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“From this point forth, we shall be leaving the firm foundation of fact and journeying 

together through the murky marshes of memory into thickets of wildest guesswork.” 

-  J.K. Rowling, Harry Potter and the Half-Blood Prince 

 

 



 



 

 

Popular science summary of the thesis 
Cells are the building block of the human body. Cells contain DNA, which can be 

compared to an instruction manual. This manual is written using four letters called bases—A, 

C, T, and G—and combined they instruct the cell what products to make. Cells all have their 

own distinct function, comparable to using different chapters in the manual. Cells with the 

same function are organized into tissues and different tissues are assembled into complex 

organs. Much like complex organs, tumours are also built from billions of cells with unique 

functions. To further complicate things, no two tumours are identical, and this concept is what 

we call tumour heterogeneity and makes studying tumours very challenging.  

In this thesis, I investigated three levels of tumour heterogeneity. Namely, 1) the 

differences that are present between multiple tumours between patients, called inter-patient 

heterogeneity; 2) the differences between multiple tumours from the same patient, for example 

a primary tumour that has metastasized and formed a new tumour elsewhere in the body, 

called intra-patient heterogeneity; and 3) cells within one tumour are not identical but can be 

very different from each other and this is what we call intra-tumour heterogeneity. 

There are multiple ways to extract information about tumour heterogeneity. In this 

thesis we (or others before us) have taken a piece of tumour that consists of millions of tumour 

cells, we then take out and read the DNA (or instruction manual) of these tumour cells. Next, 

we compare the DNA to the DNA of healthy cells and identify regions that are different and we 

call these differences mutations or alterations. Tumour cells can have thousands of these 

mutations. Commonly, a mutation or alteration only affects one or a few bases, but sometimes 

large stretches of DNA are doubled or lost, and we call this a copy number alteration. 

Conveniently, the three papers that form this thesis study the three levels of tumour 

heterogeneity. Paper I investigated inter-patient heterogeneity using a database of over 

20.000 tumours that originate from 32 different cancer types. we compared the number, 

length, and distribution of copy number alterations from these tumours and found that tumours 

between patients, even within the same cancer type, are highly heterogeneous. Paper II 

investigated intra-patient heterogeneity. We took tumour samples from 51 patients that were 



diagnosed with lung cancer that has spread to the brain. We then studied the differences 

between the lung tumour and brain tumour. Even though the brain tumour originated from the 

lung tumour, we observed clear differences between them. We identified mutations that are 

potentially driving the formation of the brain tumour, which is crucial to improve treatments for 

future patients. Finally, in Paper III we investigated intra-tumour heterogeneity in prostate 

cancer. We obtained two prostates from patients that were diagnosed with prostate cancer, 

and, across the entire prostate, we read out the DNA of individual cells. We then compared 

cells across the prostate to each other. We found that the cells within the tumour had very 

specific copy number alterations. Interestingly, we also found that cells outside the tumour, in 

healthy looking prostate tissue, had a lot of copy number alterations. Indicating that there is 

likely an underlying process that induces mutations that is present in the entire prostate, not 

only in the tumour region. 

Taken together, with this thesis, I have contributed to advancing our understanding of 

inter-patient, intra-patient, and intra-tumour heterogeneity. 

 

  



 

 

Nederlandse samenvatting voor niet-ingewijden 
Cellen vormen de bouwstenen van het menselijk lichaam. Cellen bevatten DNA, dat 

vergeleken kan worden met een handleiding. Deze handleiding is geschreven in vier letters, 

de basen—A, C, T en G—en samen vertellen ze de cel welke producten ze moeten maken. 

Cellen hebben allemaal hun eigen specifieke functie, vergelijkbaar met het gebruiken van 

verschillende hoofdstukken uit de handleiding. Cellen met dezelfde functies worden 

georganiseerd in weefsels en weefsels vormen samen complexe organen. Net zoals organen 

zijn tumoren ook opgebouwd uit miljarden cellen met unieke functies. Om het nog 

ingewikkelder te maken, zijn geen twee tumoren identiek, dit concept noemen we tumor 

heterogeniteit en maakt het bestuderen van tumoren erg ingewikkeld. 

In dit proefschrift heb ik drie niveaus van tumor heterogeniteit onderzocht. Namelijk, 1) 

de verschillen die aanwezig zijn tussen patiënten en dit noemen we inter-patiënt 

heterogeniteit; 2) de verschillen tussen meerdere tumoren van dezelfde patiënt, bijvoorbeeld 

een primaire tumor die is uitgezaaid en een nieuwe tumor heeft gevormd elders in het lichaam, 

dit noemen we intra-patiënt heterogeniteit; en 3) cellen binnen één tumor zijn niet identiek 

maar kunnen zeer verschillend zijn van elkaar en dit noemen we intra-tumor heterogeniteit. 

Er zijn meerdere manieren om informatie te verkrijgen over tumorheterogeniteit. In 

deze scriptie nemen wij (of anderen voor ons) een stukje tumor dat bestaat uit miljoenen 

tumorcellen van een patiënt. Vervolgens halen wij hier het DNA (of de handleiding) uit en lezen 

wij dit uit. Daarna vergelijken wij het DNA uit de tumorcellen met het DNA uit normale cellen 

en identificeren we verschillen tussen de twee, deze verschillend noemen we mutaties. 

Tumorcellen kunnen duizenden mutaties hebben en meestal beïnvloedt een mutatie slechts 

één of een paar basen. Maar het komt ook voor dat grote stukken DNA verdubbeld worden of 

verloren gaan, dit noemen we een mutaties in het aantal kopieën van DNA.  

De drie artikelen die dit proefschrift vormen bestuderen de drie niveaus van tumor 

heterogeniteit. Artikel I onderzocht inter-patiënt heterogeniteit met behulp van een database 

van meer dan 20.000 tumoren die afkomstig zijn van 32 verschillende soorten kanker. Wij 

vergeleken het aantal, de lengte en de verdeling van mutaties in het aantal kopieën van DNA 

van deze tumoren en op basis hiervan ontdekten wij dat tumoren van verschillende patiënten, 



zelfs van dezelfde kankersoort, erg verschillend zijn. In Artikel II onderzochten wij intra-patiënt 

heterogeniteit. We namen tumormonsters van 51 patiënten die gediagnosticeerd waren met 

longkanker dat zich naar de hersenen had verspreid. Vervolgens bestudeerden wij de 

verschillen tussen de longtumor en de hersentumor. Ondanks dat de hersentumor afkomstig 

was van de longtumor, observeerden wij duidelijke verschillen tussen de twee. Daarna 

identificeerde wij mutaties die mogelijk verantwoordelijk zijn voor de formatie van de 

hersentumor. Dit is cruciaal om in de toekomst deze patiënten beter te kunnen behandelen. 

Ten slotte, in Artikel III hebben wij de intra-tumor heterogeniteit in prostaatkanker onderzocht. 

Wij verkregen twee prostaten van patiënten die gediagnosticeerd waren met prostaatkanker 

en, over de gehele prostaat, lazen we het DNA in individuele cellen uit. Vervolgens vergeleken 

we deze cellen met elkaar. Wij ontdekten dat de cellen in de tumor zeer specifieke mutaties 

in het aantal kopieën van DNA had.  Interessant genoeg ontdekten wij ook dat cellen buiten 

de tumor, in ‘gezond’ prostaatweefsel, ook veel mutaties hadden. Dit duidt erop dat er 

waarschijnlijk een onderliggend proces aanwezig is in de gehele prostaat dat mutaties 

veroorzaakt. 

Samenvattend heb ik met dit proefschrift bijgedragen aan het verbeteren van onze 

kennis over inter-patiënt, intra-patiënt en intra-tumor heterogeniteit. 

 

 

 

 

 

  



 

 

Abstract 
Tumours do not consist of a single homogeneous population but are complex 

heterogeneous systems that contain billions of ever-evolving cells with no two tumours being 

the same. Tumour heterogeneity is present at three levels, 1) inter-patient heterogeneity; 2) 

intra-patient heterogeneity; and 3) intra-tumour heterogeneity (ITH). Understanding all levels 

of heterogeneity is crucial for patient prognosis and treatment choice. To this end, we aimed 

to improve our understanding of all three levels of tumour heterogeneity. 

In paper I we investigated the prevalence, type, length, and genomic distribution of 

853.218 somatic copy number alterations (SCNAs) across 20.249 tumours belonging to 32 

cancer types. Based on the 1) number of SCNAs; 2) percentage of the genome altered; and 

3) average SCNA size, we found high levels of inter-patient heterogeneity, both between and 

within cancer types. We found that specific chromosomes were preferentially lost or gained 

depending on cancer type. Lastly, we detected co-alterations of key oncogenes and TSGs. 

Taken together, we provided a comprehensive analysis on SCNAs across many cancer types 

as a valuable resource for the community. 

In paper II we sought to elucidate intra-patient heterogeneity in non-small cell lung 

cancer (NSCLC) and their matched brain metastasis (BM). We performed shallow whole-

genome sequencing (WGS) on 51 primary NSCLC and matched BM, whole exome 

sequencing on 40 of the pairs, multi-region sequencing of 15 BMs, and shallow WGS on an 

additional cohort of 115 BMs. We showed that there is significant intra-patient heterogeneity 

at the SCNA level, with BM samples showing, on average, more SCNAs compared to their 

matched NSCLC. In contrast, multi-region sequencing of 15 BMs did not show significant ITH 

at the level of SCNAs. Finally, we identified putative metastatic driver SCNAs and single-

nucleotide variants in key tumour suppressor genes (TSGs) and oncogenes.  

In paper III we aimed to assess the level of ITH in early localized prostate cancer. We 

performed organ-wide, multi-region, single-cell DNA sequencing on two prostate midsections. 

We found transient chromosomal instability (CIN) both in tumour and normal prostate tissue, 

evidenced by a large number of cells with unique chromosomal (arm) losses and or gains. 

Furthermore, we found three distinct groups of cells within the prostate: 1) diploid cells; 2) 



pseudo-diploid cells; and 3) monster cells. We observed an enrichment of diploid cells in 

normal regions and pseudo-diploid cells in tumour-rich regions, while monster cells were 

equally distributed over the entire prostate, again suggesting that there were elevated CIN 

levels across the prostate. Lastly, we detected highly localized subclones that were exclusive 

to tumour-rich regions and harboured deletions in TSGs that are known to be frequently 

deleted in prostate cancer.  

Taken together, with this thesis, I have contributed to advance the understanding of 

inter-patient, intra-patient, and intra-tumour heterogeneity. 
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1 INTRODUCTION 

1.1 Defining a tumour cell 

1.1.1 Hallmarks of cancer 

In 2000, Hanahan and Weinberg published the first iteration of ‘The hallmarks of 

Cancer’, outlining six functional capabilities that cancer cells typically acquire during their 

evolution1: 1) evading apoptosis; 2) self-sufficiency in growth signals; 3) insensitivity to anti-

growth signals; 4) sustained angiogenesis; 5) limitless replicative potential; and 6) tissue 

invasion and metastasis. Eleven years later, the same authors extended this framework in 

‘The hallmarks of cancer: ‘The next generation’2, introducing two additional hallmarks of 

cancer and two enabling characteristics of cancer cells. They hypothesized that besides the 

original six hallmarks, cancer cells must also deregulate their cellular energetics and be able 

to avoid immune destruction. Furthermore, they introduced two enabling characteristics, 

genome instability and tumour-promoting inflammation, which help tumours to achieve the, 

now eight, hallmarks of cancer. Recently, Hanahan described two additional hallmarks—

unlocking phenotypic plasticity and senescence—and two enabling characteristics—non-

mutational epigenetic reprogramming and polymorphic microbiomes (Fig. 1)3.  

Figure 1. Hallmarks of Cancer: New Dimensions. Image from Hanahan, Cancer Discov. 20223 
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 There are many different types of alterations a cell can undergo to achieve the 

functional capabilities that transform it into a tumour cell. These alterations can be genetic, 

such as single-nucleotide variants (SNVs), multi-nucleotide variants (MNVs), translocations, 

small insertions and deletions (indels), inversions, and copy number variants (CNVs)4–6. 

Additionally, cells can acquire epigenetic alterations, for example alterations in their levels of 

DNA methylation, histone modifications, and nucleosome remodelling7. In the following 

sections, I will go over the different alterations, briefly explaining their nomenclature, 

mechanisms, and effects.  

1.1.2 Genetic variations 

Genetic alterations can be broadly divided into two groups, small variants and large 

(structural) variants. One of the most studied types of small variants are SNVs, which are 

alterations where one base in the genome is inserted, deleted or substituted by another base8. 

SNVs are further classified based on the functional consequences of the substitution. First, 

we can classify SNVs based on their location in the genome. SNVs that are in non-coding 

regions in the genome are classified as non-coding SNVs9. Even though they are not affecting 

a protein-coding gene directly, they can still affect regulatory regions, potentially resulting in a 

phenotypic effect. SNVs in coding regions can be further classified into synonymous (or 

silent) and non-synonymous variants. Synonymous substitutions do not result in a change 

of amino acid upon transcription, while non-synonymous substitutions result in a change of 

amino acid. Finally, there are many ways to further classify non-synonymous SNVs, but the 

most common classifications are: 1) missense SNVs: base substitutions that are present in 

exons of genes and lead to a change in amino acid, potentially resulting in altered protein 

function; 2) nonsense SNVs: substitutions that result in a premature stop codon; and 3) 

frameshift SNVs: alterations where one or multiple bases are deleted or inserted, resulting in 

a shift of the reading frame10. 

 Small variants that involve two or more bases are either MNVs or indels. In terms 

of annotation, MNVs are very similar to SNVs. However, in contrast to SNVs, which affect one 

base, MNVs are substitutions, insertions or deletions within the same codon on the same 
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haplotype that affect two or more bases11. Indels are small variants that typically entail the 

insertion or deletion of 1 to 20 base pairs (bp), although they can occasionally extend to as 

much as 10.000 bp12. 

Inversions, translocations, and CNVs are all subclasses of structural variants (SVs) 

and influence the (local) structure of the genome (Fig. 2)5. Inversions reverse a segment of 

DNA, potentially disrupting gene structure or, in the case of large inversions, they can result 

in the formation of gene fusions or the relocation of regulatory regions13. Translocations are 

defined by a segment of DNA that is moved from its original location to a different genomic 

position, either on the same or on a different chromosome. Finally, CNVs are defined as 

segments of DNA larger than 10.000 bp that are either lost or gained. Important to note, the 

size threshold between indels and CNVs has been differently defined over the years, however, 

here we will use 10.000 bp (or 10 kilobase (kb)) as the lower threshold for CNVs. Furthermore, 

the loss or gain of entire chromosomes or chromosome arms is known as aneuploidy14. Finally, 

in the context of somatic occurrences, such as in tumour cells, CNVs are referred to as copy 

number alterations (CNAs) instead.  

Figure 2. Types of structural variants. A) representation of a deletion as seen in sequencing data. B-E) 
Same as A) but for duplication, translocation, insertion, and inversion, respectively. Image adapted from 
Weischenfeldt, et al., Nat Rev Genet. 20135 
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The phenotypic effect of the abovementioned alterations varies greatly. For 

example, while one tumour cell can have hundreds or in some cases thousands of SNVs, only 

a small fraction of those may have a phenotypic effect. In contrast, gains or losses of large 

genomic regions occur less frequently but, due to the potential involvement of numerous 

genes, have a direct phenotypic effect5,15. 

1.1.3 Epigenetic variations 

In addition to genetic variants, which directly affect the content, structure, or 

amount of DNA, epigenetic variants alter gene regulation without directly affecting the DNA 

sequence. Various epigenetic processes, such as DNA methylation, histone modification, and 

chromatin remodelling, contribute to the dynamic regulation of genes7,16–18.  

DNA methylation is maintained by a family of DNA methyltransferases (DNMTs) and 

a family of Ten-Eleven Translocations (TET) enzymes. DNMTs are responsible for the 

maintenance and addition of methyl groups to cytosine residues while TET enzymes remove 

methylation marks17,19. Generally, with some exceptions, DNA methylation results in 

repression of gene expression17. Therefore, alterations in these mechanisms, resulting in 

hypo- or hypermethylation of genes, can induce significant phenotypic changes. For example, 

global hypomethylation in combination with gene-specific hypermethylation is commonly seen 

in cancer20–23. 

Histone modifications, another facet of epigenetic regulation, are also frequently 

altered in cancer17. Histones can have different modifications, some associated with active 

transcription and others with transcription repression. Many different enzymes are responsible 

for the ‘writing’ or ‘erasing’ of these modifications, and alterations in these enzymes can result 

in abnormal gene regulation24. For example, overexpression of SETD1B, a gene responsible 

for the writing/deposition of histone H3 lysine 9 methylation, has shown to result in increases 

in H3K9me3 at the NOS2 promoter, increasing NOS2 expression25. In turn, overexpression of 

NOS2 has been associated with cancer progression and poor clinical outcome26. 

Chromatin remodelling, a critical process implicated in the progression of many 

cancers, involves altering the (local) structure of chromatin by changing histone modifications 
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or by ATP-dependent moving, ejecting or restructuring of histones18. Specific chromatin 

remodelling complexes, such as the SWI/SNF complex, are frequently mutated in cancer. 

SWI/SNF complexes mediate the nucleosome reorganization, directly affecting the activation 

and repression of genes. For example, ARID1A, which is the largest subunit of the SWI/SNF 

complex, is altered in over 40% of ovarian clear cell carcinomas, while PBRM1, a smaller 

subunit of the SWI/SNF complex, is mutated in ~40% of renal carcinomas, indicating the 

importance of the SWI/SNF complex in these cancers27.  

1.1.4 Formation of indels and copy number alterations 

Having introduced the concept of indels and CNAs in 1.1.2, I will now discuss 

the different mechanisms of indel and CNA formation and the role of chromosomal instability 

in this process. We can broadly separate the mechanisms into three pathways, namely: 1) 

DNA damage repair errors; 2) DNA replication-related errors; and 3) mitotic errors. In the 

section below I will briefly describe each of these mechanisms and give examples of how 

errors in these pathways lead to indels (smaller than 10 kb) or CNAs (larger than 10 kb). 

Changes in sub-chromosomal copy number reshape the (local) genomic 

structure, concatenating genomic regions that previously were not connected to each other28. 

These rearrangements often result from one or more double-stranded breaks (DSBs), induced 

either endogenously or exogenously, which are then incorrectly repaired28. Non-homologous 

end joining (NHEJ) and microhomology-mediated end joining (MMEJ) do not require 

homology to repair DSBs and are known to be erroneous. After erroneous repair, NHEJ and 

MMEJ frequently lead to small 1-4 bp and 5-25 bp deletions, respectively28. In contrast to 

NHEJ and MMEJ, homologous recombination (HR) is thought to be error free. However, in 

few cases it can result in erroneous DSB repair. Briefly, HR repairs DNA damage, including 

DSBs, by using a homologous segment of DNA as template. This homologous segment is 

invaded by either one or both 3’ ends, forming a so-called double holiday junction28. In some 

cases, this initial strand invasion can be misaligned due to micro-homologies near the DSB, 

resulting in unequal crossing and one allele containing a deletion and the other allele 

containing a duplication28.  
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DNA replication is a cellular process that can result in the formation of CNAs when 

replication errors occur and are not properly resolved28. Here, I will highlight two of the 

proposed underlying mechanisms, namely replication slippage and replication fork 

stalling and templating switching. Replication slippage is the process where, during DNA 

replication, the template and newly synthesized strand temporarily dissociate, mis-align, and 

re-anneal. This occurs, most commonly, in regions with repetitive sequences28. While the re-

annealing during replication slippage happens on the same (misaligned) template strand, Lee 

et al. have shown that during replication fork stalling, which can be caused due to DNA 

damage or certain chemicals, it is possible to anneal to another nearby replication fork, 

resulting in duplications of a very specific length (~20kb)29,30. 

While errors during DNA repair and replication contribute to smaller, sub-chromosomal 

arm gains and losses, they do not explain the formation of larger CNAs. Cells that have gains 

or losses of entire chromosomes or chromosome arms and thus do not have a karyotype that 

is a multiple of its normal haploid genome are called aneuploid cells31. This phenomenon is 

extremely common in cancer32–38. Despite being toxic for normal cells, where it induces 

senescence and cell cycle arrest31,39,40, aneuploidy has been associated with more aggressive 

tumours and poor survival in cancer41–45. Aneuploidy can arise from mitotic errors, most 

commonly errors concerning (the number of) centrosomes, kinetochore attachment or defects 

in cohesion, leading to miss-segregation of chromosomes during cell division46. 

1.1.5 Whole-genome duplication 

Having explored the mechanisms that lead to the formation of indels and CNAs, 

we now turn to another related genomic alteration, which is frequently encountered in cancer 

genomes: whole-genome duplication (WGD)47. In WGD, as the name suggests, the entire 

genome of a cell is duplicated, causing a transition from a diploid cell state to a tetraploid cell 

state. Over 30% of all solid tumours experience at least one WGD during their evolution, and 

certain cancer subtypes, such as Testicular Germ Cell Tumours, harbour at least one WGD 

event in 96% of the cases48. 
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There are three known routes through which cells can duplicate their entire genome 

and reach this tetraploid state. 1) Endoreplication. This is defined by cells that replicate their 

DNA during their cell cycle but do not go through mitosis, resulting in a tetraploid state49. 2) 

Abortive cell cycle. This occurs when cells are going through mitosis and have replicated 

their genome but abort their cell cycle. This can be caused, for instance, by mitotic spindle 

dysfunction, cytokinesis failure, or the dissolvement of sister chromatids50. Unlike 

endoreplication, abortive cell cycle is error-driven and not part of normal physiology. 3) Cell 

fusion. The last mechanism that can result in a tetraploid copy number state is cell fusion, 

where two cells fuse together, becoming one cell. Like endoreplication, this occurs during 

normal physiology. For example, muscle cells and osteoclasts both undergo (multiple) cell 

fusion events51,52. However, these events have also been observed in vitro in cancer cells and 

are hypothesized to play a role during tumourigenesis53. Studies have shown that in vitro 

generated cell fusions between two cells, each containing three oncogene mutations, result in 

highly aberrant karyotypes compared to the control cell line harbouring the same oncogenes, 

suggesting that the WGD induces genomic instability54. Furthermore, transplanting the hybrid 

cells in mice induced tumour growth, while the transplantations of both parental cell lines 

individually did not induce tumour growth54. Finally, studies have shown that hybrids between 

cancer cells induce more aggressive tumours and metastatic growth compared to hybrids 

between cancer cell and stromal cells55.  

In a diploid genome, the loss of chromosomes has a severe effect. It creates loss of 

heterozygosity (LOH), resulting in only one unique copy of a genomic segment or gene and 

leaving a permanent scar on the genome. However, losses that happen after WGD do not 

result in LOH and are more tolerable due to a phenomenon called buffering. By increasing the 

total number of copies of both alleles, the genome generates a buffer to protect itself against 

critical deleterious losses of chromosomes56. Nonetheless, doubling the entire genome has 

severe consequences for a cell. For example, it requires the replications of double the amount 

of DNA and requires an increased nucleus size to cope with the added physical stress of the 

increased total DNA. Furthermore, WGD increases the chance of errors during mitosis, 

resulting in increased genomic instability57. Hence, it has been postulated that chromosome 
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loss following WGD might be a mechanism used by cells to alleviate some of this stress and, 

not surprisingly, this phenomenon is frequently observed in cancer56,58.  

1.1.6 Chromosomal instability 

As outlined in ‘The hallmarks of cancer: the next generation’, genomic instability is a 

fundamental functional capability that a cell must acquire to transform into a cancer cell2. 

Chromosomal instability (CIN) is one aspect of genomic instability and is the phenomenon of 

an increased rate at which a cell gains or losses whole chromosomes or chromosomal arms59. 

It is important to distinguish CIN from aneuploidy—while cells in tumours with high CIN are 

often aneuploid, aneuploidy reflects the state of a cell at a specific time, while CIN describes 

the ongoing dynamic changes of chromosomal gains and losses60.  

Non-cancer cells poorly tolerate aneuploidy and CIN, as evidenced by the lethality 

associated with the gain or loss of a chromosome during development61. Moreover, CIN is 

actively selected against in normal cells62. In stark contrast, many studies have shown that 

CIN occurs in approximately 80% of all human tumours where it is associated with tumour 

progression, metastases, drug resistance and worse disease outcomes34,63–66. Interestingly, 

CIN can have either a tumour promoting or suppressing effect depending on the level of CIN 

and the tissue context67,68. Indeed, clinical studies have shown that intermediate levels of CIN 

result in more aggressive tumours compared to low or high levels of CIN69. These findings 

underscore the complexity of CIN in cancer progression and emphasizes the importance of 

understanding its nuances for therapeutic interventions. 

1.1.7 Signatures of mutational processes 

Understanding the genomic landscape of cancer involves unravelling how mutations 

arise and how environmental factors and tumour type influence the genomic landscape. These 

mutations leave a detectable footprint in the DNA called mutational signatures. Here I will 

discuss two types of mutational signatures, signatures of SNVs and signatures of CNAs. 

In 2012 Nik-Zainal and colleagues introduced the concept of mutational signatures, 

showing that using over 180.000 SNVs from 32 breast cancers they could detect signatures 
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of distinct mutational processes70. One year later, Alexandrov et al. applied this approach 

nearly 5 million SNVs from over 7000 cancers, generating a catalogue of 22 mutational 

signatures71. This catalogue has been further extended to 67 signatures and is now known as 

the Catalogue Of Somatic Mutations In Cancer (COSMIC) and is widely used by researchers 

in cancer genomics72. COSMIC does not only encompass mutational signatures of SNVs but 

also information about specific mutations in cancer related genes, drug screens, drug 

resistance information, and more. Some examples of these signatures are: Single Base 

Substitution (SBS) 4, which has a high number of C to A substitutions, which is associated 

with tobacco smoking and is frequently seen in lung cancer; and SBS 7, which is enriched in 

C to T substitutions, associated to ultra-violet light exposure, and commonly seen in various 

types of skin cancer71.  

More recently, researchers have applied this concept to investigate whether CNAs 

also show different mutational signatures. Indeed, in 2022 two studies showed that this is 

possible. Steele et al. used ~10.000 samples from The Cancer Genome Atlas (TCGA) and 

extracted total copy numbers, size of the CNAs, and heterozygosity status, which led to the 

identification of 21 distinct signatures73. These signatures were associated with, for instance, 

chromothripsis events, WGD status, and LOH status. The same authors also showed that 

signature 17 was associated with homologous recombination deficiency (HRD)73. At the same 

time, Drews et al. used a similar approach on ~8.000 samples from TCGA, but instead of total 

copy numbers, segment size and LOH status, they extracted the copy number change 

between two segments, segment length, number of breakpoints per 10 Megabases (Mb) and 

per chromosome arm, and the length of segment with oscillating copy number stats74. Using 

these features, they were able to extract 17 signatures, including signatures associated to 

HRD, miss-segregation and replication stress74. 

Taken together, these landmark studies have proven that acquired mutations leave 

‘scars’ in the genome that can be detected with next-generation sequencing (NGS) methods. 

These ‘scars’ can in turn inform us on biological mechanisms that are at play during 

tumourigenesis. This knowledge, facilitated by current methods and resources like COSMIC, 
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helps us better understand how tumours evolve and will ultimately lead to more informed 

treatment choices.  

1.2 Tumour heterogeneity 

1.2.1 Inter-patient heterogeneity 

Within the next paragraphs I will discuss three levels of tumour heterogeneity—inter-

patient, intra-patient, and intra-tumour heterogeneity (Fig. 3). I will discuss the differences 

between these terms, the mechanisms involved, and the effect they have on patients.  

Figure 3. Inter-patient, intra-patient and intra-tumour heterogeneity. Image adapted from Fox, et al., 
Nature 201475 
 

Inter-patient heterogeneity is the observation that no tumour of two patients is identical. 

This stems from the (semi-)stochastic mechanisms that underlie mutagenesis. Although each 

tumour is unique, cells need to acquire a very specific set of alterations in key cellular 

pathways to become tumourigenic. Key oncogenes and tumour suppressor genes are often 

mutated. For example, the tumour suppressor gene TP53 is mutated in over 30-50% of 

cancers and the oncogenes PIK3CA and KRAS in 13 and 11% of all cancers, respectively76,77.  

Despite their diverse mutational landscape, tumours can still be categorized into 

subgroups. For instance, we can classify breast cancers into four molecular subtypes: Luminal 

A, Luminal B, HER2-positive, and triple-negative breast cancer78. This classification is based 
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on the expression levels of two hormone receptors and one growth factor: estrogen receptor, 

progesterone receptor, and human epidermal growth factor receptor 2 (HER2). Patients are 

generally treated with treatments targeting these receptors, for example HER2-positive breast 

cancers are often treated with anti-HER2 monoclonal antibodies or small inhibitors79. 

Approximately 50-60% of HER2-positive patients respond to this treatment, leaving 40-50% 

of patients that do not (completely) respond to this treatment even though they are HER2-

positive79. This highlights the inherent heterogeneity within this subgroup and underscores the 

challenges in cancer classification. A better understanding of the heterogeneity between 

tumours and improving our classification would result in better and more personalized 

treatment choices, protecting patients against potential adverse effects of mismatched 

treatments. 

1.2.2 Intra-patient heterogeneity 

As described above, it is well known that no two tumours are the same between 

patients, but how about multiple tumours within the same patient? Patients can, at a given 

time, have multiple tumours. These could be tumours that have developed independently from 

each other or emerge as metastatic lesions.  

In the case of independently developed tumours, similarly to inter-patient 

heterogeneity, each tumour will have a different genetic background. However, environmental 

factors or genetic predisposition, which will be largely identical in this case, can still result in 

similar processes at play during tumourigenesis. Conversely, for tumours that have 

metastasized, one could imagine that the tumours should be similar to each other. Even so, it 

has been shown that the level of heterogeneity between primary and metastatic tumours can 

greatly vary80,81. In some cases, these two may be nearly identical but in other cases the 

metastatic tumour shares nearly no genetic background with the primary tumour80. There are 

multiple hypotheses for this, and I will explain two here. Firstly, a tumour may have 

metastasized very early on during tumourigenesis, and both the primary and metastatic 

tumours were detected late during tumourigenesis. This way, the tumours have potentially had 

many years to acquire new mutations independently from each other, enabling them to evolve 
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along two separate paths80,82. The second hypothesis states that a small, previously 

undetected subgroup of cells within the primary tumour is responsible for the metastasis. While 

these cells were not able to outcompete other cells within the primary tumour environment, 

they were able to metastasize and grow outside of the primary environment80. These two 

scenarios indicate the importance of, whenever possible, examining both the primary tumour 

and potential metastatic tumours, resulting in more informed treatment decisions. 

1.2.3 Intra-tumour heterogeneity 

In the previous section, I briefly touched upon the possible presence of a small group 

of cells within one tumour with the potential to metastasize and form a secondary tumour. 

Tumours rarely consist of just one homogenous group of cells. As early as the 1800s, Rudolf 

Virchow observed that differences exist between tumour cells from the same tumour83. Indeed, 

tumours typically consist of multiple subclones, each with distinct genetic profiles. The 

presence of multiple subclones within one tumour is named intra-tumour heterogeneity (ITH). 

This heterogeneity can be further classified into spatial and temporal ITH. Spatial ITH is 

defined by differences in tumour composition across spatial regions of a tumour at a single 

point in time, while temporal ITH is defined by changes in tumour composition over time.  

The main driving force of ITH is ongoing genomic instability. For instance, CIN can 

induce new genomic alterations at every cell cycle. While many of these alterations will be 

deleterious or may prove deleterious to daughter cells, some confer selective advantages. 

Cells that have acquired these advantageous alterations will subsequently have a proliferative 

advantage over other cells and, depending on the size of this advantage, may fully or partially 

outcompete the rest of the tumour population. The dynamics of how tumours grow—tumour 

evolution—will be discussed later in this thesis. 

ITH is thought to play a pivotal role in the (lack of) response to cancer treatments. 

Studies have consistently demonstrated that increasing levels of ITH correlate with poor 

clinical outcome, relapse, and treatment resistance84–86. Taking our previous example of a 

HER2-positive breast cancer patient, the treatment of choice is anti-HER2 monoclonal 

antibodies or small inhibitors. However, the presence of one or more subclones lacking HER2 
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overexpression, which are likely not sensitive to anti-HER2 treatment, will result in incomplete 

targeting of the tumour and survival of treatment-resistant tumour cells87,88. Moreover, even in 

the absence of treatment resistant-clones, treatment can increase selective pressure on the 

tumour, resulting in rapid tumour evolution and the potential emergence of treatment-resistant 

tumour cells89,90. Taken together, ITH is an important predictor of treatment response and 

prognosis and crucial for treatment decision. 

1.3 Reconstructing tumour evolution 

1.3.1 Models of tumour evolution 

Many principles guiding our understanding of tumour evolution are derived from 

population genetics rather than cancer genomics. Before going over the different models of 

tumour evolution, the computational methods of subclonal reconstruction, and inferring tumour 

evolution, it is important to understand the theoretical framework that has been used by 

population geneticists for many years.  

Genetic drift: Genetic drift refers to the random fluctuation of genetic variants in 

a population driven by chance, such as survival and death of individuals91,92. This phenomenon 

is most noticeable in small populations93. For example, taking a group of ten people out of 

which five people have variant X and five have variant Y, if neither of these variants have a 

phenotypic effect, chance events can lead to some individuals producing more offspring, 

resulting in a relative increase in one of the variants and decrease in the other variant. This 

will ultimately lead to a reduction in genetic diversity.  

Natural selection: Unlike genetic drift, natural selection is a non-random 

process where certain genetic variants change over time due to selective pressure92. Due to 

environmental pressure, certain traits become favourable since they affect the fitness (chance 

of survival and/or reproduction) of an individual.  

Mutation rate: The mutation rate is simply the speed at which an individual 

acquires new mutations. Mutation rate varies widely between organisms and is closely linked 

to the level of genetic diversity within a population and how fast populations are able to adapt 
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to environmental pressures through natural selection92. Furthermore, mutation rate can be 

altered due to prior mutations. For example, mutations in MSH2, a gene involved in multiple 

DNA repair pathways, result in tumours with mismatch repair deficiency (MMRd)94. MMRd 

tumours are associated with a high tumour mutation burden—the number of mutations per 

million bases. 

 Currently, there are four models of tumour evolution, each grounded on the 

principles described above: 

Model 1: Linear evolution (Fig. 4A). The model of linear evolution assumes 

that mutations are acquired linearly and that each subsequent mutation in driver genes leads 

to a more malignant cancer stage95. It was hypothesized that, since every subsequent 

mutation leads to a more malignant and proliferative stage of cancer, each step results in a 

selective sweep. During a selective sweep the newly formed clone has a great fitness 

advantage and outcompetes the previous clone, resulting in only one clone being present at 

a time96. Based on this model there should be virtually no ITH when taking a single tumour 

biopsy. However, most studies supporting linear evolution are lacking in the number of 

genomic loci interrogated, hence they potentially miss mutations that are present in subclones 

that did not result in selective sweeps96.  

Model 2: Branching evolution (Fig. 4B). In contrast to linear evolution, 

branching evolution assumes that selective sweeps rarely occur. Instead, subclones expand 

in parallel, leading to multiple subclones being present together at any time96. There have been 

numerous NGS studies on different cancer types supporting this model97–101. Even though all 

these studies have detected multiple subclones present at the same time, there are clear 

differences in the number of subclones detected and the number of shared mutations between 

subclones. However, this could also be explained by differences in sequencing depth, with 

deeper sequencing enabling the detection of more mutations and subclones.  

Model 3: Neutral evolution (Fig. 4C). From many perspectives neutral 

evolution is the opposite of linear evolution. Where linear evolution posits that each 

subsequent mutation leads to a fitness advantage, the neutral evolution model hypothesizes 

that subsequent mutations do not lead to a selective advantage, resulting in extremely high 
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levels of ITH consisting of small subclones. According to this hypothesis, there should be a 

linear relationship between the number of mutations detected in a tumour and the total number 

of subclones. Indeed, in a study performed on 904 tumours from the TCGA consortium, 

Williams et al. found a linear relationship in 35.8% of tumours102. However, studies reporting 

neutral evolution are often performed with low-depth sequencing, potentially missing driver 

mutations.  

Figure 4. Models of tumour evolution (left) and phylogenetic trees (right) from four models of tumour 
evolution. Adapted from Davis, et al., Biochim Biophys Acta Rev Cancer. 201796 
 

Model 4: Punctuated evolution (Fig. 4D). The final model, punctuated evolution, 

hypothesizes that a large number of mutations are acquired in a short burst early in 

tumourigenesis, followed by stable clonal expansion96. During this clonal expansion, relatively 

few new mutations occur. Depending on the time of tumour sampling, it is possible to either 
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detect extremely high levels of ITH (sampling during burst) or relatively low levels of ITH 

(sampling long after the burst).  

Studies have shown that large scale events, such as chromothripsis—a catastrophic 

event resulting in thousands of chromosomal rearrangements and extra-chromosomal 

DNA103—can result in the acquisition of a large number of mutations in a short burst. 

Furthermore, chromothripsis is very common in cancer. For example, chromothripsis is 

present in 100% of malignant peripheral nerve sheath tumours and in over 80% of liver 

adenocarcinomas and breast carcinomas104. 

It is important to note that these four models are not mutually exclusive. Multiple 

models are likely ongoing, either in parallel or consecutively, within the same tumour. 

Furthermore, studies have shown that cells within one tumour can acquire the same mutations 

in key pathways or driver genes independently from each other, a phenomenon called parallel 

evolution97,105–109. This underscores the ongoing role of continuous selective pressure during 

tumourigenesis. 

1.3.2 Methods to study genetic intra-tumour heterogeneity 

Adaptation and selection of tumour cells occur at the phenotypic level. However, 

deconvolution of a tumour transcriptomic profile amid the different transcriptomic profiles of 

non-tumour cells present in the tumour environment is challenging and ITH and evolution are 

difficult to interpret. Therefore, genomic profiling is the primary method to study ITH and 

tumour evolution. Genomic sequencing methods can be broadly divided into bulk and single-

cell methods, each with their own inherent advantages and disadvantages.  

Bulk assays. Bulk assays remain the prevailing choice for detecting mutations and 

inferring tumour evolution and ITH. The three most commonly used bulk assays are targeted 

sequencing using a gene panel, whole-exome sequencing (WES), and whole-genome 

sequencing (WGS). Targeted sequencing typically targets between a dozen and a few 

hundred genes with high coverage (up to 1000x), enabling the detection of mutations that are 

present in only a very small fraction of cells. WES targets the entire exome and has medium 

coverage (100-150x), enabling the detection of mutations in genes not covered by a targeted 
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panel. Finally, whole-genome sequencing typically has the lowest depth of the three assays 

(30-60x) but profiles the entire genome, enabling detection of not only mutations within the 

coding regions of the genome, but also elsewhere. This allows for a more accurate 

reconstruction of tumour evolution using passenger mutations—mutations that do not have a 

phenotypic effect but are greatly informative for the reconstruction of tumour evolution.  

A tumour biopsy consists of millions of cells and bulk sequencing results in an average 

profile across the cell population. However, subclones can still be inferred from bulk data using 

variant allele frequency (VAF)—the fraction of reads containing a certain variant. This 

introduces one of the main limitations of using bulk assays to infer tumour evolution and ITH: 

the issue of sequencing depth. For example, if a sample consists of 100 million cells and the 

sequencing depth is 100x, a heterozygous mutation that is present in 10% of the tumour cells 

will only be covered by five reads (assuming a diploid region). This number drops even further 

depending on tumour purity of the sample, which typically ranges from 5-99%110. As a result, 

smaller subclones often escape detection in bulk assays. Furthermore, highly selective tumour 

subclones that have occurred late in tumour evolution might go undetected too, since they did 

not have the time to proliferate and reach the critical mass required to be detected by bulk 

sequencing. A second disadvantage of bulk sequencing is the illusion of clonality. This illusion 

arises from spatial heterogeneity: a biopsy taken in a region with only one subclone, while the 

rest of the tumour is more heterogeneous, results in an underestimation of ITH levels. Recent 

studies have circumvented this through multi-region sequencing, in which multiple spatially 

separated biopsies are taken from the same tumour. The TRACERx consortium, which 

exemplifies this approach, has performed multi-region sequencing of the primary tumour and 

metastases in hundreds of non-small cell lung cancer tumours, accurately identifying spatial 

ITH111–115. 

Single-cell DNA sequencing. Over the past decade, single-cell sequencing methods 

have gained a lot of traction. Although most of these methods profile the transcriptome or 

epigenome as reviewed elsewhere116,117, many single-cell DNA sequencing (scDNA-seq) 

methods have been developed and have become more commonly used to study ITH and 

tumour evolution, overcoming many limitations inherent to bulk DNA sequencing. Since every 
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cell is sequenced, one can directly assess subclonal identity and accurately infer tumour 

evolution and ITH.  

Traditionally, scDNA-seq methods used whole-genome amplification (WGA) to amplify 

the genome prior to sequencing, to increase the coverage that can be achieved upon 

sequencing. There are multiple WGA methods available, and the most commonly used 

methods are described in Table 1. However, this amplification step can introduce errors and 

result in allelic dropout, which are then both propagated throughout the library preparation and 

ultimately sequencing and analysis118. Recently, due to uneven WGA and errors introduced, 

most scDNA-seq methods have moved away from including a WGA step. The most commonly 

used WGA-free scDNA-seq methods are described in Table 2. Typically, most studies that 

use scDNA-seq, sequence very shallowly. They commonly aim to obtain around 1 million 

reads per cell, which, in the case of single-end 100 bp sequencing, results in genome 

coverage of only ~1%119. As a result, SNV calling from single-cell data is in general very 

challenging and error-prone. Despite this extremely low coverage, CNAs larger than 200 kb - 

1 Mb may be readily identified, depending on the sequencing depth and scDNA-seq method 

used. This enables researchers to infer tumour evolution and ITH based on CNA profiles, as 

has been successfully demonstrated in multiple studies119–123. An alternate approach involves 

performing SNV calling on the merged reads of cells grouped together based on CNA 

profiles121. However, it is crucial to note that, while this strategy allows for SNV calling, the 

initial grouping is performed based on CNAs and hence will not give additional power to detect 

ITH or infer tumour evolution.  Finally, methods have been developed to sequence not only 

DNA, but also RNA from the same cell and WGA-free variants of these are described in Table 

3. This way, it is possible to not only reconstruct tumour composition based on copy number 

profiles, but also directly assess the effect of these alterations on gene expression. In 

summary, while bulk sequencing is widely used, the emerging significance of single-cell DNA 

sequencing is evident, overcoming limitations in detecting ITH and inferring tumour evolution. 
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Table 1. Whole-genome amplification methods. 

DOP-PCR124 Degenerate Oligonucleotide-Primed Polymerase Chain Reaction (DOP-

PCR) has two stages. In the first stage annealing and extension occur at 

many sites in the genome. The second stage amplifies the tagged 

sequences.  

MDA125 Multiple Displacement Amplification (MDA) is a PCR free, isothermal 

strand-displacing amplification.  

MALBAC126 Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) 

combines PCR-based method with MDA, and it uses a pseudo-linear pre-

amplification step to decrease amplification bias. 

LIANTI127 Linear Amplification via Transposon Insertion (LIANTI) is a WGA method 

that combines random fragmentation using transposomes followed by in 

vitro transcription. 

META128 Multiplexed end-tagging amplification is similar to LIANTI and also uses 

transposome-based random fragmentation and amplification. 

META-CS129 Multiplexed end-tagging amplification of complementary strands (META-

CS) is built upon META and using the complementary strand to reduce 

false positives. 

PTA130 Primary Template-directed amplification is, similarly to MDA, an isothermal 

whole-genome amplification method. However, they introduced 

exonuclease-resistant terminators to create smaller amplification products 

to improve amplification. 

 

Table 2. WGA-free single-cell DNA sequencing methods. 

Strand-seq131,132 Strand-seq is a strand-specific scDNA-seq method that revolves around 

incubating live cells with Bromodeoxyuridine for one cell cycle, removing 

the newly synthesized strand using ultra-violet to sequence only the 

template strand. 
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DLP(+)122,133 Direct Library Preparation uses direct tagmentation using the Tn5 

transposase followed by PCR to add sequencing adaptors. The DLP+ 

variant uses a microfluidic setup to scale up the reaction to thousands 

of single cells. 

scKaryo-seq134 This method uses a restriction enzyme (NlaIII) to fragment the genome 

and ligate sequencing adaptors.  

ACT119 Acoustic Cell Tagmentation is, similarly to previously described 

methods, based on using Tn5 transposase to fragment and 

subsequently, use PCR to integrate sequencing adaptors. They have 

scaled down the reaction volumes using a nano dispensing machine. 

 

Table 3. WGA-free single-cell DNA and RNA sequencing methods. 

DNTR-seq121 Direct Nuclear Tagmentation and RNA sequencing (DNTR-seq) is 

performed in 384-well plates and after cell lysis and centrifugation, the 

cytosol is split from the nucleus. RNA-seq is then performed on the 

cytosol using Smart-seq2135 and DNA from the nuclei is sequenced 

using the Tn5-based strategy. 

Simul-seq136 This method performs DNA and RNA sequencing without splitting the 

cytosol from the nuclei. Both DNA and RNA are fragmented using Tn5 

transposase and amplified with DNA and RNA specific adaptors. 

scOne-seq137 Similar to Simul-seq, scOne-seq also performs DNA and RNA 

sequencing without physical splitting of cytosol and nucleus. They 

fragment the DNA and RNA using Tn5 transposase and add DNA and 

RNA specific adaptors using PCR.  

 

1.3.3 Resolving intra-tumour heterogeneity and inferring tumour phylogeny 

The interplay of selection, drift and mutations give rise to genetically related but distinct 

subclones. Detecting these subclones and reconstructing tumour ITH provide valuable 
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insights into tumour evolution. First, I will discuss the principles that underlie commonly used 

subclonal reconstruction methods for bulk DNA sequencing data. Next, I will highlight several 

computational tools that apply these principles to resolve ITH and infer tumour evolution. 

Lastly, I will discuss the principles and computational tools that are commonly used in 

combination with scDNA-seq data. 

Although scDNA-seq has been rapidly improving in quality and cost, bulk WGS is 

currently still the go-to approach for subclonal reconstruction and inferring tumour evolution. 

Ideally, subclonal reconstruction is performed with integrated information from SNVs, indels, 

CNAs, and large SVs. However, since accurate SV calling and classification is still challenging, 

most methods only use SNVs, indels and/or CNAs. 

To perform subclonal reconstruction with SNVs and indels, called Simple Somatic 

Mutations (SSMs), a few steps are required, namely: 1) calling SSMs and CNAs; 2) calculating 

VAF and cancer cell fractions (CCFs) of mutations; 3) clustering cells into subclones; and 

finally, 3) inferring tumour phylogeny. Even though some methods do not use to reconstruct 

the subclonal structure, they are still required to perform accurate reconstruction, as explained 

in the following paragraphs. 

1) Calling SSMs and CNAs. Mutation calling is a crucial step and there are many 

computational tools available to call SSMs and CNAs, each with their own strengths and 

weaknesses. Therefore, the integration of multiple tools contributes to enhance accuracy. For 

example, to call SNVs in the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, 

three different tools—cgpCaVEMan138, samtools139 and Mutect140—were used. Following this, 

a consensus approach was applied, meaning an SNV was accepted when two or more 

methods detected it. Within the same consortium, a similar approach was used to call indels. 

However, calling indels is more challenging, so instead of using a consensus approach a 

logistic regression model141 based on the output of Platypus142, SvABA143 and cgpPindel144 

was used instead. Finally, to accurately call CNAs, six individual callers, namely, 

ABSOLUTE33, Aceseq145, Battenberg99, cloneHD146, JaBbA147 and Sclust148 were used, and 

the output of all six callers was merged as described by Dentro, et al149. 
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The number of different tools to call SSMs and CNAs mentioned above already 

indicates the importance of accurate detection of mutations. Unfortunately, due to the required 

computational expertise and resources, for most research labs it is not possible to call 

mutations as extensively as described above. Therefore, it is important to note that, even with 

the integration of many tools, there will be errors in the final set of mutations and these will be 

propagated in all the subsequent steps of subclonal reconstruction and tumour phylogeny 

inference.  

2) Calculating VAF and CCFs. The next step is calculating the VAF of SSMs. This is 

simply calculated using the reads that support the variant and the reads that support the 

reference allele, Rmut and Rref, respectively. The equation to calculate the VAF of a mutation is 

as follows150:  

𝑉𝐴𝐹 =
𝑅𝑚𝑢𝑡

𝑅𝑚𝑢𝑡 + 𝑅𝑟𝑒𝑓
 (1) 

The first assumption that is made during subclonal reconstruction is that mutations that 

are present in the same fraction of cells belong to the same subclone. The fraction of reads 

supporting a variant, VAF, is a proxy for the number of cells carrying the mutation in the 

sequenced population. Because copy number states can directly affect the VAF, it is not 

possible to cluster SSMs directly based on VAF alone. Subclonal gains or losses, depending 

on whether they contain the variant allele, will result in an increase, or decrease in VAF. 

Comparing VAFs in these regions to VAFs in diploid regions might result in additional clusters 

being incorrectly identified. Therefore, it is important to take copy number states into account 

and calculate the absolute number of mutated DNA copies, called ‘multiplicity’33,151. To 

calculate the multiplicity requires knowing the local copy number N and the purity p of the 

sample, i.e., the fraction of DNA that comes from tumour. The multiplicity m of a mutation can 

then be calculated as follows151: 

𝑚 =  
𝑉𝐴𝐹

𝑝
 (𝑝𝑁 + 2(1 − 𝑝) ) (2) 
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In regions that do not contain a subclonal copy number change, the multiplicity should 

be lower than or equal to 1. Once the VAF and multiplicity are known, it is possible to calculate 

the fraction of cells that carry a mutation, or the Cancer Cell Fraction (CCF), as follows151:  

𝐶𝐶𝐹 =  
𝑉𝐴𝐹

𝑚𝑝
 (𝑝𝑁 + 2(1 − 𝑝) ) (3) 

3) Clustering cells into subclones. Now that the CCF for each mutation has been 

obtained, it is possible to cluster mutations with similar CCFs together into a subclone under 

the assumption that SSMs with similar CCFs belong to the same subclone. However, 

depending on the depth of sequencing, VAFs, and subsequently CCFs for a given mutation 

can fluctuate greatly. As an illustration, in the case of 30x WGS of a tumour, due to changes 

in local sequence depth, some SSMs will only have 10 reads covering a given mutation. In 

this case one fewer or additional read containing the variant allele, will change the VAF by 0.1. 

Instead, in the case of 40 reads, the VAF would only change by 0.025. This highlights the 

importance of high coverage to obtain robust VAF and CCF estimates.  

4) Reconstructing tumour phylogeny. Finally, once tumour subclones have been 

reconstructed, we can infer how the tumour has most likely involved, i.e., the tumour 

phylogeny. There are multiple ways to reconstruct the evolution of a tumour. For example, by 

only looking at CCFs, it is already possible to reconstruct the linear relationship between 

subclones of a tumour using the pigeon-hole principle. This principle relies on the fact that the 

CCFs of two subclones combined can never be larger than the CCF of their parent (sub)clone. 

However, this is not informative for non-linear relationships between subclones and because 

the searching space of possible solutions is large, certain assumptions must be made. A 

common assumption that is used is the infinite sites assumption, which posits that SSMs only 

occur once per base in each tumour, confining the space of potential tumour phylogenies151. 

Furthermore, while most methods assume that mutations arise independently to simplify 

reconstruction, other methods relate features to each other152. Finally, many methods make 

assumptions about the number of subclones or the density of mutations per subclone. For 

example, methods that use a Dirichlet process to identify clusters of mutations with from a 

range of CCFs, always rely on the finetuning of a density parameter153–156. Examples of 
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commonly used tools that can perform subclonal reconstruction and/or phylogeny inference 

based on bulk assays are described in Table 4. 

 

Table 4. Computational methods for subclonal reconstruction and/or phylogeny inference from bulk 
sequencing data.  

THetA157 Tumour Heterogeneity Analysis (THetA) is a method that uses CNAs to 

perform subclonal reconstruction using a probabilistic model to solve the 

maximum likelihood mixture decomposition problem.  

TITAN158 TITAN is a probabilistic model that, similarly to THetA, reconstructs 

subclonal population. However, in contrast to THetA, TITAN uses allele 

specific copy number information. 

SciClone159 SciClone uses SNVs in diploid and non-LOH regions of the genome as input. 

They then use a Bayesian mixture model to cluster VAFs of SNVs. Finally, 

SciClone can take multiple samples as input (e.g., multi-region data) 

Clomial160 The authors have used a generative binomial model to infer subclones from 

SNVs. Similar to SciClone, Clomial is also able to take multiple samples as 

input. However, Clomial does not take local copy number into account. 

PyClone161 PyClone is based on a Bayesian clustering method to group SNVs into 

clusters. Compared to SciClone and Clomial, PyClone uses allele-specific 

copy number information to normalize VAFs. Furthermore, PyClone also 

takes both single-sample information or multi-sample information as input. 

PhyloWGS155 PhyloWGS takes SNVs and allele-specific copy number data as input. It 

corrects VAFs based on allelic copy number and uses both SNVs and CNAs 

to reconstruct subclone and infer tumour phylogeny. 

Canopy162 Canopy has many similarities with PhyloWGS. However, Canopy can 

resolve overlapping CNAs, improving reconstruction in samples where the 

same genomic region has been gained or lost independently from each 

other.  
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FastClone163 FastClone is probabilistic model that, similarly to PhyloWGS and Canopy, 

takes SNVs and CNAs as input and uses both information sources to 

reconstruct subclones and infer tumour phylogeny. Furthermore, it is proven 

to be faster than other methods.  

 

Expanding on the methods discussed for SSMS, the detection of subclones can 

also be achieved through copy number profiles. However, to discuss the current limitations of 

using (only) CNAs to infer tumour evolution, it is important to understand the basic concept of 

copy number calling. I will distinguish two main approaches of copy number calling, namely 1) 

using single-nucleotide polymorphisms (SNPs) and 2) using a binning approach. Within these 

two approaches, there are many computational tools available and although they have clear 

differences in, for example, normalization strategies or inferring integer copy numbers, the 

overall approach is generally similar. 

1) Using a SNP-based approach: this is currently the most popular choice for WGS 

and WES data. In brief, sample-specific heterozygous SNPs are selected and for each SNP 

the read depth is calculated. The read depth is then transformed into a log2 ratio using the 

following formula: 

𝑙𝑜𝑔2 𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔2 (
𝑂

𝐸
) (4) 

where O is the observed number of reads at a specific SNP locus, and E the expected 

number of reads for any SNP locus. While it is possible to directly use the log2 ratio to detect 

copy number alterations, it is impossible to distinguish a normal two copy number state and 

LOH, which can have large implications in tumour evolution. For example, once a gene has 

acquired a mutation, followed by an event resulting in LOH, all remaining copies of the gene 

will have this mutation164. Calculating the B-Allele Frequency (BAF) enables the detection of 

LOH and other imbalanced copy number states. The BAF is calculated according to the same 

formula as described previously for VAFs. To illustrate this, in diploid regions without LOH it is 

expected that half of the reads covering a heterozygous SNP will have the reference allele 

and the other half will contain the non-reference allele, resulting in a BAF of 0.5. However, in 
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LOH regions either all the reads will contain the reference allele, or all the reads contain the 

non-reference allele, resulting in a BAF of 0 or 1 (Fig. 5). Next, the log2 ratio is normalized for 

GC-content165, mappability, and in some cases replication timing. Log2 ratio and BAF tracks 

are then segmented using algorithms such as Circular Binary Segmentation (CBS)166, 

piecewise constant fitting (PCF)167, or Hidden Markov Models (HMMs)168. Finally, using 

different tumour purity and tumour ploidy values, an integer copy number can be inferred33,169. 

2) Using a binning approach: in the case of shallow WGS and scDNA-seq, the 

average read depth at SNP loci is often too low to get robust data, and thus a binning approach 

is often preferable. When using a binning approach, the genome is divided into genomic bins 

of a certain length, for instance 50kb. Then, for each 50kb bin, the total number of reads is 

taken and the log2 ratio is calculated in a similar way as for SNPs. Importantly, the bin size 

should be chosen depending on the sequencing depth of the sample. Lower bin sizes result 

in higher resolution copy number calling but increase overall noise. Besides these so called 

‘fixed-width’ bins, it is also possible to have different bin sizes, called variable-width bins, to 

normalize for mappability. For example, low mappability regions obtain fewer reads compared 

to other regions, thus increasing the bin size of bins covering such regions is a good strategy 

to normalize for this phenomenon. Following this, similarly as previously described, log2 ratios 

can be normalized for GC-content and segmented using CBS, PCF, or HMM.  
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Figure 5. Example of Log2 ratio (A) and BAF track (B) in the case of different clonal and subclonal 
(imbalanced) copy number states. Adapted from Tarabichi, et al., Nat Methods (2021)151 
 

Subclones can be detected during the final step of copy number calling. Genomic loci 

that do not align with an integer copy number suggest the presence of two or more subclones 

with differing copy numbers (Fig. 5). While some tools are also able to calculate the fraction 

of the major clone and subclone—enabling similar phylogenetic reconstruction as described 

for SSMs—the subclonal composition information of copy number data of a single bulk sample 

is very sparse and is typically not enough to accurately reconstruct tumour evolution. 

Therefore, in recent years studies have taken advantage of the possibility to collect multiple 

samples from the same tumour, either spatially separated or at different time points, to obtain 

additional information and improve subclonal reconstruction and phylogeny inference112,170,171. 

Taking it one step further, using scDNA-seq on tumour samples has become more 

popular119,121,122. By providing a direct measurement of each cancer cell individually, scDNA-

seq gives a direct overview of the tumour heterogeneity and subclonal composition and 

enables inferring the tumour phylogeny. Despite the advantages of scDNA-seq, it is important 

to acknowledge the nontrivial nature of calling SSMs. There are multiple tools available that 
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can perform subclonal reconstruction and tumour phylogeny directly from single-cell or multi-

region copy number data as listed in Table 5. 

Table 5. Computational tools for phylogeny inference from multi-region or single cell copy number data. 

SCARLET172 Single-Cell Algorithm for Reconstructing Loss-supported Evolution of 

Tumours (SCARLET) infers tumour phylogeny by integrating SNVs and 

copy number data from scDNA-seq. SCARLET generalizes the infinite 

sites assumption and Dollo model173.  

MEDALT174 Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) uses 

single cell copy number data and infers the tumour phylogeny by 

adapting the Edmond’s algorithm.  

MEDICC2175 Minimum Event Distance for Intra-tumour Copy-number Comparisons 

(MEDICC2), solves the tumour phylogeny problem by calculating the 

minimum number of events required to go from one copy number profile 

to the next, using a finite-state transducer framework. 

CONET176 In contrast to SCARLET, MEDALT, and MEDICC2, Copy Number Event 

Tree (CONET) does not take copy number calls as input but uses 

scDNA-seq data to jointly infer tumour phylogeny and call CNAs 

simultaneously, improving statistical power for both tasks.  
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2 DOCTORAL THESIS 

2.1 Research aims 

Elucidating inter-patient, intra-patient and intra-tumour heterogeneity is critical to 

advance our understanding of cancer prognosis, classification, and treatment. This thesis 

aims to investigate the different facets of tumour heterogeneity. The specific objectives for 

each constituent papers are as follows: 

 

Paper I (inter-patient heterogeneity): 

To delineate the somatic copy number alteration landscape in human cancers, this paper will 

explore the spectrum of inter-patient heterogeneity and aims to investigate the prevalence, 

type, length, and genomic distribution of somatic copy number alterations, and identify co-

alteration patterns of cancer genes. 

 

Paper II (intra-patient heterogeneity): 

This paper seeks to elucidate the differences between primary non-small cell lung cancer 

tumours and their corresponding brain metastasis. The primary objective is to 

comprehensively map the landscape of somatic copy number alterations between primary 

non-small cell lung cancer and metastatic brain tumour, and to identify genes that are 

potentially responsible for driving metastasis. 

 

Paper III (intra-tumour heterogeneity): 

To establish a novel single-cell DNA sequencing method—scCUTseq. Using this method, the 

goal is to construct a spatial single-cell map of intra-tumour heterogeneity in localized prostate 

cancer and surrounding normal tissue. 
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2.2 Materials and methods 

2.2.1 Paper I: Somatic Copy Number Alterations in Human Cancers: An 

Analysis of Publicly Available Data From The Cancer Genome Atlas 

2.2.1.1 Datasets 

Whole-exome sequencing data from The Cancer Genome Atlas (TCGA) was 

downloaded through the GenomicDataCommons (version 1.12.0)177. Datasets were then 

filtered based on whether masked copy number data from the primary tumour was available. 

Finally, to associate clinical data, we translated TCGA barcodes and mapped them to clinical 

features using the R package TCGAutils (version 1.8.1)178.  

2.2.1.2 Analysis 

We called amplifications and deletions using the log2 ratios of the downloaded 

datasets, genomic regions with a log2 ratio higher than 0.32 amplified and genomic regions 

with a log2 ratio below -0.42 as deleted. Next, we classified the alterations based on length: 

1) indels: smaller than 10kb; 2) aneuploidy: at least 75% of chromosomal arm; and 3) somatic 

copy number alterations (SCNAs): all other alterations. 

We computed the percentage of the genome altered and alteration frequency for 

tumour. For chromosomal specific alteration frequency, we normalized the frequency by 

chromosome size. P values between tumour types were calculated using the R function 

wilcox.test() and spearman correlation using the R function cor().  

Next, we computed the length of SCNAs for all the tumours in a subtype and 

chromosome specific chromosome specific, normalizing for chromosome size. Following this, 

we downloaded the COSMIC Cancer Gene Census72 and intersected this list of cancer genes 

with our SCNAs. Finally, we calculated the frequency of co-occuring events between gene 

pairs (i.e., identifying gene pairs that are both amplified/deleted more than by chance). 
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2.2.2 Paper II: Genomic Profiling Identifies Putative Pathogenic Alterations in 

NSCLC Brain Metastases 

2.2.2.1 Samples 

Tumour samples were collected between 2005 and 2015 at the Medical University of 

Lublin and Medical University of Gdansk, Poland, and was approved by the Ethics Committee 

of the Medical University of Lublin, Poland under ethical permit KE-0254/235/2016.  

Discovery Cohort. We collected 51 pairs of archival, formalin-fixed, paraffin-embedded 

(FFPE) non-small cell lung cancer (NSCLC) primary tumours and matches brain metastases 

(BM) originating from surgical specimens and diagnostic biopsies. 33 of the 51 patients were 

diagnosed with having lung adenocarcinoma (LUAD), while 18 patients were diagnosed with 

squamous cell carcinoma (LUSC). Patients were naive to chemo-, immune-, radio-, and 

molecularly targeted therapies at the time of sample collection. BM samples were obtained 

during neurosurgery. For all patients clinical information was, such as, driver mutations, age, 

smoking status, time between primary and metastatic diagnosis, and median survival.  

Validation cohort. We collected 115 BM (originating from NSCLC) that were surgically 

resected at the Medical University of Lublin and Medical University of Gdansk, Poland. Within 

this cohort, 83 patients were diagnosed with LUAD and 32 with LUSC. In contrast to the 

discovery cohort, only age, median survival and median time to BM were available for this 

cohort. 

2.2.2.2 gDNA extraction and sonication 

Two consecutive sections of 4 μm and 8 μm thick were cut from each FFPE block from 

both cohorts. The 4 μm thick section was used for hematoxylin and eosin staining and the 8 

μm thick section was used to extract genomic DNA (gDNA). The QIAmp DNA FFPE Tissue 

Kit (Qiagen, Germany) was used, following the manufacturer’s protocol to extract gDNA. 

Quality and quantity of the gDNA was assessed using a NanoDrop 2000 and Qubit 3.0 

fluorimeter (Thermo Fisher Scientific, Germany). We only retained samples that had a light 

absorption range (A260/A280) between 1.8 and 2.0. Following this, we sheared gDNA using a 

Bioraptor Plus (Diagenode, Germany) with cycling conditions to achieve a mean target size of 
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150-200 base pairs. Finally, we evaluated the distribution of the fragment lengths on a 

Bioanalyzer 2100 (Agilent Technologies, UK) using the High Sensitivity DNA Kit. Prior to 

library preparation, we remeasured the quantity of gDNA on a Qubit fluorometer and stores 

the samples at -20°C.  

2.2.2.3 Shallow whole genome sequencing discovery cohort 

We prepared individual libraries for all 102 (51 pairs) tumour samples in the discovery 

cohort using NEBNext Ultra II DNA Library Prep Kit for Illumina and corresponding NEBNext 

Multiplex Oligos for Illumina (New England Biolabs, UK) following manufacturer’s instructions 

and performed shallow whole genome sequencing on the discovery cohort on a NextSeq 500 

system (Illumina, San Diego, CA) using a NextSeq 500/550 High Output V2 kit (75 cycles). 

2.2.2.4 NanoString validation 

For the validation of SCNAs detected with shallow whole genome sequencing, we 

performed the nCounter v2 Cancer CN Assay (NanoString, Seattle, WA) to 9 tumours (4 pairs 

and one additional BM sample). We handed gDNA, including requantified concentrations, to 

Karolinska Institutet Gene Facility (Stockholm, Sweden). Following this, we analyzed the data 

using the accompanying nCounter Analysis Software.  

2.2.2.5 Multiregion sequencing 

We retrieved 15 FFPE tissue sections from BM samples and extracted DNA from two 

to four circular regions using the PinPoint Solution (Zymo Research, Irvine, CA) onto each 

region. Following this, we performed gDNA extraction and purification on the solidified solution 

using a standard phenol-chloroform protocol. After quantification using Qubit 3.0 fluorimeter 

we used CUTseq171 to digest, index, pool, and amplify all samples and multiplex all the 71 

different regions into a singular library. We used a low-volume contactless liquid-dispensing 

device (I.DOT One, Dispendix GmbH, Germany) to dispense CUTseq digestion and ligation 

mix. After assessing size distribution, quality and quantity as described at section 2.2.2.3, we 

sequenced the library on a NextSeq 500 using a NextSeq 500/550 High Output V2 kit (75 

cycles). 
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2.2.2.6 Shallow whole genome sequencing discovery cohort 

We performed shallow whole genome sequencing on 84 BM samples from the 

validation cohort. As described above, we used CUTseq to digest, index, pool, and amplify 

the samples using the I.DOT One system. We generated multiple pools of 24 samples each. 

We assessed the size distribution, quality, and quantity using a Bioanalyzer 2100 and 

sequenced the libraries on a NextSeq 500 system using a NextSeq 500/550 High output V2 

kit (75 cycles).  

2.2.2.7 Whole exome sequencing and targeted sequencing 

For 40 sample pairs in the discovery cohort, of which we had enough gDNA, we 

performed whole exome sequencing. We used the SureSelect XT HS Kit (Agilent 

Technologies, UK) following the manufacturer’s instructions to prepare libraries. We then 

assessed the size, quality and quantity of each library using a Bioanalyzer 2100. Next, we 

pooled up to eight libraries together and concentrated the pools using the Savant SpeedVac 

DNA 130 Integrated Vacuum Concentrator System (Thermo Fisher Scientific, Germany) 

following the manufacturer’s instructions. Following this, we performed exome capture using 

the SureSelect XT HS Target Enrichment kit and SureSelect Human All Exon v6 Baits (Agilent 

Technologies, UK). After assessing the quality using a Bioanalyzer 2100 and Qubit, we 

sequenced the libraries on a NovaSeq 6000 system (Illumina, San Diego, CA) at the National 

Genomic Infrastructure (NGI, Stockholm, Sweden) using 2x150 bp S4 flowcell (Illumina, San 

Diego, CA). 

To validate mutations detected with whole exome sequencing, we performed targeted 

sequencing of all 115 BM samples present in the validation cohort. We performed gene 

capture using SureSelect CD Glasgow Cancer Core Panel (Agilent Technologies, UK), to 

capture 174 cancer-associated genes. After quality assessment using a Bioanalyzer 2100 and 

Qubit we sequenced all libraries on a NovaSeq 6000 platform (Illumina, San Diego, CA) at the 

National Genomics Infrastructure (NGI, Stockholm, Sweden) using a 2x150 bp S4 flowcell 

(Illumina, San Diego, CA). 
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2.2.2.8 Computational methods 

Sequencing data processing. We obtained demultiplexed reads from the 

BaseSpace Sequence Hub cloud service of Illumina. In the case of CUTseq, we further 

demultiplexed the reads into sample specific reads using custom Python scripts available at 

https://github.com/ljwharbers/metastatic_lungcancer. Next, reads were aligned to GRCh37 

reference genome using bwa mem (v0.7.17-r1188)179, sorted and indexed using samtools 

(v1.10)180. Depending on the type of sequencing we deduplicated reads in three different 

ways. For CUTseq, we deduplicated reads using umitools (v1.1.1)181, for targeted sequencing 

we deduplicated reads using the Agilent Genomics NextGen Toolkit (v2.0.5) and for all other 

types of sequencing we used MarkDuplicates from the Genome Analysis ToolKit (GATK, 

v4.1.4.1)182. Finally, for short variant calling in targeted and whole exome sequencing data, we 

recalibrated base scores using BQSRPipelineSpark from GATK.  

Copy number calling. We used the R package QDNAseq, which is optimized for 

FFPE samples, and CNVkit to call copy numbers using 50kb genomic bins183,184. After 

obtaining log2 ratios from the respective tools, we used a log2 ratio of 0.32 and -0.42 to call 

amplifications and deletions, respectively. To plot individual and combined whole-genome 

copy number profiles, we used custom R scripts available at 

https://github.com/ljwharbers/metastatic_lungcancer. To identify key alterations in cancer-

associated genes, we used a gene list consisting of genes in COSMIC72 and additional genes 

known to be implicated in lung cancer. Finally, we used GISTIC2 to determine significant focal 

copy number events185. 

2.2.2.9 Small variant calling 

To call small variants (SNVs and indels) from whole exome and targeted sequencing 

data, we used GATK (v4.1.4.1). For whole exome sequencing data, since we did not have 

access to germine samples, we used the primary tumour as a ‘reference’ to call BM-specific 

small variants. Following this, we removed false positive calls using 

LearnReadOrientationModel, GetPileUpSummaries, CalculateContamination, and 

FilterMutectCalls. Finally, we annotated small variants using Funcotator and to identify 

https://github.com/ljwharbers/metastatic_lungcancer
https://github.com/ljwharbers/metastatic_lungcancer
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potential drivers we applied CHASMplus, using two NSCLC annotators (chasmplus_GBM and 

chasmplus_LGG) and two brain tumour annotators (chasmplus_LUAD and 

chasmplus_LUSC).  

2.2.3 Paper III: High clonal diversity and spatial genetic admixture in early 

prostate cancer and surrounding normal tissue 

2.2.3.1 Samples 

Cell lines. We purchased IMR90, SKBR3, and MCF10A cell lines from ATCC (cat. no. 

CCL186, HTB-30, and CRL-10317, respectively) and used the following culturing conditions. 

1) IMR90 in Eagle’s Minimum Essential medium (Sigma, cat. no. M5650) supplemented with 

10% heat inactivated FBS (Signa, cat. no. F9665), 2 mM L-glutamine (Sigma, cat. no. 

59202C), and 1 % non-essential amino acids (Sigma, cat. no. M9309). 2) SKBR3 in McCoy’s 

5A medium (Sigma, cat. no. M9309) supplemented with 10% heat inactivated FBS (Sigma, 

cat. no. F9665). 3) MCF10A in mammary epithelial cell growth medium (Lonza, cat. no. CC-

3150) supplemented with 100 ng/ml cholera toxin (Sigma, cat. no. C8052). We purchased 

Drosophila S2 cells from Gibco (cat. no. R69007) and we cultured them in Schneider’s medium 

(Gibco, cat. no. 21720024) supplemented with 10% head inactivated FBS (Sigma, cat. no. 

F9665). Finally, we cultured TK6 cells in Roswell Park Memorial Institute medium (Gibco, cat. 

no. 11875093) supplemented with 5% horse serum (Gibco, cat. no. 11510516), 1 mM sodium 

pyruvate (Gibco, cat. no. 11360070), 100 U/mL penicillin-streptomycin (Gibco, cat. no. 

15140122) and 2 mM L-glutamine (Gibco, cat. no. 25030081). We grew S2 cells in 28 °C in a 

non-humidified, ambient air-regulated incubator and all other cell lines at 37 °C in 5% CO2 air.  

Prostate samples. We conducted a prospective collection of six prostatectomy 

samples from patients who underwent surgery for localized prostate cancer through 

endoscopic procedures at Södersjukhuset hospital in Stockholm, Sweden. Simultaneously, 

we obtained peripheral blood samples from these patients for genomic DNA extraction. The 

study received approval from the regional Ethical Committee under ethical permit #2018/1003-

31. For each prostate, we acquired a 0.5 cm thick transversal midsection, immediately 

sectioning it into ~0.5×0.5×0.5 cm³ tissue blocks. Subsequently, each block was embedded in 
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Tissue-Tek OCT compound (VWR, Cat. no. 00411243), snap-frozen in isopentane, and stored 

at –80 °C. We stained one section from the top and one from the bottom of each block with 

Hematoxylin and Eosin, scanned the sections using the Hamamatsu Nano Zoomer-XR Digital 

slide scanner. The resulting images underwent morphological evaluation by two board-

certified pathologists. 

Breast samples. We conducted a retrospective collection of two frozen breast cancer 

samples at the Pathology Unit of the Candiolo Cancer Institute, Italy. The collection received 

approval from the local ethical committee under "Profiling", 001-IRCC-00IIS-10. After surgery, 

the samples were subjected to a vacuum-sealing process and stored at +4 °C. When the 

samples were ready for further processing, approximately ~1x1x0.5cm³ tissue blocks were 

embedded in Tissue-Tek OCT compound (VWR, cat. no. 00411243), snap-frozen in 

isopentane, and subsequently stored at –80 °C. 

Brain and skeletal muscle samples. We obtained fresh frozen human prefrontal 

cortex tissue and skeletal muscle samples from two donors. These samples were sourced 

through the KI Donatum Tissue Collection program, a collaborative effort between the 

Swedish National Board of Forensic Medicine and the Department of Oncology-Pathology at 

Karolinska Institutet under ethical approval 2010/313-31/3 granted by the Regional Ethics 

Committee of Sweden. 

2.2.3.2 scCUTseq 

A detailed step-by-step protocol is available at DOI: 10.21203/rs.3.pex-1602/v1.  

Cells and nuclei preparation. We washed cultured cells in 1xPBS/5 mM EDTA at 

room temperature and then suspended them in the same buffer at a density of 106 cells/mL. 

In cases of fixation, we added equal volume of 1xPBS/5 mM EDTA/8% methanol-free 

paraformaldehyde (PFA) (Thermo Fisher Scientific, cat. no. 28908) to the cell suspension, 

mixing by pipetting the solution up and down several times. We incubated the suspension for 

10 minutes in darkness and then added glycine (Sigma, cat. no. 50046) for a final 

concentration of 125 mM to quench any residual unreacted PFA. Finally, we washed cells 

again in 1xPBS/5 mM EDTA at room temperature, resuspended the cells at a density of 106 
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cells/mL in the same buffer, and stored at +4 °C in 1xPBS/5 mM EDTA/0.05% NaN3. We 

obtained single nuclei suspensions of tumour samples following the Tapestri frozen tissue 

nuclei extraction protocol (https://missionbio.com). 

Single nucleus sorting. Nuclei were transferred into FACS-compatible tubes, stained 

with 2.46 ng/mL Hoechst 33342 (Thermo Fisher Scientific, cat. no. 62249) and incubated for 

40 minutes at 37 °C rotating in the dark. Prior to sorting, 5 µl of Vapor-Lock (Qiagen, cat. no. 

981611) were manually dispensed into each well of a 96- or 384-well plate. Finally, we sorted 

single cells/nuclei into the wells, each well containing 10nL sorting volume, with or without the 

MALBAC (Yikon Genomics, cat. no. KT110700150) lysis mix using the BD FACSJazz Cell 

Sorter (BD Biosciences) based on forward and side scatter properties. Following sorting, we 

centrifuged the plates at 300 g for 5 min and placed them on ice. 

Preparation of adapters. We used either 96 CUTseq adapters that were prepared as 

previously described171 or 384 adapters that we newly designed. In brief, we purchased 

oligonucleotides from Integrated DNA Technologies at 100 µM. Next, we add 5 µL of a forward 

oligonucleotide followed by 40 µL phosphorylation mix containing 1 µL of T4  Polynucleotide 

Kinase (PNK; NEB, cat. no. M0201S), 5 μL of T4 PNK buffer (NEB, cat. no. M0201S) and 5 

μL of 10 mM ATP (Thermo Fisher Scientific, cat. no. PV3227) in Nuclease-Free Water and 

incubated at 37 °C for 30 min followed by inactivation at 65 °C for 20 min. Finally, we dispensed 

5 μL of the reverse oligonucleotide and incubated for 5 min at 95 °C followed by cooling down 

at 25 °C for 45 min in a PCR thermocycler. 

Scaled down MALBAC and scCUTseq. We used the I.DOT nanodispensing system 

(CELLINK) for dispensing nanoliter volumes, we adjusted the MALBAC kit reaction volumes 

by a factor of 1:200. Specifically, we prepared a lysis mix, consisting of 30 nL of cell lysis buffer 

and 0.6 nL of cell lysis enzyme, and dispensed 30 nL per well. For the pre-amplification step, 

a mix containing 150 nL of pre-amplification buffer and 5 nL of pre-amplification enzyme mix 

was prepared and dispensed at 150 nL per well. Next, an amplification mix, comprising 150 

nL of amplification buffer, 4 nL of amplification enzyme mix, and 11 nL of 4x SYBR Green 

(Thermo Fisher Scientific, cat. no. S7563), was dispensed at 160 nL per well. We followed the 

manufacturer's instructions for the conditions and incubation periods during the lysis, pre-

https://missionbio.com/
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amplification, and amplification steps. After this, we conducted CUTseq following a high-

throughput protocol with minor adjustments: 1) We digested samples using nanoliter volumes 

with NlaIII (NEB, cat. no. R0125L). 2) After ligation, we inactivated the digestion by dispensing 

5 µL of Nuclease-Free Water/33 mM EDTA (resulting in a final concentration of 25 mM) into 

each well and incubate at 70 °C for 5 min. 3) We then spun the 384-well plate upside down at 

117 g for 1 minute to pool all the samples together. 4) Finally, we increased the PCR volume 

to 200 or 400 µL and split the solution in multiple PCR tubes (50 µL each). 5) Finally, we 

conducted sonication, IVT, and library preparation as previously described. After each 

dispensing step in the protocol, the plate was briefly shaken in a thermomixer (Eppendorf) at 

1000 rpm for 1 min, followed by centrifugation at 3220 g for 5 min before each incubation. 

Acoustic Cell Tagmentation (ACT). To validate scCUTseq results, we used ACT119. 

We adapted the original protocol for fixed nuclei and implemented it on our I.DOT 

nanodispensing device (CELLINK). Briefly, after cell sorting, we lysed cells in conditions as 

described in Dip-C186 and used 150 nL lysis buffer containing 20 mM Tris pH8/20 mM NaCl/25 

mM DTT/0.15% Triton X-100/1 mM EDTA/5 µg/mL Qiagen Protease (Qiagen, cat. no. 19157). 

We incubated for 1 hour at 50 °C followed by heat inactivation at 70 °C for 15 min. We then 

dispensed 50 nL of 4mM MgCl2 in each well, vortexed and centrifuged the plate to neutralize 

EDTA. Next, we performed tagmentation by dispensing 600 nL of tagmentation reaction mix 

containing Tagmentation DNA buffer (TD) and Amplicon Tagment Mix (ATM) at 2:1 v/v ratio 

(Nextera kit, Illumina, cat. no. FC-131-1096) into each well and performed tagmentation at 55° 

C for 5 min followed by hold at 4° C in a PCR thermocycler. To stop tagmentation, we added 

200 nL of neutralization buffer into each well and incubated for 5 min at room temperature. 

Finally, to index each nucleus individually, we dispensed 600 nL of Nextera PCR Master Mix 

and 400 nL of a unique Nextera index pair (Illumina, cat. no. 20027213, 20027214, 20042666, 

20042667) into each well. We then performed PCR with the following settings: 72° C for 3 min; 

95° C for 30 s; (98° C for 10 s, 63° C for 30 s, 72° C for 30 s) for 16 cycles; 72° C 5 min; hold 

+4° C. Finally, we pooled the contents of all the wells of a 384-well plate together and purified 

the resulting library using AMPure XP beads (Beckman Coulter, cat. no. A63881) at 1.8 v/v 

ratio.  
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Sequencing. All sequencing was performed either on the Illumina NextSeq 2000 

using the NextSeq 1000/2000 P2 Reagents (100 cycles) kit (Illumina, cat. no. 20046811) or 

on the NovaSeq 6000 platform (Illumina) at the National Genomics Infratstructure in 

Stockholm.   

2.2.3.3 Validation by DNA FISH. 

To further validate scCUTseq we used DNA fluorescent in-situ hybridization (FISH, 

leveraging on our previously described pipeline187.  

Probe design and production. To validate a deletion detected by scCUTseq on 

chr13 we produced three probes, one within the deleted region and two flanking probes. We 

obtained all potential 40 nt target (T) sequences for each of the three regions and assigned a 

cost to each sequence based on factors such as off-target homology, melting temperature, 

delta free energy of secondary structures, and homopolymer length. For each region, we 

chose 6,000 sequences with the lowest combined individual cost (reflecting the quality of each 

sequence) and pairwise cost (indicating genomic distance between consecutive sequences). 

Finally, we added 20 nt adapter sequences on the 5’ and 3’ ends of the T sequences. The 

probes were generated from synthetic oligopools procured from Twist Bioscience, following 

the detailed procedure previously outlined187. 

Probe hybridization. We transferred 10 μm-thick cryosections onto microscope slides 

and stored them at -80 °C.  To perform hematoxylin and eosin staining, we fixed the 

cryosections with cold acetone for 2 min followed by a wash in running water. The sections 

were then stained with Mayer’s hematoxylin solution (VWR, cat. no. 10047105) at 25 °C for 3 

min followed by a wash in running water. Next, we transferred the sections into hot running 

water (60 °C) for 10 min, followed again by a wash in running water and then staining in Eosin 

Y solution (Histolab, cat. no. 01650) for 1 min. Finally, after dehydrating the sections using 

95% ethanol and two times 100% ethanol, 10 sec each, we cleared the sections in xylene 

twice for 5 min each and mounted them with Sub-X Mounting Medium (Leica, cat. no. 

3801741). Once we start the FISH experiment, we let the frozen slides reach -20 °C and 

transferred them to 1X PBS/4% paraformaldehyde (PFA) (VWR, cat. no. 10047105) for 10 
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min at room temperature. We then quench the PFA with 1X PBS/125 mM glycine followed by 

permeabilization in 1X PBS/0.5% Triton X-100 for 20 min at room temperature, followed by 5 

min in 0.1 N HCl. Next, we incubated the slides in 1X PBS/0.1 mg/mL RNase A (Sigma Aldrich, 

cat. no. R4875) at 37 °C followed by 1X PBS/0.5 mg/mL collagenase type 3 (Thermo Fisher 

Scientific, cat. no. 16111810) at 37 °C for 20min to remove unspecific background 

fluorescence. Slides were then dehydrated with ethanol and air dried. Following this, the slides 

were transferred to 2X SSC/50 mM sodium phosphate buffer (Thermo Fisher Scientific, cat. 

no. J60158.AP)/50% v/v formamide (Millipore, cat. no. S4117) and incubated them overnight 

at room temperature in the dark. The next day, the sections are covered with a pre-

hybridization buffer containing 2X SSC/50 mM sodium phosphate buffer/ 50% formamide/5X 

Denhardt’s solution (Invitrogen, cat. no. 750018)/1 mM EDTA (Sigma Aldrich, cat. no. 

AM9261)/100 µg/mL salmon sperm DNA (Thermo Fisher Scientific, cat. no. 15632011) and 

incubated for at 37 °C for one hour. Directly following this incubation, we replaced the solution 

with hybridization buffer, consisting of the same composition including 10% w/v dextran sulfate 

(Sigma Aldrich, cat. no. D8906) and the FISH probes. After covering the slide with an 18x18 

mm2 coverslip and sealing the sides with rubber cement (Fixogum, Triolab, cat. no. LK071A), 

we denatured the DNA at 75 °C for 3 min followed by incubation in the dark overnight in a 

humidity chamber at 37 °C. The following day, we removed the coverslips inside a Petri dish 

filled with 2X SSC/0.2% Tween-20, followed by washing twice in 0.2X SSC/0.2% Tween-20 

at 60 °C for 7 min. We then preincubated the slides for 15 min in a buffer containing 2X 

SSC/25% v/v formamide before proceeding with secondary hybridization. Next, used a 

hybridization buffer containing 2X SSC/25% v/v formamide/10% w/v dextran sulfate/1 mg/mL 

E. coli tRNA (Sigma Aldrich, Merck cat. no. 10109541001)/0.02% w/v bovine serum albumin 

(BSA, Thermo Fisher Scientific cat. no. AM2618), fluorescently conjugated oligonucleotides 

(purchased from Integrated DNA Technologies) diluted at 20 nM each. The slides were then 

incubated at 30 °C overnight, covered with hybridization in a humidity chamber. Then, we 

washed in 2X SSC/25% v/v formamide at 30 °C for 1 hour, followed by DNA staining in 2X 

SSC/25% v/v formamide/1 ng/μL Hoechst 33342 (Thermo Fisher Scientific, cat. no. 62249) at 

30°C for 1 hour. To conclude, we washed the slides in 2X SSC, mounted them in an anti-



 

 41 

bleach imaging buffer containing 2X SSC/10 mM Tris-HCl/10 mM Trolox (Sigma Aldrich, cat. 

no. 238813)/37 ng/μL glucose oxidase (Sigma Aldrich, cat. no. G2133)/32 mM catalase 

(Sigma Aldrich, cat. no. C3515)/0.4% w/v glucose. 

Imaging. We used a custom-built Nikon Ti-E Eclipse wide-field microscope equipped 

with an iXon Ultra 888 EMCCD camera (Andor Technology) to image the samples. For whole-

section imaging, a 25x/1.05 NA silicon oil-immersion objective (Nikon) was used, while for 

zoom-in regions a 100x/1.45 NA oil-immersion objective (Nikon) was used. Finally, we 

obtained z-stacks with a NIDAQ Piezo Z unit.  

2.2.3.4 Computational methods 

Sequencing data preprocessing. After each run, Basecalls were demultiplexed 

using the BaseSpace Sequence Hub cloud service of Illumina. In the case of scCUTseq, each 

fastq file was further demultiplexed into reads belonging to each single cell using a custom 

Python script. Briefly, cell-specific barcodes and unique molecular identifiers (UMIs) are 

extracted from the reads and the barcodes are matched to the known pre-defined barcodes, 

allowing for 2 mismatches or 1 mismatch for 11 length barcodes and 8 length barcodes, 

respectively. Reads are then split by barcode and the barcode and UMI are appended to the 

read name. Next, reads were aligned to GRCh37 human reference genome using bwa mem 

(version 0.7.17-r1188)179 or to the dm6 Drosophila melanogaster reference genome for S2 

cells. Following this, reads were sorted and indexed using samtools (version 1.10)180. In the 

case of scCUTseq, barcodes and UMIs are then moved from the read name into their 

corresponding bam tags using custom a Python script and subsequently the reads were 

deduplicated using umi-tools (version 1.1.1)181. For ACT and WGS libraries, reads were 

deduplicated using gatk MarkDuplicates (version 4.2.0.0)182. All the steps above are 

automated using snakemake (version 5.30.1)188 available at 

https://github.com/bicrolab/scCUTseq. 

Copy number calling. We split the genome into variable width bins with an average 

length of 100 kb for WGS, 250 kb for TK6 scCUTseq and 500 kb for all other single-cell 

datasets. The size of each individual bin is dependent on the mappability of the genomic 

https://github.com/bicrolab/scCUTseq
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region. Bins that are in blacklisted regions (e.g., telomeric and centromeric regions) are filtered 

out. Next, reads are counted for each bin, normalized for total number of reads and the log2 

ratio is calculated. Following this, read counts are normalized for GC-content using LOWESS 

smoothing. Next, log2 ratios are segmented using Circular Binary Segmentation module in the 

DNAcopy (version 1.66.0)189 R package or, in the case of single-cell data with multi-track 

segmentation using multipcf from the copynumber (version 1.29.0.9)167 R package. In the case 

of multi-track segmentation, adjacent segments that are not significantly different are merged 

using mergeLevels from the aCGH (version 1.78.0)190 R package. Finally, for single-cell data, 

integer copy numbers were inferred using a grid search approach, testing different ploidy 

values, and selecting the outcome with the lowest error.  

Copy number quality control using a Random Forest model. We extracted 16 

different features of copy number profiles and trained a random forest classifier191 scCUTseq 

profiles. Briefly, we manually annotated 2,304 scCUTseq profiles and trained a random forest 

on 80% of these profiles using randomForest (version 4.6-14)192 R package ensuring class 

balance with the following parameters: ntree = 500 and importance = TRUE. The remaining 

20% of the annotated profiles were used to validate the model. Finally, based on the receiver 

operating characteristic curve, the most optimal threshold was selected and used to classify 

future single cell copy number profiles.  

Calculation of breadth of coverage and overdispersion. To calculate sequencing 

statistics such as breadth of coverage and overdispersion, we downsampled single cells to 

800,000 reads each and calculated the BoC using the genomeCoverageBed function from 

bedtools (version 2.25.0)193 and the overdispersion by calculating the variance of read counts 

per bin normalized by the mean read counts per bin. 

Cell classification in tumour samples. For the prostate samples, we classified in 

three groups, diploid; pseudo-diploid; and monster cells, based on the percentage of the 

genome that is altered. In brief, cells with no alterations were classified as ‘diploid cells’, cells 

with less than 25% of the genome altered as ‘pseudo-diploid cells’, and cells with more than 
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25% of the genome altered as ‘monster cells’. In the case of breast cancer samples, we simply 

split the cells based on the absence/presence of any alteration. 

Phylogenetic reconstruction. We used all pseudo-diploid cells of prostates and all 

non-diploid breast cancer cells to reconstruct their phylogeny. We used MEDICC2 (version 

0.8.1)175 with default parameters and total copy numbers of single cells as input. Next, in the 

case of prostate cells, we used TreeCluster (version 1.0.3)194 to cluster cells based on the 

phylogenetic tree, using the ‘max’ clustering method, with t being equal to 30 and 22 for breast 

cancer samples B1 and B2, respectively, and 3 and 4 for prostate samples P2 and P5, 

respectively. 

Spatial distribution of pseudo-diploid subclones. To investigate how the identified 

subclones are distributed over the prostate, we calculated the Shannon entropy for each 

subclone and used this as a proxy for how local or widespread subclones are distributed. We 

first normalized the number of cells from each subclone in a prostate region by the number of 

cells that passed QC in that region and then calculated Shannon’s entropy using DescTools 

(version 0.99.49)195.  

TCGA data analysis. We downloaded 499 prostate adenocarcinoma copy number 

profiles from cBioPortal196 using the TCGAbiolinks (version 2.28.2)197 R package. We 

classified the patients in five grade groups based on their gleason score as described here: 

https://www.cancerresearchuk.org/about-cancer/prostate-cancer/stages/grades. Next, we 

overlapped amplified and deleted genomic regions with genes listed in COSMIC72 and used 

GISTIC2185 (version 2.0.23) to look for genomic regions that are enriched in amplifications or 

deletions.  

DNA FISH image analysis. We acquired .nd2 files from the microscope and 

converted them to .tif format. Next, we deconvolved the images using an in-house developed 

software called deconwolf198, using 100 iterations for all FISH channels and 50 iterations for 

the DNA channel. We then manually quantified FISH dots in 50 images acquired at 100x 

magnification using ImageJ2199. Next, we converted the counts to number of cells with, the 

https://www.cancerresearchuk.org/about-cancer/prostate-cancer/stages/grades
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expected, homozygous deletion and finally related the proportion of cells to the fraction of 

tumour area from that image section, as assessed by a pathologist. 

Code availability. All code used for sequencing preprocessing, copy number calling 

and analysis is available at https://bicrolab.github.io/scCUTseq/ and 

https://github.com/bicrolab/scCUTseq. 

  

https://bicrolab.github.io/scCUTseq/
https://github.com/bicrolab/scCUTseq
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2.3 Summary of the research papers 

2.3.1 Paper I: Somatic Copy Number Alterations in Human Cancers: An 

Analysis of Publicly Available Data From The Cancer Genome Atlas 

2.3.1.1 Background 

As previously discussed, cancer is a highly heterogeneous disease, with no two 

tumours being identical. The wealth of data from initiatives such as The Cancer Genome Atlas 

(TCGA), Pan-Cancer Atlas of Whole Genomes (PCAWG), and other large consortia that were 

made (publicly) available, has prompted numerous pan-cancer studies that have investigated 

inter-patient heterogeneity. While most studies have focused on SNVs, some have explored 

somatic copy number alterations (SCNAs) and even intersected SCNAs with other sequencing 

data available, such as Hi-C or RNA-seq.  

Our aim in this study was to improve the understanding of SCNAs, investigating their 

prevalence, type, length, and genomic distribution. To achieve this, we conducted a 

comprehensive analysis of 853,218 SCNAS across 10,249 tumours belonging to 32 cancer 

types. Furthermore, we aim to explore whether SCNAs in different chromosomes show a co-

occurrence pattern, potentially indicating selection forces acting during tumour evolution. 

2.3.1.2 Type of alterations and fraction of the genome affected 

To examine the distribution of different types of alterations, we classified amplification 

and deletions based on size. Alterations smaller than 10 kb were designated as indels; 

alterations larger than 75% of the chromosome arm as aneuploidy; and all other alterations 

as SCNAs. For most tumour types, SCNAs predominated as the most common alteration type, 

indels were more frequent in thyroid carcinomas, thymomas, kidney renal clear cell 

carcinomas, and pheochromocytomas and paragangliomas (Fig. 6A). Interestingly, in uterine 

corpus endometrial carcinomas and sarcomas, SCNAs accounted for over 80% of total copy 

number changes. Analysing SCNAs specifically revealed significant variation in both the 

number of SCNAs and the fraction of the genome affected, with amplifications generally being 
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more prevalent, both in number and percentage, than deletions across most cancer types 

(Fig. 6B, C). 

Figure 6. Prevalance of SCNAs across TCGA tumour types. A) Distribution of arm-level aneuploidy, 
indels and SCNAs by tumour type. B) Number of SCNAs by tumour type. Amplifications in red, deletions 
in blue. Each dot represents a tumour sample, black bar represents the mean. C) Fraction of the 
genome altered by tumour type. Amplifications in red, deletions in blue. Each dot represents a tumour 
sample, black bar represents the mean. Two-sided Wilcoxon’s t-test is performed between 
amplifications and deletions per tumour type. Significance is annotated by asterisks, 0.05 (*), 0.001 (**), 
0.0001 (***), and 0.0001 (****). 
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2.3.1.3 Size and chromosomal distribution of SCNAs 

The size of amplifications and deletions is highly dependent on tumour types. 

However, in contrast to the frequency and the fraction of the genome affected, deletions are, 

on average, longer than amplifications (4.69 vs 3.38 Mb, respectively) (Fig. 7A). 

Additionally, certain cancer types exhibit clear enrichment of SCNAs in specific 

chromosomes. For example, chromosome (chr) 8 frequently harbours SCNAs over all 

tumours while chr 15 is largely unaffected, chr 13 and 20 are most frequently affected in colon 

adenocarcinomas and rectum adenocarcinoma, and chr 17 is most affected in 

cholangiocarcinoma (Fig. 7B). These patterns can be partially explained by the genomic 

location of specific cancer driver genes. Notably, MYC, one of the most commonly amplified 

oncogenes, is present on chr 8, while chr 17 contains ERBB2.  

2.3.1.4 Amplification, deletions, and co-alteration of genes 

As mentioned above, MYC is the fourth most amplified gene, amplified in almost 30% 

of all tumours analysed (Fig. 8A). While the gene function of MYC is well understood, the most 

frequently amplified genes, CSMD3 and FAM135B encode proteins of unknown function. In 

contrast, the most frequently deleted genes, PTBRD and CDKN2A encode for a receptor 

tyrosine phosphatase and a cyclin-dependent kinase inhibitor, respectively (Fig. 8A). While 

some genes share similar patterns between different cancer types, some genes are more 

frequently amplified or deleted in certain cancer types. For instance, EGFR is more frequently 

amplified in glioblastomas while PTPRT and PTK6 genes are more frequently amplified in 

colon adenocarcinoma and renal adenocarcinoma (Fig. 8B). These patterns likely reflect the 

functional role and importance of these genes in the different tissues of origin. 
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Figure 7. Length of SCNAs and proportion by chromosome. A) Average SCNA length by tumour 
type. Each dot represents the mean SCNA length of a tumour sample. Amplifications in red, deletions 
in blue. Black bar represents the mean. Two-sided Wilcoxon’s t-test is performed between amplifications 
and deletions per tumour type. Significance is annotated by asterisks, 0.05 (*), 0.001 (**), 0.0001 (***), 
and 0.0001 (****). B) Proportion of SCNAs in each chromosome, normalized by chromosome length.  
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Next, we looked at whether gene-pairs are more frequently co-amplified (AMP-AMP) 

or co-deleted (DEL-DEL). Since SCNAs often overlap multiple genes, we focused on inter-

chromosomal co-alterations and several interesting features emerged (Fig. 8C). First, AMP-

AMPs are more frequent than DEL-DELs, agreeing with a longstanding observation that 

(multiple) amplification are better tolerated than (multiple) deletions. Second, the frequency of 

AMP-AMP and DEL-DEL events are not evenly distributed along the chromosomes. For 

instance, chr 1, 3, 7 and 8 were enriched for AMP-AMP events, while chr 13-18 were enriched 

for DEL-DEL events. Finally, a small number of genes account for the majority of AMP-AMP 

and DEL-DEL events. MYC is involved in 31% of the most frequent AMP-AMP events and 

ARHGEF10 is involved in 31% of the most frequent DEL-DEL events, most likely reflection 

selection forces at play. 
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Figure 8. Alteration frequency of COSMIC genes. A) Percentage of samples that have a gene 
amplified (red) or deleted (blue) in all tumour types. B) Percentage of samples for each tumour type that 
have a gene amplified (red) or deleted (blue). C) Frequency of gene pair co-alteration. Grey squared 
are masked to ignore intra-chromosomal gene pairs. 
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2.3.2 Paper II: Genomic Profiling Identifies Putative Pathogenic Alterations in 

NSCLC Brain Metastases 

2.3.2.1 Background 

As discussed previously, assessing intra-patient heterogeneity is critical for prognosis 

and to correctly treat both primary and metastatic lesions. This is reflected in the survival rate 

of non-small cell lung cancer (NSCLC), localized NSCLC has a 5-year survival rate of 65%, 

while this rate drops to 9% when the cancer has spread to distant sites in the body, such as 

the brain200. Furthermore, brain metastases (BM) are difficult to treat since the blood-brain 

barrier restricts the effectiveness of many drugs. This indicates the importance of early 

diagnosis of NSCLC, identification of tumours that are likely to metastasize to the brain and 

finally, identifying actionable BM-specific mutations.  

In this study, we aimed to assess the level of intra-patient heterogeneity in primary 

NSCLC and their matched BM. We wanted to answer four questions: 1) Is there genomic 

heterogeneity at a copy number level between NSCLC and BM; 2) do BMs show spatial ITH; 

3) are there specific SCNAs that drive metastasis; and 4) are there specific SNVs and/or indels 

that drive metastasis. 

2.3.2.2 BM harbour significantly more SCNAs 

We performed shallow WGS on 33 lung adenocarcinoma (LUAD) and 18 squamous 

cell carcinoma (LUSC) pairs of matched primary NSCLC and BM tumours (discovery cohort) 

(Fig. 9A). The fraction of the genome altered, and the average alteration size was significantly 

higher in BM compared to NSCLC (Fig. 9B-E). We detected an enrichment of amplifications 

in chromosome (chr) 1q, 3q, 5p, 7p, 8q, 17q and 20p, and deletions in chr 3p, 4p, 5q, 8p, 9p, 

and 18q. While amplifications showed similar patterns between NSCLC and BM, deletions 

were mostly enriched in BM (Fig. 9F-H).  
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Figure 9. NSLC and BM specific SCNAs profiles. A) Schematic overview of samples and sequencing 
performed. B) Representative copy number profiles of one of the NSCLC-BM pairs (50kb resolution). 
Grey dot indicates log2 ratio, black lines indicate copy number segment determined by circular binary 
segmentation. C) Percentage of the genome altered by amplifications (red) or deletions (blue) for LUAD 
(left) and LUSC (right. Each dot represents a sample. P, two-tailed Wilcoxon’s t-test. D) Scatterplot 
indicating the percentage of genome altered in NSCLC and BM, each dot corresponds to one patient. 
E) Length distribution of SCNAs for NSCLC (green) and BM (yellow), stratified by focal (<1 Mb), medium 
(1-10 Mb), and large (>10 Mb). P, two-tailed Wilcoxon’s t-test. F) Percentage of NSCLC samples that 
have the same genomic bin (50kb) amplified (red) or deleted (blue). G) Same as in F) but for BM. H) 
Heatmap indicating which sample has a chromosome arm amplified (red) or deleted (blue). Bottom 
annotation, first bar: NSNCL (green), BM (yellow). Second bar: LUAD (dark blue), LUSC (blue-green). 
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Right side annotation, bar plots indicating total number of samples that contain an alteration. Boxplots 
in C) and E), box ranges from 25th to 75th percentile, horizontal line indicates median value, whiskers 
indicate 1.5 interquartile range. 

2.3.2.3 BMs are spatially homogeneous 

To detect whether BMs were highly heterogenous, we performed multi-region 

sequencing (2-4 regions) in 15 BM samples. Copy number profiles of spatially separated 

regions were highly similar, and clustering of samples resulted in clear clustering based on 

patient (Fig. 10A). Pairwise Pearson correlation of regions belonging to the same BM were 

high, except for three samples that showed a slight drop in correlation (Fig. 10B). Accordingly, 

these samples showed SCNAs that were unique to some regions and were not detected in 

the full section (Fig. 10C). These results suggest that BMs do not undergo significant further 

evolution after metastasizing and are mostly homogeneous.  

2.3.2.4 Identification of putative BM driver SCNAs 

To identify which genes are most frequently affected by SCNAS we intersected 

amplifications and deletions with a list of known cancer genes from COSMIC72 and 58 

additional, manually curated, genes. We found recurrent amplifications in ARNT, MLLT11, 

SETDB1, and TRIO, while we found recurrent deletions in ARHGEF10, ISX, CDKN2A/B, 

DCC, and PHLPP (Fig. 11A). Next, we used GISTIC2185, to identify genomic regions that are 

significantly altered in BM and not in NSCLC, to identify putative driver SCNAs and intersected 

these regions with our list of known cancer genes (Fig. 11B). Finally, to validate whether the 

genes identified by GISTIC2 were indeed more frequently altered in BM, we used publicly 

available data from NSCLC and performed shallow WGS on 115 additional BM samples 
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(validation cohort). Indeed, we found that putative BM driver genes were infrequently altered 

in NSCLC samples compared to BM (Fig. 11C, D).  

Figure 10. Multi-region sequencing of BM. A) Heatmap showing the log2 ratio across the genome 
(x-axis) of all multi-region and full region samples. Left annotation bars shows LUAD (dark blue) and 
LUSC (blue-green) and colours indicating sample ID. B) Pairwise Pearson correlations of regions 
sequenced for each sample found in A). C) Zoom in plot showing the copy number profile of full section 
(top row), followed by the three regions of chr12 (left) and chr17 (right) of sample MN47B. Red arrows 
indicate differences between regions. 

2.3.2.5 Identification of putative BM driver SNVs 

Finally, to detect potential driver SNVs, we performed WES on 40 samples from the 

discovery cohort. To identify mutations specific to BM, we performed mutation calling on BM 

using the NSCLC sample as a reference. We found that mutation burden was comparable 
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between LUAD and LUSC samples (Fig. 12A). Furthermore, BM that were diagnosed late 

(more than 12 months after NSCLC diagnosis) had a significantly lower mutation burden 

compared to early BMs (Fig. 12B). In most samples, missense substitutions were the most 

common type of mutation detected, while some samples showed a relative increase in 

frameshift indels (Fig. 12C). We found that MUC16, MACF1, FAT1, FAT4, and SPEN were 

most frequently mutated in the 40 samples (Fig. 12D). Finally, we used CHASM201 to identify 

potential driver mutations and found that multiple samples harboured potential driver 

mutations in EP300, PBRM1, KDM6A, NSD1, NOTCH1, and ARID1A (Fig. 12E). 
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Figure 11. Comparison of gene-level alterations between discovery cohort, validation cohort and 
TCGA NSCLC. A) Heatmap indicating amplification (red) and deletions (blue) of genes in COSMICplus 
gene list. Annotation at the bottom indicates NSCLC (green) and BM (yellow), LUAD (dark blue), and 
LUSC (blue-green). Right bar plots indicate number of samples with alteration. B) Q values assigned 
by GISTIC2, each point indicates a gene amplified (red) or deleted (blue). Dotted lines indicate non-
significant thresholds. C) Percentage of LUAD samples that have indicate gene altered in NSCLC 
(discovery cohort), NSCLC (TCGA cohort), BM (discovery cohort), and BM (validation cohort). D) Same 
as in C) but for LUSC.  
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Figure 12. BM-specific mutation calling. A) Tumour mutation burden in LUAD and LUSC samples. 
Each dot corresponds to one BM sample. B) Tumour mutation burden stratified by time of BM diagnosis 
relative to NSCLC diagnosis. P, two-sided Wilcoxon’s t-test. C) Number of different types of variants for 
each sample. D) Top 50 COSMICplus mutated genes in 40 BM samples analysed. E) COSMICplus 
genes that were annotated as likely driver mutations by CHASM. boxplots in A) and B), box ranges 
from 25th to 75th percentile, horizontal line indicates median value, whiskers indicate 1.5 interquartile 
range. 
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2.3.3 Paper III: High clonal diversity and spatial genetic admixture in early 

prostate cancer and surrounding normal tissue 

2.3.3.1 Background 

SCNAs are the most common alteration in prostate cancers and are thought the be 

the main driver of tumourigenesis. Bulk sequencing assays are commonly used to detect 

these alterations and identify treatment targets. However, it has been shown that prostate 

cancer is characterized by multiple spatially separated and genomically different tumour foci, 

which cannot be captured by regular bulk assays. Furthermore, studies have detected the 

presence of SNVs in morphologically healthy prostate tissue, which would be missed by 

exclusively sequencing tumour tissue. 

With this study, we aimed to assess the following: 1) whether we can detect ITH in 

early localized prostate cancer; 2) if subclones are present in distinct spatial foci; and 3) if 

SCNAs are present in morphologically healthy prostate tissue. To this end, we performed 

multi-region scCUTseq—a single-cell DNA sequencing method developed for this project—

on two prostatectomy samples from localized prostate cancer patients.   

2.3.3.2 Multi-region profiling of two prostate samples 

We cut each midsection of two prostatectomy samples (P2 and P5) in 125mm3 cubes 

and performed Hematoxylin and Eosin (H&E) staining, RNA-seq, scCUTseq, and targeted 

DNA sequencing on each section (Fig. 13a, b). Two pathologists analysed the H&E sections 

and classified sections as: 1) tumour-rich regions (TRRs), regions that are consist of >50% 

tumour cells; 2) focally enriched regions (FERs), regions that consists of 10-50% tumour cells; 

and 3) normal regions (NORs), regions that contain less than 10% tumour cells (Fig. 13c, d). 

Next, we performed RNA-seq and identified three clusters, which approximately correspond 

to the pathologist annotation, in each of the two prostate samples (Fig. 13e, f). Following this, 

we applied scCUTseq on each region and performed copy number calling. Interestingly, we 

detected SCNAs over the entire prostate, including NORs, but were enriched in TRRs and 
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FERs (Fig. 13g, h). To see whether SNVs were enriched in TRRs and FERs, we performed 

targeted DNA sequencing and called SNVs for each tissue region. While in P2, SNVs were 

clearly enriched in TRRs and FERs, P5 did not show a clear enrichment (Fig. 13i, j).  

Figure 13. Multi-region profiling of two prostate samples. a) Photograph of prostate midsection and 
zoom in on one of the sections with the assays performed on each section. b) schematic of scCUTseq 
workflow. c, d) Schematic maps indicating histopathological assessment by pathologists on both (P2 
and P5) prostates, based on H&E staining. Each cell in the grid represents a region from the prostate.  
e, f) Same as in c, d) but displaying clustering based on RNA-seq data. e, f) Percentage of cells 
harbouring at least one SCNA. i, j) Number of non-synonymous mutations detected by targeted 
sequencing. k) Representative copy number profiles (500kb resolution) of each of the three subgroups 
of cells. l) Distribution of the different subgroups of cells for both P2 and P5. m, n) Percentage of diploid, 
pseudo-diploid, and monster cells in TRRs, FERs, and NORs. boxplots in m) and n), box ranges from 
25th to 75th percentile, horizontal line indicates median value, whiskers indicate 1.5 interquartile range. 
 

Based on SCNAs, we classified cells in three distinct subgroups: 1) diploid cells, cells 

without any SCNA; 2) pseudo-diploid cells, cells that have SCNAs but encompass less than 
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25% of the genome; and 3) monster cells, cells with more than 25% of their genome altered 

(Fig. 13k). Diploid cells accounted for 64.8% and 56.1%; pseudo-diploid cells for 22.8% and 

28.3%; and monster cells for 12.5% and 15.7% for P2 and P5, respectively (Fig. 13l). Finally, 

while diploid cells were enriched in NORs, pseudo-diploid cells were enriched in TRRs and 

FERs. In contrast, monster cells did not show any enrichment (Fig. 13m, n). 

2.3.3.3 Pseudo-diploid cells are highly heterogeneous 

To investigate whether pseudo-diploid cells are genetically related and show (spatial) 

ITH, we used MEDICC2175 to generate phylogenetic trees from single-cell copy number 

profiles. Pseudo-diploid cells are highly heterogeneous, consisting mostly of unique copy 

number events and are mostly phylogenetically unrelated. Clustering of these cells into 

subclones resulted in 79 and 58 subclones for P2 and P5, respectively (Fig. 14a-f). Next, we 

assessed how subclones were spatially distributed. We calculated the entropy for each 

subclone over all regions, low entropy values indicating highly localized subclones, while high 

entropy indicate widespread subclones (Fig. 14g, h). While in P2, TRRs had significantly lower 

mean entropy, this change was not significant in P5 (Fig. 14i, j). Interestingly, the most highly 

localized subclones were exclusively located in TRRs and FERs, suggesting that these are 

the tumour cells as seen on H&E stainings (Fig. 14k, l).  

2.3.3.4 Validation of deletions detected by scCUTseq 

To validate deletions detected by scCUTseq, we performed scCUTseq, ACT (an 

orthogonal scDNA-seq method), and FISH on one prostate section of an additional patient, 

P6. Both scCUTseq and ACT detected a clonal deletion within the q arm of chr 13 at similar 

frequencies (77.3% versus 72.2% for scCUTseq and ACT, respectively) (Fig. 15a, b). To 

further validate this deletion, we performed DNA FISH on the same tumour section. We 

designed three FISH probes: one upstream, one downstream, and one within the deletion 

(Fig. 15c). Cells that do not harbour the deletion should have two clusters of all three probes, 

while cells that have a homozygous deletion, as detected by scCUTseq and ACT, should have 

one cluster with all three probes and one cluster with only the up- and downstream probe. 

Indeed, we were able to detect cells with this exact pattern (Fig. 15d, e). Quantification of 
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these results show that, in the 50 field of views (FOVs) examined, 50% of the cells harbour 

the specified deletion, which is consistent with the annotation by the pathologist. Indeed, 

quantification of each field of view separately correlated highly with the percentage of the FOV 

annotated as tumour by the pathologist (Fig. 15f).  

Figure 14. Pseudo-diploid cells are highly heterogeneous. a, d) Phylogenetic trees of P2 (top) and 
P5 (bottom) generated by MEDICC2175. b, e) Single-cell genome-wide copy number profiles for P2 (top) 
and P5 (bottom). Colours indicate absolute copy number for the respective genomic region. c, f) 
Subclones identified for P2 (top) and P5 (bottom) through clustering the phylogenetic tree. Each row 
represents a subclone, x-axis represents percentage of the genome amplified (red) or deleted (blue). g, 
h) Entropy for each subclone, low entropy values indicate localized subclones, high values indicate 
widespread subclones. Each dot represents a subclone. i, j) Mean entropy values for TRRs, FERs, and 
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NORs. Each dot indicates the mean entropy of a prostate section. P, two-tailed Wilcoxon’s t-test. k, l) 
Histopathological assessment (left) for P2 (top) and P5 (bottom). Other grids represent most localized 
subclones, colours indicate the percentage of cells of indicated subclone. boxplots in i) and j), box 
ranges from 25th to 75th percentile, horizontal line indicates median value, whiskers indicate 1.5 
interquartile range. 

2.3.3.5 Highly localized subclones harbour key deletions in tumour suppressor genes 

Finally, we were interested to see whether highly localized subclones of P2 and P5 

were enriched in tumour suppressor genes (TSGs). Indeed, 7 highly localized TRR and/or 

FER specific subclones of P2 were enriched in tumour suppressor genes, such as BRCA2, 

FOXO1, FOXO3, and RB1 (Fig 16a). Furthermore, we detected two, phylogenetically related, 

groups of subclones, all containing chr 6 and chr 13 deletions, which were also enriched in 

TCGA (Fig. 16b-j). These regions contain, among other genes, 8 TSGs, namely BRCA2, 

CCNC, CDX2, FOXO1, FOXO3, LATS2, PRDM1, and RB1. To ensure that these TSGs were 

co-deleted in single-cells and not a clustering artefact, we mapped single-cells harbouring a 

co-deletion of the 8 TSGs. Indeed, cells with co-deletions of these TSGs were highly enriched 

in TRRs and FERs (Fig. 16k-m). Furthermore, these TSGs were frequently deleted in TCGA 

(Fig. 16n). Lastly, we checked whether frequently mutated genes were also mutated in our 

patients. Indeed, we find non-synonymous mutations in key genes, including LRP1B, SPTA1, 

SPOP, FOXA1, FOXP1 (Fig. 16o-s).  
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Figure 15. Validation of deletions detected by scCUTseq. a, b) Single-cell copy number profiles 
(500kb) from applying scCUTseq a) and ACT b) on a tumour-rich region from P7. Colours indicate 
absolute copy numbers. c) Chr13 ideogram and DNA FISH probe locations. d) Whole-slide image (25X) 
after DNA FISH (left). Zoom in (100X) on white square region (right). e) Representative examples of 
cells without (top) and with (bottom) chr13 deletion. f) Quantification of downstream, deletion, and 
upstream probes in 51 fields of views. Downstream probe is set to 100%. g) Pearson’s correlation of 
percentage of cells identified with deletion and percentage of field of view that is annotated as tumour 
by a pathologist.  
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Figure 16. Highly localized subclones harbour key deletions in tumour suppressor genes. a) 
Heatmap showing deletions of TSGs in 7 highly localized TRR and/or FER specific subclones of P2. b) 
Histopathological assessment. c-i) Distribution of cells from the 7 subclones in a). Top of heatmap 
shows median copy number profiles, colours indicate the percentage of cells of each subclone 
belonging to each region. j) Circular plot showing enrichment values of amplifications (red) and deletions 
(blue) of TCGA Prostate Adenocarcinoma (PRAD). k-m) Number of cells, percentage of cells, and 
percentage of pseudo-diploid cells containing co-deletion of indicated genes. n) Frequencies of 
alterations of genes from k-m) in TCGA PRAD. o-s) Spatial distribution of non-synonymous mutations 
in genes frequently mutated in prostate cancer.   
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3 DISCUSSION AND CONCLUSIONS 

The papers included in this thesis investigate the three levels of genomic tumour 

heterogeneity: 1) inter-patient heterogeneity (paper I); 2) intra-patient heterogeneity (paper 

II); and 3) intra-tumour heterogeneity (paper III). In the coming paragraphs, I will discuss the 

main findings of each constituent paper followed by a conclusion of my doctoral studies.  

There have been many studies investigating inter-patient heterogeneity. While this 

field started with looking at a handful of tumours at a time, the field has now evolved rapidly 

and studies now compare the (genomic) profile of hundreds, if not thousands, of tumours at a 

time. The formation of large-scale consortia, such as TCGA202, PCAWG203, and Hartwig 

Medical Foundation (HMF)81, has enabled researchers to compare thousands of tumours 

across different tumour types. More recently, the 100,000 Genomes England consortium 

aimed at performing WGS of 100,000 genomes of patients with a wide variety of diseases, 

giving researchers access to the largest genomic data source known to date204. 

With the rise of these consortia, record amounts of sequencing data are being 

generated, making the current problem not acquiring data but processing and analysing it. 

Currently, there is a large amount of redundancy in terms of sequencing data. Many of the 

outstanding research questions can be answered with data that has been previously 

generated. Instead, research groups commonly generate their own data instead of using 

previously generated data. This might be due to data not being findable or accessible (e.g., 

not allowed to be shared due to ethical limitations). For these reasons we used publicly 

available data for paper I, and supplemented and validated research findings with public data 

for paper II and paper III. 

Our aim of paper I was to investigate the prevalence, type, length, and genomic 

distribution of SCNAs in human cancers. Using publicly available data from TCGA, we were 

able to conduct a comprehensive analysis of 853.218 SCNAs across 20.249 tumours 

belonging to 32 cancer types. We found that between cancer types and within cancer types, 

tumours were highly heterogenous in terms of 1) number of SCNAs; 2) percentage of the 

genome altered by SCNAs; and 3) average size of SCNAs. Furthermore, depending on the 
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cancer type, some chromosomes are more preferentially lost or gained. Finally, we detected 

co-alterations of key oncogenes and TSGs. Previously, some studies have investigated levels 

of heterogeneity between cancers based on mainly SNVs and indels203,205, and more 

commonly, within one cancer type206–229. However, a comprehensive analysis specifically on 

SCNAs like we did here has not previously been done, providing a valuable resource for the 

community.  

Many studies have investigated inter-patient heterogeneity and intra-tumour 

heterogeneity. However, intra-patient heterogeneity is often ignored. Importantly, metastatic 

tumours are ultimately, for many cancers, the reason that patients succumb to cancer. The 

lack of large-scale research on intra-patient heterogeneity can be explained by accessibility of 

samples, it is extremely difficult to get a large set of samples consisting of primary and 

secondary tumours from the same patient. The HMF has performed WGS of 2,520 metastatic 

solid tumours and matched normal tissue, providing the community with an important dataset 

on metastatic tumours. However, since they exclusively have WGS from the metastatic 

tumour, they are unable to perform comparative analyses between the primary and metastatic 

tumour.  

In recent years, smaller scale studies have performed WES and/or shallow WGS on 

pairs LUAD and their matched BM230–232. However, these studies do not contain LUSC 

samples and primarily focus on SNVs and indels. Therefore, in paper II, we aimed to assess 

the level of intra-patient heterogeneity in primary NSCLC (LUAD and LUSC) and their matched 

BM. We showed that there is clear intra-patient heterogeneity, with BM samples showing 

different copy number profiles and harbouring, on average, more SCNAs. In contrast, when 

we performed multi-region shallow WGS on 15 BMs and did not detect significant intra-tumour 

heterogeneity at the SCNA level. Next, we identified putative metastatic driver SCNAs in key 

TSGs and oncogenes, such as MLLT11, CDKN2A/B, MYC, DCC, and ERBB2, and putative 

metastatic driver SNVs in EP300, PBRM1, KDM6A, NSD1, and NOTCH1. To conclude, with 

this study, we further expanded knowledge on NSCLC and BM heterogeneity and putative 

drivers SCNAs and SNVs important for metastasis. As we saw from Paper I, tumours within 

a cancer subtype can still be highly heterogeneous. Therefore, it is important to note that we 
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only had paired NSCLC and BM samples for 33 LUAD and 18 LUSC patients and all samples 

were obtained from an ethnically homogenous (European Poles) group, making it difficult to 

extrapolate our findings to other NSCLC samples. Larger, multi-centre, studies need to be 

performed to validate our findings. 

Studies have shown that high levels of ITH have been associated with poor prognosis, 

treatment resistance and recurrence86. With the drop in sequencing cost, scDNA-seq studies 

have become more popular to study ITH. Although most of these studies are limited to 

performing scDNA-seq on few samples, they have been crucial in understanding tumour 

evolution.  

Prior research has demonstrated that early localized prostate cancer is defined by 

multiple, spatially separated, tumour foci233. Additionally, SNVs have been detected in 

morphologically healthy prostate tissue in prostate cancer234. To investigate whether this is 

also true for SCNAs, we performed multi-region scCUTseq in paper III. Our aims for this study 

were: 1) assess the level of ITH in early prostate cancer, and 2) detect whether SCNAs are 

present in morphologically healthy tissue regions. We detected transient CIN in the tumour 

and in morphologically healthy tissue. This was evidenced by a substantial number of cells 

harbouring unique chromosome or chromosomal arm losses and or gains. We detected three 

distinct groups of cells within the prostate: 1) diploid cells; 2) pseudo-diploid cells; and 3) 

monster cells. We observed an enrichment of diploid cells in normal regions and pseudo-

diploid cells in tumour-rich regions, while monster cells were equally distributed over the entire 

prostate, again suggesting that there were elevated CIN levels across the prostate. Next, we 

detected highly localized subclones exclusive to tumour-rich regions that harboured deletions 

in multiple TSGs, including BRCA2, CCNC, CDX2, FOXO1, FOXO3, LATS2, PRDM1, and 

RB1. These genes are frequently deleted in TCGA. Lastly, we validated deletions using 

shallow WGS, ACT, an orthogonal scDNA-seq method, and DNA FISH. 

These results support prior findings of the presence of SNVs in healthy prostate tissue. 

Suggesting that there might be higher levels of genomic instability in the entire prostate, giving 

rise to aberrant cells, of which some might ultimately become tumour cells. 
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To conclude, during my doctoral studies I have made, together with my colleagues, a 

significant impact in the field of cancer genomics. Firstly, we generated an atlas of SCNAs in 

20.249 tumours across 32 cancer types, providing an extensive resource for researchers in 

the community. Second, we systematically assessed intra-patient heterogeneity of NSCLC 

and matched BM. We identified putative metastatic driver SCNAs and SNVs, illuminating 

potential dynamics and pathways crucial for metastasis. Lastly, we pioneered the first organ-

wide, single-cell SCNA atlas. We observed subclones of cells within tumour regions with key 

deletions and hypothesize the presence of transient CIN across the entire prostate. 

Furthermore, we detected highly localized subclones harbouring deletions in key TSGs. 

Collectively, these projects highlight my contributions to the cancer genomics field during my 

doctoral studies, enriching our understanding of inter-patient, intra-patient, and intra-tumour 

heterogeneity in human cancers. 
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