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Abstract 

Mammalian translation termination intermediates captured using PDMS microfluidics-based 

time-resolved cryo-EM  

Prikshat Dadhwal 

 

 Termination of translation in eukaryotes occurs when a translating ribosome encounters a 

stop codon (UAA, UAG, or UGA) in its A site. This triggers the recruitment of translation 

termination factors eRF1, a tRNA-mimicking protein responsible for decoding the stop codon 

and catalyzing peptide release, and eRF3, a translational GTPase that stimulates peptide release 

in a GTP-hydrolysis-dependent manner. Upon successful stop codon decoding by eRF1, eRF3 

carries out GTP hydrolysis and dissociates from the ribosome. eRF1 subsequently gets 

accommodated into the peptidyl transferase center (PTC) and catalyzes the release of the nascent 

peptide [1-9]. The structures for the pre-accommodated eRF1 with eRF3 trapped on ribosome 

using non-hydrolysable GTP analogs as well as for the PTC-accommodated eRF1 have been 

solved using cryogenic electron-microscopy (cryo-EM) [3-6, 11, 12]. The structures reveal the 

binding mode and interactions between the release factors and the pre-termination complex. 

However, the mechanism of eRF3 GTPase activation and subsequent eRF1 accommodation into 

the PTC remains poorly understood. To address this knowledge gap, we used single-particle 

time-resolved cryo-EM (TRCEM) [13-23] to capture the structures of intermediates formed 

during the termination process.   

For our TRCEM experiments, we first developed a Polydimethylsiloxane (PDMS)-based 

modular microfluidic mixing-spraying device with a SiO2 internal coating. The device has a 

SiO2-coated PDMS-based 3D splitting-and-recombination (SAR) micro-mixer capable of mixing 



 

 

two fluids within 0.5 ms with more than 90% efficiency. The SiO2 coating strengthens the PDMS 

channels and acts as a hydrophilic barrier preventing sample adsorption to the PDMS surface. 

The micro-mixer is connected to a glass microcapillary that acts as the reaction channel. 

Channels of different lengths can be used to vary the overall reaction time between 10 ms and 

1000 ms. The microcapillary is connected to a 3D micro-sprayer for generating a 3D plume of 

sprayed droplets. A cryo-EM grid is passed through the spray cone to collect droplets and is 

rapidly plunged into liquid cryogen for vitrification.  

By using TRCEM as well as the conventional blotting method for cryo-EM sample 

preparation, we captured the reaction between a pre-termination (pre-TC) mimic and the ternary 

complex of eRF1, eRF3, and GTP at reaction times of 450 ms, 900 ms, 15 s, and 10 min. 

Classification of the cryo-EM data resulted in maps for five distinct factor-bound classes. Four 

maps belonged to intermediates with densities for eRF1 and eRF3 bound to the pre-TC in 

varying conformations. The fifth map had a density matching the PTC-accommodated eRF1 [3]. 

Population analysis allowed us to arrange the classes chronologically and track the events 

leading to GTPase activation during the termination process. Atomic model building and 

refinement allowed us to determine the hydrolysis state of the eRF3-bound GTP and revealed the 

catalytic mechanism for GTP-hydrolysis. The models revealed a potential mechanism for GDP 

dissociation post-GTP-hydrolysis. 
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Chapter 1: Proteins and the translation process 

 

1.1 Proteins are versatile and essential components of cells  

Proteins are essential macromolecules that play a critical role in cell function. With 

varying shapes and sizes, proteins perform a wide range of functions. As enzymes, they catalyze 

the creation and breakdown of diverse biomolecules. As transporters and channels, they help 

move materials across the cell membrane and maintain the proper concentration levels. As 

receptors and transcription factors, they form signaling networks that enable cells to respond to 

environmental signals and regulate specific genes. As microtubules and microfilaments, they 

provide structural support and transport within the cell. Despite their diversity in function, all 

proteins are formed in the same way by linking amino acids with peptide bonds. Twenty-one 

different amino acids are available for protein synthesis, leading to a vast array of protein 

sequences. After synthesis, proteins fold into specific 3D structures based on their sequence and 

length. The shape and mobility of the protein allow it to carry out its biological function [24]. 

 

1.2 Sequence information is passed from DNA to mRNA to protein 

Genetic information is stored in Deoxyribonucleic acid (DNA) in the form of genes. 

These genes are composed of codon triplets that represent different amino acids. There are sixty-

four distinct triplets, which code for twenty-one different amino acids and a stop signal. DNA-

dependent RNA polymerase copies the genetic data during transcription, converting it into 

messenger Ribonucleic acid (mRNA). The ribosome, a complex molecular machine, uses the 

mRNA as a blueprint for synthesizing proteins in a process called translation. This process of 
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transferring information from DNA to mRNA to protein is the central dogma of molecular 

biology [25].  

 

1.3 Ribosomes are molecular machines responsible for protein synthesis  

Ribosomes are composed of a combination of protein and ribosomal RNA and have a 

consistent structure among different life forms. They consist of two subunits: the large subunit 

(LSU) and the small subunit (SSU) (Figure 1). They are known by their sedimentation 

coefficients in Svedberg units. The prokaryotic ribosome is known as 70S and includes 30S 

(SSU) and 50S (LSU) subunits. The eukaryotic ribosome is known as 80S and includes 40S 

(SSU) and 60S (LSU). The prokaryotic LSU is made up of two rRNA molecules (23S and 5S) 

and around 30 proteins, while the eukaryotic LSU is made up of three rRNA molecules (25S-

28S, 5.8S, and 5S) and 46-47 proteins. The prokaryotic SSU comprises a single 16S rRNA and 

around 22 proteins, while the eukaryotic SSU comprises an 18S rRNA and around 33 proteins. 

Both subunits' rRNA is highly structured and mostly double-stranded, forming functionally 

important motifs. The LSU includes the peptidyl transferase center (PTC), where peptide bond 

formation occurs, the peptide exit tunnel from which the newly synthesized peptide chain exits, 

as well as the GTPase-associated center (GAC), and the Sarcin-Ricin loop (SRL), both of which 

play important roles in binding and activation of various translational guanosine triphosphatases 

(GTPases). The SSU has two noticeable parts called the head and body, which can move 

relatively. The mRNA encoding the protein is threaded between the two [28]. The SSU also has 

three distinct binding sites for transfer RNA (tRNA): the aminoacyl site (A site), the peptidyl site 

(P site), and the exit site (E site). The aminoacyl-tRNA first binds to the mRNA in the A site 

using its anticodon stem loop (ASL). The A site also includes the decoding center of the 
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ribosome consisting of a set of conserved bases that undergo conformational changes in response 

to proper codon-anticodon base pairing. After decoding, the aminoacyl end of the tRNA is 

accommodated into the PTC, where peptide bond formation occurs, and the newly formed 

peptide is transferred to the A-site tRNA. The peptidyl-tRNA is then moved from the A site to 

the P site and the deacylated tRNA is moved from the P site to the E site, from where it exits the 

ribosome [29-36]. The PTC's catalytic activity is carried out by rRNA alone, making the 

ribosome a true ribozyme [37]. The mammalian ribosome also contains a Z site for tRNA 

binding located downstream of the E site. The Z site is occupied by tRNA under normal growth 

conditions and its occupancy is increased under translational stress [26, 27]. The two subunits 

interact with each other through RNA-RNA, RNA-protein, and protein-protein interactions 

called inter-subunit bridges, some of which are broken and re-formed as the ribosome undergoes 

various conformational changes during the translation cycle [38]. 
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Figure 1. Ribosomal subunits in prokaryotes and eukaryotes. a) and c) Thermus thermophilus 

30S (PDB: 2J00), b) and d) Tetrahymena thermophila 40S (PDB: 2XZM), e) and g) Thermus 

thermophilus 50S (PDB: 2J01), and g) and h) Tetrahymena thermophila 60S (PDBs: 4A17 and 

4A19). Universally conserved proteins are colored light blue; proteins specific to archaea and 

eukarya are colored gold; proteins and RNA elements specific to eukarya are colored red; and the 

rest are colored grey. SSU structures: head (H), beak (Be), platform (Pt), shoulder (Sh), body (Bo), 

left foot (LF), and right foot (RF). LSU structures: central protuberance (CP), sarcin-ricin loop 

(SRL), and protein exit tunnel. The A, P, and E sites on both subunits are marked with circles. 

Reprinted with permission from Elsevier, Klinge et al., 2012 [28] 

 

1.4 The translation process 

Translation involves dozens of protein and RNA factors and can be divided into four 

stages: initiation, elongation, termination, and recycling (Figure 2). It is a highly regulated 

process that is conserved across different kingdoms of life. 



6 

 

 

Figure 2. The translation process in prokaryotes and eukaryotes. Initiation factors (IFs in 

prokaryotes and eIFs in eukaryotes), elongation factors (EFs and eEFs), termination factors (RFs 

and eRFs), and recycling factors are depicted. Conserved steps and factors are depicted in black. 

Evolutionarily divergent steps and factors are colored green for prokaryotes and red for eukaryotes. 

Reprinted with permission from Springer Nature, Melnikov et al., 2012 [39] 

 

1.5 Initiation of translation 

The first step in protein synthesis is initiation, which is highly regulated and determines 

the rate of the process [40]. The goal of initiation is to position the initiator tRNA in the P site of 
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SSU, where it can base-pair with the start codon (AUG for canonical initiation) of the mRNA, 

and trigger the joining of the LSU. This creates the "elongation-competent" ribosome, which is 

ready for the next steps of translation. The initiation process differs between prokaryotes and 

eukaryotes, with eukaryotic initiation involving more protein factors and being more regulated 

(Figure 2). In addition to these processes, some viruses use a non-canonical initiation process 

called Internal Ribosomal Entry Site (IRES)-mediated initiation [41], which we have used as a 

biochemical tool in our study. 

 

1.5.1 Initiation in Prokaryotes 

In prokaryotes, translation initiation usually begins by binding of the SSU to the 

ribosome-binding site located in the 5’ untranslated region (5’UTR) of mRNA. Most prokaryotic 

mRNAs contain an AG-rich sequence called the Shine-Dalgarno (SD) sequence [42] in their 

5’UTR. This sequence is complementary to and base pairs with the anti-Shine-Dalgarno (aSD) 

sequence present on the 3’-end of the 16S rRNA in the SSU. This base pairing places the start 

codon near the P site of the SSU [43]. Some prokaryotic mRNAs contain 5’UTR that lacks the 

capacity to form stable SD-aSD pairing. Initiation for these mRNAs proceeds by a sequence non-

specific binding of the SSU to the 5’UTR. The 5’UTR of non-SD-aSD paring mRNAs are often 

unstructured and the AUG start codon often resides in a single-stranded region facilitating SSU 

binding [43]. Another group of transcripts called ‘leaderless’ mRNA either completely lacks a 

5’UTR or contains a short sequence (<8 nucleotides) upstream of the start codon [43]. The 

leaderless mRNA is capable of binding to both the SSU as well as the 70S ribosome [43], but the 

exact mechanism of initiation remains poorly understood. After locating the start codon, the 

binding and correct positioning of the initiator tRNA is facilitated by three different initiation 



8 

 

factors (IF1, 2, and 3). Once the initiator tRNA is properly positioned, the IFs leave and the LSU 

joins. This results in an elongation-competent complex that has an empty A site and is prepared 

for subsequent elongation cycles [39]. 

 

1.5.2 Initiation in eukaryotes 

Eukaryotic mRNA does not contain the Shine-Dalgarno sequence for positioning the start 

codon near the P site. Therefore, the eukaryotic initiation complex needs to search for the start 

codon via a process called ‘scanning’. The eukaryotic mRNA has a 7-methylguanosine addition 

at its 5’-end, which is commonly known as the 5’-cap. This cap is crucial for the activation of 

mRNA during the initiation of translation. The eIF4F complex, comprising of eIF4E (cap-

binding protein), eIF4A (RNA helicase), and eIF4G (scaffolding protein), binds to the 5’-cap. 

Moreover, eIF4G also binds to the poly-A binding protein (PABP) situated at the mRNA’s 3’-

end, thereby bringing both ends together. This closed-loop mRNA is now primed for initiation. 

To bind to the mRNA, the SSU must also be activated. The eukaryotic initiation factors 

eIF1, eIF1A, eIF5, and eIF3 initially bind to the SSU and prompt the binding of the ternary 

complex consisting of eIF2, GTP, and the initiator tRNA. This results in the formation of the 43S 

pre-initiation complex (PIC), which has an open mRNA channel and is prepared to bind to the 

activated mRNA. 

After binding to the mRNA, the 43S-PIC initiates the scanning process. It searches for 

the start codon by scanning the 5' untranslated region (5'UTR) of the mRNA in the 5' to 3' 

direction. Once the initiator tRNA recognizes the start codon in the SSU P site, eIF2 hydrolyzes 

the bound GTP. This triggers conformational changes in the SSU, which lock the mRNA in 

place and help form the 48S initiation complex (48S IC). The 48S IC recruits the LSU with the 
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help of the checkpoint GTPase eIF5B. As the LSU is recruited, eIF1, eIF2-GDP, and eIF5 depart 

from the 48S IC. After a final conformation check carried out by eIF5B and eIF1A, the eIF5B-

bound GTP is hydrolyzed, and the two proteins dissociate from the ribosome, resulting in the 

formation of an elongation-competent ribosome with an empty A site and a P-site tRNA [45, 46]. 

 

1.5.3 Internal ribosome entry site (IRES)-mediated initiation 

In addition to the methods mentioned earlier, there are various non-canonical ways to 

start translation. IRES-mediated initiation is one such method. IRESs are RNA sequences that 

exist in either the 5’-UTR or the intergenic region of some positive-strand RNA viruses. These 

sequences have structural characteristics that allow them to begin translation on host ribosomes, 

without needing some or all of the initiation factors. IRESs are categorized into four types (I-IV) 

based on their structural complexity and the number of initiation factors required. Type I IRESs 

are the least structured and require the most initiation factors, while Type IV IRESs are the most 

structured and do not require any initiation factors to begin protein synthesis. Unlike Type I-III 

IRESs, Type IV IRESs do not start protein synthesis from an AUG start codon, but instead, use a 

non-AUG codon to start protein synthesis and move straight to the elongation phase [41]. 

We employ the Type IV IRES from the intergenic region of Halastavi árva virus 

(HalV) [33] to assemble ribosome complexes for our studies.  
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Figure 3. Factor requirements for canonical cap-dependent and IRES (Type I-IV) mediated 

translation initiation. Reprinted with permission from Filbin and Kieft [41]. 

 

1.6 Elongation of the polypeptide chain 

Elongation follows initiation and is the most processive step of translation. It is a cyclical 

process involving the delivery of aminoacyl-tRNA to the ribosomal A site, a peptidyl transfer 

reaction to move the peptide chain to the A-site tRNA, and a translocation step to move the 

ribosome to the next codon. The elongation process is highly conserved between prokaryotes and 

eukaryotes and is carried out by homologous proteins [39]. Elongation begins with the delivery 

of the first aminoacyl-tRNA to the A site of an elongation-competent ribosome by GTPases -- 
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EF-Tu in prokaryotes and eEF1A in eukaryotes -- in a ternary complex with GTP [48, 49]. The 

anticodon stem loop of the aminoacyl-tRNA interacts with the A-site codon in the decoding 

center of the ribosome. Successful decoding triggers GTP hydrolysis and eventual departure of 

EF-Tu/eEF1A and GDP-Pi from the ribosome. The aminoacyl end of the tRNA then gets 

accommodated into the PTC where the peptidyl transfer reaction takes place moving the peptide 

chain to the A-site tRNA. Translocation follows peptide transfer and is carried out by GTPases 

EF-G in prokaryotes and eEF2 in eukaryotes. EF-G/eEF2 partially insert into the A site on the 

LSU and interacts with the peptidyl-tRNA. The proteins act as molecular ratchets and move the 

ribosome on the mRNA by three nucleotides coupled with GTP hydrolysis. This also results in 

the movement of the peptidyl-tRNA to the P site and an empty A site ready for the next 

elongation cycle [34]. 

 

1.7 Termination of the translation 

After several elongation cycles, the ribosome will eventually encounter one of three stop 

codons (UAA, UAG, or UGA), signaling the end of the mRNA coding region. When the stop 

codon enters the A site of the ribosome, translation termination is triggered. The termination 

process is facilitated by proteins known as termination or release factors (RFs). In both 

prokaryotes and eukaryotes, two classes of RFs exist class I and class II. Class I RFs act as tRNA 

substitutes, responsible for decoding the stop codon and catalyzing peptide release. Class II RFs 

are GTPases, and their function differs between prokaryotes and eukaryotes [1-12]. 

 

  



12 

 

1.7.1 Termination of translation in prokaryotes 

Prokaryotes have two class I RFs, namely RF1 and RF2. Both RFs can recognize the 

UAA codon whereas the UAG and the UGA codons are uniquely recognized by RF1 and RF2, 

respectively. Class I RFs consist of four domains: Domain 1 is responsible for binding to the L11 

stalk of LSU and the class II release factor, Domains 2 and 4 together form a super domain 

responsible for stop codon recognition, and Domain 3 contains the catalytic GGQ motif 

responsible for catalyzing peptide release. The process has been studied extensively using 

biochemical, biophysical, and X-ray crystallographic studies. With the addition of recent studies 

with time-resolved cryo-EM, we have an almost complete picture of the termination process in 

prokaryotes [49]. 

RF1 and RF2 adopt a compact conformation in solution, where the catalytic domain 

harboring the GGQ motif is packed against the codon recognition domain. The RFs initially bind 

to the ribosome in this compact form. The universally conserved nucleotides of the decoding 

center - G530, A1493, and A1493 in E. coli 16S - play an important role in stop codon decoding 

and RF activation. They interact with the flexible switch loop (~290-305 in RF1 and ~310-325 in 

RF2) of the RFs and adopt a termination-specific conformation. This triggers the extension of the 

GGQ harboring domain 3 into the PTC. The GGQ motif catalyzes the hydrolysis of the ester 

bond between the nascent peptide and the P-site tRNA [49, 50]. 

After peptide release, the class I RFs dissociate from the ribosome. The dissociation is 

facilitated by the class II release factor RF3. RF3 is a GTPase homologous to EF-G and binds to 

the post-peptide release complex along with GDP. After binding, the GDP is exchanged with 

GTP resulting in conformational changes in RF3 as well as the ribosome. RF3-GTP stabilizes the 

ribosome in a rotated state and facilitates the release of class I RFs. RF3 then hydrolyses the GTP 
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and dissociates as well. Notably, RF3 is not conserved in prokaryotes and is non-essential for E. 

coli. This suggests that the release of the class I RFs is more dependent on ribosome 

rearrangement than on RF3 [50, 51].   

 

1.7.2 Termination of translation in eukaryotes 

Eukaryotic translation termination differs significantly from prokaryotic termination and 

is the primary focus of this work. Eukaryotes possess only one class I release factor named eRF1, 

which decodes all three stop codons. eRF1 is evolutionarily unrelated to the prokaryotic class I 

release factors and has a different domain architecture. eRF1 has three domains: the N-terminal 

domain (NTD) decodes the stop codon, the middle (M) domain catalyzes the hydrolysis of the 

ester bond between the nascent peptide and the tRNA, and the C-terminal domain (CTD) 

interfaces with the class II release factor eRF3, the GAC, and the SSU head (Figures 4B and 5). 

The NTD contains the conserved TASNIKS motif (residues 58-64 in human eRF1) which 

decodes the stop signal. Two additional motifs YxCxxxF (125-131) and GTS (31-33) help 

distinguish the +2 and +3 purine bases of the stop codon. Additionally, E55 helps distinguish 

UGG, which codes for tryptophan, from the stop codons. The M domain contains the conserved 

GGQ motif responsible for the catalysis of peptide release. The GGQ motif is held by eRF3 in an 

inactive state upon initial binding to the ribosome and is accommodated into the PTC only upon 

successful decoding of the stop codon. The CTD contains a mini domain (residues 328-373 in 

humans) that interacts with the N terminus of the ribosomal protein eS31. Mutations in the mini 

domain have been shown to increase termination readthrough of the UAG stop codon [1, 3, 11, 

12, 52, 53, 54].  
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Eukaryotic class II release factor eRF3 is a GTPase homologous to elongation factors EF-

Tu and eEF1A. eRF3 consists of three structured C-terminal domains (domain II, domain III, and 

G-domain) and an unstructured N-terminal region (Figure 4A). The latter is dispensable for the 

termination of translation. The function of eRF3 is significantly different from the prokaryotic 

RF3. eRF1 exists in solution in an extended conformation making it incompatible with binding 

to the ribosome. eRF3 acts as a chaperone and induces the compaction of eRF1, making it 

capable of binding to the pre-termination ribosome. In this way, eRF3 promotes the peptide 

release activity of eRF1 and makes the process GTP hydrolysis dependent [2, 4-12, 34, 55]. 

The release factors bind to the ribosome in a ternary complex with GTP. The two release 

factors form extensive contact with each other. The β7-α5 loop in the M domain of eRF1 binds 

the cleft between the G domain and domain 2 of eRF3 and directly interacts with the switch 1 

and switch 2 regions [8]. Additionally, the helices α9, α12, and beta-strand β10 in the CTD of 

eRF1 interface with the loops connecting the beta strands β13- β14 and β15-16 in the domain 3 

of eRF3 [8]. Upon binding, the eRF1 NTD reaches into the ribosomal A site and decodes the 

stop codon. Successful decoding triggers GTP hydrolysis by eRF3 and its eventual departure. 

Following this, eRF1 gets accommodated into the PTC and cleaves the ester bond between the 

nascent peptide and the P-site tRNA (Figure 5A). Unlike in prokaryotic termination, the 

eukaryotic class I release factor remains bound to the ribosome for the subsequent recycling step 

[3, 11, 34, 58].  
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Figure 4. Secondary structure and domain architecture of eukaryotic release factors and 

homologous proteins. A) Domain architecture for translational GTPases eRF3 and eEF1A 

showing the homologous G-domain (red) and the two β-barrel domains (yellow and orange). 

Motifs important for GTP hydrolysis (switch 1, switch 2 (Sw 2), and P loop) are marked. 

B) Domain architecture for decoding protein eRF1. The key motifs for stop codon recognition 

(TASNIKS, GTS, and YxxCxxxF) and the catalytic GGQ motif are indicated. Adapted from Shao 

et al., 2016 [8]. 
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Figure 5. Accommodation process during eukaryotic translation termination and ribosome 

rescue. A) Structures for the eukaryotic termination complexes depicting the mechanism for eRF1 

accommodation into the PTC. B) Comparison of the compact and extended conformations of eRF1 

from the pre-accommodated and post-accommodated structures. C) and D) Side-by-side 

comparison of the pre-accommodated and post-accommodated states of eRF1. Adapted from Shao 

et al., 2016 [8] 
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1.8 Recycling of the ribosomes 

Following peptide release, the ribosomes need to be recycled for performing subsequent 

protein synthesis. The process is quite different between prokaryotes and eukaryotes. In 

prokaryotes, recycling starts after dissociation of the release factors, whereas in eukaryotes the 

class I release factor remains bound and participates in the recycling process (Figure 2). 

 

1.8.1 Ribosome recycling in prokaryotes 

The prokaryotic post-termination complex consists of a ribosome bound to mRNA with a 

deacylated tRNA in the P site and an empty A site. This complex needs to be disassembled for 

recycling of ribosomes and the disassembly is carried out by the ribosome recycling factor (RRF) 

with help from EF-G. RRF is similar in shape and size to a tRNA and binds the A site. EF-G 

binds the inter-subunit space and partially inserts into the A site. The two proteins displace the 

tRNA from the P site and carry out GTP hydrolysis-dependent splitting of the ribosome into its 

subunits [56]. IF3 then binds to the SSU, preventing its reassociation with the LSU till the next 

round of initiation [57]. 

 

1.8.2 Ribosome recycling in eukaryotes 

The eukaryotic post-termination complex has the class I release factor eRF1 still bound 

with a P-site deacylated tRNA and an mRNA. eRF1 facilitates ribosome recycling by recruiting 

the adenosine triphosphatase (ATPase) ABCE1(ATP-binding cassette sub-family E member 1) 

(Figure 5A) [58]. ABCE1 contains two nucleotide-binding domains (NBDs) that dimerize upon 

binding two ATP molecules. It also contains an N-terminal iron-sulfur (FeS) cluster domain, 

containing two [4Fe-4S]2+ clusters as well as a conserved helix-loop-helix (HLH) motif [3]. 



19 

 

ABCE1 binds to the ribosome and interfaces eRF1 in a semi-closed dimeric form along with two 

ATP molecules. ABCE1 hydrolyzes the ATP and adopts a closed conformation upon 

recognizing a splitting competent post-termination complex. This displaces the FeS domain 

towards eRF1 and triggers subunit splitting [59]. After splitting, ABCE1 remains bound to the 

SSU preventing its rejoining with the LSU. Additionally, ABCE1 has also been proposed to play 

a role in initiation, thereby linking the last step of translation to the first one [60-62].  
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Chapter 2: Introduction to single-particle TRCEM sample 

preparation 

 

2.1 Cryo-EM is a method for high-resolution structure determination 

Single-particle cryo-EM has become the method of choice for high-resolution 

biomolecular structure determination over the past couple of decades. The technique had been in 

development for many decades but was overshadowed by X-ray crystallography and Nuclear 

Magnetic Resonance (NMR), which provided higher-resolution information. Despite yielding 

lower resolution, cryo-EM still had its advantages. Unlike X-ray crystallography, cryo-EM does 

not require the crystallization of biomolecules, and unlike NMR, it is not limited to small 

proteins. This allows cryo-EM to apply to a wider variety of biomolecular targets. The main 

development that catapulted cryo-EM to be the mainstream structure determination method was 

the Direct Electron Detectors (DED) [63-66]. Before DEDs, the images were collected either on 

film or charge-couple device (CCD)/complementary metal-oxide semiconductor (CMOS) 

cameras. Both resulted in images with significant background noise and low signal, in addition to 

blurring due to sample motion during the exposure [67-69]. DEDs not only collect images with a 

better signal-to-noise ratio (SNR), but their high frame rates also allow for capturing multi-frame 

movies [70, 71]. The movie frames can then be aligned to compensate for sample drift during the 

exposure, a procedure termed ‘motion correction’ [72, 73]. The improved capabilities of the 

hardware were combined with the development of better software. The high-resolution 

capabilities of cryo-EM and the improved availability of high-end microscopes and better 

software have contributed significantly to making cryo-EM the technique of choice for 

biomolecular structure determination at atomic resolution [74].  
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Figure 6. Trend of the highest and average resolution for structures solved by single-particle 

cryo-EM. Reprinted with permission from Oxford University Press, Fukuda et al., 2022 [74] 

 

2.2 Sample preparation is limiting for capturing intermediate structures 

Sample preparation for single particle cryo-EM involves the application of a few 

microliters of sample onto a cryo-EM grid followed by blotting to remove excess liquid, leaving 

behind a thin (~100 nm) film with a single layer of biomolecules. The grid is subsequently 

plunged into liquid ethane for rapid vitrification, trapping the biomolecules in a frozen-hydrated 

state (Figure 7) [75]. The process usually takes multiple seconds from initial application to 

freezing and the sample often reaches thermodynamic equilibrium by the time it is frozen. At 

thermodynamic equilibrium, most of the biomolecules occupy low energy states at the end of 
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their work cycles. Most high-energy states relevant for function are already depleted to a small 

fraction of the overall population [76]. This makes it difficult to study these high-energy states 

and it often requires the collection of large amounts of data to reach high resolution for these 

low-population states, making the process expensive in both instrument and computational times. 

The high-energy states are important to gain a full understanding of a biochemical system and 

are often good targets for therapeutic interventions. Many of these functionally-relevant high-

energy intermediates have lifetimes on the millisecond time scale [76]. Therefore, trapping them 

requires fast sample preparation methods with precise control of reaction times. 
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Figure 7. Sample preparation for single-particle cryo-EM by the conventional blotting 

method.  From Murata and Wolf, 2018 [75] 

 

2.3 TRCEM methods allow the capturing of intermediates 

The low population of high-energy intermediates at thermodynamic equilibrium makes it 

difficult to obtain high-resolution structures and adds high cost in terms of instrument and 

computational time. To tackle this problem, TRCEM sample preparation methods have been 

developed [13-23]. TRCEM methods allow for capturing biochemical reactions in a pre-

equilibrium state by controlling the total reaction time before vitrification. If the kinetics of a 
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biochemical reaction are known, the time points can be chosen such that the intermediates of 

interest are most abundant [77]. Thus, TRCEM provides access to information about biochemical 

reactions that is inaccessible by conventional methods [23]. 

 

2.4 TRCEM sample preparation has three steps 

Much like time-resolved methods in other biochemical fields, TRCEM has three main 

steps: 1) Initiation of reaction, 2) Incubation of reaction, and 3) Sample application and 

quenching. All three are discussed below.  

 

2.4.1 Initiation of reaction 

The first step for TRCEM sample preparation is the initiation of the biochemical reaction 

quickly and synchronously. This is often achieved by mixing the two reaction components. This 

can be done by hand via pipetting, but this is only applicable to slow reactions. Mixing by hand 

has been employed in many past studies and we have also employed it for part of this work. 

For reactions on the millisecond time scale, faster mixing methods are required. The diffusion 

rate of proteins is in the order of 100 µm2s-1 [78], which means diffusion alone is insufficient to 

achieve efficient mixing of reactions faster than a second (Figure 8a). Effective mixing is often 

achieved by reducing the distance that the two reacting species have to diffuse. This is done by 

increasing the contact surface and reducing the contact layer thickness between the two species. 

Fast mixing approaches can be categorized into two types: mixing post-application and mixing 

pre-application. 

Mixing post-application involves on-grid mixing of the reactants after sequential 

application. One approach to do this involves the application and blotting of the first reactant on 
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the grid followed by plunging the grid through an aerosol containing the second reactant. This 

approach was used to study ATP-dependent activation of myosin on actin fibers and 

acetylcholine-dependent relaxation of the acetylcholine receptor [17, 79]. The mixing depends 

on the film thickness and the diffusion rates of the molecules employed. The approach is 

therefore limited to the study of interactions between biological macromolecules with small 

molecules, as larger molecules have much slower diffusion rates. A more recent approach for on-

grid mixing TRCEM is employed in the Spotiton system [80]. The approach involves sequential 

application of the two reactants using two independent piezoelectric dispensers (Figure 8b). 

Spotiton uses special nanowire grids, with copper nanowires grown on the grid mesh. The 

nanowires wick away excess fluid from the grid squares resulting in the formation of thin layers. 

The thin layers allow for rapid mixing of the two reactants on the grid. The method has been 

used to study the structural dynamics of molecules like the ion channel MthK, RNA polymerase, 

and dynamin [81]. 

Mixing pre-application is a method in which the mixing of the reactants takes place 

before application to the grid. The mixing is often carried out using microfluidic mixers. Initial 

designs employed simple T-mixers that relied on diffusion across a single contact surface for 

mixing (Figure 8c) [82]. The T-mixers have low mixing efficiency at low flow rates and were 

replaced by more complex mixer geometries in later works. One such mixer was the planar 

butterfly mixer which achieved mixing by splitting and re-merging fluid streams multiple times 

to increase the fluid contact surface and reduce the diffusion layer thickness [16, 21, 22]. More 

recently, mixers with complex 3D geometries have been developed that achieve high mixing 

efficiency even at low flow rates (Figure 8d) [19]. The material used for constructing the 

micromixers has also changed significantly. Earlier methods used either glass or silicon [16, 21, 
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22] for fabricating micromixers, both of which require specialized equipment, training, and 

handling of hazardous chemicals. More recent methods have switched over to using elastic 

polymers, particularly Polydimethylsiloxane (PDMS), for fabricating the micromixers, making 

the process much simpler and cost-effective [19, 20, 23].  

Another method for reaction initiation applies to specific photo-activated processes and 

ligands. The process involves the application and blotting of a pre-mixed sample containing an 

inactive reactant or a caged ligand onto a cryo-EM grid. The reaction is then started by flashing a 

light thereby activating the reactant or releasing the ligand. The reaction time in this case 

depends on the plunging delay [83-86]. 

 

 

Figure 8. Overview of sample mixing. a) Depiction of diffusive-mixing of two species over time. 

b) On-grid mixing by sequential application of reactants using piezoelectric dispensers. The 
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mixing occurs in the overlapping regions. c) Parallel lamination mixing using a T-mixer. Mixing 

occurs primarily through diffusion at the interface of the two fluids. d) Mixing in a 3D micromixer 

by repeated breaking and re-merging of fluid streams. From Maeots and Enchev, 2022 [23]. 

 

2.4.2 Incubation of reaction 

After efficient mixing, the reaction needs to be propagated for a fixed amount of time to 

maximize the population for the intermediate of interest. For slow reactions, this process is often 

performed in a test tube before sample preparation by the conventional blotting method [87,88]. 

For the mixing post-application case, the reaction takes place on the grid itself and the reaction 

time can be controlled by controlling the delay before plunge freezing. Although it seems simple, 

the caveat is that the reaction takes place in a thin layer of liquid and the reactants are exposed to 

the air-water interface. Interactions with the air-water interface can affect the kinetics of the 

reaction and potentially introduce artifacts in the structures obtained [89, 90]. 

For the mixing pre-application approach, the incubation time depends on the time it takes 

from mixing the reactant to the freezing of the sample. This includes the time for mixing, any 

dead time involved in sample application post-mixing, and the time it takes to plunge freeze the 

sample. The fastest times achievable by this method fall in the 10 ms time frame. For longer 

reaction times, additional delay can be added usually by extending the fluid path after the 

micromixer [16, 19, 21, 22]. Since a constant fluid flow rate is used for micro-mixing, the 

residence time inside the delay line can be calculated precisely by taking the ratio of the volume 

of the delay line to the liquid flow rate. The residence time calculated in this manner is the 

average residence time and is not reflective of the actual residence time of the reactants in the 

channel. This happens because, under laminar flow conditions, the fluid velocity within the 
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channel varies depending on the distance from the channel walls. The fluid flowing closer to the 

walls slows down whereas the fluid towards the center of the channel speeds up. This results in a 

discrepancy in the residence time of reactants close to the walls as compared to reactants towards 

the center of the channel. This effect becomes even worse for longer incubation times [19, 20, 

23]. Experimental methods remain to be developed to overcome this issue.  

 

2.4.3 Sample application and quenching 

The final step of TRCEM sample preparation is the application of the reaction mixture to 

a cryo-EM grid followed by plunge freezing into liquid cryogen. Sample application is an 

important part of the TRCEM sample preparation process and often governs the quality of data 

obtainable. Single particle cryo-EM requires a monodispersed sample in a thin layer of vitrified 

ice to achieve good results. Many of the approaches involving mixing in a test tube or on-grid-

mixing use the conventional blotting method for achieving good ice thickness [87-88], but this is 

not feasible for some of the faster TRCEM approaches. Droplet-based sample application is the 

most common approach for fast TRCEM sample preparation. The droplet-based methods 

produce droplets by using atomizers [17, 79], electrospray nozzles [82], gas-assisted nozzles [16, 

18, 19, 22, 91], or piezoelectric nozzles [80, 81] (Figure 9). The droplets vary in size depending 

on the nozzle type used and are projected directly onto the grid. Blotting is unnecessary for 

droplets in the 10 µm size range, making the process much faster. The droplets spread out on the 

hydrophilic grid surface resulting in thin edges suitable for cryo-EM data collection. After 

spraying, the grid is rapidly plunge-frozen into liquid cryogen and stored under liquid nitrogen 

before data collection. 
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Figure 9. Sample dispensing methods for TRCEM. a) Atomizer spray based on Bernoulli’s 

principle for generating very small droplets. b) Electrospray nozzle, which uses electric potential 

to ionize the sample and generate a fine mist of droplets. c) Piezoelectric nozzle, which generates 

droplets of uniform size using acoustic vibrations generated by the piezo element. d) Gas-assisted 

spray nozzle, which uses pressurized gas to break up the sample stream into small droplets and 

accelerate them toward the grid. From Maeots and Enchev, 2022 [23]. 

 

2.5 Challenges in TRCEM sample preparation 

Despite significant developments in the method, there remain multiple challenges that 

limit the widespread application of TRCEM. The spraying method most commonly used for 

TRCEM sample preparation results in grids with far fewer collectible regions than the grids 

prepared by the conventional blotting method. The ice thickness is also quite variable resulting in 

low SNR in the data [91]. Both result in the requirement of more instrument time as well as 
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complicate downstream data processing. Drastic improvements in TRCEM sample preparation 

are necessary to produce higher-quality grids.  

Another limitation of TRCEM is the requirement of large sample quantities. Current 

methods for TRCEM require 3-10 times [91] more samples than the conventional blotting 

method putting a huge strain on the biochemistry side of the process. New approaches shifting 

away from continuous flow methods have addressed these issues to some extent [92], but further 

work needs to be done. 

Another limitation is the accuracy of reaction times for the experiments. Both on-grid and 

off-grid mixing approaches suffer from this issue. The reaction times attributed to an experiment 

do not reflect the real reaction times for the reactants. In the on-grid mixing approach, the 

interactions of the reactants with the air-water interface can affect the reaction whereas in the 

microfluidics-based approach, the velocity distribution under laminar flow causes a widening of 

the reaction time distribution [19, 20]. In contrast to on-grid mixing and reaction which are 

difficult to model, microfluidic-based TRCEM methods can be modeled quite well. 

Computational microfluidics models can be incorporated to better understand the kinetics 

underlying a biochemical reaction.  
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Chapter 3: PDMS-based microfluidics with internal SiO2 coating for 

time-resolved cryo-EM 

 

During my thesis work, I was involved in the development of PDMS-based microfluidic 

devices for TRCEM as well as modifying the time-resolved plunge freezing apparatus to 

interface with these microfluidic devices. This chapter outlines my contributions to the 

development of this PDMS-based TRCEM method. 
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3.1 Materials and Methods  

 

3.1.1 Purification of E. coli 70S ribosomes 

E. coli MRE600 cells were grown overnight at 37˚C in LB culture media to a final 

OD600 value of 0.81 units. The cells were harvested by centrifugation at 10,000 r.p.m. for 15 

min at 4˚C. The cell pellet was washed with buffer containing 20 mM Tris-OAc (pH 7.5), 8 mM 

Mg(OAc)2, 50 mM KCl, and 2 mM DTT. The cells were resuspended in the same buffer and 

lysed by ultrasonication. The lysate was centrifuged at 10,000 r.p.m. to remove cell debris and 

the supernatant was collected after passing through a filtering cloth. The filtered supernatant was 

diluted to a final volume of 300 ml using the lysis buffer and placed on top of a 30% sucrose 

cushion (in 20 mM Tris-oAC (pH 7.5), 8 mM Mg(OAc)2, 500 mM KCl, and 2 mM DTT) and 

pelleted down using a Beckman Ti 45 rotor at 45,000 r.p.m. for 16 hr at 4˚C. The pellet was 

resuspended in a buffer containing 20 mM Tris-OAc (pH 7.5), 8 mM Mg(OAc)2, 50 mM KCl, 2 

mM DTT, and 10% sucrose. The resuspended pellet was treated with Puromycin at a final 

concentration of 1 mM at room temperature for 5 min before loading onto a 10% to 40% linear 

sucrose gradient in 20 mM Tris-OAc (pH 7.5), 8 mM Mg(OAc)2, 50 mM KCl, and 2 mM DTT. 

The gradient was centrifuged using a Beckman SW 28 Ti rotor at 21,000 r.p.m. for 16 hr at 4˚C. 

Fractions were collected using Gilson FC2032B automated fraction collector. The 70S-

containing fraction was collected and exchanged with 20 mM Tris-OAc (pH 7.5), 10 mM 

Mg(OAc)2, 50 mM KCl, and 2 mM DTT buffer using dialysis. The ribosomes were 

concentrated, aliquoted, and flash-frozen using liquid nitrogen for storage.  
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3.1.2 Plunge freezing apparatus for TRCEM 

The plunge-freezing apparatus used in our work is the same as described in [18] with 

some modifications. The apparatus does not contain the blotting and the high-tension modules. 

Additional gas lines for controlling the blotting and the cryogen shutter are also removed. A 

stage to hold the microfluidic devices is also added. The parameters specific to our apparatus are 

described in [93]. 

 

3.1.3 PDMS micromixer fabrication, SiO2 coating and chip assembly 

The protocol for the fabrication of the micromixer and sprayer for the PDMS 

microfluidic device, SiO2 coating as well as the assembly of the chip is described in [93]. 

 

3.1.4 Testing adsorption of E. coli 70S ribosomes to the internal surface of the microfluidic 

device 

To test the adsorption of the 70S to the chip surface, we passed 10 µl of 1.2 µM solution 

of 70S at a total flow rate of 6 µl/s through the chip. The flow-through was collected and its 

absorbance at 260 nm was measured using a NanoDrop® (Thermo Fisher Scientific, Waltham, 

MA, USA) spectrophotometer. The process was repeated for devices without any surface 

treatment, coated with n-dodecyl-β-D-maltoside (DDM), or coated with SiO2. The SiO2-coated 

devices were also tested for surface adsorption 1 day, 15 days, and 120 days after fabrication.  
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3.2 Results  

 

3.2.1 PDMS-based modular microfluidics design 

Our modular microfluidic design for TRCEM mixing-spraying devices is composed of 

three main parts: a PDMS-based SAR micro-mixer, a glass micro-capillary as a reaction channel, 

and a gas-assisted 3D micro-sprayer. The micro-mixer is capable of mixing two solutions with 

over 90% mixing efficiency within ~0.47 ms at a flow rate of 6 μL/s [93]. The micro-mixer is 

directly connected to a glass micro-capillary, which acts as the reaction channel. The dimensions 

of the capillary as well as the liquid flow rate determine the overall residence time within the 

channel. Different-sized capillaries can be connected to get different residence times. The glass 

capillary is connected to a gas-assisted 3D micro-sprayer. The overall design for the micro-

sprayer is similar to the one described in [91] with a minor redesign to prevent dripping and 

allow operation at a lower gas pressure of 8 psi [93]. The modular design allows for the chip to 

be disassembled into its three components and for swapping out any parts necessary. The method 

to calculate the overall nominal reaction time for each time-resolved grid preparation experiment 

is described in [93].  
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Figure 10. Modular microfluidic design for TRCEM with a PDMS-based SAR micro-mixer, 

a glass capillary for the reaction channel, and a gas-assisted 3D micro-sprayer. 

 

3.2.2 SiO2 surface coating to prevent sample adsorption 

The internal surface of the PDMS micro-mixer was coated with a thin layer of SiO2 using 

plasma-enhanced chemical vapor deposition (PECVD). The coating renders the internal surfaces 

hydrophilic [94] and acts as a barrier preventing samples from interacting with the PDMS 

surface. The sample adsorption to the chip surface after coating was tested as described in 

Section 3.1.4.  
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Figure 11. Sample adsorption to the PDMS chip surface with no coating, DDM coating, or 

SiO2 coating. 

 

Without any coating, the flow-through only retains ~54% of the input sample concentration. The 

flow-through concentration increases to ~60% after DDM surface treatment. The best results, 

however, were obtained with SiO2 coating with a flow-through concentration of ~94% and the 

chip only adsorbing ~6% of the input sample concentration. We also assessed the stability of the 

SiO2 treatment up to 120 days after coating. The flow-through experiments showed an increase 

in sample adsorption as more time passed after the SiO2 coating process. On day 1, the flow-

through had ~94% input sample concentration. The flow-through concentration dropped to ~85% 

of input on day 15 and further to 62% of the input on day 120 after coating. The SiO2-coated 

chips performed better than the chips without coating even 120 days after the coating process. 

Based on these results, we decided to use the chips within one day of the coating process for the 

experiments described in Chapter 4. 
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Figure 12. Sample adsorption results for SiO2 coated chips day 1, day 15, and day 120 after 

coating as well as for chips with no coating.  
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Chapter 4: GTPase activation during mammalian translation 

termination captured using time-resolved cryo-EM 

 

4.1 Introduction  

Termination of translation is triggered when one of the three stop codons (UAA, UAG, or 

UGA) enters the ribosomal A site. In eukaryotes, the process is carried out by two RFs: eRF1 

and eRF3. eRF1 is a tRNA-shaped protein that decodes the stop signal and catalyzes the 

hydrolysis of the peptide from the P-site tRNA. eRF3 is a GTPase that chaperones eRF1 and 

accelerates peptide release in a GTP hydrolysis-dependent manner. eRF1, eRF3, and GTP bind 

the pre-termination complex (pre-TC) as a ternary complex. The binding of the termination 

factors to the pre-TC induces compaction of the stop codon [2-6] causing it to adopt a UNR-type 

RNA U-turn conformation [95]. The compaction also brings the +4 position mRNA residue into 

the A site, stacking it with G626 of the 18S rRNA, which explains the preference for purines in 

the +4 position. The compacted state of the stop codon is stabilized by the GTS (31-33), E55, 

TASNIKS (58-64), and YxCxxxF (125-130) motifs in the NTD of eRF1. The +1 uridine is 

stabilized by hydrogen bonding with N61 and K63 of the TASNIKS motif, which would not be 

possible with cytidine in the same position. Additionally, the U-turn conformation of the stop 

codon excludes purines from the +1 position, making uracil the universal residue in the +1 

position in eukaryotic stop codons. The +2 residue stacks onto the flipped-out switch base 

A1825, while A1824 remains within helix 44 of the 18S rRNA [5], and the +3 residue stacks 

onto the +2 residue. This stacking makes purines more preferable at the +2 and +3 positions. 

Additionally, the C127 of the YxCxxxF and E55 hydrogen bond with the +2 and +3 bases, which 

is only possible with purines in both positions. T32 of the GTS motif is positioned to hydrogen 
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bond with guanosine at the +3 position, but only when the +2 residue is adenosine (UAA or 

UAG). When the +2 residue is a guanosine (UGA or UGG), the GTS loop gets displaced away 

from the stop codon by ~4Å causing T32 to face away from the +3 position and unable to 

hydrogen bond. The UGG codon, which codes for tryptophan, is further discriminated from the 

stop codons by the hydrogen bonding requirement of E55 as well as the repulsion between their 

O6 atoms upon stacking [5]. Perturbation in any of the eRF1 motifs mentioned affects the stop 

codon recognition efficiency and specificity [96-98]. After stop codon recognition by eRF1, 

eRF3 hydrolyzes the GTP and eventually dissociates. eRF1’s M domain undergoes a 140° 

rotation relative to the NTD, adopting an extended conformation. α-helix 8 in the M domain and 

α-helix 9 in the CTD, which were separated by an eRF3-induced kink in the ternary complex, 

relax to form a continuous α-helix. This places the catalytic GGQ motif at the tip of the M 

domain in the PTC, where it catalyzes the release of the nascent peptide chain and forms the 

post-termination complex (post-TC), preparing the ribosome for recycling [1-12]. The structures 

for the ternary complex-bound pre-TC trapped using non-hydrolysable GTP analogs as well as 

for the post-TC have been captured by cryo-EM [3, 4, 11, 12]. The cryo-EM structures revealed 

the interactions between the RFs and the pre-TC in atomic detail. Recent single-molecule 

fluorescence microscopy experiments also revealed the time scales for the translation termination 

events in yeast. The factors bind to the pre-TC quickly (<1 s) followed by stop codon decoding, 

GTP hydrolysis, and eRF3 dissociation (~0.5 s). eRF1 accommodation and peptide release 

occurs slowly (~3 s) after which eRF1 quickly dissociates from the ribosome (~ 0.5 s) [10]. 

Despite previous efforts, the structural and conformational dynamics of ribosomes and RFs 

necessary for RF activation during eukaryotic translation termination remain poorly understood. 

In this work, we address this gap in knowledge by capturing structures of intermediates formed 
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during eukaryotic translation termination using TRCEM. We use the reaction between an in 

vitro-reconstituted pre-TC mimic and the ternary complex of recombinant RFs with GTP to 

capture the structures of intermediates formed during the termination process. We assembled the 

pre-TC mimic using a type IV IRES from the intergenic region of HalV with the first sense 

codon mutated to a UAA stop codon (Figure 12a). The HalV IRES can bind to 80S ribosomes 

directly without the requirement of any initiation factors and position the first sense codon in the 

ribosomal A site. The HalV IRES-STOP construct was observed to bind eRF1•eRF3, as shown 

by toe-printing analysis [47]. Our long-time-scale (10 min) cryo-EM experiments also revealed 

that the construct can accommodate eRF1 into the PTC post-eRF3 release. We performed 

TRCEM experiments using the mixing-spraying method for reaction times of 450 ms and 900 

ms, as well as the on-grid mixing and blotting method for reaction time of 15 s. Data analysis 

yielded structures of four intermediates formed during the termination process with FSC0.143 

resolution between 3.3 Å and 4.1 Å. The structures reveal the mechanism for GTPase activation 

as well as a potential mechanism for GDP release post-GTP-hydrolysis.  
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4.2 Materials and Methods  

 

4.2.1 Expression and purification of proteins and ribosomes 

Native mammalian 40S and 60S subunits were purified from rabbit reticulocyte lysate 

(RRL) as described in [2]. The HalV IRES-STOP mRNA was transcribed as described in [47]. 

Recombinant eRF1 and N-terminal truncated eRF3 (aa 139-499) were expressed and purified 

from E. coli as described [2].  

 

4.2.2 Chip fabrication 

The PDMS-based microfluidic chips were fabricated as described in Chapter 3. The 

parameters specific to this work are in Table 1. 

 

Microfluidic 

Chips 

Capillary tubing 

(as microreactor) 

inner diameter 

(I.D.) and length 

(μm/mm) 

Tubing (between 

micromixer and 

microreactor) 

I.D. and length 

(μm/mm) 

Tubing (between 

microreactor and 

sprayer) I.D. and 

length (μm/mm) 

Sprayer

-grid 

distance 

(mm) 

Sprayer-

cryogen 

distance 

(mm) 

Plunging 

velocity 

(m/s) 

Chip 1 

(455 ms) 

200/84.0 75/2.6 75/5.9 3.5 15 1.9 

Chip 2  

(898 ms) 

300/75.0 75/2.5 75/5.5 3.5 15 1.9 

 

Table 1. Parameters for chip fabrication and TRCEM sample preparation. The times 

mentioned are the overall reaction times between mixing and freezing. (Reaction times are 

rounded to 450 ms and 900 ms in further discussion for simplicity) 
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4.2.3 Assembly of pre-TC and ternary complex 

The pre-TC was assembled by mixing rabbit 40S subunit, 60S subunit, and HalV IRES-

STOP mRNA in Tris buffer (20 mM Tris at pH 7.5, 100 mM KCl, 2mM DTT, 2.5mM MgCl2, 

0.5 mM spermidine) at final concentrations of 3.5 μM, 3.5 μM, and 8 μM, respectively. The 

termination ternary complex was assembled by mixing eRF1, eRF3, and GTP in Tris buffer (20 

mM Tris at pH 7.5, 100 mM KCl, 2mM DTT, 2.5mM MgCl2, 0.5 mM spermidine) at final 

concentrations of 10 μM, 10 μM, and 1 mM, respectively. Both mixtures were incubated 

separately at 37 ˚C for 10 min before grid preparation. 

 

4.2.4 Preparation of grids using the mixing-spraying method 

The grids corresponding to 450 ms and 900 ms reaction times were prepared using the 

TRCEM mixing-spraying method described in Chapter 3. Quantifoil R0.6/1 holey carbon grids 

with 300 Cu mesh were glow discharged for 40 s in air plasma at 15 mA and 0.26 mBar using a 

PELCO easiGlow glow discharge unit. The pre-TC and the ternary complex were aspirated into 

two separate syringes on the plunge freezing apparatus at the concentrations mentioned in 

Section 4.2.3. The syringes were connected to a PDMS-based microfluidic mixing-spraying 

device. The device was placed inside an environmental chamber kept at room temperature with a 

relative humidity of 90-95%. Devices with different reaction channel lengths were used for the 

two different reaction times (Table 1). The two reactants were injected into the mixing-spraying 

device at flow rates of 3 𝝻L/s each (6 𝝻L/s total flow rate). After mixing and reacting inside the 

microfluidic device, the solution was sprayed using humidified N2 gas at 8 psi gas pressure. A 

cryo-EM grid was passed through the spray and plunged into liquid ethane for vitrification. The 

grids were transferred to a grid storage box and stored under liquid nitrogen. 
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4.2.5 Preparation of grids using the blotting method 

The grids for the 15 s and 10 min reactions were prepared via the blotting method. Grids 

were glow discharged as mentioned in Section 4.2.4. Grids were prepared using a Vitrobot Mark 

IV (Thermo Fisher Scientific, Waltham, MA) at room temperature with 100% relative humidity. 

The reactants were diluted 3.5 times before application to the grid. For the 15 s reaction time, the 

reaction was performed on the grid. 2 𝝻L of ternary complex was first applied to the grid 

followed by the application of 2 𝝻L of the pre-TC complex. The two were mixed on the grid by 

agitation via pipetting. For the 10 min reaction time, the reaction was performed by mixing and 

incubating the two reactants in a test tube at room temperature. 3 𝝻L of the mixture was then 

applied to the grid. After application, the sample was blotted with blot force 3 for 4 s in both 

cases and plunged into liquid ethane for vitrification. The overall time between sample 

application and plunge freezing for the 15 s reaction time was measured using a stopwatch. The 

grids were transferred to a grid storage box and stored under liquid nitrogen. 

 

4.2.6 Cryo-EM data collection 

Data for the 450 ms, 900 ms, and 15 s reaction times were collected using a 300 kV Titan 

Krios transmission electron microscope (Thermo Fisher Scientific) equipped with a Gatan K3 

direct electron detector (Gatan, Inc., Pleasanton, CA) and a post-column GIF quantum energy 

filter. Movies were collected in counting mode within a defocus range of -1.0 to -2.5 𝝻m at a 

nominal magnification of 105,000× resulting in a raw pixel size of 0.83 Å/pixel. Leginon [100] 

was used for semi-automated target selection and movie acquisition. A 30° stage tilt was 

employed during data collection to compensate for the preferred orientation observed in the data. 

Each movie is composed of 50 frames collected over a 2.5 s exposure with a dose rate of ~16 e-
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/pixel/s resulting in a total dose of ~58 e-/Å2. Data for 10 min reaction time were collected using 

a 300 kV Tecnai Polara F30 (Thermo Fisher Scientific) equipped with a Gatan K3 direct electron 

detector (Gatan, Inc.). Movies were collected in counting mode within a defocus range of -0.5 to 

-3.5 𝝻m at a nominal magnification of 52,000× resulting in a raw pixel size of 0.95 Å/pixel. 

Leginon was used for semi-automated target selection and movie acquisition. 40% of the movies 

were collected with a 30° stage tilt to compensate for the preferred orientation observed in the 

data.  Each movie is composed of 40 frames and collected over a 4 s exposure with a dose rate of 

~16 e-/pixel/s resulting in a total dose of ~71 e-/Å2. 

 

4.2.7 Image processing 

The movies were visually inspected for quality. 7,319, 13,405, 10,245, and 20,151 good 

movies were selected for downstream processing from the 450 ms, 900 ms, 15 s, and 10 min 

datasets, respectively. Data were primarily processed using Relion 3.1 [101-103]. Movies were 

corrected for beam-induced motion and dose-weighted average images were produced using 

Relion’s implementation of the MotionCor2 [104] algorithm. The contrast transfer function 

(CTF) was estimated using GCTF [105]. Particle picking was performed using crYOLO 1.8.4 

[106] neural network-based picker. Particles were initially manually picked from a small subset 

of ~1000 images and used for training the neural network. The trained neural network was then 

used to pick particles for the entire dataset. The picked particles were extracted with a box size of 

492 pixels for the 450 ms, 900 ms, and 15 s datasets and 480 pixels for the 10 min datasets, 

respectively. Particle images from the 450 ms, 900 ms, and 15 s datasets were combined for 

downstream processing. Particle images from the 10 min dataset were processed separately. 
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The combined particle images from the 450 ms, 900 ms, and 15 s datasets were subjected 

to multiple rounds of 2D classification in Relion 3.1. Around 310k particle images belonging to 

80S-like 2D classes were manually selected for downstream processing. A starting 3D model 

was generated using Relion’s 3D initial-model module. This starting model was then used as a 

reference in Relion’s 3D auto-refine module to estimate the relative orientations and translations 

of the particle images and to generate a consensus 3D map. The particles were then subjected to 

3D classification without additional image alignment, resulting in four different classes: Class 1 

with 200k particles had the ribosome with a non-rotated SSU, Class 2 with 43k particles had the 

ribosome with a rotated SSU, Class 3 with 41k particles had the ribosome with SSU head-swivel 

and Class 4 with 26k particles had the ribosome at low resolution. Classes 2 and 3 were rejected 

due to being intermediates for IRES-mediated assembly of pre-TC, and Class 4 was rejected due 

to its low resolution. Class 1 with non-rotated ribosome was selected for downstream processing. 

The selected particles were subjected to another round of 3D auto-refinement. Per-particle CTF 

parameters were optimized using Relion’s CTF refinement module. The particles were then 

subjected to Bayesian polishing [107] to correct for residual motion left over after initial motion 

correction. The polished particles were re-extracted after binning to 1.34 Å/pixel with a box size 

of 304 pixels and subjected to 2D classification. 195k particles with good 2D class averages were 

selected for subsequent 3D auto-refinement and CTF refinement. This resulted in a consensus 

map with a non-rotated ribosome at FSC0.143 resolution of 2.9 Å (masked). For separating the 

different RF conformations, we used masked classification with signal subtraction. Atomic 

models for pre-TC (PDB: 5LZT) and post-TC (PDB: 5LZU) were rigid-body fitted into the 

consensus map using Chimera [108]. Chains corresponding to RFs in both models were selected 

and molmap command was used to generate a hybrid density map with a Gaussian width of 8 Å. 
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The resulting map was used to generate a mask using Relion’s mask creation module with a soft 

edge of 6 pixels. The mask covered the binding region for eRF3 as well as for eRF1 in both pre-

accommodation and post-accommodation states. Two additional masks were generated in the 

same manner for the RFs from the pre-TC and post-TC models separately. Signal subtraction 

with the hybrid mask was performed using Relion’s signal subtraction module to remove the 

signal outside the masked region. The subtracted images were used for the classification of RF 

states using Relion’s 3D classification module (Figure 10). The classification resulted in six 

classes: Class 1 with 94k particles had an RF-free ribosome, Class 2 with 35k particles had a 

ribosome with a PTC accommodated eRF1, Class 3, 4, and 5 with 26k, 11.7k, and 7.4k particles 

had ribosomes with both RFs bound in different conformations, and Class 6 with 20.7k had 

ribosome with both RFs bound but the density for eRF3 G-domain was missing. After 

classification, we reverted to the non-subtracted images for 3D auto-refinement of individual 

classes. Multiple iterations of 3D refinement and CTF refinements were performed resulting in 

final maps with FSC0.143 resolutions ranging from 3.0 Å to 4.2 Å (Table 2). 

The particle images for the 10 min dataset were binned 8 times and subjected to multiple 

rounds of 2D classification in Relion 3.1. 680k particles with good 2D class averages were 

selected for further processing. The particles were re-extracted with 4 times binning and 

subjected to 3D auto-refinement followed by 3D classification. Classification yielded three 

classes: Class 1 with 507k particles had the ribosome with a non-rotated SSU, Class 2 with 86k 

particles had the ribosome with a rotated SSU, and Class 3 with 87k particles had the LSU with 

missing SSU density. Class 1 with visible eRF1 density was selected for downstream processing. 

Particle images were un-binned and duplicate particles were removed using a 250 Å distance 

cutoff resulting in 496k particles. The particles were subjected to 3D refinement and CTF 
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refinement in Relion 3.1 resulting in a map with an FSC0.143 resolution of 2.9 Å. Focused 3D 

classification was performed using the hybrid mask mentioned earlier. The classification yielded 

two classes: Class 1 with 381k particles had a ribosome with an accommodated eRF1, and Class 

2 with 115k particles had a ribosome with an empty A site. No eRF3 bound classes were 

observed. Class 1 was selected and subjected to multiple rounds of 3D refinement and CTF 

refinement resulting in a final map with FSC0.143 resolution of 2.95 Å (Figure 11). 

Local B-factor estimation and sharpening were performed using PHENIX’s [109] auto-

sharpen module and resulting maps were up-sampled 2 times in COOT [110] before atomic 

model building and refinement. 
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Figure 13. Classification regime for the combined 450 ms, 900 ms, and 15 s datasets. 
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Figure 14. Classification regime for the 10 min dataset. 
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4.2.8 Atomic model building and refinement 

Atomic models for the rabbit ribosome and the HalV IRES from PDBs 7O7Y and 6ZVK, 

respectively, were docked into the sharpened maps using ChimeraX [111]. Models were 

manually adjusted and the STOP codon was modeled in COOT. Atomic coordinates were refined 

against the maps using PHENIX real-space refinement with secondary structural restraints. Pre-

accommodated RFs or post-accommodated eRF1 from PDB: 5LZT or 5LZU, respectively were 

docked into the maps using ChimeraX and manually adjusted in COOT. GTP or GDP from PDB: 

1WDT or 7ST7, respectively, were similarly docked and adjusted. The models were combined 

and subjected to real-space refinement in PHENIX. Models were validated using Phenix’s 

comprehensive validation tool (Table 2) [113, 114]. 

 

Map 

Class PRE1 PRE2 POST1 POST2 ACC 

Particles 26046 11784 7449 20712 34873 

Map resolution at FSC0.143 (Å) 3.6 3.7 4.1 3.3 3.0 

Map sharpening B-factor (Å2) -57 -46 -48 -52 -44 

Refinement 

Model composition (residues) 
 

Proteins 12429 12429 12419 12204 11995 

Nucleotides 5479 5478 5480 5478 5478 

GDP 0 0 1 0 0 

GTP 1 1 0 0 0 

Zn 8 8 8 8 8 
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SPD 25 28 25 28 25 

SPM 3 3 2 3 3 

Mg 2+ ions 261 267 265 268 273 

Average B factors (Å2) 
 

Proteins 90.94 96.36 106.12 95.73 81.62 

Nucleotides 81.92 95.16 99.24 103.17 90.06 

Ligands 61.34 70.79 74.73 72.29 68.19 

R.m.s. deviations 
 

Bonds (Å) 0.003 0.003 0.003 0.003 0.003 

Angles (degree) 0.549 0.538 0.555 0.572 0.598 

Validation 

Molprobity score 1.09 1.04 1.15 1.1 0.98 

Clash score 2.47 2.57 2.9 2.8 2.07 

Rotamer outliers (%) 0.01 0.00 0.00 0.00 0.00 

Ramachandran plot 
 

Outliers (%) 0.00 0.00 0.00 0.00 0.00 

Allowed (%) 2.27 1.96 2.34 2.15 1.88 

Favored (%) 97.73 98.04 97.66 97.85 98.12 

 

Table 2. Model refinement and validation statistics. 

 

  



52 

 

4.3 Results 

 

4.3.1 TRCEM reveals five factor-bound classes 

We decided to use a duration of 450 ms for our initial time-resolved experiments. We 

based this choice on the termination time scales that were observed in yeast using single-

molecule fluorescence experiments [10]. After analyzing the initial data, we selected two 

additional reaction time points of 900 ms and 15 s. By processing the data from all three reaction 

times together, we were able to identify four intermediates that ranged in resolution from 3.3 to 

4.2 Å at FSC0.143. We also discovered a class with eRF1 that was accommodated into the PTC, 

matching the one observed in the 10 min control experiment (Figure 12c). All four intermediate 

classes had a non-rotated 80S ribosome with pre-accommodated eRF1 and eRF3 that were bound 

in various conformations. Through population analysis (Figure 12b) and atomic model building, 

we were able to assign a chronological order to the intermediates and determine the hydrolysis 

state of the eRF3-bound GTP. Classes 1 and 2 represented pre-hydrolysis states that contained 

intact GTP, and so we named them PRE1 and PRE2. Class 3 represented a post-hydrolysis and 

post-Pi-release state that contained GDP and was named POST1. Class 4 represented a state with 

a disordered eRF3 G-domain, suggesting it to be a post-GDP release state, and therefore we 

named it POST2. The post-accommodated eRF1 state was named ACC. 
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Figure 15. Reactants used and overall results for the translation termination TRCEM 

experiments. a) Assembly of the pre-TC and the termination ternary complex. b) Distribution of 

relative populations of the factor-bound classes at the different reaction times. c) Sliced views of 

the density maps for the factor-bound classes ordered chronologically from left to right. The maps 

show the 80S inter-subunit space with densities for the IRES-STOP mRNA and the RFs. 
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4.3.2 Limitations in the accuracy of reaction times 

Although we have assigned specific reaction times to the different datasets, these are only 

nominal reaction times determined either analytically (for the 450 ms and 900 ms datasets) or 

empirically using a stopwatch (for the 15 s and 10 min datasets). The accuracy of these reaction 

times depends on a few assumptions, not all of which are true for each sample preparation 

method used. The first important assumption is that the two reactants are mixed efficiently 

within a small proportion (ideally <10%) of the overall reaction time. For the 450 ms and the 900 

ms, this assumption is true as the mixing takes place in PDMS-based microfluidic devices 

described in Chapter 3 resulting in an overall mixing efficiency of >90% with a mixing time of 

~0.47 ms at a flow rate of 6 μL/s [93]. For the 15 s and 10 min reaction times, the mixing 

primarily takes place by agitation by pipetting followed by diffusion. Although the mixing 

efficiency in this case cannot be accurately determined due to the stochastic nature of pipette-

assisted mixing, a comparison of the factor-bound population fractions of the non-rotated pre-TC 

clearly shows that the mixing is inadequate at least for the 15 s experiment (Figure 16). The 

factor-bound fraction of the non-rotated pre-TC is expected to increase as we increase the 

reaction time. The trend followed by the 450 ms, 900 ms, and 10 min experiments, but not the 15 

s experiment. The low proportion of factor-bound pre-TC in the 15 s experiments suggests that 

the reactants are likely not mixed well and the reaction rate is diffusion-limited.  
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Figure 16. Fraction of non-rotated 80S bound by the termination factors for experiments 

with nominal reaction times of 450 ms, 900 ms, 15 s, and 10 min, respectively. 

 

The second major assumption is the reaction takes place under the same conditions for 

the same amount of time throughout the volume of the mixture before freezing. For the 450 ms 

and 900 ms experiments, the bulk of the reaction takes place in continuous laminar flow inside a 

glass capillary. Under laminar conditions, the velocity of fluid flow inside a cylindrical channel 

varies radially, with the fluid closer to the channel walls moving slower than the fluid toward the 

center of the channel. The residence time distribution E(t) for such laminar flow is given by 

equation (1) [112] 

 

𝐸(𝑡) = {
 0     ,     𝑡 < 𝜏/2
𝜏2

2𝑡3   ,     𝑡 ≥ 𝜏/2
         —     (1)  
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where τ is the mean residence time, given by the volume of the tube divided by the volumetric 

flow rate. The residence time distributions for mean residence times of 450 ms and 900 ms are 

plotted in Figure 17. We have neglected the times associated with mixing, spraying, plunging, 

and freezing for simplicity. The figure shows that the residence times are non-uniform with 50% 

of the sample volume spending between τ/2 to τ time inside the channel. It also shows that the 

distribution gets wider as τ increases. 

 

 

Figure 17. Residence time distributions for laminar flow in a cylindrical channel with mean 

residence times of 450 ms (left) and 900 ms (right).  

 

For the 15 s and 10 min experiments, the bulk reaction takes place in static fluid, so the 

dispersion of residence time is not an issue. The reaction for the 15 s experiment primarily takes 

place on the surface of the grid, which exposes the reaction mixture to the air-water interface. 

This could potentially alter the reaction conditions and affect the reaction kinetics as discussed in 

Section 2.4.2. Taken together, all these facts suggest that nominal residence times assigned to 

these experiments are an approximation and do not reflect the exact reaction times experienced 
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by all the molecules of the sample. Therefore, precautions should be taken when using these 

results for obtaining reaction kinetics. 

 

4.3.3 eRF1 conformations during termination 

 

N-terminal domain 

The eRF1 NTD reaches into the ribosomal A site and forms multiple interactions with the 

ribosome, mRNA, and the anti-codon mimicking pseudoknot PKI of the IRES. The interactions 

between eRF1’s NTD and the stop codon are already formed in the earliest state observed and 

remain unchanged throughout the termination process. The interactions are similar to the ones 

observed in previous structures [3, 4, 11, 12]. The stop codon adopts a compacted conformation 

with the A (+3) stacking with A (+2). The A (+2) nucleotide coordinates a magnesium ion and 

stacks with the flipped-out switch base A1825, while the A1824 switch base remains within the 

helix 44 of the 18S rRNA. The A (+4) nucleotide downstream of the stop codon stacks with 

G626 of the 18S rRNA. eRF1 interacts with the stop codon using multiple residues of the 

conserved TASNIKS58-64, YxCxxxF125-131 and GTS31-33 motifs as described in Section 1.7.2. 

Three residues of the TASNIKS motif (N61, I62, and K63) hydrogen bond with U (+1) of the 

stop codon. N61 side chain hydrogen bonds with O2 of U(+1), K63 side chain hydrogen bonds 

with O4 of U(+1), and the backbone carbonyl of I62 hydrogen bonds with the N4 of U (+1). 

Additionally, the side chain of T58 hydrogen bonds with N6 of A(+3). C127 of the YxCxxxF 

motif hydrogen bonds with N6 of A(+2) using its side chain. Lastly, T32 of the GTS motif 

hydrogen bonds with N3 of A(+3) using its side chain. E55 side-chain implicated in 

discriminating UGG codon (codes for tryptophan) from the stop codons [3] is not visible in our 
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maps (Figure 13). The interactions anchor the loop joining α2 and α3 helices in position, 

preventing dissociation of the RFs and allowing for sampling of states necessary for successful 

accommodation. 

On the opposite side of the α2 and α3 helices, eRF1 loop regions form multiple 

interactions with the helix 69 of the LSU (Figure 14). The interactions primarily occur via side-

chain hydrogen bonds between eRF1 loop regions N121-S123 and K42-R47 and the phosphate 

backbone of helix 69. The interactions are fewer and weaker in PRE1 but become closer and 

stronger for subsequent classes as eRF1 moves further into the A site. The NTD also interacts 

with R130 of the SSU ribosomal protein uS19. The interaction is only visible in PRE1, PRE2, 

and POST2 and becomes unclear/disappears in POST1 and ACC. Lastly, NTD interacts with 

PK1 of the IRES. The interactions only appear in POST1 and ACC states where the eRF1 NTD 

helix α2 docks against PKI. The interactions occur mainly via backbone hydrogen bonding, with 

K50 being the only eRF1 side chain to interact directly with PK1. The increasing interactions 

with the ribosome and the PKI likely drive the encroachment of eRF1 further into the A site. 

This encroachment also pulls eRF3 closer to the ribosome and facilitates its anchoring to the 

SSU and subsequent GTPase activation. 
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Figure 18. eRF1-stop codon interactions. The stop codon adopts a compact conformation and 

interacts with E55 and the residues of the TASNIKS, GTS, and YxCxxxF motifs of eRF1. 

Structures were aligned by the 28S rRNA. 
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Figure 19. eRF1-NTD interactions with helix 69 of the 28S rRNA and PKI. Structures and 

maps were aligned by the 28S rRNA. 

 

C-terminal domain 

The C-terminus of eRF1 docks against the GTPase-associated center (GAC) interacting 

primarily with H43-44 of the 28S rRNA and ribosomal protein uL11. The density for this region 

is not very clear, but the close interactions are primarily mediated by the residues in the 

unstructured C-terminal loop of eRF1. D418 of eRF1 C-terminus is within hydrogen bonding 

distance of T25 of uL11 in the LSU for PRE1, PRE2, POST1, and POST3. In ACC, T25 of uL11 

forms two interactions with the eRF1 C-terminal residues. The backbone of T25 interacts with 

the backbone carbonyl of E313 and the side chain of T25 interacts with the backbone carbonyl of 

F348 in the eRF1 C-terminus, respectively. Additionally, Y415 of eRF1 stacks with G1920 of 
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28S rRNA in the pre-accommodation states (PRE1, PRE2, POST1, and POST2) and with G1948 

in the post-accommodation state (ACC) (Figure 15). Similar stacking interactions are also 

formed by tRNA during the elongation cycle [36]. The encroachment of eRF1 towards the A site 

pushes the GAC away from the SSU by ~2.7 Å. GAC undergoes a large motion of ~14 Å 

towards the helix 89 of the 28S rRNA in ACC as eRF3 dissociates and eRF1 gets accommodated 

into the PTC after GTP hydrolysis. 

 

 

Figure 20. eRF1-CTD interactions with the H43/44 and uL11 of the GAC. Structures and maps 

were aligned by the 28S rRNA. 

 

The dynamic mini domain interacts with the SSU head in PRE1, PRE2, POST1, and 

POST2. The exact interactions are unclear in the maps but primarily take place between the N-
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terminus (residues Y85, K89, and N91) of the SSU ribosomal protein eS31 and the flexible loops 

Q364-E367 and C335-T338 of the eRF1 mini domain. In ACC, the mini domain moves away 

from the SSU and interacts with the LSU ribosomal protein uL11 via hydrogen bonding between 

E340 of eRF1 and K41 of uL11 (Figure 15). 

 

M-domain 

The M-domain of eRF1 remains bound to eRF3 through most of the termination process. 

The domain sits in the cleft between the LSU and SSU (Figure 17) and only enters the PTC after 

eRF3 has dissociated. The interactions between eRF3 and the M-domain of eRF1 are the same as 

described in Section 1.7.2 and remain stable in classes PRE1, PRE2, and POST1. These 

interactions likely play a key role in the proper positioning of eRF3 for GTPase activation. In 

POST2, the G-domain becomes disordered weakening the interactions between eRF3 and the M-

domain. In ACC, the M-domain undergoes large motion using the NTD as a pivot point. The 

helices α8 and α9, which were held at a kink in the pre-termination structures, straighten to form 

a continuous helix. This results in the tip of the α5 helix harboring the catalytic GGQ motif to 

undergo a displacement of ~80Å and place near the peptide exit tunnel in the PTC (Figure 16). 

The CTD also swings away from the head of the SSU and closer to the GAC. Muhs et al mention 

eukaryotic-specific interactions between domain M of PTC-accommodated eRF1 and helix 71 of 

the 28S rRNA around S253 and A226 of eRF1 and G3761 and C3758 of helix 71 [6]. We do see 

multiple interactions around the mentioned region in ACC. O2’ of the C3758 sugar backbone 

hydrogen bonds with the side chains of D152 and S154 and the backbone nitrogen of S154. 

A230 backbone nitrogen hydrogen bonds with the phosphate backbone of U3762. S257 
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backbone carbonyl hydrogen bonds with O2’ of G3761 sugar backbone. We also see a stacking 

interaction between T258 and C3779. 

 

 

Figure 21. Overall motion of the RFs during the termination process as viewed from the 

interface side of the SSU (LSU is hidden for clarity). Pre-hydrolysis, eRF1 moves further into 

the A site dragging eRF3 along. Post-hydrolysis, the G-domain of eRF3 becomes disordered 

indicating GDP release. eRF3 slowly dissociates pulling eRF1 away from the A site. Post-eRF3-

release, the M-domain of eRF1 moves by almost 80Å and gets accommodated into the PTC. 

Structures were aligned by the 28S rRNA. 

 

Comparison of the accommodated eRF1 M-domain with a previously published structure 

Overlay of the eRF1’s M-domain from ACC on a previous structure of PTC accommodated 

eRF1 (GGQ to AAQ) mutant [3] reveals the differences in conformation arising from using a 

tRNA mimic with an empty P-site. The core of the M-domain made primarily of beta-sheets is 

positioned similarly between the two structures. The long α5 helix harboring the catalytic GGQ 
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motif at its tip is shifted by ~1.4 Å towards the P-site compared to the published structure. This is 

likely due to the absence of a P-site tRNA in ACC, which occupies additional space in the PTC in 

the published structure. The loop region immediately preceding the GGQ motif is also displaced 

in ACC compared to the published structure. The displacement seems to be caused by the different 

conformations of A4294 of the 28S rRNA, which lies perpendicular to the α5 helix axis in ACC 

but gets flipped parallel to the α5 helix axis when a P-site tRNA is present. The other nearby 

elements of the PTC are similar between the two structures (Figure 17). 
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Figure 22. Comparison of eRF1’s M-domain from the ACC class with a previously published 

structure (PDB:3JAG) [3]. Structures were aligned by the 28S rRNA.  

4.3.4 eRF3 conformations during termination 

 

Interactions with the SSU 

eRF3 interacts with the SSU at three locations. The first interaction is between ribosomal 

protein uS12 C-terminus and domains II and III of eRF3. The interaction takes place via T600 of 

eRF3 and S143 of uS12 in PRE2, POST1, and POST2, but is absent in PRE1. The second 

interaction involves helix 5 of 18S rRNA and loop D450-G452 of eRF3 domain II. In PRE1, the 

interaction is weak and primarily through Van der Waals interactions with M451. The 
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interactions become stronger in PRE2, POST1, and POST2 as domain II moves closer to allow 

hydrogen bonding between the phosphate backbone of G478 in helix 5 of the 18S rRNA and the 

backbone nitrogen of G452 in domain II of eRF3. The third interaction is via the stacking of 

A464 in helix 14 of the 18S rRNA with R242 of eRF3 as well as hydrogen bonding between the 

phosphate backbone of A464 with the K246 side chain. This interaction is absent in POST2. The 

weak to non-existent interactions between eRF3 and the SSU in PRE1 suggest that the ternary 

complex initially binds to the ribosome primarily through eRF1 with eRF3 anchoring only after 

stop codon recognition.  

 

 

Figure 23. eRF3 anchoring and subsequent interactions with the SSU. Structures and maps 

were aligned by the 28S rRNA. 
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Interactions with the Sarcin-ricin loop 

The encroachment of eRF1 into the A site drags eRF3 along and places the G-domain 

closer to the catalytic SRL. The catalytic histidine H300 in the switch 2 loop of the eRF3 G-

domain interacts with A4353 of the SRL in classes PRE1, PRE2, and POST1. The histidine is 

poised to coordinate a water molecule necessary for carrying out GTP hydrolysis [36], but the 

water molecule is not visible in our maps. Motion of eRF3 towards the SRL in POST1 causes the 

catalytic histidine to flip towards the GTP binding pocket triggering GTP hydrolysis (Figures 18 

and 20). 
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Figure 24. eRF3 G-domain interactions with the SRL. The interactions are non-existent in 

PRE1 and PRE2. The interactions mainly occur in POST1 as the G-domain gets pressed against 

the SRL. Key interaction takes place between the catalytic H300 and the phosphate backbone of 

A4353 of the SRL. Structures and maps were aligned by the 28S rRNA. 
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G-domain 

G-domain undergoes multiple changes during the termination process. PRE1 and PRE2 

contain a structured Switch 1 region, which sits at the interface of the LSU and SSU interacting 

with H14 of the 18S rRNA. eRF3 motion in POST3 causes clashes between Switch 1 and the 

NTD of uL14 resulting in the partial disorder of the region (Figure 19). The disorder likely plays 

an important role in the dissociation of GDP post-hydrolysis. The G-domain is entirely 

disordered in the POST2 state suggesting GDP release has likely taken place. Switch1 region 

becomes disordered upon GTP hydrolysis in bacterial elongation complexes trapped using 

kirromycin [115, 116], but remains intact in eEF1A during eukaryotic elongation even post-Pi 

release as shown by didemnin B stalled complexes [11]. Switch 1 disorder has been thought to 

be a gating mechanism facilitating GTPase dissociation post-GTP hydrolysis [117,118]. Our 

structures show that Pi release alone does not trigger the disorder of switch 1 on its own. Instead, 

the disorder is triggered due to steric clashes between switch 1 and uL14 N-terminus. This 

disorder likely destabilizes the bound GDP and results in its dissociation from eRF3. The G-

domain seems to become disordered after GDP dissociation. 
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Figure 25. N-terminus of ribosomal protein uL14 extends into the GTP-binding pocket of the 

eRF3 G-domain. Structures and maps were aligned by the 28S rRNA. 
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4.3.5 Visualization of GTP hydrolysis steps 

 

Overall mechanism of GTP hydrolysis 

The structures allowed us to identify the hydrolysis state of GTP bound to the eRF3 and 

build the surrounding regions (Figure 20). PRE1 has density for GTP coordinating a magnesium 

ion, similar to previous structures for translational GTPases (eEF1A and eRF3) [8, 36]. The 

catalytic histidine H300 located in the switch 2 region is flipped away in an inactive state. 

Density for the α3 helix of the switch 1 region is clear with W259 docked against the GTP 

molecule, but the α4 helix is partially disordered. Additional density near the switch 1 region, 

attributed to W259 in the previously published structure [3], was instead assigned to the NTD of 

ribosomal protein uL14. The N-terminal region of uL14 snakes around the α2 and α3 helices and 

places its N-terminus close to W259, potentially forming a hydrogen bond.  

PRE2 state has a clear density for GTP, but the density for magnesium is missing. The 

catalytic histidine is still flipped away suggesting it to be a pre-GTPase-activation state. The 

release of magnesium suggests that the hydrolysis process is magnesium-independent. Binding 

analysis has shown that magnesium is conducive to GTP binding but detrimental to GDP binding 

[93]. The release of magnesium during the GTPase activation process could facilitate the GTP to 

GDP transition. Densities for the α3 helix of switch 1 and uL14 are similar to the ones observed 

in PRE1. The density for the α4 helix becomes clearer and matches the previously published 

structure [3]. The improved density could be due to better anchoring with the ribosome or 

magnesium release.  

POST1 state has density for GDP with no additional density to fit a γ-phosphate, P, or 

magnesium. The switch 2 region is pressed against the SRL flipping the catalytic histidine 
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towards the nucleotide-binding pocket thereby activating the GTPase. The large motion of eRF3 

towards the SRL also causes the α2 and α3 helices to clash against the N-terminal region of 

uL14. This in turn results in disorder of the switch 1 region and likely facilitates GDP release. 

The W259 is also flipped downwards resulting in the opening of the nucleotide-binding pocket 

for GDP release. 

POST2 state has disordered density for the G-domain and likely represents a post-GDP 

release state of eRF3. The domains II and III are still bound to the M-domain of eRF1 preventing 

its accommodation into the PTC. The densities of domains II and III are also somewhat 

disordered suggesting a weakening of interactions with eRF1. eRF1 accommodation likely 

occurs concurrently with eRF3 release as we do not observe any additional intermediate states. 
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Figure 26. GTP-binding pocket of eRF3 during the termination process. Structures and maps 

aligned by the G-domain of eRF3.  

 

Comparison with previous structures 

Comparison of the pre-termination structures obtained in this study with a previously 

published structure of a GMPPCP stalled pre-termination complex [11] provides further 

evidence supporting the chronological order assigned to the different classes. eRF3 binding 

location in POST1 resembles the previously published structure most closely with backbone root 

mean square deviation (RMSD) of 2.04Å. This makes sense as the non-hydrolysable GMPPCP 
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stalls the complex right before the hydrolysis stage. PRE1 has the most distant binding location 

for eRF3 compared to the published structure with a backbone RMSD of 6.62Å, and PRE2’s 

eRF3 binding location falls in between the two mentioned previously with a backbone RMSD of 

3.69Å. A closer look at the nucleotide-binding pockets shows the binding modes for GTP, 

GMPPCP, and GDP in eRF3. Both GTP and GMPPCP coordinate a magnesium atom using their 

β and γ oxygens. Interestingly, in the GTP structure, S226 coordinates the magnesium whereas in 

the GMPPCP structure, T277 coordinates the magnesium. Both S21 (equivalent to S226 in 

eRF3) and T72 (equivalent to T277 in eRF3) coordinate the magnesium in the eEF1A nucleotide 

binding pocket occupied by GTPγS [36]. Whether the differences in magnesium coordinating 

residues arise from the use of different GTP analogs or due to the different conformations of the 

G-domain is still unclear. 
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Figure 27. Comparison of the overall conformation of the pre-termination complex stalled 

using GMPPCP (PDB:5LZT) with the pre-termination complexes obtained in our study 

(top) and the local stereochemistry for eRF3:GTP in PRE1, eRF3:GMPPCP in PDB:5LZT, 

eEF1A:GTPγS in PDB:8G60, and eRF3:GDP in POST1 (bottom). Structures were aligned 

using the 28S rRNA for top panels and using the G-domains of the respective GTPases for the 

bottom panels. 

 

 

 

  



76 

 

Chapter 5: Conclusion 

 

5.1 TRCEM for capturing structural intermediates 

As part of this work, we developed modular PDMS-based microfluidic devices with a 

SiO2 coated 3D SAR-micromixer, a glass capillary for reaction channel, and a 3D micro-sprayer. 

The modular design allows for easy disassembly and reuse of the three different parts, making 

the fabrication process much easier. The SiO2 coating provides a pristine and hydrophilic 

environment for biochemical reactions. These devices are excellent for capturing biochemical 

reactions in the range of 10 ms to 1000 ms. We used these devices in addition to on-grid mixing, 

and conventional blotting methods for capturing intermediates formed during eukaryotic 

translation termination at multiple time points ranging from 400 ms to 10 min. The TRCEM 

experiments resulted in five different structures, four of which were for intermediates formed 

during the termination process. Population analysis showed that using microfluidic mixing 

performs better than on-grid mixing. These results showcase the advantages of using 

microfluidic mixing-spraying and the modular microfluidic design. The ease of use introduced 

by the modular design will hopefully make microfluidic TRCEM more accessible and allow its 

use for studying various biological molecules. We also point out some of the remaining issues 

with the current TRCEM methods. The microfluidic devices allow for fast and efficient mixing, 

but suffer from residence time dispersion due to laminar flow. Analytical models for this time 

dispersion are available, but they have not yet been incorporated into the kinetic models for 

better interpretation of population results. There also seems to be a gap in the reaction times 

achievable by the current TRCEM methods. The microfluidics-based methods are limited 

between 10 ms and 2000 ms reaction times by the plunging time on the lower end and the 
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increasing chip volume on the higher end. On-grid mixing and reaction is similarly limited to a 

minimum reaction time of ~10 s due to the limitations imposed by pipetting, blotting, and 

plunging. This leaves a gap between 2 s and 10 s, where there are no methods for TRCEM 

sample preparation. Hopefully methods are developed in the future to address this gap. 

 

5.2 TRCEM captures structural intermediates for mammalian translation 

termination 

Using TRCEM, we solved the structures of four intermediates formed during mammalian 

translation termination. The structures show that stop codon recognition happens before 

anchoring of eRF3 to the SSU. This likely facilitates the unbinding of the RFs in case of 

improper decoding events. Unfortunately, the steps for stop codon decoding by eRF1 were not 

captured in our experiments. TRCEM experiments with shorter reaction times are needed to 

capture the stop codon decoding process. Successful stop codon decoding anchors one end of 

eRF1’s NTD to the A site and acts as a pivot point for eRF1’s further incursions into the A site.  

eRF1 forms multiple hydrogen bonding interactions with the ribosome which are weaker upon 

initial binding and get stronger as eRF1 moves deeper into the A site. The increased interactions 

likely act as a driving force in propagating the termination process. The movements of eRF1 

towards the A site are translated to eRF3. The movement presses the G-domain of eRF3 against 

the SRL causing the catalytic histidine H300 to flip towards the nucleotide-binding pocket and 

hydrolyzing the bound GTP. The limited resolution near the GTP binding pocket prevented us 

from visualizing any water molecules near the active site. Higher resolution structures are needed 

to resolve the water molecules responsible for coordinating the GTP bound magnesium and 

interacting with the nearby residues of the active site. 
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Interestingly, magnesium was only observed to bind alongside GTP in the earliest class, 

PRE1. The subsequent classes had no density for magnesium, but GTP/GDP was still bound. 

Magnesium was absent in the PRE2 class, which had the catalytic H300 flipped away from the 

nucleotide-binding pocket, suggesting it to be a pre-GTPase activation class. The release of 

magnesium before GTP-hydrolysis points towards a magnesium-independent GTP-hydrolysis 

mechanism. Further investigation is needed to confirm these findings. 

After hydrolysis, GDP stays bound to eRF3. The switch1 region, thought to be the gating 

mechanism for GDP release remains ordered. Our structures reveal a mechanism resulting in the 

disorder of the switch 1 region. The N-terminus of ribosomal protein uL14 interacts with the 

switch 1 loop throughout the termination process. As eRF3 gets pressed against the SRL, the 

switch1 region also gets pressed against the N-terminus of uL14. This clash likely disrupts the 

switch 1 region leading to its disorder and consequently GDP release. Biochemical and 

mutational analysis of the N-terminus of uL14 is needed to further understand its role in 

termination. 

Post-GDP-release, eRF3’s G-domain becomes disordered. The domains II and II remain 

bound to eRF1 keeping it in a pre-accommodation state. eRF3 dissociation and eRF1’s 

accommodation into the PTC likely take place concurrently as we did not observe any additional 

intermediates. Single-molecule fluorescence experiments can be used to further investigate the 

accommodation process. 
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