) and are pre-trained for the German language
from large text corpora in a bag of word fashion to place similar word meanings into
similar regions of a 300-dimensional vector space, whereas different meanings are placed
at large distances from each other in this space.

Using a 300-dimensional vector embedding is different from the multi-hot multi-label
problem of language described in [90], where the multi-hot encoding uses a very high
dimensional sparse orthogonal and binary outcome space of around 50,000 dimensions,
the vector embeddings encode meaning into a high dimensional dense outcome space.
Therefore, the embedding vector space is considerably smaller compared to the multi-hot
encoding. In the end, the choice of the meaning representation is a design decision that
has to be done for a specific implementation but does not affect the overall rationale
behind PAULE.

1.1.3 Speech production is goal directed

Speech production is not only tied to meaning and inherently incorporates the transfer of
meaning and, therefore, can be assumed to be signal, it furthermore tries to achieve the
goal of conveying a specific (or broad) intention. [83,13,45] 2 After this intention is achieved,
the next goal can be selected by the speaker. But if the goal of conveying the intended
meaning is not sufficiently achieved, another utterance needs to be used to clarify the
meaning. After all the speaker wants to be understood.

By focusing on the goal-directedness in the speaking process, the focus of the speech
production process shifts from finding "the right articulatory movement pattern for a
specific target meaning" to "are the articulatory movement successful in transferring the
intended meaning". The articulatory movement will be defined by the control parameter
trajectories (cp-trajectories), which control the articulatory speech synthesizer VTL
(details follow in Chapter 2). What at first glance only appears to be a reordering of
the same statement, changes the task from finding one set of (global) cp-trajectories
for the target meaning, which will be the same in every context, to finding one set of
(situational) cp-trajectories out of many possible ones that transfers the meaning to the
specific listener.

Furthermore, rephrasing the task of speech production into a goal-directed problem
allows for defining an (additional) error term in the goal space, which in PAULE is the
word meaning. This goal space is with its 300 dimensions still large, but considerably

2Seeing the word as a signal is only a simplifying view on the matter and most likely cannot fully account
for effects that speech has on human behavior or on how speech is used in inner speech.

19

Chapter 1. Introduction

smaller than the variably sized articulator space of typically 30 channels by around
200 time-steps for 0.5 seconds of speech, which leads to around 5,000 dimensions.
Furthermore, the goal space has a better error landscape (and better gradients) to correct
for hitting the right target.

Note that this principle of goal directed speech production does not require a specific
goal representation and can be fulfilled with different implementations (cf. [68,20]). The
goal space can be an acoustic, a semantic, or a somatosensory goal space to name three
obvious choices for articulatory speech production [110,77,24]. Nevertheless, the decision in
which goal space is optimized is crucial for the performance and the general abilities of
the model. Optimizing in low dimensional acoustic goal space will result in the discovery
of the vowel space [72]. In semantics, optimizing on a decontextualized fastText semantic
embedding space is more robust and faster to train but should produce less nuanced
speech compared to a multi-modal context dependent semantic embedding space.

1.1.4 Speech production is adaptive and error driven

Besides being goal-directed PAULE is designed around the principle of error-driven
learning and error-driven behavior. Speech production in PAULE always and funda-
mentally relies (conceptually) on the back channel of the listener and the discrepancy of
the meaning and acoustic quality of the word token produced, i. e. in the comparison of
the finally synthesized word and its target meaning and target acoustics. This is called
the outer loop of PAULE as it is the loop of planning a set of cp-trajectories, executing it,
listening to the result, and using discrepancy between the resulting impression and the
intended one as a feedback or error channel.

In addition, similar to the outer loop an internal error-driven error channel is used,
which allows PAULE to adapt quickly to systematic distortions to the articulators and
ensures smooth cp-trajectories between novel sequences of sounds or words. The internal
loop uses a prediction or anticipation of the acoustics and meaning that PAULE plans
to produce. This prediction is based on the experience with past articulations and the
currently planned cp-trajectories. From this an error to the target acoustics and meaning
can be derived and used to further correct the cp-trajectories without articulating or
executing a single step through the speech simulator, hence the name internal loop
(cf. [21]).

One advantage of the internal loop is also, besides its conceptual beauty, that it executes
ten times to a hundred times faster compared to the articulatory synthesis with the
speech synthesizer. This allows to iteratively go through the internal loop substantially
more often. In each round, the whole word is imagined by PAULE, i. e. the predictive
time horizon into the future is typically between half a second to one second of speech.
The internal loop is conceptually similar to an "inner voice" during silent reading or
while thinking through problems verbally. Furthermore, an indirect silent acoustic route
boosts performance in visual comprehension [7].

For the correcting error signal, not only the semantic and acoustic prediction error
of the internal loop is used, but additionally the effort required for the articulatory

20

1.1. Guiding principles

movements is minimized. This results in a model that realizes the semantic and acoustic
target in mind as closely as possible with the least effortful articulatory movements.
Namely, the third time derivative, the jerk, is minimized to enforce periods of constant
acceleration, which corresponds to phases of constant force (force “mass ˆ acceleration;
F “ ma) [33,60,14] and the first derivative, the velocity, is minimized, which leads to
stationary or constant cp-trajectories in time intervals where no change is required by
the acoustic or semantic error.

Building a speech production system around the core idea of having an adaptive error-
driven mechanism that drives the control of the articulators allows to naturally account
for situational changes, like having to bite on a pen while speaking (or on a bite block
in an experiment [35]), having a fixated jaw through the strip of a helmet while cycling
or simply being drunk and don’t feeling the tongue anymore. Furthermore, this allows
adapting to silent or loud surroundings. To which extent the PAULE model achieves
this has not yet been investigated, as a guiding principle the adaptive error-driven
mechanism influenced the design process of and is implemented in PAULE.

1.1.5 Speech production is learned behavior

An error-driven and adaptive control model for an articulatory speech synthesizer can
in principle be designed to find a globally optimal solution. In contrast, PAULE does
not seek for the best planned cp-trajectories. Instead of finding the global optimum, a
subjective optimum, given the experience of the instance of PAULE with spoken words
and with producing words defines the error landscape and the gradients that lead to
improved cp-trajectories.

Through this thesis, it is assumed that speech production is a learned process that
at least involves the learned mapping between acoustic impressions of word tokens to
meanings and the learned mapping between the own vocal tract movement patterns to
the resulting acoustics. [83,13,45] In the light of the high dimensionality of the parameter
space of the human speech system, it is not surprising that the production of a given
word can be achieved by multiple, dissimilar, cp-trajectories. Furthermore, the learning
history or the known relations between the articulatory movements and the resulting
sounds introduce a bias on how to articulate newly learned words or words in a new
linguistic environment.

Viewing spoken language and speech as a learned skill enabling human communication
naturally results in the prediction of systematic dialects for second language acquisition,
i. e. native German speakers have a different English accent compared to Japanese
speakers and their English accent. The different accent results from systematic differences
in the produced sound quality, manner of articulation, but also by over-using uncommon
speaking variants or the higher probability of selecting uncommon words from the
meaning space. These effect should be shown by any learning model of human speech
production and are not original to PAULE. To which extend PAULE shows these effects
is still untested.

This subjective optimization is an important and desired aspect of a model of human

21

Chapter 1. Introduction

speech production that tries to account for individual differences, but is not necessarily so
desired if the technical task of solving the kinematic inverse problem for a specified target
acoustics and target semantics is focused on. Here, global gradients that account for the
full flexibility of the human speech system and give objectively optimal cp-trajectories
would be better suited, but then this guiding principle is violated.

1.1.6 Articulation is influenced by experience

In addition to language experience and learning that systematically influences, e. g.
second language acquisition, experience with the articulatory system itself and learning
which combinations of articulation result in which sound patterns, are important to
coordinate the different articulators in the production of different words or the same word
in different contexts. This training effect in articulation is different, but not completely
separate, to the influences of language use [108,106]. The training affects are tied closer to
the movement and speech sound repertoire used [109], whereas the language use defines
the meaning space and which acoustics are perceived to differentiate meanings, e. g. in
minimal pairs.

During language learning, a model of speech production should be able to follow the
slow but persistent changes in the vocal tract geometry from childhood to adulthood as
well as account for the fact that most humans initially underarticulate words and over
time, with continued practice, speech production comes ever closer to the norms of the
learner’s speech community until it is possible to even hyper-articulate words in late
childhood and adulthood.

In PAULE the influence of articulatory experience is, firstly, reflected in the initialization
or first guess of the cp-trajectories, which is conducted by a model that maps either
from a word’s target acoustics or a word’s target semantics to initial cp-trajectories.
Secondly, the correctness of the predictive forward model and its error gradients is better,
whenever more articulatory experience is accumulated. Both of these effects should lead
to higher coarticulation in high-frequency words compared to low-frequency words.

1.1.7 Sublexical units like the phoneme are not necessary (no phonemes)

Language and speech technology research has a long tradition in identifying, transcribing,
counting, and categorizing spoken language into atomic, symbolic, or quasi-symbolic
smallest sound units, so-called phonemes [56,111,101]. Phonemes were introduced in the
late 19th century by Polish and Russian linguists Mikołaj Kruszewski, Lev Shcherba,
and Jan Baudouin de Courtenay. Each phoneme (abstract speech unit) then can be
realized as a phone (concrete speech unit). The transcription of spoken language into
sequences of phones and phonemes and the counting of different phonemes used in a
language allows for nice and transparent comparisons between languages and gives
a measure of how reduced or articulated a specific chunk of speech is. Furthermore,
differences in dialects can be quantitatively measured and advice can be given to people
who need to train or relearn their speaking abilities. A phonemic transcription is a
partially subjective endeavor and is influenced by the expectation of the transcriber, who

22

1.1. Guiding principles

will introduce segments that are not realized and therefore not grounded in the speech
signal [52]. A transcriber needs substantial training and high inter-rater reliabilities can
only be achieved by agreeing on guidelines between transcribers. These guidelines are
no general guidelines but have to be newly created for each data set. As well known from
phonetics, the aligned data, being a sequence of phonemes alongside their respective
durations, loses a large amount of information compared to the rich acoustic speech
recording it is describing. Part of the lost information can be added by annotating for
stress, pitch, or emotion, which is neither commonly done nor used in this thesis.

For a long time, phoneticians truly believed, and many still do (certainly phonologists)
that the wild variation in actual speech can only be tamed by piping the signal through
a phone-based representation, a recent example is the Shortlist B model of speech
perception [67]. This is true for the task of text-to-speech systems as well, which involves
finding the right sequence of phonemes and then applying different rules on how to
recover a naturally sounding speech signal with the right intonation and a coherent
speaker identity. A first step usually involves syllabification and finding chunks consisting
of several phonemes that belong together. In the field of articulatory synthesis, in which
the articulators of the human speech system are modeled besides the resulting speech
signal, syllables or the smaller demi-syllables constitute an alphabet of reappearing
sound units and reused movement commands (see the section below). Even if these
approaches can account for coarticulation patterns, the underlying belief is that humans
store a small number of sound units and then use combinatorial rules to either extract a
word meaning during listening or to produce a word while speaking. These approaches
have inherent problems to account for systematic differences for the same phoneme
sequences in words with different meaning, the so-called homophones [37,61].

PAULE takes a radical approach and gets rid of all symbolic units. Therefore, PAULE
does not contain any phonemes, syllables, or demi-syllables. Instead, it assumes that
words are the smallest reasonable unit to investigate in the context of speech production.
For languages, like Finnish or Chinese where the exact definition of a word is under
debate, speech chunks of a duration between 0.5 to 2.0 seconds can be taken as long as a
semantic vector embedding can be attached to it. Strictly speaking, PAULE is not relying
on the word, but more general on chunks of speech with a duration starting from 0.5
seconds to 2.0 seconds to which a semantic word embedding vector can be assigned to.
As long as around 20 hours of training data are given in this chunked-up form, PAULE
should work to control the VTL for this language.

Phonemes might exist during the processing of speech by humans and might be a
useful summary especially in analyzing speech data as it allows to easily search for
similar sounds. Furthermore, many languages have an orthographic writing system and
speakers of those languages learned how to read aloud or sound-out words from letters.
Still, PAULE shows that the wide variety and flexibility of the spoken language, with
usually more than 150,000 word types per language can be modeled without any phone
representation.3 Implementing PAULE without any phone representation gets supported

3PAULE is trained on distinguishing 4,311 different word types with a few high-frequency words and
many low-frequency words in the German language. The data structures used in this implementation

23

Chapter 1. Introduction

by the successes of deep end-to-end models like Tacotron [117] and Wavenet [114] in recent
years. These end-to-end models can produce high quality synthesis without any explicit
phone representation. PAULE differs from these speech synthesis pipelines in the sense
that it is a speech production framework that controls a simulation of the human vocal
tract and, therefore, gives insights into how language might be executed and learned by
humans.

The step to remove any phone representation and their combinatoric potential is
rather drastic, even if good arguments can be made why phones and phonemes are a
questionable level of representation to fully describe speech [75]. Therefore, we discuss in
Chapter 7 what possibilities exist to add phoneme-like chunk representations back and
how it might be possible to combine them in a productive and combinatorial fashion.

1.1.8 Gestural scores or movement targets are not necessary (no
gestures)

In addition to having no phonemic, symbolic acoustic representation, PAULE will not
have any symbolic gestural or movement chunks. Gestural scores and articulatory targets
are less symbolic than phonemes, but still, they define the movement trajectories of the
articulators, like the tongue, at critical points in time. Often, these descriptions of the
human speech movements are defined for the full phoneme repertoire. Additionally,
special gestural scores can be defined at the level of syllables or demi-syllables and are
used when the (demi-)syllable occurs in a word.

Gestural scores and articulatory target positions for the articulators are a helpful tool
to understand what the human speech system has to achieve to produce a specific set
of sounds. These descriptions make it easy to pinpoint parts of the tongue and jaw
movements that are necessary for a sound and those aspects or degrees of freedom of
the human vocal tract that have a lot of flexibility even when a specific sound has to be
produced. This flexibility can be used to model coarticulations.

As gestural scores and articulatory targets connect the articulatory movement of
the human vocal tract to sound patterns, they have difficulties accounting for highly
reduced forms (cf. [50,53]) that are common in natural speech and, similarly, to account
for the high variabilities of the same word type, especially in the case of high-frequency
words. As gestural score sequences are often derived from phoneme sequences, one
problem is to model the presence of residual movements that are not acoustically visible.
Assume a phoneme is acoustically dropped in the resulting reduced speech and the
gesture of the tongue is still doing some movement in the direction of this dropped
phoneme. How can this be resolved? One option to recover this residual movement is
to add the phoneme into the phoneme sequence, even if it cannot be heard and cannot
be detected in the acoustic signal, and to implement a smoothing algorithm between
gestures that produces the residual movement. But other instances of the same word

are known to scale to all German words in different tasks. Therefore, even if more testing is needed
for PAULE, we are confident that the model scales to the full word repertoire. Chapter 6 shows the
evaluations done so far with and on PAULE.

24

1.1. Guiding principles

might not show this residual movement, therefore, adding the phoneme in there, might
not be the right choice. By deriving articulatory movements directly from the word
meaning, this problem is not encountered.

Another practical reason not to use any quasi-symbolic gestural scores or articulatory
targets is that it is not necessary to define all these symbols, which is tedious work and
needs to be done on a speaker-by-speaker basis and for each language. Furthermore, it is
not necessary to worry about reasonable mixing or blending methods between those
gestural scores or targets. By not defining these targets, our model needs to be capable of
handling the full flexibility of the human vocal tract. This is a challenge due to its high
flexibility and, therefore, dimensionality and the non-linear nature of the human speech
system. After solving the problem, PAULE allows to naturally produce highly variable
and highly reduced movement trajectories for given word tokens.

However, at the moment the guiding principle of not having any gestures is achieved by
using training data, which is created with a segment-based approach. The segment-based
approach builds upon the tedious work of creating gestural scores for each phoneme
in the German language. Therefore, the training data uses symbolic units in acoustics
and in the motor space and appropriate, but not perfect, blending methods to mix
the different gestural scores together over time. In the future, a goal-directed babbling
approach can make the need for this training data obsolete. Even while being trained
on the segment-based data, PAULE produces motor trajectories that show a different
time dynamics compared to the segment-based ones and therefore moves away from the
segment-based synthesis approach.

Another advantage of not defining any symbolic or quasi-symbolic units, like motor
primitives on the movement side, is the ability of the model to start with unclear and
under-articulated speech, which is hardly understandable, and then to gradually improve
its overall articulation so that eventually it will be able to produce a word with a careful
pronunciation, or even with a hyper-articulated pronunciation. The downside of not
having symbolic units is that it might be (slightly) more difficult to generalize to new
words, even if this is mitigated by learning a general mapping between sounds and
articulation.

As we focus on some fundamental principles that we try to combine into a coherent
model of single-word speech production, we make some more simplifications with
respect to the motor domain: The human vocal tract model we use is a geometrical
one, which define the positions of all articulators and all glottis parameters at each
point in time. For this, the model requires 30 parameters for each point in time. We call
these 30 parameters cps and the time-series of the cps the control parameter trajectories
(cp-trajectories). A single time-step in this model is roughly equivalent to 2.5 milliseconds,
which correspond to 110 samples taken from a 44,100 Hz audio signal. The geometrical
model in contrast to a biomechanical model does not model the muscle contractions that
are needed for the articulatory movements. The cp-trajectories define the shape and the
position. Therefore, the geometric model is capable of articulating movements that are
impossible to be performed by a real human being. Details on the vocal tract simulator
we use are given in Chapter 2. Another simplification is that we treat all 30 cps of the

25

Chapter 1. Introduction

vocal tract simulator mathematically the same way. Therefore, the tongue position and
the jaw position are mathematically treated equally, which might be reasonable, but they
are also treated in the same way as the subglottal pressure, the velum opening, and the
F0-frequency of the vocal folds, to name a few of the 30 parameters.

1.1.9 The model should be as simple as possible, while still being able to
model some main features of human behavior

The last two guiding principles have a more technical or methodological nature. PAULE
should be as simple as possible, while still being able to model some essential aspects of
the human speech production process. It is intended to be on a relatively high level of
abstraction and, therefore, only approximates many of the fine details of speaking.

Being simple and simplifying should not result in precise predictions that contradict
any known experimental findings. Furthermore, even if simple and simplifying the
model should still be falsifiable. To the best of my knowledge, PAULE is not falsified yet,
even if (of course) some of the findings in speech production might not be easy to be
replicated with PAULE. PAULE as a whole should give a good account of how speech
production could work on the behavioral side without considering muscle commands to
the muscle systems in the human vocal tract, nor by accounting for the fine detail of the
human ear and hearing system. Nevertheless, PAULE finds concrete cp-trajectories for a
given target semantics and/or target acoustics, which allows the speech synthesizer to
actually synthesize intelligible speech. In that sense, PAULE is a fully functioning and
complete implementation of speech production.

The guiding principle of simplicity helps not only in creating the PAULE framework
but additionally in selecting parts for the whole framework. The choice falls on parts that
are substantially less complex, even if these parts might show slightly lower accuracies
compared to complex parts. In the end, PAULE is not about the simple parts but about
how they interact with each other and how they allow for an adaptive error flow and an
internal and an outer loop to plan cp-trajectories. Having a simple and understandable
model that is complete in the sense that it implements all required steps, hopefully, leads
to a better understanding of the human speech process and how speech is different to
written language.

1.1.10 Using time-series to time-series and time-series to fixed-vector
models

The last guiding principle can also be seen as a first corollary of the no phoneme and no
gesture principles. The whole speech production framework presented here is based on
time-series to time-series models that are capable of modeling long-ranging relationships
in high-dimensional (multiple channel) time-series data. Furthermore, models are used
that collapse a time-series on a fixed-vector representation and models that unroll a
fixed-vector onto a time series of requested duration.

This guiding principle avoids the necessity to find and model segments or syllable
boundaries and there is no need for time warping or other methods from the dynamic

26

1.2. Human speech system

programming paradigm to match symbolic sequences on other symbolic sequences.
Furthermore, this principle allows to model the dynamics in articulation and does not
only explore the static configurations of the human speech system. Exploring the static
configurations simplifies the problem substantially and mainly leads to the recovery of
the vowel space [65,72,73].

In essence, the models in PAULE learn functions that establish mappings between acous-
tic and articulatory multivariate time-series data, and between static high-dimensional
semantic representations and articulatory multivariate time-series data. The time-steps
in the time-series data is selected to slightly oversample the underlying continuous
trajectories. Therefore, no abrupt changes or jumps from one time-step to the next one
are present and the time-series data is smooth and highly autocorrelated.

1.2 Human speech system

As PAULE is about articulatory speech synthesis, which approximates and models the
human speech system, a short introduction on how the human speech system works is
presented here.

Figure 1.1 shows a mid-sagittal slice of the human speech system. A description of a
simplified version of how the speech signal is produced in humans follows:

Human speech production begins with the lungs, which create, through gravity or
muscle contraction, a subglottal pressure that is higher than the supraglottal or ambient
pressure of the outside air. The pressure difference below and above the glottis leads
to vibration of the vocal folds. Depending on the pressure difference, the stiffness, and
the mass of the vocal folds, (quasi-)periodic flaps are produced with a fundamental
frequency F0. The periodic flapping leads to periodic density differences in the air. For
the speech or sound production, the supraglottal density changes are the important ones,
as they travel through the oral cavity and potentially through the nasal cavity, where
they are modulated and finally are emitted through the mouth or nose as a wave signal.

Some of the sound is transmitted through the skin while speaking. Therefore it is
possible to create communicative sounds even while mouth and nose are closed, even
if this is only possible for a short period of time as the pressure difference between
subglottal and supraglottal pressure can only be achieved for a short time period.

The modulation harmonics of the fundamental frequency of the sound waves is given
through the shape and modulation of the shape of the oral cavity. The harmonics or
resonance frequencies are called formants in the speech signal. Formant frequencies are
determined by the shape of the oral cavity. Humans modulate the oral cavity mainly
through jaw and tongue movements and less through the lips, raising of the sound box,
and by closing or opening the velum.

A useful view of the physics of sound production is to separate the process into
two components, the noise sources of the signal and the filters that modulate the noise
sources. The sources modulated by the filters result in the final waveform that the
listener hears. In this source-filter-model, the changes in sources and the changes in
the filter are independent of each other. For many sounds humans can articulate, this

27

Chapter 1. Introduction

Figure 1.1: Mid-sagittal slice through the human speech system. (c)

(c) public domain; via https://de.wikipedia.org/wiki/Datei:Sagittalmouth.png

28

https://de.wikipedia.org/wiki/Datei:Sagittalmouth.png

1.3. The human ear

is true as the main source are the vocal fold vibrations and the filter is mainly defined
by the position of the tongue, lips, and jaw. At small constrictions or closures in the
oral cavity, which result in fricatives like the [S] sound in the word /should/ or the [s]
sound in /missing/ or clicks, a sound source needs to be added to the F0 sound source of
the flapping vocal folds. Therefore, for fricatives and clicks the independence between
source and filter does not hold in practice. Still, even these processes can be modeled
with the source-filter-model by adding the necessary sources to the model manually,
whenever the filter gets into a specific regime.

A nice aspect of the source-filter model is that it gives distinct meaningful properties
to the sources and filters. In general, sources add sound energy, fundamental frequency
(also called pitch) and sound quality like whispering and aspiration, whereas the filter
imprints on the source signal formant modulations and removes different amounts of
energy through dampening, but cannot add any energy to the final signal.

Formulating the problem of articulatory speech synthesis to a source and filter model
already simplifies the problem, as there exist many different vocal tract configurations
that lead to very similar filter characteristics and in certain situations a small change
in the vocal tract configuration results in a huge difference in the filter characteristic.
Therefore, it is tricky to derive articulator positions from a source-filter configuration.

While we focus here on the aspects of speech production and how the lips, mouth,
nose, tongue, and the rest of the articulators are used in this process, it should not be
forgotten that all these parts have to serve other purposes as well. The main overlap
for most of the parts used during speaking are with breathing, to regulate the oxygen
level in the blood stream, and eating, to have enough intake of energy and spare parts to
repair and build up the human body.

In this thesis, the VocalTractLab (VTL) articulatory speech synthesizer is used. The
central problem for which PAULE is one possible solution (out of many) is how to control
this particular articulatory speech synthesizer and how to solve the many-to-one problem:
How many different possible cp-trajectories result in similar or the same acoustics. The
VTL is presented in detail in Chapter 2.

1.3 The human ear

The human ear is not the focus of this thesis. Nonetheless, approximating the human
hearing abilities and mapping the sound pressure changes or waveform of the speech
signal into a perceptual measure, the so-called acoustic representation, is one critical
source of error and feedback that helps ensure the quality of the synthesis in PAULE.

PAULE distinguishes clearly between physical, objective measures that can be reliably
and precisely measured and psychological measures that are subjective, i. e. undergo
some individual differences, and are shaped by the human perceptual system. As an
example, the pressure differences of the speech waveform are a physical measure, as
are the frequency components in the speech signal and its energy or magnitude. In
contrast, pitch and loudness are psychological measures, which are approximated here
by Mel-frequency bands and log-magnitude values. This is described in detail in Section

29

Chapter 1. Introduction

3.2.

Figure 1.2: The human ear. (c)

(c) (cc)-by Lars Chittka; Axel Brockmann via
https://upload.wikimedia.org/wikipedia/commons/d/d2/Anatomy_of_the_Human_Ear.svg

The human ear (see Figure 1.2) and the listening process work roughly in the following
way:
The sound waves as pressure differences propagate with the speed of sound through the
air until they reach the head and outside part of the ear, the auricle, of the listener, where
the sound waves are partly reflected and amplified. The original sound waves together
with the reflections travel down the external auditory canal, where at the end, the pressure
changes in the sound wave bring the tympanic membrane into a swinging motion. This
swinging motion then is amplified by the middle ear and is finally transferred to a liquid
in the inner ear. The inner ear then translates the mechanical motion through hair cells
and a tube-like geometry into frequency decomposed electrical nerve signals. As in the
middle ear, in this process, the signal undergoes some enhancement and amplification.

All the nerves that code the frequency-decomposed pressure signal are collected and
then routed to the brain to connect and share information with the second ear in a very
early stage to locate and decompose sound sources with two-ear listening. From here,
the signal is routed to different parts of the brain that are specialized in analyzing and
integrating the signal with other senses. For the purpose of this thesis, we will only
focus on and approximate the function of the ear and heavily simplify the higher level
processing of the brain with a single mapping that maps the acoustics to a semantic
representation.

30

https://upload.wikimedia.org/wikipedia/commons/d/d2/Anatomy_of_the_Human_Ear.svg

1.4. Goal of the thesis

The healthy human ear can perceive sound waves in the frequency range of 10 Hz
and 20,000 Hz. The sensitivity of the human ear gets smaller and smaller in terms of
absolute frequency steps measured in Hz for higher frequencies. A 20 Hz tone can be
clearly distinguished from a 30 Hz tone, but a 15,000 Hz tone is not or only barely
distinguishable form a 15,010 Hz tone. The decrease in sensitivity follows roughly a
linear decrease up to 1,000 Hz followed by a logarithmic decrease [103,113,2].

1.4 Goal of the thesis

In summary, the goal of the thesis is to develop an articulatory speech production
framework, which I term PAULE, that produces word utterances without relying on
symbolic motor (gestural scores; motor primitives) or sound units (phones). The start of
the speech production should be a target semantic embedding or target acoustics. The
resulting articulatory movement trajectories should fulfill some physical localisation and
constant-force constraints and should be within the range of what a human is capable
of doing with their vocal tract. The main challenge for model building is to bring the
high dimensionality of the vocal tract and its non-linearities under control and solve the
many-to-one mapping of how many different possible cp-trajectories result in similar or
the same acoustics.

1.5 Thesis overview

This thesis is divided into seven chapters. After this introduction (Chapter 1), articulatory
speech synthesis in general and the VTL speech synthesizer specifically are described
in Chapter 2. In Chapter 3, the different data structures and data transformations on
the semantic, articulatory, and acoustic domain are introduced and defined. The data
structures are filled with actual data in Chapter 4, where different data sets and corpora
are introduced. The main chapter is Chapter 5, where the PAULE model is introduced
and described. This is followed up with results (Chapter 6) and a discussion (Chapter 7).
The discussion includes a conclusion at the end.

31

2 Articulatory speech synthesis

(...)
Du hast nie gelernt dich zu artikulieren
Und deine Eltern hatten niemals für dich Zeit
Oh oh oh, Arschloch
(...)

Schrei nach Liebe, die Ärzte, 1993

As a first building block towards introducing the Predictive Articulatory speech
synthesis Utilizing Lexical Embeddings (PAULE) framework, it is important to under-
stand what an articulatory speech synthesizer is, which one we use and with which
approximations this speech synthesizer comes. The articulatory speech synthesizer is so
important because PAULE can be seen as a cognitively motivated control model for an
articulatory speech synthesizer. Therefore, the main goal of the PAULE framework is to
find suitable inputs to an articulatory speech synthesizer that results in the production
of speech, which has a desired meaning and a desired acoustic quality.

2.1 Short history of speech synthesis

Humans have a long tradition of building and controlling speaking machines. For a long
time, only mechanical devices were possible. Mostly, these speaking machines could be
separated into two components. One component would generate a period tone or sound
and corresponds to the human voice box with the glottis. Another tube-like geometry
modulated this sound to produce speech-like sound patterns, which correspond to the
oral and nasal cavities in humans.

Building machines like the Sprechmaschine by Kempeln (see Figure 2.1) allowed for
an analysis by synthesis approach to speech, which tries to understand human speech
production by resynthesizing the speech signal with machines or models. Already in
the eighteenth centuary, this analysis by synthesis approach led to the insight that
human natural speech is highly dependent and influenced by coarticulation patterns,
i. e. each speech sound sounds systematically different depending on the speech sounds
surrounding this sound. Furthermore, this results in the insight that it is not enough to
build a sound or phone repertoire and concatenate these together. Besides the scientific
nature of building these speaking machines, they were a fascinating attraction to people.
For a longer abbreviated history of speaking machines see Story [104].

With the rise of electric circuitry and electrical sound speakers, electrical devices
were constructed to control the electrical loudspeaker – without any articulation – to

33

Chapter 2. Articulatory speech synthesis

Figure 2.1: A replica of a speaking machine designed and constructed by Wolfgang von
Kempelen around 1790. (c)

(c) (cc)-by-sa Fabian Brackhane via
https://commons.wikimedia.org/wiki/File:KEMPELEN_Speaking_Machine_Replica_2017.png

synthesize a speech signal. Vocoders were devices that specialized in encoding a speech
signal into an electrical analog signal and then back into a speech signal from the analog
signal. They were specialized in the sense that they could not efficiently encode, e. g.
music. This is in contrast to radio broadcast signals, which were relatively agnostic to
the input in a given frequency interval. Vocoders found applications in the production
process of music, in the military, and in science.

The rise of the digital era and the availability of digital-to-analog and analog-to-digital
converters in the 441,000 Hz range fundamentally changed speech synthesis and speech
encoding technology. Even if most telephone lines in the time of the compact disk (CD)
still ran on an analog signal, the field of speech synthesis was dominated for a long time
by models that used so-called statistical synthesis. As for the vocoders, articulation is
not modeled in statistical speech synthesis, but a database of recordings of sounds and
syllables from a given target voice is used to build up the speech of a target utterance.
Concatenating all these sounds results in a very clunky and weird-sounding signal,
which tended to have a lot of unwanted clicks in it. But after some smoothing, filtering,
and other signal processing techniques, the speech synthesis sounds like the typical
computer voice from the 1990s.

34

https://commons.wikimedia.org/wiki/File:KEMPELEN_Speaking_Machine_Replica_2017.png

2.1. Short history of speech synthesis

The statistical synthesis was followed up by direct wave approximations like Tacotron [117]

and WaveNet [114]. Again these speech synthesis pipelines directly model the result-
ing speech signal and try to solve the text-to-speech problem without modeling any
articulation. These models were trained in an end-to-end fashion and did not work
with theoretical linguistic constructs such as phonemes or syllable, and yet they can
produce very naturally sounding speech signals. These end-to-end direct speech wave
approximation models, as well as hybrid models combining the last approaches with
the statistical synthesis, are the models that are used in modern days text-to-speech
synthesis systems, and can be used in daily life. Note, however, that these approaches
do not give any insight into how humans use their speaking system to produce speech.

In order to study human articulation and the physics involved in the human vocal
tract, articulatory speech synthesis systems have been developed. Until today, they do
not sound as natural as statistical or hybrid systems. One reason is that most of them
have a tube-like sound, which comes from a 1-dimensional tube approximation of the
3-dimensional human vocal tract. The big advantage of articulatory speech synthesis
systems is that they model the articulatory movements and from these synthesize the
acoustics. Therefore, they give direct insight into the speaking process. Examples for
articulatory speech synthesis systems are the Haskins Configurable Articulatory Synthesizer
(CASY) [48] with HLsyn [43], the Maeda synthesizer [62], and the TubeTalker [104] as well
as the VocalTractLab (VTL) [15], which is used in this thesis. Models that model the
articulatory control with some feedback loops are the Task Dynamic model of inter-
articulator speech coordination (TADA) model [66], which uses CASY as a synthesizer
backend, DIVA [110], which uses a variation of the Maeda synthesizer, and FACTS [69],
which makes use of CASY as its synthesizer. Our PAULE model, therefore, is comparable
to TADA, DIVA, and FACTS. Yet another approach was taken by the OPAL group of the
ArtiSynth [29] project, which developed a high-dimensional biomechanical model of the
human vocal tract, models the human vocal tract. However, this model is not coupled
with an acoustic synthesizer.

Both, the CASY and the Maeda synthesizer use a 2-dimensional representation of the
human vocal tract with only a few degrees of freedom and a 1-dimensional simulation
of the acoustic wave. These 1-dimensional simulations simplify the problem drastically
and keep computation times tractable. The 1-dimensional acoustic simulation uses a
tube approximation. This means that the oral cavity between the voice box and mouth is
approximated with a sequence of circular or elliptic tube segments of varying diameters.
This varying diameter results in differently sized areas and the characterization of the
complete sequence of tubes is called the area function. From this area function, either
pressure differences are calculated in the time domain or resonances in the frequency
domain, or a mixture of both. In the end, a wave audio signal is created.

To evaluate the quality of the 1-dimensional approximations of the 3-dimensional
human vocal tract, 3D-printed tube-approximated vocal tract shapes can be excited
and recorded in the laboratory and compared with the simulations at the computer [34].
Figure 2.2 shows the vocal tract tube approximation printed with hard plastic (PLA) and
silicon. Both of these were measured and compared to the computational simulation by

35

Chapter 2. Articulatory speech synthesis

Figure 2.2: 3D-printed vocal tract tubes for the vowel /a/ by [34]. Both tubes have the same
shape but consist of two different materials, one is out of hard plastic (PLA) and the
other one is out of silicon. The /a/ sound these tubes produce is measured and can be
compared to 1-dimensional acoustic simulations. (c)

(c) (c) TU Dresden Peter Birkholz via https://tu-dresden.de/ing/elektrotechnik/ias/stks/
die-professur/news/messung-der-transferfunktion-von-rohrmodellen-des-vokaltraktes

the group around Peter Birkholz at TU Dresden.
As both the Maeda synthesizer and the CASY synthesizer only use a 2-dimensional

mid-sagittal shape with a relatively small number of free parameters it does not produce
high quality speech and has to do manually allow for airflow along the sides of the oral
cavity like in the sound [l]. Furthermore the small number of free parameters comes
with less flexibility and therefore with less potential to achieve higher synthesis quality
with a different control model. The TubeTalker requires the Matlab environment, and
reimplementation in python proved prohibitively time-consuming. VTL has support for
the German language, for which we had articulatory data, and was easy to interface from
the Python programming language, hence the choice was made for VTL. In principle, it
should be possible to exchange the VTL with any other articulatory speech synthesizer.

2.2 VocalTractLab (VTL)

In order to understand PAULE and to define the problem scope, it is important to
understand the abilities and limitations of the articulatory speech synthesis system,

36

https://tu-dresden.de/ing/elektrotechnik/ias/stks/die-professur/news/messung-der-transferfunktion-von-rohrmodellen-des-vokaltraktes
https://tu-dresden.de/ing/elektrotechnik/ias/stks/die-professur/news/messung-der-transferfunktion-von-rohrmodellen-des-vokaltraktes

2.2. VocalTractLab (VTL)

which is controlled by PAULE. For PAULE, we choose the VocalTractLab (VTL) [15]

1 synthesizer as it is the most complete, flexible, and feature-rich articulatory speech
synthesizer currently available. Furthermore, it is able to synthesize the German language
and is Free and Open Source Software (FOSS) under active development [38]. The German
synthesis allowed us to subjectively and easily evaluate synthesis quality as German is
my mother tongue. That the VTL is FOSS allowed us to adjust its code to automate the
extraction of several parameters of interest. Some of the code contributions were merged
upstream into the official version of the VTL.

As VTL is under active development, over the time of the thesis, VTL was used in
different versions, namely 2.2 to 2.3, and in the end a modified version, 2.5.2quantling,
which is the version of VTL that is distributed with the paule python package to
allow for reproducible results. As VTL is Open Source Software, the source code to the
2.5.2quantling version of VTL can be found on GitHub2 as well as the source code for
the PAULE framework3.

In PAULE, the articulatory speech synthesizer is treated as a black box. The inputs to
the VTL are 30 real-valued input control parameters (cps) over time, so-called control
parameter trajectories (cp-trajectories). The cp-trajectories define the cp every 110 samples
of the resulting 44,100 Hz mono audio signal. The 44,100 Hz mono signal is the result of
the geometric and acoustic modeling in the VTL and is the output of the speech synthesis.
The 110 samples per 44,100 Hz results in a time-step of roughly 2.5 milliseconds. As
the duration of the speech signal can have variable length, the number of time-steps is
variable and usually between 50 and 400 time-steps for a single word in German.

VTL approximates and simulates the physical pressure changes of a 3-dimensional
vocal tract (see Figure 2.3) in a quasi 1-dimensional acoustic simulation. that simulates
the pressure differences in along the oral and nasal cavities. The shape of the oral cavity
is determined by the 3-dimensional geometric model. VTL therefore approximates the
physical properties of the human speech organ but does not try to emulate any muscle
commands. The geometrical positions of the tongue and jaw, as well as the properties of
the glottis and the subglottal pressure, are directly defined for each time-step.

In order to synthesize speech with VTL, a configuration or speaker file has to be loaded.
Throughout the thesis the standard speaker of VTL was used. In VTL 2.5.2quantling,
this is speaker JD3.speaker. The speaker file defines the fixed geometry of the vocal
tract as well as gestural scores for all German phonemes. In this thesis and in PAULE,
the gestural scores are used to generate some initial training data and to compare the
synthesis created by PAULE to the segment-based approach but are not used anywhere
else (see Section 4.1 for details).

The acoustic simulation in the time domain uses a tube approximation of the oral
cavity. Along the midline of the cavity variably sized tube sections are inserted. Each tube
section has an area associated with it. This approximation allows for a 1-dimensional
simulation of the pressure differences of the longitudinal wave and its resonances in

1https://www.vocaltractlab.de/
2https://github.com/quantling/VocalTractLabBackend-dev
3https://github.com/quantling/paule

37

https://www.vocaltractlab.de/
https://github.com/quantling/VocalTractLabBackend-dev
https://github.com/quantling/paule

Chapter 2. Articulatory speech synthesis

Figure 2.3: The VocalTractLab uses a 3-dimensional geometric model of the human vocal
tract and synthesises the pressure differences that are emitted by mouth and nose with a
quasi 1-dimensional acoustical model that simulates the pressure differences in along the
oral and nasal cavities. The shape of the oral cavity is determined by the 3-dimensional
geometric model.

the cavity. The oral cavity is not approximated by just a single tube, but by a tube
that branches into side cavities directly behind the glottis and below the tongue tip.
Additionally, the nasal cavities are connected to the tube by branching into the nasal
cavity. The nasal cavity is modeled with several Helmholtz resonators.

Modeling speech production with a tube-like model has a long tradition. The advantage
of the tube approximation is that a 3-dimensional wave and resonance modeling problem
can be reformulated into a 1-dimensional one, which is substantially easier to compute.
Reducing the problem space of the physical pressure simulation in this way only allows
for simulation of the longitudinal wave along the tube middle line. This is a good
approximation up to 8,000 Hz as wavelengths below 8,000 Hz do not fit into the cavity
of the mouth transversally and are, therefore, nearly completely damped out. The
completely damped out components of the signal do not need to be modeled in the first
place therefore ignoring transversal waves is a good approximation below 8,000 Hz. For
a frequency above 8,000 Hz, the wave length of transversal sound waves starts to fit
into the diameter of the oral cavity and has an effect on the finally emitted sound and,
therefore, the approximation of ignoring transversal waves degrades in this frequency
region. However, most of the time, the degradation will not play an important role
in speech however, as the important features of the speech signal is mostly encoded

38

2.2. VocalTractLab (VTL)

between 300 Hz and 3,000 Hz. Telephone companies made use of this fact and encoded
the transferred signal only in this narrow band. Still, even if speech is mostly intelligible
the sound quality is changed and degraded by limiting the signal to the narrow telephone
band. This is especially salient for fricative sounds in German like the [S] in /schön/, the
[z] in /Soße/, the [s] in /Soße/, the [ç] in /ich/, the [x] in /Tuch/, and the [h] in /heute/),
All these sounds are difficult to distinguish if dicateted through the telephone line.
Increasing the frequency band to the range of 20 Hz to 8,000 Hz seems to be wide enough
to capture all of the main features of speech and many speech research downsample
their data to a 16,000 Hz wave signal. With 16,000 Hz some features of fricatives are
still removed and to keep all information that can be perceived by the human ear it is
necessary to have a sampling rate of at least 44,100 Hz or 48,000 Hz.

As described in Section 1.3, which discusses the human ear, the audible frequency
range goes up to 20,000 Hz for healthy humans. This seems to be in contrast with the
observation that for, at least most western languages, the frequency range up to 3,000 Hz
seems to be sufficient for communication and the range up to 8,000 Hz seems to capture
most of the qualities of the speaker’s voice. This can be further understood by the fact
that the sensitivity in higher frequencies is lower in terms of absolute frequency steps
and that it is difficult for humans to produce high-frequency sounds. For men the F0 is
lowest and usually lies in the range of 100 to 120 Hz, for women the F0 is around 200
to 240 Hz and for children around 300 Hz. For intelligibility the F0 plays a subordinate
role, more important are the characteristics of the formants for vowels and the spectral
properties in the frequencies in the range of 2,000 Hz to 4,000 Hz for consonants in
non-tonal languages like German. Our ear can hear a lot higher frequencies than we can
produce, which is no surprise as the wider range in listening allows us to detect and
listen to sounds produced by small animals, like insects and birds, and gives us a better
ability to distinguish different cracking and colliding sounds. [36]

Figure 2.4 shows the mid-sagittal slice of the oral cavity of the VTL as well as a
depiction of ten of the 30 cp-trajectories and the resulting mono audio as a waveform.
Figure 2.3 shows the 3-dimensional mesh model of the VTL vocal cavity. The nasal
cavities and the lungs are not shown but are part of the synthesis process.

The VTL comes with a graphical user interface (GUI) to orchestrate gestural scores
and to show different aspects of the human vocal tract as a teaching tool. This GUI is not
used in this thesis.

As the PAULE framework is cognitively motivated, it accumulates experience on
the cp-trajectories to acoustic representation mapping. This knowledge is later used to
improve the synthesis and find cp-trajectories for a target semantics or a target acoustics
for a given word type. In the following Chapter 3, a precise description of the input
parameters of the VTL, the cp-trajectories, and the other data structures used in PAULE
are given.

39

Chapter 2. Articulatory speech synthesis

Figure 2.4: The VocalTractLab (VTL) receives control parameter trajectories (cp-
trajectories) as inputs and outputs a mono audio signal at 44,100 Hz.

40

3 Data structures

Smart data structures and dumb code works a lot better than the other way
around.

Eric S. Raymond

Before we start combining and building up the PAULE framework around the VTL
speech synthesizer (cf. Chapter 2), the different data structures and the rationale behind
them are introduced first. In order to understand the challenges and intricacies of the
PAULE framework, it is important to understand the decisions that went into these data
structures. This chapter is restricted to a discussion of the structure of the data and does
not touch upon the data sets themselves – these will be introduced in Chapter 4. The
data structure tells us, which information is in principle presented to the different models
and mappings, whereas the data sets tell us, which information is actually given. The
actually given information is always a subset of the information that could in principle
be encoded into the data structure.

The current version of PAULE, the subject of this thesis, does not take visual information
into account. It also does not receive somatosensory feedback. It cannot feel or taste the
tongue or lips and does not know where the tongue is in contact with other articulators.
Furthermore, it does not extract any meaning from the articulatory movement. The model
only extracts meaning from the acoustics and cannot handle silient speech. Therefore,
the model is a little bit like a blind person that has no feeling in its articulators and only
uses the acoustic information as a source for the meaning of the uttered word. A topic for
further research is to integrate visual and somatosensory information into the PAULE
model.

The data structures are chosen to slightly oversample the underlying signal and/or
to be of slightly higher resolution of what is commonly done in speech research. This
decision should present the model with more information than what is needed and
should foster the ability to let PAULE select relevant information, while still keeping
computational costs reasonably low. Increasing the resolution of the data structures
is expected to slow down computations in PAULE considerably without leading to a
substantial increase in accuracy.

All models are trained and all results are calculated on the data structures presented
below. These data structures are human-readable, theoretically motivated, and work
well within the PAULE framework.

41

Chapter 3. Data structures

3.1 Control parameter (cp)-trajectories

The inputs to the VTL simulator over time, the so-called control parameter trajectories
(cp-trajectories), are the central data structure in this thesis. The PAULE model is given
the task to find optimal values for the cps, across three different tasks: mimicing (acoustic
only; copy-synthesis), meaning-driven speaking (semantic only), and speaking driven
by both mimicing and semantics (semantic-acoustic task). In the configuration used
throughout this thesis, the cp-trajectories have 30 channels and are defined every 110
samples of the produced 44,100 Hz audio signal therefore roughly every 2.5 milliseconds
(« 110{44100Hz “ 11{4410s « 0.002494s).

As control parameters or channels have different purposes and define different aspects
of the speech synthesis model, different units are attached to them and they operate
on different scales. To make all parameters comparable to each other for each channel
its central value (pmax`minq{2) is subtracted and this centered value is divided by the
theoretical range (max´min) of the channel. The resulting channels are all distributed
around zero with a range of roughly -1 to +1 (Listing 3.1). The names and units of all 30
parameters can be found in Table 3.1 and in Table 3.2.

As this normalization step is a linear transformation with a known and theoretically
grounded intercept and scaling factor, the inverse is easily computed and does not lose
any information. Still, the normalization achieves that all channels are unitless and
comparable in size to each other and therefore (linearly) combining different channels
can be justified.

Listing 3.1: Normalizing the cp-trajectories
1 import numpy as np
2
3 from paule import u t i l
4
5 # a l l o c a t e 5 t ime− s t e p s o f " c p s "
6 cps = np . ones ((3 0 , 5))
7 normalized_cp = u t i l . normalize_cp (cps)
8 inv_norm_cps = u t i l . inv_normalize_cp (normalized_cps)
9 a s s e r t np . a l l c l o s e (cps , inv_norm_cps)

Although not all of the 30 control parameters work the same way, they receive identical
treatment in our model. In this sense, our model is generic. Possible improvements by
differently treating different cps channels is a topic left for future work.

During our modeling work, three different major versions of VTL were released.
Each verion of VTL slightly changed the physical interpretation of the channels in the
cp-trajectories. The PAULE model in its configuration presented here, was trained and
tested on two major versions. Results were very similar, which makes us confident that
PAULE is relatively agnostic about future changes to the VTL and might even transfer
well to another articulatory speech synthesis system.

There are three distinct types of cp-trajectories used in PAULE. These are described in
detail in the following subsections.

42

3.1. Control parameter (cp)-trajectories

Table 3.1: First 19 parameters out of the 30 parameters (channels) of
the cp-trajectories of the VTL are the vocal tract parameters.

Vocal Tract Parameters

Abbr. Name Min. Max. Unit

HX horizontal hyoid position 0.0 1.0 cm
HY vertical hyoid position -6.0 -3.5 cm
JX horizontal jaw position -0.5 0 cm
JA jaw angle (deg.) -7 0 deg
LP lip protrusion -1.0 1.0 cm
LD lip distance -2.0 4.0 cm
VS velum shape 0 1 ´

VO velic opening -0.1 1.0 ´

TCX tongue body horizontal (X) position -3.0 4.0 cm
TCY tongue body vertical (Y) position -3.0 1.0 cm
TTX tongue tip horizontal (X) position 1.5 5.5 cm
TTY tongue tip vertical (Y) position -3.0 2.5 cm
TBX tongue blade horizontal (X) position -3.0 4.0 cm
TBY tongue body vertical (Y) position -3.0 5.0 cm
TRX tongue root horizontal (X) position -4.0 2.0 cm
TRY tongue root vertical (Y) position -6.0 0.0 cm
TS1 tongue root side elevation 0.0 1.0 cm
TS2 tongue back and dorsum side elevation 0.0 1.0 cm
TS3 tongue tip and blade side elevation -1.0 1.0 cm

Note: The first column gives the abbreviation (Abbr.), the second
column the full name, the third the minimal value (Min.), and the
fourth the maximal value (Max.) and the last column contains the
unit.

43

Chapter 3. Data structures

Table 3.2: Last 11 parameters out of the 30 parameters (channels) of the cp-
trajectories of the VTL are the glottis parameters.

Glottis Model Parameters

Abbr. Name Min. Max. Unit

F0 fundamental frequency 40 600 Hz
PR transglottal pressure 0 20000 dPa
XB lower edge of vocal folds -0.05 0.30 mm
XT upper edge of vocal folds -0.05 0.30 mm
CA posterior glottal chink area -0.25 0.25 mm2

LAG phase lag 0 3.1415 deg
RA relative amplitude of oscillation -1 1 ´

DP diplophonic double pulsing 0 1 ´

PS skewness of glottal area pulses -0.5 0.5 ´

FLUT small quasi-random fluctuations added to F0 0 100 %
AS aspiration strength -40 0 dB

Note: The first column gives the abbreviation (Abbr.), the second column
the full name, the third the minimal value (Min.), and the fourth the
maximal value (Max.) and the last column contains the unit.

3.1.1 Initial cp-trajectories

The initial cp-trajectories are the ones which PAULE either derives or already has
available at the beginning of the planning process. The initialization process is different
for different tasks and, therefore, can be the result of different internal mappings. These
different mappings are implemented within PAULE as different internal models (cf.
Section 5.4). For example, initial cp-trajectories can be derived from a target acoustics
with the direct inverse model or be can be generated from a meaning representation by
the Wasserstein-GAN trained to sample cp-trajectories (cp-GAN). Furthermore, the end
user is given the option to pass on initial cp-trajectories to PAULE.

The initial cp-trajectories are used and needed by PAULE to start the planning process
and as PAULE locally optimizes the trajectory with some minimal effort constraints,
different initial cp-trajectories are expected to result in different planned cp-trajectories
even for the same target acoustics and target semantics.

3.1.2 Planned cp-trajectories

The planned cp-trajectories are the final result of the planning process by PAULE. Starting
from the initial cp-trajectories, the planned cp-trajectories are optimized to minimize
the Root Mean Squared Error (RMSE) between a predicted acoustic representation and
semantic representation and their respective target acoustics and target semantics, while

44

3.2. Acoustic representation

keeping the effort in terms of velocity and jerk of the cp-trajectories small.
The planned cp-trajectories therefore depend on the target acoustics and the target

semantics, as well as on the initial cp-trajectories and the number of iterations of the
planning procedure. The planned cp-trajectories are only deterministic in the sense that,
with the same models in PAULE, the same number of planning iterations, the same
shuffling in the continued learning of the forward model, and the same targets and initial
cp-trajectories the same planned cp-trajectories are expected.

Synthesizing speech by using the planned cp-trajectories as inputs for the VTL results
in the produced signal, a 44,100 Hz mono audio wave form. From this produced signal
the produced acoustics can be derived, which corresponds to the human perception of
the produced signal. From the produced acoustics the produced semantics can be derived.
This produced acoustics and produced semantics can be compared to the predicted
acoustics and predicted semantics.

3.1.3 Segment-based cp-trajectories

The segment-based cp-trajectories play only an indirect role in PAULE. They come from
a segment-based synthesis approach described in Sering et al. [94] and in Section 4.1. A
corpus of segment-based cp-trajectories with their associated acoustic representations is
used to train the internal models of PAULE. As they are derived from a phone segment
sequence together with the corresponding durations, they show repetitive patterns
in the articulatory movements. The blending method used to combine the different
gestural scores of the phone segments allows for some coarticulation but does not show
the variability that is present in the planned cp-trajectories that PAULE produces as
optimal [95].

The segment-based cp-trajectories are mentioned here, as they comprise a reference to
which the planned and initial cp-trajectories can be compared to, and to emphasize that
they come from a different underlying distribution. Even if the internal components of
PAULE are pre-trained on segment-based cp-trajectories, PAULE manages to overcome
the limitations of the segment-based cp-trajectories. This is possible thanks to the
predictive goal-directed nature of PAULE, which focuses on optimizing the planned
cp-trajectories for acoustic and semantic targets.

3.2 Acoustic representation

The acoustic representation aims for a psychological, perceptual measure of the acoustic
signal rich enough to capture nearly all of the fine details that are needed in speech
perception. The acoustic representation approximates the information that the human
middle ear sends on to the primary auditory cortex. Therefore, this acoustic representation
is not a physical but a perceptual data structure that allows to approximate acoustical
similarity.

For computational modeling, it is an advantage that the human ear implements a
frequency decomposition and changes a highly oscillatory sound pressure wave into

45

Chapter 3. Data structures

a frequency decomposed spectrogram. A spectrogram is the time-series of spectra
calculated over consecutive intervals of one audio signal. The intervals or windows
used to calculate the spectra can have an overlap. The computational advantage of the
spectrum is that it is not oscillatory anymore but shows smooth, i. e. highly autocorrelated,
transitions between times of high intensity and phases of low intensity for a given
frequency band.

Originally, we started with a low dimensional discretized acoustic representation of 21
frequency Mel channels defined for every 10 Milliseconds [4]. While this low-dimensional
representation is useful for modeling human perception, it turned out to miss out on the
fine details necessary to properly evaluate the quality of speech produced by PAULE.
The acoustic representation used in PAULE is much more fine grained. It has a relatively
high resolution in the frequency range of 10 Hz to 12,000 Hz and calculates a spectrum
every 5 Milliseconds (220 samples of 44,100 Hz audio signal). The frequencies are split
into 60 bands on a perceptual Mel frequency scale and the magnitude of the frequency
components are logarithmized to approximate the human perception of loudness. The
result is a logarithmized Mel banks spectrogram (log-mel-spectrogram) with 60 channels
and a time-step of approximately 5 Milliseconds. In a final step, the loudness values in
the log-mel-spectrogram are rescaled into the range of zero to infinity. Where a loudness
of zero corresponds to silence and a loudness value of one corresponds to a loud clear
tone. The scaling factor for the linear rescaling is 1{83.52182518111363 and intercept is
´83.52182518111363 (Listing 3.2).

Listing 3.2: Creating the acoustic representation
1 import numpy as np
2
3 from paule import u t i l
4
5 # a l l o c a t e 5000 " a u d i o s a m p l e s "
6 audio = np . zeros (5 0 0 0)
7 log_mel_spectrogram = u t i l . l ibrosa_melspec (audio , 44100)
8 normalized_mel = u t i l . normal ize_mel_l ibrosa (log_mel_spectrogram)
9 inv_norm_mel = u t i l . inv_normal ize_mel_l ibrosa (normalized_mel)

10 a s s e r t np . a l l c l o s e (log_mel_spectrogram , inv_norm_mel)

Note that the log-mel-spectrogram emulates and approximates the human ear, but does
not include any higher order processing, taking place in the human brain. Furthermore,
it only uses a mono signal and, therefore, no biaural stereo information can be processed
by PAULE. In terms of data reduction, the acoustic representation reduces 220 sound
pressure values of the mono audio signal to 60 Mel-frequency loudness amplitudes and,
therefore, reduces the number of data points by a factor of 3.7.

By creating log-mel-spectrograms, the physical measures of frequency and energy
get converted to the perceptual measures of pitch and loudness. Figure 3.1 illustrates
how the log-mel-spectrogram is calculated. The transformation for the sound wave to
the log-mel-spectrogram is implemented with the help of the Python library librosa
(version 0.8.0). If the initial signal does not has a sampling rate of 44,100 Hz, it is

46

3.2. Acoustic representation

resampled to a 44,100 Hz audio mono signal. In PAULE the log-mel-spectrogram is used
for three different and distinct purposes: the target acoustics, the predicted acoustics, and
the produced acoustics. These three acoustic representations are defined and described
in detail in the next three sections and are interdependent on each other.

3.2.1 Target acoustics

The target acoustics defines the acoustical goal, which PAULE tries to mimic by copy-
synthesis. It stays the same over the complete planning in PAULE and can be seen as
the internal acoustical image that PAULE has in mind for the word PAULE wants to
articulate. The target acoustics, therefore, is the reference that is iteratively approximated
in the planning. More precisely in each planning step, the Root Mean Squared Error
(RMSE) is calculated between target acoustics and the predicted acoustics (see below).
The RMSE is a point-wise distance metric, that is calculated by computing the difference
loudness for all Mel mean over all data points, and, in the end, taking the square root. It
can be seen as a high-dimensional Euclidean distance metric.

3.2.2 Predicted acoustics

The predicted acoustics is the log-mel-spectrogram that is internally predicted by PAULE
without synthesizing any sound wave with the VTL. After each iteration of the planning
procedure, the newly adjusted cp-trajectories lead to a new predicted acoustics. At each
iteration, the predicted acoustics is compared with the target acoustics. Additionally,
a predicted semantics is calculated from the predicted acoustics and compared with a
target semantics. As the semantics is only calculated from the acoustics, all semantic
information needs already be present in the acoustics and no silent speech movements
can influence the semantics.

During the planning of the cp-trajectories, many different predicted acoustics are
calculated. They can be seen as an internal image of what the articulation would sound
like for the current set of cp-trajectories. It is crucial to understand that this is only
an internally imagined acoustical image that might differ from the actually produced
acoustics from the VTL. The predicted acoustics is used in two ways. Firstly, it is used in
an internal loop to plan the cp-trajectories. Here, it is compared to the target acoustics.
Secondly, the predicted acoustics is used in an outer loop to further improve the predictive
forward model. Here, it is compared to the produced acoustics.

3.2.3 Produced acoustics

The produced acoustics refers to the log-mel-spectrogram that belongs to the audio,
which is synthesized by the VTL given some cp-trajectories. The produced acoustics
is used to evaluate the overall performance of PAULE. In the outer loop discrepancy
between the predicted acoustics and produced acoustics is used to improve the predictive
forward model and therefore improves the ability of PAULE to correctly predict an
acoustic image from a set of cp-trajectories.

47

Chapter 3. Data structures

Fi
gu

re
3.

1:
D

at
a

fl
ow

on
ho

w
a

lo
g-

m
el

-s
p

ec
tr

og
ra

m
is

ca
lc

u
la

te
d

.F
ir

st
,t

he
au

d
io

si
gn

al
is

sp
lit

in
to

w
in

d
ow

s
of

1,
02

4
sa

m
pl

es
w

ith
an

ov
er

la
p

of
80

4
sa

m
pl

es
.T

he
se

1,
02

4
sa

m
pl

es
of

th
e

au
di

o
si

gn
al

ar
e

th
en

sm
oo

th
ed

w
ith

a
H

an
ni

ng
w

in
do

w
an

d
a

sp
ec

tr
um

is
ca

lc
ul

at
ed

by
ap

pl
yi

ng
a

Sh
or

t-
ti

m
e

Fo
ur

ie
r

tr
an

sf
or

m
(S

T
FT

).
A

ll
of

th
e

sp
ec

tr
a

co
nc

at
en

at
ed

al
on

g
th

e
tim

e
ax

is
co

ns
tit

ut
e

th
e

po
w

er
sp

ec
tr

og
ra

m
.T

he
fr

eq
ue

nc
y

ax
is

of
th

e
po

w
er

sp
ec

tr
um

th
en

is
re

sc
al

ed
w

ith
a

se
to

ft
ri

an
gu

la
r

fil
te

rs
to

tr
an

sf
or

m
it

to
th

e
M

el
ba

nk
sp

ec
tr

og
ra

m
of

60
M

el
ba

nk
s

be
tw

ee
n

10
H

z
an

d
12

,0
00

H
z.

In
a

la
st

st
ep

th
e

po
w

er
or

en
er

gy
va

lu
es

ar
e

tr
an

sf
or

m
ed

to
lo

ud
ne

ss
va

lu
es

by
ap

pl
yi

ng
th

e
lo

ga
ri

th
m

to
th

em
.T

he
im

pl
em

en
ta

tio
n

us
ed

in
PA

U
LE

is
do

ne
w

it
h

th
e

Py
th

on
lib

ra
ry
l
i
b
r
o
s
a

.

48

3.3. Semantic (lexical) embeddings

3.3 Semantic (lexical) embeddings

The data structure for the semantics is a 300-dimensional dense vector space where it is
assumed that Euclidean metric holds. As the semantic lexical word embedding vectors
(semantic vectors), pretrained fastText vectors [40] are used. These are originally trained
on big text corpora more specifically on the common crawl and the German Wikipedia.
Each word type is embedded into a dense vector space, where semantically related word
types are close to each other and word types of different meaning have a large distance
in this space.

As proximity means similarity, these semantic or lexical vector spaces reflect similarity
in meaning in the language in a gradual way. Figure 3.2 shows a 2-dimensional simplified
version of a semantic space. PAULE relies and uses this gradual embedding space to do
word classification and to derive an error signal on the semantic level. PAULE does not
alter or change the embedding space, but takes it as a ground truth. Thus, for PAULE a
word’s location in the fastText semantic space is a numeric representation of its meaning.

fastText vectors are trained on big text corpora and are therefore textual, lexical
embeddings. This is not the only way, to create meaningful semantic embeddings. As
fastText only relies on text, acoustic similarities should not be (strongly) reflected in the
embedding space. In contrast, embeddings build on top of large speech corpora should
reflect acoustic similarities together with the cooccurance patterns and predictive value,
which is also present in the fastText vectors.

Recent research puts some focus on combining different embedding methods and
creates multi-model embedding vectors that combine pictures and text [99]. The PAULE
version here is trained and tested on the 300-dimensional fastText vector space, but
given some training time it is trivial to change the semantic representation to a different
embedding space as long as an informative error can be defined between a predicted
semantic vector and a target semantic vector.

Besides dense semantic embeddings, sparse embeddings like the one used in Sering
et al. [90] are possible as well, but might need a different metric defined on them. Especially,
for the case of a sparse binary meaning space, the Euclidean metric and the associated
RMSE loss might not be the right choice. Furthermore, metric vector spaces assumes that
these embeddings have a meaningful inverse element and that each vector is scalable.
These two core assumptions of the metric vector space definition are questionable as
many embeddings are created to have a confined length of the vector and large volumes
of the vector space are empty and there is no clear interpretation of the inverse. One
solution might be in the use of manifolds and differential geometry to adequately model
dissimilarity of word meaning structure. Unfortunately, this is out of the scope of this
thesis. In the PAULE framework approximating and assuming that the semantic vectors
are elements of a metric vector space turns out to be quite useful. In the end, PAULE
relies mostly on the local structure and proximity of vectors and not so much on the
global correctness of the metric in the vector space.

There are three distinct and important semantics in PAULE that each consists of a
300-dimensional vector that live in the same vector space.

49

Chapter 3. Data structures

Figure 3.2: Sketch on how semantic embeddings can be conceptualized. The semantic
embedding space used by PAULE is not 2-dimensional, as in the sketch, but 300-
dimensional.

3.3.1 Target semantics

The target semantics is a 300-dimensional fastText vector that either is selected by the
user, who uses PAULE to synthesize speech, or is the associated semantics to a target
acoustics. The purpose of the target semantics is to inform PAULE as to which semantic
vector the resulting audio speech waveform should be embedded.

As many different waveforms (around 22,000 data points per half a second of speech)
are embedded on the same or similar 300-dimensional vector, the task to find an
appropriate waveform involves another inverse problem. This inverse problem is mainly
mitigated by the fact that the waveform needs to contain synthesized speech from the
VTL, which is further constrained to be speech form the JD3 speaker geometry. It is
difficult to quantify the dimensionality reduction due to this constraint, but it is clear
that first, it is huge and second, it is not as small as the 300-dimensions of the semantic
vector space.

Additionally, it is intended that different sounding words like /Bahn/ (train) and /Zug/
(train) map onto similar semantic vectors. Therefore, if a specific acoustic version of a
word should be uttered, besides the semantic target an acoustic target might be needed.

The target semantics is used as a reference for the predicted semantics in the internal
loop and a semantic error is derived from the RMSE between those two. For one synthesis,
the target semantics is constant. The target semantics is used in the same way as the
target acoustics.

3.3.2 Predicted semantics

The predicted semantics is the semantic 300-dimensional fastText vector that is associated
with the predicted acoustics. The predicted semantics is used in the internal loop and can
be interpreted as the internal imagination of what the meaning of the planned articulation
of the target word is. This is similar to the predicted acoustics and as in the predicted
acoustics, the articulatory synthesizer VTL is not involved in creating the predicted

50

3.3. Semantic (lexical) embeddings

semantics. Therefore, the predicted semantics is a purely internal representation. This
predicted semantics than can be compared to the target semantics and the error between
the prediction and the target is used to further improve the cp-trajectories in the internal
loop.

3.3.3 Produced semantics

In contrast to the predicted semantics, the produced semantics is the semantic 300-
dimensional fastText vector that is associated with the finally produced acoustics by
giving the planned cp-trajectories to the VTL synthesizer.

The target semantics is used to evaluate the overall performance of PAULE. If the
produced semantics is close to the target semantics, the articulatory planning worked
as intended and the audio wave produced by the VTL synthesizer should activate the
corresponding meaning both in computational models of human auditory comprehension
(see, eg., [98]) as well as for human listeners.

51

4 Data sets

Big Data is like teenage sex: everyone talks about it, nobody really knows
how to do it, everyone thinks everyone else is doing it, so everyone claims
they are doing it.

Dan Ariely

The data structures introduced in the last chapter are connected along different data
sets. In this chapter, the data sets as well as the preprocessing is introduced. The data sets
and their properties are important as they instantiate the data structures and therefore
provide exemplars of the data structures and the association between the data structures.
These exemplars, also called training samples or learning events, can be used to train
machine learning models (or to fit statistical regression models) with supervised or
semi-supervised learning. Machine learning models are used as the internal models
of the PAULE framework. The internal model definitions and implementations are
discussed in the PAULE chapter (Chapter 5).

An important precursor and contribution of this thesis was the joint development of a
pipeline to create large amounts of training data for machine learning models operating
on the VTL [94]. This work was then further refined by Yingming Gao and integrated
into VTL in version 2.3. Now this segment-based approach can be used by everyone to
synthesize speech from sequences of phones and duration. Before this joint contribution,
the resynthesis of aligned speech corpora could only be done in a semi-automatic way
and, therefore, was very time-consuming even for the number of training samples with
no more than 100 exemplars. In our contribution, we developed a way to efficiently
generate training data with 50,000 exemplars and more.

In language and speech research, especially when cognitively motivated, it is important
to be able to generate large amounts of training data to capture the distributional
properties of a language. An important distributional feature of language – in written as
well as in spoken language – is the strong class imbalance called Zipf’s law. Figure 4.1
shows the number of word types (word classes) in the Mozilla Common Voice corpus
(Common Voice) corpus [1] (introduced in a following section) sorted by the most frequent
one on the left to the least frequent word type on the right. The structure within the plot
is not really visible as the most frequent class has around 1,113 occurrences, whereas the
majority of the word types (2,261) occur only once. A common way to visualize such
distributions is to plot rank and frequency in a double logarithmic plane (Figure 4.2). A
straight line in the log-log plot indicates a power law. Zipf’s law states that word types
follow a power law [118]. If Zipf’s law is true, is still under debate, but it is commonly

53

Chapter 4. Data sets

als
o

re
lat

iv
un

te
rh

alt
en

be
ge

ist
er

t
ne

un
ze

hn
Ge

di
ch

t
W

ae
rm

e
Ge

sc
hi

ch
te

n
Th

ail
an

d
Fa

lle
r

va
rii

er
t

ru
pp

ig
Fu

en
ftk

lae
ss

ler
W

irb
el

St
ilm

itt
el

ein
se

iti
ge

s
Ki

ss
en

be
wi

rb
t

Word type

0

200

400

600

800

1000

W
or

d
fre

qu
en

cy

Word frequencies in Common Voice corpus
training data
validation data
test data

Figure 4.1: The number of tokens (occurrences) per word type (class), sorted so that the
most frequent word types are plotted on the left and the least frequent word types on
the right. The most frequent word type /also/ occurs 1,113 times in the Common Voice
training data. There are 2,261 word types in the training data that occur only once. The
total number of word types is 4311. In addition to the training data the validation and
test data sets are shown. These share a subset of the word types, but consist of word
tokens that are not in the training data.

54

100 101 102 103

Rank of word frequency

100

101

102

103

W
or

d
fre

qu
en

cy

Rank-frequency distribution in Common Voice corpus
training data
validation data
test data

Figure 4.2: Rank-frequency distributions for training, validation, and test data of the
Common Voice dataset. Except for the test data, the rank-frequency distributions are
roughly approximated by a power law.

55

Chapter 4. Data sets

excepted that there is a strong class imbalance, i. e. relatively few high frequency word
types and many word types with very low frequencies [6].

Another important statistical aspect of speech is that high frequent word types show a
larger variability and larger coarticulation and more idiosyncrasies compared to low
frequent word types that are more regular, less variable, and less coarticulated [54,28].
With the segment-based approach, this aspect is partially reflected as the duration of the
phones from the training data are used and respected by the pipeline. But the systematic
differences in coarticulation between high and low frequent words are not reflected. For
a discussion of the relation between frequency of use and spoken word duration from a
cognitive perspective, see Gahl [37]. In that respect, PAULE is expected to improve this
aspect of speech synthesis on the segment-based approach.

4.1 Segment-based Synthesis and the GECO corpus

In the 2019 contribution, we resynthesized the GECO corpus [84], which contains con-
versational speech recorded in the laboratory between female southern German young
adult speakers. The resynthesis resulted in 53,960 spliced out word samples to a total
of 6 hours and 23 minutes of synthesized speech. The speech recordings are annotated
on the word and phone level so that individual word tokens can be extracted from
the continuous recordings. The phone alignments can be used in the segment-based
synthesis approach to generate large amounts of training data.

Our initial pipeline is depicted in Figure 4.3. It works in the following way: As inputs,
the segment-based approach receives a sequence of phones in SAMPA transcription. For
each phone, the duration of that phone is available as well. For each phone that exists
in the German language a gestural score is defined. This gestural score was manually
predefined by the authors of the VTL and was informed by MRI scans and expert
knowledge on articulation.

The gestural score defines target positions and timings for the 30 control parameter.
Together with the durations these are connected and blended together and result in
smooth cp-trajectories. As no intonation is encoded, the control parameter for the F0
contour – the pitch of the speech signal – is flat and has no variability. Therefore, in
a second step, we extracted pitch contours from the recordings in the GECO corpus,
using Praat [17]. For each word token we fitted a smooth curve to the extracted pitch
with the TargetOptimizer [79] software. The resulting smooth pitch curve was added to
the gestural scores. As a result, the resynthesized input F0 follows the F0 of the original
recording.

The segment-based synthesis outputs one set of cp-trajectories that can be synthesized
with the VTL. For the synthesized audio, the log-mel-spectrogram and the semantic
vector can be calculated, and, therefore, triplets of training data are generated: the input
cp-trajectories, the acoustic representation, and the semantic representation.

Note that this segment-based synthesis model, in contrast to PAULE, uses symbolic
units in acoustics in the form of phonemes and at the motor level in form of gestural scores.
Creating gestural scores for all phonemes of a language requires a lot of handcrafting and

56

4.1. Segment-based Synthesis and the GECO corpus

Figure 4.3: Segment-based synthesis pipeline for the VTL speech synthesizer. This is
used as a reference model and to generate large amounts of training data for PAULE.

57

Chapter 4. Data sets

expert knowledge. As we use these handcrafted gestural scores, this expert knowledge
is leaked into the PAULE framework through the initial training procedure. In the
discussion, I will briefly discuss approaches for which no initial training data is needed
and all the experience is built up from zero knowledge in an exploratory scheme.

To make the segment-based synthesis model comparable to PAULE we added a
preprocessing pipeline that allows to use the segment-based synthesis model on target
audio recordings. For this a target audio recording is first classified by a word classifier
to derive its content word type. In a second step a phone transcription of the predicted
word type is aligned to the target audio. From the alignment the phone durations can be
extracted so that the segment-based synthesis model has all information it needs to do a
resynthesis. This preprocessing pipeline allows to compare the segment-based synthesis
model to PAULE. Furthermore, this pipeline with the segment-based synthesis can be
used as an alternative way of initializing PAULE and PAULE can be used to refine the
copy-synthesis.

4.2 Montreal Forced Aligner (MFA) and Mozilla Common Voice

Unfortunately, the GECO corpus is only available to scientists and cannot be freely
distributed. In order to ensure general replicability, we resynthesized another training
set out of the freely available Mozilla Common Voice corpus (Common Voice) [1]. The
Common Voice data set is a crowd-sourced collection of read-out sentences. In contrast
to the GECO corpus, the audio in the Common Voice is neither spontaneous speech nor
is it aligned at the word or segment level. Still, it is spoken by normal people in diverse
environments with consumer electronic microphones. This makes the audio recordings
as ecological valid as studio recordings or captures of TV or radio broadcasts [51], but less
ecological valid compared to the GECO corpus. To ensure that the transcription of the
sentences are correct all sentences are checked by crowd-sourced listeners.

The Common Voice makes recordings available in many languages. For the purpose
of this thesis, we focus on 26,271 word tokens distributed over 4,311 word types of
the German recordings, which is only a small part of the German Common Voice. We
selected those sentences that contained most of the words present in the GECO corpus.
This way, we created a data set similar to the GECO, which allows for tests of transfer
learning, i. e. how well a given model architecture performs when it first was trained on
the GECO data and then evaluated on Common Voice. In a word classification task, i. e.
predicting the word type from the audio, very limited transfer was possible between
GECO and Common Voice and word classification accuracies dropped from 60 % to
below 5 % on the spliced-out audio recordings.

Before any models can be trained on Common Voice, the transcriptions and audio
recordings first need to be aligned, i. e. the word boundaries have to be identified and
audio tokens have to be assigned to word types. Furthermore, to use the segment-based
approach, phones need to be defined for each word and aligned within each word so
that that the phones and their durations can be made available to the segment-based
approach.

58

4.3. Electromagnetic Articulography (EMA) and the Karl-Eberhard Corpus (KEC)

Properly aligning transcriptions with audio recordings on the word and phone level
with high quality would involve substantial amounts of work from a well-trained
phonetician. As we were mainly interested in having enough variability in our training
data, we could be lax on the quality of the alignment as long as the variabilities in the
durations resemble the statistics in the real language and the audio tokens are correctly
aligned to the word tokens. As we allowed for this big error margin, we could fully
automate the process of alignment. We validated the automatic alignment on a small
portion of the data manually. Furthermore, we inspected all the data that either was very
long compared to the rest of the data, was consistently misclassified by our classifiers
(the embedding models described in Section 5.4), or showed some other odd behavior.
Wrong samples were then removed from the data set. Overall this way only around 100
samples were removed out of 27,000.

To do the word and phone segment alignment we used the Montreal Forced Aligner
(MFA) [63], a freely available and FOSS aligner that has pre-trained weights available for
many different languages including German. In a first run, Montreal Forced Aligner
(MFA) takes the audio of the full sentence and the text transcription as input and outputs
the word boundaries. These are used to split the audio into chunks that only contain
a single word. These single spliced-out words still contain coarticulation patterns and
carry information from its surrounding and are substantially different from recordings
of single read-out words. In the last step, a phone transcription of the target word is
looked up and in a second run the phones are aligned to the spliced-out audio recording.
Besides generating another training corpus for PAULE, this pipeline makes it possible to
create new training corpora for other languages with relative ease, as long as the gestural
scores for all the SAMPA phone transcriptions are available or can be proxied by similar
sounding phones.

4.3 Electromagnetic Articulography (EMA) and the
Karl-Eberhard Corpus (KEC)

One of the big benefits, if not the big benefit, of an articulatory speech synthesis system, is
the ability to compare it to human articulation. A widely used technology for measuring
articulation is electromagnetic articulography (EMA) (figure 4.4). Sensors are glued to
the tongue, lips, and head. These sensors can be tracked in an inhomogeneous magnetic
field that is projected through the head of the participant. As weak magnetic fields are
harmless and only very weakly interact with the head, it is possible to measure the
movements of the tongue while it is in the mouth with a high resolution in time of
up to 1,000 Hz. The system we used runs with 400 Hz, which is enough for most fast
articulatory movements. Limitations of EMA are the limited spacial resolution, the long
preparation times and the limited head movement of the participant. Furthermore, most
participants need to first accommodate to the bundle of small electrical cables coming
out of their mouth, which slightly interferes with the speaking process.

One German corpus that contains EMA recordings of spontaneously spoken southern

59

Chapter 4. Data sets

Figure 4.4: Small sensors on wires are glued to the tongue and can be tracked in the
3-dimensional space in front of the blue box, which emits an inhomogeneous magnetic
field. The time resolution for this setup is around 400 Hz, but systems are available that
have a time resolution of 1,000 Hz. The electromagnetic articulography (EMA) system,
therefore, is capable of measuring the fast movements of the tongue in the mouth while
speaking.

German dialogues is the Karl Eberhard Corpus (KEC). Besides having EMA recordings
available, the KEC is aligned and manually validated at the word level and automatically
aligned at the phone level, which makes all information available that is required for
segment-based synthesis.

To compare EMA recordings with the VTL-based synthesis, I developed together
with Hannah Schütt an automatic way of extracting virtual EMA trajectories from cp-
trajectories. The code changes introduced in this student project allow to trace movements
of any node of the 3-dimensional mesh that defines the geometry of the VTL. A preset of
common places of virtual EMA points are available. A first pilot study demonstrated
that it is possible to extract virtual EMA points from VTL and compares these to human
EMA recordings extracted from the KEC [95].

4.4 Ultrasound recordings and /babibabubaba/

Another technique that is widely used to study articulation is ultrasound. A recording
device is strapped to the chin and records the contour of the upper side of the tongue
body. The system used in this thesis records tongue movements in the mid-sagittal plane
at 80 Hz. Figure 4.5 shows an example measurement. The white line is the reflection of
the ultrasound signal between the tongue blade and the air in the oral cavity.

As with the EMA data, we made it possible to automatically extract height information

60

4.4. Ultrasound recordings and /babibabubaba/

Figure 4.5: The fan-shaped recording of the mid-sagittal plane of the tongue with
ultrasound. The brighter pixels are visible where the tongue muscle ends and the air of
the oral cavity starts.

of the mid-sagittal plots of the VTL. This allows us to quantitatively compare the
measures from the ultrasound recording to the virtual measures extracted from a VTL
synthesis. To show this ability we recorded in our lab the utterances /baba/, /babi/,
and /babu/ at different speaking rates and with varying number of repetitions. These
German non-words give rise to strong anticipatory coarticulation, which is visible in
the mid-sagittal plane. This coarticulation effect systematically affects average tongue
height as well as the variability in the first /a/. Furthermore, it results in systematic
changes in the vowel quality at the end of the first /a/, which can be quantified with the
formants (resonance frequencies) f1, f2, and f3. In contrast to the segment-based approach,
PAULE successfully modeled the formant shifts that are the result of vowel-to-vowel
coarticulation [96].

First steps have been done to combine all the data sets and analysis mentioned here
into a benchmark that can be automatically run on control models of the VTL. This
benchmark is named articubench and is described in [91]. In Section 6.6, more details on
articubench are given.

61

5 Predictive Articulatory speech synthesis
Utilising Lexical Embeddings (PAULE)

Wer ist eigentlich PAUL(E)?

after a famous German commercial

The main contribution of this thesis is the Predictive Articulatory speech synthesis
Utilizing Lexical Embeddings (PAULE) framework, which connects the different data
structures defined in the chapters before and is a control model for the VTL. PAULE is
predictive in the sense that it internally predicts or imagines the acoustic manifestation
(log-mel-spectrogram) of not yet executed articulatory movements (cp-trajectories). It
then maps these internally imagined acoustics into a lexical embedding space (semantic
vector). The imagined acoustics and corresponding semantics are compared to a desired
target acoustics and target semantics. This comparison yields an error that is used to
correct the not yet executed cp-trajectories (see Figure 5.1).

Figure 5.1: The main idea of PAULE is to predict the acoustics and semantics of the
upcoming articulatory movements (cp-trajectories) and use the error between the
intended target acoustics and the intended target semantics to plan and correct the
movement.

The PAULE framework derives articulatory movement trajectories and corresponding
glottis parameters of the articulatory speech synthesizer VocalTractLab (VTL). It does
not use any symbolic representation, neither a phone-like representation on the acoustic

63

Chapter 5. PAULE

side nor any gestural scores or movement targets on the motor side. The cp-trajectories
of the VTL speech synthesiser derived by PAULE can be obtained for a target sound file
(copy-synthesis), for a target semantics (semantics to speech) or for a combination of both.
Resulting cp-trajectories fulfill the physical soft constraints of locality (only move an
articulator to a new position if you have to) and constant force (if an articulator is moved,
move it with constant acceleration or force). This leads, in most cases, to human-like
movement trajectories. In the version presented here, PAULE only produces word tokens.
Deriving cp-trajectories for a word with a duration of half a second requires roughly 30
minutes of computation time. With these properties, PAULE fulfills the goal set for this
thesis and follows the guiding principles described in Section 1.1. PAULE is available as
a python package from PiPy or from https://github.com/quantling/paule.

5.1 Journey to PAULE

Even with simplicity in mind, the PAULE framework turned out to be rather complex.
To fully understand PAULE and see the beauty in Figure 5.9, this section builds up to
the full framework in a stepwise manner.

The journey starts with Figure 5.2. As described and defined in the last chapters, a
target semantics and a target acoustics are present as well as the VTL. The VTL receives
cp-trajectories as inputs and outputs synthesized audio as a 44,100 Hz mono signal. This
audio signal can be transformed into the acoustic representation of a log-mel-spectrogram.

The first big question that PAULE will answer is how to find suitable cp-trajectories
for a given target acoustics. This is the so-called speech inversion or copy-synthesis
task. Note, that this is a one-to-many mapping. Many different cp-trajectories map
onto similar or the same acoustic representation. At the same time, many different
acoustic representations cannot be articulated, i. e. it is not possible to perfectly mimic
the speech of a different speaker. This impossibility arises from differences in the vocal
tract geometry and the resulting fundamental differences in resonance frequencies. The
copy-synthesis therefore has to find a close approximation of the target sound and select
one of the cp-trajectories that fits the articulatory movement context.

In Figure 5.2, the semantic representation is present without any connection to other
modules yet, but will be connected in subsequent versions of this Figure. In all figures
that lead to the PAULE framework, the semantic level will be drawn in the top row of
the figure. In the middle row, the acoustic representations and the cp-trajectories are
drawn and in the bottom row, the VTL and audio wave signal are shown.

As a first step an error is introduced (see Figure 5.3). More specifically, the Root Mean
Squared Error (RMSE) between the produced acoustics as a log-mel-spectrogram and
the target acoustics as a log-mel-spectrogram is computed and used as the acoustic error.
The RMSE is a point-wise error that is computed on the loudness difference in each
time-step Mel-frequency combination.

With the error between the target acoustics and the produced acoustics, a gradient-free
optimization method could already be applied. The loop from the cp-trajectories over the
VTL to the produced acoustics and followed by a comparison with the target acoustics

64

https://github.com/quantling/paule

5.1. Journey to PAULE

Fi
gu

re
5.

2:
St

ep
1

in
th

e
jo

ur
ne

y
to

PA
U

LE
.T

he
qu

es
tio

n
m

ar
ks

hi
gh

lig
ht

th
e

ke
y

ch
al

le
ng

e
of

th
e

PA
U

LE
fr

am
ew

or
k,

w
hi

ch
is

to
d

er
iv

e
su

it
ab

le
cp

-t
ra

je
ct

or
ie

s
fo

r
a

ta
rg

et
ac

ou
st

ic
s.

T
he

cp
-t

ra
je

ct
or

ie
s

d
efi

ne
a

ti
m

e-
se

ri
es

of
in

te
rn

al
st

at
es

of
th

e
ar

tic
ul

at
or

y
sp

ee
ch

sy
nt

he
si

s
sy

st
em

V
TL

.W
ith

th
e

cp
-t

ra
je

ct
or

ie
s

th
e

V
TL

sy
nt

he
si

ze
s

a
44

,1
00

H
z

m
on

o
au

di
o

si
gn

al
.F

ro
m

th
e

au
di

o
si

gn
al

,t
he

ac
ou

st
ic

re
pr

es
en

ta
tio

n
ca

n
be

co
m

pu
te

d.
Th

e
ac

ou
st

ic
re

pr
es

en
ta

tio
n

an
d

th
e

ta
rg

et
ac

ou
st

ic
s

sh
ar

e
th

e
sa

m
e

da
ta

st
ru

ct
ur

e,
na

m
el

y,
th

ey
ar

e
im

pl
em

en
te

d
as

a
lo

g-
m

el
-s

pe
ct

ro
gr

am
.T

he
ta

rg
et

se
m

an
tic

s
is

st
ill

un
co

nn
ec

te
d

to
th

e
cp

-t
ra

je
ct

or
ie

s
an

d
th

e
V

T
L

an
d

w
ill

be
co

nn
ec

te
d

in
a

su
bs

eq
ue

nt
fig

ur
e.

65

Chapter 5. PAULE

Figure 5.3: Step 2 in the journey to PAULE. As the target acoustics and the acoustic
representation share the same data structure, a point-wise error can be calculated that
quantifies the difference between the resulting acoustic representation and the target
acoustics. For the error calculation, the Root Mean Squared Error (RMSE) loss is used. In
this setup, the connection between the target acoustics and the cp-trajectories already
could be solved with a gradient-free optimization method like Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) purely in the acoustic domain. However, that
the high dimensionality of the representation renders naive gradient-free methods in
this setup useless or comes with extreme computational costs.

66

5.1. Journey to PAULE

is called the outer loop in acoustics. As we are not only interested in acoustics but do
believe in the importance of semantics, we integrate semantics into the outer loop. In
order to do this, two problems need to be solved, both of which are depicted in Figure
5.4.

The first problem is how to get from the acoustic representation to a semantic
representation. In this thesis, the semantics is derived purely from the acoustics. Therefore,
the only way to infer a word’s the meaning is by listening to it’s audio signal. Especially,
there is no lip reading or somatosensory feedback in the present version of PAULE.

The second problem concerns the inverse problem of how to find suitable cp-trajectories
for a given target semantics. This is even more of a many-to-one problem, as the semantic
representation has a dimensionality that is much smaller than that of the acoustic
representation. Therefore a small region in the semantic space needs to map on many
different cp-trajectories in the very high dimensional motor space. An example are
synonyms, which are close in the semantic space, but have very different cp-trajectories.
The inverse problem needs to be able to deal with this structure properly.

Figure 5.4: Step 3 in the journey to PAULE. Now the target semantics is connected to the cp-
trajectories with question marks, which indicates another inverse problem. Furthermore,
the acoustics is connected with a yet unknown mapping to a semantic representation.
The semantic representation is derived purely from the acoustic representation and has
the same data structure as the target semantics.

What solution we propose for the inverse problem and how this solution works is
discussed later. But as we have a many-to-one problem in the acoustic to semantic
mapping, we can approximate this mapping with a machine learning model and learn
this association by giving enough training data. The mapping from the acoustic log-mel-
spectrogram to the semantic vector will be called the embedder as the model embeds
the log-mel-spectrogram into a fastText embedding space. Figure 5.5 shows the outer

67

Chapter 5. PAULE

loop with the embedder and the RMSE between the target semantics and the produced
semantics.

Figure 5.5: Step 4 in the journey to PAULE. Now, a semantic representation is derived from
the acoustic representation with an embedding model (the embedder). The embedder
is a time-series to fixed vector mapping, implemented as an artificial neural network
model. As the acoustic representation is up to here always the result of the synthesis of
the VTL, these setups are called the outer loop.

The outer loop shown in Figure 5.5 is a minimal outer loop that combines acoustics
and semantics with an articulatory synthesis system. Three tasks can be defined on this
outer loop. First, a acoustic-only task (copy-synthesis task) is defined by giving a target
acoustics, deriving the associated target semantics through the embedder, and then
finding cp-trajectories that match the target acoustics and the derived target semantics
as closely as possible. Second, in the semantic-only task, a target semantics can be given
and now the task is to find cp-trajectories that lead to an acoustics that has a meaning
that matches the target semantics. Here, with the setup displayed in Figure 5.5, no target
acoustics is present and no error from the acoustics can be derived as there is no way to
go from the semantic vector to the target acoustics, yet. Later, we add in a connection
from the target semantics to target acoustics using a Generative Adversarial Network
(GAN). The third and last task, the semantic-acoustic task, is to give matching target
semantics and target acoustics. In this task, the semantic and acoustic targets are given
therefore no target has to be derived indirectly. The third task can be interpreted as
repeating the name of an objected that is pointed at (the target semantics) and match the
pronunciation as closely as possible to the one given by the teacher (the target acoustics).

For a gradient-free method like an evolutionary algorithm, the semantic and acoustic
RMSE would be used as a fitness or scoring function. The evolutionary algorithm would
then try to minimize the error by creating populations of cp-trajectories, where in each

68

5.1. Journey to PAULE

generation of the population only a small sub-sample of the best or fittest individual
cp-trajectories are used to breed or create the new population of the next generation.

Naively optimizing the outer loop with a gradient-free method like Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) has several disadvantages. The fitness
function is defined on the whole word, therefore, CMA-ES cannot take advantage of the
time and frequency structure of the errors. With CMA-ES, it is difficult to implement
accumulation of experience and the CMA-ES needs to articulate and synthesize hundreds
and thousands of cp-trajectories for it to (hopefully) converge to optimal cp-trajectories
for a given target acoustics and target semantics. A last notable challenge is that producing
silence might be favorable in terms of low RMSE in the acoustic representation compared
to audio synthesized by intermediate cp-trajectories. In this silence the CMA-ES get
stuck as to create cp-trajectories that are favored over the cp-trajectories that produce
silence is practically impossible due to the high dimensionality of the cp-trajectories.

Figure 5.6: Step 5 in the journey to PAULE. Now, the outer loop is replaced by an
internal loop. For the internal loop, the acoustic representation is no longer derived from
the synthesized audio, but is now predicted by the predictive forward model, which
bypasses the VTL and directly predicts the acoustic representation from cp-trajectories.
Two advantages of the predictive forward model are that it executes faster compared
to the VTL and that it incorporates experience and, therefore, can be different for an
English version of PAULE compared to a German version.

In order to avoid these problematic aspects of evolutionary algorithms, we introduce a
predictive forward model. The predictive forward model bypasses the VTL and directly
learns the association between the cp-trajectories and the acoustic representation. It,
by design, does not model the audio wave, but directly the acoustic percept. Figure
5.6 clarifies how this predictive forward model is integrated with other modules of the
PAULE framework. Importantly, the connection between the synthesized audio and the

69

Chapter 5. PAULE

acoustic representation is removed. The loop shown in Figure 5.6 now is a purely internal
loop: no articulation and no invocation of the VTL synthesizer is involved. The internal
loop is the same as the outer loop with the exception that the VTL synthesizer is replaced
by the predictive forward model and the audio signal is skipped (Figure 5.5). The acoustic
representation and semantic representation in the internal loop are called predicted
acoustics and predicted semantics to distinguish them from the representations resulting
from the actual synthesis of the VTL. In the internal loop the errors are calculated between
the predicted semantics and target semantics as well as between the predicted acoustics
and target acoustics.

The predictive forward model is not a perfect approximation of the VTL but serves as
a crude but good enough approximation of the cp-trajectories to acoustics mapping. The
training samples for the predictive forward model are created by the VTL and the VTL
therefore defines the gold standard and the perfect mapping. The predictive forward
model is a good approximation of the VTL for well-known training samples. As the
predictive forward model has no insight into the articulation and physics involved in
speaking, it can only properly predict the acoustics in regions where the predictive
forward model accumulated experience. The prediction-errors are small and informative
in regions that are well known to PAULE, whereas rare or completely new articulations
are difficult to improve on as the error is large and potentially uninformative. This
accumulation of experience is especially desirable for models of language production
because of the strong class imbalance of a few high-frequency words, which the predictive
forward model should be able to predict in all its variants and many low-frequency
words, where the predictive forward model results in predictions and prediction error
that is less informative. This experience is not on the word token as a whole, but on time
slices of a time resolution of approximately 5 Milliseconds in the cp-trajectories and of
approximately 10 Milliseconds in the acoustic representation.

Another advantage of the predictive forward model is that by allowing for an internal
loop in an iterative planning process, the acoustic representation and the semantic
representation can be internally imagined by the model and no synthesis with the VTL
is needed during planning. This imagined acoustic and semantic representation is an
expectation on what a given set of cp-trajectories would sound like, if the VTL is used
to generate audio from it, and which meaning is associated with this audio. This way
of predicting the near future with a predictive forward model is also computationally
efficient: the prediction shortcuts the synthesis of an audio wave file and, therefore,
predicts in a lower dimensional space which is a lot less oscillatory.

A third advantage comes from the fact that the predictive forward model as well as
the embedder, can both implemented with a gradient-aware implementation. Therefore,
an error can be backpropagated through these machine-learning models. During the
training of these models, this backpropagation is used in learning and updating the
internal memory or weights of the models. During planning and adaptation, these
gradients can be used to inform PAULE which parts of the cp-trajectories it has to adjust
by which amount to achieve a smaller error. Figure 5.7 shows the complete internal loop
used by PAULE during planning. The error that comes from the RMSE loss between the

70

5.1. Journey to PAULE

target acoustics and the predicted acoustics and the error that comes from the RMSE
between the target semantics and the predicted semantics is complemented by an error
on the cp-trajectories themselves. This error on the cp-trajectories is a velocity and jerk
loss, which forces the cp-trajectories to be as stationary as possible and if they change that
they change with a mostly constant force or acceleration. The velocity for each trajectory
of the cp-trajectories is the change in position over time and the jerk is the change in
acceleration over time, respectively the first and third derivative in time. A small or zero
jerk corresponds to a slowly changing or possibly constant acceleration, which with the
proportional correspondence between the acceleration and the applied force (F “ ma)
means a slow changing or possibly constant applied force on the articulators.

Figure 5.7: Step 6 in the journey to PAULE. By utilising the gradients of the embedder
and predictive forward model and adding a low-effort regularization error, a solution
for the cp-trajectories for a given target acoustics and target semantics can be derived.
This is the internal loop of PAULE, which relies on good information in the gradients
of the predictive forward model and the embedder. The low-effort regularizing error
is implemented by minimizing velocity and jerk of the cp-trajectories, which fosters
stationary trajectories that are changed (if needed) by a constant force. The planning of
the internal loop works well if the cp-trajectories are initialized close to a solution of the
cp-trajectories. In this figure, this initialization is still missing.

Compared to Figure 5.6, the connecting arrows between the target acoustics and the
target semantics to the cp-trajectories were removed in Figure 5.7. This is the possible case
since we can close the internal loop by first going through the predictive forward model
and the embedder along the black arrows. Now, we compare the predicted acoustics
and the predicted semantics with the target acoustics and target semantics. This error
is now used and connected back to the cp-trajectories and by that closing the loop
through the gradients of the embedder and the predictive forward model. Therefore, no

71

Chapter 5. PAULE

direct connection between the target acoustics and the target acoustics cp-trajectories is
needed anymore. The use of the error and the gradients to close the loop comes with
one caveat though. In the very first iteration, we do not only need to initialize the target
semantics and the target acoustics but we do need to initialize the cp-trajectories as well.
Furthermore, as the gradients of the predictive forward model are only informative
for cp-trajectories, which are near cp-trajectories that are already integrated into the
experience of the predictive forward model, it is crucial for PAULE to initialize close
to the final solution. If the initialization is close to the target semantics and/or to the
target acoustics the internal planning loop is extremely flexible and good in adapting the
cp-trajectories into a low velocity and low jerk regime while still improving the error in
the acoustics and semantics domain. In this way the gaol of optimizing the articulation
on the conveyed meaning is achieved.

Figure 5.8: Step 7 in the journey to PAULE. In the last step before the final (current)
model, a first initialization method is introduced. Namely, the direct inverse model that
initializes the cp-trajectories from the target acoustics. Even if the direct inverse model
directly maps from the target acoustics to the cp-trajectories and, thereby, seems to solve
the original question, it fundamentally cannot find a locally optimal solution by itself.
The mapping of the direct inverse model is a one-to-one mapping and cannot condition
on the current and past state of the VTL. In reality, that mapping between the target
acoustics and the cp-trajectories is a one-to-many mapping. This mapping is achieved in
PAULE by planning along the gradients of the internal loop.

In order to solve the initialization of the cp-trajectories, we first created and trained a
direct inverse model that produces one set of cp-trajectories for a given target acoustics
given as a log-mel-spectrogram (see Figure 5.8). This direct inverse model will always
output the same cp-trajectories for a given log-mel-spectrogram as input and, therefore,
does not solve the one-to-many mapping. After the initialization with the direct inverse

72

5.2. Planning

model the one-to-many mapping is solved by iteratively correcting and planning the
cp-trajectories along the three error components of the cp-trajectories themselves, the
acoustics, and the semantics.

The direct inverse model only implements initialization from the target acoustics. But
because speech production is driven by meaning and meaning should be the starting
point, we introduced two GAN models as components to the PAULE model, one which
initialize the cp-trajectories from the target semantics and one which create a target
acoustics from the target semantics. The full PAULE model is shown in Figure 5.9.

5.2 Planning

Now that we have an understanding of all the boxes and arrows in the PAULE framework
depicted in Figure 5.9, in this section, we discuss in detail how the planning works to
find suitable cp-trajectories (cf. [21]) and how the planning finds different solutions in
different contexts for the same target acoustics and the same target semantics, and with
that solves the one-to-many problem. After introducing the planning in PAULE, we go
into detail on the implementation of the individual models. For now, the only important
properties of the models are, that they are learned and, therefore, incorporate experience
and that they can push back an error along the gradients of the model’s computations.
Additionally, note that the GAN models sample from a distribution and with that can
create different cp-trajectories and log-mel-spectrogram from the same semantic vector.
This solves the one-to-many problem as well but is not as adaptive and transparent as
the planning loop that is the topic of this section.

The planning in the current state of PAULE involves two iterative processes that are
interleaved (see Algorithm 1). The first planning is on the internal loop and involves the
predictive forward model and its gradients. The second process incorporates further
knowledge in the predictive forward model by listening to itself and some potentially
good cp-trajectories. This fostering of the knowledge of the predictive forward model is
done along the outer loop. The outer loop involves the synthesis of an audio with the
VTL. From this audio the produced acoustics and produced semantics is derived. This
outer loop is not shown in Figure 5.9, but can be created by connecting the synthesized
audio to the acoustic representation and from there going to the semantic representation
with the embedder.

The planning itself is the same for all three tasks that PAULE can solve, but the
initialization is task-dependent. As the planning can only start after initialization filled all
necessary data structures with data, we first explain how initialization is accomplished
for each of the three tasks. Specifically, the target semantics, the target acoustics, and the
cp-trajectories need to be initialized before the planning can start.

73

Chapter 5. PAULE

p
a
la

te
ve

lu
m

lip
s

to
n
g
u
e

vo
ic

e
 b

ox
 (

n
o
t

d
ra

w
n
)

tr
a
ch

e
a
 a

n
d
 lu

n
g
s

(n
o
t

d
ra

w
n
)

oesophagus

n
a
sa

l c
a
vi

ti
e
s

(n
o
t

d
ra

w
n
)

oral cavity

ta
rg

e
t
se
m
a
n
ti
cs

ta
rg

e
t
a
co

u
st
ic
s

In
v
e
rs
e
M

o
d
e
l

cp
-t
ra

je
ct
o
ri
e
s

F
o
rw

a
rd

M
o
d
e
l

V
o
ca

lT
ra

ct
L
a
b

sy
n
th

e
si
ze

d
a
u
d
io

a
co

u
st
ic

re
p
re
se
n
ta
ti
o
n

E
m
b
e
d
d
e
r

se
m
a
n
ti
c
re
p
-

re
se
n
ta
ti
o
n

M
e
l-
G
A
N

C
p
-G

A
N

in
it
ia
li
ze

in
it
ia
li
ze

in
it
ia
li
ze

R
M

S
E

lo
ss

R
M

S
E

lo
ss

V
e
lo
ci
ty

lo
ss

J
e
rk

lo
ss

g
ra

d
ie
n
ts

o
f

th
e
e
m
b
e
d
d
e
r

g
ra

d
ie
n
ts

o
f
th

e
fo
rw

a
rd

m
o
d
e
l

Fi
gu

re
5.

9:
T

he
(c

u
rr

en
tl

y)
co

m
p

le
te

P
re

d
ic

ti
ve

A
rt

ic
u

la
to

ry
sp

ee
ch

sy
nt

he
si

s
U

ti
liz

in
g

L
ex

ic
al

E
m

be
d

d
in

gs
(P

A
U

L
E

)
fr

am
ew

or
k,

w
hi

ch
ca

n
in

iti
al

iz
e

fr
om

a
ta

rg
et

se
m

an
tic

s
(s

em
an

tic
-o

nl
y

ta
sk

),
fr

om
a

ta
rg

et
se

m
an

tic
s

an
d

a
ta

rg
et

ac
ou

st
ic

s
(s

em
an

ti
c-

ac
ou

st
ic

ta
sk

),
an

d
fr

om
th

e
ta

rg
et

ac
ou

st
ic

s
(a

co
us

ti
c-

on
ly

ta
sk

/
co

py
-s

yn
th

es
is

ta
sk

).
In

it
ia

liz
at

io
n

is
d

on
e

by
a

d
ir

ec
ti

nv
er

se
m

od
el

an
d

/o
r

G
A

N
m

od
el

s.
T

hi
s

is
fo

llo
w

ed
up

by
a

pl
an

ni
ng

pr
oc

ed
ur

e
al

on
g

th
e

gr
ad

ie
nt

s
of

th
e

in
te

rn
al

lo
op

.A
ft

er
th

e
pl

an
ni

ng
is

co
m

pl
et

e,
th

e
fin

al
ly

pl
an

ne
d

cp
-t

ra
je

ct
or

ie
s

ar
e

us
ed

to
sy

nt
he

si
ze

au
di

o
w

ith
th

e
Vo

ca
lT

ra
ct

La
b

(V
TL

).

74

5.2. Planning

Algorithm 1 Algorithm for planning cp-trajectories with PAULE for the semantic-only
task. The algorithm uses the following abbreviations. For the data structures it uses:
vec: semantic vector, duration: duration of the final speech sound as integer in steps of
220 audio samples (5 Milliseconds); cps: cp-trajectories; mel: log-mel-spectrogram. The
remaining symbols are: m: model; L: for loss or error; ∇: gradient; α: learning rate; VTL:
articulatory synthesizer VTL; ymel is the predicted acoustics; }mel is the produced acoustics
and mel is the target acoustics. Note that we are using stochastic gradient decent in
this description but implemented the planning update with the ADAptive Moment
estimation (Adam) optimizer [55].

Require: vec, duration
xcps “ GANcppvec, durationq
mel “ GANmelpvec, durationq
for i “ 1 to 5 (outer loop) do

for j “ 1 to 24 (internal loop) do

ymel “ mpredictivepxcpsq
xvec “ membedderp

ymelq
Lplanning “ Lacousticsp

ymelq ` Lsemanticspxvecq ` Lcpspxcpsq

xcps “ xcps´ α ¨ ∇Lplanning
end for
}mel “ VTLpcpsq for 8 to 24 cps from the internal loop

continue training mpredictive with produced }mels

end for
return xcps,ymel }mel

5.2.1 Initialization

The semantic-only task (also called full-generation task) starts with a target semantics
and a duration, which defines the duration of the final word. In this task, the target
acoustics and the initial cp-trajectories are missing. The target acoustics is initialized
with the Wasserstein-GAN trained to sample log-mel-spectrograms (mel-GAN), which
takes the target semantics and the duration as well as a random vector as input. In the
same way, the cp-GAN initializes the initial cp-trajectories from the target semantics in
the semantic-only task.

In the acoustic-only task (also called copy-synthesis task), only the target acoustics
is given. The task is to find cp-trajectories that match the target acoustics as closely
as possible and in order to fully initialize PAULE, the target semantics, as well as the
initial cp-trajectories, need to be computed. The initial cp-trajectories are created from a
direct inverse model, which takes the target acoustics as input. The target semantics is
computed from the target acoustics through the embedder.

In the semantic-acoustic task both the target semantics and the target acoustics are

75

Chapter 5. PAULE

given by the end user, but the initial cp-trajectories are missing. These can now be
either initialized from the target semantics or from the target acoustics. In the current
implementation, the direct inverse model gives better results compared to the cp-GAN
and, therefore, the default is to use the direct inverse model in the semantic-acoustic task
for now.

5.2.2 Internal loop

The internal loop in PAULE is visualized in Figure 5.7 and is the most inner for-loop
in Algorithm 1. The task of the internal loop is to iteratively correct the cp-trajectories
along a predicted acoustics, a predicted semantics, and a cp error.

A single execution of the internal loop starts with the prediction of the log-mel-
spectrogram of the predicted acoustics from the current cp-trajectories by the predictive
forward model. From this predicted acoustics, a predicted semantics is derived with the
embedder. Now, the predicted acoustics is compared to the target acoustics, the predicted
semantics is compared to the target semantics and for both the RMSE error is computed.
Additionally, the RMSE is computed between the velocity (first-time derivative) of the
cp-trajectories and flat zero-line trajectories (no velocity). In the same way, the RMSE of
the jerk (third-time derivative) of the cp-trajectories and zero-line trajectories (no jerk)
are computed.

The four error components (acoustic, semantic, velocity, jerk) are added together to
form an additive loss. This combined error is then pushed back along the gradients of
the embedder and predictive forward model for the semantic error; along the gradients
of the predictive forward model for the acoustic error; along the velocity computation
for the velocity error; and along the jerk computation for the jerk error.

The pushed-back error informs us in a linear approximation of how to change the
current cp-trajectories to minimize the additive error. To calculate new cp-trajectories
from the current cp-trajectories and the pushed-back error Stochastic Gradient Decent
(SGD) could be used as the simplest update scheme, but we applied the ADAptive
Moment estimation (Adam) optimizer [55] during the planning in the internal loop. Adam
not only takes the pushed-back errors from one iteration into account, but additionally
takes the information of the last planning updates into account as well. The Adam
optimizer is initialized with a relatively large learning rate of 0.01, but can be set manually
to other values when calling the planning in the paule python package.

After the pushed-back error is applied to the current cp-trajectories, the newly planned
cp-trajectories become the current cp-trajectories and the internal loop is started over
again. We default to 24 repetitions for the internal loop, but depending on the quality of
the initialization and the accumulation of the predictive forward model, more iterations
might give better results. We tested up to 100 internal iterations, which resulted in
slightly improved results, but were not worth the huge additional computational costs.

76

5.2. Planning

5.2.3 Outer loop

In the outer loop, the PAULE model synthesizes audio with the VTL from cp-trajectories
and listens to itself. From the synthesized audio the produced acoustics and the produced
semantics is computed. This results in triplets of data points, a cp-trajectories with the
associated acoustic and semantic representation. The main purpose of the outer loop in
the PAULE model is to improve the predictive forward model by exposing it to the cp-
trajectories, produced acoustics pairs in supervised learning. The outer loop is necessary
whenever the predictive forward model does not give informative gradients on how to
improve the current cp-trajectories. In the outer loop, no planning on the cp-trajectories
is done, but the experience of the predictive forward model on the articulatory model
is improved in the region of the planning at hand. This use of the outer loop can be
seen as the model articulating the word it has in mind to itself, listening to it, and then
improving the articulation further after remembering this practising articulation.

The integration of the new experiences into the predictive forward model is imple-
mented by further training the weights of the predictive forward model with new
training samples that are generated from planned cp-trajectories from the internal loop
and the corresponding synthesis results from the VTL. We will call this process of adding
new experiences during the planning practicing.

The new samples for practicing are created by synthesizing 8 to 24 cp-trajectories
from the internal loop with the VTL and calculating the log-mel-spectrogram for the
synthesized mono audio. The learning is continued with an Adam optimizer, which is
different from the one used in the internal loop and is initialized with a substantially
smaller learning rate of 0.001. The training samples are exposed to the predictive forward
model 10 times, i. e. we default on 10 epochs in the practicing training.

For some time, we seemed to experience catastrophic forgetting in the predictive
forward model as the training samples in the practicing training of the outer loop are very
similar and only training on these makes the predictive forward model memorize these
and forget all the other accumulated knowledge. This catastrophic forgetting resulted
in completely uninformative and very high gradients. To mitigate the catastrophic
forgetting, we mixed some old training samples into the practicing training data. But in
the end, this was not necessary anymore. Still, the option to add training samples for the
practicing training is still in the code and optionally available.

At the moment, we only implement practicing for the predictive forward model. In
principle, it is possible to implement it for the GAN models as well as for the direct
inverse model. This is a good idea, but increases computation costs without getting any
direct benefit for the single planning at hand, as these models are only used during
initialization. Furthermore, this makes the planning in PAULE even less reproducible
and deterministic, which scientifically speaking is not desired.

77

Chapter 5. PAULE

5.3 Theory

Before we discuss the different internal models used in PAULE, two important concepts
are introduced here. The first concept is the local gradient, which allows for error back-
propagation and informs the iterative planning process in PAULE. Why the automatic
calculations of local gradient information is important is discussed as the first topic
of this section. The second topic is the Long-Short-Term-Memory (LSTM) cell and a
LSTM-layer in an Artificial Neural Network (ANN) model. As we have time-series data
with a sequence length of 50 to 400 time-steps and as the data is highly autocorrelated,
i. e. follows relatively smooth curves in time, it is important to model these autocorrel-
ative dependencies. LSTM-layers are designed to properly deal with variable length
autocorrelated sequence data.

Other techniques like drop-out, adding random noise to the learning data, residual
nets, and rectifying linear units (ReLUs) have been explored for the PAULE model but
are neither necessary nor helpful in understanding the concepts behind PAULE. As we
aimed for simplicity, these techniques are gone from the important individual models
presented in Section 5.4 and will not be discussed in detail here.

5.3.1 Autograd & gradient-aware models

The first important development of the last years, which allows models like PAULE to do
their trickery, is the widespread availability and easy use of gradient aware calculation
pipelines. These pipelines are based on computational graphs and use a generalised
form of a vector or matrix, called tensor. An input tensor is transformed into an output
tensor using mathematical operations (the computational graph). Given the output
tensor, an error signal is calculated based on a predefined objective function, also called
loss function in machine learning. The calculated error or loss can be pushed-back
through the computational graph and is used to update the free parameters of the
mathematical operations (weights and biases) or, in case of the PAULE model, update
the input parameters. The only requirement for the mathematical operations is that the
first derivative, the gradient, can be approximated, and in the best case is analytically
given. The approximated gradient does not have to be the exact mathematical gradient,
but should be close enough to get the models to work properly.

Two famous frameworks that support gradient aware computational graphs that can be
interfaced from the Python programming language are PyTorch [70] and Tensorflow [27]. In
this thesis and for the paulepython package, we used PyTorch in version 1.8.1. All models
are implemented by creating computational graphs. The inputs are defined as tensors
that consist of a batch dimension, a channel dimension (cp or log-mel-spectrogram), and
a time-step dimension or sequence dimension. The batch dimension has a fixed size, the
so-called batch size, that is set to 8 (in some cases to 64) in our work. The channel size
is fixed to 30 for the cp, to 60 for the log-mel-spectrogram, and to 300 for the semantic
vector tensors. The last dimension has a variable size of around 50 to 400 time-steps and
is not present for the semantic vector tensor.

78

5.3. Theory

In the forward pass, an input tensor is given to the model and the model’s computational
graph is applied to the input tensor consecutively. Within the computational graph
entries of the input tensor are changed by multiplying weights and adding biases before
applying a usually non-linear activation function. The multiplication with the weights
and the addition of the biases is done according to the tensor product, which is a
generalized matrix product and is itself a linear operation. The non-linearities only come
from the explicit non-linearities that are applied to the activations after the tensor product
is computed. During the forward pass, the model stores the intermediated activations as
far as they are needed to compute the gradients in the backward pass. Tensor shapes,
i. e. the number of dimensions and the size of each dimension of the tensor, can change
during the computations from the computational graph.

After all computations of the computational graph are computed in the forward pass,
the output tensor is generated. This output tensor can now be compared to a reference
or target tensor of the same shape. The differences between the output tensor and the
reference tensor can be computed according to different distance metrics, which are
defined by the loss function or learning objective. In this thesis the objective or loss
functions consist mostly of the RMSE. The L1-norm and the L2-norm were explored as
well, but did not yield similarly good results. Given a specific distance metric or error
measure, the loss can be calculated. This loss (or error) is calculated for each cell in the
output tensor, and is the starting point of the backward pass.

In the backward pass, the gradients computed by autograd show their power. After
calculating the loss for all cells in the output tensor, the computed gradients are used
to distribute the error backwards from the output tensor to the intermediate layer
directly before the output tensor in a first step. In the next step, the distributed loss
can be used to calculate the error for the intermediate layer before that one. These
step-by-step computations in reverse order, therefore the name backward pass, calculate
the contribution of each activation from the forward pass to the final error. To make things
computational efficient for the framework first order derivatives for all non-linearities
are required to be analytically given while relevant information is stored during the
forward pass.

At the end of the backward pass, each connection weight or bias involved in the
forward pass now has a gradient attached to it, which quantifies its contribution to
the final error and at the same time specifies what change to the number is needed to
minimize the final error under a linear approximation. Although this linearity assumption
is generally not fulfilled, the Taylor-expansion tells us that the linear approximation is
arbitrarily good for a (very) small variation of the output tensor and the activations.
This Taylor-expansion exists and has this property as all the computational steps are
differentiable. Therefore, changing the activations only a little is guaranteed to make
the final error smaller. Unfortunately, it is unknown how small this step should be. The
size of the step is called the learning rate and is a so-called hyper parameter, which
must be manually set. While small learning rates guarantee to reduce the final error,
the reduction is small. In contrast, large learning rates potentially reduce the final error
substantially, but might in the worst case increase the final error because the linearity

79

Chapter 5. PAULE

approximation might be strongly violated.
Overall, the combination of linear algebra on tensors, explicitly defined non-linearities

with corresponding derivatives, as well as the automatic bookkeeping and computations
of forward and backward pass allow for the supervised learning of big machine learning
models. PAULE exploits all of these mechanisms to backpropagate an error signal to the
inputs of an articulatory speech synthesis system, namely the cp-trajectories of the VTL.
This process of updating these inputs based on the error signal is called planning.

5.3.2 Long-Short-Term-Memory (LSTM)

With the decision not to use any symbolic representation on the acoustic or motor
level, articulatory speech synthesis in PAULE is modeled in a time-series to time-series
and time-series to fixed-vector manner. This decision leads to the problem of dealing
with long-ranging dependencies in highly correlated, multi-channel time-series data.
A powerful building block to handle this problem is the Long-Short-Term-Memory
(LSTM)-cell and the ANN-layer that can be created with these cells.

Modeling time-series or sequences naively with ANN architectures lead to the
development of Recurrent artificial Neural Network (RNN) architectures. RNNs work
by recursively feeding the model output activations of the last time-step as inputs into
the model’s next input activations. This is usually done together with new input data for
the next time-step. Therefore, for each time-step, the inputs and outputs are connected by
the same model and the correlative structure can be modeled by aggregating the relevant
information of the past into the activations that are passed in as new inputs to the model
at the next time-step. The same mechanism is applied within a LSTM-network, which
enables the model to deal with arbitrary long time sequences with the same number of
weights. The number of time-steps only changes the number of forward passes through
the model.

A common way to train RNN and LSTM models calculates the gradients not only by
layer, but also per time-step. This method is the so-called backpropagation through time
method. During the forward pass, at each time-step the same RNN or LSTM-model
is called once. Activations of the full RNN-model for each individual time-step are
stored separately. In the backward pass, not only the model is traversed backward,
but additionally, the time sequence is traversed backward. Gradients of the model
are calculated once per time-step. With a time sequence length of 400 time-steps, the
gradients are calculated and stored 400 times compared to the single model. For an
update of the weights and biases all 400 errors are summed together for each cell. This
backpropagation through time method results in the following severe problem for RNN
models, which is mitigated by the LSTM-network architecture.

The analytic calculations of the gradients involve the repeated use of the chain rule
of differentiation, which leads to a multiplicative relationship between terms in the
gradient computation. These terms are all very similar and usually evaluate to a similar
number. The number of terms depends on the depth of the layer and on the position in
the time-sequence in backpropagation through time. At early time points more terms

80

5.3. Theory

accumulate during the backpropagation steps. With a multiplicative set-up, this leads to
gradients that are either virtually zero – known as the vanishing gradient problem – or
that are extremely (!) large in their absolute value – known as the exploding gradient
problem. For example, for a very simple model with 400 time-steps, the gradient of
the first time-step consists of 400 terms all connected by multiplication. The resulting
gradient therefore can be approximated by the average evaluation of all terms raised to
the power of 400. If each term evaluates to around 0.9 the gradient is practically zero with
0.9400 « 5.0ˆ 10´19. If all terms evaluate to around 1.1 the gradient would be around
1.1400 « 3.6ˆ 1016.

The vanishing and exploding gradient problem result in learning regimes for RNN
models that require a very small learning rate to ensure that the gradients don’t explode.
Unfortunately, this small learning rate brings the backpropagation through time into the
vanishing gradient regime, where the informative error can only be pushed back in time
over very few time-steps. Therefore, only very short-ranging autocorrelations can be
modeled with RNNs.

This problem could be substantially alleviated by the introduction of LSTM-cells [47].
As a special kind of RNN, LSTM-models implement a so-called error carousel. Figure 5.10
shows the internal structure of one LSTM-cell. If the output gate is closed, i. e. has an
activation near zero, the multiplicative gradient terms are canceled out and the main
contribution of the gradient is directly transferred from the cell state one time-step in the
future. In the forward pass, the cell state is written by the input gate and read out by the
output gate. Furthermore, the LSTM-cell contains a forget gate that allows to erase the
cell state.

All the non-linear activation functions are sigmoid functions (σ) with output values
between 0 and 1 and the tangens hyperbolicus (tanh) with output values between -1 and
1. The derivatives (gradients) of these activation functions are smooth differentiable,
mono-modal functions without any jumps, which give a meaningful gradient in the range
of -1 to 1. Smooth derivatives of the activation functions leed to nicely behaving gradients
in the backward pass and during planning of PAULE. As the activation functions of
the LSTM are most sensitive in the -1 to 1 range, a normalization of the training data
into that range is crucial. In principle, data not in the -1 to 1 range could be modeled
with LSTM-cells as well, when the weight initialization is done according to the data
ranges, but often it is more transparent and easier to map all the data into the -1 to 1
range. Note, however, that it is not advisable to use any non-linear data transformations
for rescaling the data as this changes the distance structure in the data. There might be
good reasons for non-linear scaling of data, but this non-linear scaling should not be
motivated with the use of LSTM-cells. Although LSTM-cells are capable to handle data
outside of the -1 to 1 range, substantially more training time would be needed due to the
limited sensitivity outside of this range.

Each LSTM-cell contributes four parameters, which must be trained. Stacking many
LSTM-cells together forms a LSTM-layer, which itself can be further stacked or connected
to different layers by dense connections. Due to the recurrent design of the LSTM-cells,
activations of the next time-step depend on the prior-time-step during the forward

81

Chapter 5. PAULE

σ σ Tanh σ

ˆ +

ˆ
ˆ

Tanh

ct´1

Cell State

ht´1

Hidden State

xt

Input

ct

ht

ht

Output

Forget
Gate

Input Gate

Output
Gate

Figure 5.10: The Long-Short-Term-Memory (LSTM)-cell. The multiplicative connections
between the hidden state ht´1 and different expressions of the cell state ct´1 lead to
different gates that allow for an error carousel in the backpropagation step and effectively
mitigates the exploding and vanishing gradient problem prevalent in Recurrent artificial
Neural Network (RNN) architectures. The LSTM is a specific form of RNN that explicitly
addresses this problems with its gating mechanisms.

82

5.4. Individual component models

pass. This is the case for all RNN models. Even though this temporal dependency
is theoretically appealing, both RNN and LSTM have a computational disadvantage,
namely, that calculations cannot be parallelized. As a consequence, these models cannot
take full advantage of the computational power of current graphics cards.1

With the error carousel in place and the smart gating of the LSTM-cell, it is possible
to model long-ranging relationships in time-series to time-series data and in time-
series to fixed-vector data. The RNN nature of LSTM-cells makes it possible to model
variable length sequences, where the sequence length is only limited by the available
computational memory resources. Except for the GAN networks, LSTM-layers are
present and are the work-horse in all internal models of PAULE. The GAN models are not
implemented using LSTM-layers as they were extremely slow to train. Implementations
with LSTM models for GANs exist, and preliminary training showed promising results,
however, in order to keep computation times within reasonable bounds and to avoid
large environmental footprint for PAULE, we did not pursue using LSTM-cells for GANs.

5.4 Individual component models

PAULE consists of several individual component models that connect the different data
structures (see Figure 5.9). The models are Artificial Neural Network (ANN) models
trained with data from the Mozilla Common Voice corpus (Common Voice) or the IMS
GECO database (GECO) (see Chapter 4). Except for the GAN models, all individual
models are trained in a supervised learning fashion with an RMSE loss function and an
Adam optimizer. All models, except for the GAN models, make heavy use of at least one
LSTM-layer.

Training is performed using batches of typically 8 samples. All samples in one batch
are shown to the model in parallel. For each training sample in the batch, a forward pass,
a loss computation, and a backward pass is conducted. As all training samples are shown
in parallel, independent learning between the samples is assumed. Computation time is
practically identical for the training on a batch compared to training on single training
samples. Additionally, training with batches is more robust and statistically stable as
the errors are summed over all samples in the batch for each weight. This leads to an
averaging effect, which effectively allows the error to be minimized for all samples jointly.
For too large batches, this averaging effect might, in the worst case, erase all relevant
information, especially if the models are highly non-linear, i. e. the error landscape is
very wiggly.

As we deal with time-series data that is different in its duration or sequence length,
batches usually include samples that are very different in length. In order to compute

1Transformers [115] are specifically designed to model sequence to sequence data like time-series to time-
series data while being parallelizable and do not rely on a recursive or recurrent pattern and are not
RNN even if they solve similar tasks. Therefore, with respect to future progress, it might be interesting
to switch to a Transformer architecture from the LSTM-models used for PAULE right now. LSTM-layers
used in PAULE follow a vanilla flavour, namely unidirectional forward LSTM-layers trained with
backpropagation through time.

83

Chapter 5. PAULE

such batches, the shorter training samples need to be padded to all conform to the
longest sequence in the batch. The padding should be done in such a way that the
padded values do not contribute to the error during training and still be computationally
efficient. While one reason to apply batch learning is to decrease the computational costs
during training, the necessary padding can harm the training process. Benefits of the
batch training diminish at the end of the batched time-series, where only the time points
of one training sample are left.

As we had problems getting proper padding to work and the improper padding we
used initially resulted in either extreme slow computation times or artifacts at the end of
the time-series, we adopted same-size batching in the end. In same-size batching, the
batches are not created by randomly selecting training samples from the whole training
data set, but by first ordering the training samples by the length of their time-series.
Subsequently, batches are formed out of time-series training samples of the same or very
similar length and padding is kept to a minimum. The application of same-size batching
removed all artifacts we encountered beforehand at the end of the time-series in the
model predictions.

The following subsection introduces and discusses the individual models. Their role
within PAULE is described, a precise model definition is given, and the (supervised)
training of the model is described and evaluated. We start with the predictive forward
model and the embedder, which both play a central role in the internal loop in PAULE
and allow for the predictive nature of PAULE. Details on the implementation are available
in the paule package in the models.py Python module.

5.4.1 Predictive forward model

The predictive forward model is the key component in PAULE. It maps the cp-trajectories
directly onto a log-mel-spectrogram, i. e., the motor commands onto the acoustic rep-
resentation. The predictive forward model ‘imagines’ the acoustics resulting from the
upcoming articulation. These internally imagined predicted acoustics can then be com-
pared to the target acoustics. The resulting error between the prediction and the target
is then used together with the gradients of the predictive forward model to plan and
further improve the cp-trajectories.

In addition to the predictive nature that the predictive forward model implements, the
predictive forward model accumulates experience on the articulatory speech synthesizer
VTL and, therefore, allows PAULE to be intrinsically dependant on the experience it
has accumulated over learning with the language. For a cognitive model of speech
production, this is an essential design feature as different speakers with different
speaking background and different vocal tracts articulate the same linguistic word types
systematically different.

Architecture

Different from the rest of the models presented later, we will discuss two versions of
the predictive forward model. We do this to show how simplification took place during

84

5.4. Individual component models

the development of PAULE and to make the reader aware that each of these models
could be exchanged for another model, as long as the main rationale behind PAULE
stays intact, namely the mapping of the respective inputs to the corresponding outputs
and the capability of pushing back an error. Therefore, it is not critical to understanding
every detail in individual models, as long as the overall structure and the function of the
models are understood.

30
Input

720

LSTM

720

Linear

60

Half

60
Output

Figure 5.11: The architecture of the predictive forward model. The predictive forward
model takes cp-trajectories as inputs and outputs a log-mel-spectrogram, which is used
as the acoustic representation throughout PAULE. The architecture consists of a single
720 cell-wide LSTM-layer and some reshaping operations.

We start with the simpler model, which is used in the current version of PAULE
(version 0.2.0). The model architecture is depicted in Figure 5.11 and the Pytorch model
definition is given in Listing 5.1. The model takes the cp-trajectories as inputs, therefore
the input tensor has a shape of batch size ˆ 30 ˆ sequence length. This input is fed into a
LSTM-layer of 720 cells mapping to a tensor of shape batch size ˆ 720 ˆ sequence length.
Afterwards, this tensor is mapped onto a 60 dimensional tensor using a linear layer. The
tensor now has a tensor shape of batch size ˆ 60 ˆ sequence length. This is already the
number of channels needed for the log-mel-spectrogram output format, but as we opted
for having the time resolution only twice as coarse in the log-mel-spectrogram compared
to the cp-trajectories, the sequence length has to be halved. Therefore, two consecutive
time points are pooled by a final average pooling layer. The output tensor has a shape of
batch size ˆ 60 ˆ half of the sequence length. To not run into problems in the halving step,
input cp-trajectories are same-padded to an even sequence length.

Listing 5.1: Pytorch definition of the predictive forward model.
1 c l a s s PredictiveForwardModel (torch . nn . Module) :
2
3 def _ _ i n i t _ _ (s e l f , i n p u t _ s i z e =30 ,

85

Chapter 5. PAULE

4 output_s ize =60 ,
5 hidden_size =180 ,
6 num_lstm_layers =4) :
7 super () . _ _ i n i t _ _ ()
8
9 s e l f . hal f_sequence = torch . nn . AvgPool1d (2 , s t r i d e =2)

10 s e l f . lstm = torch . nn .LSTM(input_s ize ,
11 hidden_size ,
12 num_layers=num_lstm_layers ,
13 b a t c h _ f i r s t=True)
14 s e l f . p o s t _ l i n e a r = torch . nn . Linear (hidden_size , output_s ize)
15
16 def forward (s e l f , x , * args) :
17 output , _ = s e l f . lstm (x)
18 output = s e l f . p o s t _ l i n e a r (output)
19 output = output . permute (0 , 2 , 1)
20 output = s e l f . hal f_sequence (output)
21 output = output . permute (0 , 2 , 1)
22
23 return output

This architecture is substantially simpler compared to the predictive forward model
used in the 2020 publications [95,93]. Simplifying the model slightly decreased the accuracy
of the validation and test data but gives at least as good gradients during planning and
has substantially faster execution times.

The architecture of the model used in 2020 is shown in Figure 5.12. Here, the input cp-
trajectories are first modified by five residual convolutional layers in the time dimension.
Next, from the enhanced location inputs, velocities and accelerations are computed and
concatenated to the locations, which results in a tensor of shape batch sizeˆ 90ˆ sequence
length. This tensor serves as input to four LSTM-layers with 180 cells each. After the
LSTM-layers, a linear-layer maps the LSTM-activation tensor of shape batch size ˆ 180
ˆ sequence length to the final number of 60 channels and an average pooling halves the
number of time-steps. The resulting output tensor is again a tensor of shape batch size ˆ
60 ˆ half of the sequence length.

This old predictive forward model from 2020 was one out of several different ones
we tested, which gave the best performance in terms of minimal loss on the held-out
test data. Compared to the much simpler model used currently, the old model had
similar planning capabilities but was substantially slower to execute. Since the predictive
forward model is executed in every iteration of the internal loop, the execution time is
critical for the whole planning procedure and, therefore, for the overall speed of speech
synthesis by PAULE. Additionally, the hold out test data contains cp-trajectories that
are created by the segment-based synthesis approach and therefore do not follow the
distribution of the cp-trajectories created through planning with PAULE. Therefore,
the performance measured on the held-out test data only roughly approximates the
performance of the predictive forward model in its usage within PAULE.

86

5.4. Individual component models

30 Inp
ut

30

T
im

e
C
o
n
v

5
×

1

+

30

T
im

e
C
o
n
v

5
×

1

+

30

T
im

e
C
o
n
v

5
×

1

+

30

T
im

e
C
o
n
v

5
×

1

+

30

T
im

e
C
o
n
v

5
×

1

+

30 Pos
itio

n

30 Vel
ocit

y

30

Accle
rati

on

18
0

18
0

18
0

18
0

L
S
T
M

-B
lo
ck

18
0

L
in
e
a
r

60

H
a
lf

60

O
u
tp

u
t

Fi
gu

re
5.

12
:T

he
ar

ch
ite

ct
ur

e
of

an
ou

td
at

ed
pr

ed
ic

tiv
e

fo
rw

ar
d

m
od

el
us

ed
in

20
20

.T
he

ar
ch

ite
ct

ur
e

is
a

lo
tm

or
e

co
m

pl
ic

at
ed

co
m

pa
re

d
to

th
e

cu
rr

en
ta

rc
hi

te
ct

ur
e

of
th

e
pr

ed
ic

tiv
e

fo
rw

ar
d

m
od

el
an

d
co

ns
is

ts
of

a
st

ac
k

of
re

si
du

al
co

nv
ol

ut
io

ns
fo

llo
w

ed
by

a
st

ac
k

of
fo

u
r

18
0

ce
ll-

w
id

e
L

ST
M

-l
ay

er
s,

fo
llo

w
ed

by
so

m
e

re
sh

ap
in

g
op

er
at

io
ns

.T
hi

s
m

od
el

is
sh

ow
n

to
gi

ve
an

im
pr

es
si

on
on

th
e

si
m

pl
ifi

ca
ti

on
s

w
e

co
ul

d
ac

hi
ev

e
in

th
e

en
d

fo
r

th
e

in
te

rn
al

m
od

el
s

in
PA

U
LE

w
it

ho
ut

lo
si

ng
su

bs
ta

nt
ia

l
am

ou
nt

s
of

ac
cu

ra
cy

.

87

Chapter 5. PAULE

Training & evaluation

The current predictive forward model is trained on the resynthesized segment-based
part of the Common Voice data set with 21,175 word tokens and 4,311 word types in a
supervised learning fashion. Batch normalization is used with a batch size of 8. The model
is trained over 100 epochs, where one epoch is one full pass through the training data set.
With 100 epochs each sample is presented 100 times to the model during training. That
the predictive forward model can only be trained on cp-trajectories, log-mel-spectrogram
pairs that are created with the segment-based synthesis approach (see Section 4.1). On
the one hand, the knowledge engineered into the segment-based cp-trajectories may
benefit the predictive forward model. On the other hand, the predictive forward model
is exposed to rule-based synthesis data that are understandable but sound quite artificial,
and the variability across tokens of the same type that is naturally present in real speech
is absent. As a consequence, predicting the audio of highly variable audio tokens is a
hard task: The input data come from a different statistical distribution than the output
target distribution. It is therefore unsurprising that PAULE also relies on the outer loop
for learning. (Which, from a cognitive perspective, makes sense: we hear ourselves when
we speak.)

Figure 5.13: The loss of the predictive forward model compared to a Multi-Layer-
Perceptron (MLP), which after 100 epochs still has a substantially higher loss.

88

5.4. Individual component models

Figure 5.13 shows that the loss is reduced from an initial value of 0.063 to 0.017, which is
substantially smaller compared to a non-recurrent feedforward Multi-Layer-Perceptron
(MLP) trained on the same data for comparison. The loss itself might be misleading
as it is not informative about weather the log-mel-spectrogram are approximated well
at all. Therefore, it is necessary to look at least at some of the predictions of the model
and compare these to the ground truth data. Figure 5.14 presents the various log-mel-
spectrogram for three tokens of the word /Lehrer/ (teacher). The log-mel-spectrogram
of the recordings illustrate the variability in the ways this word is pronounced. For the
first two tokens, /Lehrer/ is produced with two syllables. The third token illustrates
a single-syllable realization. The predicted log-mel-spectrogram are more similar to
the VTL-resynthesized log-mel-spectrogram than to the actual log-mel-spectrogram
calculated from the recordings, as expected: the predictive forward model is never
exposed to the log-mel-spectrogram of the actual recordings. Clearly, both the LSTM-
based predictions and the MLP-based predictions well-approximate the gold-standard
log-mel-spectrogram that they are trained to predict.

Figure 5.14: Three tokens of the word /Lehrer/ (teacher) from the GECO. Example
predictions by the predictive forward model and by the Multi-Layer-Perceptron (MLP)
are compared to the ground truth (Resynthesized), the mean log-mel-spectrogram over
the word type, and associated human recordings.

Both the MLP as well as the LSTM-based predictive forward model achieve to model
the structure of the cp-trajectories to log-mel-spectrogram mapping created by the VTL.

89

Chapter 5. PAULE

5.4.2 Embedder

The embedder is the second key model in PAULE. It maps the log-mel-spectrogram
onto a semantic vector, i. e., acoustic representation onto the semantic representation.
In contrast to the predictive forward model, the embedder has no physical model like
the VTL to approximate. Therefore, the mapping of the embedder is used in two ways:
in the outer loop it maps the produced acoustics onto the produced semantics and in
the internal loop it maps the imagined predicted acoustics onto the predicted semantics.
This twofold usage arises from the fact that there is no available ground truth simulation
for the construction of meaning from speech. If we would have a human listener in the
outer loop, this human listener could serve as the ground truth (like the VTL does for
the predictive forward model). Without a human listener in the loop, the embedder
gives both, the imagined predicted semantics as well as the best estimate of the actual
produced semantics. In contrast to the predictive forward model, this twofold usage does
not allow to incorporate experience in the embedder during the planning of PAULE. Still
the embedder is a very important component of PAULE as for the planning in PAULE,
the RMSE error between the predicted semantics and the target semantics is used to
improve the cp-trajectories. Additionally, the embedder is used in the synthesis of the
acoustic-only task to derive an initial target semantics from the log-mel-spectrogram of
the target acoustics.

60
Input

720 720

LSTM

720

Linear

300
Output

Figure 5.15: The embedder model consists of two LSTM-layers followed by a linear layer
at which the last activation is extracted and used as the prediction of the semantic vector.
The embedder maps the variable length time-series data of the log-mel-spectrogram
onto the fixed length semantic vector representation.

As the embedder is used in every iteration of the internal loop, execution times are
critical for the overall planning speed of PAULE. The architecture (see Figure 5.15 and
Listing 5.2) reflects this by having again an as simple as possible approach for the
time-series to fixed-vector model. The input log-mel-spectrogram with a tensor shape
of batch size ˆ 60 ˆ sequence length is followed by two LSTM-layers with 720 cells each.
From the output tensor of shape batch size ˆ 720 ˆ sequence length information at the

90

5.4. Individual component models

last meaningful time-step in the input log-mel-spectrogram is extracted resulting in a
720-dimensional vector. For all samples in the batch, these vectors are stacked together
to form a tensor of shape batch size ˆ 720, which then is linearly mapped to the final
output shape of batch size ˆ 300.

Listing 5.2: Pytorch definition of the embedder.
1 c l a s s Embedder (torch . nn . Module) :
2
3 def _ _ i n i t _ _ (s e l f , i n p u t _ s i z e =60 ,
4 output_s ize =300 ,
5 hidden_size =720 ,
6 num_lstm_layers =2 ,
7 p o s t _ a c t i v a t i o n=torch . nn . LeakyReLU () ,
8 dropout = 0 . 7) :
9 super () . _ _ i n i t _ _ ()

10
11 s e l f . lstm = torch . nn .LSTM(input_s ize ,
12 hidden_size ,
13 num_layers=num_lstm_layers ,
14 b a t c h _ f i r s t=True ,
15 dropout=dropout)
16 s e l f . l inear_mapping = torch . nn . Linear (hidden_size , output_s ize)
17
18
19 def forward (s e l f , x , lens , * args) :
20 output , (h_n , _) = s e l f . lstm (x)
21 output = torch . s tack ([output [i i , (l a s t − 1) . long () , :]
22 for i i , l a s t in enumerate (l ens)])
23 output = s e l f . l inear_mapping (output)
24
25 return output

A large number of different embedder architectures were tested, some of which were
substantially more complex compared to the one presented here. In the end, the simple
two-layer LSTM model turned out to be the best compromise between good accuracy,
fast execution times, good gradients for the planning, and simplicity.

Training & evaluation

The training for the embedder is conducted on both the segment-based resynthesized
acoustics and the acoustics from the recordings of the Common Voice corpus. This leads
to a training data set of 42,350 word tokens and 4,311 word types. In order to enforce a
better gradient structure in the embedder, normally distributed i.i.d noise is added to
each target semantic vector dimension with a mean of 0 and standard deviation of 1/6 of
the minimal distance of the semantic vectors in the training data. New noise is added at
each epoch. For the two LSTM-layers, dropout was used and the training ran over 200
epochs. Training time-series to fixed-vector models is more difficult and usually needs

91

Chapter 5. PAULE

longer training times. The training loss dropped from 0.45 to 0.03 (see Figure 5.16) and is
substantially better compared to an MLP trained on the same task for comparison.

Figure 5.16: The loss of the embedder model shows the typical decline. The LSTM based
embedder has a lower training and validation loss compared to an MLP based embedder.

In order to evaluate the embedder, word classification accuracies are calculated on
a test set of 225 unseen word tokens and 13 word types, which show a top-1 accuracy
for test data from the segment-based approach of 99 % and for test data from the
human recordings (Common Voice corpus) of 63 %. Furthermore, we projected the
300-dimensional embeddings for a subset of the data into the 2-dimensional plane with
a Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)
embedding [64] and visualized it as a scatter plot (Figure 5.17). The 2-dimensional
projection shows that in the subset all log-mel-spectrograms are embedded close to the
target.

In summary, the embedder is the second workhorse in PAULE. It connects the acoustic
representation to the semantic representation. In contrast to the predictive forward
model, the embedder is not only used in the internal loop but in the outer loop as well to
connect produced acoustics to the corresponding produced semantics. The advantage
of the embedder compared to the predictive forward model is that it can be trained on
real-world recordings of human speech and, therefore, is informed by the real human
voice.

92

5.4. Individual component models

Figure 5.17: This scatter plot shows a 2-dimensional visualization of the 300-dimensional
semantic space. Visible are the true semantic vectors as triangles and the embeddings as
circles. The produced semantic vectors from resynthesized log-mel-spectrograms are
visualized as empty circles whereas full circles show show the positions of the semantic
vectors for the human speech recordings. The predictions are done by the embedder
model and show that the predictions for the 6 selected word types are all much closer to
the target semantic vector than to the other semantic vectors, with the exception of some
recordings mapped next to /eigentlich/, which is one of the high-frequency words that
can undergo enormous reduction.

93

Chapter 5. PAULE

5.4.3 Inverse model

The direct inverse model is used to initialize the cp-trajectories that are then subsequently
refined (planned) by the internal loop in PAULE in the acoustic-only task (copy-synthesis
task) and the semantic-acoustic task. The direct inverse model, therefore, is executed
once per planning. It is important that the direct inverse model produces cp-trajectories
from a log-mel-spectrogram that is acoustically and semantically close enough to the
target acoustics and target semantics so that the gradients of the predictive forward
model and the embedder are informative and the successive changes can lower the effort
of the cp-trajectories in terms of minimal velocity and minimal jerk while improving
acoustic and semantic similarity.

Architecture

The architecture of the direct inverse model is similar to that of the predictive forward
model used in 2020 [95,93]. The architecture is shown in Figure 5.18 and the code definitions
in Listing 5.3. The input log-mel-spectrogram is first modified by five residual convolu-
tional layers, which have filters that span 5 time points and 3 mel-frequency bands. From
the enhanced log-mel-spectrogram input velocities (time delta) and accelerations (time
delta-delta) are computed and concatenated to the log-mel-spectrogram, which results in
a tensor of shape batch size ˆ 180 ˆ sequence length. This tensor is fed into a LSTM-layer
with 720 cells. After the LSTM-layers, a linear layer maps the LSTM-activation tensor of
shape batch size ˆ 720 ˆ sequence length to the final number of 30 channels. As the output
cp-trajectories have a time resolution that is twice that of the log-mel-spectrogram, in the
next step, the time resolution is doubled by adding time-steps into the sequence with
values that are the mean of the neighbouring time-steps. Now the tensor has the final
shape of batch size ˆ 30 ˆ twice the sequence length. In a last step, the network can smooth
the values further in time by a stack of five residual convolutional layers that mix five
time-steps but do not change the shape. In a final weighting step, the original outputs of
the LSTM-layer are concatenated with the smoothed outputs from the convolutional
layers. Finally, with a weighting layer the best results are selected from the final output.

The reason for this rather complicated architecture is that noisy log-mel-spectrogram in-
puts need to be mapped on smooth cp-trajectories. Furthermore, the direct inverse model
is used for initialization only and, therefore, never underwent any heavy simplification
attempt by us after we got satisfying results.

Listing 5.3: Pytorch definition of the direct inverse model.
1 c l a s s DirectInverseModel (torch . nn . Module) :
2
3 def _ _ i n i t _ _ (s e l f ,
4 i n p u t _ s i z e =60 ,
5 output_s ize =30 ,
6 hidden_size =720 ,
7 num_lstm_layers =1 ,
8 mel_smooth_layers =3 ,

94

5.4. Individual component models

9 m e l _ s m o o t h _ f i l t e r _ s i z e =3 ,
10 m e l _ r e s i d _ a c t i v a t i o n = torch . nn . I d e n t i t y () ,
11 r e s i d _ b l o c k s =5 ,
12 t i m e _ f i l t e r _ s i z e =5 ,
13 p r e _ r e s i d _ a c t i v a t i o n=torch . nn . I d e n t i t y () ,
14 p o s t _ r e s i d _ a c t i v a t i o n=torch . nn . I d e n t i t y () ,
15 o u t p u t _ a c t i v a t i o n=torch . nn . I d e n t i t y () ,
16 l s tm _res id=True) :
17 super () . _ _ i n i t _ _ ()
18
19 s e l f . l s tm _res id = l s tm_r es id
20 s e l f . m e l _ r e s i d _ a c t i v a t i o n = m e l _ r e s i d _ a c t i v a t i o n
21 s e l f . p r e _ a c t i v a t i o n = p r e _ r e s i d _ a c t i v a t i o n
22 s e l f . p o s t _ a c t i v a t i o n = p o s t _ r e s i d _ a c t i v a t i o n
23 s e l f . o u t p u t _ a c t i v a t i o n = o u t p u t _ a c t i v a t i o n
24
25 s e l f . double_sequence = double_sequence
26 s e l f . add_vel_and_acc_info = add_vel_and_acc_info
27 s e l f . MelBlocks = torch . nn . ModuleList (
28 [MelChannelConv1D (input_s ize , m e l _ s m o o t h _ f i l t e r _ s i z e)
29 for _ in range (mel_smooth_layers)])
30 s e l f . lstm = torch . nn .LSTM(3 * input_s ize , hidden_size ,
31 num_layers=num_lstm_layers ,
32 b a t c h _ f i r s t=True)
33 s e l f . p o s t _ l i n e a r = torch . nn . Linear (hidden_size , output_s ize)
34 s e l f . ResidualConvBlocks = torch . nn . ModuleList (
35 [TimeConvResBlock (output_size , t i m e _ f i l t e r _ s i z e ,
36 s e l f . p r e _ a c t i v a t i o n , s e l f . p o s t _ a c t i v a t i o n)
37 for _ in range (r e s i d _ b l o c k s)])
38
39 i f s e l f . l s tm_res id and len (s e l f . ResidualConvBlocks) > 0 :
40 s e l f . res id_weight ing = torch . nn . Conv1d (
41 2 * output_size , output_size , t i m e _ f i l t e r _ s i z e ,
42 padding=2 , groups=output_s ize)
43
44 def forward (s e l f , x , * args) :
45 i f len (s e l f . MelBlocks) > 0 :
46 x = x . permute (0 , 2 , 1)
47 for l a y e r in s e l f . MelBlocks :
48 s h o r t c u t = x
49 x = l a y e r (x)
50 x += s h o r t c u t
51 x = s e l f . m e l _ r e s i d _ a c t i v a t i o n (x)
52 x = x . permute (0 , 2 , 1)
53
54 x = s e l f . add_vel_and_acc_info (x)
55 output , _ = s e l f . lstm (x)
56 output = s e l f . p o s t _ l i n e a r (output)
57 output = s e l f . double_sequence (output)

95

Chapter 5. PAULE

58
59 output = output . permute (0 , 2 , 1)
60 lstm_output = output
61 for l a y e r in s e l f . ResidualConvBlocks :
62 output = l a y e r (output)
63
64 i f len (s e l f . ResidualConvBlocks) > 0 and s e l f . l s tm_res id :
65 output = [torch . s tack ((output [: , i , :] ,
66 lstm_output [: , i , :]) , a x i s =1)
67 for i in range (output . shape [1])]
68 output = torch . c a t (output , a x i s =1)
69 output = s e l f . res id_weight ing (output)
70
71 output = s e l f . o u t p u t _ a c t i v a t i o n (output . permute (0 , 2 , 1))
72 return output

Training & evaluation

The training for the direct inverse model uses the same data set as the predictive forward
model, namely the segment-based resynthesis of the Common Voice corpus consisting
of 21,175 word tokens and 4,311 word types. The RMSE loss between the output cp-
trajectories and the segment-based cp-trajectories is used in the supervised training,
complemented with a velocity, acceleration, and jerk loss. Listing 5.4 shows how the loss
is calculated. An Adam optimizer with an initial learning rate of 0.001 is used and the
training runs over 100 epochs. The training loss dropped from 0.128 to 0.015 (Figure 5.19).
The loss is substantially better compared to an MLP model trained on the same data.

Listing 5.4: Pytorch definition of the loss used for the direct inverse model.
1 c l a s s RMSELoss (torch . nn . Module) :
2 def _ _ i n i t _ _ (s e l f , eps=1e −6) :
3 super () . _ _ i n i t _ _ ()
4 s e l f . mse = torch . nn . MSELoss ()
5 s e l f . eps = eps
6
7 def forward (s e l f , yhat , y) :
8 l o s s = torch . s q r t (s e l f . mse (yhat , y) + s e l f . eps)
9 return l o s s

10
11 rmse_loss = RMSELoss (eps =0)
12
13
14 def g e t _ v e l _ a c c _ j e r k (t r a j e c t o r y , * , lag =1) :
15 """ r e t u r n s (v e l o c i t y , a c c e l e r a t i o n , j e r k) t u p l e """
16 v e l o c i t y = (t r a j e c t o r y [: , lag : , :] − t r a j e c t o r y [: , :− lag , :]) / lag
17 acc = (v e l o c i t y [: , 1 : , :] − v e l o c i t y [: , : −1 , :]) / 1 . 0
18 j e r k = (acc [: , 1 : , :] − acc [: , : −1 , :]) / 1 . 0
19 return v e l o c i t y , acc , j e r k

96

5.4. Individual component models

60
In

p
u
t

60

+ 60
M

e
lC

o
n
v

5
×

3

+ 60

+

60 Pos
itio

n60 Vel
ocit

y60 Accle
rati

on

72
0

L
S
T
M

72
0

L
in
e
a
r

30 D
o
u
b
le

30

+

30

+

30

T
im

e
C
o
n
v

5
×

1

+

30

+

30

+

60
W

e
ig
h
ti
n
g

5
×

2

30 O
u
tp

u
t

Fi
gu

re
5.

18
:T

he
ar

ch
it

ec
tu

re
of

th
e

d
ir

ec
ti

nv
er

se
m

od
el

is
re

la
ti

ve
ly

co
m

pl
ex

w
it

h
re

si
d

ua
lc

on
vo

lu
ti

on
s

at
th

e
be

gi
nn

in
g

an
d

th
e

en
d

of
th

e
m

od
el

,a
co

m
pu

ta
tio

n
to

ca
lc

ul
at

e
tim

e
de

lta
s

(v
el

oc
iti

es
)a

nd
tim

e
de

lta
-d

el
ta

s
(a

cc
el

er
at

io
ns

)w
ith

in
ea

ch
tr

aj
ec

to
ry

(p
ur

pl
e

bl
oc

k)
an

d
on

e
72

0
ce

ll-
w

id
e

LS
TM

-l
ay

er
.

97

Chapter 5. PAULE

20
21
22 def c p _ t r a j e c t o r y _ l o s s (Y_hat , t a r g e t s) :
23 """
24 C a l c u l a t e a d d i t i v e l o s s us ing t h e RMSE o f p o s i t i o n , v e l o c i t y , a c c e l e r a t i o n
25 and j e r k .
26
27 : param Y_hat : 3D t o r c h . Tensor
28 model p r e d i c t i o n
29 : param t a r g e t s : 3D t o r c h . Tensor
30 t a r g e t t e n s o r
31 : r e t u r n l o s s , p o s _ l o s s , v e l _ l o s s , a c c _ l o s s , j e r k _ l o s s : t o r c h . T e n s o r s
32 summed t o t a l l o s s wi th a l l i n d i v i d u a l l o s s e s
33
34 """
35 vel , acc , j e r k = g e t _ v e l _ a c c _ j e r k (t a r g e t s)
36 vel2 , acc2 , j e r k 2 = g e t _ v e l _ a c c _ j e r k (t a r g e t s , lag =2)
37 vel4 , acc4 , j e r k 4 = g e t _ v e l _ a c c _ j e r k (t a r g e t s , lag =4)
38
39 Y_hat_vel , Y_hat_acc , Y_hat_ jerk = g e t _ v e l _ a c c _ j e r k (Y_hat)
40 Y_hat_vel2 , Y_hat_acc2 , Y_hat_ jerk2 = g e t _ v e l _ a c c _ j e r k (Y_hat , lag =2)
41 Y_hat_vel4 , Y_hat_acc4 , Y_hat_ jerk4 = g e t _ v e l _ a c c _ j e r k (Y_hat , lag =4)
42
43 pos_loss = rmse_loss (Y_hat , t a r g e t s)
44 v e l _ l o s s = (rmse_loss (Y_hat_vel , v e l o c i t y)
45 + rmse_loss (Y_hat_vel2 , v e l o c i t y 2)
46 + rmse_loss (Y_hat_vel4 , v e l o c i t y 4))
47 j e r k _ l o s s = (rmse_loss (Y_hat_ jerk , j e r k)
48 + rmse_loss (Y_hat_ jerk2 , j e r k 2)
49 + rmse_loss (Y_hat_ jerk4 , j e r k 4))
50 a c c _ l o s s = (rmse_loss (Y_hat_acc , acc)
51 + rmse_loss (Y_hat_acc2 , acc2)
52 + rmse_loss (Y_hat_acc4 , acc4))
53
54 l o s s = pos_loss + v e l _ l o s s + a c c _ l o s s + j e r k _ l o s s
55 return loss , pos_loss , v e l _ l o s s , acc_ loss , j e r k _ l o s s

Figure 5.20 shows some example cp-trajectories that are generated by the segment-
based approach (ground truth) compared to the LSTM-based direct inverse model. The
direct inverse model learns well to predict smooth trajectories that match the ones
produced with the segment-based approach.

The direct inverse model does not solve the one-to-many mapping between one
acoustics realized by many different articulatory movement trajectories. It therefore
always gives the same cp-trajectories for the same log-mel-spectrogram. In order to
solve the one-to-many problem, PAULE applies a planning mechanism with the internal
loop. This planning mechanism allows for smooth continuations from the current state
and recent past of the VTL cps. Furthermore, the planning allows to find suitable
cp-trajectories that result in audio that conveys the right meaning, even if single cp

98

5.4. Individual component models

Figure 5.19: The direct inverse model has a substantially lower loss compared to a MLP
model. Decreasing the learning rate after 50 epochs helps the model to converge even
better.

Figure 5.20: The LSTM-based direct inverse model predicts smooth curves that are very
close to the ground truth segment-based cp-trajectories. In contrast, the MLP predicts
curves that are not smooth, but still get the overall structure correct.

99

Chapter 5. PAULE

dimensions are restricted. An example for this could be the restriction of the jaw
movement to simulate a pen in the mouth situation. This situational and adaptive
behavior cannot be done with the direct inverse model alone.

5.4.4 Cp-GAN & mel-GAN

For the semantic-only task the direct inverse model cannot be used for initialization as
no target acoustics is given. Therefore two new component models are introduced to
initialize the target acoustics and the cp-trajectories directly from the target semantics.
These two models are the cp-GAN, which initializes the cp-trajectories, and the mel-
GAN, which initializes the target acoustics. The cp-GAN maps a semantic vector and
a given duration onto one set of cp-trajectories. Therefore, it is a model that unrolls
a fixed length representation onto a variable length time-series data. In PAULE, the
cp-GAN can be interpreted as a first initial guess or motor program for a given word
meaning. In the following, only the cp-GAN is described, but the mel-GAN has exactly
the same architecture except for the last layer where the activations are mapped onto a
log-mel-spectrogram instead of the cp-trajectories. A thorough description of the GAN
models can be found in Schmidt-Barbo [80].

Architecture

A Generative Adversarial Network (GAN) consists of two separate models that in a
game-theoretical sense play a min-max game. One model, the generator, generates (fake)
cp-trajectories that should fool the other model, the critic, into believing these are true
cp-trajectories. The critic gets the generated (fake) cp-trajectories from the generator and
ground truth cp-trajectories and tries to discriminate both classes as well as it can.

For the generator, an adaptive upscaling mechanism is used to unroll the time-series
data over the full duration (Figure 5.21 and Listing 5.5). In a first step, a random noise
vector with 100 entries is sampled i.i.d. from a standard normal distribution. The random
noise vector is concatenated with the target semantic vector. This input vector of shape
batch size ˆ 400 is then mapped on a shape of batch size ˆ 1024 with a fully connected
linear layer and then reshaped into a shape of batch size ˆ 256 ˆ 4. With the reshaping, a
time-series dimension is formed with a length of 4 time points. In the next steps, the
target duration comes into play by successively upsampling the time-series dimension
first to target duration / 5 time-steps followed by a residual convolution layer, which uses
a filter size of 5 time-steps and 1 channel dimension. The enhanced activations are then
batch normalized and passed through a leaky Rectified Linear Unit (ReLU) activation
function. This step of upsampling, residual convoluting, and batch normalization is
repeated five times with a target upsampling length of number of steps ¨ target duration /
5. The fifth and final block results in a tensor with a shape of batch size ˆ 256 ˆ target
duration. In the last step, the numbers of channels are mapped from 256 to 30 by a linear
layer that is repeatedly applied for each time-step. The final output tensor has a shape of

100

5.4. Individual component models

batch size ˆ 30 ˆ target duration.2

Listing 5.5: Pytorch definition of the generator for the cp-GAN and the mel-GAN.
1 c l a s s Generator (torch . nn . Module) :
2 def _ _ i n i t _ _ (s e l f , channel_noise =100 ,
3 embed_size =300 ,
4 f c _ s i z e =1024 ,
5 i n i t a l _ s e q _ l e n g t h =4 ,
6 hidden_size =256 ,
7 num_res_blocks =5 ,
8 output_s ize =30) :
9 super () . _ _ i n i t _ _ ()

10
11 s e l f . f c _ s i z e = f c _ s i z e
12 s e l f . hidden_size = hidden_size
13 s e l f . f c_reshaped_s ize = i n t (f c _ s i z e / i n i t a l _ s e q _ l e n g t h)
14 s e l f . fu l ly_connected = torch . nn . Linear (channel_noise + embed_size ,
15 f c _ s i z e)
16
17 s e l f . r e s _ b l o c k s = torch . nn . ModuleList (
18 [s e l f . _block (s e l f . fc_reshaped_size , hidden_size , 5 , 1 , 2)])
19 s e l f . r e s _ b l o c k s = s e l f . r e s _ b l o c k s . extend (
20 torch . nn . ModuleList ([s e l f . _block (hidden_size , hidden_size ,
21 5 , 1 , 2)
22 for _ in range (num_res_blocks − 1)]))
23
24 s e l f . p o s t _ l i n e a r = torch . nn . Linear (hidden_size , output_s ize)
25 s e l f . f inal_smoothing = torch . nn . Conv1d (output_size , output_size ,
26 k e r n e l _ s i z e =5 , padding=2 ,
27 groups=output_s ize)
28 s e l f . o u t p u t _ a c t i v a t i o n = torch . nn . Tanh ()
29
30 def _block (s e l f , in_channels , out_channels , kerne l_s ize , s t r i d e , padding) :
31 return torch . nn . Sequent ia l (
32 torch . nn . Conv1d (in_channels , out_channels ,
33 k e r n e l _ s i z e=kerne l_s ize ,
34 s t r i d e=s t r i d e , padding=padding) ,
35 torch . nn . BatchNorm1d (out_channels) ,
36 torch . nn . LeakyReLU (0 . 2))
37

2In principle, a LSTM-based unrolling architecture could be used as the generator as well. As all other
models within PAULE make use of the LSTM-layer, this would be more consistent with the other
models. Our experiments with such models, showed promising results, but a LSTM-based generator
is substantially more expensive to compute and even the light-weight upsampling generator took
by far the most computation power to train in the whole PAULE model. Furthermore, the generator
models only need to be executed once during the initialization and optimization and planning of the
cp-trajectories within PAULE depends only on the predictive forward model and the embedder. As they
are only used once and only in the semantic-only task optimizing this models is by far not as important
as for the predictive forward model and the embedder.

101

Chapter 5. PAULE

10
0

N
o
is
e

30
0

S
e
m

V
e
ct
o
r

40
0

In
p
u
t

10
24

L
in
e
a
r

25
6

R
e
sh

a
p
e

25
6

U
p
sa
m
p
li
n
g

25
6

T
im

e
C
o
n
v

5
×

1

le
a
k
y

R
e
L
U

+

25
6

25
6

+

25
6

U
p
sa
m
p
li
n
g

25
6

T
im

e
C
o
n
v

5
×

1

le
a
k
y

R
e
L
U

+

25
6

25
6

+ 25
6

U
p
sa
m
p
li
n
g

25
6

T
im

e
C
o
n
v

5
×

1

le
a
k
y

R
e
L
U

+

25
6

L
in
e
a
r

30

T
im

e
C
o
n
v

5
×

1

+ 30 O
u
tp

u
t

Fi
gu

re
5.

21
:T

he
ge

ne
ra

to
r

m
od

el
of

th
e

cp
-G

A
N

.A
s

th
e

ge
ne

ra
to

r
le

ar
ns

to
pr

od
uc

e
a

di
st

ri
bu

tio
n,

it
is

no
to

nl
y

co
nd

iti
on

ed
on

th
e

se
m

an
ti

c
ve

ct
or

as
in

pu
ts

bu
tr

ec
ei

ve
s

a
10

0-
d

im
en

si
on

al
no

is
e-

ve
ct

or
as

w
el

l.
Fu

rt
he

rm
or

e,
th

e
ge

ne
ra

to
r

ge
ts

th
e

ta
rg

et
du

ra
tio

n
(n

um
be

r
of

tim
e-

st
ep

s)
as

in
pu

t.
A

ft
er

th
e

se
m

an
tic

ve
ct

or
is

co
nc

at
en

at
ed

w
ith

th
e

no
is

e-
ve

ct
or

,t
he

ge
ne

ra
to

r
up

sa
m

pl
es

,r
es

id
ua

lc
on

vo
lu

te
s,

an
d

re
sh

ap
es

th
e

in
pu

ts
in

fiv
e

st
ep

s
to

th
e

ta
rg

et
ou

tp
ut

sh
ap

e.

102

5.4. Individual component models

38 def forward (s e l f , x , length , vec tor) :
39 x = torch . c a t ([x , vec tor . unsqueeze (1)] , dim=2)
40 output = s e l f . fu l ly_connected (x)
41 output = output . view ((len (x) , s e l f . f c_reshaped_size ,
42 i n t (output . shape [−1] / s e l f . f c_reshaped_s ize)))
43
44 for i , block in enumerate (s e l f . r e s _ b l o c k s) :
45 s i z e _ = i n t (length / (len (s e l f . r e s _ b l o c k s) − i))
46 r e s i z i n g = torch . nn . Upsample (s i z e =(s i z e _) , mode= ’ l i n e a r ’ ,
47 a l i g n _ c o r n e r s=Fa lse)
48 output = r e s i z i n g (output)
49 r e s i d = output
50 output = block (output)
51 i f i == 0 :
52 i f s e l f . f c_reshaped_s ize == s e l f . hidden_size :
53 output += r e s i d
54 e lse :
55 output += r e s i d
56
57 output = output . permute (0 , 2 , 1)
58 output = s e l f . p o s t _ l i n e a r (output)
59 output = output . permute (0 , 2 , 1)
60 r e s i d = output
61 output = s e l f . f inal_smoothing (output)
62 output += r e s i d
63 output = output . permute (0 , 2 , 1)
64 output = s e l f . o u t p u t _ a c t i v a t i o n (output)
65
66 return output

The critic is the counterpart to the generator and plays against the generator model.
The critic of the GAN models gets either a batch of generated or ground-truth samples
together with the corresponding semantic vectors as input. In the case of the cp-GAN
the input contains either generated or segement-based cp-trajectories. For the mel-GAN,
the input consists of either generated or recorded log-mel-spectrograms. The task of the
critic is to provide a score for whether a given set of cp-trajectories and semantic vectors
belongs to the true distribution of ground truth cp-trajectories. This score is designed
to approximate the Wasserstein-distance between the distribution of the generated
cp-trajectories and the ground truth cp-trajectories. The critic tries to maximize the score
between the generated cp-trajectories and the ground truth ones while the generator
tries to minimize this score.

In order to calculate the score with the critic (see Figure 5.22 and Listing 5.6), in each
time-step of the cp-trajectories the semantic vector is concatenated, which creates a
tensor of the shape batch size ˆ 330 ˆ number of time-steps. This tensor has one repeated
copy of the semantic vector for each time-step. Only the 30 dimensions that belong to
the cps change over time. In the second step, the 330 channels are linearly mapped to
180 channels resulting in a tensor of shape batch size ˆ 180 ˆ number of time-steps. This is

103

Chapter 5. PAULE

30

Input
300

Sem Vector

330

Concatenated

180

Linear

180

+

180

+

180
TimeConv

5 × 1

leaky ReLU

+

180

+

180

+

180
Global Pooling

1
Output

Figure 5.22: The critic of the GAN models gets either a generated batch of cp-trajectories
or a segment-based batch of cp-trajectories with the corresponding semantic vectors as
inputs (cp-GAN) or a generated log-mel-spectrogram or a recorded log-mel-spectrogram
with the corresponding semantic vector as inputs. From these inputs, the critic derives
a single score that approximates the Wasserstein-distance between a sample of the
generated inputs to the true segment-based or recorded inputs. In order to calculate this
single output score, the time-series data is first concatenated with the semantic vector in
each time-step and then piped through five residual convolutions. In the final step, the
score is derived with a global mean pooling layer.

followed by five residual convolutional blocks with a filter size of 5 time-steps and 1
channel and a ReLU activation function. Over the last activation tensor, global average
pooling is used to obtain a single number, the Wasserstein-distance estimate.

Listing 5.6: Pytorch definition of the critic for the cp-GAN and the mel-GAN.
1 c l a s s C r i t i c (torch . nn . Module) :
2 def _ _ i n i t _ _ (s e l f , i n p u t _ s i z e =30 ,
3 embed_size =300 ,
4 hidden_size =180 ,
5 num_res_blocks =5) :
6 super () . _ _ i n i t _ _ ()
7
8 s e l f . i n i t a l _ l i n e a r = torch . nn . Linear (i n p u t _ s i z e + embed_size ,
9 hidden_size)

10 s e l f . r e s _ b l o c k s = torch . nn . ModuleList (
11 [s e l f . _block (hidden_size , hidden_size , 5 , 1 , 2)
12 for _ in range (num_res_blocks)])
13
14 def _block (s e l f , in_channels , out_channels , kerne l_s ize , s t r i d e , padding) :
15 return torch . nn . Sequent ia l (
16 torch . nn . Conv1d (
17 in_channels , out_channels , kerne l_s ize , s t r i d e , padding ,
18) ,
19 torch . nn . InstanceNorm1d (out_channels , a f f i n e=True) ,

104

5.4. Individual component models

20 torch . nn . LeakyReLU (0 . 2) ,
21)
22
23 def forward (s e l f , x , length , vec tor) :
24 x = torch . c a t ([x , vec tor . unsqueeze (1) . repeat (1 , x . shape [1] , 1)] , dim=2)
25 output = s e l f . i n i t a l _ l i n e a r (x)
26 output = output . permute (0 , 2 , 1)
27
28 for i , block in enumerate (s e l f . r e s _ b l o c k s) :
29 r e s i d = output
30 output = block (output)
31 output += r e s i d
32
33 # a v e r a g e p o o l i n g
34 output = output . mean ([1 , 2])
35 return output

Training & evaluation

The cp-GAN is trained on a traing set of the segment-based resynthesis of the GECO
corpus containing 46,098 word tokens and 5,444 word types. In one training iteration of
the critic, the critic calculates one score for one batch of 64 ground truth cp-trajectories
and one score for a batch of 64 generated cp-trajectories. The two scores are subtracted,
creating the loss. This loss is optimized using the Adam optimizer, with an initial learning
rate equal to 0.0001. Calculating the difference score is done in the way that lower values
leads to higher scores for the batch of generated cp-trajectories compared to the ground
truth cp-trajectories. Batches are created using same-size batching. Multiple training
iterations of the critic are run before a single iteration of the training of the generator
is performed. In each training iteration, the generator tries to minimize the score of
the critic for the generated cp-trajectories. The generator is never directly exposed to
the ground truth data. Figure 5.23 shows the score difference evolution over the 415
epochs. In the beginning, the critic was trained 5 times more than the generator, this
was increased to 10 times after 100 epochs, to 20 times after epoch 200, and to 80 times
more training after epoch 350. After epoch 365 the number of training iterations of the
critic was increased to 100, the maximal possible number on the hardware used. The
GAN was trained for 50 more epochs with 100 times more training iterations for the
critic compared to the generator.

Evaluating the performance of a generator always usually involves some eyeballing.
Figure 5.24 shows a subset of normalized cp-trajectories of the ground truth data
compared to three generated trajectories for the word type Lehrer. It becomes apparent that
the cp-GAN can sample from the underlying distribution and does not just approximate
the mean curve. This is even more apparent in the Figure 5.25, where a reference
LSTM model only approximates the mean log-mel-spectrogram, while the mel-GAN
can generate different variations of the log-mel-spectrogram where each one is more
consistent and similar to the exemplar ground truth log-mel-spectrogram and less similar

105

Chapter 5. PAULE

Figure 5.23: The loss of the cp-GAN. The critic estimate is the numeric difference in
the critic-score of a generated batch of 64 samples to a batch of 64 true samples, either
segment-based cp-trajectories or recorded log-mel-spectrograms. The generator tries
to generate samples so that the critic estimate is minimized, whereas the critic learns
to maximize the critic estimate. It is important that the critic picks up on meaningful
differences between the true samples and the generated samples. In order to ensure
this, the number of training iterations in the critic is a multiple of the iterations in the
generator. The number of critic iterations is increased at 100 epochs, 200 epochs, 300
epochs, 350 epochs and 365 epochs. These increases in iterations of the critic explain the
jumps in the critic estimate.

106

5.4. Individual component models

Figure 5.24: Example cp-trajectories generated with a cp-GAN (center panels) and a
LSTM-network (right panels) compared to cp-trajectories created with the segment-based
synthesis as a reference (left panels). The top panels contain 8 vocal tract parameters for
three samples and the bottom panels contain 7 glottis parameters for these three samples.
The cp-trajectories shown are randomly sampled from the distribution of cp-trajectories
learned by the generator of the cp-GAN. The generated cp-trajectories are not as smooth
as the segment-based ones, but show the same overall pattern and are coherent. In the
orange glottis trajectories, the changes between the two different states are as sharp as
in the segment-based approach. No averaging effect is visible in contrast to an LSTM
model trained on the same task.

107

Chapter 5. PAULE

Figure 5.25: Three example log-mel-spectrogram from the resynthesized, ground truth,
data compared to generated samples from the mel-GAN after 50 epochs and 400 epochs.
For comparison, LSTM-based generations are shown as well that approximate the mean
of the type and do not show any variability. The log-mel-spectrogram samples generated
by the mel-GAN show a coherent structure and variability in the different samples of
the same word type.

108

5.5. Baseline models

to the mean log-mel-spectrogram.
To derive the initial cp-trajectories and the target acoustics (log-mel-spectrogram)

GAN models are used and necessary as they achieve to sample coherent exemplars from
an underlying distribution without the limitation of predicting mean cp-trajectories. As
the planning in PAULE exploits approximated local gradients, it is crucial to start near
an optimal solution.

5.5 Baseline models

In order to obtain an idea of what the individual models, but also what PAULE as
a framework of articulatory speech synthesis achieves, it is important to constructed
with very simple models. The purpose of these baseline models is to show what is
possible without extensive calculations. Baseline models also provide a reference value
against which more complex models can be compared. This reference value should be
outperformed by different configurations of PAULE. In what fallows, a series of baseline
models is set up. The next chapter provides detailed comparisons of fully-fledged PAULE
models with these baselines.

5.5.1 Schwa-model

To provides a baseline for PAULE as a whole, we defined a Schwa-model that outputs
constant cp-trajectories for this neutral vowel. If these cp-trajectories are given to the
VTL synthesizer a /schwa/ sound is generated. This model can generate every duration
by concatenating the neutral cp state for as many time-steps as desired and produces the
same response for every target acoustics or target semantics. As it returns the requested
cp-trajectories, every evaluation metric can be computed with this baseline model in
the same way as the evaluation metric can be computed for cp-trajectories planned by
PAULE or any other control model of the VTL.

5.5.2 PAULEmlp

For each of the individual component models within PAULE, we created parallel MLP
models (see Listing 5.7). These models assume independence between the time-steps
in the time-series. Therefore no auto-correlative dependencies are modeled. These are
wide networks containing one ReLU activation function as a non-linearity and serve
as a baseline for the LSTM-based models used in PAULE. As we can create an MLP
model for each individual model, we can also create a PAULE model consisting of these
MLP-based models. This PAULE model is called PAULEmlp as it only makes use of
wide linear mappings with a single non-linearity.

Listing 5.7: Pytorch definition of the MLP models for the predictive forward (pred),
inverse (inv), and embedding (embd) model.

1 c l a s s NonLinearModel (torch . nn . Module) :

109

Chapter 5. PAULE

2 def _ _ i n i t _ _ (s e l f ,
3 input_channel =30 ,
4 output_channel =60 ,
5 hidden_units =8192 ,
6 a c t i v a t i o n _ f u n c t i o n=torch . nn . LeakyReLU () ,
7 mode=" pred " ,
8 on_ful l_sequence=False ,
9 add_vel_and_acc=True) :

10 super () . _ _ i n i t _ _ ()
11 s e l f . on_ful l_sequence = on_ful l_sequence
12 s e l f . add_vel_and_acc = add_vel_and_acc
13 a s s e r t mode in [" pred " , " inv " , "embed"] , (" i f �you�want� to � t r a i n �a� "
14 " p r e d i c t i v e �model� please � s e t �mode� to � ’ pred ’ , � f o r �a� inverse � "
15 " model� s e t �mode� to � ’ inv ’ , �and� f o r �embedder� to � ’embd ’ ! ")
16 s e l f . mode = mode
17 i f s e l f . on_ful l_sequence :
18 i f s e l f . add_vel_and_acc :
19 s e l f . input_channel = input_channel * 3
20 s e l f . add_vel_and_acc_info = add_vel_and_acc_info
21 e lse :
22 s e l f . input_channel = input_channel
23 i f s e l f . mode == " pred " :
24 s e l f . hal f_sequence = torch . nn . AvgPool1d (2 , s t r i d e =2)
25 e l i f s e l f . mode == " inv " :
26 s e l f . double_sequence = double_sequence
27 e lse :
28 s e l f . input_channel = input_channel * 2
29
30 s e l f . output_channel = output_channel
31 s e l f . hidden_units = hidden_units
32 s e l f . a c t i v a t i o n _ f u n c t i o n = a c t i v a t i o n _ f u n c t i o n
33 s e l f . non_l inear = torch . nn . Linear (s e l f . input_channel , s e l f . hidden_units)
34 s e l f . l i n e a r = torch . nn . Linear (s e l f . hidden_units , s e l f . output_channel)
35
36 def forward (s e l f , x , * args) :
37 i f s e l f . on_ful l_sequence :
38 i f s e l f . add_vel_and_acc :
39 x = s e l f . add_vel_and_acc_info (x)
40 i f s e l f . mode == "embed" :
41 x = torch . sum(x , a x i s =1)
42 e lse :
43 x = x . reshape ((x . shape [0] , 1 , −1))
44 output = s e l f . non_l inear (x)
45 output = s e l f . a c t i v a t i o n _ f u n c t i o n (output)
46 output = s e l f . l i n e a r (output)
47 i f s e l f . on_ful l_sequence :
48 i f s e l f . mode == " pred " :
49 output = output . permute (0 , 2 , 1)
50 output = s e l f . hal f_sequence (output)

110

5.5. Baseline models

51 output = output . permute (0 , 2 , 1)
52 e l i f s e l f . mode == " inv " :
53 output = s e l f . double_sequence (output)
54 return output

5.5.3 LSTM instead of GAN

In order to evaluate the GAN component models, we trained some LSTM based models,
which could only create one output per semantic vector input and, therefore, converged
to the mean curves in the training data, whereas the GAN models were able to generate
coherent exemplars of the underlying distribution.

111

6 Results

If you find that you’re spending almost all your time on theory, start turning
some attention to practical things; it will improve your theories. If you find
that you’re spending almost all your time on practice, start turning some
attention to theoretical things; it will improve your practice.

Donald Knuth

Different versions of PAULE have been evaluated with pilot studies and presented at
conferences. These pilot studies are collectively presented in this chapter. The results
show that PAULE implements a control model for the VTL that is capable of synthesizing
intelligible audio word tokens. Section 6.6 describes a way to systematically and
thoroughly evaluate PAULE. Unfortunately, the suggested benchmark is not completed
yet and therefore results of the benchmark will be published in the future.

Before showing results that give evidence that PAULE works as intended and is
a functioning control model for the VTL speech synthesizer without any symbolic
representation in the acoustic or motor domain, it should be noted that no experiments
with human listeners have been conducted to evaluate the quality of the synthesized
speech. Listening to the synthesized audio ourselves overall gives a mediocre speech
quality impression with a synthesized audio that is intelligible most of the time. The
speech quality is more naturalistic compared to the mechanically sounding segment-
based approach, but less good compared to modern speech synthesis systems.

It is difficult to tell, which limitations in quality are due to the articulatory speech
synthesizer VTL and its approximations of the physical processes in the speech production
of humans and which are due to an imperfect control model. Additionally, it is important
to remember that the results are planned on real human recordings of speech, which
are coming from a diverse set of microphones, include some background noise and
most importantly come from different speakers. The VTL shape of the oral cavity is
fixed to one specific male speaker and, therefore, it is impossible for PAULE to exactly
match the target acoustics. All evaluations have been done on new test data that was
never used in training or validation. That the evaluation is done on held-out test data
is crucial. If the test data would be part of the training data, it would be possible and
likely that the individual component models memorize the training sample and have
no need to generalize to new samples. Furthermore, the data for the evaluation comes
from real human recordings that differ in their statistical distribution to the training data
PAULE is trained on. Except for the embedder and the mel-GAN, all component models
in PAULE are trained on acoustics that the VTL can produce with the segment-based
approach. In contrast to the well articulated speech in the training data, the targets in the

113

Chapter 6. Results

evaluation are spliced out human recordings from natural speech and therefore often
highly reduced and barely intelligible on their own. Still, PAULE is able to approximate
these targets most of the time in terms of matching the log-mel-spectrogram and the
semantic vector closely.

6.1 Loss reduction & classification accuracies

The first and most important metric is how good PAULE achieves meeting its own goals
in controlling the VTL. Is PAULE actually able to minimize the error during planning
in the synthesized audio of the VTL? As PAULE uses a short-cut or surrogate model
with the predictive forward model, loss reduction in the imagined predicted acoustics
and predicted semantics is not of interest, but the loss reduction of the error in the
produced acoustics and produced semantics compared to the respective targets is. The
produced acoustics and produced semantics are the ones where the finally planned
cp-trajectories are given to the VTL and then the synthesized audio is converted to a
log-mel-spectrogram and a semantic vector. The loss reduction of the produced acoustics
and produced semantics is evaluated in the following.

As PAULE can plan cp-trajectories for three different tasks, the loss reduction is shown
separately for each task. The three tasks are: the semantic-only task (full generation
task), where only a semantic vector and a duration are given; the semantic-acoustic task
(supervised generation task), where both a target semantics and a target acoustics are
given; and the acoustic-only task (mimicking or copy-synthesis task), where only a target
acoustic is given.

Furthermore, in order to explore the effect of the different additive loss components,
the planning can either be informed by the semantic loss and the acoustic loss (acoustic-
semvec objective), only by the semantic loss (semvec objective), or only by the acoustic
loss (acoustic objective). The initialisation (init) refers to the cp-trajectories that are
initialized by PAULE either with the direct inverse model or the cp-GAN.

To evaluate the different task objective combinations a small test set of 225 unseen
word tokens for 13 word types from the Common Voice is created. The word types
belong to high- to mid-frequent words and there are 10 to 20 word tokens per type, which
minimizes any word frequency effect in the evaluation. The word-frequency effects is
present due to the training of the individual models within PAULE. These individual
models are trained on 21,175 word tokens and 4,311 word types, which show a classical
word-frequency distribution as depicted in Figure 4.1. Details of the training of the
individual models is part of the individual model description in Section 5.4.

Figure 6.1 shows the final semantic RMSE loss between the target semantics and the
produced semantics, which is derived by calculating the log-mel-spectrogram for the
synthesized audio and then using the embedder to obtain a semantic vector from the log-
mel-spectrogram. A smaller loss is a better result. The semantic loss during initialization
is as large as the loss for the semantic vectors for the generated log-mel-spectrogram
from the mel-GAN and substantially larger compared to the semantic loss derived from
the recordings or from the segment-based approach. The loss from the recordings and

114

6.1. Loss reduction & classification accuracies

Figure 6.1: The semantic vector loss is shown for three different tasks (mimicking,
supervised generation, full generation) along five different optimization objectives. The
lower the loss, the better the synthesis. A loss of 0.0 indicates that the synthesized audio
is embedded onto the target semantic vector. The error of the recording and generated
acoustics (rec/gen; most left bars) indicate the average semantic loss of human recordings
and generated samples from the mel-GAN. This is the lowest loss achievable with natural
speech given the accuracy of the embedding model. After initialization (init) the average
semantic loss is largest (second set of bars from the left). This is the semantic loss of the
direct inverse model in the mimicking and of the cp-GAN in the supervised generation
and full generation task. The semvec, acoustic-semvec, and acoustic objective are three
different ways on how the PAULE model plans cp-trajectories. In the semvec objective
only the semantic loss and the velocity and jerk constraints are used to drive the planning
process. This leads to the lowest semantic loss for cp-trajectories generated by PAULE.
In the acoustic-semvec objective the acoustics and the semantics are used to inform the
planning. The supervised generation task shows that initializing the cp-trajectories from
the semantic vector works fine as long as there is a realistic target in form of an audio
recording available. Using the generated target acoustics during planning in the full
generation task leads to a larger final semantic error. If only the acoustic objective is
optimized for during the planning, only a slight improvement from the initial semantic
loss can be observed. This small improvement is mediated through an improvement in
the acoustic similarity (see Figure 6.3). The semantic loss of the segment-based approach
is shown to the right. These losses have overall the lowest semantic loss, which is due to
the fact that the segment-based approach generates well articulated and highly regular
speech and the embedder is trained on these regularities.

115

Chapter 6. Results

the segment-based synthesis are the lower limit what is achievable as a semantic loss.
This lower limit origins in limitations of embedder. The planning with PAULE should
reduce the semantic loss from the initialization, but the planning cannot reduce the loss
below the loss in the segment-based approach. All task objective combinations reduce
the loss except for the full generation task using the acoustic objective.

In the semvec and acoustic-semvec objective, where the semantic loss is part of the
additive planning loss, the initial loss is reduced to the size of the recording loss. This
works except for the semantic-only task (full generation task) in the acoustic-semvec
objective, where the generated target acoustics apparently pulls the semantic loss in
the wrong direction via the acoustic loss. In the acoustic objective, where no explicit
planning is done for the semantics, the loss is reduced by a smaller amount, if at all,
as expected. In this last objective no explicit planning on the semantic loss is done in
PAULE and the improvements come purely from the improved acoustical similarity.

These results of the semantic loss show that the explicit planning on the semantic
loss improve the semantic loss in terms of the finally produced acoustics. Therefore the
planning not only reduces the loss in the imagined predicted semantics but also in the
produced semantics derived from the synthesized audio. This result is also reflected in a
better classification accuracy as shown in Figure 6.2. Now higher values are better values.
The classification is done on a test set with mid to high-frequency words and the classifier
has to distinguish between 4,311 word types (classes). The small semantic loss in the
segment-based approach translates to a very high top-1 accuracy of 99 %. The accuracy
of the human recordings is with 63 % substantially lower but still high and comparable
to human listeners in the task of single word identification [4]. After initialization, the
accuracy is at 12 % to 14 % and planning in the acoustic-semvec objective achieves
accuracies of up to 60 %. Note that low-frequency words have not been evaluated yet
and it is unknown how well the model performs for these. The results show that high-
and mid-frequency words are not confused with low-frequency words most of the time,
but does now give evidence how low-frequency words are classified when synthesized
with PAULE.

Our interpretation and conclusion from this improvement in top-1 accuracy in a
4,311 classes classification task is that the planning in PAULE with the full additive loss
(acoustic-semvec objective) helps to articulate word tokens that can be discriminated
better than the ones generated by a direct inverse model or a cp-GAN (init objective in
Figure 6.2). Assuming that the planning does not find shortcuts in the embedder, that
translate to physical simulation of the VTL, it furthermore shows that PAULE can produce
intelligible word tokens that evaluate for the mimicking task in the acoustic-semvec
objective to be as intelligible as human recordings.

The acoustic loss is the last loss to be investigated in more detail. Figure 6.3 shows the
RMSE loss between the target acoustics (recording or generated log-mel-spectrogram)
and the produced acoustics. The loss to the recording is zero as this is the reference
as well. Overall, it can be seen that applying the acoustic loss during planning in the
acoustic-semvec and the acoustic objective substantially reduces the acoustic loss and
the acoustic similarity is in the end higher between the produced acoustics from PAULE

116

6.1. Loss reduction & classification accuracies

Figure 6.2: Top-1 classification accuracy (higher is better) of a test data set containing
13 word types and 225 word tokens. The 225 word tokens are classified by a classifier
that can distinguish between 4,311 word types. The word tokens for classification are
synthesized using PAULE with three different objectives in three different tasks. Planning
on the acoustics and the semantics jointly (acoustic-semvec objective) yields the best result
in all three tasks. A detailed explanation of all the conditions can be found in the caption
of Figure 6.1.

117

Chapter 6. Results

compared to the initial cp-trajectories and the segment-based approach.

Figure 6.3: The RMSE for the acoustic loss shows that the recording and generated
acoustic has the best results as it is compared to itself. Note that in the full generation
task (semantic-only task) the target acoustics is a log-mel-spectrogram generated by the
mel-GAN. The segment-based approach shows the worst acoustic loss together with
the initially produced acoustics (init) in the supervised generation task. The planning
improves the acoustic loss equally in the acoustic and acoustic-semvec objective but fails
to improve the acoustic similarity if only planned on the semantic loss (semvec objective).
A detailed explanation of all the conditions can be found in the caption of Figure 6.1.

In summary, cp-trajectories planned by PAULE lead to synthesized word audio tokens
that reduce the semantic and acoustic loss compared to the synthesized word audio
tokens from the initial cp-trajectories. Furthermore, the semantic embeddings of the
synthesized word audio tokens are more often classified as the correct word by the
embedder. All parts of the additive planning loss are needed and the planning finds a
compromise between similar acoustics and similar semantics in the final produced audio.
As the planning is a computationally intensive, iterative, step-wise process, planning
for more iterations is expected to even improve results further. Classification results
presented here are based on an automatic classification by the embedder. In order to
rule out that the planning in PAULE finds shortcuts in the embedder, i. e. that PAULE
improves classification accuracy without improving the synthesis quality for human
listeners, a listening and evaluation experiment will be required in the future. Single
word classification for spliced-out natural speech is a difficult task for humans, therefore
this experiment should be conducted after PAULE is able to synthesize whole sentences.
Keep in mind that aim of building PAULE is to synthesize naturalistic, conversational
speech and not read-out highly articulated speech like the segment-based approach.
Therefore somehow unintelligible single words are a desired output, as long as they

118

6.2. Conditioning on past cp-trajectories

become intelligible in context. Figure 6.4 shows how the iterative planning improves the
acoustics step-by-step in the semantic domain.

Figure 6.4: The planning in PAULE moves the semantic embedding of the synthesis
closer to the intended target semantic vector. This is visualized by the trajectories in a
2-dimensional UMAP projection of the 300-dimensional semantic space.

6.2 Conditioning on past cp-trajectories

A first step to plan full sentences with PAULE involves the necessity to condition
on already executed cp-trajectories that cannot be changed anymore. The following
cp-trajectories should smoothly connect to the past cp-trajectories. As PAULE has been
designed as a predictive, adaptive model from the beginning, this conditioning on past
cp-trajectories is straightforward to implement. The main idea is to concatenate the past
cp-trajectories before the initialized cp-trajectories. The acoustic error is kept zero for
the time-steps in the log-mel-spectrogram that correspond to the past cp-trajectories but
the velocity and jerk loss, as well as the semantic loss, are computed over the extended
cp-trajectories. During backpropagation, the error signal for the past cp-trajectories are
set to zero so that no corrections are applied at these time-steps.

Figure 6.5 shows that the past cp-trajectories concatenated to the initial cp-trajectories
show a sharp jump between the time points where the concatenation takes place (between
time-step 8 and 9 in the beginning). The optimized or planned cp-trajectories show no
jump anymore. Therefore, the planning achieves to smooth out the cp-trajectories while
improving the semantic and acoustic loss. The difference plot shows that no corrections
are applied in the past cp-trajectories (first eight time-steps), but substantial corrections
are done in the rest of the trajectories.

Note that this smooth gluing of cp-trajectories works with PAULE at any point in

119

Chapter 6. Results

time. This gluing is only a first necessary step for synthesizing full utterances. Not
solved is what is the proper iterative implementation of the semantic embedding vector
representation and how to integrate them into PAULE. A design choice has to be made
here as semantic vector representations exist for contextualized words as well as for
whole sentences or even paragraphs or sections. As the right choice for a semantic vector
representation is only one important question of a few for a proper implementation of
full sentence synthesis with PAULE, the full sentence synthesis is left for future work.

0 5 10 15 20 25 30
time step

0.4

0.2

0.0

0.2

0.4

no
rm

al
ize

d
cp

-v
al

ue
s

initial
planned

Figure 6.5: With PAULE it is possible to condition the planning on a recent past of
cp-trajectories and find solutions that smoothly continue from this past. The direct
inverse model introduces a discontinuity (jump) in the initial cp-values, which is visible
between time-step 8 and 9. Through the planning by PAULE the discontinuity is removed.
The first 30 time-steps of four cp-trajectories are shown.

6.3 Anticipatory coarticulation

To show that PAULE can model anticipatory coarticulation over consonant boundaries,
a small data set of artificial /baba/, /babi/, /babu/ utterances at different speaking rates
was recorded. In the recording session not only the audio was recorded but additionally,
the mid-sagittal plane of the tongue was measured using ultrasound. Recordings were
conducted on a single speaker. Results from the ultrasound recording are presented and
discussed in the next section.

120

6.3. Anticipatory coarticulation

As the closure to create the /b/ sound is effected by the lips, the tongue and jaw have a
high degree of freedom to anticipate the second vowel. This anticipatory behavior can
already be seen at the end of the first /a/ sound and is systematically different depending
on the following vowel. If the following vowel is an /a/, i. e. the /baba/ condition, the first
formant (F1; the first resonance frequency) is shifted to a higher pitch compared to the
/babi/ and /babu/ condition, whereas the second formant (F2) is at the same pitch as in
the /babu/ condition but lower compared to the /babi/ condition. Figure 6.6 shows the
formant shifts for the last 20 milliseconds before the end of the first /a/ for F1 and F2.

Figure 6.6: Formant shifts of the first /a/ in the PAULE resynthesis (planning-based)
resemble human formant shifts in artificial /baba/, /babi/, /babu/ articulations. The
fully automated segment-based synthesis fails to capture the formant shifts, which are
dependent on the upcoming vowel. [96]

The formant shifts recorded from the human speaker can be explained by anticipatorily
raising the jaw and tongue to prepare for the following vowel. In the segment-based
approach, these formant shifts are not present, but the planning-based resynthesis with
the PAULE model shows the expected formant shifts [96]. The PAULE model is used with
an acoustic-only task using only the acoustic objective on single full word utterances.
The formant change in time is going in the wrong direction in the PAULE resynthesis and
the variability is substantially larger compared to the human recording. This variability
might be reduced, if the simulations are repeated with the up-to-date version of PAULE,
which is left for future work. Further note, that manual changes to the segment-based
approach might also lead to the expected formant shifts visible in the human recording.

121

Chapter 6. Results

6.4 Mid-sagittal ultrasound data

As PAULE is a control model for an articulatory speech synthesis system, it is possible
not only to look at features in the resynthesized audio but additionally, to look on the
articulatory movements and compare them to recordings by humans. As the mid-sagittal
plane with ultrasound for the /babababibabu/ data was recorded, a method to compare
the ultrasound recordings to the VTL tongue movement was developed.

In the ultrasound image, the tongue surface is visible as a bright reflective band and
it is possible to extract the tongue contour with signal and image processing methods.
This reflection relies on the material difference between the tongue and the air above it
and the ultrasound head needs a straight line through the tissue to the tongue without
any air in between. During speaking this is not always the case as the tongue tip might
be so frontal that an air pocket is between the connecting line of the ultrasound head,
which is placed below the jaw, and the tongue tip. Furthermore, the reflection vanishes
as well, if the tongue is pressed against the palate so that no air is above the tongue.

There are ideas on how to mitigate this problem, but for this analysis, the highest point
of the tongue was extracted as a workaround. This measure does not need a registered
tongue contour and does not rely on the full visibility of the tongue. In order to extract
the highest point, a tongue contour was fitted to the time points of interest and the
highest value was calculated. This is then compared to the highest value of a mid-sagittal
tongue contour exported from the VTL synthesis (see Figure 6.7).

As the ultrasound head is strapped to the jaw and tilted slightly, to point to the back
of the head, the contours exported by the VTL are rotated onto the lower teeth and tilted
in the same way as the ultrasound head. In our analysis in 2021, the tongue raising
and lowering was not as pronounced as in humans [96]. Note, that the formant shifts are
replicated through the same cp-trajectories (see section above). One reason might be
that the formant shifts are achieved by other means and therefore PAULE might control
the VTL qualitatively different to how a human controls their speaking organ. Another
reason might be due to the high amounts of noise in the cp-trajectories produced by the
version of PAULE used in 2021.

All the source code to export and extract the highest tongue point in the mid-sagittal
plane of the virtual VTL tongue exists and will be integrated into ARTICUlatory
speech synthesis BENCHmark (articubench) (see below). Further investigations and a
statistically more powerful analysis is needed in the future to clarify, if the coarticulations
is achieved by tongue raising and lowering or by different means and therefore if PAULE
controls the vocal tract in this aspect qualitatively different to humans.

6.5 EMA data

In contrast to the unregistered tongue contour lines of an ultrasound measurement, elec-
tromagnetic articulography (EMA) measures registered tongue, lip, and jaw movements.
This can be done with a high time resolution of up to 1,000 Hz. In order to show a proof
of concept and elaborated on different ways of comparing EMA recordings in humans

122

6.5. EMA data

BABABABI

babababi

Figure 6.7: Top panel: Tongue position of the human tongue in the ultrasound recording
in the middle (white) and at the offset (red) of the first /a/ in /babi/ and /baba/. An
anticipatory raising of the tongue body is visible in /babi/ compared to /baba/.
Bottom panel: Tongue position of the simulated VTL tongue in the middle (black) and at
offset (red) of the first /a/ in the resynthesized /babi/ and /baba/. A small anticipatory
raising of the tongue body is visible (blue ellipses). The statistical analysis indicates that
the articulatory tongue raising in the resynthesis models might not be present. [96]

123

Chapter 6. Results

with virtual simulated EMA recordings on the VTL articulators, an API function call was
exposed as part of this thesis to select arbitrary nodes in the mesh of the 3-dimensional
VTL components end export them with a target sampling rate.

A key challenge is to transform the data into a common reference space, which shares
an origin and orientation and potentially normalizes the measured distances to the
sizes of the oral cavity of individual speakers. Furthermore, as each EMA sensor is
measuring a 3d-coordinate, it has to be decided if the analysis should be restricted to
a specific dimension like the front-back movement or the up-down movement or if all
three dimensions should be taken into account. One way of aligning the data is to shift
the origin of the coordinate system to the maximal value in each coordinate for each
individual speaker. Distances can be either kept fixed on a common physical distance
like Millimeters or scaled to the relative change to the minimal value in each axis for
each individual speaker.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

0.0 0.1 0.2 0.3 0.4

−
15

−
10

−
5

0

Time

x

ja
● human

vtl

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

0.0 0.1 0.2 0.3 0.4

−
15

−
10

−
5

0

Time

S
en

T
T.

Y

y

ja

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

0.0 0.1 0.2 0.3 0.4
−

15
−

10
−

5
0

Time

S
en

T
T.

Z

z

ja

●●●●●●●●●●●
●●●●

●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●
●●●●●●

●●●●●●

●

0.0 0.1 0.2 0.3 0.4

−
15

−
10

−
5

0 x

halt

●●
●●●●●●●●●●●

●●●

●●
●●●●●●●●●●●●●

●●●●●●●
●●●●

●●●●●●●●●●●●●●
●

0.0 0.1 0.2 0.3 0.4

−
15

−
10

−
5

0

S
en

T
T.

Y

y

halt ●●●●
●●●

●●
●●

●
●
●●

●●●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.1 0.2 0.3 0.4

−
15

−
10

−
5

0

S
en

T
T.

Z

z

halt

Figure 6.8: Trajectories of the tongue body sensor in back-front-direction (x, left panels),
in left-right-direction (y, middle panels) and in low-high-direction (z, right panels) for the
word ja (top panels) and the word halt (bottom panels). The black circles show measured
EMA data from one subject and are compared in each plot to the VTL simulated
trajectories of a matched sensor (in red triangles). Time is given in seconds, distances in
Millimeters. [95]

Some fundamental explorations on differently long series of EMA data have been
conducted [95]. For this, a subset of the KEC was used. Figure 6.8 shows the x, y, z
coordinates of one /ja/ and one /halt/ articulations trajectory of a single matched sensor.
The trajectories show similar time courses, but for some differ in the timings of the
transitions. Defining a similarity measure on the full trajectories especially when they
vary in duration is challenging. Relying on time points of interest, as it is done for the
ultrasound data, can be more informative for some research questions and circumvents

124

6.6. Articubench

the necessity to deal with different durations. It is planned to add a comparison between
recorded EMA data from the KEC and simulated EMA data by the VTL into articubench.

6.6 Articubench

The goal of ARTICUlatory speech synthesis BENCHmark (articubench)1 is to bundle
semantic, acoustic, and articulatory evaluations of PAULE, so that simulation experiments
with PAULE are reproducible. Furthermore, articubench is designed in such a way
that it is straightforward to compare different control models of the VTL along different
evaluation metrics. As evaluation metrics, several scores are calculated. Each score
ranges from 0 to 100 and contributes equally to a total score [91].

We set up the Schwa-model as a baseline reference control model. The Schwa-model
continuously outputs the cp-trajectories for the /schwa/ sound, which is generated
within the VTL by the neutral settings of the cp-trajectories. Scores are normalized to the
Schwa-model where feasible so that the Schwa-model has a score of 0. A resynthesis that
is perfectly on target is defined to have a score of 100: Such a resynthesis matches exactly
the target acoustics or the target semantics.

Scores are separated into three groups: the articulatory, the acoustic, and the semantic
group. In the articulatory group the tongue height position is compared to ultrasound
recordings or baseline simulations with the tongue height subscore. The EMA score
compares tongue tip and tongue body sensors of a real or simulated EMA recording
against EMA recordings simulated with the VTL. The last articulatory score is the velocity
and jerk subscore. This score evaluates how low the peak velocity and peak jerk is compared
to an average calculated from the segment-based approach. In the acoustic group the
loudness subscore evaluates the loudness envelope of the resynthesized signal to the target
acoustics and the spectrogram subscore calculates the score from the point-wise differences
in the log-mel-spectrogram. In the semantic group the distance subscore measures the
distance between the target semantics and the produced semantics and the rank subscore
calculates the classification rank along 4,311 classes with the embedder. The theoretically
best total score to achieve is 700 as there are seven subscores.
articubench comes with three different tasks and is planned to have three different

sizes. The three different tasks are the acoustic-only task (copy-synthesis), where only a
target acoustics is given, the semantic-only task, where a semantic vector and a duration
is given, and the semantic-acoustic task, where a semantic vector and a target acoustics
are given to the control model. The planned three different sizes are the following: A
tiny version to validate that a control model can be executed with the benchmark, a
small version that provides an overall score that has more statistical power and a normal
version that can give additional insight into the substructure of the scores and how the
control model performs along different language statistics such as the word frequency.
An overview of the tasks and the different metrics is shown in Figure 6.9.

In addition to the Schwa-model the segment-based synthesis model of the VTL was

1https://github.com/quantling/articubench

125

https://github.com/quantling/articubench

Chapter 6. Results

enabled to solve the three tasks. For the acoustic-only task the acoustics is first classified
with the embedder. The grapheme string of the classified word type is transformed into
a phoneme string with the grapheme to phoneme model of the MFA. In a next step the
phoneme string is aligned with the MFA to the target audio. The resulting phonemes
and corresponding durations are then used as inputs for the segment-based approach.
In the semantic semantic-acoustic task the classification step is skipped and instead the
given target semantic vector is used to find the closest word type in the classification
of the embedder. This is followed up with the grapheme to phoneme transformation
and alignment. In the semantic-only tasks phone durations are derived from the average
phone duration in the Common Voice corpus, which are prolonged or shortened to
match the overall target duration of the word.

6.6.1 Results for tiny data set

Integrating all the analysis scripts of the last years into a fully automated score calculation
turned out to be more time-consuming than originally expected. Therefore, only results
for the tiny data set in articubench are presented here. These results compare four
different control models along the three different tasks.

Table 6.1: Preliminary total scores of the tiny version of articubench for four different
control models.

model task score_total

PAULE acoustic-only 329

semantic-acoustic 331

semantic-only 198

PAULEfast acoustic-only 281

semantic-acoustic 182

semantic-only 131

segment acoustic-only 150

semantic-acoustic 136

semantic-only 231

schwa (baseline) acoustic-only 114

semantic-acoustic 114

semantic-only 114

Table 6.1 shows the total score of the results for the tiny data set. The PAULE model
uses 10 outer loop iterations and 25 internal loop iterations and requires a wall time of

126

6.6. Articubench

p
a
la

te
ve

lu
m

lip
s

to
n
g
u
e

vo
ic

e
 b

ox
 (

n
o
t

d
ra

w
n
)

tr
a
ch

e
a
 a

n
d
 lu

n
g
s

(n
o
t

d
ra

w
n
)

oesophagus

n
a
sa

l c
a
vi

ti
e
s

(n
o
t

d
ra

w
n
)

oral cavity

ta
rg

e
t
se

m
a
n
ti

cs

ta
rg

e
t
a
co

u
st

ic
s

cp
-t

ra
je

ct
o
ri

e
s

V
o
ca

lT
ra

ct
L

a
b

sy
n
th

e
si

ze
d

a
u

d
io

a
co

u
st

ic
re

p
re

se
n
ta

ti
o
n

E
m

b
e
d

d
e
r

se
m

a
n
ti

c
re

p
-

re
se

n
ta

ti
o
n

se
m

a
n
ti

c
o
n

ly

a
co

u
st

ic
o
n

ly

se
m

a
n
ti

c-
a
co

u
st

ic

V
e
lo

ci
ty

lo
ss

J
e
rk

lo
ss

E
M

A
se

n
so

rs

m
id

sa
g
it

ta
ls

li
ce

(u
lt

ra
so

u
n

d
)

lo
u

d
n

e
ss

e
n
v
e
lo

p
e

p
it

ch
;f

o
rm

a
n
ts

se
m

a
n
ti

c
R

M
S

E
lo

ss
;

cl
a
ss

ifi
ca

ti
o
n

ra
n

k

a
co

u
st

ic
R

M
S

E
lo

ss

Fi
gu

re
6.

9:
Th

e
be

nc
hm

ar
k
a
r
t
i
c
u
b
e
n
c
h

di
st

in
gu

is
he

s
be

tw
ee

n
th

e
th

re
e

di
ff

er
en

tt
as

ks
:s

em
an

tic
-o

nl
y

ta
sk

,s
em

an
tic

-a
co

us
tic

ta
sk

,a
nd

ac
ou

st
ic

-o
nl

y
ta

sk
.T

he
ta

sk
s

ar
e

de
no

te
d

in
gr

ee
n.

Th
e

co
nt

ro
lm

od
el

te
st

ed
in
a
r
t
i
c
u
b
e
n
c
h

w
ill

re
su

lt
in

cp
-t

ra
je

ct
or

ie
s

th
at

so
lv

e
th

e
ta

sk
at

ha
nd

.F
ro

m
th

es
e

fin
al

cp
-t

ra
je

ct
or

ie
s,

th
re

e
gr

ou
ps

of
sc

or
es

ar
e

ca
lc

ul
at

ed
:a

rt
ic

ul
at

or
y

sc
or

es
fr

om
th

e
cp

-t
ra

je
ct

or
ie

s
th

em
se

lv
es

an
d

th
e

as
so

ci
at

ed
to

ng
ue

m
ov

em
en

ts
,a

co
us

tic
sc

or
es

fr
om

th
e

pr
od

uc
ed

ac
ou

st
ic

s,
an

d
se

m
an

tic
sc

or
es

fr
om

th
e

pr
od

uc
ed

se
m

an
ti

cs
.

127

Chapter 6. Results

30 minutes. PAULEfast only uses 5 internal loop iterations and no outer loop iterations
and requires a wall time of 7.20 minutes. The segment-based synthesis uses the MFA
for alignment and completes the benchmark in 9 minutes wall time. The baseline
Schwa-model, unsurprisingly, requires only 2.34 minutes wall time.

As expected, the baseline Schwa-model shows no differentiation between the tasks
and has a constant total score of 114. The Schwa-model as a baseline has the worst score
of all models. The segment-based synthesis is the second worst and shows the best
results in the semantic-only task with a score of 231. This score is higher than the worst
total score of the PAULE control model in the semantic-only task (198). The highest
scores are achieved by the PAULE control model. The semantic-acoustic task has the
highest score, which is broken into its subscores in Table 6.2.

The total score, which is achieved by the PAULE model in the articubench benchmark
can be split into its subscores. These subscores are grouped into three groups of
articulatory scores, acoustic scores, and semantic scores. As the total scores is the sum of
the subscores and all subscores are normalized to be between 0 and 100 an inspection of
the subscores gives an impression on where the PAULE model performs well, and where
is still room for improvement. The subscores in Table 6.2 can be interpreted the following:
In the semantic-acoustic task the PAULE model performs on average in the articulatory
score group. The tongue height is more similar to the target tongue height compared
to the Schwa-model (score of 51) and the peak velocity and peak jerk is comparable
to the segment-based average (score of 0). In the acoustic score group results are good.
The loudness envelope is matched (score of 44) and the point-wise differences in the
log-mel-spectrogram are substantially better compared to the Schwa-model (score of
47). The best performance is shown in the semantic score group with a subscore for
the semantic distance to the target semantics of 87 and a resynthesis that is correctly
classified, which results in the best possible rank score of 100. The comparison to the
EMA data is not yet fully integrated into articubench and therefore not computed and
presented here.

6.7 Environmental costs

The final section of Chapter 6 estimates the environmental costs associated with creating
and using the PAULE model. The presented version of PAULE needs around 400 kWh
of electricity to be fully trained from scratch on the data sets presented in this thesis. The
main energy consumption can be traced back to training the GAN models. This accounts
for 95 % of the energy consumption or roughly 380 kWh. Training the predictive forward
model and the direct inverse model requires around 2 kWh each and the embedder uses
around 8 kWh of electricity. The predictive forward model was trained by far most often
as a range of different architectures were implemented and tested here. Assuming it was
trained 50 times, the energy consumption equates to an additional 100 kWh. It is very
likely that not more than 1,000 kWh of electricity were used to develop PAULE over the
last seven years. This is less than a single person on average uses in a single year for
living in Germany (8,800 kWh). This 8,800 kWh of energy are the energy for heating

128

6.7. Environmental costs

Table 6.2: Subscores for the semantic-acoustic task in the tiny version of articubench for
control model PAULE.

subscore score value

score_total 331

score_articulatory/tongue_height 51

score_articulatory/ema NaN

score_articulatory/velocity_jerk 0

score_acoustic/loudness 44

score_acoustic/spectrogram 47

score_semantic/distance 87

score_semantic/rank 100

(6,200 kWh) and electricity (2,600 kWh) in private households averaged onto a single
person estimated in for the year 20192.

Planning a single word with an average duration of 0.7 seconds requires around
20 minutes on a laptop (130 Watt) resulting in the consumption of around 0.04 kWh
per planned word. Therefore, the evaluation data set used for the word classification
evaluation consisting of 225 word tokens and used in three tasks and along three
objectives required around 81 kWh of electric energy. This is a substantial but not
extremely high value, even if it makes the planning of large corpora expensive and time-
consuming and is more costly compared to a direct inverse model or the segment-based
approach.

Overall, the environmental costs of the PAULE model are substantially lower compared
to traveling and living costs. These small environmental costs could be achieved by
having relatively small training data sets and intelligently optimizing single models and
restraining from grid searches through large model architecture spaces.

2https://www.destatis.de/DE/Presse/Pressemitteilungen/Zahl-der-Woche/2022/PD22_09_p002.
html

129

https://www.destatis.de/DE/Presse/Pressemitteilungen/Zahl-der-Woche/2022/PD22_09_p002.html
https://www.destatis.de/DE/Presse/Pressemitteilungen/Zahl-der-Woche/2022/PD22_09_p002.html

7 Discussion

Le but de la dispute ou de la discussion ne doit pas être la victoire, mais
l’amélioration.

Joseph Joubert

The Predictive Articulatory speech synthesis Utilizing Lexical Embeddings (PAULE)
framework is a predictive control model for the articulatory speech synthesizer VTL.
PAULE allows to copy-synthesize a target acoustics by planning cp-trajectories that are
the inputs to the VTL and that result in a 44,100 Hz audio file when given to the VTL. The
target acoustics is not limited to speech sounds that can be produced by the VTL but can
be any human speech recording, even if resynthesis results vary and are dependent on
the quality of the target acoustics. Furthermore, PAULE allows synthesizing speech from
target semantics, approximated by a 300-dimensional fastText vector, in combination
with a duration of the desired resynthesis. The resulting audio is intelligible most of the
time. The last task that PAULE can fulfill is planning cp-trajectories for a given target
acoustics and a target semantics, by jointly matching the target acoustics as closely as
possible while at the same time predicting the target semantics. In all three tasks, the
articulatory effort is kept minimal by enforcing stationarity (stay at the same position,
if possible) and constant force (if the articulator position has to be changed, do it with
constant force).

In order to plan cp-trajectories, PAULE utilises a semantic and an acoustic error, which
is not calculated from an actual synthesis but from an imagined prediction of an expected
outcome of the execution of the cp-trajectories. Figure 7.1 shows this fundamental
principle. Planning on a predicted effect allows for an adaptive control model that can
utilize local error information to plan and adjust the control dependent on the individual
state of the VTL, while anticipating future demands in the semantic and acoustic goal
space.

Additional evaluations with PAULE are needed but it is clear that PAULE can indeed
model fine-grained anticipatory coarticulation structures, that it can condition on the
current and past state of the VTL, and that it produces articulatory movements that are
similar to articulator movements recorded in humans. Additionally, PAULE can be used
to synthesize speech with the VTL by simply giving a target acoustics without the need
of transcribing and aligning the speech in the audio on the word or segment level. Even if
PAULE occasionally fails to synthesize intelligible speech, overall, PAULE is robust and
can resynthesize speech that it has never encountered before and which it intrinsically
cannot fully mimic. An example is the resynthesis of female speakers with the male vocal
tract geometry of the VTL, which always leads to different formants in the resynthesized

131

Chapter 7. Discussion

Figure 7.1: The main idea of PAULE is to predict the acoustics and semantics of the
upcoming articulatory movements (cp-trajectories) and use the error between the
intended target acoustics and the intended target semantics to plan and correct the
movement.

produced audio compared to the target audio. This is possible due to the interleaved
planning through the internal loop and the alignment of the predictive forward model
through the outer loop. For now, PAULE is limited to small audio samples of half a
second to a second of audio containing usually a single word.

7.1 Guiding principles

In the first chapter, guiding principles were formulated that inspired the design of
PAULE in the following way:

PAULE works on the word level and takes the word as the smallest meaningful unit
in speech. It makes it possible to initiate the process of speech synthesis with a semantic
representation and plans trajectories in a goal-directed way to match a target meaning.
The planning uses local gradients and is adaptive and error-driven. Furthermore, the
planning is predictive or anticipatory in the sense that PAULE predicts the effect of the
motor commands into a time window of around a second into the future. This prospective
anticipation of its own behavior is then used to adapt and correct the behavior within
this time frame.

On a longer time frame over multiple word utterances, PAULE absorbs experience
into its predictive components. Furthermore, all components (or individual models) of
PAULE are individually trained on training data from different collections of learning
events, and no language-specific theoretical constructs such as phonemes or gestural
scores are used. All components implement mappings from time-series to time-series, or
from time-series to fixed-vectors. Therefore, PAULE is a computational model of speech
production that learns incrementally.

132

7.2. Comparison DIVA and FACTS

The design of PAULE and its components is kept as simple as possible, while still
achieving good synthesis results. The individual models are trained on relatively small
speech corpora, which contain less than 20 hours of speech in total. Still it achieves
moderate to good performance on out-of-vocabulary words, where the planning relies
primarily on the acoustic error. Regarding all of these aspects, PAULE fulfills the guiding
principles defined in the introduction. Note that PAULE is a proof of concept, that is
deliberately kept simple and is exposed to limited training data. Even if it is probable,
it is unknown if PAULE will scale up to the full vocabulary of a language and can be
trained according to the experiences humans make during language learning.

7.2 Comparison DIVA and FACTS

Planning along the local gradients of a predictive forward model is a rather new
approach to control. In contrast, in the DIVA model [110], an influential model of human
speech production, a direct feedforward controller is learned and is correcting the
cp-trajectories by feedforward feedback controllers that learn the mapping of the actual
error between the current state of the vocal tract and the desired target state. Whereas
PAULE implements an indirect method that utilize the gradients of the predictive
forward model and plans on imagined effects, DIVA learns an explicit error correction
from the actual error of the outer loop. Note that the feedforward controller in the DIVA
model learns the same mapping as the direct inverse model in PAULE and suffers from
the same one-to-many problem, which is solved by applying the error correction in the
auditory and somatosensory space. Furthermore, the DIVA model is implemented on a
substantially simpler articulatory speech synthesis model. Adapting DIVA to work and
control the VTL would allow for a direct comparison between DIVA and PAULE.

A third modern control model is given by the FACTS model [69] that combines a
state estimate of a predictive forward model with the error actually encountered in the
articulatory synthesizer. FACTS utilizes a predictive error but in contrast to PAULE
directly combines it with the actual error. Furthermore, in contrast to PAULE, the FACTS
model has only a very short time horizon and only works on a simpler articulatory
speech synthesizer. The authors of the FACTS model showed interest in porting FACTS
to control the VTL, which would allow for a direct comparison to PAULE.

The last class of control models that exists, is developed by the group around Peter
Birkholz at the TU Dresden, who created and maintains the VTL. They developed two
classes of control models. One class is similar to the direct inverse model in PAULE. The
other class optimizes the blending parameters of the gestural scores in a segment-based
approach. This is similar to the deterministic segment-based approach used to generate
the training data in PAULE, but adds an optimization or fitting procedure on top of
the segment-based synthesis. In this optimization, the cp-trajectories are not changed
directly, but the boundaries and relaxation parameters, as well as dominance values for
the individual segments, are adjusted to better match the target acoustics [39].

All these control models have in common that they do not operate in the semantic
space as a goal space and do not use any semantic error. They only circulate error between

133

Chapter 7. Discussion

the acoustic, motor, and somatosensory domain and therefore assume that the meaning
transfer can purely be modeled in a feedforward manner. This is in strong contrast to
PAULE, where the error in the expected meaning has a direct situational influence on
the motor program.

7.3 Future work

Where DIVA implements error feedback not only from the outer loop, but also from the
somatosensory feedback, PAULE relies on the error originating from the acoustic and
semantic domains. Adding an error channel for the somatosensory feedback to PAULE
is done in subsequent work [92]. The idea here is to use another predictive forward model
that does not predict the acoustics but a low dimensional frontal state of the VTL oral
cavity. This is achieved by extracting the minimal area function for each one-centimeter
interval starting from the lips and going eight centimeters into the oral cavity. The
reasoning behind this is to create an awareness and expectation in PAULE on how close
the articulators are to each other and to generate knowledge of where constrictions are
occurring. From this somatosensory constriction space, further mappings are learned to
the acoustic representation and the semantic representation. The semantic and acoustic
error is calculated in the same way as for the other pathways (see Chapter 5). Then
the error is pushed back along the gradients of the different models, collected for all
pathways, and summed.

In the current setup, PAULE makes substantial use of the outer loop. In the outer loop,
PAULE mumbles and listens to itself 240 times for a single planning. This is necessary to
align the predictive forward model with the physical simulation of the acoustics in the
VTL. This 240 mumblings are only a few compared to a grid search or compared to how
many are needed for an evolutionary algorithm. Nevertheless, they are too many to make
PAULE fully behavioral plausible. One reason, making so many outer loop iterations
necessary, is the distribution of the training data for the predictive forward model. The
predictive forward model is trained on a segment-based synthesis approach, but the
planning with its internal loop iterations changes the cp-trajectories into a different
time dynamics. Therefore, the initial training data is only of limited use, the more the
dynamics of the cp-trajectories is different to the one in the segment-based approach. To
reduce the amount of mumblings, in a next step, training data will be generated with
PAULE using the current amount of mumbling. This generated training data matches
the time dynamics better and should therefore have better distributional properties for
pre-training. A predictive forward model trained on this new training data hopefully
needs a smaller number of mumblings, while still keeping the synthesis quality at the
same level. In addition, a simulation study should investigate, how the effect of practice
is on the number of mumblings and outer loop iterations. The number needed should
dependent on the experience PAULE has in producing a word type. The outcome of this
simulation study is that PAULE needs little to no mumblings and outer loop iterations
for word types it knows well, but needs the current number of mumblings and iterations
for a new word type.

134

7.3. Future work

Another important next step is to implement a method to produce and plan longer
phrases like whole utterances or sentences. Besides longer computation times, planning
longer utterances needs a design decision on the semantic representation level. One
possibility would be to define one semantic vector per word in the utterance and
define points in time where the predicted and produced semantic vector should be
close to the target vector. The embedder should predict the semantic vector from the
log-mel-spectrogram, starting after the previous word was ended until the current word
is finished. Another option would be to collapse the full phrase onto a single semantic
vector and require that the semantics is achieved at the end of the utterance.

Either way, the duration of the planning interval should be around 2.7 seconds and
chunks of these 2.7 seconds should be planned with some overlap. This could be achieved
by planning 2.7 seconds into the future while executing one word at a time. This should
result in coarticulation patterns that take 2.7 seconds into account on the planned
dynamics but could potentially be even longer ranging if the coarticulation depends on
the initial state only as we reward stationary articulatory movements with the velocity
loss.

Regarding the planning loss or planning error, it is important to point out that the
weighting of the additive loss is crucial to achieving good planning results. For example,
if the jerk loss dominates the additive loss, the planning will not change the curves
substantially, as the initialization usually produces curves that have a low jerk and,
therefore, are at a local minimum regarding the jerk loss landscape. If the velocity loss
dominates the planning error this results in flat curves that look unnatural. A dominating
acoustic loss removes the effects of the semantic components and might lead to highly
oscillating cp-trajectories, as the regularizing effect of the velocity and jerk loss is not
present. A dynamic weighting scheme might be useful and different adaptive loss
schemes have been tested, but in the end having a constant weighting together with the
ADAM optimizer yielded the most robust and best results. Losses are weighted so that
acoustic and velocity losses are on the same order of magnitude and the semantic and
jerk loss are one magnitude (ten times) smaller compared to the acoustic loss. This results
in enough changes introduced by the planning and usually in a decent improvement in
the acoustic and semantic loss in the finally produced word. Furthermore, the effect of
an acceleration loss was investigated. The acceleration loss leads as expected to constant
velocities and, therefore, constant shifts in the position of the articulators. These constant
velocities are not present in human recordings of articulator movements. The acceleration
loss therefore is not useful for the task of controlling a vocal tract lab synthesizer.

A positional loss might be interesting and will be further investigated after PAULE is
able to synthesize longer utterances. A positional loss component might be introduced as
a bias towards a resting, neutral, or default gesture. This might be especially important
for longer utterances as they should start and end from a reasonable starting and ending
position. The planning loss implemented in the current version of PAULE keeps the
articulators in the last position as long as there is no need for a change through the
acoustic or semantic prediction error. To bring the articulators into a resting position,
which humans do, is out of the scope of the current implementation. It might be easily

135

Chapter 7. Discussion

implemented by attracting the cp-trajectories to a neutral gesture with an additional loss
component.

At the moment the individual models within PAULE are pretrained on a German
speech corpus. Since PAULE relies on the experience of the German sound repertoire,
PAULE plans locally optimal cp-trajectories that depent on this German learning history.
It will be an interesting next step to check how the synthesis quality for a second language
like English or Mandarin is. Especially, the errors or speech variants that produced by
PAULE are of interest and if these are the typical variants shown by German speakers
acquiring the target second language. In order to test this quantitatively robust and
reliable, effects of second language acquisition have to be identified and target speech
recordings without the typical variants need to be resynthesized, by a PAULE model that
is pretrained on German. If the, for second language learners, typical variants surface,
this would show that the mechanisms implemented in PAULE can account for these
effects.

This will yield only preliminary results though as second language acquisition
should also be modelled by changing the embedder, which is the acoustic to semantics
embedding. Changing the embedder can simulate the difficulties to discriminate all the
relevant and meaningful sound patterns and acoustic differences in the new language,
which occurs especially in the beginning. Lastly, the semantic embedding space is
different in different languages and it remains unclear how to update the embedding
space and respectively the embedder during the learning of the new language.

Still, it should be kept in mind that this does not mean that PAULE is implementing
the speech production process as humans do it. We designed PAULE after guiding
principles that are present in humans as well, but a lot more validation and testing are
needed before any conclusion could be made about how well PAULE simulates human
behavior. The decision to remove all symbol-like representations from the data pipelines
in PAULE might be too strong. In future implementations, it might be useful to introduce
a dynamic and hierarchical way of encoding often used movement patterns in an efficient
coding scheme and retreiving and mixing them during speech production. The current
implementation of the PAULE model without any gesture or phone representation
can function as a reference to control models that rely on symbol-like structures in
speech production. Such a comparision can give insights into how humans use symbolic
representations during speech production and which effect can be attributed to the
symbolic and combinatorial nature that is present in written western language systems
and which aspects of speech production do not need any symbolic representation.

As PAULE is pretrained on data generated with the segment-based approach, another
next step is to remove the training data from the process, at least for the predictive
forward model and the direct inverse model and the GAN models. All these models can,
in principle, be solely trained on the utterances produced by PAULE. In contrast, the
embedder needs some external training data to first establish the semantic embedding
space. This new model, called PAULEzero, would be trained in a goal babbling regime,
where it tries to explore the semantic and acoustic goal space. Goal babbling has
successfully been implemented for vowels and simple consonant-vowel syllables [57,71]

136

7.4. Conclusion

with the VTL. For the semantics, even a simplified goal space could be used at the
beginning, which only distinguishes between an affirmative and a rejective utterance.
PAULEzero would therefore implement a simplified version of how babies learn to talk.
The pretraining of the embedder is the ability of the children to already understand
many utterances of their language and the goal babbling and simplified semantic space
resemble the babbling phase and the interactions between the caregiver and the baby.

Besides changing the training regime with PAULEzero, the individual models and the
model architecture can be updated to more modern concepts like Transformer-based
networks. This PAULEtransformer can be compared to the current PAULE implementa-
tion, which is based on LSTM-layers, as well as to a PAULEmlp implementation, where
all individual models are implemented using simple MLP models (see Section 5.5.2).
Together with a deterministic benchmark like articubench, this allows to quantify the
differences according to different scores in the articulatory speech synthesis domain.
Alternatively to the Transformer-based predictive forward model, a complex-valued
ANN could be implemented. This complex-valued ANN could emulate a fast Fourier
transform and could emulate the transformation from the time domain to the frequency
domain.

Additionally, for fully automatic benchmarks like articubench, a human evaluation
of the synthesis quality of different control models for the VTL is important to further
validate the control models. This human evaluation experiment should be conducted
after full phrases can be synthesized and the somatosensory feedback is added to PAULE.
The main reasoning is that the spliced-out words that are used as target right now are
often difficult to understand even for the human recordings. This is a well-known fact,
when words are taken out of the context of the utterance they are uttered in [4]. If the
identical acoustics is presented in the context of the utterance the perceived acoustics
changes and it is substantially easier for the listener to understand and identify the word.

7.4 Conclusion

In conclusion, PAULE allows to model articulation starting from semantics by using a
predictive framework. Within this framework optimal movement trajectories are planned
by minimizing an error in an acoustic and semantic target space. The planning of optimal
articulations depends on the experiences that PAULE already has with its articulations.
Furthermore, the planning relies on two kinds of loops: an internal loop, which only
imagines the acoustics; and an outer loop, where PAULE listens to itself.

137

Glossary

acoustic representation The acoustic representation defines the data format how
acoustics is stored and therefore which perceptual sensations are encoded. In
PAULE a logarithmized Mel banks spectrogram (log-mel-spectrogram) is used for
the acoustic representation. The acoustic representation can be instantiated as a
target acoustics, predicted acoustics, or produced acoustics. A detailed description
of the acoustic representation can be be found in Section 3.2. 10, 24, 40, 45–47, 54,
64–71, 76, 87, 88, 94, 96, 141, 146–148

acoustic-only task The acoustic-only task, also known as copy-synthesis or mimicking
task, is the task to find a proper motor program for an articulatory speech synthesizer
that produces the same or a very similar acoustics to a target acoustics. In this
thesis the acoustic-only task requires to find suitable cp-trajectories for the VTL to
minimize an error to a given target acoustics. In the acoustic-only tasks a target
semantics is not given. The two tasks that allow for a target semantics are the
semantic-only task and the semantic-acoustic task. The three different tasks are
describe in detail in the articubench benchmark in Section 6.6. 118, 126, 130–132,
148, 149

articulatory speech synthesizer An articulatory speech synthesizer is a computer
program that simulates in different approximations the human speech system. The
articulatory speech synthesizer takes movement commands as inputs and outputs
synthesized speech as an audio signal. To get from the movement commands to the
audio signal the articulatory speech synthesizer models the continuous movement
and generates air pressure changes through a physical acoustical simulation. The
articulatory speech synthesizer used in this thesis is the VocalTractLab (VTL),
which takes cp-trajectories as inputs and is described in detail in Chapter 2. 33,
145–149

control model In the scope of this thesis a control model finds suitable inputs to an
articulatory speech synthesizer. It therefore plans and controls the movement of
the articulators like the human brain plans and controls the movements of the
human articulators like the tongue and the jaw. The control model introduced in
this thesis is PAULE, which is described in detail in Chapter 5. 33, 147

cp-GAN The Wasserstein-GAN trained to sample control parameter trajectories (cp-
trajectories) (cp-GAN) is part of PAULE and maps the semantic representation to
the cp-trajectories. It is used to initialize the cp-trajectories before the first internal

139

Glossary

loop iteration starts in the semantic-only task. It is a fixed-vector to time-series
model and is described in detail in Section 5.4.4. 145

cp-trajectories The control parameter trajectories (cp-trajectories) are the inputs to the
VTL, which is the articulatory speech synthesizer used in this thesis. They define
the movements of the 30 cps every 110 samples of a 44,100 Hz audio signal, i. e.
approximately every 2.5 milliseconds. The cp-trajectories are described in detail in
Section 3.1. 5, 19, 26, 37, 40, 42, 145–148

direct inverse model The direct inverse model is part of PAULE and maps the acoustic
representation to the cp-trajectories. It is used to initialize the cp-trajectories before
the first internal loop iteration starts in the acoustic-only (copy-synthesis) and the
semantic-acoustic task. It is a time-series to time-series model and is described in
detail in Section 5.4.3. 73–75, 78, 80, 98–101, 103, 104, 118, 120, 121, 125, 134, 139,
140, 143

embedder The embedder is part of PAULE and maps the acoustic representation to
the semantic representation. It is used in the iterations of the internal loop and
in the iterations of the outer loop. It is a time-series to fixed-vector model and is
described in detail in Section 5.4.2. 67, 68, 71–73, 76, 78, 87, 91, 94–98, 105, 118, 119,
121, 122, 130, 131, 134, 141–143, 147, 148

gestural score A gestural score is a definition of articulatory movement trajectories or
targets for the articulatory movements for a specific phone or syllable. A sequence
of gestural scores of the VTL can be orchestrated and blended together to form
cp-trajectories in a segment-based approach. This segment-based approach is
described in Section 4.1. 38

human speech system The human speech system consists of the lungs, the glottis, the
oral and nasal cavities, the jaw, the tongue, and the lips. A short description on
how the human speech system produces speech is given in Section 1.2. 5, 17, 21–23,
25, 27–29, 145, 149

internal loop The internal loop of PAULE is the circle of starting with a target semantics,
predicting from some initial cp-trajectories an acoustic representation and the
semantic representation and finally comparing these predicted acoustics and
predicted semantics with the target acoustics and target semantics. The internal
loop is described in detail in Section 5.2.2. 20, 21, 49, 52, 69–76, 78, 79, 87, 89, 94, 96,
98, 103, 138, 144, 146–148

LSTM Long-Short-Term-Memory (LSTM) is a certain type of artificial neural network
cell or layer that allows to model long ranging variable length sequence modeling.
In the standard PAULE implementation LSTM-layers are the dominant layer type
that does most of the work. 7, 80, 82, 84, 147

140

Glossary

mel-GAN The Wasserstein-GAN trained to sample log-mel-spectrograms (mel-GAN) is
part of PAULE and maps the semantic representation to the acoustic representation.
It is used to initialize the acoustic representation before the first internal loop
iteration starts in the semantic-only task. It is a fixed-vector to time-series model
and is described in detail in Section 5.4.4. 147

outer loop The outer loop of PAULE is the circle of starting with a target semantics,
finding the cp-trajectories to this target semantics, synthesizing the cp-trajectories
with VTL, embedding the synthesized word into the semantic space and comparing
the produced semantics of the synthesized word with the target semantics. The
outer loop is described in detail in Section 5.2.3. 5, 20, 49, 66, 68–70, 76, 79, 91, 94,
96, 138, 139, 144, 146

PAULE The Predictive Articulatory speech synthesis Utilizing Lexical Embeddings
(PAULE) framework is a control model for the VTL articulatory speech synthesizer.
It is the main topic of this thesis and described in detail in Chapter 5. 3, 5, 7, 11, 17,
33, 63, 75, 137, 147

predicted acoustics The predicted acoustics is the output of the predictive forward
model and can be interpreted as an imagined acoustical representation on how
given control parameter trajectories (cp-trajectories) would sound like. In contrast
to the produced acoustics the predicted acoustics is not based on the synthesis of
the VTL synthesizer. The data structure of the predicted acoustics is a logarithmized
Mel banks spectrogram (log-mel-spectrogram). The predicted acoustics is described
in detail in Section 3.2.2. 45, 47, 49, 52, 69, 71, 73, 77, 78, 87, 94, 118, 145–147

predicted semantics The predicted semantics is the output of the embedder, which
gets the predicted acoustics as input. In contrast to the produced semantics the
predicted semantics is not based on the synthesis of the VTL synthesizer. The data
structure of the predicted semantics is a fastText semantic vector. The predicted
semantics is described in detail in Section 3.3.2. 45, 49, 52, 69, 71, 73, 78, 94, 118,
119, 146, 148

predictive forward model The predictive forward model is part of PAULE and maps
the cp-trajectories to the acoustic representation. This mapping bypasses the
articulatory speech synthesizer and allows is the defining element of the internal
loop. The predictive forward model is a time-series to time-series model. It is
described in detail in Section 5.4.1. 5, 49, 69–73, 76, 78, 79, 87–94, 96, 98, 100, 105,
118, 134, 138–140, 143, 147

produced acoustics The produced acoustics is derived from the synthesized audio,
which is the result of the speech synthesis of the VocalTractLab (VTL) synthesizer.
The VTL has control parameter trajectories (cp-trajectories) as inputs and the audio
signal as outputs. The data structure of the predicted acoustics is a logarithmized
Mel banks spectrogram (log-mel-spectrogram). The produced acoustics is described

141

Glossary

in detail in Section 3.2.3. 45, 47, 49, 52, 66, 76, 77, 79, 94, 96, 118, 119, 121, 122, 132,
145, 147, 148

produced semantics The produced semantics is the output of the embedder, which
gets the produced acoustics as input. Therefore, it is a semantics that results from a
synthesis of the VTL synthesizer. The data structure of the produced semantics
is a fastText semantic vector. The produced semantics is described in detail in
Section 3.3.3. 45, 52, 68, 76, 79, 94, 98, 118, 119, 130, 132, 147, 148

semantic representation The semantic representation defines the data format how
meaning is stored and therefore which internal meaning structure is encoded. For
the semantic representation a semantic lexical word embedding vector (semantic
vector) from the fastText project is used. The semantic representation can be
instantiated as a target semantics, predicted semantics, or produced semantics. A
detailed description of the semantics representation can be be found in Section 3.3.
27, 31, 45, 50, 54, 67, 69, 71, 96, 138, 141, 146–149

semantic-acoustic task The semantic-acoustic task, also known as supervised gener-
ation task, is the task to find a proper motor program for an articulatory speech
synthesizer that produces the same or a very similar acoustics to a target acoustics.
Additionally, to the high similarity in the acoustic representation a high similarity or
identity in the semantic representation is required. Therefore, the semantic-acoustic
task involves a pre-specified target semantics as well as a target acoustics. In this
thesis the semantic-acoustic task requires to find suitable cp-trajectories for the
VTL to minimize an error to a given target semantics and target acoustics. The
two other tasks that are defined in this thesis are the semantic-only task, which
only requires to match a target semantics, and an acoustic-only task, which only
requires to match a target acoustics. The three different tasks are describe in detail
in the articubench benchmark in Section 6.6. 118, 130–134, 145, 149

semantic-only task The semantic-only task, also known as full generation task, is the
task to find a proper motor program for an articulatory speech synthesizer that
produces the same or a very similar semantics to a target semantics. In this thesis the
semantic-only task requires to find suitable cp-trajectories for the VTL to minimize
an error to a given target semantics. As the semantic representation does not encode
any duration of the produced word, the semantic-only task requires to pre-define
a duration along the definition of the target semantics. The two other tasks that
are defined in this thesis are the semantic-acoustic task, which requires to match
a target semantics and a target acoustics simultaneously, and an acoustic-only
task, which only requires to only match a target acoustics. The three different tasks
are describe in detail in the articubench benchmark in Section 6.6. 118, 119, 122,
130–133, 145, 148

target acoustics The target acoustics defines the acoustical target in the perceptual
space that should be reached with a synthesis. Usually there is a target semantics

142

Glossary

alongside the target acoustics. The target acoustics is described in detail in Sec-
tion 3.2.1. 20, 22, 27, 32, 40, 45, 47, 49, 51, 52, 63–66, 68, 69, 71–78, 87, 94, 98, 103, 104,
113, 117–122, 130, 137, 138, 140, 145, 146, 148, 149

target semantics The target semantics defines a semantic target in the meaning space
that should be reached with a synthesis. Usually there is a target acoustics alongside
the target semantics. The target semantics is described in detail in Section 3.3.1. 22,
27, 40, 45, 49, 51, 52, 63–65, 67–69, 71–73, 75–78, 94, 98, 104, 113, 118, 119, 130, 133,
137, 138, 145–149

VTL The VocalTractLab (VTL) is a geometrical, computational model of the human
speech system that allows to move the articulators and allows to synthesize a
speech signal as a mono audio file. The VTL is the specific implementation of an
articulatory speech synthesizer used for PAULE. The VTL is described in detail in
Chapter 2. 3, 5, 8, 10, 30, 35, 37, 40, 64, 75, 145, 148, 149

143

Abbreviations

cp-GAN Wasserstein-GAN trained to sample cp-trajectories

cp-trajectories control parameter trajectories

LSTM Long-Short-Term-Memory

mel-GAN Wasserstein-GAN trained to sample log-mel-spectrograms

PAULE Predictive Articulatory speech synthesis Utilizing Lexical Embeddings

VTL VocalTractLab

articubench ARTICUlatory speech synthesis BENCHmark

Adam ADAptive Moment estimation

ANN Artificial Neural Network

CMA-ES Covariance Matrix Adaptation Evolution Strategy

Common Voice Mozilla Common Voice corpus

cp control parameter

DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

DLR Deutsches Zentrum für Luft- und Raumfahrt

EMA electromagnetic articulography

ESSV Konferenz zur elektronischen Sprachsignalverarbeitung

fastText fastText Library for efficient text classification and representation learning

FIAS Frankfurt Institute for Advanced Studies

FOSS Free and Open Source Software

GAN Generative Adversarial Network

GECO IMS GECO database

ISSP International Seminar on Speech Production

145

Abbreviations

KEC Karl Eberhard Corpus

LDL Linear Discriminative Learning

log-mel-spectrogram logarithmized Mel banks spectrogram

MFA Montreal Forced Aligner

MLP Multi-Layer-Perceptron

MPI Max-Planck-Institut

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RNN Recurrent artificial Neural Network

semantic vector semantic lexical word embedding vector

SGD Stochastic Gradient Decent

TeaP Tagung experimentell arbeitender Psychologen

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction

146

Bibliography

[1] Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais,
R., Saunders, L., Tyers, F. M., and Weber, G. (2019). Common voice: A massively-
multilingual speech corpus. CoRR, abs/1912.06670. Cited on pages 53 and 58.

[2] Arlinger, S. (1990). Manual of practical audiometry. Ear and Hearing, 11(3):244. Cited
on page 31.

[3] Arnold, D., Lopez, F., Sering, K., Tomaschek, F., and Baayen, H. (2016). Acoustic
speech learning without phonemes: Identifying words is olated from spontaneous
speech as a validation for a discriminative learning model for acoustic speech learning.
Talk, TeaP. Cited on page 10.

[4] Arnold, D., Tomaschek, F., Sering, K., Lopez, F., and Baayen, R. H. (2017). Words
from spontaneous conversational speech can be recognized with human-like accuracy
by an error-driven learning algorithm that discriminates between meanings straight
from smart acoustic features, bypassing the phoneme as recognition unit. PloS one,
12(4):e0174623. Cited on pages 10, 18, 46, 116, and 137.

[5] Arppe, A., Hendrix, P., Milin, P., Baayen, R. H., Sering, K., and Shaoul, C. (2013). ndl:
Naive discriminative learning. Cited on page 9.

[6] Baayen, R. H. (2001). Word Frequency Distributions. Kluwer Academic Publishers,
Dordrecht. Cited on page 56.

[7] Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., and Blevins, J. P. (2019). The
discriminative lexicon: A unified computational model for the lexicon and lexical
processing in comprehension and production grounded not in (de) composition but
in linear discriminative learning. Complexity, 2019. Cited on pages 11 and 20.

[8] Beaman, K. V. and Sering, K. (2022). Measuring change in lectal coherence across
real-and apparent-time. In The Coherence of Linguistic Communities, pages 87–105.
Routledge. Cited on page 11.

[9] Beaman, K. V. and Tomaschek, F. (2021). Loss of Historical Phonetic Contrast across
the Lifespan: Articulatory, Lexical, and Social Effects on Sound Change in Swabian. In
Language Variation and Language Change Across the Lifespan, pages 209–234. Routledge.
Cited on page 16.

[10] Beaman, K. V., Tomaschek, F., and Sering, K. (2021). The cognitive coherence of
sociolects across the lifespan: A case study of swabian german. Cited on page 11.

147

Bibliography

[11] Berg, K. (2013). Graphemic alternations in English as a reflex of morphological
structure. Morphology, 23(4):387–408. Publisher: Springer. Cited on page 16.

[12] Berg, K. and Aronoff, M. (2017). Self-organization in the spelling of english suffixes:
The emergence of culture out of anarchy. Language, 93(1):37–64. Cited on page 16.

[13] Berk, L. E. (2020). Entwicklungspsychologie, volume 4334. Pearson Deutschland
GmbH. Cited on pages 15, 18, 19, and 21.

[14] Berthier, N. E. (1996). Learning to reach: a mathematical model. Developmental
psychology, 32(5):811. Cited on page 21.

[15] Birkholz, P. (2013). Modeling consonant-vowel coarticulation for articulatory speech
synthesis. PloS one, 8(4):e60603. Cited on pages 3, 5, 10, 35, and 37.

[16] Bloomfield, L. (1983). An introduction to the study of language. An Introduction to
the Study of Language, pages 1–383. Cited on page 15.

[17] Boersma, P. and Weenink, D. (2022). Praat: doing phonetics by computer.
http://www.praat.org. Cited on page 56.

[18] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot
learners. Cited on page 16.

[19] Buddeberg, K. and Grotlüschen, A. (2020). LEO 2018: Leben mit geringer Literalität.
wbv. Cited on page 15.

[20] Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., and Otte, S. (2019a). Learning,
planning, and control in a monolithic neural event inference architecture. Neural
Networks, 117:135–144. Cited on page 20.

[21] Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., and Otte, S. (2019b). Learning,
planning, and control in a monolithic neural event inference architecture. Neural
Networks, 117:135–144. Cited on pages 20 and 73.

[22] Chafe, W. and Tannen, D. (1987). The relation between written and spoken language.
Annual review of anthropology, 16(1):383–407. Cited on page 15.

[23] Chomsky, N. and Halle, M. (1968). The sound pattern of English. Harper and Row,
New York. Cited on page 15.

[24] Coker, C. H. (1976). A model of articulatory dynamics and control. Proceedings of
the IEEE, 64(4):452–460. Cited on page 20.

148

Bibliography

[25] De Saussure, F. (1966). Course in General Linguistics. McGraw, New York. Cited on
pages 16 and 17.

[26] Denes, P. (1955). Effect of Duration on the Perception of Voicing. The Journal of the
Acoustical Society of America, 27(4):761–764. Cited on page 16.

[27] Developers, T. (2022). Tensorflow. See the full list of authors
https://github.com/tensorflow/tensorflow/graphs/contributors. Cited on page 78.

[28] Ernestus, M. (2000). Voice assimilation and segment reduction in casual Dutch. A
corpus-based study of the phonology-phonetics interface. LOT, Utrecht. Cited on page 56.

[29] Fels, S., Vogt, F., Van Den Doel, K., Lloyd, J., Stavness, I., and Vatikiotis-Bateson, E.
(2006). Artisynth: A biomechanical simulation platform for the vocal tract and upper
airway. In International Seminar on Speech Production, Ubatuba, Brazil, volume 138. Cited
on page 35.

[30] Fink, J., Widmann, A., Sering, K., and Exner, C. (2016). Attentional bias triggers
disgust-specific habituation problems in subclinical contamination-based obsessive-
compulsive disorder. Poster, TeaP. Cited on page 10.

[31] Fink-Lamotte, J., Widmann, A., Sering, K., Schröger, E., and Exner, C. (2021).
Attentional processing of disgust and fear and its relationship with contamination-
based obsessive–compulsive symptoms: Stronger response urgency to disgusting
stimuli in disgust-prone individuals. Frontiers in psychiatry, 12. Cited on page 11.

[32] Fischer, S. R. (2003). History of writing. Reaktion books. Cited on page 15.

[33] Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimen-
tally confirmed mathematical model. Journal of neuroscience, 5(7):1688–1703. Cited on
page 21.

[34] Fleischer, M., Mainka, A., Kürbis, S., and Birkholz, P. (2018). How to precisely
measure the volume velocity transfer function of physical vocal tract models by
external excitation. PLOS ONE, 13(3):1–16. Cited on pages 35 and 36.

[35] Fowler, C. A. and Turvey, M. T. (1980). Immediate Compensation in Bite-Block
Speech. Phonetica, 37(5-6):306–326. Publisher: Karger Publishers. Cited on page 21.

[36] French, N. R. and Steinberg, J. C. (1947). Factors governing the intelligibility of
speech sounds. The journal of the Acoustical society of America, 19(1):90–119. Cited on
page 39.

[37] Gahl, S. (2008). Time and thyme are not homophones: The effect of lemma frequency
on word durations in spontaneous speech. Language, 84(3):474–496. Cited on pages 23
and 56.

[38] Gao, Y. (2021). Articulatory copy synthesis based on the speech synthesizer
vocaltractlab. Cited on page 37.

149

Bibliography

[39] Gao, Y., Stone, S., and Birkholz, P. (2019). Articulatory copy synthesis based on a
genetic algorithm. In INTERSPEECH, pages 3770–3774. Cited on page 133.

[40] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, T. (2018). Learning
word vectors for 157 languages. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC 2018). Cited on pages 19 and 49.

[41] Greenberg, S. (1999). Speaking in shorthand - A syllable-centric perspective for
understanding pronunciation variation. Speech Communication, 29:159–176. Cited on
page 16.

[42] Grotlüschen, A., Buddeberg, K., Dutz, G., Heilmann, L. M., and Stammer, C. (2021).
Leo 2018 - living with low literacy (public use file). GESIS Data Archive, Cologne.
ZA6266 Data file Version 1.0.0, https://doi.org/10.4232/1.13771. Cited on page 15.

[43] Hanson, H. M. and Stevens, K. N. (2002). A quasiarticulatory approach to controlling
acoustic source parameters in a klatt-type formant synthesizer using hlsyn. The Journal
of the Acoustical Society of America, 112(3):1158–1182. Cited on page 35.

[44] Harley, T. A. (2013). The psychology of language: From data to theory. Psychology press.
Cited on pages 15 and 18.

[45] Hasselhorn, M. and Schneider, W. (2007). Handbuch der Entwicklungspsychologie.
Hogrefe Verlag GmbH & Company KG. Cited on pages 15, 18, 19, and 21.

[46] Hay, J. B., Pierrehumbert, J. B., Walker, A. J., and LaShell, P. (2015). Tracking word
frequency effects through 130 years of sound change. Cognition, 139:83–91. Publisher:
Elsevier. Cited on page 16.

[47] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9:1735–80. Cited on page 81.

[48] Iskarous, K., Goldstein, L., Whalen, D. H., Tiede, M., and Rubin, P. (2003). Casy:
The haskins configurable articulatory synthesizer. In International Congress of Phonetic
Sciences, Barcelona, Spain, pages 185–188. Cited on page 35.

[49] Johnson, K. (2004a). Massive reduction in conversational American English. In
Spontaneous speech: data and analysis. Proceedings of the 1st session of the 10th international
symposium, pages 29–54, Tokyo, Japan. The National International Institute for Japanese
Language. Cited on page 16.

[50] Johnson, K. (2004b). Massive reduction in conversational American English. In
Spontaneous speech: data and analysis. Proceedings of the 1st session of the 10th international
symposium, pages 29–54, Tokyo, Japan. The National International Institute for Japanese
Language. Cited on page 24.

[51] Joo, J., Steen, F. F., and Turner, M. (2017). Red hen lab: Dataset and tools for
multimodal human communication research. KI-Künstliche Intelligenz, 31(4):357–361.
Cited on pages 16 and 58.

150

Bibliography

[52] Kemps, R., Ernestus, M., Schreuder, R., and Baayen, H. (2004). Processing reduced
word forms: The suffix restoration effect. Brain and Language, 90(1-3):117–127. Cited on
page 23.

[53] Keune, K., Ernestus, M., Van Hout, R., and Baayen, R. H. (2005a). Social, geographical,
and register variation in Dutch: From written ‘mogelijk’ to spoken ‘mok’. Corpus
Linguistics and Linguistic Theory, 1:183–223. Cited on page 24.

[54] Keune, K., Ernestus, M., Van Hout, R., and Baayen, R. H. (2005b). Social, geographical,
and register variation in Dutch: From written ‘mogelijk’ to spoken ‘mok’. Corpus
Linguistics and Linguistic Theory, 1:183–223. Cited on page 56.

[55] Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd
International Conference for Learning Representations, abs/1412.6980. Cited on pages 75
and 76.

[56] Klimaj, Z. and Makarski, W. (1969). Językoznawstwo w katolickim uniwersytecie
lubelskim. Roczniki Humanistyczne, 17(1):79–99. Cited on page 22.

[57] Krug, P. K., Birkholz, P., Gerazov, B., van Niekerk, D. R., Xu, A., and Xu, Y. (2022).
Efficient exploration of articulatory dimensions. Studientexte zur Sprachkommunikation:
Elektronische Sprachsignalverarbeitung, 2022:51–58. Cited on page 136.

[58] Landauer, T. and Dumais, S. (1997). A Solution to Plato’s Problem: The Latent
Semantic Analysis Theory of Acquisition, Induction and Representation of Knowledge.
Psychological Review, 104(2):211–240. Cited on page 15.

[59] Linke, M. and Ramscar, M. (2020). How the Probabilistic Structure of Grammatical
Context Shapes Speech. Entropy, 22(1):90. Publisher: Multidisciplinary Digital
Publishing Institute. Cited on page 16.

[60] Loeb, G. E., Brown, I. E., and Cheng, E. J. (1999). A hierarchical foundation for
models of sensorimotor control. Experimental brain research, 126:1–18. Cited on page 21.

[61] Lohmann, A. (2018). Time and thyme are not homophones: A closer look at Gahl’s
work on the lemma-frequency effect, including a reanalysis. Language, 94(2):e180–e190.
Cited on page 23.

[62] Maeda, S. (1990). Compensatory articulation during speech: Evidence from the
analysis and synthesis of vocal-tract shapes using an articulatory model. In Speech
production and speech modelling, pages 131–149. Springer. Cited on page 35.

[63] McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., and Sonderegger, M. (2017). Mon-
treal forced aligner: Trainable text-speech alignment using kaldi. In INTERSPEECH.
Cited on page 59.

[64] McInnes, L., Healy, J., and Melville, J. (2020). Umap: Uniform manifold approxima-
tion and projection for dimension reduction. Cited on page 92.

151

Bibliography

[65] Murakami, M., Kröger, B., Birkholz, P., and Triesch, J. (2015). Seeing [u] aids vocal
learning: Babbling and imitation of vowels using a 3d vocal tract model, reinforcement
learning, and reservoir computing. In 2015 joint IEEE international conference on
development and learning and epigenetic robotics (ICDL-EpiRob), pages 208–213. IEEE.
Cited on page 27.

[66] Nam, H., Goldstein, L., Saltzman, E., and Byrd, D. (2004). Tada: An enhanced,
portable task dynamics model in matlab. The Journal of the Acoustical Society of America,
115(5):2430–2430. Cited on pages 15 and 35.

[67] Norris, D. and McQueen, J. M. (2008). Shortlist B: a Bayesian model of continuous
speech recognition. Psychological review, 115(2):357. Cited on page 23.

[68] Otte, S., Schmitt, T., Friston, K., and Butz, M. V. (2017). Inferring adaptive goal-
directed behavior within recurrent neural networks. In International Conference on
Artificial Neural Networks, pages 227–235. Springer. Cited on page 20.

[69] Parrell, B., Ramanarayanan, V., Nagarajan, S., and Houde, J. (2019). The FACTS
model of speech motor control: Fusing state estimation and task-based control. PLoS
computational biology, 15(9):e1007321. Cited on pages 17, 35, and 133.

[70] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc. Cited on page 78.

[71] Philippsen, A. (2021). Goal-directed exploration for learning vowels and syllables:
a computational model of speech acquisition. KI-Künstliche Intelligenz, 35(1):53–70.
Cited on page 136.

[72] Philippsen, A. K. (2018). Learning How to Speak. Goal Space Exploration for Articulatory
Skill Acquisition. PhD thesis, Bielefeld: Universität Bielefeld. Cited on pages 20 and 27.

[73] Philippsen, A. K., Reinhart, R. F., and Wrede, B. (2016). Goal babbling of acoustic-
articulatory models with adaptive exploration noise. In 2016 Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages
72–78. IEEE. Cited on page 27.

[74] Plag, I. (2018). Word-formation in English. Cambridge University Press. Cited on
page 15.

[75] Port, R. F. and Leary, A. P. (2005). Against formal phonology. Language, 81:927–964.
Cited on page 24.

152

Bibliography

[76] Reetz, H. and Jongman, A. (2011). Phonetics: Transcription, Production, Acoustics, and
Perception. John Wiley & Sons. Cited on page 16.

[77] Saltzman, E. and Byrd, D. (2000). Task-dynamics of gestural timing: Phase windows
and multifrequency rhythms. Human Movement Science, 19(4):499–526. Cited on page 20.

[78] Sapir, E. (1921). An introduction to the study of speech. Language, 1. Cited on page 15.

[79] Schmager, P. (2017). http://www.vocaltractlab.de/index.php?page=targetoptimizer-
about. Cited on page 56.

[80] Schmidt-Barbo, P. (2021). Using semantic embeddings to start and plan articulatory
speech synthesis. Cited on page 100.

[81] Schmidt-Barbo, P., Otte, S., Butz, M. V., Baayen, R. H., and Sering, K. (2022).
Using semantic embeddings for initiating and planning articulatory speech synthesis.
Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2022, pages
32–42. Cited on page 11.

[82] Schmidt-Barbo, P., Shafaei-Bajestan, E., and Sering, K. (2021). Predictive articulatory
speech synthesis with semantic discrimination. Studientexte zur Sprachkommunikation:
Elektronische Sprachsignalverarbeitung 2021, pages 177–184. Cited on page 11.

[83] Schneider, W. and Lindenberger, U. (2018). Entwicklungspsychologie. Beltz. Cited on
pages 15, 18, 19, and 21.

[84] Schweitzer, A. and Lewandowski, N. (2013). Convergence of articulation rate in
spontaneous speech. In INTERSPEECH, pages 525–529. Cited on page 56.

[85] Sering, K. (2016). Listen and speak: Training a vocal tract synthesis model using
natural speech. first ideas and problems. Alberta Phonetics Laboratory, Edminton,
Canada. Cited on page 10.

[86] Sering, K. (2019a). Learning vocal tract control parameters to synthesize speech.
Neural Information Processing Group, Tübingen, Germany. Cited on page 11.

[87] Sering, K. (2019b). Learning vocal tract control parameters to synthesize speech.
MoProc Workshop, Tübingen, Germany. Cited on page 11.

[88] Sering, K. (2021). Predictive articulatory speech synthesis utilizing lexical embed-
dings (paule). Spoken Morphology Colloquium, Düsseldorf, Germany. Cited on
page 11.

[89] Sering, K. (2022). Predictive articulatory speech synthesis utilizing lexical embed-
dings (paule). Neural Information Processing Group, Tübingen, Germany. Cited on
page 11.

153

Bibliography

[90] Sering, K., Milin, P., and Baayen, R. H. (2018). Language comprehension as a
multi-label classification problem. Statistica Neerlandica, 72(3):339–353. Cited on pages
11, 19, and 49.

[91] Sering, K. and Schmidt-Barbo, P. (2022). Articubench - An articulatory speech
synthesis benchmark. Studientexte zur Sprachkommunikation: Elektronische Sprachsig-
nalverarbeitung 2022, pages 43–50. Cited on pages 11, 61, and 125.

[92] Sering, K. and Schmidt-Barbo, P. (2023). Somatosensory feedback in PAULE.
Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2023, pages
119–126. Cited on pages 11 and 134.

[93] Sering, K., Schmidt-Barbo, P., Otte, S., Butz, M. V., and Baayen, H. (2020). Recurrent
gradient-based motor inference for speech resynthesis with a vocal tract simulator. In
12th International Seminar on Speech Production. Cited on pages 11, 86, and 94.

[94] Sering, K., Stehwien, N., Gao, Y., Butz, M. V., and Baayen, H. (2019). Resynthesizing
the geco speech corpus with vocaltractlab. Studientexte zur Sprachkommunikation:
Elektronische Sprachsignalverarbeitung 2019, pages 95–102. Cited on pages 11, 45, and 53.

[95] Sering, K. and Tomaschek, F. (2020). Comparing kec recordings with resynthesized
ema data. Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung
2020, pages 77–84. Cited on pages 11, 45, 60, 86, 94, and 124.

[96] Sering, K., Tomaschek, F., and Saito, M. (2021). Anticipatory coarticulation in predic-
tive articulatory speech modeling. Studientexte zur Sprachkommunikation: Elektronische
Sprachsignalverarbeitung 2021, pages 208–215. Cited on pages 11, 61, 121, 122, and 123.

[97] Sering, K., Weitz, M., Künstle, D.-E., and Schneider, L. (2017). Pyndl: Naive
discriminative learning in python. Cited on page 9.

[98] Shafaei-Bajestan, E., Moradipour-Tari, M., Uhrig, P., and Baayen, R. H. (2021).
Ldl-auris: a computational model, grounded in error-driven learning, for the compre-
hension of single spoken words. Language, Cognition and Neuroscience, 0(0):1–28. Cited
on page 51.

[99] Shahmohammadi, H., Heitmeier, M., Shafaei-Bajestan, E., Lensch, H., and Baayen,
H. (2022). Language with vision: a study on grounded word and sentence embeddings.
arXiv preprint arXiv:2206.08823. Cited on page 49.

[100] Shaoul, C., Schilling, N., Bitschnau, S., Arppe, A., Hendrix, P., Sering, K., and
Baayen, R. H. (2015). Ndl2: Naïve discriminative learning. Cited on page 9.

[101] Shcherba, L. (1993). Russian vowels in qualitative and quantitative respects. Journal
of Voice, 7(3):270–290. Cited on page 22.

[102] Steiner, I., Tomaschek, F., Bolkart, T., Hewer, A., Wuhrer, S., and Sering, K. (2018).
Head and tongue model: Simultaneous dynamic 3d face scanning and articulography.
Simphon.net Meeting, Stuttgart, Germany. Cited on page 11.

154

Bibliography

[103] Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale for the measurement
of the psychological magnitude pitch. The journal of the acoustical society of america,
8(3):185–190. Cited on page 31.

[104] Story, B. H. (2011). Tubetalker: An airway modulation model of human sound
production. In Proceedings of the First International Workshop on Performative Speech and
Singing Synthesis, pages 1–8. P3S 2011, Vancouver, Canada. Cited on pages 15, 33, and 35.

[105] Strunk, J., Schiel, F., Seifart, F., et al. (2014). Untrained forced alignment of
transcriptions and audio for language documentation corpora using webmaus. In
LREC, pages 3940–3947. Cited on page 16.

[106] Tomaschek, F., Arnold, D., Broeker, F., and Baayen, R. H. (2018a). Lexical frequency
co-determines the speed-curvature relation in articulation. Journal of Phonetics, 68:103–
116. Cited on page 22.

[107] Tomaschek, F., Arnold, D., Sering, K., and Strauss, F. (2021). A corpus of schlieren
photography of speech production: potential methodology to study aerodynamics of
labial, nasal and vocalic processes. Language Resources and Evaluation, 55(4):1127–1140.
Cited on pages 10 and 11.

[108] Tomaschek, F., Arnold, D., Sering, K., Tucker, B. V., van Rij, J., and Ramscar, M.
(2020). Articulatory variability is reduced by repetition and predictability. Language
and speech. Cited on pages 11 and 22.

[109] Tomaschek, F., Tucker, B. V., Fasiolo, M., and Baayen, R. H. (2018b). Practice makes
perfect: the consequences of lexical proficiency for articulation. Linguistics Vanguard,
4(s2):1–13. Cited on page 22.

[110] Tourville, J. A. and Guenther, F. H. (2011). The DIVA model: A neural theory of
speech acquisition and production. Language and cognitive processes, 26(7):952–981.
Cited on pages 15, 17, 20, 35, and 133.

[111] Trubetskoy, N. S. (1939). Grundzüge der phonologie. Van den Hoeck & Ruprecht.
Cited on page 22.

[112] Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., and Sims,
M. (2019). The massive auditory lexical decision (MALD) database. Behavior research
methods, 51(3):1187–1204. Cited on page 16.

[113] Umesh, S., Cohen, L., and Nelson, D. (1999). Fitting the mel scale. In 1999 IEEE
International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99
(Cat. No. 99CH36258), volume 1, pages 217–220. IEEE. Cited on page 31.

[114] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative
model for raw audio. Cited on pages 15, 24, and 35.

155

Bibliography

[115] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30. Cited on page 83.

[116] Wagner, P., Trouvain, J., and Zimmerer, F. (2015). In defense of stylistic diversity in
speech research. Journal of Phonetics, 48:1–12. Cited on page 16.

[117] Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao,
Y., Chen, Z., Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R., and Saurous, R. A.
(2017). Tacotron: Towards end-to-end speech synthesis. Cited on pages 24 and 35.

[118] Zipf, G. K. (1935). The Psycho-Biology of Language. Houghton Mifflin, Boston. Cited
on page 53.

156

	Introduction
	Guiding principles
	The word is the smallest meaningful unit
	Meaning is start and end of speech production
	Speech production is goal directed
	Speech production is adaptive and error driven
	Speech production is learned behavior
	Articulation is influenced by experience
	Sublexical units like the phoneme are not necessary (no phonemes)
	Gestural scores or movement targets are not necessary (no gestures)
	The model should be as simple as possible, while still being able to model some main features of human behavior
	Using time-series to time-series and time-series to fixed-vector models

	Human speech system
	The human ear
	Goal of the thesis
	Thesis overview

	Articulatory speech synthesis
	Short history of speech synthesis
	VocalTractLab (VTL)

	Data structures
	Control parameter (cp)-trajectories
	Initial cp-trajectories
	Planned cp-trajectories
	Segment-based cp-trajectories

	Acoustic representation
	Target acoustics
	Predicted acoustics
	Produced acoustics

	Semantic (lexical) embeddings
	Target semantics
	Predicted semantics
	Produced semantics

	Data sets
	Segment-based Synthesis and the GECO corpus
	Montreal Forced Aligner (MFA) and Mozilla Common Voice
	Electromagnetic Articulography (EMA) and the Karl-Eberhard Corpus (KEC)
	Ultrasound recordings and /babibabubaba/

	PAULE
	Journey to PAULE
	Planning
	Initialization
	Internal loop
	Outer loop

	Theory
	Autograd & gradient-aware models
	Long-Short-Term-Memory (LSTM)

	Individual component models
	Predictive forward model
	Embedder
	Inverse model
	Cp-GAN & mel-GAN

	Baseline models
	Schwa-model
	PAULEmlp
	LSTM instead of GAN

	Results
	Loss reduction & classification accuracies
	Conditioning on past cp-trajectories
	Anticipatory coarticulation
	Mid-sagittal ultrasound data
	EMA data
	Articubench
	Results for tiny data set

	Environmental costs

	Discussion
	Guiding principles
	Comparison DIVA and FACTS
	Future work
	Conclusion

	Abbreviations

