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Memories are stored and recalled throughout the lifetime of an animal, but many models of memory, 
including previous models of familiarity detection, do not operate in a continuous manner. We consider 
a family of models that recognize previously experienced stimuli and, importantly, operate and learn 
continuously. Specifically, we investigate a learning paradigm in which stimuli are presented in a 
streaming fashion with repetitions at various intervals, and the subject/model must report whether the 
current stimulus has previously appeared in the stream. We propose a feedforward network 
architecture with ongoing plasticity in the synaptic weight matrix. Parameters governing plasticity and 
static network parameters are meta-learned using gradient descent to optimize the continual familiarity 
detection process. This architecture, unlike  recurrent networks without ongoing plasticity, generalizes 
easily over a range of repeat intervals even if trained with a single interval. We show that an anti-
Hebbian plasticity rule (co-activated neurons cause synaptic depression) enables repeat detection over 
much longer intervals than a Hebbian one, and this is the solution most readily found by meta-learning. 
This rule leads to experimentally observed features such as repeat suppression in the hidden layer 
neurons. In contrast to previous theoretical work, the capacity of these networks remains constant 
across their lifetimes, meaning that pairs of stimuli with a given temporal separation are stored and 
recognized as familiar independent of the network's input history. We also consider learning rules that 
use an external gating circuit to control plasticity. Collectively, these models demonstrate a range of 
different psychometric curves that we compare to human performance.  
 
Additional Detail. Every day, a continual stream of sensory information causes lasting synaptic 
changes in our brains that alter our responses to future stimuli. Two critical unsolved problems 
regarding memory are (i) how local synaptic updates enable distributed storage and global readout of 
information, and (ii) how these updates support the continual storage of information without 
"catastrophic forgetting," in which the network either erases previous memories [1] or renders stored 
information unreadable [2]. To investigate these questions, we consider an ongoing repeat detection 
task that requires both of these features and propose network models that successfully implement 
them, with relevance for results from the perirhinal [3] and inferotemporal cortices [4]. The network 
receives a stream of d-dimensional random binary inputs !" ∈ +1,−1 (. With probability p, the stimulus 
at time step t may be a copy of the stimulus presented at times step t-R () !" = !"+, = - for all . ≥
0),	or with probability 1 − -	it may be a novel stimulus. The output of the network should be yt = 0 if xt 
is novel and yt = 1 if it appeared previously.  

We use a feedforward network with a single hidden layer and the addition of activity-dependent 
ongoing Hebbian plasticity ("HebbFF") (Fig 1). Given input xt, at time t, the hidden layer is activated as 
ℎ" = 4 56 + 7" !" + 86  and read out as 9" = 4 5:ℎ" + 8: . At is the "plastic" matrix, updated at every 
time step according to 7";6 = <7" + =ℎ"!">. We use backpropagation through time as a form of meta-
learning to find the optimal parameters W1, b1, W2, b2, l, h.  

HebbFF stores its input history in the plastic synaptic matrix At unlike an RNN, which uses 
ongoing activity. The HebbFF architecture both solves the task and shows good generalization. In 
contrast, an RNN trained on a single dataset with T=500 timepoints and a fixed repeat interval R=5, 
fails to generalize to new datasets (it learns a classifier rather than the recognition task). If we train an 
RNN with "infinite" data by generating a new dataset for every iteration of backpropagation, the RNN 
generalizes across datasets, but fails to generalize across values of R (Fig 2). In contrast, HebbFF 
generalizes not only to a new dataset with the same R, but also to datasets with smaller or even 
somewhat larger R's (Fig 2). 

After training successfully converges, HebbFF most commonly learns a negative value for h, 
corresponding to an anti-Hebbian plasticity rule. While it is possible to coerce the network to learn a 
Hebbian rule (h>0), generalization across R's is much worse (Fig 2) and training takes longer. As a 



result of the anti-Hebbian rule, when a familiar stimulus is presented, the hidden unit activation is low 
since the synapses storing that stimulus are depressed. This is consistent with experimental results of 
repetition suppression [5], where a neuron's response decreases with repeated presentations of a 
stimulus. A Hebbian rule produces the opposite property.  

In contrast to previous work showing impressive memory capacity [6], this network solves the 
task of continual learning. Its performance is independent of the length of the dataset T, and it can 
operate continuously without a need to "reset" the synaptic weights (Fig 3). In classic studies of 
recognition memory [7] subjects are presented an entire dataset and later asked to identify which 
stimulus is familiar in a two-alternative-forced-choice (2AFC) test. While the capacity for the 2AFC task 
in humans is on the order of thousands, it is much lower for continual repeat detection tasks [8] like the 
one we trained our networks to perform. This is consistent with the difference between critical capacity 
from [6] (P*»100 in Fig 3) and our "repeat interval" capacity (Rmax »10 for HebbFF in Fig 3). 

To investigate the optimality of this architecture and compare with human performance, we also 
consider a more general plasticity rule in which At is updated by an external gating circuit with 
activations gt. Synapses of the hidden units are overwritten by the synaptic update 7";6?@ = A"?!"@, where 
gt is a one-hot vector with the active unit chosen either randomly i = rand{1..Nh}, or sequentially i = t 
(mod Nh). All the models can match human performance up to the point where mistakes begin (R»64), 
and the random model best resembles the gradual fall off in performance exhibited by humans, 
although with a more rapid decay (Fig 4). Investigation of this phenomenon remains for future work.  
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