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Abstract

Essays in Applied Microeconomics

Yuchen Jiang

This dissertation consists of three essays in applied microeconomics.

The first chapter investigates the effect of coroner partisanship on COVID-19 death

reporting. The politicization of the COVID-19 pandemic in the United States has raised

questions about the integrity and accuracy of death reporting, particularly in jurisdictions

with elected, partisan coroners. Using mortality data from the CDC and manually

collected data on county-level death certification systems and coroner party affiliation

where applicable, I examine the parallel systems of appointed medical examiners and

elected coroners and analyze the effect of partisanship on reported COVID-19 deaths.

Cross-sectional comparisons do not seem to suggest counties with coroners report fewer

deaths than those with medical examiners, and difference-in-differences specifications reveal

limited evidence of a statistically significant but not economically meaningful effect of

partisanship on reported COVID death counts.

The second chapter examines the effect of new information on lead water pipes on

housing prices. In 2016, the Water and Sewer Authority of Washington, DC released an

online map that contains information on lead service lines (LSLs) for all properties in the

district. Using the release as a natural experiment, I estimate the effect of the new

information on prices of properties with and without LSLs. Recent literature has found

that housing lead reduction policies such as remediation mandates have significant price



effects. In DC, while the map’s release was followed by a marked increase in requests for

water lead tests, neither a difference-in-differences model nor a repeat sales model captures

a significant divergence between housing prices of the two types of properties after the

release, implying the housing market response to the information was limited.

The second chapter considers the effect of the marriage tax subsidy on the marriage

decision of same-sex couples. The U.S. Supreme Court’s ruling on United States v.

Windsor in June 2013 compelled the federal government to recognize state-sanctioned

same-sex marriages, including for tax purposes. The switch in the income tax filing status

for same-sex couples meant that the marriage penalty or subsidy as a result of joint filing

became a relevant factor that may enter couples’ marriage decisions. I construct a sample

of married and cohabiting same-sex couples in 2012 and 2014 from public-use data of the

American Community Survey. Using a difference-in-differences methodology, I do not find

evidence that same-sex couples who would earn a higher marriage subsidy became more

likely to marry after the Supreme Court ruling.
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Chapter 1: Death Investigation Systems, Coroner Partisanship and

Reported COVID-19 Mortality

1.1 Introduction

Since the initial outbreak of COVID-19 (Coronavirus Disease 2019) in the United States

in 2020, measuring deaths that result directly or indirectly from the pandemic has become

an essential part of accurately assessing its impact (Zylke & Bauchner, 2020). Challenges

abound, and official death numbers are widely believed to be a massive undercount of the

true toll (Kiang et al., 2020; Stokes, Lundberg, Bor & Bibbins-Domingo, 2021; Woolf et al.,

2020; Woolf et al., 2021). One of those challenges involves the proper attribution of deaths

to COVID-19. Public health experts have underscored the importance of death certification

in informing the public and guiding the policy response to the pandemic, and identified

drawbacks in the current system, such as the lack of COVID testing in many cases and the

inadequate training received by death certifiers (Gill & DeJoseph, 2020; Stokes, Lundberg,

Bor & Bibbins-Domingo, 2021).

Concerns have been raised, and anecdotal evidence documented, about the fragmented

death investigation systems in the United States. The American population is served by a

mix of coroner and medical examiner (ME) systems at both state and local levels. Medical

examiners are appointed officials who are medical professionals that received specialized

training in death certification and forensic autopsy. In contrast, coroners are usually elected

and politically partisan, and often laypeople who are neither trained in death certification

nor medicine at large (Hanzlick & Combs, 1998; Institute of Medicine (US) Committee for

the Workshop on the Medicolegal Death certification System [IOM Committee], 2003). This

lack of professional knowledge and training is sometimes assumed to lead to a larger number
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of unattributed COVID-19 deaths in jurisdictions with coroners compared to those with MEs

(Stokes, Lundberg, Bor & Bibbins-Domingo, 2021). Possibly exacerbating the problem is the

politicization of the pandemic in the United States, with views clearly divided along party

lines among both elected officials and the public. Some media reports and analysis have

pointed to possible underreporting of COVID deaths by elected Republican Party coroners

out of political motivations (Bergin et al., 2021; “Politics of Death”, 2022). A Republican

coroner of a Missouri county reportedly said his office “[didn’t] do COVID deaths”, and

attributed no deaths to COVID-19 in 2021 (Bergin et al., 2021). Such reports suggest

the possibility that partisan politics may incentivize partisan coroners to manipulate death

numbers in their jurisdictions.

Despite the theorizing and anecdotes, to my knowledge, no empirical analysis has been

conducted on the effect of coroner partisanship on COVID-19 death reporting. A major ob-

stacle may be data availability on partisanship: states and counties differ vastly in whether

and how information about coroner elections and party affiliations is made available, and

a comprehensive account of the nationwide picture would require extensive manual data

collection and verification. In this paper, I employ an original, manually-collected data set

containing such information, combine it with mortality data from the United States Centers

for Disease Control and Prevention (CDC) and investigate the effect of death certification

systems and partisanship. Taking into consideration the interval-censored nature of the mor-

tality data due to privacy concerns, I estimate both regular, left-censored tobit models and

interval-censored models to account for suppressed death counts, and also use the probability

of having a low and suppressed death count as a dependent variable in alternative specifi-

cations. A cross-sectional comparison of coroner and ME counties does not reveal different

levels of underreporting, and my models produce mixed evidence on systemic underreporting

in Republican-coroner counties compared to Democratic-coroner ones.

This paper contributes to a nascent and growing literature that seeks to understand the

toll of COVID-19 in America. A major focus of the literature is to estimate excess deaths,
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i.e. the difference between actual and expected numbers of deaths (Zylke & Bauchner, 2020).

When performed at subnational levels, these exercises consistently reveal large geographic

variations in the percentage of excess deaths not directly attributed to COVID-19, as pointed

out by Woolf et al., (2020) and Woolf et al., (2021) at the state level, and by Stokes,

Lundberg, Elo, et al. (2021) and Ackley et al. (2022) at the county level, to name a few

examples. My work partially aims to test one possible explanation for such disparity. It is

also closely related to research that examines the politicization of the COVID-19 pandemic

in the United States and its public health consequences, ranging from individual behaviors

(e.g. Allcott et al., 2020; Grossman et al., 2020) to local government policy (e.g. Holman et

al., 2020) to possible fraudulent death reporting practices (Eutsler et al., 2023). This paper

is the first to focus on the death investigation system and seeks to test the theory of political

influence on death certifiers.

The rest of the paper is structured as follows. Section 1.2 reviews the facts and findings

on the politicization of COVID-19 in the United States and outlines the country’s two main

types of death investigation system. Section 1.3 provides a summary of the data and sample.

Section 1.4 describes the empirical methodology. Section 1.5 presents the results and offers

possible interpretations. Section 1.6 discusses the findings and Section 1.7 concludes.

1.2 Background

1.2.1 Politicization of COVID-19 in the United States

The emergence of COVID-19 in the United States coincided with a period of intense political

polarization in the country. Unsurprisingly, the public discourse on the pandemic also largely

evolved into a polarized political debate during its course. Ever since the virus’s initial

outbreak, top-ranking and high-profile Republican Party figures repeatedly downplayed the

threat posed by the virus, endorsed conspiracy theories and pseudoscientific treatments, used

racist language to refer to the disease, contradicted public health recommendations issued
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by the CDC, and dismissed Democratic officials’ concerns and policy responses as political

stunts (Bolsen & Palm, 2022; Halpern, 2020). Both polarization and politicization were also

amplified by the news media (Hart et al., 2020); conservative media in particular spread and

promoted COVID-related misinformation (Motta et al., 2020).

As a consequence, perceptions, attitudes and behavior among the American public all

displayed sharp partisan divisions. Two longitudinal and cross-national studies conducted

by Stroebe et al. (2021) show that the extent of such politicization increased over time, and

was greater in the U.S. than in a comparison group of countries. Compared to self-identified

liberals or Democrats, conservatives or Republicans were less concerned about the health risk

posed by COVID-19 and less trusting in mainstream media’s reporting on the pandemic and

public health recommendations from medical experts (Allcott et al., 2020; Kerr et al., 2021;

Rothgerber et al., 2020). They also reported less adherence to health-protection protocols

such as hand-washing, quarantining, mask-wearing and social distancing (Allcott et al., 2020;

Rothgerber et al., 2020; Kerr et al., 2021; Stroebe et al., 2021), were more skeptical of and less

likely to receive COVID vaccines (Bolsen & Palm, 2022), and less supportive of aggressive

government policies both in pandemic control and on related public issues (Gadarian et

al., 2021). Moreover, Gadarian et al. (2021) find that the partisan divide cannot be fully

explained by other correlating variables, such as consumption of conservative media or the

local COVID-19 death toll.

The self-reported differences are corroborated by empirical data. Google search data indi-

cates Democrats showed greater interest in social distancing (Grossman et al., 2020). Using

mobile phone location data, Allcott et al. (2020), Grossman et al. (2020) and Gollwitzer

et al. (2020) all find that residents in U.S. counties with higher Democratic vote shares

in the 2016 presidential election were more likely to practice social distancing and comply

with stay-at-home orders. These disparities between counties are also subsequently linked

to higher COVID-19 infection and death rates in Republican-leaning counties (Gollwitzer et

al., 2020).
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Furthermore, local policymaking seems to reflect the partisan differences, too. Demo-

cratic governors were generally more prompt in adopting a variety of social-distancing poli-

cies than Republican ones (Adolph et al., 2021; Grossman et al., 2020). Holman et al. (2020)

find the ideological leaning of local populations to be one of the factors that affected how

early municipal governments issued stay-at-home orders. There is also evidence on polit-

ical influences on COVID death reporting: Eutsler et al. (2023) employ Benford’s law, a

phenomenon observed in naturally occurring numerical data sets, and find evidence of un-

derreporting of COVID-19 deaths; in addition, the extent of such underreporting in a county

is related to the county’s partisan leaning in the 2016 presidential election vote as well as

the party affiliation of the state governor. All of this points to the possibility of a partisan

line that divides death investigation systems in America as well.

1.2.2 Death certification during COVID-19 in the United States

Death certificates are a crucial source of information about public health. During the

COVID-19 pandemic, data from death certificates formed the basis of the mortality statistics

published by the CDC’s National Center for Health Statistics, and informed national and

subnational monitoring of the pandemic’s progression and severity (Gill & DeJoseph, 2020).

Normally, natural-cause deaths (such as those resulting from viral infections) that occur in

the hospitals or long-term care/hospice facilities are certified by a facility physician (Bhullar

et al., 2022; Gill & DeJoseph, 2020). These deaths thus do not require reporting to medical

examiner or coroner (ME/C) offices, which together form the medicolegal death investigation

system in the United States and are legally mandated to investigate unnatural or unexpected

deaths (IOM Committee, 2003). Nevertheless, ME/Cs played an important role in certifying

COVID-related deaths during the pandemic for a number of reasons. Firstly, all deaths that

take place outside hospitals or care facilities are reportable to ME/C offices (Bhullar et al.,

2022), and such deaths accounted for a meaningful portion of COVID deaths (Pathak et

al., 2021). More importantly, while statutes that specify the types of death reportable to a
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ME/C differ by jurisdiction, most jurisdictions require reporting of deaths that involve dis-

eases that may constitute a threat to public health, shifting confirmed and suspected COVID

deaths into ME/Cs’ purview, and allowing ME/Cs to revise death certificates when neces-

sary (Gill & DeJoseph, 2020; Kiang et al., 2020; National Vital Statistics System, 2023). In

practice, ME/Cs are extensively involved in certifying and counting COVID-related deaths

(Zavattaro, 2023).

ME and coroner systems coexist in the United States today, and the type of office over-

seeing medicolegal death investigation varies by state and county. According to the CDC

(2023b), 22 states and the District of Columbia exclusively use ME systems; among them,

16 states and D.C. have a centralized system at the state level, and 6 have a county- or

district-based system. The remaining 28 states use coroner systems in at least some parts

of the state, with 14 of them using a county- or district-based coroner system, and the other

14 using a county- or district-based system with a combination of MEs and coroners. The

coroner system originated in 9th- or 10th-century England, and its current use in the United

States is a vestige of the British colonist era (Hanzlick & Combs, 1998). The modern incar-

nation of the ME systems first emerged in 1877, and it is the consensus among today’s public

health experts that ME systems are clearly preferable to coroner systems (IOM Committee,

2003), but the latter persist. From the 1960s to the 1980s, a period of rapid transition from

coroner systems to ME systems took place nationwide, followed by a “lull in the action”

starting in the 1990s (Hanzlick, 2007); in recent years, the pace of conversion seems to be

picking up again (Denham et al., 2022).

Two main differences distinguish ME and coroner systems from each other, and both point

to reasons for the former’s advantage over the latter. The first difference concerns qualifica-

tion and professionalism. ME offices are held by medical professionals—usually physicians,

often pathologists or forensic pathologists—who additionally receive special training and

certification in death investigation (Hanzlick & Combs, 2007; IOM Committee, 2003). This

type of training is seldom provided in medical schools or healthcare facilities, making MEs
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more competent death certifiers than other healthcare professionals. On the other hand,

neither such qualification nor training is required of coroners, and they are almost always

laypeople who need as little as a high school diploma to qualify for the job (Choi & Gulati,

2017; IOM Committee, 2003). The deficiency in knowledge and training makes coroners

less capable of the task of investigating deaths: coroner systems have been found to be less

efficient and more error-prone than ME systems (Choi & Gulati, 2017; Denham et al., 2022;

Flynn, 1955).

The second difference that sets the two systems apart pertains to the method of selection

for each type of office. MEs are appointed, whereas coroners are usually elected (IOM

Committee, 2003). The perceived electoral mandate of coroners is one of the main arguments

made against the conversion to ME systems (Flynn, 1955; IOM Committee, 2003). But

the flip side of representing the will of the electorate is that the electoral system provides

incentives for coroners to respond to political pressure, and voters’ demands may not always

align with what is good for society (Choi & Gulati, 2017; “Politics of Death”, 2022). In the

case of COVID-19, where politics and public health have become so inextricably intertwined,

it is conceivable that the conflict of interests can lead elected coroners to make questionable

decisions. Given their authority in death certification, coroners may, for instance, choose to

omit COVID-19 as a cause of death in the absence of a positive laboratory test, even though

CDC guidelines say it should be listed as long as certain clinical criteria are met; they may

also remove COVID-19 from a death certificate bowing to pressure from the family of the

deceased (Bergin et al., 2021; Bordelon, 2021; “Politics of Death”, 2022). In their Benford’s

law analysis, Eutsler et al. (2023) find descriptive evidence that counties with MEs were less

likely to see politically-motivated underreporting than those with coroners. Some descriptive

works that estimate excess deaths from COVID-19, such as Paglino et al. (2023), point out

that regions with higher discrepancies between reported COVID deaths and estimated excess

deaths were more likely to have coroners rather than MEs.

Laws governing ME/C offices vary greatly by state, and the offices differ not only in
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the manner of selection of ME/Cs, but also in their structure, operation and procedures

(CDC, 2023b; Hanzlick et al., 1993). The United States Department of Justice conducts

five-yearly censuses of ME/C countries nationwide. The most recent one, conducted in 2018

(Brooks, 2021), shows that ME/C offices vary in size of jurisdiction, manpower, budget and

caseload, all of which are positively correlated. For example, on average, coroner offices

serving counties with a population larger than 250,000 have a staff of 15 people, whereas

those in counties with a population smaller than 25,000 only employ two people. Employees

of the office act on behalf and under the authority of the ME/C, who serves as the primary

death investigator and is responsible for completing the death certificate (Hanzlick, 1996). It

is customary in the literature examining the effect of death investigation systems to treat the

ME/C office as a unitary entity without distinguishing between the roles of the overseeing

ME/C and other staff members of the office (e.g. Denham et al., 2022; Klugman et al.,

2013), and I adopt the same approach in this paper.

1.3 Data

The data used for my analysis mainly consists of two parts. Mortality data comes from the

Wide-ranging ONline Data for Epidemiologic Research (WONDER) system maintained by

the CDC (2023a), and includes monthly all-cause (i.e. total) death and COVID death counts

at the county level in 2020 and 2021, along with each county’s urban–rural classification

according to the National Center for Health Statistics’ 2013 scheme (the most recent update

to the scheme). While CDC WONDER contains arguably the highest-quality mortality data

for the United States, its privacy rules introduce one complication to my analysis. In order

to avoid revealing individual identities, CDC wonder suppresses death counts when they

are below 10; instead of the actual value, the death count is replaced by a dedicated code.

Counts of zero are not suppressed. The suppression hence results in interval-censored data,

with death counts between 1 and 9 concealed. I will address this issue when I introduce my

empirical models in Section 1.4.
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CAUSE OF DEATH (See instructions and examples) 
32. PART I.  Enter the chain of events--diseases, injuries, or complications--that directly caused the death.  DO NOT enter terminal events such as cardiac

arrest, respiratory arrest, or ventricular fibrillation without showing the etiology.  DO NOT ABBREVIATE.  Enter only one cause on a line.  Add additional 
lines if necessary. 

   IMMEDIATE CAUSE (Final 
   disease  or condition --------->      a._____________________________________________________________________________________________________________ 
   resulting  in death)     Due to (or as a consequence of): 

   Sequentially list conditions,         b._____________________________________________________________________________________________________________ 
   if any,  leading to the cause        Due to (or as a consequence of): 
   listed on line a.  Enter the  
   UNDERLYING CAUSE          c._____________________________________________________________________________________________________________ 
   (disease or injury that         Due to (or as a consequence of): 
   initiated the  events resulting 
   in death) LAST            d._____________________________________________________________________________________________________________ 

Approximate 
interval: 
Onset to death 

  _____________ 

  _____________ 

  _____________ 

  _____________ 

Figure 1.1: Part of the U.S. standard certificate of death

I include three types of death counts in my data: all-cause deaths, deaths where COVID-

19 is listed as a cause of death, and deaths where COVID-19 is listed as the underlying cause

of death. On the U.S. standard death certificate, up to 20 causes of death can be listed to

form a “chain of events that directly cause the death” (see Figure 1.1). The first listed cause

is the immediate one, and the last the underlying one, which initiated the chain. The main

analysis focuses on deaths where COVID-19 is mentioned anywhere in the list of causes, i.e.

the most broadly-defined COVID deaths based on death certificate data. Death counts with

COVID-19 listed as the underlying cause are used for supplemental analysis.

Additionally, I obtained data on types of death investigation office and party affiliations

of elected coroners in both 2017 and 2021. This data is generously provided by by Matthew

Isbell, a political data analyst. He manually compiled the data from state and local govern-

ment websites and directories depending on where states store and publish such information,

and crosschecked it with multiple sources, including the CDC (2023b). To the best of my

knowledge, this is the first time such data has been gathered and used in empirical research:

while earlier research on the U.S. death investigation systems at the local level, such as Den-

ham et al. (2022), has utilized data on office type, mine is the first to focus on the effect of

coroner partisanship.

Figures 1.2 and 1.3 provide a visualization of the data Isbell collected. In these maps,

I only highlight states with at least one coroner office; the rest have either statewide or

county/district-based ME systems.1 As of 2021, 1,276 counties across America elected coro-
1The highlighted states in the maps exclude three states despite their being listed in CDC (2023b) as ones
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Elected partisan
Elected non-partisan
Combined office elected
Coroner appointed
Medical examiner appointed
Other office handles coroner duties
No coroner office in the stateNo coroner office in the state1

Figure 1.2: Type of death investigation office and method of selection in 2021

ners, with all but six conducting the elections in a partisan manner. A small number (176) of

counties appoint rather than elect coroners, including the entirety of North Dakota. Repub-

licans held more coroner offices than Democrats in both years, and made moderate gains in

the 2020 election. Among coroner offices held by either of the two major parties in both 2017

and 2021, Democrats and Republicans held on to 352 and 725 counties, respectively, after

the election; 119 flipped from Democrats to Republicans, and 20 in the opposite direction.

I augment the mortality and ME/C office data with two additional sources. The mid-

2020 county resident population estimates from the United States Census Bureau (2022) are

used to derive demographic characteristics of counties, including the shares of gender, race

and age groups in the population. The 2020 county-level presidential election results are

obtained from the MIT Election Data and Science Lab (2018).2

with coroner or mixed ME/C systems. Texas has a mixed system, with medical examiners in some counties
and the office of justice of the peace handling coroner duties in others. In Nebraska, county attorneys perform
coroner duties. Kansas has a district-based system. These states are excluded from the empirical analysis,
as none have strictly-defined, county-based coroners.

2In addition, I manually collected 2020 county coroner election results, where possible, from various state
and county sources. However, because a vast majority of coroner races were uncontested, the results are not
very informative for my purposes and therefore not included in the data.
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Democrat
Republican
Third-party
Independent
Non-partisan
Split (multiple coroners)
Appointed/ME/other officeAppointed/ME/other office
No coroner office in the state1

2017

2021

Figure 1.3: Partisan makeup of death investigation offices in 2017 and 2021
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My main sample consists of 2,367 counties over 22 months, from March 2020 to December

2021, for a total of 52,074 observations. The counties are from 46 states and the District

of Columbia. Three states are excluded as explained in footnote 1. Among the non-ME

counties, I only include those with elected partisan coroners, and drop those with appointed

coroners, elected non-partisan coroners and combined offices to allow for straightforward

comparisons. As can be seen in Figure 1.2, this selection criterion excludes the entire state

of North Dakota (which appoints coroners), a majority of counties in California, Montana

(both of which elect combined offices) and Nevada (where coroners’ offices are combined

with sheriffs’ offices [CDC, 2023b]), about half of Washington and South Dakota, a third of

Minnesota, and a few counties in eight other states. Some counties in Alaska and Hawaii are

also excluded because of non-perfect matching between jurisdiction definitions from the three

different sources in my data set. Five counties in the sample reported zero COVID-19 deaths

in 2020 and 2021. Among the 2,367 counties, 1,270 (53.7%) have elected partisan coroners,

and the remaining 1,097 (46.3%) have MEs. Table 1.1 shows the partisan breakdown within

the coroner counties before and after the 2020 election. As pointed out previously, coroners

are more likely to be Republican than Democratic.

Table 1.2 summarizes and compares characteristics both between ME and coroner coun-

ties, and between Democratic-coroner and Republican-coroner counties in 2021. Both pairs

of groups are largely similar in terms of age structure and sex ratio, and any significant

differences are small in magnitude. The racial composition is different within each pair: ME

counties tend to have fewer black residents and more Hispanic ones than coroner counties;

Republican-coroner counties have much more white residents and much fewer black ones

than Democratic-coroner counties. Politically, as expected, Republican-coroner counties

were more in favor of Donald Trump, the incumbent president and Republican presidential

nominee, than Democratic-coroner ones in the 2020 election; ME counties were more sup-

portive of Joe Biden, the Democratic nominee, and saw a greater leftwards shift compared

to 2016 than coroner counties. Geographically, ME counties are more likely located in the

12



Democrat Republican Other/No party Split

Year 2017 478 (37.6%) 755 (59.4%) 32 (2.5%) 5 (0.4%)
2021 374 (29.4%) 853 (67.2%) 35 (2.8%) 8 (0.6%)

Table 1.1: Partisan makeup of elected partisan coroners
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Figure 1.4: 2020 county Republican vote share and coroner partisanship

Northwest and less likely in the Midwest; Republican-coroner counties are much more likely

to be in the Midwest and much less likely to be in the South. Finally, ME counties are more

likely to be metropolitan, defined as being in a metropolitan statistical area. It is also worth

pointing out that while the average population is marginally different between Democratic-

and Republican-coroner counties, a closer look at their distributions reveals that both include

counties of all sizes in roughly similar proportions. This alleviates concerns about different

practices between offices in large and small jurisdictions described at the end of Section 1.2,

as any effect of such differences should be balanced out between the two parties.

Figure 1.4 plots the probability of a county coroner being Republican against the county’s

Republican Party vote share (between the two major parties) in the 2020 presidential election.

Coroner party affiliation is highly correlated with presidential vote share, but a regression-

discontinuity (RD) style quadratic fit shows no discrete jump at a cutoff of 50% vote share.

This indicates ticket splitting between the presidential candidate and the coroner candidate

was common, which was in turn likely due to the large proportion of uncontested coroner
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Office type Coroner party (2021)
Coroner ME Difference Democrat Republican Difference

(ME− C) (R−D)
Population, Jul 2020 est. 61,322 165,426 104,104*** 70,858 57,926 −12, 933*

(109,287) (468,183) (13,545) (150,140) (87,539) (6,848)
Share of age group (%):

0 to 19 24.658 23.708 −0.950*** 24.346 24.819 0.474**
(3.147) (3.478) (0.136) (2.947) (3.182) (0.193)

20 to 29 12.034 11.973 −0.061 12.491 11.813 −0.677***
(2.822) (3.024) (0.120) (3.175) (2.629) (0.174)

30 to 49 23.702 23.627 −0.075 23.669 23.718 0.049
(2.325) (2.793) (0.105) (2.288) (2.315) (0.143)

50 to 64 20.430 20.627 0.196** 20.412 20.445 0.033
(2.083) (2.390) (0.092) (2.050) (2.105) (0.130)

65 to 74 11.447 11.894 0.447*** 11.429 11.445 0.015
(2.230) (2.874) (0.105) (2.075) (2.292) (0.138)

75 to 84 5.692 6.002 0.310*** 5.646 5.713 0.067
(1.258) (1.774) (0.063) (1.254) (1.265) (0.078)

85 and above 2.037 2.170 0.133*** 2.007 2.047 0.040
(0.621) (0.704) (0.027) (0.588) (0.632) (0.038)

Share of male (%) 50.230 50.207 −0.023 49.917 50.327 0.410***
(2.325) (2.056) (0.091) (2.409) (2.221) (0.141)

Share of racial group (%):
White 82.712 83.794 1.083 73.836 86.988 13.153***

(18.049) (15.081) (0.690) (23.773) (12.587) (1.042)
Black 13.010 8.796 −4.214*** 22.145 8.689 −13.456***

(17.896) (12.289) (0.641) (24.080) (11.901) (1.029)
Hispanic 5.754 8.989 3.235*** 5.499 5.901 0.402

(6.867) (11.337) (0.380) (7.302) (6.763) (0.430)
2020 pres. vote share (%):

Democratic (Biden) 28.313 33.315 5.003*** 34.963 24.959 −10.004***
(14.188) (16.337) (0.628) (17.049) (11.368) (0.828)

Republican (Trump) 61.256 51.122 −10.134*** 53.237 64.959 11.721***
(17.626) (18.493) (0.743) (19.938) (15.323) (1.046)

Shift to GOP vs 2016 −3.728 −7.146 −3.418*** −3.458 −3.999 −0.541

(10.988) (11.900) (0.471) (9.266) (11.822) (0.689)
Region (1 = yes):

Northeast 0.072 0.105 0.033*** 0.048 0.076 0.028*
(0.258) (0.306) (0.012) (0.214) (0.265) (0.016)

Midwest 0.339 0.268 −0.071*** 0.217 0.400 0.183***
(0.474) (0.443) (0.019) (0.412) (0.490) (0.029)

South 0.469 0.509 0.039* 0.650 0.390 −0.259***
(0.499) (0.500) (0.021) (0.478) (0.488) (0.030)

West 0.120 0.119 −0.001 0.086 0.134 0.048**
(0.325) (0.323) (0.013) (0.280) (0.340) (0.020)

Metro area (1 = yes) 0.354 0.470 0.117*** 0.318 0.374 0.056*
(0.478) (0.499) (0.020) (0.466) (0.484) (0.030)

n 1,270 1,097 — 374 853 —
Levels of significance: *** = .01, ** = .05, * = .10.

Table 1.2: Descriptive statistics for sub-samples
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races. The close relationship between the two variables, shown here and in Table 1.2, calls

for controlling for the presidential vote in my empirical specification. On the other hand,

the lack of a jump at the 50% level precludes the adoption of a fuzzy-RD design.

Before moving on to econometric analysis, I take inspiration from works like Eutsler et

al. (2023) and Campolieti (2022) and check for signs of underreported COVID-19 deaths

using a mathematical tool. Benford (1938) described the following phenomenon. In many

sets of naturally-occurring numbers, the leading digits follow a probability distribution where

the smaller numbers occur more often than larger numbers: the probability of the leading

digit being d ∈ [1, 9] equals P (d) = log10
(
1 + 1

d

)
, with P (1) ≈ 0.301, P (2) ≈ 0.176, ...,

and P (9) ≈ 0.046. Similar distributions also exist for non-leading digits: for example,

0 is the most likely second digit (probability 0.120), and 9 the least likely (probability

0.085). Deviations from the Benford distributions in supposedly naturally-occurring data

may indicate data manipulation, and Benford’s law has been successfully used to detect

fraud in a wide range of contexts (Mebane, 2006; Nigrini, 2012). Eutsler et al. (2023) argue

that daily COVID death counts are likely to meet the necessary conditions for the data to

satisfy the law, and find higher frequencies for small leading digits in the reported death

counts than the theoretical distribution predicts, pointing to possible underreporting. In the

case of monthly CDC WONDER data, despite the censoring of death counts below 10, the

law should still hold for the remaining data with higher orders of magnitude (Benford, 1938)

and, in any case, for the second digits of the death counts as they are not affected by the

censoring.

Figure 1.5 illustrates the comparison of observed frequencies for the leading and second

digits with the theoretical Benford’s law distributions across subsamples grouped by office

type, or by the party affiliation of coroner in each year (for example, the subsample “Demo-

cratic 2020” only includes death counts in the year of 2020 in counties with a Democratic

coroner in that year). Two patterns stand out from the charts. First of all, for both the first

and second digits, low (high) digits appear more (less) frequently in COVID death counts
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Figure 1.5: Observed frequencies of leading and second digits vs. Benford’s law distributions

than predicted by the corresponding Benford distribution, but the observed and theoretical

distributions seem to match much better for all-cause death counts, confirming the applica-

bility of Benford’s law to my data set while indicating possible underreporting of COVID

deaths. Secondly, the extent of deviation of COVID death counts from Benford distribu-

tions is similar across all subsamples, and there does not appear to be clear visual evidence

suggestive of systemic underreporting by either office type or either party in either year.

Nigrini (2012) proposes the use of the mean absolute deviation (MAD) as a testing

statistic for conformity to Benford’s law. It is defined as

MAD =
1

D

D∑
d=1

|OPd − TPd| ,

where D is the total number of possible digits in the position (9 for the leading digit and
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10 for all thereafter), and OPd and TPd are the observed and theoretical proportions of

digit d. The smaller the statistic, the closer the conformity. In Table 1.3, I calculate the

MAD for both the leading and the second digits across all subsamples and compare them

to Nigrini’s (2012, p.160) critical values for different levels of conformity. The statistical

tests reported in panels (a) and (b) confirm my visual observation: the MAD is vastly

higher for COVID-19 deaths than for all-cause deaths in every case. Tests for both the

leading and second digits also indicate that ME counties are subject to less underreporting

than coroner counties. In terms of coroner party affiliation, however, neither party seems

to reliably and significantly outperform the other in both years. Panel (c) focuses on the

leading digits of COVID death counts in major-party-coroner counties, and calculates the

MAD in each year for counties that saw a party switch and those that didn’t. The tests

again suggest non-conformity across the board, although there now appears to be indicative

evidence of a pre-existing gap between switch and no-switch counties: Democratic-coroner

counties that flipped Republican already had a higher MAD in 2020 than those that didn’t

flip, and Republican-coroner ones that flipped had a lower MAD in 2020 than their no-

flip counterparts. However, the gaps seem to have persisted in 2021 without growing in

size (a smaller MAD in Republican-to-Democratic counties in 2021 is likely due to a small

sample size of 110), suggesting the actual party switch did not exacerbate the pre-existing

differences. Instead, these differences are probably attributable to factors other than the

death investigation system, such as public attitudes towards COVID death certification and

prevalent practice in the healthcare facilities.

1.4 Empirical Methodology

1.4.1 OLS difference-in-differences framework

I employ a difference-in-differences strategy in my empirical analysis. In order to examine

the effect of coroner partisanship on reported deaths, I leverage party flips in coroners’
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(a)
Leading digits: ME Coroner Dem 2020 Dem 2021 Rep 2020 Rep 2021
COVID deaths 0.0452× 0.0623× 0.0642× 0.0547× 0.0650× 0.0621×

All-cause deaths 0.0104** 0.0220× 0.0315× 0.0303× 0.0172× 0.0182×

(b)
Second digits: ME Coroner Dem 2020 Dem 2021 Rep 2020 Rep 2021
COVID deaths 0.0098** 0.0127× 0.0140× 0.0101* 0.0123× 0.0170×

All-cause deaths 0.0019** 0.0020*** 0.0059*** 0.0036*** 0.0033*** 0.0020***

(c)
Leading digits: Dem hold Dem to Rep Rep hold Rep to Dem
2020 0.0605× 0.0807× 0.0654× 0.0581×

2021 0.0603× 0.0800× 0.0601× 0.0339×

Levels of conformity:
*** = close conformity, ** = acceptable conformity, * = marginally acceptable conformity, × = nonconformity

Table 1.3: Mean absolute deviation (MAD) test for Benford’s law conformity

offices in the 2020 election. Because of the minimal number of counties that had third-

party/independent coroners or offices with split party control, it becomes impractical to

estimate the effect of party flips either to and from these affiliations. Hence I confine the

analysis to counties where the coroner belonged to one of the two major parties in both

years. This leaves me with 1,216 counties (out of 1,270 coroner counties) for a total of

26,752 observations. The basic diff-in-diff specification is given by the regression model

yit = α0 + αt + η × Postt + β1 ×DtoRi + β2 ×DtoRi × Postt

+ γ0 ×Ri + γ1 ×RtoDi + γ2 ×RtoDi × Postt + Z ′
itθ + ϵit,

where yit is the death count in county i in month t; αt is the month fixed effect; DtoRi

and RtoDi are indicator variables that equal 1 if the coroner’s office in county i flipped

from Democratic to Republican, or from Republican to Democratic, in the 2020 election,

respectively; Ri = 1 if county i had a Republican coroner in 2020; Postt = 1 if month t is

January 2021 or later, when newly elected coroners were in office; Xit is a vector of covariates,

including 2020 presidential election vote shares, the shift towards the Republican Party
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between 2016 and 2020, population and its polynomials (up to third-order) and logarithm,

fixed effects for state, urbanization status, and demographic (age, gender, race) groups, as

well as region and month fixed effects and their interaction (to roughly account for the

different timing of COVID-19 waves in different U.S. regions). The coefficients of interest

are β2 and γ2, which capture the effects on reported deaths of a Democratic-to-Republican

or a Republican-to-Democratic flip, under the identifying assumption of parallel pre-trends

between counties that had coroners from the same party in 2020 but different ones in 2021.

Because the coroner’s office only has an effect on COVID death counts through its capacity for

medicolegal death investigation and does not affect local public health policy, and assuming

the latter has been sufficiently controlled for using the presidential election vote shares, these

coefficients of interest represent the effects of coroner party changes alone.

Given the structure of my data set, I estimate the equivalent (and more symmetric)

yit = α0 + αt + ηPostt +
3∑

k=1

(ϕkChangeki + δkChangeki × Postt) + Z ′
itθ + ϵit, (1.1)

where Change1i, Change2i and Change3i are a set of indicator variables for the coroner

party change in the 2020 election (k = 1 means “Republican hold”, 2 means “Democratic

to Republican flip”, 3 means “Republican to Democratic flip”, and “Democratic hold” is the

omitted group). In this specification, the coefficients of interest are represented by δ2 and

δ3 − δ1, which are equal to β2 and γ2 from Equation (1.1), respectively. I also allow for

dynamic treatment effects by estimating the alternative specification

yit = α0 + αt +
3∑

k=1

(ϕkChangeki + τktChangeki) + Z ′
itθ + ϵit, (1.2)

where the effect of a Democratic-to-Republican (or Republican-to-Democratic) shift in month

t compared to the reference month is captured by τ2t (or τ3t − τ1t).
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1.4.2 Considerations about data censoring

As mentioned in Section 1.3, CDC WONDER censors low death counts due to privacy

concerns, i.e. to avoid the identification of individuals. One straightforward solution is

to estimate Equation (1.2) using a standard tobit model (Tobin, 1958) and treating the

dependent variable as left-censored below 10.3 The model, which is included in common

statistical packages, is estimated using maximum likelihood estimation (MLE). Without loss

of generality and for the sake of simplicity, I can designate all suppressed death counts yit as

equal to 9, a value not observed for yit elsewhere in the data. Then, assuming a conditional

normal distribution for the true (latent) death count y∗it, the likelihood function for the

sample is

L (β, σ) =
∏
yit>9

[
1

σ
φ

(
yit −X ′

itβ

σ

)] ∏
yit≤9

Φ

(
9−X ′

itβ

σ

)
,

and the log-likelihood function is

logL (β, σ) =
∑
yit>9

log

[
1

σ
φ

(
yit −X ′

itβ

σ

)]
+

∑
yit≤9

log Φ

(
9−X ′

itβ

σ

)
, (1.3)

where φ (·) and Φ (·) are the probability density function and cumulative density function of

a standard normal distribution, respectively.

There are two main drawbacks to this standard approach. Firstly, since death counts of

zero are actually not censored, treating them as such means discarding a large amount of

information in the data (out of the 52,074 county-month observations, 12,895, or close to a

quarter, had a death count of zero). Secondly, the tobit model assumes a conditional normal

distribution for the dependent variable, which may not be the most suitable assumption for

death counts. I therefore propose two alternative regression models to address the censoring

issue.
3Censored regression models are only suitable for data where the dependent variable is censored based

on a fixed threshold, which is the main reason why I use raw death count rather than death rate as the
dependent variable.
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The first model is a slight modification of the standard tobit model that allows me to

make use of the zero counts. The data is treated (correctly) as interval-censored on [1, 9].

Additionally, under the assumption of normal distribution, any yit = 0 can be considered a

“censored” value for a true y∗it < 0. The log-likelihood function then becomes

logL (β, σ) =
∑

yit>9

log

[
1

σ
φ

(
yit −X′

itβ

σ

)]
+

∑
yit=9

log

[
Φ

(
9−X′

itβ

σ

)
− Φ

(−X′
itβ

σ

)]
+

∑
yit=0

log Φ

(−X′
itβ

σ

)
, (1.4)

and I can estimate the coefficients β and σ using MLE.

My second model is a modification of the standard Poisson regression model. I assume

that the dependent variable y∗it follows a Poisson instead of normal distribution, a more

accurate assumption for death counts (Scott, 1981), and that the logarithm of its condi-

tional expectation is a linear combination of the covariates, i.e. logE (yit|Xit) = X ′
itβ, or

E (yit|Xit) = exp (X ′
itβ). Because the probability mass function of a Poisson distribution

with expectation λ is

f (k;λ) =
λke−λ

k!
,

in the standard Poisson regression model, which is also estimated using MLE, the likelihood

function would be given by

L (β) =
∏
i,t

exp (yitX
′
itβ) exp

(
−eX

′
itβ
)

yit!
,

and the log-likelihood function

logL (β) =
∑
i,t

[yitX
′
itβ − exp (X ′

itβ)− log (yit!)] .

Now I modify the Poisson regression model to allow for interval censoring. When yit is
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interval-censored on [1, 9] and designated a value of 9, the likelihood function becomes

L (β) =
∏
yit ̸=9

exp (yitX
′
itβ) exp

(
−eX

′
itβ
)

yit!

∏
yit=9

9∑
k=1

exp (kX ′
itβ) exp

(
−eX

′
itβ
)

k!
,

which gives the log-likelihood function

logL (β) =
∑
yit ̸=9

[
yitX

′
itβ − exp

(
X ′

itβ
)
− log (yit!)

]
+

∑
yit=9

log

 9∑
k=1

exp (kX ′
itβ) exp

(
−eX′

itβ
)

k!

 .

(1.5)

I can then estimate the parameter β using MLE. I prefer this interval-censored Poisson model

to the interval-censored tobit model because of the more realistic distribution assumption.

1.5 Estimation Results

1.5.1 ME counties vs. coroner counties

I begin by presenting comparisons between counties with different types of death investigation

offices. It is important to stress from the outset that the following results are only descriptive,

since my identification strategy does not extend to ME–coroner comparisons. Instead of

diff-in-diff, these are simple-difference regressions with the same set of controls as in my

main specifications and with the ME indicator interacted with the month indicators. Figure

1.6 displays the expected deaths by month based on a standard tobit (T) regression, an

interval-censored tobit (T-IC) regression, and an interval-censored Poisson (P) regression,

counterparts of Equations (1.3), (1.4) and (1.5), respectively. Each regression is run twice,

with COVID-19 deaths and all-cause deaths as the dependent variable. Standard errors are

clustered at the state level. The plots display point estimates and 95% confidence intervals.

I make a few observations from these estimates. Firstly, the shapes of the curves, even

after controlling for covariates, closely follow the monthly COVID death tolls in the U.S.,

which saw its first three peaks of mortality in April 2020, January 2021 and September

2021. Secondly, the three sets of results have clear qualitative similarities, but the standard
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tobit model produces very large standard errors whereas estimates from the Poisson model

are the most precise, with the exception of March and April, 2022, when the U.S. outbreak

was concentrated in a small region. Thirdly, although results from the COVID-19 death

regressions seem to suggest ME and coroner counties sometimes see statistically significant

gaps in either direction in the number of reported COVID deaths in certain months, the

same is true of all-cause deaths, with the gap often similar in sign and often at least as large

in magnitude, and neither measure shows consistent underreporting by one type of county

compared to the other. This indicates that both sets of differences are almost certainly

driven by other county characteristics which are not sufficiently accounted for. Therefore,

the results underscore the fact that these comparisons are correlative and descriptive and

should not be used to derive causal conclusions about the effect of death investigation system

types.

1.5.2 Democratic-coroner counties vs. Republican-coroner counties

I now move to the main analysis of the paper and examine the effect on reported deaths of

party switches in the 2020 election. In the first four columns of Table 1.4, I report coefficient

estimates from counterparts of Equation (1.1), the single-period diff-in-diff specification. I

use both the interval-censored tobit and Poisson models, with either COVID or all-cause

deaths as the dependent variable. Figures 1.7 and 1.8 illustrate the dynamic effects from

counterparts of Equation (1.2), showing point estimates and 95% confidence intervals. De-

cember 2020 is the reference month in Figure 1.8. Standard errors are clustered at the state

level. In order to more accurately capture any change in death counts immediately before

and after the party change in January 2021, and to strip out the volatile initial outbreak in

Spring 2020, the models reported in Table 1.4 restrict the sample to the 10-month period

between August 2020 and May 2021, leaving me with slightly less than half of my coroner

partisanship subsample.

I first examine the results from the simple diff-in-diff models, with one set of Changeki×
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Figure 1.6: Comparison of reported COVID-19 and total death counts between ME and
coroner counties
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COVID-19 deaths All-cause deaths COVID deaths All-cause deaths
(T-IC) (P) (T-IC) (P) ≤ 10 ≤ 10

Post = 1 5.212 0.256 −0.115 0.000553 −0.0455 −0.0439**
(4.676) (0.588) (1.624) (0.0301) (0.0319) (0.0165)

Party flip (Change):
Rep hold (ϕ1) −1.729* −0.111*** −5.648** −0.0785*** −0.0116 0.0114

(0.889) (0.0370) (2.420) (0.0118) (0.0180) (0.0168)
D–R flip (ϕ2) −0.0743 0.0141 −1.220 −0.00627 0.000862 −0.00220

(0.763) (0.0589) (1.776) (0.0188) (0.0207) (0.0176)
R–D flip (ϕ3) −3.077 −0.0934 −9.149 −0.0608** 0.00950 0.0123

(2.945) (0.0741) (8.280) (0.0296) (0.0359) (0.0386)
Interactions between Change & Post = 1:

R hold (δ1) 0.844 -0.0339 1.124 -0.00885 0.0421* −0.00469

(0.643) (0.0508) (0.764) (0.0120) (0.0207) (0.00886)
D–R flip (δ2) −0.612 −0.163*** 0.629 −0.0334*** 0.0130 0.0113

(0.498) (0.0534) (0.792) (0.0117) (0.0267) (0.0172)
R–D flip (δ3) 1.389 0.0920 1.141 0.0342*** −0.0461 −0.0449*

(2.861) (0.0657) (2.785) (0.0118) (0.0275) (0.0219)
δ3 − δ1 0.545 0.126 0.0162 0.0431*** −0.0882** −0.0402*

(3.006) (0.0786) (2.832) (0.0116) (0.0385) (0.0223)
Population (’00,000) 6.872*** −0.152** 89.03*** −0.0592* −0.325*** 0.648***

(1.969) (0.0660) (7.363) (0.0331) (0.0399) (0.0527)
Population2 0.402 0.0191* −1.989 0.00788 0.0489*** −0.100***

(0.442) (0.0103) (2.049) (0.00502) (0.00811) (0.0114)
Population3 −0.0318 −0.000783 0.00926 −0.000331 −0.00219*** 0.00464***

(0.0227) (0.000482) (0.122) (0.000237) (0.000470) (0.000725)
log (population) 5.949*** 1.056*** 8.568*** 1.020*** −0.0937*** −0.406***

(0.641) (0.0372) (1.775) (0.0222) (0.0192) (0.0244)
2020 pres. vote share (%):

Republican 0.227*** 0.0189*** 0.598*** 0.0106*** −0.00385*** −0.00331**
(0.0395) (0.00277) (0.113) (0.00124) (0.000516) (0.00128)

Shift to GOP −0.135** −0.0101* −0.278 −0.00534 0.00209* 0.00306*
(0.0682) (0.00565) (0.301) (0.00380) (0.00116) (0.00150)

Share of age group (%):
0 to 19 −1.473** −0.288*** −6.698*** −0.161*** 0.0335*** −0.00291

(0.607) (0.0380) (1.960) (0.0282) (0.00678) (0.0205)
20 to 29 −1.570** −0.297*** −6.851*** −0.152*** 0.0357*** −0.00694

(0.634) (0.0339) (1.996) (0.0271) (0.00665) (0.0214)
30 to 49 −1.697*** −0.301*** −7.372*** −0.155*** 0.0340*** −0.00632

(0.621) (0.0351) (1.939) (0.0278) (0.00834) (0.0223)
50 to 64 −1.526** −0.295*** −6.334*** −0.144*** 0.0321*** −0.00550

(0.678) (0.0329) (2.043) (0.0279) (0.00523) (0.0224)
65 to 74 −1.475*** −0.320*** −4.618*** −0.148*** 0.0298*** −0.000189

(0.569) (0.0369) (1.660) (0.0267) (0.00954) (0.0212)
75 to 84 −0.998 −0.227*** −7.432*** −0.108** 0.0389*** −0.0337

(0.749) (0.0630) (2.815) (0.0494) (0.0108) (0.0302)
Share of male (%) −0.0210 −0.00641 0.132 −0.0174** 0.000744 0.0112***

(0.106) (0.0120) (0.366) (0.00695) (0.00240) (0.00319)
Share of racial group (%):

White −0.0731 0.00878 −0.266 0.00176 0.00120 0.000598
(0.0560) (0.00849) (0.267) (0.00436) (0.000870) (0.000966)

Black 0.123* 0.0228*** 0.220 0.0111*** −0.00151 −0.00264***
(0.0655) (0.00828) (0.308) (0.00422) (0.00124) (0.000611)

Hispanic 0.123** 0.00579 0.164 0.00207 −0.00127 −0.00136

(0.0612) (0.00362) (0.263) (0.00212) (0.000781) (0.00127)
Intercept 161.3*** 30.08*** 770.9*** 19.47*** −2.412*** −0.190

(61.64) (3.442) (176.5) (2.797) (0.648) (2.186)
Fixed effects State, region, month, region×month, urbanization
n 12,160
Levels of significance: *** = .01, ** = .05, * = .10.

Table 1.4: Diff-in-diff regression estimates
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Postt interaction terms to capture the effect of party changes. In Table 1.4, the coefficients

of interest are δ2, which represents the effect of a switch from a Democratic to a Repub-

lican coroner, and δ3 − δ1, which measures the effect of the opposite switch. In both the

interval-censored tobit model and my preferred Poisson model, the point estimates for these

coefficients in the COVID death regression have signs that are consistent with the theory

of political influences on Republican coroners (δ2 < 0 and δ3 − δ1 > 0). The tobit model

produces no statistically significant estimate out of all four (two coefficients each for COVID

and all-cause deaths), but three from the Poisson model are significant at the 1% level.

The fact that estimates for both δ2 and δ3−δ1 are highly significant with all-cause deaths

as the dependent variable should raise concerns, as it suggests that a change in coroner

partisanship has an effect on the overall number of deaths in a county, which seems unlikely

and points to issues with model specification. On the other hand, it should be noted that

these point estimates are much larger in magnitude in the COVID death regressions than in

those for all-cause deaths. In a Poisson regression, a coefficient on an independent variable is

interpreted as the marginal expected effect of the variable on the log, not actual, dependent

variable; as all-cause deaths are, by definition, larger in value than corresponding COVID

deaths, the difference in magnitude is to be expected even if the true marginal effects are in

fact the same on the pre-log death count. Nevertheless, it turns out the larger estimates in

the COVID death regressions do translate to a larger effect on death counts, which can be

seen from the bottom four panels in Figure 1.8.4 Here, I give one possible interpretation of

these results. Although I am unable to perfectly control for correlating factors that affect the

difference in all-cause death counts between counties before and after the party change, such

differences in COVID deaths move in the same direction but to a much larger extent, implying

an increase in COVID deaths as a share of all-cause deaths.5 Given that the estimated δ2

4Normally, I can use the margins command in STATA to explicitly calculate the marginal effect of
independent variables on the pre-log dependent variable. But the command fails to work properly in this
case, most likely due to empty cells.

5Ideally, I would test this using the share of COVID deaths as the dependent variable in regressions, but
data censoring makes this impossible.

26



D
e
a
th

s

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Dem hold Dem to Rep Rep hold Rep to Dem

Expected COVID−19 deaths, by coroner party switch (T−IC)

D
e
a
th

s

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Dem hold Dem to Rep Rep hold Rep to Dem

Expected all−cause deaths, by coroner party switch (T−IC)
D

e
a
th

s

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Dem hold Dem to Rep Rep hold Rep to Dem

Expected COVID−19 deaths, by coroner party switch (P)

D
e
a
th

s

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Dem hold Dem to Rep Rep hold Rep to Dem

Expected all−cause deaths, by coroner party switch (P)

Figure 1.7: Comparison of reported COVID-19 and total death counts, by coroner party
switch

in the COVID death regression is significant and δ3 − δ1 is not, this interpretation would

mean that a county’s switch from a Democratic to a Republican coroner led to a decrease in

reported COVID deaths compared to counties held by Democratic coroners, but the reverse

party flip had no such effect in the opposite direction.

In the last two columns of Table 1.4, I estimate OLS regressions where the dependent

variable is an indicator for death counts smaller than 10, i.e. either counts of zero or sup-

pressed counts. The estimates for δ3 − δ1 are significant and negative in both the COVID

and all-cause regressions, and those for δ2 are not significant in either. The results seem to

suggest that a switch from a Republican to a Democratic coroner makes a county less likely

to have such small COVID death counts (a larger effect than on all-cause deaths) than it

otherwise would have. But because the threshold of 10 is completely arbitrary, I refrain from

drawing stronger conclusions based on these results.

I now consider the dynamic effects illustrated in Figures 1.7 and 1.8. Similar to the pre-
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ceding subsection on ME/C comparisons, estimates from the interval-censored tobit model

are much less precise relative to their magnitude, as Figure 1.8 most clearly demonstrates.

Both figures also show that estimates involving Republican-to-Democrat switches are less

precise in general, due to the small number of such flips in the 2020 election.

The Poisson regression plots in Figure 1.8 (bottom four panels) reveal some interesting

patterns. Focusing on the immediate vicinity of the party switch (August 2020–May 2021),

estimates from the COVID death regressions indicate statistically significant effects of party

changes in both directions. Compared with December 2020, COVID death counts were not

statistically different between switch and no-switch counties between August and November,

indicating parallel pre-trends. Death counts between the two groups of counties started to

significantly diverge in February or March 2021. Democratic-coroner counties that switched

Republican began to see a decrease in reported COVID deaths compared to their counter-

parts that stayed Democratic, and Republican-coroner counties that switched saw higher

death counts. The effect lasted for several months before mostly tapering off through the

rest of the year. Whereas qualitatively similar trends can be observed in the all-cause death

plots, the estimates are less precise and have smaller magnitude just like in the single-period

diff-in-diff regression in Table 1.4. This is the strongest evidence yet from this analysis that

supports the theory of politically incentivized death reporting.

Finally, I repeat the analysis in this subsection after replacing my death measure with

deaths where COVID-19 was the underlying cause, instead of those with COVID-19 listed as

a cause of death. The results are almost identical, only with slightly larger standard errors of

the estimated coefficients of interest. This is to be expected: the two death count measures

turn out to be highly correlated, but the underlying death count is smaller than or equal to

the more widely defined measure, leading to slightly more suppressed counts. As they do

not affect my analysis, I omit those results.
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Figure 1.8: Dynamic diff-in-diff effect estimates
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1.6 Discussion

Do partisan coroners manipulate reported COVID-19 death counts for political expediency?

The analysis of mortality and coroner party affiliation data yields evidence that is decidedly

mixed. On one hand, both the single-period and dynamic diff-in-diff regressions produce

estimates that seem consistent with the concerns raised about Republican coroners. On the

other hand, a few countervailing factors cast doubt on the validity of such theories. The

main issue is that I find non-zero effects in my intended placebo tests that use all-cause

deaths as the dependent variable, although these are much smaller in magnitude and often

less precise. In addition, the dynamic effects I find were relatively short-lived compared to

the duration of the COVID pandemic, suggesting any effects from party switches dissipated

soon into the new coroner’s term. Perhaps more importantly, my most precise estimates

(from the Poisson model) are too small to be economically meaningful, and do not point to

large-scale, systemic underreporting of COVID-19 deaths by Republican coroners.

It may be helpful to consider the matter of politically-motivated underreporting in the

bigger context of COVID death reporting in general. As mentioned in the introduction,

there were immense challenges in properly certifying COVID-19 deaths. During the first two

years of the pandemic, estimates put excess deaths in the United States at over 1.1 million

(Paglino et al., 2023; Rossen et al., 2022), while the officially reported COVID-19 death toll

was around 950,000, meaning over 15% of excess deaths were not attributed to the disease.

Some of these deaths will have been due to undocumented or unrecognized COVID infections

(Woolf et al., 2020). As my Benford’s law test in Figure 1.5 shows, there is strong indication

of underreporting of COVID deaths across death investigation office types, coroner party

affiliations and years. It is conceivable that any politically-motivated manipulation paled

beside such inevitable underreporting and was masked by it. Tactics that would be used

to manipulate death certificates, such as skipping autopsies or requiring positive COVID-19

laboratory tests (Bergin et al., 2021; “Politics of Death”, 2022), may resemble constrained
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testing and investigation capacity faced by ME/C offices across the country.

The significant yet small results may also reflect the small number of coroners engaged

in malpractice, the limited scope coroners have for manipulating death certificates, and/or

the relative small share of COVID-19 deaths passing through ME/C offices as opposed to

being handled in the healthcare system. While I am not equipped to determine the role of

these factors, my findings do suggest that coroners of all affiliations seem to have performed

their duties during the pandemic better than many have feared.

1.7 Conclusion

Using public-use mortality data from the CDC and original data on medicolegal death in-

vestigation office types and elected coroners’ partisanship, I use a number of tools to test the

effect of death investigation on COVID-19 reporting. I find suggestive evidence that there is

widespread underreporting in COVID-19 deaths, but a cross-sectional comparison between

medical examiner counties and coroner counties does not reveal differing extents of such

underreporting. Employing econometric specifications in a difference-in-differences frame-

work, I find some evidence that counties reported fewer deaths when they switched from a

Democratic coroner to a Republican one after the 2020 election, and vice versa. However,

the magnitude of these differences is too small to have had any meaningful impact in relation

to the scale of the underreporting problem during the pandemic.

Considerable accommodation has had to be made due to the data censoring adopted by

the CDC, which results in more than half of my observations containing a suppressed death

count. If manipulation did happen to a marginal degree as my findings seem to indicate,

having low-death-count observations in the data would probably help unveil a much clearer

picture of such practice. Therefore, it will be worthwhile to carry out follow-up analysis

if and when such data can be obtained. It might also be possible to obtain measures of

coroner partisanship that can augment party affiliations per se: Farris and Holman (2023),

for example, use a survey to gauge county sheriffs’ agreement with right-wing extremist
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ideology and examine its correlation with their strictness in enforcing mask mandates.

Some empirical research has been done to compare the performance of ME and coroner

systems. The political aspect of coroner systems, however, remains overlooked and under-

researched. As the United States continues to become more politicized and polarized, the

subject may merit further research, in areas including infectious disease and beyond, such as

crimes, mental health issues and the opioid crisis. Unfortunately for America, the COVID-19

pandemic is unlikely to be the last time that the integrity of the death investigation system is

put under the microscope. Future research endeavors should aim to strengthen the system’s

resilience against potential biases and maintain public trust in the work it produces.
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Chapter 2: Lead Pipe Information and Housing Prices: An

Analysis in Washington, DC

2.1 Introduction

Ever since Rosen’s (1974) seminal work, the hedonic model has been widely used in a number

of fields in economics. Applied in the housing literature, this approach considers housing

as a differentiated good composed of multiple attributes, and the equilibrium price schedule

in the competitive market can be used to derive the marginal value of a given attribute.

Numerous studies have been devoted to measure the value of a wide range of attributes

including non-market, “environmental amenities”, such as school quality (Black, 1999), air

quality (Chay & Greenstone, 2005), and local crime risk (Linden & Rockoff, 2008). This

paper adopts the framework and focuses on the presence (or lack thereof) of lead hazards in

housing, in particular lead service lines (LSLs), more commonly known as lead pipes.

LSLs may be of particular interest to homebuyers because of the demonstrated adverse

health effects of exposure to the metal lead, with children being the most susceptible group.

Links have been established between children’s lead exposure to negative impacts on various

health and other outcomes, including cognitive function (Needleman & Gatsonis, 1990), de-

velopment delays (Selevan et al., 2003), violent and criminal behavior (Reyes, 2007), ADHD

(Goodlad, 2013), and academic achievement (Aizer et al., 2018). Importantly, many such

effects seem to be long-term and persist well into adulthood (Reyes, 2007; Grönqvist et al.,

2020). During the past several decades, as the scientific consensus evolved, the acceptable

upper limit (later renamed the “reference level”) of blood lead concentration in children has

been lowered six times, from 60 micrograms per 100 milliliters of blood (µg/dl) in the early

1960s to 3.5 µg/dl since 2021 (American Academy of Pediatrics Subcommittee on Accidental
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Poisoning, 1961; Pueschel et al., 1996; Centers for Disease Control and Prevention, 2021).

Furthermore, while the thresholds are those that “should prompt public health actions”, it is

commonly acknowledged that there is no known safe level for blood lead in children (Binns

et al., 2007).

Few attempts have been made to actually estimate parents’ willingness to pay for reducing

their children’s exposure to lead hazard. In one of these, under fairly restrictive assumptions,

Agee and Crocker (1996) use data on enrollment in chelation therapy and estimate parents

were willing to pay between $39.01 and $364.23 in 2022 dollars for a one-percent reduction

in their children’s lead burden, which was significantly higher than the U.S. Environmental

Protection Agency’s estimate of savings from lead reduction efforts. However, given the over-

whelming consensus of the health risk posed to children by even low levels of lead exposure,

it is conceivable that in the hedonic framework, homebuyers, especially parents, will place a

positive valuation on the absence of potential lead hazards in housing, including lead paint

and LSLs. In this paper, I use data on housing prices and presence of LSLs in Washington,

DC to examine the extent to which lead hazards affect housing prices.

In the early 2000s, the District of Columbia experienced a public health crisis due to

lead contamination of drinking water, an unintended consequence of a change in the Dis-

trict’s water disinfection procedure and resulting water pipe corrosion. The episode saw a

notable rise in blood lead levels of affected children (Edwards et al., 2009; Jane Brown et al.,

2010). The crisis attracted nationwide attention, led to a congressional investigation, and

highlighted the potential health hazards from the prevalent use of LSLs in the district. LSLs

were widely used in the Unites States before they were banned in new constructions after

1986, and may are still in service in older buildings, including in Washington, DC. Since

the lead contamination crisis, the District’s government has been working on tackling the

issue through replacement and awareness campaigns. In June 2016, as part of the effort, the

District of Columbia Water and Sewer Authority published a lead pipe map on their website

that allows anyone to identify the types of water pipes used in the service lines for any address
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in the District. With the explicit goals of increasing transparency, informing residents about

LSLs and eliciting them to help the water authority identify and solve related problems,

this easy-to-use visual tool represented a massive upgrade from the previously undigitized

records of pipe material, and made such data readily accessible to the public for the first

time. The release of the map also coincided with a significant and sustained rise in the

American public’s interest in the issue of lead contamination of drinking water following the

initial national media coverage in early 2016 of the water crisis in Flint, Michigan, and the

availability of the lead map has made it possible for any DC resident to obtain information

related to LSLs if they wish, enabling them to better inform their housing decisions.

Treating the release of the lead map as a natural experiment, I try to estimate the

resulting information effect on housing prices due to such negative valuation associated with

LSLs. I use two different model specifications for identification: a straightforward difference-

in-differences model, and a repeat sales model. Based on the recorded service line material,

all housing units are divided into three groups: those with LSLs, those without, and those

for which the Water and Sewer Authority does not have information on service line material.

The grouping is done multiple times, using information on both the public and private sides

of the service line. I set the date of the lead map’s release, June 6, 2016, as the cutoff for the

pre- and post-information-shock periods, and focus on a two-year window centered on that

date for the diff-in-diff specification, and a seven-year window for the repeat sales model.

Neither method points to a discernible information effect on housing prices.

This paper joins a number of other studies that adopt the hedonic model to estimate the

information effect on housing prices related to disclosure of negative environmental amenities.

Negative price effects have been found from disclosure of such unpleasantries as airport

noise (Pope, 2008), proximity to polluting firms (Mastromonaco, 2015), health hazards from

nearby waste sites (Gayer et al., 2002), and flood risk (Votsis & Perrels, 2016). Each of those

studies also utilizes new or increased disclosure (usually originating from policy changes) of

information that was previously known only to an limited extent, similar to the release of
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the lead map. In addition, this paper also contributes to the existing literature on the

effectiveness of lead reduction policies as well as their effects on the housing market. Gazze

(2021) makes use of data from multiple states and finds that lead hazard mitigation mandates

lead to a decrease in prices of old houses, where such hazards are more likely to be present.

Theising (2019) finds that a mandate to replace private LSLs in Madison, Wisconsin had a

large, positive price effect on post-replacement units that exceeds the cost of replacement,

implying homebuyers place high value on the absence of LSLs in addition to the explicit cost

saving under the mandate. Both papers point out the potentially important information

effect of disclosure. Billings & Schnepel (2017) find similar returns to lead paint remediation

from a voluntary program in Charlotte, North Carolina. My study is most similar to Theising

(2019) in that I use building-level service line data instead of resorting to a proxy (such as

year of construction) for likely presence of LSLs, enabling me to exploit variation between

otherwise similar properties that would have been buried in less granular data; but these

papers differ in an important manner because I am able to examine the information effect

in isolation by studying a city without a mitigation mandate. As far as I am aware of, this

paper is the first to examine information effects on housing prices in the context of LSLs.

The rest of the paper is organized as follows. Section 2.2 provides a brief introduction

of the use of LSLs in the United States and the attendant health hazards, along with the

background of DC Water’s release of the lead map. Section 2.3 describes the two empirical

specifications I use. Section 2.4 summarizes the data. Section 2.5 presents the results, and

Section 2.6 discusses possible interpretations. Section 2.7 concludes.

2.2 Background

2.2.1 LSLs and water-borne lead

The metal lead has a long history of being used as a piping material for water supply and

distribution, dating back to Roman times (Hodge, 1981). Its wide adoption in United States
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started in mid to late 1800s and was most notable in large cities, appearing in 85 percent

of the biggest American cities by 1897 (Troesken, 2006). Compared to alternative piping

materials such as steel, iron and cement, lead is both more malleable and more durable,

making it ideal for municipal water systems from an engineering perspective (Clay et al.,

2006). Around the turn of the twentieth century, however, there were growing public concerns

about the potential danger of lead poisoning posed by LSLs, and many cities started placing

restrictions on their use by the 1920s (Rabin, 2008). Nonetheless, the relentless and carefully

orchestrated lobbying from the lead industry successfully slowed down the abandonment of

LSLs and ensured their common and continual use for supplying water to homes and buildings

in the United States (Rabin, 2008). It was not until 1986 that their installation was finally

banned by a set of amendments to the Safe Drinking Water Act. The Act now prohibits the

use of LSLs in new constructions, but existing LSLs remain in use in many buildings built

before 1986 in large cities. A 2016 survey estimated that 15 to 22 million people (out of a

total of 297 million) served by community water systems in the United States had a LSL

serving their home (Cornwell et al., 2016).

There is usually little or no lead in water from raw sources or water treatment plants;

however, lead in service lines can leach into tap water through the corrosive chemical process

that occurs between water and the pipe material, and corrosion control is essential in pre-

venting such contamination (Triantafyllidou & Edwards, 2012). In 1991, the United States

Environmental Protection Agency issued the Lead and Copper Rule (LCR), a regulation

intended to oversee effective corrosion control measures. The LCR sets an upper limit (of

15 parts per billion) for the concentration of lead in tap water; in the event that the limit

is breached, it requires public water utilities to take actions to control plumbing corrosion,

inform the public and, if necessary, replace the related LSLs. Despite the majority of public

water utilities being in compliance with the LCR,1 drinking water is still an important source

of environmental lead exposure (Triantafyllidou & Edwards, 2012; Brown & Margolis, 2012),
1It has been pointed out that the current sampling protocol under the LCR can fail to detect lead levels

in breach of the upper limit and lead to a false conclusion of compliance (Del Toral et al., 2013).
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and LSLs remain the biggest source of lead of drinking water, accounting for 50%–75% of

the metal by mass (Sandvig et al., 2008).

The 21st century has seen two major public health crises in the United States related

to lead contamination of drinking water, both of which were results of the release of lead

in service lines into tap water. The Washington DC water crisis from 2001 to 2004 was

triggered by the water authority’s switch of the type of disinfectant, from free chlorine to

chloramine. While the former had been used by the water industry for more than a century,

not until after the crisis did researchers discover that it had the side benefit of reducing

lead solubility in water, and the change in disinfectant effectively increased water corrosivity

(Edwards et al., 2009). The Flint, MI water crisis from 2014 to 2016 was the joint work of

two factors: the switch to a temporary new water source with a different chemical makeup,

and the interruption of corrosion control treatment (Roy & Edwards, 2019). While the scale

and severity of both incidents were direct results of government misconduct and oversight,

they also highlighted the public health risk in the use of LSLs, especially as the science on

related safety standards and acceptable practice seems to be continuously evolving.

2.2.2 The DC Water lead map

On June 6, 2016, the District of Columbia Water and Sewer Authority (branded as DC

Water) launched an online interactive map tool that allows users to identify the materials of

the water service lines for any of the over 120,000 properties in the district and, in particular,

find out if those service lines contain lead. The map includes a circular marker for every

address, divided in two halves, with colors denoting the materials of the public and private

service lines, respectively: green means the line does not contain lead; gray means it does;

white means there is no information for the line. Figure 2.1 is a sample screenshot of part of

the map. Users can either view the overall map or enter an address to search for a particular

property, much like they can when using a smartphone map application.

The release of the map meant that DC residents were able to get information on the
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Figure 2.1: A sample screenshot of DC Water’s lead map

material of their water service lines for the first time, as the determination of pipe material

usually requires excavation and cannot be easily done by individuals. It was also a big leap

from the district’s previous record-keeping of service line materials, when such information

only existed on a variety of physical records in a haphazard fashion. DC Water publicized

the map in multiple ways, including via email to users and through social media campaigns

(on Facebook and Twitter). The announcement was also covered in a handful of national

and local online news outlets including as Vox, DCist (the website of NPR’s local station),

and Fox 5 DC, as well as popular DC local news blogs including Petworth News and the

Georgetown Metropolitan.

Evidence seems to point to DC residents’ rising awareness of lead hazards after the release

of the map. Via a FOIA request from DC Water, I obtained a data set containing the daily

number of water lead test kits requested from DC Water. Similar to other cities like Chicago

and New York City, the DC government sends residents such kits to conduct lead tests on

request, free of charge. A kit contains two bottles for collecting water samples, along with
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instructions and a simple questionnaire. Upon receiving the kit in the mail, a resident can

fill the bottles with tap water as instructed, and send them back to DC Water using a

prepaid shipping label for the water samples to be tested for lead. Results are then delivered

electronically after four to six weeks. The simplicity and low cost of requesting a kit and

submitting samples mean that such a test is the one of the easiest and most accessible ways

for residents to act on their concerns about lead in drinking water, and the number of tests

may respond strongly when there are elevated concerns among the public. Figure 2.2 shows

the weekly number of requests from 2015 to 2017 with the twenty-third week of 2016 (the

week of the map’s release) highlighted; the fitted curve is a visual aid derived from a simple

regression-discontinuity estimation, using the map’s release as a cutoff. Requests exhibited

a distinct pattern. Having remained flat for the entirety of 2015, they started increasing

shortly after the Flint crisis gained national attention, reaching a height in late April 2016

about ten times the average count in 2015 before dropping again through May. Following the

map’s release, the number of requests shot up in the following two weeks, more than doubling

the post-Flint peak, before settling back down to a level not as high as in the immediate

aftermath of Flint, but higher than in 2015. These numbers demonstrate that lead map did

significantly raise DC residents’ interest in getting informed about their tap water quality,

even more so than a major national news story like Flint; as a matter of fact, it may have

precisely been the local nature of the map that prompted more people to get their water

tested. I now investigate whether such interest translated into changes in housing market

outcomes.

2.3 Empirical Methodology

2.3.1 The hedonic price function

My analysis adopts two parallel empirical strategies, both of which builds upon the hedonic

model pioneered by Rosen (1974). The model describes housing as a vector of various utility-
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Figure 2.2: Weekly number of water lead test kit requests in DC, 2015–2017

generating attributes, which can be structural, environmental, neighborhood, etc. Market

equilibrium prices of housing are determined by the interactions of consumers and producers,

and are a function of those attributes. It can be shown that the partial derivative of price

with respect to a given attribute reveals the consumer’s marginal willingness to pay for the

attribute. In the context of this analysis, assuming a log-linear form, the hedonic price

function can be written as

lnPit = α0 + β0 × leadi +X ′
itθ0 + ϵit, (2.1)

where Pit is the price of housing unit i traded at time t, leadi is a dummy variable that

equals 1 if unit i has a LSL, and Xit is a vector that contains other housing attributes; the

coefficient β0 represents consumers’ valuation of the presence of LSLs in housing.

Assuming buyers have perfect information about lead pipes, a direct estimation of the

price coefficient of LSLs, β0, using (2.1) would not be reliable: because it is impossible to

include all relevant housing attributes in Xit in the empirical analysis, coefficient estimates

would be biased due to omitted variables. Hence I explore two alternative identification
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strategies that address the issue of bias, using the lead map’s release as a natural experiment

and estimating the interactive price effect of LSLs and the revelation of new information.

2.3.2 Specification #1: difference-in-differences

In the first strategy, I employ a simple difference-in-differences approach to identify the

information shock’s effect on house prices. I estimate the following regression:

lnPit = α + β × leadi + γ ×mapt + η × leadi ×mapt + Z ′
itθ + ϵit. (2.2)

Here mapt is a dummy that equals 1 if the time of the transaction, t, was after the release

of the lead map, and the control vector Zit includes neighborhood, month of the year and

use code fixed effects. The coefficient of interest is η, which captures the change in the effect

of presence of LSLs on house prices before and after the map’s release, i.e. the information

effect. The diff-in-diff design assumes that the trends in sale prices of LSL and non-LSL

housing units were parallel before the release of the lead map. Although this might sound

restrictive given the high correlation of building age and presence of LSLs, I will demonstrate

graphically in Section 2.5 that the parallel-trend assumption indeed seem to be the case.

2.3.3 Specification #2: the repeat sales model

The second empirical strategy uses the repeat sales model first proposed by Palmquist (1982).

With this approach, the price of housing unit i at time t is assumed to depend on a time-

varying housing price index (Bt) that is true but unknown, the age of the house (Ait), a

composite measure of time-invariant housing attributes (Zi) and time-varying environmental

variables, in this case the interaction of leadi and mapt, in the form of

lnPit = lnBt + lnZi − δAit + η × leadi ×mapt + ϵit, (2.3)
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where δ is the coefficient of depreciation. If the same housing unit is traded twice at t and

t′ respectively, taking the difference between equation (2.3) at the both points in time will

lead to

ln
Pit

Pit′
= (lnBt − δAit)− (lnBt′ − δAit′) + η × leadi × (mapt −mapt′) + (ϵit − ϵit′) . (2.4)

Here, the coefficient of interest, η, can be estimated by regressing the log price ratio on the

interaction term and a set of year dummies that equal 1 for year t, −1 for year t′ and 0 for

other years. This estimation does not yield reliable estimates for the log price indices Bt and

Bt′ because the change in the house’s age (Ait′ −Ait) is collinear with the two year dummies,

but that does not affect the unbiasedness of the estimate for η; adjustments would have

been necessary only if we were interested in the indices themselves. The main identifying

assumption here is that other housing characteristics remain constant between sales. This

can be a strong assumption, and is more likely to be relatively realistic when a shorter time

span is studied. Still, I maintain this assumption due to limitations of my data sets, which,

among other things, do not include information on renovations.

The repeat sales method focuses on housing units that are traded at least twice. When

the number of transactions is n, we are able to derive (n− 1) independent equations in

the form of (2.4). One complication here is that when n ≥ 3 for any housing unit, the

error covariance matrix is no longer diagonal because of error correlation between sales of

the same unit: given three sales at time t, t′ and t′′, the error terms from the two resulting

equations are ϵit − ϵit′ and ϵit − ϵit′′ , and cov (ϵit − ϵit′ , ϵit − ϵit′′) = var (ϵit) = σ2. This calls

for a generalized least squares estimation, and I will return to the topic when presenting my

results.

As the discussion above makes clear, the two specifications used here are similar in spirit

but use different identifying assumptions. By presenting results from both models, I hope
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they will complement each other and help paint a more robust picture about the map’s effect

on housing prices.

2.4 Data

The data I use comprises public records from three sources. Firstly, records of real property

transactions are obtained from a public database from the Real Property Tax Administra-

tion of the DC Office of Tax and Revenue, and contain such information as premise address,

property use code (which details the purpose of use and belongs to broad categories like

residential, commercial and office), sale price, sale date, current-year (i.e. 2022) assessment,

etc. Secondly, information about materials of water service lines is obtained by scraping DC

Water’s lead map website, and describes the types of pipes used for both public and private

service lines for each property, along with succinct descriptions on the method of determi-

nation. Additionally, I obtain data on housing characteristics from the Office of Tax and

Revenue’s Computer-Assisted Mass Appraisal system, which includes year of construction

along with structural attributes, e.g. numbers of rooms and stories. For reasons unclear to

me, the lead map contains a small number of duplicate entries with conflicting service line

material records; I dealt with these manually by keeping only the apparently correct, up-

to-date information. The transactions data and characteristics data are first merged using

the property identifier (SSL); the combined data is then merged with the pipe material data

based on the building address, joining transaction records to pipe information. In the trans-

actions data set, “premise address” contains both the building address and a unit number for

housing units in multi-unit premises such as apartment buildings; in order to perform the

merge by address, the premise address field is parsed to drop the unit number, so that both

data sets contain comparable address fields. As a result, transactions of different units in

the same building are matched to the same, unique service line record and remain distinct

observations in the merged data set.

The sample selection processes of the two empirical strategies are different in some aspects
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to account for the different priorities and requirements of each approach. What is common

between the two samples is that they both includes only residential property transactions2

that were carried out at with a non-zero price and categorized as a market sale (as opposed

to a transfer of ownership for other reasons such as gifting and divorce).

For the diff-in-diff sample, I include all transactions in a two-year window centered on the

release date of the lead map, June 6, 2016. The final sample contains 12,719 observations.

Column (2) of Table 2.1 presents summary statistics for this sample; those for all housing

housing units in the intersection of my three data sets are shown in column (1) for compar-

ison. With the exception of land area, almost all other housing characteristics are largely

comparable between the sample and the population; in particular, the shares of housing

units with LSLs and without are very similar between them. Columns (4) and (5) contain

summary statistics for the subsample where lead is used on either the public or the private

side of the service line, and the subsample where it is not used on either side. As expected,

properties with LSLs are on average significantly older; they also tend to be bigger, and

more likely to be single-unit.3

For the repeat-sales sample, I include all properties that were traded more than once in

a seven-year window centered on the map’s release date. In total, there were 9,713 such

transactions of 4,743 properties: 4,521 were traded twice, 217 thrice, and 5 four times. After

taking differences across transactions for the same unit, this yields 4,970 equations, which

is the number of observations for the regression analysis. As shown in column (3) of Table

2.1, these properties are also mostly similar to the overall housing stock in DC, apart from

covering smaller land areas and containing fewer single-unit properties. In addition to these

statistics, among the twice-traded units, the median gap between the two sales is 1,197 days
2The use codes present in the sample are 001, 011, 012, 013, 016, 017, and

021 through 029. Details about the designation of use code are available at
https://otr.cfo.dc.gov/sites/default/files/dc/sites/otr/publication/attachments/Use%20codes.pdf.

3Because of the presence of housing units for which DC Water does not have service line material infor-
mation (and which I code as a separate category), the percentages for LSL and non-LSL units do not add
up to 100%, and the numbers of observations in columns (4) and (5) do not add up to the total in column
(2).
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Within diff-in-diff sample
All DC Diff-in-diff Repeat-sales With Without
units sample sample LSLs LSLs
(1) (2) (3) (4) (5)

Log sale price 13.096 13.272 13.375 13.483 13.241
(.849) (.589) (.567) (.458) (.599)

Log 2022 assessment 13.301 13.388 13.412 13.615 13.353
(.642) (.580) (.569) (.445) (.589)

Without LSLs (public) .821 .843 .837 .422 1
(.383) (.363) (.370) (.494) (0)

With LSLs (public) .065 .052 .055 .403 0
(.246) (.221) (.228) (.491) (0)

Without LSLs (private) .739 .757 .744 .005 1
(.439) (.429) (.437) (.070) (0)

With LSLs (private) .143 .127 .134 .991 0
(.350) (.333) (.341) (.095) (0)

Land area (sq. ft.) 2233.467 1910.209 1556.981 2142.161 1876.043
(2792.916) (2470.581) (1909.968) (2281.402) (2389.915)

Number of stories 2.090 2.107 2.116 2.106 2.099
(1.103) (.436) (.426) (.394) (.447)

Number of rooms 6.083 5.838 5.584 6.779 5.695
(2.680) (2.660) (2.576) (2.195) (2.663)

Number of bedrooms 2.727 2.607 2.474 3.268 2.519
(1.400) (1.429) (1.397) (1.166) (1.442)

Number of bathrooms 1.899 1.998 1.990 2.309 1.958
(1.001) (1.013) (1.008) (.961) (1.009)

Year built (actual) 1943.984 1946.924 1943.091 1919.268 1952.440
(36.272) (39.803) (39.470) (22.152) (40.197)

Year built (effective) 1967.562 1971.182 1967.997 1966.173 1973.354
(26.516) (29.859) (31.369) (22.320) (29.959)

Is single-unit .645 .576 .513 .827 .545
(.479) (.494) (.500) (.378) (.498)

n 119,606 12,719 4,743 1,632 9,607

Table 2.1: Summary statistics of the diff-in-diff and repeat-sales samples
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(3.28 years), and the mean gap is 1,205 days.

It should be pointed out that one issue with the lead map is that the data at any point

only contains the most up-to-date records of the service lines, and DC Water does not release

information on changes of service line material. As a result, the scraped data I use, obtained

in March 2021, does not reflect the most accurate picture during the relevant period when

housing transactions were made. I will present possible remedies for the issue in my later

analysis.

2.5 Results and Discussion

2.5.1 Difference-in-differences

My analysis does not seem to suggest there exists an information effect of the lead map’s re-

lease on the real property market in Washington DC. I first present some visualized results in

the diff-in-diff spirit. Figure 2.3 shows the weekly average log transaction price for each week

starting from 10 weeks before the release till 10 weeks after for different groups of housing

units, controlling for neighborhood, property use code and housing attributes including land

area, (effective) year built and number of rooms. Although the figure focuses on the 21-week

window, the estimates and confidence intervals are derived from the full sample for statistical

power. Panel (a) groups observations based on the pipe material of the public service line,

creating three groups of housing units: those with LSLs, those without, and those for which

information is missing. Panel (b) groups the observations based on the private service line

material instead. Panels (c) through (f) are created by replicating the first two panels but

bunching the missing-information group with either the LSL or the non-LSL group, creating

two pairs of comparison: the former way of grouping compares units that may have LSLs

(red) with those that definitely don’t (blue); the latter compares those that definitely have

LSLs (red) with those that may not (blue). Such regrouping is done in an attempt to narrow

the confidence intervals. Finally, panels (g) and (h) group observations taking into account
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both the public and private sides: (g) is the counterpart of (c) and (d), where units in one

group may have LSLs on at least one side, and those in the other group do not have LSLs

on either; (h) is the counterpart of (e) and (f), where units in one group definitely have LSLs

on at least one side, and those in the other are not known to have LSLs for sure on either

side.

First of all, the figures show that the parallel trend assumption needed for a diff-in-diff

analysis is satisfied, as there was no significant difference between the price trends of different

groups before the release of the lead map. But they also suggest that there was no divergence

in the trends after the release. These figures, while controlling for neighborhood and use

code, do not look qualitatively different from those plotted with simple averages by group.

One takeaway from the figures is that the relatively small number of transactions conducted

each week (about 100 on average, of which about 10 or fewer were for LSL units depending

on the definition) probably resulted in the high fluctuations, lack of clear trends as well as

wide confidence intervals for the average sale price estimates. Using cruder time measures

such as fortnights, months and quarters does not appear to alleviate such problems to an

extent enough for different conclusions to be drawn.

Now I present my estimates for η, the coefficient of interest in the diff-in-diff regression

(2.2), in columns (a) through (d) of Table 2.2, along with robust standard errors. I similarly

estimate the regression multiple times, changing between the public and private lines and

different grouping methods. Columns (a) and (b) correspond to panels (a) and (b) of Figure

2.3, respectively, grouping housing units based on either public or private service line material

and including an extra dummy variable to indicate units with missing information; column

(c) correspond to panel (h), combining information on the public and private sides and

grouping missing-information units with non-LSL units. Columns (a’) through (c’) repeats

the estimation in (a) through (c), but includes housing attributes as controls (the sample

size is slightly smaller because attributes are not available for some units). While all the

estimates of γ all have the expected negative sign, none of the specifications produce a
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(b) Weekly average log sale price, by private service line material
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(d) Weekly average log sale price, by private service line material
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(g) Weekly average log sale price, by either service line material
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Figure 2.3: Weekly average log sale price by service line material
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Variable Specification
(a) (a’) (b) (b’) (c) (c’)

mapt .069*** .068*** .072*** .071*** .072*** .063***
(.007) (.006) (.008) (.006) (.007) (.006)

leadi .020 .026* .006 .031* .013 .032***
(.018) (.015) (.013) (.010) (.013) (.010)

leadi ×mapt −.026 −.012 −.020 −.014 −.020 −.006
(.025) (.020) (.017) (.014) (.017) (.014)

Year built — .0036*** — .0036*** — .0036***
(.0001) (.0001) (.0001)

Number of rooms — .102*** — .102*** — .102***
(.002) (.002) (.002)

Land area (’000 sq. ft.) — .0386*** — .0387*** — .0385***
(.0040) (.0039) (.0040)

Service line included Public Private Public & private
Missing-information units Separate group Separate group Together with

non-LSL units
n 12,719 12,601 12,719 12,601 12,719 12,601
Levels of significance: *** = .01, ** = .05, * = .10.

Table 2.2: Estimation results for the main diff-in-diff specification

statistically significant estimate, which remains true with or without the housing attribute

controls.

In order to check if the insignificant estimate conceals any heterogeneity across different

types of homebuyers and housing units, I perform three additional exercises. First, I con-

sider a triple-difference model, and expand the sample to include commercial- and office-use

property. I estimate

lnPit = α+β×leadi+γ×mapt+τ×resi+η×leadi×mapt+ξ×leadi×mapt×resi+Z ′
itθ+ϵit,

where the new indicator resi is equal to one if unit i is residential, and zero otherwise (the

resulting new two-way interaction terms are included in the regression but omitted from

the equation above). The coefficient of interest is ξ, and the aim is to see if there was any

divergence in the effect captured by η in the previous model between the two types of units,

which could be the case if LSLs started to become more of a concern for homeowners than
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Variable Specification
(a) (b) (c) (d) (e) (f)

mapt .286** .236** .072*** .057*** .020 .022
(.103) (.107) (.011) (.012) (.021) (.022)

leadi −.042 −.376* −.000 −.002 .100 .005
(.248) (.200) (.036) (.032) (.073) (.045)

leadi ×mapt .031 .166 −.077 −.021 −.034 −.026
(.305) (.264) (.047) (.043) (.096) (.061)

leadi ×mapt × resi −.057 −.185 — — — —(.305) (.265)
leadi ×mapt × avgleveln — — .046 −.047 — —(.369) (.174)
leadi ×mapt × pctkidsa — — — — −.010 −.003

(1.138) (.735)
Service line included Public Private Public Private Public Private
n 12,913 12,913 12,719 12,719 12,719 12,719
Levels of significance: *** = .01, ** = .05, * = .10.

Table 2.3: Heterogeneity checks

commercial or office users following the release of the lead map. The results are reported in

columns (a) and (b) of Table 2.3 (they correspond to columns (a) and (b) Table 2.2 in terms

of grouping no-information units). Similarly, estimates of ξ have the expected sign but are

not statistically significant enough to suggest the existence of diverging effects. It is worth

noting that the majority of real property transactions that took place during the time period

were for residential properties, and the expanded sample did not increase in size by a lot.

In the remaining two exercises, I revert to my original sample. The first check is for

treatment effect heterogeneity across neighborhoods with different percentages of units with

LSLs. The effects may differ because, say, higher availability of non-LSL units may make

switching away from LSL units easier, and hence lead to a bigger price effect; the map in

Figure 2.4 illustrates the considerable geographic variation in the prevalence of LSL units.

The specification for this heterogeneity check includes an additional continuous variable,

avgleveln, which measures the prevalence of LSLs in neighborhood n, and interacts it with

the original interaction term:
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Figure 2.4: Heat map of housing units with LSLs

lnPint = α+β× leadi+γ×mapt+ν×avgleveln+η× leadi×mapt+ρ× leadi×mapt×avgleveln+Z ′
itθ+ϵit.

The coefficient of interest is ρ. The estimation results are reported in columns (c) and (d)

of Table 2.3; again, no evidence of diverging trends is found.

The third exercise checks for heterogeneity across areas with different proportions of

households with young kids. The perceptibility of children to damage from lead exposure

may lead to more pronounced price effects in neighborhoods with more families with chil-

dren. I use the American Community Survey Public Use Microdata Sample (ACS PUMS)

to calculate the share of such households in each of the five Public Use Microdata Areas

(PUMAs) in DC. The PUMA is the finest geographical level that the ACS data allows me to

perform the analysis on, and the share of households with one or more related young children

(defined as those under 5 years of age) range from 3.3% to 10.1% between these PUMAs. The

new specification includes this share, pctkidsa, and interacts it with the original interaction

term:
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(a) Weekly sale volume, by public service line material
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(b) Weekly sale volume, by private service line material

Figure 2.5: Weekly transaction volumes by service line material

lnPiat = α+β× leadi+γ×mapt+ψ×pctkidsa+η× leadi×mapt+ω× leadi×mapt×pctkidsa+Z ′
itθ+ ϵit.

The coefficient of interest is ω, and estimates are reported in columns (e) and (f) of Table

2.3, which once again do not point to heterogeneous effects. Changing the definition of kids

and including all minors (under 18 years of age) yields the same conclusion.

In addition to heterogeneity, I also look at transaction volumes, instead of prices, in

the year before and the year after the map’s release. Because of a general upward time

trend in the total volume of transactions, the second one-year period saw about 20% more

transactions than the first. On the other hand, the shares of units with and without LSLs

remained consistent between both periods, suggesting the absence of any selection response

from property buyers after the map’s release. The two panels of Figure 2.5 show the number

of transactions per week in each group of housing units, based on the public and private

service lines, respectively. No noticeable divergence of trends seem to exist in either panel.

The same conclusion can be reached from a diff-in-diff analysis using specifications similar

to the one described earlier in the section, which I do not report here.

At the end of Section 2.4, I pointed out that the data from the lead map may suffer from

accuracy issues. In particular, data used in my analysis reflects the up-to-date records as of
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March 2021. Because of constant updating of the records as well as replacement of LSLs,

the service line materials displayed on the map for any address can be different from those

displayed when the map was released or when a potential homebuyer would check the map to

look up a property of interest. With historical records unavailable, I have to resort to other

less-than-perfect remedies. One feature of the lead map is that it specifies the method DC

Water used to determine the service line material for each property. Determination was based

on a variety of records including permits, meter records, maintenance records, replacement

records, etc. When the service line material is determined because of replacement work, the

map lists the date when the replacement was carried out. Therefore, I am able to omit from

my main sample observations where replacement work was done on either the public or the

private service line after the date of transaction (so that what I observe may not be what the

buyer observed at the time), thus eliminating the main source of inaccuracy due to record

updates.4 After removing 476 such observations (with 12,236 remaining in my main sample),

I repeat all the preceding exercises in this section, and all of them give virtually the same

results as before. Therefore, it seems unlikely that data issues related to record updating

are the main reason for my findings.

2.5.2 Repeat sales

Next, I present estimation results from the repeat sales model. OLS point estimates and

robust standard errors from the main specification are reported in columns (a) and (b)

of Table 2.4 (coefficients on the year dummies are not reported because they don’t have

the simple interpretation as housing price indices). Neither estimate of η is significant,

implying the map’s release did not have differential effects on LSL and non-LSL units. As

a partial remedy to the aforementioned pipe replacement problem, I repeat the estimation

after removing from the sample observations where replacement work was done after the
4All replacement work recorded in the data is relatively recent, so the replaced pipes are always non-lead.

I am removing these observations instead of assuming the properties had LSLs pre-replacement because a
significant number of non-LSLs are also replaced during water main work and emergency repairs, according
to DC Water. Such an assumption would introduce a new source of inaccuracy in the data.
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Variable
Specification

(a) (b) (c) (d) (e) (f) (g) (h)
leadi ×mapt .001 −.003 .003 −.000 .001 −.003 .016 .029

(.004) (.004) (.005) (.004) (.005) (.005) (.026) (.018)
Service line included Public Private Public Private Public Private Public Private
Missing-information units Separate group Separate group
n 4,970 4,970 4,657 4,657 4,970 4,970 9,713 9,713
Levels of significance: *** = .01, ** = .05, * = .10.

Table 2.4: Estimation results for the repeated-sales specification

earlier transaction, so that it is less likely that the LSL status changed either between

transactions or between the latest transaction and map data collection. This procedure

removes 313 observations from the sample (with 4,657 remaining), and estimation results

are reported in columns (c) and (d). Furthermore, in columns (g) and (h), I use all 9,713

repeat sales transactions to run a basic fixed-effects regression with the purpose of increasing

statistical power. Sale date and property fixed effects are included alongside the lead and

map indicators and their interaction. No clear evidence emerges that indicates the map had

a price effect.

In addition, as mentioned in section 2.3, the existence of units that were traded more than

twice causes the error covariance matrix to be non-diagonal and calls for a GLS estimation

approach. I performed this using the main sample, and report the new standard errors in

columns (e) and (f). Unsurprisingly, these results do not change the conclusion derived from

the OLS estimates.

2.6 Interpretation of the Results

The lack of a discernible information effect seems to contradict findings by such studies as

Theising (2019) and Billings & Schnepel (2017), where homebuyers are found to place a

positive value on the absence of lead exposure hazards. But my results are in line with

Bae’s (2016) findings on the effect of disclosure alone. The fact that the release of the lead

map did not appear to have any price effects in the real property market points to several
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possibilities, which I will not be able to fully investigate. For example, it could be the case

that residents responded to the newly available information only in ways not reflected in

the housing market, such as increased water testing, remediation efforts and blood testing

for children. Alternatively, it could be that many homebuyers were simply unaware of the

availability of the map at the time of their transaction, due to limited media coverage and

government publicity given to it.

In order to further examine the price response to concerns about lead hazards in the

housing market, I perform the following two exercises. Firstly, I divide housing units into

those built before 1986 (“old” units), when the federal lead-pipe ban came into effect, and

those built after 1986 (“new” units), and examine their price trends before and after the start

of 2016, when the Flint water crisis came to national attention. At the time, because the lead

map was not yet available, there was no easy way for residents to obtain information about

service line materials, and the best proxy of the likelihood of LSL presence in a building is its

year of construction. If health concerns led people to shun units with LSLs, there would be a

divergence in the average price trends of old and new units. Figure 2.6 presents these trends

in 2015 and 2016 in a similar way to Figure 2.3; neighborhood and use code are controlled

for. Prices for both categories moved broadly in tandem with each other, with new units

selling for higher prices than old ones, as expected. While both the monthly and weekly

plots seem to show some movements in the price trend around the beginning of 2016, those

are in line with seasonal movements observed in other years, and unlikely to be related to

the Flint crisis. Thus it seems even renewed concerns about lead exposure in response to

a major incident like Flint still had little effect on the housing market. In addition, this

exercise also partially address the issue about updated service line material records raised in

Section 2.4 and further discussed in Section 2.5, since the results only rely on construction

year as a proxy for service line material, instead of accurate records.

A second, related exercise similarly chooses the Flint crisis as a cutoff point, but divide

housing units according to their service line material just like before. The rationale is to
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Figure 2.6: Monthly and weekly average log sale price by year of construction
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Figure 2.7: Weekly average log sale price by service line material

further check the effect of lead risk salience on the housing market. This exercise would

reveal no new information compared to the previous one if people truly had no way of

learning about their service lines before the map was released; however, if price trends did

diverge post-Flint, it would most probably imply people had alternative ways of finding

out about LSLs before the map (despite possibly high barriers), and new concerns led to

behavioral responses in the market. However, as shown in Figure 2.7, this does not appear

to be the case.

To gain more insights into the possible reasons for the lack of significant positive effects, I

present findings from a few other data sources. First, I examine Google search data for terms

related to both DC’s lead map and lead in drinking water in general. Figure 2.8 displays the
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Google Trends for the term “DC lead pipe map”.5 The term started to appear in searches

the week following the announcement, although the number of queries has been so small for

this search term that the plot exhibits a pattern of occasional spikes along a horizontal line

at zero, instead of a smooth trend line. On the other hand, the next time the search term

showed up in the data was in March and April 2017 as another two separate spikes. It was

not until June 2019 that there started to be more consistent interest in the term, up to today;

the reasons for such newfound interest are unclear to me. It is worth noting that Google

search volume probably does not directly reflect actual usage of the service. The second

group of search terms I examine come from an analysis for Pew Research Center by Matsa et

al. (2017), which identified dozens of terms people used when looking up information about

the Flint water crisis. Interest in such terms reflects people’s concerns about lead exposure

from water, and can be used to gauge the effect of the map’s release on the salience of the

topic. Looking at the search frequency of the leading terms identified (including “lead pipes”,

“lead water”, “lead in water”, “lead poisoning”, etc.) in DC on Google Trends, I find their

popularity among DC Google users to broadly mirror the nationwide trends, with elevated

interest starting in January 2016, when the Flint crisis gained national media coverage.

However, just like the national trends, there did not seem to be such a spike following the

map’s release. In addition, the search trends for these terms do not seem to mirror that for

“DC lead pipe map” discussed earlier, which experienced a new and sustained rise starting

in mid-2019, further suggesting that interest in the map does not fully arise from or lead to

concerns about lead in drinking water.

A second set of data I analyze contains the number of blood lead tests carried out in

DC, obtained from the DC Department of Health through a Freedom of Information Act

(FOIA) request. It is required by law that every child in DC get tested twice for blood lead

by the age of two, but parents also can take initiative and ask their doctor for tests whenever

they suspect their child is at risk of lead exposure. Therefore, higher levels of such concern
5Other similar terms directly related to the map, such as “DC lead pipes”, “DC lead map” and “DC Water

lead map”, did not produce search data above the threshold for Google Trends to display them.
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Figure 2.8: Google Trends results for “DC lead pipe map”, 2016–2021

among parents would plausibly lead to more tests conducted. I obtained daily test count

data during the three-year period from 2015 to 2017. Figure 2.9 shows the weekly number

of tests, along with the four-week moving average, with the first and twenty-third weeks of

2016 highlighted: these were the weeks of the first national media coverage of the Flint crisis

and the release of the lead map, respectively. The figure clearly shows seasonal patterns, but

there does not seem to be increases in the number of tests following either event; the hike

during late April and early May of 2016 was due to an isolated incident, where hundreds

of students from three elementary schools were tested because of findings of elevated lead

levels in their drinking water. The fact that there was no noticeable response to the Flint

crisis suggests that parents may not react to general concerns about lead in drinking water

by having their children tested more, possibly because of the time and efforts required. This

stands in contrast with the pattern of water lead test kit requests presented at the end of

Section 2.2, where a more notable response can be observed when the cost of responding is

much lower.

To summarize, based on existing evidence, it appears that the reason for the absence of

an information effect is multi-faceted. On one hand, usage of the map service seems low, as

suggested by the Google Trends data. On the other hand, it also seems that residents only

exhibited a rather limited range of behavioral responses to concerns about lead exposure in

general, and not through the housing market, which implies the housing price effect of the

map’s release would still be limited even if take-up had been higher.
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Figure 2.9: Weekly blood lead test count in DC, 2015–2017

2.7 Conclusion

Using real property transaction data, I examine the prices of LSL and non-LSL housing

units around the time of the lead map’s release, and find no discernible price effect of the

newly available information regarding lead service lines. This remains true after I take into

account the possibility of heterogeneous price effects between residential and commercial-use

property or between neighborhoods with different base-level lead service line prevalence; nor

did any differential effect seem to have taken place through transaction volumes.

It is difficult to determine why the map’s release seems to have had no price effect. Google

search data appear to suggest that few people sought out the map, and hence property buyers

and sellers probably did not use it to inform their decisions. It is possible that responses to

the new information mostly manifested themselves in subtler ways that were not reflected

in the housing market, such as replacement of lead pipes and at-home lead testing of tap

water. That points to other potential avenues to further investigate the effect of the new

information on the housing market. For example, if records of lead pipe replacements become

available, it would be possible and interesting to look at how the number of replacements
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differed before and after the release, as well as any price effects associated with replacements.

Such a study would also give a clearer picture on the extent to which the map has achieved

its intended goal as a public health policy. Examining price data on rental properties, which

have higher turnovers and whose prices may respond to market forces more quickly, could

also be shed new light on the topic.
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Chapter 3: Marriage Tax Subsidy and the Decision to Marry:

Same-Sex Couples After United States v. Windsor

3.1 Introduction

It has long been recognized that the income tax system of the United States creates a wide

array of incentives and disincentives for marriage by treating taxpayers differently based on

their marital status. Becker’s (1973, 1974) seminal work models the marriage decision as an

economic one, which depends on whether entering a marriage will generate positive gains for

the individual. The tax implications of marriage have been studied as one of the economic

factors that inform such decision making, and tax reforms and other legislative changes

sometimes provide ideal settings for empirical work that looks to examine the importance of

tax incentives in individuals’ marriage decision.

In this paper, I focus on one particular type of tax incentive: the marriage “penalty” or

“subsidy” that arises as a result of joint income tax filing in the United States tax system.

When married couples file their taxes jointly, they effectively split their income and one or

both spouses are often pushed into a different marginal tax bracket compared to if they

were single, thereby altering their joint tax liability. To quantify the effect of this marriage

non-neutrality, I exploit the 2013 United States Supreme Court ruling on United States v.

Windsor. The ruling struck down a federal law that denied recognition of same-sex marriages,

obliging the federal government to recognize such marriages sanctioned at the state level,

including for federal income tax purposes. The resulting shift from individually filing to joint

filing for same-sex married couples creates a natural experiment for studying how a change

in tax incentives can influence decisions to enter a marriage.

Using the Public Use Microdata Sample (PUMS) of the American Community Survey
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(ACS) from 2012 to 2017 and employing a difference-in-differences empirical strategy, I

am able to examine whether same-sex couples with different levels of marriage subsidy or

penalty responded differently to the Supreme Court decision. The results do not point to

any statistically significant or economically meaningful response from couples: it does not

appear that those who would enjoy a larger marriage subsidy became more likely to get

married after the ruling. The absence of an effect remains the case across couples of both

sexes. The findings add to the decidedly mixed evidence from the existing literature on

the subject. For example, Alm and Whittington (1999) find that marriage penalties have

a modest but significant impact on marriage decisions of women in opposite-sex couples,

and both Baker (2004) and Fisher (2013) find larger effects using Canadian and U.S. data,

respectively. Meanwhile, works like Sjoquist & Walker (1995) and Dickert-Conlin & Houser

(2002) fail to find any such effect.

Early studies attempting to use microdata to quantify the effect of the transfer system,

including the marriage subsidy, typically adopt unsophisticated empirical strategies on cross-

sectional data; Alm et al. (1999) and Moffet (1992) provide extensive reviews. More recent

papers (Rosenbaum, 2000; Alm and Whittington, 1999) utilize panel data but have to predict

potential spouse earnings for single individuals. This paper contributes to the literature on

the marriage non-neutrality of the U.S. tax system by exploiting a new natural experiment

setting as well as focusing on the population of same-sex couples. It also adds to the fast-

growing body of literature that examine the economic implications of same-sex marriage

legalization, shedding new light on marriage decisions of same-sex couples, which did not

become a feasible topic for empirical research because of data availability issues until fairly

recently, with the ACS being one of the rare microdata sets that identify same-sex couples

and their marital status.

The remainder of the paper is structured as follows. Section 3.2 provides background on

the marriage non-neutrality of the tax system and the recent history of same-sex marriage

legalization in the United States. Section 3.3 introduces the empirical strategy and Section
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3.4 describes the data set and the sample construction procedure. Section 3.5 presents

estimation results and discusses, giving special care to the comparison with a forthcoming

study similar to this in focus and scope. Section 3.6 concludes.

3.2 Background

3.2.1 Same-Sex marriage legalization in the United States

The legalization of same-sex marriage has been a prolonged and complicated process in

the Unites States. Until the landmark Supreme Court ruling on Obergefell v. Hodges in

June 2015, marriage between two people of the same sex was not legalized at the federal

level. State-level legalization efforts, however, preceded federal recognition. The first state

to legalize same-sex marriage was Massachusetts, whose state supreme court ruled in 2003

that the state constitution requires the state to recognize same-sex marriage. In the dozen

years after that, 35 more states and the District of Columbia followed suit with legalization

at the state level, before the Obergefell decision granted legal marriage rights to same-sex

couples nationwide.

The expansion of legalization coincided with drastic increases in both the number of

cohabiting same-sex couples and the percentage of married ones among them. According

to estimates by the United States Census Bureau (2022), between 2008 and 2018, the share

of cohabiting same-sex couples in total U.S. households rose by 0.34 percentage point, or

71.8%, and the marriage rate among them rose from 26.4% to 59.5%, with the biggest

change occurring between 2012 and 2016, when each year saw an increase of more than five

percentage points. The surge was probably partially driven by both the Obergefell ruling

and, prior to that, legalization in 29 states during this period.

For the purpose of this paper, the most relevant legal milestone is a different landmark

Supreme Court ruling related to same-sex marriage: the ruling on United States v. Windsor

in June 2013. Unlike the Obergefell decision, which required the federal government to issue
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Marginal tax rate Income brackets ($)
Single Married filing jointly

10% 0—9,075 0—18,150
15% 9,076—36,900 18,151—73,800
25% 36,901—89,350 73,801—148,850
28% 89,351—186,350 148,851—226,850
33% 186,351—405,100 226,851—405,100
35% 405,101—406,750 405,101—457,600

39.6% 406,751+ 457,601+

Table 3.1: 2014 Federal Income Tax Brackets

marriage licenses to same-sex couples, the Court decided that Section 3 of the Defense of

Marriage Act (which defines marriage for federal purposes as the union of one man and one

woman) was unconstitutional, and thereby ruled that the federal government must recog-

nize, for all purposes, such licenses issued in states where same-sex marriage was legal. In

August 2013, the Internal Revenue Service issued Revenue Ruling 2013-17 to comply with

the decision, and started recognizing same-sex marriage for federal income tax purposes.

For same-sex couples already married at the time, this implied that they would have to file

as a married couple starting in tax year 2013, rather than filing separately as they would

have otherwise; as for couples not yet married, the change meant that any tax incentives

that pertained to joint taxation became relevant to their marriage decisions. Whereas the

ruling did not have any direct effect on any couple’s ability to enter a legal marriage, the tax

implications may have changed their willingness to marry, which is the focus of my analysis.

3.2.2 Joint tax filing, tax subsidy and same-sex couples

Joint income tax filing for married couples was first introduced in the U.S. tax system by the

Revenue Act of 1948. Initially, the joint-filing income tax schedule simply used marginal rate

bracket thresholds that were exactly double those in the single-filing schedule, which meant

that joint filing effectively allowed many couples with dissimilar earnings to evenly split their

income and land in lower brackets, reducing their joint tax burden and leading to the so-called

marriage tax subsidy. The Tax Reform Act of 1969 served as a corrective measure against
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such “discrimination” and established a new tax schedule for single taxpayers, reducing their

tax liability relative to married couples and turning the marriage subsidy into a marriage

penalty for some couples (Alm and Whittington, 1999). The penalty arises mainly from the

fact that certain tax bracket threshold for couples filing jointly are now less than double

those for single filers, which means single taxpayers stay in the lower-rate brackets for longer

(compared to, say, if they were filing jointly with a spouse who earned the same income); the

Earned Income Tax Credit is also a source of marriage subsidies or penalties for lower-income

couples (Alm et al., 1999). Generally speaking, a couple is more likely to receive a marriage

subsidy if their earnings are very different, and be subject to a marriage penalty if they have

similar and relatively high earnings. For example, Table 3.1 lists the federal income tax

schedule for tax year 2014, and Figure 3.1 uses simulated earnings profiles to illustrate the

size of the marriage subsidy or penalty a hypothetical couple faces based on their respective

individual earnings, assuming no other income and no other person in the household. As a

result of the Tax Cuts and Jobs Act of 2017, in federal income tax schedules of tax year 2018

onwards, thresholds for all but the top income bracket for joint-filing payers again became

exactly twice those for single-filing payers, and the marriage penalty was eliminated for the

a large number of Americans.

The tax penalty from joint filing has become a topic of interest for economists and legal

scholars in the context of same-sex marriage legalization. During the policy debate surround-

ing the issue, academic studies and government reports recognized and provided descriptive

evidence that same-sex couples are less likely than their opposite-sex counterparts to engage

in traditional household specialization, and more often form double-earner households (see

e.g. Alm et al., 2000; Müller, 2002; Black et al., 2007). This suggests that same-sex cou-

ples are more vulnerable to marriage penalties and less likely to receive marriage subsidies

because of the tax schedule. Kahng (2016, p.326) argues that “the tax law, through the

fictitious construction of the married couple as an irreducible economic unit, continues to

reward this anachronistic model of marriage and to penalize other, more egalitarian models
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Figure 3.1: Relationship between marriage subsidy/penalty and spousal incomes

of marriage”, and that the Windsor ruling has failed to achieve the purported tax equality

through marriage equality.

The changes in marriage incentives for same-sex married couples that resulted from the

Windsor ruling or other major milestones in the legalization process have been the focus

of more recent research. A number of studies also employ ACS data and take advantage

of its inclusion of same-sex couple indicators. For instance, Isaac (2018) estimates labor

supply elasticities by using the shocks to tax liability and the marginal tax rate as a natural

experiment, and finds moderate to large effects on different margins depending on the earning

status of an individual in the household. Hamermesh & Delhommer (2020) consider a longer

time span and more variation in state-level legalization status and find that the right to

marry has led same-sex couples to make more investment in their relationship. Moreover,

independently of this paper, Friedberg & Issac (2024) similarly examine the effect of the

marriage penalty on the marriage decision of same-sex couples. Despite the common research

question, their approach differs from mine both in terms of sample selection and identification

strategy, and possibly contributes to the differences in our results and conclusions. I will
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compare the two papers in further detail in Section 3.5.

3.3 Empirical Methodology

The marriage penalty or subsidy can be incorporated into the Becker model as one of the

factors that affect potential gains from marriage. A higher marriage subsidy or lower mar-

riage penalty increases such gains and should therefore lead to a higher probability that an

individual decides to enter marriage. By changing the filing status of same-sex married cou-

ples, the Windsor ruling made these tax incentives relevant for all same-sex couples. To the

extent that these incentives play a role in individuals’ decision making process, the marriage

decision should respond differently to the size of the tax subsidy before and after the ruling.

Since the legal consequence of the ruling is an exogenous shock to any individual couple, the

identification strategy is straightforward. To capture this difference, I estimate the following

logit model in a generalized difference-in-differences spirit:

log
P (marriedit = 1)

1− P (marriedit = 1)
= α+β×postt+θ×subsidyit+γ×postt×subsidyit+X ′

itη, (3.1)

where marriedit is an indicator variable for marital status of couple i in year t, subsidyit is

the marriage subsidy (penalty if negative) from joint filing for couple i in year t, postt is a

binary variable that equals 1 if the decision to marry or not to was made after the Windsor

ruling, and Xit is a vector of control variables that include the couple’s average earnings

and its square, age and its square, differences in spousal ages and incomes, state and year

fixed effects and their interactions. The coefficient of interest is γ, which captures how a

couple with a higher marriage subsidy responds differently to the Windsor ruling compared

to a couple with a lower subsidy and therefore reflects the importance of the tax incentives

in influencing the marriage decision. Here I am treating the coefficient on the interaction

term as the “treatment effect” in this non-linear generalized difference-in-differences model,

as shown in Puhani (2012).
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The model suffers from endogeneity issues because earnings, tax liability and hence mar-

riage tax subsidies can all be affected by the marriage decision, and such effects may differ

from those known for opposite-sex couples (Hansen et al., 2020; Martell & Nash, 2020). I

address the issue by instrumenting for the subsidy and earnings variables with predicted

versions of them. I regress wage earnings on individual characteristics, and use the fitted

values as a predicted wage earnings measure to calculate tax liability and marriage subsidies.

The characteristics used in the earnings regression are sex (and its interaction with the other

variables), race, age and its square, education, field of degree, state and year fixed effects, and

their interactions. In order to calculate marriage subsidies, I make use of NBER’s TAXSIM

35 tool to predict individual tax liability under different filing statuses using predicted earn-

ings and take the difference between a couple’s actual and counterfactual total tax liabilities

to obtain the marriage subsidy measure. In generating the predicted earnings, tax liability

and subsidies, I also make some adjustments to account for the fact that the year earnings

were reported may be different from the year a marriage decision was made, which I will

discuss in more detail in the following section.

3.4 Data

The ACS arguably provides the most ideal microdata currently available for empirical work

related to same-sex marriage legalization because starting in the 2012 wave, data users are

able to identify the marital status of cohabiting same-sex couples. In addition, the year of

marriage is also observable for married couples. I construct a two-part sample using the

PUMS from the 2012–2017 ACS waves. The first part of the sample consists of same-sex

married couples in all waves who got married in either 2012 or 2014. The other part consists of

cohabiting same-sex couples from the 2012 and 2014 waves who were not married at the time

when they were surveyed. By construction, the sample includes same-sex cohabiting couples

who made a decision on whether to marry or not in either year, which allows me to examine

how their decisions responded differently to the size of the marriage subsidy before and after
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the ruling. The year 2013 is excluded because the ACS collects responses throughout the

year and there is no indicator for the month in which a response was collected (or information

about the month of marriage), making it impossible to determine whether a 2013 observation

or a 2013 marriage was before or after the Supreme Court ruling in June. In addition, the

sample only includes two-person households to abstract from the complication that arises

from childbearing decisions, and is also restricted to households in the seven states that had

legalized same-sex marriage by the end of 2011, namely Massachusetts (legalization effective

in 2004), Connecticut (2008), Iowa, Vermont (both 2009), New Hampshire, Washington D.C.

(both 2010) and New York (2011). For residents of these states, legal access to same-sex

marriage has been available since before 2012, and the 2013 ruling serves as a clear natural

experiment because the only change for these couples was the fact that same-sex marriage

was now recognized at the federal level. Only couples where both individuals are working-

age adults, i.e. between the ages 18 and 64, are included in the sample. The full sample

consists of 2,290 individuals, or 1,145 couples. Because of the relatively small sample size,

when calculating predicted earnings, I run the earnings regression on an expanded sample,

which spans one more year (to include 2016 in addition to 2012 and 2014; no earlier years

are included due to lack of same-sex married couple identifier) and includes all states and

the full age range, in order to increase statistical power. The R2 of the regression is 0.247.

The two panels in Figure 3.2 plot the predicted earnings and subsidy against the reported

ones for individuals in the main sample; the red lines are the 45-degree line. The predicted

subsidies align remarkably with the ones calculated from reported earnings.1

Observations in the sample span all six ACS waves, and the survey year is generally

different from the imputed year of marriage decision. As mentioned at the end of Section

3.3, the earnings prediction needs to take into consideration of the discrepancy, which affects

predictions in two ways: through inflation, and through the effect of both the year and
1The F -statistic of this first-stage regression cannot be computed due to insufficient rank of the vari-

ance–covariance matrix, likely because some of the fixed-effects indicator variables equal 1 for only one
observation in the sample.
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Figure 3.2: Scatterplots of predicted vs. reported earnings and subsidy

a person’s age on real earnings. To adjust for both, the earnings and subsidy prediction

is performed in the following steps: (a) earnings are converted to constant 2017 dollars,

and used as the dependent variable in the earnings regression; (b) predicted real earnings

are calculated from coefficient estimates, but adjusted for the time difference between survey

and marriage decision, using estimates of coefficients on age, year and any related interaction

terms; (c) based on year reassignment, predicted earnings are converted into nominal 2012

or 2014 dollars for the TAXSIM calculation, whose input and output are both in nominal

dollars in the tax year in question; and (d) nominal predicted earnings, tax liabilities and

marriage subsidies are all converted back to constant 2017 dollars. Throughout the paper,

71



Opposite-sex Same-sex Gay Lesbian Year 2012 Year 2014

(1) (2) (3) (4) (5) (6)

Female 0.493 0.360 0.000 1.000 0.355 0.382

(0.500) (0.480) (0.000) (0.000) (0.479) (0.486)

Age 35.93 41.84 42.48 40.70 41.99 41.30

(11.89) (11.18) (10.82) (11.69) (11.14) (11.28)

Married 0.275 0.150 0.134 0.179 0.105 0.317

(0.446) (0.357) (0.341) (0.384) (0.307) (0.466)

Non-hispanic white 0.791 0.793 0.793 0.793 0.793 0.793

(0.407) (0.405) (0.405) (0.405) (0.405) (0.406)

Hispanic 0.088 0.102 0.104 0.098 0.103 0.097

(0.283) (0.303) (0.306) (0.297) (0.305) (0.295)

Black 0.058 0.059 0.054 0.069 0.061 0.052

(0.234) (0.236) (0.226) (0.254) (0.240) (0.222)

Asian 0.048 0.035 0.040 0.027 0.033 0.042

(0.214) (0.184) (0.197) (0.158) (0.179) (0.200)

College deg. or above 0.475 0.645 0.663 0.614 0.646 0.642

(0.499) (0.479) (0.473) (0.487) (0.478) (0.480)

Reported real earnings ($) 51278.38 78642.47 90369.10 57870.77 78130.94 80529.92

(64461.49) (94688.35) (106375.90) (64317.42) (90659.61) (108326.20)

Predicted real earnings ($) 46921.60 70698.25 77508.50 58635.06 69220.07 76152.47

(22026.11) (32136.24) (33559.86) (25304.31) (32180.57) (31407.38)

n (unweighted) 26,806 2,290 1,348 942 1,178 1,112

Predicted real subsidy ($) 1714.33 4341.93 5233.83 2763.94 4318.83 4426.29

(7197.94) (15377.09) (17633.35) (10061.96) (14979.64) (16776.38)

n (unweighted) 13,403 1,145 674 471 589 556

Table 3.2: Descriptive statistics of the sample

all related measures are reported in real dollars, and the main analysis aims to capture the

effect of real, not nominal, differences in marriage subsidies.

Table 3.2 presents the summary statistics for selected demographic and income variables,

both for the main sample and for an expanded sample that includes opposite-sex couples

for comparison.2 Columns (1) and (2) show that cohabiting (regardless of marital status)
2For predicted earnings and marriage subsidies for opposite-sex couples, a separate earnings regression

is run on the expanded sample; those measures for the main sample and its subsamples in the subsequent
columns are from the original regression. As a result, the statistics for these measures should not in principle
be compared between same-sex and opposite-sex couples, and mean predicted earnings for same-sex couples
using the expanded regression instead are indeed lower and more in line with those for opposite-sex couples.
Nevertheless, mean predicted subsidies for same-sex couples remain largely similar quantitatively, regardless
of the regression estimates used.
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Percentage that have:
Minimum Maximum Penalty Subsidy Neither

All same-sex (n = 1,145) −6865 142607 17.2% 52.4% 30.5%
Gay (n = 674) −6865 142607 22.4% 51.9% 25.7%
Lesbian (n = 471) −2628 121866 7.9% 53.3% 38.9%

Percentiles
1st 5th 10th 25th 50th 75th 90th 95th 99th

All same-sex (n = 1,145) −1683 −711 −390 0 24 1584 10890 20164 102902
Gay (n = 674) −2114 −756 −540 0 26 1607 12172 29267 111318
Lesbian (n = 471) −1034 −383 0 0 20 1307 5712 12522 53489

Table 3.3: Summary statistics for predicted marriage subsidy for same-sex couples

same-sex couples tend to be older and better educated, less likely to be married, and earn

more than opposite-sex ones. Columns (3) and (4) decompose the main sample by sex. Gay

couples outnumber lesbian ones in the sample, but most demographic characteristics are very

similar between the two groups. On average, gay men are slightly more likely to be Asian,

slightly less likely to be Black, and more likely to have a college degree or above. More

importantly, gay couples report notably higher real earnings than lesbian couples and are

predicted to incur a much bigger marriage penalty. Columns (5) and (6) compare same-sex

couples who made a decision on whether to marry or not in 2012 and those who did so in

2014. The two groups are roughly equal-sized. Most demographic characteristics are similar

across both years, but there was a significant increase in the marriage rate despite the fact

all seven states had already legalized same-sex marriage by 2012, suggesting either a steady

time trend or a response to other changes between the two years. Predicted real earnings

also increased between the two years, as expected.

One notable feature of the summary characteristics is that contrary to the theoretical

predictions discussed in Section 3.2, same-sex couples on average are predicted to earn a

higher marriage subsidy than opposite-sex ones. A closer inspection reveals that the higher

mean for same-sex couples is driven by a larger number of outliers on the right tail: while

the 95th and 99th percentiles of predicted subsidy for opposite-sex couples are $7,673 and

$27,022, respectively, they are $20,164 and $102,902 for same-sex couples. The medians, on
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the other hand, are similar between both groups ($83 and $24). Almost all of the outlying,

high-marriage subsidy couples comprise a very high-earning spouse and one with little to no

earnings, a phenomenon that appears to be more frequent among same-sex couples. Data

in this sample, at least, does not corroborate previously mentioned theories and descriptive

evidence suggesting higher incidence of marriage penalties among same-sex couples.

Table 3.3 provides further summary statistics for the distribution of the predicted mar-

riage subsidy. Both gay and lesbian couples are on average predicted to enjoy a marriage

subsidy, but large proportions of both groups neither enjoys a subsidy nor incurs a penalty.

(These proportions are similar across same-sex and opposite-sex couples when the latter are

included.) For the majority of households, the magnitude of the subsidy or penalty is also

rather small. Furthermore, the distribution of predicted subsidy is more dispersed for gay

couples than for lesbian couples, with more extreme outlier values in both tails.

3.5 Results and Discussion

Table 3.4 presents the result from estimating the logit model (3.1) separately using the full

sample as well as subsamples by sex, with the household as the unit of observation. Instead

of clustered standard errors at the state level, standard errors are obtained by manually

bootstrapping the earnings prediction and main regression estimation using the 80 sets of

household replicate weights provided in the ACS.3 Column (1) of the table reports estimation

results for the full sample. The coefficient estimate on the post-Windsor indicator is big

and significant, consistent with the sharp increase in marriage rate in 2014 reported in

Table 3.2. Being a lesbian couple is also associated with a higher probability of marriage.

However, all the other coefficient estimates are insignificant. In particular, the estimate on

the post× subsidy interaction term suggests no evidence showing that the magnitude of the

marriage subsidy or penalty entered couples’ marriage decisions. Columns (2) and (3) report
3This can only be done manually due to the use of TAXSIM, which does not run as part of major

statistical packages.
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Including Including

Full sample Gay Lesbian 2015 & 2016 “late states”

(1) (2) (3) (4) (5)

postt 2.424*** 2.527** 2.537** 1.488*** 3.099**

(0.630) (1.004) (0.985) (0.503) (1.149)

subsidyi ($’000) 0.0013 0.0018 0.0123 0.0011 0.0010

(0.0060) (0.0077) (0.0119) (0.0062) (0.0058)

postt × subsidyi 0.0030 0.0047 −0.0364 −0.0011 −0.0009

(0.0091) (0.0120) (0.0251) (0.0073) (0.0083)

Female 0.3926** — — 0.3375*** 0.4357***

(0.1726) (0.1379) (0.1150)

Average predicted earnings ($’000) 0.0086 0.0426* −0.0534* 0.0127 0.0236**

(0.0181) (0.0222) (0.0319) (0.0121) (0.0105)

Average predicted earnings squared −0.00006 −0.00024* 0.00038* −0.00007 −0.00012*

(0.00011) (0.00013) (0.00023) (0.00008) (0.00006)

Difference in predicted earnings ($’000) 0.0027 0.0028 −0.0003 0.0026 0.0012

(0.0046) (0.0059) (0.0082) (0.0039) (0.0028)

Average age 0.0651 −0.0301 0.0217** 0.0175 −0.0138

(0.0749) (0.1045) (0.0108) (0.0653) (0.0489)

Average age squared −0.00086 0.00008 −0.00243* −0.00035 0.00004

(0.00089) (0.00125) (0.00128) (0.00077) (0.00056)

Age difference −0.0331 −0.0158 −0.0670** −0.0047 −0.0154

(0.0167) (0.0222) (0.2995) (0.0147) (0.0112)

State fixed effects Yes (7) Yes (7) Yes (7) Yes (7) Yes (22)

n (unweighted) 1,145 674 471 2,092 3,172

Levels of significance: *** = .01, ** = .05, * = .10.

Table 3.4: Estimation results

coefficient estimates when only gay or only lesbian couples in the sample are included in the

regression. While a few estimates now become significant at the 5% or the 10% level, the

coefficient of interest on the interaction term remains insignificant, in addition to being too

small in magnitude to be economically meaningful. To take advantage of the full sample

size, I additionally run the regression on the whole sample while allowing the coefficient on

post× subsidy to vary by sex; the results remain qualitatively similar, which I do not report

here.

A major drawback about the analysis concerns the sample size. As a trade-off for lever-

aging the Windsor ruling as a natural experiment, the sample selection is based on criteria

that can limit the statistical power of the analysis. A combination of factors leads to a

75



limited sample size, including the preference for a narrow bandwidth around the time of the

ruling, the lack of same-sex couple identifiers in pre-2012 ACS waves, the inability to iden-

tify the month of survey or marriage in 2013, the desire to avoid confounding policy changes

such as state-level legalization, and the small group of early-legalization states. To include

more households, either temporally or geographically, would put identification at risk. To

cover more years after 2014 would weaken the case for the event study. The problem with

expanding the sample beyond the seven states currently included, on the other hand, is

that numerous signifiant legislative changes regarding same-sex marriage took place across

the United States in the two years between Windsor and Obergefell, and to include states

that legalized same-sex marriage during the period would surely risk capturing the effect

of such changes. Meanwhile, although the ACS data includes couples who lived in states

that did not legalize same-sex marriage until Obergefell (so their legal standing remained

the same between 2012 and 2014) but still got married before 2015, the fact that they would

have needed to travel to another state to do so implies that legalization progress made in

other, possibly neighboring states between 2012 and 2014 may have had an impact on their

marriage decision. Nevertheless, in columns (4) and (5) of Table 3.4, I present regression

estimates using either a temporally expanded sample to include years 2015 and 2016 in the

post-Windsor period, or a geographically expanded one to include the 15 “late-legalization”

states, which increase the sample size by 83% and 177%, respectively. In neither case does

the estimated coefficient of interest see a meaningful change, which appears to lend more

credibility to the findings in the original analysis.

3.5.1 Comparison with Friedberg & Issac (2024)

As acknowledged in Section 3.2, Friedberg & Issac (2024) independently carry out a study

similar in focus and scope to mine. Their sample is also constructed primarily using the

2012 to 2017 waves of the ACS, and they similarly employ an IV approach to address the

endogeneity problem for income and tax subsidy. However, they use an otherwise different
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This paper Friedberg & Issac (2024)
Data · ACS PUMS 2012–2017 · ACS PUMS 2012–2017, augmented with

Survey of Income and Program
Participation 2014

Sample · Constructed to include same-sex couples
in early-legalization states who made a
marriage decision in 2012 or 2014

· All same-sex couples surveyed in all six
ACS waves, from all states

· 18–64 years old · 18–60 years old
· Only includes two-person households · Includes couples with children
· n = 1145 · n = 37234

Methodology · IV and diff-in-diff · IV without explicit diff-in-diff component
· Treats marriage as choice variable · Treats marriage as state variable
· Standard regression for first-stage

earnings & subsidy prediction
· Machine-learning LASSO for first-stage

earnings & subsidy prediction
· Examines federal tax subsidy alone

(state subsidy remains unchanged for
couples in sample)

· Examines total federal and state tax
subsidies

· Diff-in-diff identification strategy; uses
2013’s Windsor decision as natural
experiment

· Exploits variations created by state-level
legalization, 2015’s federal legalization
from Obergefell, as well as 2013’s tax
status change from Windsor; embeds
variation in instrument by setting
federal/state subsidy to zero before
same-sex marriage was recognized for tax
purposes at corresponding level

· Entails predicting counterfactual subsidy
in different year from survey year

· No year adjustment needed

· Only (federal) tax filing status changes
for couples in sample

· Legalization status also changes for
couples in sample; controls with
dummy variable

Table 3.5: Comparison of my and Friedberg & Issac’s (2024) approaches

empirical strategy and arrive at different results, which suggest the marriage tax subsidy

has a small but significant positive effect on the marriage decision. Table 3.5 highlights

the main differences in approaches between my paper and theirs. Chiefly among these are

the sample selection method and the identification strategy, which are directly related to

each other. Instead of using Windsor as a natural experiment and constructing “before”

and “after” groups in states where legalization status remained unchanged in the meantime,

they include all surveyed same-sex couples from all states, lending considerable statistical

power to the analysis. This is made possible because they exploit broader variations in tax

77



Full sample Gay Lesbian
(1) (2) (3)

legalst 0.3899*** 0.2725*** 0.5203***
(0.0616) (0.0953) (0.0898)

subsidyist ($’000) −0.0009 −0.0006 −0.0020

(0.0012) (0.0015) (0.0030)
Female 0.2117*** — —

(0.0455)
Average predicted earnings ($’000) −0.0004 −0.0023 −0.0033

(0.0049) (0.0065) (0.0083)
Average predicted earnings squared 0.00002 0.00004 0.00005

(0.00003) (0.00004) (0.00007)
Difference in predicted earnings ($’000) 0.0012 0.0003 0.0034

(0.0013) (0.0014) (0.0025)
Average age 0.0730*** 0.0648*** 0.0932***

(0.0189) (0.0240) (0.0238)
Average age squared −0.00028 −0.00014 −0.00055**

(0.00022) (0.00028) (0.00027)
Age difference −0.0191*** −0.0137*** −0.0287***

(0.0035) (0.0041) (0.0066)
State and year fixed effects Yes Yes Yes
n (unweighted) 28,658 15,794 12,864
Levels of significance: *** = .01, ** = .05, * = .10.

Table 3.6: Estimation results from alternative methodology

subsidies with a different method: taking into consideration changes in both federal and state

income tax filing statuses following Windsor, Obergefell, or state-level legalization, they set

the portion of the subsidy from federal and/or state tax to zero in years prior to the relevant

legislation or judicial ruling, so as to capture the fact that the amount of the subsidy was

irrelevant for same-sex couples before legalization or recognition by federal/state tax law.

Additionally, since marriage is considered a state—not choice—variable and households are

treated as observed in the same year they were surveyed, their approach obviates the need

to make adjustments to predicted earnings and subsidies due to year reassignment as in this

paper.

Given that most of the differences between our papers are related to or dependent on

each other, it is not feasible (in most of the cases) for me to isolate each single difference
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and investigate its contribution to our contradicting results. Hence I repeat my analysis

after borrowing most of Friedberg & Issac’s (2024) approach, namely abandoning the diff-

in-diff identification strategy and adopting their way of constructing the predicted (state

plus federal) subsidy variable, and examine if it yields different results.4 I estimate the

second-stage regression

log
P (marriedist = 1)

1− P (marriedist = 1)
= α + β × subsidyist + θ × legalst +X ′

itη,

where legalst is an indicator variable that equals 1 if same-sex marriage was legalized in state

s on or before year t, and Xit includes year fixed effects in addition to my original controls.

The coefficient of interest is β. Estimation results are reported in Table 3.6; no estimate of

β is significant.5

The failure to bridge the gap between the two sets of results suggests that these main

differences in our approaches are not the primary contributor to the discrepancy in our

results. Considering that they also include controls for the presence and number of children

in the household, the remaining factor that is most likely to underly the differences is the

first-stage prediction of earnings and subsidy. Friedberg & Issac (2024) state that they choose

machine-learning LASSO for the prediction because they see the first stage as “effectively

a prediction exercise” (Mullainathan & Spiess, 2017, p. 100). Compared to my standard

regression approach and given the year adjustments I have to make, such an approach can

conceivably lead to less noise in the predicted instrument, which may be the reason for

the discrepancy in our results. At the moment, investigating the effect of the method of

prediction is beyond the scope of this paper.
4I do not, however, include couples with children in the sample or change the age range.
5I additionally change the definition of legalst so that the year of legalization itself is coded as 0 instead

of 1. This does not significantly impact the results.
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3.6 Conclusion

Using ACS data on same-sex married and unmarried cohabiting couples in 2012 and 2014,

I am able to estimate how the Supreme Court’s 2013 ruling on United States v. Windsor

affected these couples’ behavioral response to the marriage subsidy. A predicted earnings

measure is constructed from individual characteristics to tackle endogeneity issues, and the

measure is used to derive tax liability and marriage penalties. Estimation results do not

point to evidence of a significant effect of the ruling for the full sample or either subsample

of gay or lesbian couples. The relatively small subsidy or penalty faced by the majority of

couples may partially explain its lack of significance in marriage decisions. Perhaps more

importantly, given the wide variety of factors that may go into such decisions, in particular

the symbolic importance of marriage for same-sex couples during a period of rapid change

in the cultural and legal environment, it would not be surprising if the tax incentives only

have a subdued effect on their decisions.

The behavioral response of same-sex couples to marriage tax incentives is a worthy re-

search topic both as part of the broader endeavor to understand how households respond

to distortions created by the transfer system, and in its own right because it facilitates

understanding of the differences between same- and opposite-sex couples in their economic

decision-making. Although the nature of the Windsor ruling makes it an ideal natural ex-

periment for revisiting the topic of marriage tax incentive in a new context, data availability

on same-sex couples has imposed limits on the possibility of empirical research. As shown

by Friedberg & Issac (2024), it is possible to adopt different methods to analyze the ACS

data and continue to test the robustness of the findings in this paper, and incorporating

state-level variations to complement my current approach may be helpful in relaxing some

of the constraints this study has faced.
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