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Abstract

A Sparse Learning Approach for Linux Kernel Data Race Prediction

Gabriel Ryan

Operating system kernels rely on fine-grained concurrency to achieve optimal performance

on modern multi-core processors [1]. However, heavy usage of fine-grained concurrency

mechanisms make modern operating system kernels prone to data races, which can cause severe

and often elusive bugs. In this thesis, I propose a new approach to identifying data races in OS

Kernels based on learning a model to predict which memory accesses can be feasibly executed

concurrently with one another. To develop an efficient learning method for memory access

feasibility, I develop a novel approach based on encoding feasibility as a boolean indicator

function of system calls and ordered memory accesses. A memory access feasibility function

encoded this way will have a naturally sparse latent representation due to the sparsity of

interthread communications and synchronization interactions, and can therefore be accurately

approximated based on a small number of observed concurrent execution traces.

This thesis introduces two key contributions. First, Probabilistic Lockset Analysis (PLA), is a

new analysis that exploits sparsity in input dependencies in conjunction with a conservative

lockset analysis to efficiently predict data races in the Linux OS Kernel. Second, approximate

happens-before analysis in the fourier domain (HBFourier) generalizes the approach used by PLA

to reason about interthread memory communications and synchronization events through sparse

fourier learning. In addition to being theoretically grounded, these techniques are highly

practical: they find hundreds of races in a recent Linux development kernel, an order of



magnitude improvement over prior work, and find races with severe security impacts that have

been overlooked by existing kernel testing systems for years.
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Chapter 1: Introduction

Operating system kernels have evolved to heavily rely on fine-grained concurrency to achieve

optimal performance on modern multi-core processors [1]. By allowing many threads to exe-

cute simultaneously and access shared system resources concurrently, these kernels can efficiently

utilize the computational resources of multi-core processors. However, the same fine-grained con-

current synchronization techniques that make modern operating system kernels efficient also make

them particularly prone to race conditions. Race conditions occur when multiple threads concur-

rently access shared resources without synchronization, leading to unpredictable and erroneous

behavior [2].

Research Problem. This thesis focuses on identifying a specific form of race conditions called

data races, which occur when two memory accesses are performed concurrently to the same mem-

ory address. Identifying data races in operating system kernels is crucial due to their potential to

introduce severe and often elusive bugs. These bugs can manifest in various forms, from system

crashes and memory corruption to more insidious errors that result in security vulnerabilities. For

instance, data races can lead to information leaks and privilege escalation attacks, which can com-

promise the integrity and confidentiality of a system [3, 4, 5, 6]. The complexity of kernel code

and the non-deterministic nature of race conditions make them particularly challenging to diagnose

and rectify, posing a continuous threat to system stability and security. Therefore, identifying and

preventing data races in operating system kernels is vital for ensuring the security and reliability

of modern computing systems.

Data race prediction for operating system kernels is exceptionally challenging due to the ex-

ponential space of potential system call combinations and concurrent thread interleavings that can

give rise to data races [7]. To successfully identify a data race, finding a combination of system

calls can race when executed concurrently is not sufficient–it is also necessary to identify the pre-

1



cise thread interleaving required for these system calls to execute racing memory accesses to a

common address. This dual requirement makes data race prediction for kernel code challenging

both in theory and practice. From a theoretical perspective data race prediction is NP-Hard, since

there is an exponential space of system inputs and thread interleavings that can be executed [8].

As a result, practical solutions often heavily rely on specific heuristics, which can be brittle and

limited to targeting specific classes of data races. Previous research has shown the prevalence of

undiagnosed data races during development [9].

Prior Work. There are two predominant approaches for testing for data races: schedule explo-

ration and dynamic race prediction. The former focuses on executing many different thread inter-

leavings to detect data races. Schedule exploration approaches include systematically enumerating

schedules based on the number of allowed preemptions [10], randomly sampling schedules from a

targeted distribution [11, 12], or attempting to maximize concurrent coverage metrics [13]. In con-

trast, dynamic race prediction, rather than executing different schedules, reasons about potential

memory access reschedulings based on a single execution trace of a concurrent program. Most dy-

namic race prediction methods use either analysis based on Lamport’s happens-before relation [14]

to predict races soundly (i.e., no false positives), or lockset analysis [15], which is complete(i.e.,

no false negatives) but prone to high false positive rates. SMT reductions have been constructed

for dynamic race prediction, which are both sound and complete for an observed trace, but have

limited scalability [16].

Systems designed for kernel race testing use a combination of schedule exploration and dy-

namic race prediction, but in a two-step manner. First, sequences of system calls are generated

using a template-based fuzzer such as Syzkaller that maximizes code coverage. The corpus of

generated fuzzer seeds is then used as inputs to the race testing procedure. Combinations of fuzzer

seeds are selected from the corpus and executed together, and schedule exploration and dynamic

race prediction are used to test for races. This seed selection is based on either alias analysis of the

memory accesses performed by each seed [17, 7], or sampling diverse seed combinations based

on a concurrent coverage metric [9, 18]. Schedule exploration and dynamic race prediction are

2



then used on each seed combination to test for races that can potentially occur. However, iden-

tifying possible racing memory accesses across different seed combinations is challenging, due

to high false positive rates from alias analysis and variability in execution paths when seeds run

concurrently, and existing approaches miss many data races as a result (See Section 2.5.2).

Approach. In this thesis, I propose a new approach to program analysis through sparse learning

methods and apply it to data race prediction for OS Kernels. The core of the approach involves en-

coding the analysis into a query to a boolean indicator function 𝑓 for a relevant program execution

property (e.g., a given memory access being feasible), and defining two functions that are used to

learn a model of 𝑓 : a trace encoding function 𝜙, and an approximation function 𝑓 ∗. 𝜙 defines a set

of features that are used to learn a model of 𝑓 by encoding a trace into a boolean vector, and 𝑓 ∗

is used to learn an approximate model of 𝑓 based on the encoding defined by 𝜙. If we consider a

program that operates on an input 𝑥 ∈ 𝑋 to produce a trace 𝜏 ∈ 𝑇 , where 𝑋 and 𝑇 represent the

sets of all possible inputs and traces, then 𝑓 , 𝜙, and 𝑓 ∗ have the following type definitions:

𝑓 : 𝑋 × 𝑇 → 𝑍2 𝜙 : 𝑋 × 𝑇 → 𝑍𝑛
2 𝑓 ∗ : 𝑍𝑛

2 → R (1.1)

Given an input 𝑥 and corresponding execution trace 𝜏, 𝑓 (𝑥, 𝜏) = 𝑓 ∗ ◦𝜙(𝑥, 𝜏). The objective is then

to approximately learn 𝑓 ∗ from a set of observed traces.

The approximation function 𝑓 ∗ can then be used to reason about likely values of 𝑓 for hypo-

thetical program inputs 𝑥∗. The size of the input domain 𝑛 of 𝑓 can be very large for practical

program analysis problems on a large real-world program like an OS kernel, but if a basis for

𝑓 is known where the function has a sparse latent representation, the approximation 𝑓 ∗ can be

learned in this basis for a small fixed cost with strong probabilistic guarantees under mild uniform

sampling assumptions [19]. This framework can be applied to many forms of program analysis

through careful design of the trace mapping function 𝜙 and indicator function 𝑓 . For example,

𝜙 can encode which interthread communications are observed in an execution trace, and 𝑓 can

indicate if a particular memory access of interest is executed in the trace (e.g., a memory access

3



Figure 1.1: Example of sparsity in shared memory accesses in the Linux Kernel. Less than 1 in 1000
memory accesses are consistently performed to specific addresses over multiple executions. These represent
accesses to shared data structures that form points of communication with other executing threads.

that could be involved in a data race). The learned approximation function 𝑓 ∗ can be then used to

predict which interthread communications could cause a potential data race to occur.

This approach is based on the observation that many seemingly computationally intractable

problems in program analysis can be solved for practical real-world programs due to intrinsic spar-

sity in program structure. For example, the memory accesses in the kernel exhibit sparsity in their

accesses to common addresses. A single system call may perform millions of memory accesses

when it is executed, but only a very small fraction of these will access shared data structures that

are points of potential communication with other executing threads. Figure 1.1 illustrates how only

a small fraction of memory accesses performed by a method in the Linux network/xrfm sub-

system access shared datastructures that do not change over multiple executions. Learning which

memory accesses are involved in communications and targeting these can therefore reduce the cost

of a pairwise analysis by a factor of millions (See Section 2.5.3 for detailed results).

Leveraging Sparsity in Race Prediction. Learning to predict which memory accesses are fea-

sible to execute concurrently is a fundamentally hard problem due to the exponential number of

possible interactions between synchronization primitives and inter-thread communications. How-

ever, the interactions between individual synchronization events and inputs for a set of concurrently

executing threads exhibit the property that they are intrinsically sparse, since most instructions ex-

ecuted by the kernel do not involve explicit communication or synchronization. Prior work in race
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prediction has observed that the sparsity in concurrent interactions means that many races can be

exposed by limiting the search over the schedule space to a small number of thread preemptions,

and focusing the search to testing schedules with fewer preemptions first. Chess [20] does this

with a model-checking approach by enumerating possible thread interleavings to test for a concur-

rent program, starting with interleavings with only a single preemption, and then testing schedules

with progressively more interleavings. PCT [11] uses this same approach in a randomized way,

by sampling execution schedules to test from a distribution biased towards a small number of

preemptions.

In this work, I leverage sparsity in inter-thread communications to make learning an accurate

model of feasibility for concurrent memory accesses tractable. When encoded as a boolean indi-

cator function 𝑓 , a memory access feasibility model will have a sparse latent representation in an

appropriate basis (e.g., the function’s fourier expansion) due to the sparsity of interthread com-

munications and synchronization interactions. Feasibility of memory accesses can therefore be

accurately approximated by learning a small set of relevant memory communications that affect

when specific memory accesses are feasible or infeasible. These relevant communications can then

be learned based on a small number of observed concurrent execution traces.

Outline. The rest of this thesis is organized as follows. First, in Chapter 2, I introduce Probabilis-

tic Lockset Analysis (PLA), an analysis that exploits sparsity in input dependencies in conjunc-

tion with a conservative lockset analysis to efficiently predict data races in the Linux OS Kernel.

Second, in Chapter 3, I introduce HBFourier, which generalizes the approach used by PLA to rea-

son about interthread memory communications and synchronization events through sparse fourier

learning, and show that PLA can be expressed as a sparse fourier learning problem on memory ac-

cess input dependencies. In addition to being theoretically grounded, these techniques are highly

practical: they find hundreds of races in a recent Linux development kernel, an order of mag-

nitude improvement over prior work, and find races with severe security impacts that have been

overlooked by existing kernel testing systems for years.
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Chapter 2: Probabilistic Lockset Analysis

Finding data races is critical for ensuring security in modern kernel development. However,

finding data races in the kernel is challenging because it requires jointly searching over possible

combinations of system calls and concurrent execution schedules. Kernel race testing systems

typically perform this search by executing groups of fuzzer seeds from a corpus and applying

a combination of schedule fuzzing and dynamic race prediction on traces. However, predicting

which combinations of seeds can expose races in the kernel is difficult as fuzzer seeds will usually

follow different execution paths when executed concurrently due to inter-thread communications

and synchronization.

To address this challenge, we introduce a new analysis for kernel race prediction, Probabilistic

Lockset Analysis (PLA) that addresses the challenges posed by race prediction for the kernel.

PLA leverages the observation that system calls almost always perform certain memory accesses

to shared memory to perform their function. PLA uses randomized concurrent trace sampling to

identify memory accesses that are performed consistently and estimates the probability of races

between them subject to kernel lock synchronization. By prioritizing high probability races, PLA

is able to make accurate predictions.

We evaluate PLA against comparable kernel race testing methods and show it finds races at

a 3× higher rate over 24 hours. We use PLA to find 183 races, including 102 harmful races, in

linux kernel v5.18-rc5, the most recent main line development kernel version at the time the ex-

periments were conducted. PLA is able to find races that have severe security impact in heavily

tested core kernel modules, including use-after-free in memory management, OOB write in net-

work cryptography, and leaking kernel heap memory information. Some of these vulnerabilities

have been overlooking by existing systems for years: one of the races found by PLA involving an

OOB write has been present in the kernel since 2013 (version v3.14-rc1) and has been designated
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a high severity CVE.

2.1 Introduction

Data races are a source of serious security vulnerabilities in the OS kernels–many recent data-

race-based exploits resulted in privilege escalation [5], denial of service [4], and leaking protected

memory [21, 6]. Recent work has demonstrated that even races that appear unexploitable might be

deterministically triggered by an attacker [22]. Moreover, even when data races do not immedi-

ately result in security vulnerabilities, they cause severe bugs that lead to memory corruption and

undefined behavior [3, 23].

Given their security and reliability implications, testing for and identifying data races is critical

for modern kernel development. However, testing for data races is challenging both in theory and

practice: finding data races is NP-hard [8] because data races only occur under specific concurrent

execution schedules, which are exponential in the number of executed instructions. As a result, in

practice, many races are not identified until they cause a crash or security vulnerability in released

code [24].

In general, there are two widely used approaches to search for races in arbitrary concurrent pro-

grams: schedule exploration searches by executing many different schedules [10, 13, 25], while

dynamic race prediction reasons about possible reschedulings of memory accesses subject to syn-

chronization to trigger races based on a single concurrent execution trace [26, 27, 15, 16]. However,

these approaches reason exclusively about rescheduling the thread execution order. When testing

the kernel, the memory accesses and synchronization operations are determined by which system

calls are executed. Identifying a race then requires finding the correct combination of both system

calls and execution schedule under which the race occurs.

Kernel Data Race Detection. Kernel race testing systems therefore apply schedule exploration

and dynamic race prediction to the kernel by using a two step process: they first select a com-

bination of fuzzer seeds composed of systems calls from a fuzzer corpus, guided by either alias

analysis [17, 7] or a coverage metric for concurrent executions [9, 18], and then test the combined
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seeds with schedule exploration and dynamic race prediction.

However, predicting which memory accesses can race between different combinations of seeds

is challenging: alias analysis of shared memory accesses suffers from high false positive rates

and does not account for kernel synchronization, while concurrent coverage metrics only provide

indirect guidance for selecting seed combinations to test. Moreover, due to inter-thread communi-

cations seeds may follow different execution paths and perform different memory accesses when

executed concurrently, making any prediction based on a previous execution traces even more error

prone. As a result the vast majority of concurrent tests are wasted because races either do not occur

or are allowed based on kernel concurrency semantics.

Our Approach. In this thesis, we introduce a new approach to predict races between combinations

of seeds in a corpus that addresses each of these challenges in kernel race prediction: we only

predict races where kernel synchronization is violated and racing is not allowed, and we account

for changing execution paths when seeds are executed together, even if we have not observed those

particular seeds executing together before. This allows us to predict races accurately and efficiently

test a corpus for races, with provable bounds on the false positive rate under mild uniformity

assumptions.

Our approach is based on three observations about kernel system call memory access behavior:

(i) Stable memory accesses. While most memory accesses performed a system call change on each

execution, a small subset of memory accesses form a stable set, which the system call must make

to perform its intended function (e.g., a file read must access the relevant file inode), regardless of

which other system calls are executing concurrently. Memory accesses in the stable set will almost

always occur when the system call is executed (see Section 2.3.2 for a more precise definition).

(ii) Memory accesses in the stable set must be guarded by mutual exclusion synchronization (locks)

or allowed to race, since multiple system calls can perform them concurrently. (iii) Sparse lock

interactions. Kernel concurrency design favors using a small number of common locks for any

shared memory, so the number of distinct locksets for accesses to a common address are almost

always small, even when the number of accesses is large.
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Probabilistic Lockset Analysis. Based on these observations, we introduce Probabilistic Lockset

Analysis (PLA): a new analysis for kernel race prediction that identifies memory accesses in the

stable set and performs synchronization aware race prediction on them. PLA works by estimating

the probability that two seeds can execute racing memory accesses concurrently subject to lock

synchronization. It estimates probabilities of memory accesses with regard to other concurrent

programs, execution schedules, and variation in the execution context. Therefore, races involving

memory accesses that are unlikely to happen concurrently will have low probability, while races in-

volving memory accesses in stable set will have high probability, and these predictions can always

be refined to higher precision by taking more samples.

Unlike lockset analysis defined in the dynamic race prediction literature [28], which relies on

happens-before relations derived from inter-thread communications to make precise race predic-

tions, PLA is able to make precise race predictions by estimating the probabilities of seeds per-

forming concurrent memory accesses. This allows PLA to make accurate race predictions based

on independently collected execution traces sampled from each seed in a corpus, instead of testing

each seed combination and execution schedule individually, which would require a potentially ex-

ponential number of executions. To scale to large corpuses of fuzzer seeds, PLA’s design exploits

the intrinsic sparsity of inter-thread communications and locksets in the kernel: on average, less

than 1% of memory accesses are performed with high probability, and the vast majority of these

accesses only share a small number of distinct locksets (< 100, see Section 2.5.6). This allows

PLA to check each pair of unique locksets on each shared memory address for locking violations,

while still scaling linearly in the number of memory accesses processed. In practice, PLA easily

scales to analyzing billions of memory accesses for races.

PLA works in three steps: First, PLA executes each seed in the corpus concurrently with

other randomly selected seeds and schedules to estimates the probability of the seed performing

memory accesses with specific locksets. Next, PLA identifies lockset violations on shared memory

accesses by checking for non intersecting locksets. Finally, PLA estimates the joint probability

of memory accesses with locking violations occurring concurrently. For each prediction, PLA
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generates a hypothesized concurrent execution schedule that causes the two memory accesses to

race. Each prediction can then be efficiently checked by executing the relevant seeds according to

the hypothesized schedule.

Result Summary. We use PLA to find 183 distinct races in linux kernel v5.18-rc5, of which 102

are harmful, and show in a comparative 24 hour evaluation that it finds races at a rate 3× greater

than other comparable kernel concurrency testing systems. PLA is effective at identifying hard-

to-find races in core kernel modules that have severe security impact: including use-after-free in

memory management, OOB write in network cryptography, and leaking kernel heap memory. One

of these races found by PLA that causes an OOB write has been present in the kernel since 2013

(version v3.14-rc1) and has been designated a high severity CVE [29].

In summary, this thesis makes the following contributions:

1. We introduce Probabilistic Lockset Analysis (PLA), a new race prediction method for the

kernel that leverages probabilistic reasoning to predict races from corpuses of fuzzer seeds.

PLA is fast and accurate, easily scaling to billions memory accesses. We provide an open

source release of PLA1.

2. We compare PLA against other kernel race testing systems on a benchmark seed corpus and

show it finds more than 3× as many races in a 24 hour period.

3. We use PLA to find 183 races in the kernel, including 102 harmful races with security im-

plications, one of which in the kernel networking cryptography has remained undetected for

nearly 10 years and has been designated a high severity CVE.

4. Finally, we derive rigorous error bounds on false postive rates for PLA’s probabilistic race

predictions, and show empirically PLA’s trace sampling is able to predict memory accesses

with high accuracy.

1www.github.com/gryan11/PLA
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static int global_handle = 0;

void nf_newtable(struct net *net)
{

mutex_lock(net->mutex);
table = nft_lookup(net);
...

table->h = ++global_handle;
...

mutex_unlock(net->mutex);
}

(a) Function with racing global variable
update.

thread 1:                       

-------------------------------  

sock_sendmsg(sock=sock1) 

  ... 

  nf_newtable(net=net1) 

    mutex_lock(net1->mutex) 

    table1 = nft_lookup(net1) 

    table1->h =  ++global_handle     thread 2:

                                     -------------------------

                                                                                          sock_sendmsg(sock=sock2)
                                        ...

                                        nf_newtable(net=net2) 
                                          mutex_lock(net2->mutex) 
                                          table2 = nft_lookup(net2) 
                                          table2->h = ++global_handle

(b) Execution schedule with racing memory accesses on handle.

Figure 2.1: Simplified example of race found by PLA in net/netfilters/. The race occurs on the
global variable global_handle shown in 2.1a, which can be concurrently modified by multiple threads
when passed different net structs (which each have different per-thread net->mutex). 2.1b shows an
execution schedule and the associated pair of unsynchronized memory accesses used to identify the race.

r0 = socket$nl_netfilter(0x10, 0x3, 0xc)
sendmsg$NFT_BATCH(r0, &(0x7f0180)=

{0x0, 0x0, @NFT_MSG_NEWTABLE={0x20, 0x0, 0xa, 0x801})

Figure 2.2: Simplified kernel fuzzer seed used to trigger the race shown in Figure 2.1. The seed opens a
socket and then sends a message that executes the nf_newtable function.

2.2 Background

In this section we first formulate the problem of race prediction on the kernel and discuss its

challenges. We then describe current approaches to race prediction used on the kernel and their

limitations.

2.2.1 Problem Definition

We use the standard definition of a data race: two memory accesses to the same address can

be scheduled on different threads to happen concurrently, and at least one of the accesses is a

write [30]. Figure 2.1 shows the unsynchronized access pair and schedule for a race found by PLA

in net/netfilters. The race occurs on a global variable handle highlighted in 2.1a that

is guarded by mutex in a net struct. The memory access pair and their respective system calls

are shown in 2.1b, along with an execution schedule that will cause the two memory accesses two

race. Since the function can be called concurrently with two different net structs (and therefore,

two different mutexes), the global handle variable can be concurrently updated by two different
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threads, causing the netfilter table handles to be inconsistent (e.g., two table may receive the same

handle value).

Racing Schedules. In order for a race to occur, there must be a execution schedule that performs

a pair of accesses to the same memory address concurrently – lack of synchronization between

accesses is a necessary but not sufficient condition for a data race. Even when there is no explicit

synchronization between two shared memory accesses, inter-thread communications can make

data races infeasible. This can cause kernel race prediction approaches that do not explicitly reason

about schedules (e.g., by only checking for aliased memory accesses) to make large numbers of

false positive race predictions.

For example, the two methods shown in Figure 2.3 demonstrate a common lockless message

passing pattern in the kernel (memory barriers have been omitted for clarity). In lockless message

passing, a struct (in this case msg1) is first populated with relevant data and then a pointer to the

struct sent to another thread via a shared pointer (in this case msg). Although thread 1 and thread 2

both access the same aliased data field without synchronization, thread 2 cannot access the data

field unless thread 1 has already written the struct address to the shared pointer msg. This makes

any execution schedule that attempts to perform the thread 1 data write and thread 2 data read

concurrently infeasible.

In contrast, the accesses to shared pointer msg can race in Figure 2.3, but this is expected and

allowed during kernel message passing and the READ_ONCE and WRITE_ONCE macros indicate

the two accesses are allowed to race.

Kernel Fuzzer Seeds. In practice, kernel concurrency testing systems typically operate on cor-

puses of kernel fuzzer seeds, each of which is composed of a sequence of system calls which

operate on hardcoded parameter values and return values or pointers passed to previous system

calls. Figure 2.2 shows an example syzkaller fuzzer seed that triggers the race shown in Figure

2.1. Kernel concurreny testing systems generate corpuses of kernel fuzzer seeds by either running

a single threaded fuzzer and maximizing branch coverage [17, 7], or using concurrency specific

coverage metrics [9, 18].
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t h r e a d 1 : t h r e a d 2 :
−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−

1
2 msg1−> d a t a = d a t a 1 ;
3 WRITE_ONCE( msg , msg1 ) ;
4 / / −−−−−−−−−−− happens b e f or e −−−−−−−−−−−−−−−
5 msg2 = READ_ONCE( msg ) ;
6 d a t a 2 = msg2−> d a t a ;

Figure 2.3: Lockless message passing pattern commonly used in kernel. Thread 1 and thread 2 can both
access the same aliased data field, but the pointer exchange from line 3 to line 5 imposes a happens-before
relation between the two memory accesses on lines 2 and 6. Therefore, there is no execution schedule where
the accesses can race. Alias analysis will generate a false positive race prediction on these accesses, but a
dynamic race predictor using happens-before analysis will correctly identify there is no race.

Problem Formulation. Based on the common usage of kernel fuzzer seeds in concurrency testing,

we define the whole corpus race testing problem as following: given a corpus of kernel fuzzer

seeds, identify data races in the corpus, where each data race comprises (1) two unsynchronized

accesses to the same memory address, (2) two (or more) fuzzer seeds that perform the predicted

accesses when executed concurrently, and (3) an execution schedule that executes both accesses

concurrently.

Challenges. Kernel race testing has two properties that make it extremely challenging:

1. Exponential search space. For any given corpus size and bounded execution length, there is

an exponential number of possible seed combinations and execution schedules that can po-

tentially expose races. For 𝑘 seeds executing 𝑛 instructions, each instruction in the schedule

is selected from one of the 𝑘 seeds, so there are 𝑂 (𝑘𝑛) possible schedules. Moreover, for a

corpus P, there are
( |P|
𝑘

)
possible seed combinations.

2. Unpredictable execution behavior. Kernel seeds will follow different execution paths and

perform different memory accesses on each execution due to changing background pro-

cesses and environment, even when executed from a fixed image, so any analysis based on

independently observed execution traces will be highly error prone.

13



2.2.2 Kernel Race Prediction Approaches

Recent kernel concurrency testing systems use two types of analysis to identify races, however,

both approaches miss many kernel races due to the two challenges in kernel race prediction:

1. Dynamic race prediction makes predictions based on observed concurrent execution traces.

It is precise (no false positives), but cannot efficiently search the exponential space of seed

combinations and execution schedules for races.

2. Alias analysis efficiently makes predictions between independently observed traces that con-

tain accesses to common memory addresses, but makes overwhelming numbers of false

positive predictions due to the unpredictable kernel execution behavior and not checking if

aliases are synchronized (e.g., covered by a common lock).

We discuss the tradeoffs made by these approaches here and provide precise definitions in Appen-

dices A.1 and A.2.

Dynamic Race Prediction. Dynamic race prediction used in kernel testing typically combines

happens-before analysis, which reasons about ordering dependencies such as the message passing

shown in Figure 2.3 to avoid false positive predictions, with lockset analysis, which identifies lock-

ing violations such as the non-overlapping mutexes bug shown in Figure 2.1. When used together,

hybrid happens-before lockset analysis can make precise race predictions (no false positives), but

can only reason about one concurrent trace at a time, because the happens-before ordering used in

the analysis is derived from the observed trace. In practice this means testing systems based on dy-

namic race prediction will miss many races because they must search directly over the exponential

space of seed combinations and execution schedules (See Section 2.5.2).

Alias Analysis. In contrast, alias analysis does not directly search over seed combinations and

schedules, but independently checks for accesses to the same memory address either statically [17]

or dynamically [7]. This avoids the scalability issues of dynamic race prediction, but causes ex-

tremely high false positive rates. These false positives occur because either the aliases are spurious

(two observed accesses appear to access the same memory address but cannot do so concurrently,
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Figure 2.4: PLA’s workflow. PLA collects traces independently from each seed in the corpus to identify
its stable set of memory accesses. It then groups all memory accesses first by memory address and then by
unique locksets, and performs pairwise intersections on the aggregated locksets. This procedure is linear in
both the number of corpus seeds and individual memory accesses in the traces, allowing it to scale to large
corpuses and traces.

see Figure 2.3), or the aliases are synchronized (e.g., mutually locked). Therefore, testing systems

using alias analysis will miss many races because they will waste most of their test executions on

false positive race predictions (see Section 2.5.2).

2.3 Methodology

In this thesis, we introduce Probabilistic Lockset Analysis (PLA), a new approach to kernel

race prediction for the kernel that incorporates the advantages of both dynamic race prediction

and alias analysis while avoiding their shortcomings. Like alias analysis, PLA makes predictions

across independently observed traces, allowing it to scale linearly in the number of corpus seeds

and memory accesses. However, like dynamic race prediction, PLA makes accurate predictions by

taking kernel synchronization and schedule dependencies into account when making predictions.

2.3.1 PLA Overview

PLA’s design is based on three observations about the memory accesses performed by sys-

tem calls. (1) System calls must make certain memory accesses to shared memory to perform their

intended function. These memory accesses form a stable set that will be performed with high prob-

ability, regardless of any concurrently executing syscalls and how they are scheduled. (2) Memory
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accesses in the stable set must guarded by mutual exclusion (i.e., locks) or allowed to race, since

multiple system calls can perform them concurrently. (3) Locking interactions in the kernel are

sparse, so the number of unique locksets for a common kernel memory address will almost always

be small (we confirm this empirically in Section 2.5.6).

PLA leverages these three observations to perform precise race predictions between indepen-

dently observed traces. Since memory accesses in the stable set are performed with high prob-

ability for any concurrent schedule, it can make accurate race predictions between stable set ac-

cesses without first executing the seeds together to apply happens-before analysis. Since memory

accesses in the stable set must be guarded with mutual exclusion, PLA is able to check synchro-

nization based on commonly held locks. Finally, PLA exploits the sparsity of kernel locking by

performing precise pairwise lockset analysis on the distinct locksets associated with each memory

address.

PLA Workflow. Figure 2.4 provides a high level summary of PLA’s workflow. PLA first executes

each seed in the corpus concurrently with other randomly selected seeds and schedules. It then

identifies high probability memory accesses (the stable set) in each set of seed traces and aggregates

them based on common memory addresses. Each set of stable memory accesses is then grouped by

their locksets, and potentially racing access pairs are identified with pairwise lockset analysis and

prioritized based on their joint probability. For each race prediction, PLA generates a hypothesis

execution schedule that can be executed to check for feasibility. We formally describe PLA’s

analysis below.

PLA vs. Lockset Analysis. Lockset analysis can suffer from very high false positive rates, so it is

usually applied as a hybrid race predictor with happens-before analysis. However, happens-before

analysis must observe a concurrent execution trace between two threads to derive happens-before

constraints, so it requires at least 𝑂 (𝑛2) executions to test each pair of seeds in a size 𝑛 corpus (Sec-

tion 2.2.2). In contrast, PLA is able to make precise race predictions between two threads without

observing their communications by representing each memory access with a random variable and

estimating the probability that two memory accesses can be performed concurrently. Since each
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Hybrid Dynamic Race Prediction on Corpus: Probabilistic Race Prediction on Corpus:

Figure 2.5: High level comparison of PLA to hybrid race prediction running on a corpus P of 𝑛 seeds. The
happens-before check on two accesses HB(𝛼𝑖 , 𝛼 𝑗 , 𝑇) used in hybrid race prediction requires a trace 𝑇 , so
each pair of seeds must be checked individually, requiring 𝑂 (𝑛2) traces to check combinations of 2 threads.
In contrast, PLA estimates the probability of races based on random indicator variables for each access 𝐴𝛼,
which can be independently estimated for each seed from 𝑂 (𝑛) sampled traces T. See Section 2.3.2 for
precise definitions of traces, 𝛼, and 𝐴𝛼.

random variable is estimated by independently sampling traces from each input, this only requires

𝑂 (𝑛) traces for 𝑛 seeds. Figure 2.5 illustrates the difference between PLA and hybrid race predic-

tion when run a corpus of fuzzer seeds.

2.3.2 PLA Definitions and Error Bounds

Tuple Notation. We make extensive use of tuples and denote named elements of a tuple with dot

notation. For a tuple 𝑥 = (𝑎, 𝑏), we refer to element 𝑎 as 𝑥.𝑎.

Fuzzer Seeds and Corpus. We refer to a kernel fuzzer seed as 𝑝 where each seed is drawn from

a corpus P. PLA’s current implementation uses two seeds at a time, so to simplify notation we

assume PLA is operating on two seeds {𝑝1, 𝑝2} in this section. However, PLA can be used with

any number of concurrent threads.

Access Locksets. When performing probabilistic lockset analysis, we operate on instruction, ad-

dress, lockset tuples called access-locksets, denoted 𝛼. Each access-lockset is uniquely identified

by its executing seed 𝑝, instruction pointer 𝑖𝑝, memory address 𝑚, operation type 𝑜𝑝 ∈ {𝑟, 𝑤},
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and the set of held locks when they executed:

𝛼 = (𝑝, 𝑖𝑝, 𝑚, 𝑜𝑝, 𝑙𝑜𝑐𝑘𝑠𝑒𝑡)

Two seeds, 𝑝1 and 𝑝2, can be executed concurrently according to a schedule 𝑠 to obtain the set

of access-locksets that appear in its execution trace.

trace(𝑝1, 𝑝2, 𝑠) = {𝛼1, 𝛼2, ...}

We describe the procedure for constructing access-locksets from traces in Section 2.3.3. For the

remainder of the section, we refer to access-locksets simply as accesses or memory accesses.

Probabilistic Access-Locksets. The memory accesses that are performed by a given seed 𝑝 will

vary depending on the concurrent seed, execution schedule 𝑠, and any changes to the kernel envi-

ronment (e.g., background processes).

Therefore, we represent the occurrence of 𝛼 in an execution trace of 𝑝 with indicator random

variable 𝐴𝛼:

𝐴𝛼 =


1 if 𝛼 ∈ trace(𝑝1, 𝑝2, 𝑠)

0 otherwise
(2.1)

We can estimate the likelihood of a seed performing a particular access-lockset (i.e., 𝐴𝛼 = 1)

by executing it concurrently with other seeds and schedules. This can be thought of as drawing

independent samples of the random variable 𝐴𝛼, where each execution produces a sample 𝐴
(𝑖)
𝛼 .

When sampling we assume each random variable is independent of the other variables. This allows

us to estimate probabilities efficiently:

P [𝐴𝛼 = 1 | 𝑝1 = 𝑝] ≈ 1
𝑁

𝑁∑︁
𝑖

𝐴(𝑖)
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where 𝑁 is the number of samples, and 𝑝1 = 𝑝 denotes that we fix the first seed in trace(𝑝1, 𝑝2, 𝑠)

to 𝑝, and 𝑝2 and 𝑠 are uniformly sampled from a corpus and set of schedules respectively.

Stable Set. We define the stable set of a seed 𝑝 with regard to a stability threshold 𝛽 as the set of

accesses S where:

S =
{
𝛼 : P[𝐴𝛼 = 1|𝑝1 = 𝑝] > 𝛽

}
We evaluate settings of 𝛽 in Section 2.5.5 and find that in practice setting 𝛽 to 0.5 achieves accurate

race predictions. Since 𝛽 determines the set of potential memory accesses and races we consider

for testing, if more compute resources are available, 𝛽 can be lowered to increase the size of the

stable set and potentially find more races, at a cost of lower prediction accuracy and more false

positive predictions that need to be tested. Similarly, if compute resources are limited, 𝛽 can be

increased to reduce the size of the stable set and prioritize race predictions that are more accurate

to test first.

Making predictions on the stable set drastically reduces the cost of PLA’s analysis and makes

it more accurate, since any pair of stable accesses are likely to have a feasible concurrent schedule

(see evaluation in Section 2.5.3).

Probabilistic Races. Given two accesses 𝛼1 and 𝛼2 to a common address, we consider two mem-

ory accesses as probabilistically racing with stability threshold 𝛽 if the following condition is met:

𝛼1.𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ∩ 𝛼2.𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = ∅ ∧ 𝛼1, 𝛼2 ∈ S (2.2)

Witness Schedule. Given two accesses 𝛼1 and 𝛼2 that satisfy Eq. 2.2 and their respective seeds

𝑝1 and 𝑝2, PLA generates a witness schedule 𝑠 that will execute the two accesses concurrently

with high probability. Since 𝛼1 and 𝛼2 are estimated to be executed with high probability for

any schedule, PLA generates a schedule in which 𝛼1 and 𝛼2 execute concurrently by ordering

instructions from 𝑝1 up to 𝛼1 first, followed by instructions from 𝑝2 up to 𝛼2.

Race Predictions. A full race prediction is composed of two racing accesses, their respective
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seeds, and the witness schedule to trigger the race:

PLA-race-prediction := (𝛼1, 𝛼2, 𝑝1, 𝑝2, 𝑠) (2.3)

PLA’s predictions can be quickly checked by executing 𝑝1 and 𝑝2 according to the witness

schedule. If the schedule is feasible, then the prediction is confirmed as a race and the witness

schedule can be used for reproduction and future testing.

Error Bounds. We derive the following error bounds on false positives and false negatives based

on a threshold 𝛽. The bound on false positives is stated as follows:

Theorem 1. For a threshold 𝛽, relative error bound 0 < 𝛿 < 1, and two access locksets 𝛼1 and

𝛼2 with non-intersecting locksets and random variables 𝐴𝛼1 and 𝐴𝛼2 sampled 𝑁 times such that

𝛼1, 𝛼2, 𝛽 satisfy Eq. 2.2 and P
[
𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1

]
≥ 𝛽, then with probability 𝑒−𝛿

2𝑁𝛽/(2−𝛿) , the

probability of a false positive is bounded by:

P[𝐴𝛼1 = 0 ∪ 𝐴𝛼2 = 0] < 1 − 𝛽(1 + 𝛿)

See Appendix A.3 for proof.

The bound on false negatives is similarly constructed:

Theorem 2. For a threshold 𝛽, relative error bound 0 < 𝛿 < 1, and two access locksets 𝛼1 and 𝛼2

with non-intersecting locksets and random variables 𝐴𝛼1 and 𝐴𝛼2 sampled 𝑁 times such that 𝛼1

and 𝛼2 do not satisfy equation 2.2 and P
[
𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1

]
< 𝛽, then with probability 𝑒−𝛿

2𝑁𝛽/2,

the probability of a false negative is bounded by:

P[𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1] < 𝛽(1 − 𝛿)

See Appendix A.4 for proof.
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In both cases, the probability of an error decreases exponentially with the number of samples

collected. This means that probabilistic locksets can arrive at precise estimates of the probability

of races with relatively few samples, and we find that in practice only four samples are needed to

achieve accurate predictions of access locksets (Section 2.5.5).

2.3.3 PLA: Algorithm Design

We perform PLA in three stages: 1. access lockset probability estimation, 2. probabilistic lockset

analysis, 3. coverage guided race checking.

Design Optimizations. We apply three optimizations in the design of PLA that allow it to scale

to large corpuses: (1) We apply the probabilistic race prediction threshold 𝛽 to access locksets

immediately after sampling each input before further analysis. (2) We perform an initial coarse

grained linear lockset analysis pass before applying pairwise lockset analysis. (3) We select race

predictions to test that maximize the overall coverage of tested instructions while minimizing the

number of required tests. We evaluate the impact of these optimizations in Section 2.5.4 and show

that ablating any one of them prevents PLA from scaling effectively.

Probability Estimation

We use the following procedure to estimate access lockset probabilities for each seed in the

corpus. First, we collect a set of concurrent execution traces for each seed 𝑝 executed with ran-

domly selected concurrent seed 𝑝′. For each 𝑝′, we concurrently execute and trace 𝑝 and 𝑝′ with

two schedules, one where 𝑝 starts first, and on where 𝑝′ starts first. For each sample we count if

an access lockset is present in the trace but do not count the number of occurrences, which would

bias the probability estimate towards frequently executed memory accesses. Algorithm 1 describes

the sample collection procedure. This sampling procedure is not strictly uniform over the space of

possible schedules, but in practice still precisely estimates stable access locksets (see evaluation in

Section 2.5.5).

For each access lockset 𝛼, we estimate the probability P [𝐴𝛼 = 1 | 𝑝1 = 𝑝] based on the exe-
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Algorithm 1 Access Lockset Construction.
Input: 𝑝1 ← Seed 1

𝑝2 ← Seed 2
𝑠 ← Schedule

1: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 = {}
2: ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠 = {}
3: for 𝑡 ∈ trace(𝑝1, 𝑝2, 𝑠) do
4: if 𝑖𝑠_𝑙𝑜𝑐𝑘_𝑎𝑐𝑞𝑢𝑖𝑟𝑒(𝑡) then
5: ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠 = ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠 ∪ {𝑡.𝑙𝑜𝑐𝑘_𝑎𝑑𝑑𝑟}
6: if 𝑖𝑠_𝑙𝑜𝑐𝑘_𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑡) then
7: ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠 = ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠\𝑡.𝑙𝑜𝑐𝑘_𝑎𝑑𝑑𝑟
8: if 𝑖𝑠_𝑚𝑒𝑚𝑜𝑟𝑦_𝑎𝑐𝑐𝑒𝑠𝑠(𝑡) then
9: 𝛼 = (𝑡.𝑖𝑝, 𝑡.𝑚, 𝑡.𝑜𝑝, ℎ𝑒𝑙𝑑_𝑙𝑜𝑐𝑘𝑠)

10: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 ∪ 𝛼

11: return 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

cution trace access sets. We then filter the access locksets based on the race prediction threshold

𝛽. Algorithm 2 describes the overall procedure for probability estimation.

Whole Corpus PLA

Algorithm 3 describes the overall procedure for PLA. First, probability estimation is performed

on the seeds in the test corpus and high probability access locksets are aggregated by memory

address in the mapM. Then, PLA is applied to the access locksets for each memory address inM.

The lockset analysis is applied in two stages. First, a single linear pass computes the intersec-

tion of all locksets associated with a given memory address. If the intersection in empty, indicating

the possibility of a race, a precise pairwise check of each unique lockset associated with the mem-

ory address determines which pairs of locksets have null intersections. If a pair of locksets have a

null intersection, the set of memory accesses associated with each lockset is checked for possible

races.

Race Checking

When checking a predicted race, we hypothesize a witness schedule that schedules the first

input seed up to the first memory access in the race, and then preempts and schedules the second
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Algorithm 2 Access Lockset Probability Estimation.
Input: 𝑝← Seed

P← Seed Corpus
𝑁 ← Seed Sample Count
𝛽← Race Prediction Threshold

1: M𝑝 = hashmap(default = ∅)
2: 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠 = hashmap(default = 0)
3: for 𝑖 ∈ {1..𝑁/2} do
4: 𝑝′ = choose_random(P)
5: for 𝑠 ∈ {𝑝_ 𝑓 𝑖𝑟𝑠𝑡, 𝑝′_ 𝑓 𝑖𝑟𝑠𝑡} do
6: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 = sample(𝑝, 𝑝′, 𝑠) ⊲ see Algorithm 1
7: for 𝛼 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 do
8: 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠[𝛼] += 1
9:

10: for 𝛼 ∈ 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠 do
11: if 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡𝑠[𝛼]/(𝑁) ≥ 𝛽 then
12: M𝑝 [𝛼.𝑚] = M𝑝 [𝛼.𝑚] ∪ {𝛼}
13: returnM𝑝

selected input to cover all memory accesses predicted to race with the first preempted memory

access from the first input.

In order to check for races efficiently, we minimize the number of individual race checks that

need to be performed and maximize the number of previously untested instructions covered by

each requested race check (e.g., only 2 pairwise checks are necessary to confirm 4 racing memory

accesses, even though there are 4 possible pairs). Given the set of all possible race predictions R,

we select a subset 𝑅 on which to run race validation based on the following optimization:

𝑅 = arg max
𝑅
|𝑐𝑜𝑣𝑒𝑟 (𝑅) |min |𝑅 | : 𝑅 ⊆ R

where 𝑐𝑜𝑣𝑒𝑟 denotes the set of instruction addresses in 𝑅. In practice we build 𝑅 directly during

analysis and avoid the cost of enumerating possible predicted race in R.

When two sets of conflicting memory accesses with non-intersecting locksets are identified,

we take each write access and select a second input to test that will execute as many conflicting

accesses as possible with high probability (where at least one of the predicted race probabilities
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Algorithm 3 Whole Corpus PLA.
Input: P← Seed Corpus

𝑁 ← Seed Sample Count
𝛽← Race Prediction Threshold

1: M = hashmap(default = ∅)
2: for 𝑝 ∈ P do
3: M𝑝 = probability_estimation(𝑝, P, 𝑁, 𝛽) ⊲ see Algorithm 2
4: for 𝑚 ∈ M𝑝 do
5: M[𝑚] = M[𝑚] ∪M𝑝 [𝑚]
6:
7: 𝐶𝑎𝑙𝑙 = {}
8: 𝑅𝑎𝑙𝑙 = {}
9: for 𝑚 ∈ M do

10: if ∅ ≠
⋂

𝛼∈M[𝑚] 𝛼.𝑙𝑜𝑐𝑘𝑠𝑒𝑡 then
11: Continue
12:
13: 𝐶𝑚 =

( ⋃
𝛼∈M[𝑚] 𝛼.𝑖𝑝

)
\𝐶𝑎𝑙𝑙

14: if 𝐶𝑚 == ∅ then
15: Continue
16:
17: L = hashmap(default = ∅)
18: for 𝛼 ∈ M[𝑚] do
19: L[𝛼.𝑙𝑜𝑐𝑘𝑠𝑒𝑡] = L[𝛼.𝑙𝑜𝑐𝑘𝑠𝑒𝑡] ∪ {𝛼}
20:
21: for each unique 𝑙𝑜𝑐𝑘𝑠𝑒𝑡1, 𝑙𝑜𝑐𝑘𝑠𝑒𝑡2 ∈ L do
22: if 𝑙𝑜𝑐𝑘𝑠𝑒𝑡1 ∩ 𝑙𝑜𝑐𝑘𝑠𝑒𝑡2 = ∅ then
23: 𝑎𝑐𝑐𝑠1, 𝑎𝑐𝑐𝑠2 = L[𝑙𝑜𝑐𝑘𝑠𝑒𝑡1],L[𝑙𝑜𝑐𝑘𝑠𝑒𝑡2]
24: 𝑅𝑛𝑒𝑤1, 𝐶𝑛𝑒𝑤1 = select_races(𝑎𝑐𝑐𝑠1, 𝑎𝑐𝑐𝑠2, 𝐶𝑚)
25: 𝑅𝑛𝑒𝑤2, 𝐶𝑛𝑒𝑤2 = select_races(𝑎𝑐𝑐𝑠2, 𝑎𝑐𝑐𝑠1, 𝐶𝑚)
26: ⊲ see Algorithm 4
27: 𝐶𝑎𝑙𝑙 = 𝐶𝑎𝑙𝑙 ∪ 𝐶𝑛𝑒𝑤1 ∪ 𝐶𝑛𝑒𝑤2
28: 𝑅𝑎𝑙𝑙 = 𝑅𝑎𝑙𝑙 ∪ 𝑅𝑛𝑒𝑤1 ∪ 𝑅𝑛𝑒𝑤2
29: if 𝐶𝑚 ⊆ 𝐶𝑎𝑙𝑙 then
30: break
31:
32: return 𝑅𝑎𝑙𝑙
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Algorithm 4 Race Selection.
Input: 𝑎𝑐𝑐𝑠1←Memory accesses predicted to race with 𝑎𝑐𝑐𝑠2

𝑎𝑐𝑐𝑠2←Memory accesses predicted to race with 𝑎𝑐𝑐𝑠1
𝐶𝑚 ←Max possible cover for address 𝑚
𝛽← Race Prediction Threshold

1: 𝑝𝑟𝑜𝑔_𝑖𝑝𝑠 = hashmap(default = ∅)
2: for 𝛼 ∈ 𝑎𝑐𝑐𝑠2 do
3: 𝑝 = 𝛼.𝑝

4: 𝑝𝑟𝑜𝑔_𝑖𝑝𝑠[𝑝] = 𝑝𝑟𝑜𝑔_𝑖𝑝𝑠[𝑝] ∪ {𝛼.𝑖𝑝}
5:
6: 𝐶𝑛𝑒𝑤, 𝑅𝑛𝑒𝑤 = {}, {}
7: for 𝛼 ∈ 𝑎𝑐𝑐𝑠1 do
8: if 𝛼.𝑜𝑝 == 𝑤 then
9: 𝑝1 = 𝛼.𝑝

10: 𝑃2 = all unique 𝛼2.𝑝 : 𝛼2 ∈ 𝑎𝑐𝑐𝑠2
11: while 𝑇𝑟𝑢𝑒 do
12: 𝑝2 = arg max𝑝2∈𝑃2

(�� 𝑝𝑟𝑜𝑔_𝑖𝑝𝑠[𝑝2] \𝐶𝑛𝑒𝑤

��)
13: 𝑃2 = 𝑃2\𝑝2
14: if max P[𝛼 ∩ 𝛼2] : 𝛼2.𝑝 = 𝑝2 then
15: Break
16: 𝐶𝑢𝑝𝑑 = 𝑝𝑟𝑜𝑔_𝑖𝑝𝑠[𝑝2] ∪ 𝛼.𝑖𝑝

17: if |𝐶𝑢𝑝𝑑\𝐶𝑛𝑒𝑤 | > 0 then
18: 𝑟 = (𝑝1, 𝑝2, 𝛼.𝑖𝑝, 𝛼.𝑚)
19: 𝑅𝑛𝑒𝑤 = 𝑅𝑛𝑒𝑤 ∪ {𝑟}
20: 𝐶𝑛𝑒𝑤 = 𝐶𝑛𝑒𝑤 ∪ 𝐶𝑢𝑝𝑑

21: if 𝐶𝑛𝑒𝑤 == 𝐶𝑚𝑎𝑥 then
22: break
23:
24: return 𝑅𝑛𝑒𝑤, 𝐶𝑛𝑒𝑤
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must exceed 𝛽). Algorithm 4 describes this procedure.

2.4 Implementation

We implement PLA in three main components: tracing and probability estimation, lockset

analysis and race prediction, and watchpoint-based race checking.

Tracing. We perform tracing using the kernel event ring buffer and modify the kernel concurrency

sanitizer (kcsan) [31] to record all memory accesses that it would normally check for races using

watchpoints. We additionally record all lock events using the kernel’s built in lock tracing. We base

our tracing implementation on kcsan because it incorporates rules to ignore memory accesses

that are marked with allowed-to-race macros such as READ_ONCE or WRITE_ONCE. Racing is

allowed for many kernel memory accesses, so ignoring these accesses greatly reduces overhead

and prevents predicting races that are benign [32].

When tracing we use a modified syzkaller [33] executor that incorporates a barrier after initial-

ization to execute multiple seeds concurrently. We perform tracing on two isolated CPUs, where

each executor process is pinned to a distinct CPU, and use a QEMU 6.2.0 VM (although any VM

system could be used). When collecting a trace, we first refresh the VM to a fixed snapshot.

Probability Estimation. Access lockset probability estimation is performed at the same time as

tracing. The traces from each seed are temporally stored in memory and then immediately used

to estimate the probabilities of its access locksets. Since traces are much larger than the set of

high probability locksets, not writing them to disk greatly reduces overhead. High probability

access locksets are then grouped by memory address and gathered from all sampled inputs. This

procedure follows a map-reduce paradigm, where tracing and sampling is mapped to each input

and results are reduced into a common database of access locksets indexed by memory address.

Analysis and Race Prediction. Analysis and race prediction are performed in two parallel stages.

First, the linear lockset analysis pass identifies memory addresses that contain racing addresses.

These racing memory addresses are then grouped based on possible coverage (i.e., the set of in-

struction addresses of the accesses to the memory address). Pairwise lockset analysis and coverage
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guided race selection is then applied to the access locksets in each group of racing memory ad-

dresses. Splitting the analysis into two stages and grouping by coverage allows us to perform each

analysis in a fully parallel manner, while still minimizing the number of individual race predictions

that need to be checked for full instruction coverage.

When checking pairwise lockset intersections, we set maximum unique locksets threshold,

and sample a subset of the access locksets used in analysis when the number of unique locksets

exceeds the threshold. In evaluation we set the unique locksets threshold to 1000, which we found

takes approximately 2.3 seconds to process. We found that memory addresses with more than

1000 unique locksets in their memory accesses are extremely rare, with only 14 observed out of

thousands of racing memory addresses seen in our evaluation (Section 2.5.6).

Race Validation. We confirm predicted races by executing the generated witness schedule and

obtain stack traces for the race using preset watchpoints and the same modified syzkaller executor

and CPU configuration used in tracing. Race predictions selected for validation are provided in the

form (𝑝1, 𝑝2, 𝑤_𝑖𝑝, 𝑤_𝑎𝑑𝑑𝑟), where 𝑤_𝑖𝑝 and 𝑤_𝑎𝑑𝑑𝑟 are the watchpoint instruction address and

memory address, and 𝑝1 is expected to execute the watchpoint with high probability.

2.5 Evaluation

We address the following research questions in our evaluation:

1. Security Testing Performance: Is PLA effective at finding kernel data races that are harm-

ful for kernel security?

2. Comparison with other Approaches: How does probabilistic lockset analysis compare to

the race prediction methods used by recent kernel concurrency fuzzers?

3. Probabilistic Analysis and Accuracy: How accurate are PLA’s race predictions, and how

does PLA’s probabilistic analysis compare to standard lockset analysis when run on traces

of a seed corpus?
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4. Design Choices: How do each of the optimizations in PLA’s algorithm design contribute to

its performance?

5. Parameter Choices: How do the settings for 𝛽 and sample rate effect PLA’s performance?

6. Scalability: How well does PLA scale to large numbers of memory accesses and lock

events?

Evaluation Setting. All experiments are performed on an Ubuntu 22.04 server with Ryzen Thread-

ripper 2970WX CPU and 128Gb of memory.

2.5.1 Security Testing Performance

Experimental Setup. We test Linux Kernel v5.18-rc5 and run PLA on a corpus of 129 thousand

syzkaller seeds sourced from [7].

Results. Table 2.1 summarizes the results with full details in Table A.1 in Appendix A.5. PLA

found 52 unique racing variables and 183 unique racing pairs of instructions. As prior work has

counted data races based on either racing variables or racing pairs, we provide both metrics. We

use the number of racing variables based on Krace [9] as well as the number of unique racing pairs

of instructions based on Conzzer [18]. For a concrete example, race ID 48 from Table A.1 involves

a single variable with races detected across 22 unique pairs of memory accesses, so the number of

racing variables is 1 and the number of unique racing pairs of instructions is 22.

We classify the data races as harmful or benign based on approach by Xu et al. [9]. Specifi-

cally, we declare a race as benign if (i) reads and writes to a racing variable involve different bits

or (ii) involve kernel functions where race conditions are acceptable (e.g., random or logging sub-

systems). In total, we found 35 harmful racing variables and 102 harmful racing instruction pairs.

Out of the 35 variables with races, 4 cause memory corruption, 1 leads to information leakage, 1

causes multiple initializations on a data structure, and 29 cause undefined behavior (but with no

confirmed immediate security implications). We disclosed the harmful races to Kernel develop-

ers and so far 56 races over 9 variables have been patched and one CVE with high (7.0) severity
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Table 2.1: Summary of races found by PLA categorized by kernel subsystem. We count data races in terms
of unique pairs of racing instructions as well as unique number of variables. We classify a race as harmful
based on [9]. We provide a full listing of races in Table A.1 in Appendix A.5.

subsystem instruction pairs variables harmful variables

arch/x86 1 1 0
drivers/base 4 1 1
drivers/char 2 1 0
drivers/input 1 1 1
drivers/misc 1 1 1
drivers/net 3 1 1
drivers/pci 4 1 1
drivers/scsi 6 1 0
drivers/tty 21 8 5
fs 2 1 1
kernel 13 5 4
kernel/cgroup 2 1 1
kernel/events 1 1 1
kernel/time 4 1 0
mm 33 7 3
net/core 3 1 1
net/ipv4 8 3 3
net/llc 2 1 0
net/netfilter 2 1 1
net/unix 2 1 1
net/xfrm 50 4 4
security/keys 10 4 2
sound/core 8 5 3

Total 183 52 35

(CVE-2022-3028) has been allocated based on our reports [29].

Case Studies

PLA finds data races in heavily-tested core kernel subsystems. We detail two data races with

security implications below.

Out-of-bounds write in net/xfrm. Figure 2.6 shows how a data race in networking cryptog-

raphy algorithm management can cause an out-of-bounds memory write vulnerability. First, at

(1), thread A allocates a buffer based on the authentication algorithms list length, which is set to
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the number of available algorithms in the list. Next, at (2), a concurrent thread B executes the

xfrm_probe_algs function, which updates the availability of algorithms in the list. However,

the buffer size is not increased, so when thread A continues executing at (3), it writes past the

bounds of the undersized buffer as it populates the buffer with the available authentication algo-

rithms. This results in an out-of-bounds write vulnerability.

The authentication algorithms list buffer is sent over a socket and therefore can be used as an in-

formation leak primitive for kernel heap memory when it is instead oversized during the race (i.e.,

a concurrent thread decreases the number of available authentication algorithms). This vulnerabil-

ity has been present in the Linux Kernel since 2013 (v3.14-rc1). We reported this vulnerability and

it has been patched and allocated a high severity CVE [29].

Use after free in mm. Figure 2.7 shows how a data race in the kernel list of shared memory pages

can cause a use after free vulnerability. First, at (1), thread A inserts a newly added memory page

to the main list of shared memory pages. However, inserting the new page to the list and setting

its flags is not atomic. This allows a concurrent thread B to free the newly added memory page at

(2). When thread A continues executing at (3) and sets the flags of the page, which was already

freed, a use-after-free vulnerability will occur. We have reported this vulnerability and it has been

patched.

Thread A

Thread B

3

1 Thread A

1 void compose_sadb_supported(){ 
2   int auth_len = len(aalgs_list);
3   char *ptr = alloc(auth_len); 1 void xfrm_probe_algs(){

2 for(i=0; i<len(aalgs_list); i++) 
3  {
4   s = crypto_hash(aalgs_list[i]);
5   // increase len(aalgs_list)
6   if(s != aalgs_list[i].avail)
7     aalgs_list[i].avail = s;
8  }
9 }

2

4   for(i=0;i<len(aalgs_list);i++) 
5   {
6     // Out of Bounds
7     ptr[i] = get_aalg(i)->desc;   
8   }
9 } 

Figure 2.6: A harmful data race in the net/xfrm kernel subsystem involving the
aalg_list[i].available variable (ID 48 in Table A.1). The numbers (1), (2), (3) indi-
cate the order of events in the data race that leads to an out-of-bounds write vulnerability.
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Thread B

3

1 Thread A

1 void ksm_enter(mm_struct *mm){ 
2   mm_slot slot = alloc_slot();
3   add_slot_to_mm(mm, slot); 
4   if(ksm_run & KSM_RUN_MERGE) 
5     enqueue(mm_head, slot) 

1 void run_store(){
2 ...
3 // set to UNMERGE
4 ksm_run = flags; 
5 if(ksm & KSM_RUN_UNMERGE){  
6   for(i=0;i<num_mms();i++){
7     if(mm->num_users == 0)
8      free(mm);
9    ...
10 }

2

Thread A

6   // Use After Free 
7   mm->flags = MERGABLE;
8 }

Figure 2.7: A harmful data race in the mm kernel subsystem (ID 14 in Table A.1). This data race leads
to a use-after-free vulnerability.

2.5.2 Comparison with other Approaches

We evaluate PLA against other recent systems that target data race detection in the kernel based

on their ability efficiently find kernel races with a 24 hour time budget.

Evaluated Approaches

We evaluate against three classes of approaches: Coverage guided concurrency fuzzers with

happens-before/lockset dynamic race predictors, alias-analysis-guided race fuzzers, and standard

fuzzers with watchpoints.

1.) Concurrency fuzzers. Concurrency fuzzers combine a concurrency coverage guided fuzzing

with a hybrid happens-before/lockset dynamic race predictor. Krace [9] and Conzzer [18] are two

recent kernel concurrency fuzzers.

Krace is open sourced [34], but the release does not contain any documentation on usage. We

attempted to run krace but encountered errors with missing data files that had been previously

reported in issue #2 on the github repository [35]. We emailed the Krace authors to report the

issue but did not receive a response. Conzzer has a binary-only release available from [36]. We

attempted to run Conzzer but encountered several errors that were not addressed in the provided
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documentation and could not be debugged without access to source code. We emailed the Conzzer

authors to report the issue but did not receive a response.

Since we were unable to run either Krace or Conzzer, we emulate a concurrency fuzzer based on

Krace’s alias coverage, which we refer to as Alias Fuzzer. We base Alias fuzzer on the descriptions

of Krace’s runtimes in [9] and make optimistic assumptions about its performance (i.e., if a race

can be detected for given set of seeds, the fuzzer’s race predictor will always identify it without

errors).

2.) Targeted Race Fuzzers. Targeted race fuzzers select seeds and schedules designed to trig-

ger specific candidate races predicted by alias analysis on a seed corpus. We consider two targeted

race fuzzers, Razzer [17] and Snowboard [7]. Razzer identifies candidate races through static alias

analysis, while Snowboard identifies candidate races dynamically by comparing memory accesses

between traces, and then performs additional concurrency fuzzing. We evaluate Snowboard be-

cause it is more recent (SOSP 2022), incorporates both concurrency fuzzing and targeted race

checking, and supports current 5.x linux kernels (Razzer only supports 4.x linux kernels).

3.) Fuzzing with Watchpoints. We additionally evaluate against Syzkaller [33], a standard ker-

nel fuzzer that performs multithreaded fuzzing, using the kernel concurrency sanitizer (kcsan) [31],

a watchpoint-based data race detector that is deployed for continuous linux kernel testing [37].

Experiment Design

Concurrency testing systems perform two distinct tasks: input generation and concurrency

testing on those inputs. In this evaluation we measure concurrency testing performance and control

for input generation by running all evaluated systems on a fixed benchmark corpus of 10,000 fuzzer

seeds. We run each evaluated system five times for 24hr on the benchmark corpus, and configure

each system to fully utilize the server cpu and memory.

For reported races on all evaluated systems races, we filter to ensure the races occur in the

executing seed processes (kcsan will sometimes detect races in background processes) and are

not allowed by the linux kernel memory model (Snowboard’s race detector can report races that
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are actually allowed in the linux kernel). For PLA and Snowboard, we include the time for trac-

ing and analysis of the corpus in the results. When evaluating Syzkaller, we initialize it to use

the benchmark corpus and disable new seed generation/mutation so that it focuses exclusively on

concurrently executing the seeds in the benchmark.
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Figure 2.8: Evaluation of races found over five 24hr runs on benchmark of 10k minimized seeds. On
average, PLA finds 164 races in total, Snowboard 21, Alias Fuzzer 15, and Syzkaller with Kcsan finds 43.

Results and Discussion

Figure 2.8 shows race finding results for the 24hr run on the 10k seed benchmark. On average,

PLA finds 164 races on the benchmark, Syzkaller finds 43 races, Snowboard finds 21 races, and

Alias Fuzzer finds 15 races.

PLA’s ability to efficiently and accurately search over the entire corpus to predict races is

critical to its good performance on this benchmark. Because it can effectively prioritize high

probability races, it finds many races quickly (over 100 in less than an hour after completing its

analysis) and is able to able to quickly check predictions with a single execution without resorting

to schedule fuzzing.

Snowboard performs analysis on the corpus to identify potential memory communications

(PMCs), but unlike PLA does not have any way to estimate if a communication is feasible or

potentially racy. As a result it must test many more PMCs for each race found. Snowboard also
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performs additional concurrency fuzzing based on each PMC, which allows it to reach new states

and potentially find additional races, but reduces its throughput when testing. We also tried running

Snowboard’s fuzzing stage for a total of 24 hours after it completed its analysis, but in that time it

only found two additional races.

The simulated Alias Fuzzer also only finds 15 races on average in the benchmark, in spite of

the optimistic assumptions we used in its simulation. This result illustrates the intrinsic hardness of

searching a corpus of seed inputs for races using concurrency fuzzing and dynamic race prediction.

In total the simulated fuzzer fuzzed 31,900 three seed combinations (each of which exposed new

alias coverage, requiring the two minute race prediction check) for a total of 95,700 input pairs

searched. However, the total space of possible input pairs for a 10,000 seed corpus is roughly

108/2, more than four orders of magnitude larger. At the rate of the simulated Alias Fuzzer, which

we believe to be an optimistic estimate for running concurrency fuzzing and race prediction based

on the description in [9], so fully fuzzing and running race prediction on all input pairs in the

corpus would take over a year!

Syzkaller with kcsan achieves the next best performance on the benchmark after PLA, al-

though it it has performed poorly in prior evaluations on finding races in filesystems [18] and

finding specific races associated with CVEs [17]. We hypothesize that Syzkaller’s good perfor-

mance on this benchmark is due to initialization with a corpus of high quality seeds. Unlike other

systems in the benchmark, which test 2 or 3 concurrent inputs at a time, Syzkaller runs 8 fuzzing

processes on each vm and checks for races between any of them with kcsan.

2.5.3 Probabilistic Analysis and Accuracy

We evaluate PLA’s accuracy in predicting which observed memory accesses in the traces are

racing and compare it to standard lockset analysis. We evaluate on five randomly sampled bench-

marks of 50 seeds, and evaluate the scaling of each tested approach on subsets of 10 through 50

seeds from each benchmark set. We use relatively small benchmarks for this study (compared

to 10k seed benchmark used in Section 2.5.2) because the extremely high error rates of standard
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Table 2.2: Comparison of PLA with standard lockset analysis (Lockset) for accuracy predicting which
observed memory accesses are racing, analysis runtime, and number of tested predictions per race found
(Tests/Race) on benchmarks of 10 to 50 seeds. Because accuracy is evaluated per-access but race predic-
tions are made on pairs of accesses, lockset analysis’s much lower accuracy leads to millions of erroneous
predictions. Each race found on the 50 seed benchmarks with lockset analysis requires approximately 6
days of checking predictions in our evaluation setting, compared to roughly 10 seconds for PLA.

# Seeds in Benchmark
Metric Approach 10 20 30 40 50

Accuracy
PLA 0.997 0.992 0.990 0.989 0.989

Lockset 0.711 0.595 0.561 0.542 0.512

Runtime(s)
PLA 0.7 2.3 4.3 6.8 10.0

Lockset 28.9 98.9 185.6 321.6 481.8

Tests/Race
PLA 1.5 2.9 3.0 3.9 4.2

Lockset 8.1e+04 2.7e+05 5.1e+05 8.1e+05 1.2e+06
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Figure 2.9: Impact of ablations on analysis runtime averaged over 5 randomly sampled benchmarks. On
benchmarks of 50 seeds, ablations increase PLA’s runtime between 8.5× and 21× and cause the analysis to
scale superlinearly in the number of seeds.
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lockset analysis make testing it on even small benchmarks prohibitively time consuming.

PLA vs. Lockset Analysis. Table 2.2 shows a comparison of PLA with standard lockset analysis

with averaged results for analysis accuracy, analysis runtime, and test executions required to find

each observed race in the benchmark. The results in Table 2.2 demonstrate how critical PLA’s

probabilistic reasoning is to achieving performance at a scale: when all observed memory accesses

are included in the analysis, a significant proportion appear as spurious aliases that access the same

memory address in some traces with low probability, but cannot race when executed concurrently

with one another. This causes the analysis runtime to increase drastically and severely reduces the

accuracy of the analysis. Since even a small number of seeds perform millions of distinct memory

accesses, this results in over 1.2 million incorrect race predictions on average for each race found

with standard lockset analysis on the 50 seed benchmarks, compared to 4.2 for PLA.

PLA Accuracy on 10k Seed Benchmark. We also evaluate PLA’s accuracy on the 10k seed

benchmark used for the systems comparison evaluation in Section 2.5.2 and find that it runs in 34

minutes, identifies racing instructions with 89.9% accuracy, and requires 12.1 tests on average for

each race observed in the benchmark.

2.5.4 Design Choices

We evaluate three of the design optimizations in PLA with ablations: early probability thresh-

olding, two stage linear and pairwise lockset analysis, and coverage optimization in race checking.

Figure 2.9 shows the average analysis runtime of PLA with each of the ablations on the 5 bench-

mark sets (the ablations do not effect the accuracy of PLA’s race predictions, only runtime). While

removing early thresholding has the largest impact on runtime (21× slower than PLA on 50 seeds

on average), ablating coverage optimization or two stage linear and pairwise lockset analysis also

incurs a significant performance penalty (11× and 8.5× slower on average, respectively). More-

over, each PLA ablation scales superlinearly while PLA’s runtime scaling is linear, so all of PLA’s

design optimizations are critical to achieving scalable runtimes on large real world corpuses of

thousands of seeds.
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Table 2.3: Impact of sample count (𝑁) on accuracy and runtime. For each 𝑁 , the highest f1 accuracy
achieved by varying 𝛽 is shown. Collecting more than 4 samples greatly increases sample collection time
with marginal accuracy improvements, therefore we use 𝑁=4 in all experiments.

Samples Collected (𝑁): 2 4 8 16

F1 Score for Best 𝛽: 0.72 0.87 0.87 0.93
Sample Time/Input: 15s 30s 60s 120s

2.5.5 Impact of Parameter Choices

Parameter Choices. PLA’s performance is governed by two parameters: 𝛽, the threshold at which

access locksets are included in the analysis, and 𝑁 , the number of samples collected for each

input. We evaluated PLA’s accuracy in identifying stable access-locksets while varying the 𝑁 and 𝛽

parameters on the seed benchmarks used in Section 2.5.2. We tested sample counts of 𝑁=2, 4, 8, 16

and varied 𝛽 from 0.0 to 1.0 in increments of 0.1 for 𝑁=8 and 𝑁=16, and increments of 0.5 and

0.25 for 𝑁=2 and 𝑁=4, respectively.

Table 2.3 shows the f1 accuracy for best-performing 𝛽 setting and sample collection time for

each tested 𝑁 . We found that increasing the samples collected beyond 𝑁=4 only achieves marginal

accuracy improvements while significantly increasing sample collection time, therefore we use

𝑁=4 and the associated best 𝛽=0.5 setting for all experiments. See Appendix A.6 for detailed

results.

2.5.6 Scaling

Benchmark Corpus Runtime. We evaluate PLA’s ability to scale to large number’s of memory

accesses based on the corpus of 10k inputs used in Section 2.5.2. As described in Section 2.4, PLA

works in 3 states: tracing and sampling, race prediction analysis, and race checking. Table 2.4

shows a breakdown of the runtimes and input sizes for each stages in PLA’s pipeline. PLA spends

most of its time collecting traces, which is slow due to the large size of traces. Subsequent stages

(memory mapping, linear lockset analysis), are much faster because they operate on fewer inputs.

The numbers in Table 2.4 illustrate that two design optimizations in PLA (Section 2.3.3) are
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Table 2.4: Input sizes and runtimes for PLA on 10k inputs.

Stage Inputs Runtime

Sampling 10 billion trace events 3.5 hr
Memory Mapping 380 million access locksets 19 min
Linear Lockset Analysis 380 million access locksets 12 min
Pairwise Lockset Analysis 3.4 million access locksets 135 sec
Race Prediction Checking Per 140 predictions 60 sec

absolutely critical to its performance: 1.) Applying probability thresholding during initial trace

collection reduces the number of events that must handled by the subsequent, more expensive,

stages of the analysis by a factor of over 100. 2.) Applying coarse grained linear lockset analysis

before running the more precise but expensive pairwise lockset analysis reduces the access locksets

that must be processed by pairwise lockset analysis by another factor of 100. Without these two

optimizations, running PLA on the same corpus would take at least six days instead of four hours.

Pairwise Lockset Analysis Scaling. Since pairwise lockset analysis has a quadratic term for the

number of unique locksets on a single address, we also investigate the runtime of PLA relative

to locksets and the distribution of unique locksets in the test corpus. For 1000 unique locksets,

pairwise lockset analysis takes 2.3 seconds, but over 200 seconds for 10000 unique locksets, as

shown in Figure 2.10a. Therefore, when the access locksets for a single address have more than

1000 unique locksets, we perform pairwise lockset analysis on a sample of the locksets (Section

2.4.

We found that only a very small number of memory addresses with lock violations have more

than 1000 locksets. Figure 2.10b summarizes these results. We found that out of 3511 memory

addresses predicted to be involved in races, only 14 had more than 1000 unique locksets. As has

been noted in prior work [38], harmful data races usually involve rarely accessed memory, and all

of the harmful races we found involved infrequently used memory addresses.
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Figure 2.10: Lockset runtimes and statistics. Sparsity in lock interactions in the kernel means that only a
few distinct locksets are used for the vast majority of shared memory addresses as shown in 2.10b.

2.6 Related Work

Dynamic Race Prediction Dynamic race prediction identifies possible data races based on concur-

rent program execution traces. Happens-before methods reason about partial orders on traces based

on Lamport’s happens-before relation on interthread communications to predict races soundly [14,

39, 40, 26]. Extensive work has focused on developing weakened partial orders that soundly pre-

dict more races from a trace [41, 42, 43, 44, 45, 27], or using SMT reductions, which are sound and

complete with regard to the observed trace but limited in scalability [16, 46, 47, 48, 49]. Lockset

analysis is a form of dynamic race prediction that performs an intersection over all held locks for

each memory access to a given address, and alerts if the intersection is null, but suffers from high

false positive rates [30, 15]. Therefore, many race predictors such as RaceTrack and Goldilocks

combine happens-before and lockset analysis to make precise lockset-based race predictions [50,

51, 28, 52, 53]. These methods are also limited to operating on one concurrent trace a time in order

to infer happens-before ordering constraints, which limits their scalability. In contrast, PLA uses

lockset analysis with probabilistic predictions to make precise race predictions over large corpuses

of independently sampled seed execution traces.

Schedule Exploration. Schedule exploration methods search for races by systematically executing

many different schedules, either by enumerating schedules bounded by a preemption count [20,
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10], sampling a distribution of schedules [11, 12], fuzzing with a concurrency specific coverage

metric [13], or performing targeted exploration of schedules based on static alias analysis [54]

These approaches operate on one fixed concurrent program at a time, while PLA is designed to

identify races between a large corpus of seed programs in the kernel.

Kernel Testing. Many concurrency testing approaches have been applied to the kernel such as

random watchpoints with delays on memory accesses [25] and schedule exploration by sampling

a distribution of schedules [55]. Targeted race fuzzers either static or dynamic alias analysis com-

bined with dynamic tracing to identify possible races between input seeds, which it then combines

for targeted fuzzing of the possible races [17, 7]. Concurrency fuzzers use a concurrency specific

coverage metric to guide schedule fuzzing in conjuction with dynamic race predictors to detect

observed races [9, 18]. PLA differs from existing kernel testing systems in that it performs race

prediction over an entire corpus of seed programs subject to lock synchronization, and uses prob-

abilistic prediction to accurately identify and prioritize races.

2.7 Limitations and Future Work

PLA targets races involving operations that are performed for most concurrent schedules and occur

with high probability, but will ignore schedule-dependent races that only occur for specific sched-

ules, since these will appear with low probability in PLA’s sampling. This trade-off allows PLA

to be both fast and accurate when performing analysis over billions of trace events, but means that

PLA will not find schedule-dependent races, which can still potentially be exploited by attackers.

This naturally begs the question: is it possible to extend PLA to target schedule dependent

races, while retaining the benefits in accuracy and scalability from PLA’s probabilistic approach?

We believe the answer to this question is yes: the probability of a memory access can also be

conditioned on specific partial orderings on the execution schedule (conceptually, a probabilistic

happens-before analysis). However, identifying and sampling relevant partial orders on schedules

is much more challenging, because the space of possible partial orders on the schedule is exponen-

tial. We intend to explore this in future work.
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2.8 Conclusion

We introduce Probabilistic Lockset Analysis (PLA), a form of race prediction analysis specif-

ically designed to address the inherent challenges in predicting races in the kernel. PLA samples

execution traces to estimate the probability of races between seeds in a fuzzer corpus, and can re-

solve predictions with greater precision by taking more samples. We use PLA to find 183 races in

core kernel modules and show in an evaluation of kernel race testing methods that PLA finds races

at more 3× the rate of comparable systems. Although PLA’s design is motivated by and applied to

kernel race prediction, its approach can potentially be applied to testing any system that processes

each input on a separate thread or process. We intend to explore applications of PLA’s approach to

testing other concurrent applications in future work.
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Chapter 3: Spectral Race Prediction with HBFourier

Testing for data races in the Linux OS kernel is challenging because there is an exponentially

large space of system calls and thread interleavings that can potentially lead to concurrent execu-

tions with races. In this work, we introduce a new approach for modeling execution trace feasibility

and apply it to Linux OS Kernel race prediction. To address the fundamental scalability challenge

posed by the exponentially large domain of possible execution traces, we decompose the task of

predicting trace feasibility into independent prediction subtasks encoded as learning Boolean indi-

cator functions, and apply a sparse fourier learning approach to learning each feasibility subtask.

Boolean functions that that are sparse in their fourier domain can be efficiently learned by es-

timating the coefficients of their fourier expansion. Since the feasibility of each memory access

depends on only a few other relevant memory accesses or system calls (e.g., relevant inter-thread

communications), trace feasibility functions have this sparsity property and can be learned effi-

ciently. We use learned trace feasibility functions in conjunction with conservative alias analysis

to implement a kernel race-testing system, HBFourier, that uses sparse fourier learning to effi-

ciently model feasibility when making predictions. we evaluate our approach on a recent Linux

development kernel and show it finds 44 more races with 15.7% more accurate race predictions

than the next best performing system in our evaluation.

3.1 Introduction

Modern operating system (OS) kernels heavily rely on fine-grained concurrency to achieve

optimal performance by utilizing the parallelism of multi-core processors [1]. However, the use

of fine-grained concurrent synchronization can lead to race conditions, which are errors that occur

due to multiple threads accessing shared resources concurrently [2]. In this work, we focus on

42



identifying data races, which are race conditions that occur in shared memory accesses. Data

races in OS kernels can result in difficult-to-diagnose bugs that can cause various issues, such as

crashes, memory corruption, and even security vulnerabilities like information leaks and privilege

escalation attacks [3, 4, 5, 6].

Testing for data races in an OS kernel is a very challenging problem because there is an ex-

ponential space of possible system call combinations and concurrent thread interleavings that can

result in races [7]. To expose a data race, one not only has to identify the correct combination of

system calls to execute concurrently, but also to identify the specific thread interleaving necessary

for those system calls to execute concurrently and lead to racing accesses. This requirement makes

finding data races in the kernel a challenging problem both in theory and practice. From a theo-

retical perspective, race prediction is NP-hard [8], and therefore practical solutions often depend

heavily on different brittle heuristics. Prior work has shown that many data races go undiagnosed

during development and are patched later [9].

Kernel Race Prediction. Concurrent executions in the kernel typically arise from different user-

land processes invoking various sequences of system calls. As a result, most practical kernel race

detection systems use a two-step approach to search the vast system-call/interleaving space for

races. Firstly, they generate a diverse corpus of system calls, known as kernel fuzzer seeds, using a

code coverage-guided kernel fuzzer, such as syzkaller [33]. Secondly, they collect execution traces

for those seed sequences of system calls and predict races based on shared memory accesses in the

traces.

These predictions are usually based on identifying memory accesses that are aliased (i.e., access

common addresses in the traces), and then prioritizing predictions on either aliases that occur

infrequently in the trace set [7], or aliases that have a high estimated probability of being data

races [56]. However, since alias analysis might produce many false positive predictions, each

prediction is verified by executing the associated inputs together and attempting to force a race by

controlling the executed thread interleavings.

Limitations of Prior Work. However, the alias-analysis-based approaches mentioned above used
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syscall1    
-----------
//flag=0
...       
if(!flag){
  flag=1;  
  ptr=&dat1;
...

syscall2    
-----------
//flag=0
...       
if(!flag){
   flag=1;
   ptr=&dat2;
...alias

(a) Traces with aliased accesses.

  syscall1     syscall2
  -----------  ------------
1 if(!flag){   
2   flag=1;
3   ptr=&dat1;
4
5              if(!flag){
6                flag=1;
7                ptr=&dat2;

inter-thread
communication

infeasible

(b) Interleaving 1: Infeasible data
race.

  syscall1     syscall2
  -----------  ------------
1 if(!flag){   
2              if(!flag){
3                flag=1;
4   flag=1;
5   ptr=&dat2;
6                ptr=&dat2;
7            

race

(c) Interleaving 2: Feasible data
race.

Figure 3.1: Example of a predicted race on that is only feasible under specific thread interleavings. Although
the two traced memory accesses both access the same shared variable ptr in 3.1a, a race is infeasible in the
thread interleaving in 3.1b due to an inter-thread communication. The thread executing syscall2 cannot
execute the predicted racing access to ptr on line 7 because the syscall1 thread sets flag=1 before
the if check on line 5. However, if both if checks are executed first as shown in 3.1c, the race on ptr is
still feasible.

for kernel race detection do not consider whether a thread interleaving in which a race occurs is

feasible for the kernel. In practice, inter-thread communications can affect many memory accesses

when different sequences of system calls are executed together, causing them to access different

addresses or not be accessed at all. To illustrate this issue, consider the example shown in Figure

3.1, which demonstrates how inter-thread communications can make certain data races infeasible.

In the example, two system calls perform aliased accesses to a common shared variable ptr

shown in 3.1a. If the two system calls are executed together according to a thread interleaving

shown in 3.1b that causes the accesses to ptr to race, the second racing memory access on line

7 is not executed after the if(!flag) check on line 5 because flag is already set to 1 on line

2. However, the race on ptr is still feasible under a different thread interleaving shown in 3.1c,

in which both if(!flag) checks are performed before either input thread sets flag=1. There-

fore, correctly identifying the race on ptr requires accounting for inter-thread communication

and deriving a feasible racing thread interleaving. Not accounting for inter-thread communications

in prediction causes both false negatives when predicted races cannot be reproduced without a

specific interleaving, as well as false positives when any racing interleaving is infeasible.

Happens-Before & its Limitations. The issue of interleaving feasibility is often tackled in the race

prediction literature using Lamport’s happens-before partial order [14]. Happens-before analysis

determines the feasibility of reorderings of memory accesses in a single observed concurrent trace
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by preserving the order of read-write accesses to shared addresses in the observed trace.

For instance, consider a scenario in which memory access on thread 2 can only occur after a

shared variable has been written to by thread 1 due to an if-check in thread 2 (see Figure 3.1b).

In such a case, a happens-before analysis on the trace shown in Figure 3.1b will correctly detect

the race as infeasible for reorderings for this trace as it will maintain the same order of interthread

communications as the observed trace. However, the race with the same system calls is feasible for

another trace as shown in Figure 3.1c. From a bug detection perspective, what matters is whether

the race is possible for any trace, not just for a single observed trace. A naive solution to address

this issue is to run happens-before on a large number of traces, but this approach will still miss

races because only a small fraction of the exponential number of possible thread interleavings and

system call combinations can be tested for a realistic computational budget.

Our Approach. To address this challenge, in this work, we propose to approximately learn a func-

tion that can predict which execution traces will be feasible in a hypothetical interleaving based

on a decomposition of the executing system calls, operations, and order of events in a trace. We

present a sparse fourier learning that approach efficiently learns decomposed feasiblity functions

from a set of observed traces to estimate their fourier expansions, and then reconstructs a combined

trace feasibility function based on a convolution of the decomposed functions fourier expansions.

We combine this trace feasibility estimation with a conservative alias analysis that identifies po-

tential data races to perform highly accurate data race prediction, although we note there are other

potential uses for trace feasibility estimation (e.g., prioritizing bug warnings for manual inspec-

tion.)

We model trace feasibility as a boolean function that outputs 1 if a memory access is feasible

for a given interleaving. Each input of the function corresponds to a partial order appearing in the

given interleaving (e.g., 1 if r(x) appears before w(x) in the interleaving, 0 otherwise). As the

space of possible traces is very large (exponential in the number of memory accesses), learning

such a function in the general case is very challenging. However, we notice that such functions

tend to be sparse, i.e., the feasibility of any individual memory access in an interleaving depends
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on only a few partial orders (e.g., relevant inter-thread communications, see Section 3.6). This

implies that trace feasibility functions are often close to fourier sparse, a class of functions that

can be efficiently learned with a small number of samples even if their domain is very large as

they have a small number of nonzero coefficients in their Fourier domain [19]. Therefore, we learn

trace feasibility functions by estimating their Fourier coefficients from a set of observed traces.

We use our sparse fourier learning approach to implement HBFourier, a kernel race prediction

approach that directly models the feasibility of traces for its race predictions. HBFourier is able

to find hard-to-detect races that only occur under specific thread interleavings, as well as prevent

false positive predictions that appear due to ignoring inter-thread communications. We evaluate

HBFourier against recent kernel race prediction approaches on traces from a corpus of 10,000

inputs and show its predictions are 15.7% more accurate and it finds 44 additional races.

In summary, we make the following contributions:

1. We propose to learn concurrent trace feasibility, a generalization of Lamport’s Happens-

Before partial order to reason about the feasibility of memory accesses appearing under

hypothetical thread interleavings.

2. We introduce HBFourier, a new kernel race prediction approach that uses sparse Fourier

learning to efficiently model feasibility for its race predictions. We are working on an open

source release of HBFourier and make it available for anonymous review1.

3. We evaluate HBFourier against other kernel race prediction approaches and show it’s pre-

dictions are 15.7% more accurate and it finds 44 additional races.

3.2 Problem Setting

3.2.1 Multi-Input Program Traces

Multi-Input Execution Traces. Kernel race prediction can be expressed as a more general prob-

lem of predicting races for a program P that takes multiple inputs and executes each input on a
1https://osf.io/z2fra/?view_only=e6ba5524b4fd416da10a3036f70e88a0
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Figure 3.2: Race prediction on the kernel based on traces of corpus of fuzzer seeds. Correctly identifying
a race requires both identifying the racing accesses and a feasible thread interleaving that can be used to
reproduce the race.

separate thread. We base our definitions of traces and events on common usage in the dynamic

race prediction literature [27, 57], but extend them to programs that concurrently execute a set

of inputs. The program P executes a set of inputs on separate threads to generate a trace 𝐸 of

execution events:

𝐸 = 𝑒0, 𝑒1, 𝑒2, ...

Each event in 𝐸 is defined as a tuple of four elements: a unique position in the trace 𝑖, the thread

that executed the event 𝑡, the input 𝑥 executed on thread 𝑡, and an operation op.

𝑒 = ⟨𝑖, 𝑡, 𝑥,op⟩ (3.1)

An operation is either a memory access 𝛼 or synchronization 𝜎, where each is composed of a tuple

of either a memory access instruction 𝑎 and address 𝑚, or synchronization instruction 𝑠 and lock 𝑙:

op := 𝛼 | 𝜎

𝛼 := ⟨𝑎, 𝑚⟩ 𝑎 := 𝑤 | 𝑟

𝜎 := ⟨𝑠, 𝑙⟩ 𝑠 := 𝑎𝑐𝑞 | 𝑟𝑒𝑙
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thread1          thread2
---------------  ---------------
                 ready = 0;
init(state);
ready = 1;
                 if (ready)
                   data=*state;

control flow dependency

(a) Control flow data dependency.

thread1          thread2
---------------  ---------------
ptr->buf=str;
msg = ptr;
                 ptr2 = msg;
                 str2=ptr2->buf;

pointer dependency

(b) Memory address data dependency.

thread1          thread2
---------------  ---------------
acquire(L1);
global = 0;
release(L1);
                 acquire(L1);
                 global = 2;
                 release(L1);

sync constraint

(c) Synchronization constraint.

Figure 3.3: Examples of control flow data dependencies, memory address data dependencies, and synchro-
nization constraints that occur in concurrent programs. In 3.3a, the thread 2 read from *state has a control
flow dependency on the global variable ready, which must be set by thread 1 before thread 2 read from
*state. This prevents a race with the thread 1 init(state). Similarly, in 3.3b, the thread 2 read from
ptr2->buf is dependent on ptr2 being read from msg, which is set by thread 1. In order for thread 2 to
access the ptr->buf written to by thread 1, it first has to read the pointer address is that is communicated
through the shared variable msg. This prevents the thread 1 write to [ptr] and thread 2 read from ptr2
from racing. In 3.3c, accesses to the shared variable global are both guarded by a common lock L1,
which prevents the accesses from racing.

Access instructions are either reads or writes (𝑤 or 𝑟), and synchronization instructions are either

acquire (𝑎𝑐𝑞) or release (𝑟𝑒𝑙).

To simplify notation, we refer to memory access and synchronization events as simply 𝛼 and

𝜎, respectively, instead of 𝑒.𝛼 and 𝑒.𝜎 when it is clear from the context.

Notation. We use the following notation with regard to execution traces.

• Set Definitions. We use {𝑖.. 𝑗} as shorthand for defining a set {𝑖, 𝑖 + 1, ..., 𝑗}.

• Sets of sets. We use G to refer to a set of sets. G may be a powerset, denoted 2𝐺 , which is

the set of all subsets of a set 𝐺.

• Tuple Elements. We use dot notation to indicate an element of a tuple (e.g., 𝑒.𝑡 denotes the

executing thread of an event 𝑒.)

• Restriction. We use 𝐸 |𝑜 to denote the restricted subset of events in 𝐸 involving a concurrent

object 𝑜. For example, 𝐸 |𝑡 denotes events in 𝐸 executed by thread 𝑡.

• Slicing. We use 𝐸 [𝑖1 : 𝑖2] to denote the subset of events 𝑒 ∈ 𝐸 where 𝑒.𝑖 ∈ {𝑖1..𝑖2}.

We represent abstract execution traces in figures as follows: Memory accesses to a variable A

are denoted w(A) or r(A), and acquiring or releasing a lock L is denoted acq(L) or rel(L).
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The input x being executed on each thread is indicated at the top of the trace. See Figure 3.4 for

an example of abstract traces showing a race predicted across multiple traces.

Execution Trace Space. We denote the space of all possible execution traces up to length 𝑛 for

a program P as EP . For a program executing different inputs on up to 𝑘 threads drawn from

a set of 𝑚 total inputs, the set of all possible trace events EP is composed of the cross product

of the possible trace positions 𝐼 = {1..𝑛}, executing threads 𝑇 = {𝑡1..𝑡𝑘 }, possible inputs 𝑋 =

{𝑥1..𝑥𝑚}, and 𝑂, all possible operations that can be performed by P. 𝑂 is composed of the union

of possible memory accesses and synchronization operations that can be performed by P, denoted

Accesses(P) and Syncs(P) respectively: 𝑂 = Accesses(P) ∩ Syncs(P). Formally, the

execution space of P is

EP = 𝑆𝑦𝑚(𝐼) × 2𝑇 × 2𝑋 × 2𝑂 (3.2)

Where 𝑆𝑦𝑚(𝐼) is the symmetric permutation group over 𝐼, and 2𝑇 , 2𝑋 , and 2𝑂 are powersets of 𝑇 ,

𝑋 , and O, respectively. We refer to EP as E when P is clear from context.

3.2.2 Race Prediction on Multi-Input Programs

Concurrent Events and Data Races. When a multithreaded program executes, operations that

are performed by different threads without synchronization happen concurrently (i.e., at the same

time). A data race then occurs when memory access operations modify the same data concurrently,

leading to undesired nondeterministic behavior.

In practice, when testing for data races, it is often more useful to identify pairs of memory

access instructions that can race in the program rather than data races themselves, since a sin-

gle unsynchronized instruction pair can generate thousands of data races during execution. We

formally define concurrency, data races, and instruction pair races for multi-input program traces

here:

• Concurrent events. Two events 𝑒1 and 𝑒2 in a trace 𝐸 where 𝑒1.𝑖 < 𝑒2.𝑖 are concurrent if
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𝑒1.𝑡 ≠ 𝑒2.𝑡 and 𝑒1 = 𝑙𝑎𝑠𝑡_𝑒𝑣𝑒𝑛𝑡 (𝐸 [1 : 𝑒2.𝑖] |𝑒1.𝑡).

• Data races. Two memory access events 𝛼1 and 𝛼2 are considered a data race in a trace 𝐸 if

they are concurrent in 𝐸 , they 𝛼1.𝑚 = 𝛼2.𝑚, and at least one of them is a write operation.

• Racing instruction pairs. We consider two memory access instructions 𝑎1 and 𝑎2 in P a

racing instruction pair if there exists a P-feasible witness trace 𝐸∗ such that for two memory

access events 𝛼1, 𝛼2 ∈ 𝐸∗, 𝛼1.𝑎 = 𝑎1, 𝛼2.𝑎 = 𝑎2, and 𝛼1 and 𝛼2 are a data race in 𝐸∗.

Multi-Trace Race Prediction. We define race prediction for a multi-input program P as follows:

given a set of inputs 𝑋 , thread count 𝑘 , and set of traces E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 collected by executing P on

subsets of 𝑘 inputs from 𝑋 , a race prediction 𝑟 𝑝 is composed of a pair of memory accesses 𝛼1 and

𝛼2 in Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) along with a hypothesized witness trace 𝐸∗ in which 𝛼1 and 𝛼2 race:

𝑟 𝑝 := ⟨𝛼1, 𝛼2, 𝐸
∗⟩

A race prediction for two memory accesses 𝛼1 and 𝛼2 can be tested by extracting the executed

inputs 𝛼1.𝑥 and 𝛼2.𝑥, and checking if 𝛼1 and 𝛼2 race when P is executed on their inputs according

to the interleaving of their hypothesized witness trace 𝐸∗.

Feasible Race Predictions. The objective of multi-input race prediction is to identify all racing

instruction pairs that appear in Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) for which a feasible witness trace exists.

However, only a small subset of the possible EP represent traces that are feasible for P to exe-

cute. We use the definitions from [49] and denote a feasible execution trace as P-feasible, where

𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒(P) is the set of all traces that are feasible for P, and feasP : 2EP → {0, 1} is a boolean

indicator function for a feasible trace on P:

feasP (𝐸) = 1 ⇐⇒ 𝐸 ∈ 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒(P) (3.3)

In order for an execution trace 𝐸 to be P-feasible, it must satisfy several sets of constraints.

First, the trace must be well-formed, where each event must have a unique trace order 𝑖, and each
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input 𝑥 must be consistently executed on a specific thread 𝑡. Second, the operations performed

on each thread in 𝐸 must be sequentially consistent with P, where the order of operations in 𝐸 |𝑡

conform to the execution path followed by 𝑡 on P.

When threads are executing concurrently their execution paths can change due to inter-thread

communications on shared variables that cause the execution to either take alternate branches or

access different locks. Therefore, an execution trace must also satisfy two additional sets of con-

straints to be feasible:

• Data Dependencies. Data dependencies occur when events are dependent on specific values

being read during previous memory accesses. These consist of control flow dependencies,

where the values of specific read operations are used in branches that govern which oper-

ations are performed on the execution path, and address dependencies, where memory ac-

cesses are performed to addresses that are determined by prior read operations (e.g., pointer

dereferences).

• Synchronization. The execution order must respect the constraints enforced by any synchro-

nization in P. In particular, any acquired lock in 𝐸 must be released before it is acquired

again.

Figure 3.3 shows examples of control flow dependencies, address dependencies, and synchroniza-

tion constraints in concurrent execution traces.

Effective race prediction therefore requires being able to reason about the set possible of fea-

sible traces as accurately as possible based on the the traces in E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 based on their data-

dependencies and synchronization. Over-approximating the feasible set leads to large numbers of

incorrect predictions (i.e., false positives), which can lead to missed races when the computation

budget is wasted testing incorrect predictions. Similarly, under-approximating the feasible set can

also result in missed races (i.e., false negatives) since races may never be predicted.
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3.2.3 Existing Approaches for Multi-Input Race Prediction

Sound Dynamic Race Prediction. Sound dynamic data race prediction methods under-approximate

the feasible trace set 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒(P) by predicting races on alternate reorderings of each individual

trace 𝐸 ∈ E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 that are feasible for P, 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒(𝐸). To enforce feasibility, the analysis

preserves the order of all inter-thread communications based on Lamport’s happens-before partial

order for concurrent programs [14]. Sound dynamic race prediction has been applied to testing

filesystems for data races [9, 18] by predicting races on each individual trace in an observed trace

set E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 .

Alias Analysis and Lockset Analysis. Unlike dynamic race prediction, race prediction approaches

that use alias analysis over-approximate the feasible set by assuming any execution trace 𝐸 that

can be generated by concurrently executing two inputs in 𝑋 is P-feasible. Potential races are

then predicted on all aliased memory accesses that appear in E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . In multi-input race pre-

diction, inputs with instructions that can potentially race are identified using either static [17] or

dynamic [7] alias analysis, where any pair of accesses 𝛼1, 𝛼2 where 𝛼1.𝑚 = 𝛼2.𝑚 is considered

an alias. Aliased accesses and then executed together to attempt to trigger a race, where 𝐸∗ is

either constructed by executing each input thread up to the predicted race and preempting. Alias

analysis has also been combined with lockset analysis [56] (checking if common locks are held

by two memory accesses when they were executed) to account for synchronization constraints in

prediction.

Limitations of Existing Approaches. Using sound dynamic race prediction individually on each

observed trace results in a sound under-approximation of the feasible set–the analysis won’t make

any incorrect predictions, but it will miss any feasible races that do not appear in the sound re-

orderings of the observed traces. This leads to missed races in two particular cases which are

illustrated in Figures 3.4 and 3.5: when feasible races occur between accesses observed in separate

traces (Figure 3.4), and when feasible races appear in reorderings of the observed traces that do

not follow the happens-before constraints imposed by the observed communications (Figure 3.5).

Alias analysis and lockset analysis can be used to predict races between independently observed
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rel(L1)
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observed traces racing trace

Figure 3.4: Example of a race between inputs from independently collected execution traces, which cannot
be identified with dynamic race prediction. The accesses to shared variable A in the observed trace of x1
and x2 share a common lock L1 and cannot race, and the accesses to A for x3 and x4 are also locked.
However, x2 and x3 can be combined to form a new trace with a feasible race.

thread1        thread2
-------------  -------------
A = msg1;
acquire(L);
B = 1;
release(L);
               acquire(L);
               localB = B;
               release(L);
               msg2 = A;

(a) Two threads with communication on shared
variable B.

x1 x2

acq(L)
w(B)
rel(L)

acq(L)
r(B)

rel(L)

x1 x2

race

observed trace racing trace

w(A)

r(A)

HB

acq(L)
w(B)
rel(L)

acq(L)
r(B)

rel(L)

w(A)

r(A)

(b) Observed trace with HB constraint, and reordering with
feasible race.

Figure 3.5: Example of how the happens-before constraints used in sound dynamic race prediction can lead
to missed races. The thread execution shown in 3.5a has a communication on shared variable B before A is
read by thread 2, which generates a happens-before (HB) constraint in sound dynamic race prediction and
prevents the analysis from predicting a race on shared variable A. However, the memory accesses to A have
no data dependency on B, so a feasible trace that violates the happens-before constraint with a race on A can
be constructed as shown 3.5b.
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global ptr;

func f(...)
{
    ptr++;
    (*ptr) = x;
}

(a) Reentrant function.

thread1          thread2
---------------  ---------------
ptr++;
                 ptr++;
                 (*ptr) = x;
(*ptr) = x;     race

(b) Execution interleaving with race.

Figure 3.6: Example of a race on a write with an address dependency to a global pointer that is incremented
immediately before the write. The race only occurs for execution interleavings that perform both pointer
increments before writing to the pointer address.

traces and is not prone to under-approximating the feasible trace set. This means that it won’t miss

the races shown in Figures 3.4 and 3.5. However, race predictions made with alias analysis and

lockset analysis still do not take data dependencies into account. This can lead to missed races

when the racing memory accesses have data dependencies that must be taken into account in order

to generate a feasible witness trace, as well as incorrect predictions when races are infeasible due

to data dependencies. Figure 3.6 shows an example of a race that only happens on execution

interleavings that account for data dependencies.

3.3 Theory

In this section, we describe a general approach to modeling the feasibility of races for a multi-

input program based on a decomposition of the operations, inputs, executing threads, and their

respective orderings in traces. We first develop an approximate feasibility function based on the

partial orders that appear in a trace. We then describe how fourier learning can be used to efficiently

learn an approximate model of feasibility based on observed traces.

3.3.1 Feasibility Modeling

Constructing Traces. Multi-trace race prediction requires reasoning about constructing new traces

𝐸∗ from the set of observed traces E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . When constructing a new trace 𝐸∗ from events in

traces in E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , we make the following changes:
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• Event Order. All events orders in 𝐸∗ are renumbered from 𝑒.𝑖 = 1 to 𝑒.𝑖 = 𝑛 for in 𝑒 ∈ 𝐸∗

and 𝑛 = |𝐸∗ |.

• Thread Identifiers. Events drawn from distinct traces are assigned distinct execution threads

in the new constructed trace, so that for any two events 𝑒𝑖, 𝑒 𝑗 in 𝐸∗ originating from separate

traces, 𝑒𝑖 .𝑡 ≠ 𝑒 𝑗 .𝑡 in 𝐸∗.

For example, events drawn from the first ten events of thread 1 in two different traces 𝐸1 and 𝐸2

would be assigned threads 1 and 2 and ordered 1 through 20 when combined in new trace 𝐸∗.

Approximating Feasiblity. Given a set of traces E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , any pair of memory access events 𝛼1,

𝛼2 in the observed traces that access the same memory address can potentially race. Determining

if 𝛼1 and 𝛼2 can race requires determining if there exists a witness trace 𝐸∗ in which 𝛼1 and 𝛼2

race that is also P-feasible. An initial hypothesized witness trace 𝐸∗ in which 𝛼1 and 𝛼2 race can

be constructed from traces in which 𝛼1 and 𝛼2 appear, denoted respectively 𝐸1 and 𝐸2:

𝐸∗ = concat(𝐸1 [1 : 𝛼1.𝑖] |𝛼1.𝑡 , 𝐸2 [1 : 𝛼2.𝑖] |𝛼2.𝑡) (3.4)

Alias-analysis based race testing methods such as Razzer [17], Snowboard [7], and PLA [56]

implicitly do this when they attempt to trigger a race during execution based on an aliased pair of

accesses. However, an 𝐸∗ constructed this way may not be P-feasible, and in practice predicting

all possible racing pairs this way leads to both overwhelming numbers of false positives as well

as false negatives (missed races), since for a predicted 𝐸∗ that is infeasible, there may be another

combination of 𝐸1 and 𝐸2 that is feasible and the race does occur. Therefore, accurately predicting

races on E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 requires accurately estimating the function feasP in order to construct feasible

witness traces.

We represent feasP from Eq. 3.3 as follows: first, we define a boolean feasibility function

for each memory access operation 𝛼, feasP𝛼 : E → {0, 1}, which represents if an operation 𝛼 is

feasible after a sequence of operations is performed in the trace. For clarity we drop P when it is
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clear from context and use feas𝛼. Formally:

feas𝛼 (𝐸) =


1 if feas(𝐸) ∧ 𝛼 ∈ 𝐸

0 otherwise
(3.5)

Feasibility Modeling in Race Prediction. The trace feasibility function feas𝛼 (𝑃) approximates

the feasibility of a racing trace based on any control flow and address dependencies the operations

may have. This can generalize to reasoning about the feasibility hypothetical traces that do not

appear in the observed set E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 . This is used in race prediction in two ways: first, the feasibility

model can improve accuracy by identifying when predicted races are unlikely to be feasible (e.g.,

when a data dependency exists between two accesses to a common address). Second, the feasibility

model can be used to construct witness traces that account for dependencies to make races feasible.

However, learning a model of trace feasibility from a set of observed traces is challenging

because E is exponential in the length of the traces, possible operations, inputs, and threads in

P. In order to learn a model of trace feasibility efficiently, we base our approach on the sparsity

of inter-thread data dependencies. Since most memory accesses between threads do not access

common addresses, they do not interact with one another and therefore can be ordered arbitrarily

in a trace without effecting feasibility.

As a result, trace feasibility functions exhibit the property that they are close to fourier sparse,

meaning that they can be learned and expressed efficiently with a small number of nonzero co-

effients in the fourier domain, even if they are defined over an exponentially large input domain.

We find that in practice, more than 99.7% of the fourier domain coefficients are very close to 0

for boolean access feasibility functions (Section 3.6.3). Many search problems over large discrete

spaces exhibit sparse fourier spectra and can be learned efficiently, and sparse fourier learning

has been previously applied to problems in engineering and discrete optimization such as identi-

fying optimal software system configurations [58] and modeling distributed system reliability in

the presence of component failures [59]. Therefore, we use sparse fourier learning to model trace

56



feasibility efficiently. We provide background fourier learning in the following section, and then

describe how we apply it to efficiently modeling traces.

3.3.2 Fourier Learning

Background on Fourier Expansion. It is well known in the discrete analysis literature that many

computational problems can be expressed as boolean functions that are sparse in their fourier

domain and can efficiently learned and analyzed using the fourier expansion. We summarize the

fourier expansion for background, and we encourage readers to explore more details in Analysis of

Boolean Functions Chapter 1 [19]. The fourier expansion for boolean functions typically defined

on a real-valued function 𝑓 that operates on 𝑛 boolean inputs using the encoding 𝑇𝑟𝑢𝑒 := −1 and

𝐹𝑎𝑙𝑠𝑒 := +1. We note that this encoding is unintuitive from the perspective of boolean logic, but

is used conventionally in the boolean fourier analysis literature because it simplifies definitions for

the boolean fourier expansion. We summarize the standard definitions here:

𝑓 : {+1,−1}𝑛 → R

The fourier expansion of 𝑓 is then defined as a weighted sum of functions called fourier characters

denoted 𝜒 weighted with constants called fourier coefficients denoted 𝑓 over the domain of 𝑓 :

𝑓 (𝑥) =
∑︁
𝑆⊆[𝑛]

𝑓 (𝑆)𝜒𝑆 (𝑥) (3.6)

Where [𝑛] is the set {1, 2, ..., 𝑛}. Each fourier character 𝜒𝑆 is a periodic function on a subset of

the inputs determined by the elements in 𝑆, where 𝜒∅ is defined to be 1:

𝜒𝑆 (𝑥) =
∏
𝑖∈𝑆

𝑥𝑖 (3.7)

Each fourier coefficient 𝑓 (𝑆) corresponds to 𝜒𝑆’s overall contribution to approximating 𝑓 . While

the full fourier expansion of 𝑓 has 2𝑛 fourier coefficients, functions that are close to fourier sparse
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can be closely approximated and learned efficiently with a small number of nonzero fourier coef-

ficients. Each coefficient can be estimated by sampling 𝑓 :

𝑓 (𝑆) =
∑︁

𝑥∈{+1,−1}𝑛
𝑓 (𝑥)𝜒𝑆 (𝑥) = E[ 𝑓 (𝑥)𝜒𝑆 (𝑥)] (3.8)

Fourier Domain Sparsity. A function is considered to be k-sparse in the fourier domain if it has

no more than 𝑘 nonzero fourier coefficients, and is considered to 𝜖-close to k-sparse if the function

can be accurately approximately with an error bound of 𝜖 with 𝑘 fourier coefficients. When a

function is close to 𝑘-sparse, both learning the function’s fourier coefficients can be accurately

approximated in 𝑂 (𝑘) operations. Low degree fourier sparse functions form a subclass of k-sparse

functions where the 𝑘 heavy fourier coefficents correspond to low degree sets 𝑆 where |𝑆 | < 𝑑 for

a low degree 𝑑 [kushilevitz1991learning]. In the following section, we describe how we use low

degree sparse fourier learning to make trace feasibility modeling tractable.

3.3.3 Sparse Fourier Learning on Traces

We develop a general approach for applying sparse fourier learning to approximating trace

feasibility as follows: Given an indicator function 𝑓 for a relevant trace property (e.g., a given

memory access being feasible), we define two functions, a trace encoding function 𝜙, and an

approximation function 𝑓 ∗, where 𝜙 encodes a trace into a boolean vector, and 𝑓 ∗ approximates 𝑓

based on the encoding defined by 𝜙:

𝑓 : E→ 𝑍2 𝜙 : E→ 𝑍𝑛
2 𝑓 ∗ : 𝑍𝑛

2 → 𝑅 (3.9)

where 𝑓 (𝐸) = 𝑓 ∗ ◦ 𝜙(𝐸). The objective is then to approximately learn 𝑓 ∗ from a set of observed

traces. To approximately learn 𝑓 ∗, we estimate each fourier coefficient 𝑓 ∗(𝑆) using Equation 3.8

and compose the encoding function 𝜙 with 𝜒𝑆 so each trace is encoded as a boolean vector before

being input to the fourier character function 𝜒𝑆:
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𝑓 ∗(𝑆) = E[ 𝑓 (𝐸) (𝜒𝑆 ◦ 𝜙) (𝐸)] (3.10)

Trace Communication Encoding. In order to model the types of interthread communication

dependencies shown in Figure 3.3, we define the trace encoding function 𝜙 to encode inter-thread

communications that appear in a trace. We define communications as ordered pairs of memory

accesses 𝛼1, 𝛼2 to the same address, and encode the presence of each possible communication to

{0, 1}:

encode𝛼1×𝛼2 (𝐸) =


1 if 𝛼1, 𝛼2 appear in 𝐸 in order

0 otherwise
(3.11)

For a set of traces E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , we define 𝜙 using encode in Equation 3.11 as encoding all possible

pairs of accesses 𝛼1, 𝛼2 ∈ Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) into a boolean vector, where each index 𝜙𝑖

represents a possible inter-thread communication.

Learning Trace Feasibility. For a given trace feasibility function feas𝛼, we define feas∗𝛼 based

on our communication encoding 𝜙, where feas∗𝛼 and feas𝛼 are analogous to 𝑓 ∗ and 𝑓 in Equation

3.9. Given a set of traces E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 , we can then estimate each fourier coefficient of feas∗𝛼 based on

Equation 3.10:

f̂eas
∗
𝛼 (𝑆) ≈

1
|E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 |

∑︁
𝐸∈E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

feas𝛼 (𝐸) (𝜒𝑆 ◦ 𝜙) (𝐸) (3.12)

Each fourier coefficent f̂eas
∗
𝛼 (𝑆) then represents the effect of a particular set of communications

encoded by 𝑆 on the feasibility of the memory access 𝛼.

Low Degree Sparse Fourier Learning. In order to learn feas∗𝛼 efficiently, we apply sparse fourier

learning in two ways. First, we only learn low degree fourier coefficents, where |𝑆 | < 𝑑 for a small

upper bound 𝑑 [60]. Second, while performing the coefficient estimation in Equation 3.12 over a
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Figure 3.7: Overview of HBFourier’s approach. HBFourier operates on a collection of execution memory
access traces obtained from a linux kernel vm and estimates fourier coefficients for feasibility functions for
each memory access that appears in the traces. It then uses the learned feasibility model to generate thread
interleavings with predicted races.

set of observed traces, we dynamically update the set of estimated fourier coefficients to discard

low magnitude fourier coefficients and retain high magnitude fourier coefficents. We describe this

procedure in detail in the next section.

We note that more efficient methods for learning fourier sparse functions exist when samples

can be selected adaptively [60]. We believe implementing a kernel scheduler for adaptive sampling

of specific trace orderings on the kernel is a promising direction for future work.

3.4 Methodology

In this section we describe how we use sparse fourier learning to make accurate race predic-

tions. Given a set of observed traces, we perform race prediction in four stages: feasibility learning,

input feasible race prediction, order feasible trace construction, and race prediction checking.

Feasibility Learning. First, we learn approximate feasiblity functions for each access based on

both inputs and partial orders. Algorithm 5 describes how we perform sparse fourier learning for

feasibility function on the set of observed traces. We learn first degree (𝑑 = 1) fourier approxima-

tions for feasibility for each access 𝛼 based on the factored feasibility approximation functions for

operation order, thread, inputs, and operations present in the trace.

Race Candidate Generation. We generate a set of race candidate pairs of memory accesses in
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the traces through a conservative analysis (i.e., no missed races) that checks for aliased accesses to

common addresses that are not guarded by explicit synchronization (i.e., locks). See Algorithm 6,

lines 1-6.

Feasible Race Prediction. We then construct a hypothetical witness trace 𝐸∗ according to Eq.

3.4 for each race candidate of memory accesses 𝛼1 and 𝛼2. We then filter out race candidates that

predicted to be infeasible based on their inputs and the partial orders that appear in 𝐸∗ (Algorithm

6, lines 8-10).

Feasible Trace Construction. Third, for each race candidate that is filtered out as infeasible based

on the partial orders in 𝐸∗, we attempt to make a feasible version of 𝐸∗ by altering the execution

interleaving. If there are specific inter-thread communications that make the race infeasible based

on the fourier coefficients of their operations under a specific ordering, we check if it is possi-

ble to modify the interleaving to prevent the communications from occurring in 𝐸∗ by adding a

preemption to switch the execution thread immediately before the communication would occur.

To identify an infeasible communication, given a set of memory access pairs 𝑃𝑐𝑜𝑚𝑚𝑠 representing

inter-thread communications in a trace, a target access 𝛼, and a set of fourier coefficients f̂eas𝛼, we

identify the largest negative contributing communication, denoted 𝜌:

𝜌𝑖𝑛 𝑓 𝑒𝑎𝑠 = arg min
𝜌

f̂eas𝛼 (𝜌)𝜒𝜌 (𝐸∗) (3.13)

Given a 𝜌𝑖𝑛 𝑓 𝑒𝑎𝑠 composed of two operations op1 and op2 representing an inter-thread communi-

cation and a hypothesized trace 𝐸∗ constructed from two observed traces 𝐸1 and 𝐸2, we attempt to

create a new trace as follows:

𝐸∗ = concat(𝐸∗ [1 : op1.𝑖 − 1] |op1.𝑡 ,

𝐸∗ [1 : op2.𝑖] |op2.𝑡 ,

𝐸∗ [op1.𝑖 : op2.𝑖] |op1.𝑡 ,

𝐸∗ [op2.𝑖 + 1 : 𝑛])

(3.14)
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If the new 𝐸∗ with the added preemption is predicted to be feasible, we include it in the pre-

dicted races (Algorithm 6, lines 11-15).

Race Prediction Checking. Once the race predictions have been checked for feasiblity wrt. both

inputs and partial orders in the witness trace, we check each prediction by executing it on the

kernel. We enforce the thread execution interleaving to follow the same interleaving in the witness

trace by instrumenting each memory access and making each thread wait before performing an

access when another thread is interleaving to execute in the witness trace. We then check if the

predicted race between the two memory accesses occurs during the controlled execution.

Algorithm 5 Sparse Fourier Feasibility Learning.
Input: E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ← Observed Traces

𝑛← Function domain size
𝑑←Maximum Coefficient Degree

1: S𝑑 = {𝑆 : 𝑆 ⊆ [𝑛], |𝑆 | ≤ 𝑑}
2: initialize 𝑓𝛼 (𝛾) = 0 for all 𝑆 ∈ S𝑑 , 𝛼 ∈ Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
3: for 𝐸 ∈ E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 do
4: for 𝛼 ∈ Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) do
5: for 𝑆 ∈ S𝑑 do
6: feas𝛼 (𝐸) = +1 if 𝛼 ∈ 𝐸 , −1 otherwise
7: 𝑓𝛼 (𝑆) += 1

|E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 | feas𝛼 (𝐸)𝜒𝑆 (𝐸)
return All estimated 𝑓𝛼

3.5 Connection Between HBFourier and PLA

The sparse fourier learning approach used by HBFourier can also be used to express the learn-

ing performed by PLA as a first degree fourier expansion of a memory access indicator function.

Each input seed in PLA’s notation is denoted 𝑝, therefore we can define the input 𝑥 as the set

of seeds that are executed from a corpus:

𝑥 = {𝑝𝑖, 𝑝 𝑗 , ...} (3.15)

Using the framework with the indicator function 𝑓 , trace encoding 𝜙, and approximation func-

tion 𝑓 ∗ defined in Eq. 3.9, the trace encoding function 𝜙 is defined to encode which inputs 𝑝 are
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Algorithm 6 Race Prediction.
Input: E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ← Observed Traces

feas← Feasibility Model
1: RPs = {}
2: for 𝛼1, 𝛼2 ∈ Accesses(E𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) do
3: if 𝛼1.𝑚 = 𝛼2.𝑚 and 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 (𝛼1) ∩ 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 (𝛼2) = ∅ then
4: 𝐸∗ = hypothesize_witness(𝛼1, 𝛼2) ⊲ See Eq. 3.4
5: 𝑟 𝑝 = (𝛼1, 𝛼2, 𝐸

∗)
6: RPs.add(𝑟 𝑝)
7:
8: for 𝑟 𝑝 ∈ RPs do
9: if not feas𝛼1 (𝐸∗) or not feas𝛼2 (𝐸∗) then

10: 𝜌𝑖𝑛 𝑓 𝑒𝑎𝑠 = get_infeas_order(𝐸∗) ⊲ See Eq. 3.13
11: reorder 𝐸∗ to invalidate 𝜌𝑖𝑛 𝑓 𝑒𝑎𝑠 ⊲ See Eq. 3.14
12: if not feas𝛼1 (𝐸∗) or not feas𝛼2 (𝐸∗) then
13: drop 𝑟 𝑝 from RPs and continue
14: return RPs

executed with input 𝑥, where

𝜙𝑖 (𝑥, 𝜏) =


1 if 𝑝𝑖 ∈ 𝑥

0 otherwise
(3.16)

We then the define the indicator function for a memory access 𝛼, 𝑓𝛼, to indicate if a given

memory access appears in the trace 𝜏:

𝑓𝛼 (𝑥, 𝜏) =


1 if 𝛼 ∈ 𝜏

0 otherwise
(3.17)

The fourier expansion of 𝑓 ∗, defined on the encoding of inputs 𝜙, will have a first degree fourier

coefficient corresponding to each input. For an input 𝑝𝑖:

𝑓 ∗(𝑆) = E[ 𝑓𝛼 (𝑥, 𝜏)𝜒𝑆 (𝜙(𝑥))] where 𝑆 = {𝑖} (3.18)
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The projection of 𝑓𝛼 on to the single fourier character 𝜒𝑆 then becomes:

𝑓𝛼 (𝑥, 𝜏)𝜒𝑆 (𝜙(𝑥)) =


1 if 𝛼 ∈ 𝜏 when 𝑝𝑖 executes

0 otherwise
(3.19)

This is equivalent to the definition of the indicator function 𝐴𝛼 learned in PLA in Eq. 2.1, therefore

the feasibility model expressed in the learned first degree fourier expansion of 𝑓 ∗𝛼 is equivalent to

PLA.

3.6 Evaluation

Research Questions. We address the following research questions in our evaluation:

1. Race Prediction Accuracy. How do the accuracy of HBFourier’s race prediction’s compare

to other applicable approaches?

2. Race Testing. Is HBFourier effective at finding new kernel races?

3. Approximation Quality. Does HBFourier’s sparsity assumption hold, and does it closely

approximate feasibility?

Evaluation Environment. We perform all evaluations on an Ubuntu 22.04 server with a Ryzen

Threadripper 2970WX CPU and 128Gb of memory. These are a CPU/memory server configuration

selected to cost effectively support compute and memory intensive applications.

Implementation. We implement HBFourier using an LLVM pass to collect traces of memory ac-

cesses and check for races, and use syzkaller’s (a kernel fuzzer) executor to execute inputs. VM’s

for tracing and race checking are run with Qemu. Given a set of traces, HBFourier’s analysis is

implemented in three distributed stages: it first performs fourier learning and collects candidate

racing memory accesses into sets, then refines the the predictions for each set based on lock syn-

chronization and feasiblity, and finally aggregates the resulting predictions and removes duplicate
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predictions to the same memory access instruction pairs (races may be predicted between two

instructions multiple times on different memory addresses).

3.6.1 Race Prediction Accuracy

We evaluate the accuracy of HBFourier’s race predictions against other race prediction ap-

proaches that are used in the kernel. We evaluate against two other approaches that can predict

races on sets of observed traces, Probabilistic Lockset Analysis (PLA) [56], which estimates the

probability of predicted races based on lockset analysis and prioritizes high probability races, and

happens-before dynamic race prediction (HB), which analyzes each trace individually to predict

races using Lamport’s happens-before partial order to prevent false positive predictions, and is

used by most recent kernel fuzzers [9, 18].

We compare the evaluated approaches on traces from five corpuses of fuzzer seeds varying

size: 100 seeds, 500 seeds, 1k seeds, 5k seeds, and 10k seeds, where 8 traces are collected from

each seed executing concurrently with another seed randomly sampled from the corpus. For each

approach, we measure how many of its predictions are true positives (i.e., they result in a race

being found) and how many are false positives (i.e., the predicted race cannot be confirmed by

executing).

Figure 3.8 summarizes the results of the accuracy comparison. For all size corpuses, HBFourier

makes more true positive predictions than PLA or HB, and makes fewer false positive predictions

than PLA. On the 10k seed corpus, HBFourier makes 508 true positive predictions (correspond-

ing to 332 unique instruction pairs) and 29,463 false positive predictions, while PLA makes 438

true positive predictions (corresponding to 276 unique instruction pairs) and 34,167 false positive

predictions, and HB analysis makes 185 true positive predictions (corresponding to 72 races on

unique instruction pairs).

These results illustrate the benefits of learning and directly modeling feasibility due to data

dependencies in race prediction. HBFourier is able to make more correct predictions and find more

races while making fewer false positive predictions than PLA by accounting for data dependencies
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(a) True positive race predictions.

(b) False positive race predictions.

Figure 3.8: True positive and false positive race predictions for HBFourier, HBFourier (infeasible only),
PLA, and sound dynamic race prediction on traces of 100, 500, 1k, 5k, and 10k fuzzer seeds. As the size
of the trace set increases, PLA and HBFourier both many more false positive predictions, but HBFourier
feasibility modeling makes it more accurate, with 14% fewer false positive predictions and 16% more true
positive race predictions. Unlike HBFourier and PLA, sound dynamic race prediction does not make false
positive predictions but can only identify 185 races that are directly observed in the traces, compared to 332
races found by HBFourier.
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Table 3.1: Races found by HBFourier, PLA, and HB race prediction on 10k seed corpus, shown per kernel
subsystem. In total HBFourier finds 332 races, PLA finds 276 races, and HB finds 72 races.

Kernel Subsystem SYS PLA HB

kernel/ 16 12 3
net/ 85 65 23
mm/ 26 20 11
fs/ 42 29 8
security/ 50 50 7
sound/ 12 10 1
drivers/ 74 65 15
include/* 15 15 0
block/ 7 5 2
arch/* 2 2 1
lib/* 3 3 1

*the races found in include/, /arch, and /lib are related to different subsystems.

in candidate race predictions. Being able to make precise race predictions on large trace sets (i.e.,

without too many false positives) is essential to finding races effectively, since each prediction must

be tested individually. As the size the corpus increases, the number of false positive predictions

for both HBFourier and PLA increases substantially, but HBFourier makes more than 4700 fewer

false positive predictions than PLA on the traces from the 10k seed corpus.

In contrast, HB dynamic race prediction does not make any false positive race predictions, but

only makes 185 true positive predictions on the 10k seed corpus traces that appear directly in the

traces. This result illustrates the benefits of multi-trace race prediction when testing for races on

the kernel or other multi-input programs. Although HB dynamic race prediction does not make

any false positive race predictions, a multi-trace analysis can find more races and can be paired

with automatic prediction checking to ensure only confirmed races are reported to a user while

finding more races overall.

3.6.2 Race Testing

In addition to evaluating the accuracy of HBFourier’s predictions, we also evaluate HBFourier’s

effectiveness as a race testing system. We compare the races found by HBFourier to PLA and HB

in Table 3.1. In total on the traces of the 10k seed corpus, HBFourier finds 332 races, PLA finds 276
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races, and HB finds 72 races. HBFourier is able to effectively find more races across subsystems,

and notably finds races in the kernel net, mm, fs, sound, drivers, and block subsystems

that are not found by the other approaches.

We characterize the found races based on whether they occur in the observed traces or they

occur between accesses in distinct traces, as well as if they have data dependencies that must be

satisfied for a race to occur. PLA only finds races that do not have data dependencies (Data Ind.),

while HB only finds races that appear in the observed trace set (In-Trace). HBFourier is able to

find more races than either approach specifically because it can in infer data dependencies from its

learned fourier coefficients, while still making accurate inter-trace race predictions.

3.6.3 Fourier Domain Sparsity

HBFourier’s feasibility learning and analysis relies on a sparsity assumption for feasibility

based on partial orders. Therefore we evaluate the sparsity of the fourier coefficients by directly

evaluating coefficients for 50 sampled accesses. Figure 3.9 shows how fourier coefficient values

converge to a sparse representation as the number of sampled traces increases. The results confirm

that access feasibility is sparse in the fourier domain: the vast majority (> 99.7%) of coefficients

are 0 or have magnitude less than 0.1, indicating that they correspond to operation orders that

have no effect on whether a given memory access is feasible or not, while a very small fraction

(< 0.0006%) have large coefficients close to -1.0 or 1.0. The extreme sparsity of large coefficients

in the feasiblity fourier domain reflects the fact that most operations do not directly affect one

another: only a very small fraction of operations will directly make another operation infeasible

or feasible. Since most coefficients are very small, the large coefficents can be accurately resolved

with only a small number of samples.

3.7 Threats to Validity

We consider two potential sources of bias that could threaten the validity of our results: dataset

bias and sample bias. Our experiments are performed on a dataset of 10k kernel fuzzer seeds
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Figure 3.9: Distribution of estimated fourier coefficients, averaged over 50 accesses. As the number of sam-
pled traces increases, most (99.7%) coefficients converge to 0, indicating that their corresponding operations
have no significant impact on feasibility for a given memory access. A very small number of coefficients
(0.0006%) converge to 1.0 or -1.0, which indicates they correspond to the trace being feasible (1.0) or in-
feasible (-1.0) for the memory access feasibility function. Sparsity in the fourier coefficients of partial order
feasibility functions makes learning and analysis with them tractable.
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generated with syzkaller [33]. Bias in the generated seeds towards certain kernel functionalities

and types of races could effect the validity of our results for RQ1 and RQ2, although we note this

dataset is large and exposes races in most core kernel modules, and is therefore likely to reflect the

overall distribution of racing behavior in the linux kernel.

Sample bias could affect RQ3, since the results are based on a set of 50 randomly sampled

accesses from the set of all accesses in the observed traces. We observed consistent results across

sampled accesses, which suggests the sample is reflective of the overall distribution of accesses.

3.8 Limitations & Future Work

Although HBFourier has more accurate predictions and finds more races than other approaches

in our evaluation, it is clearly possible to model race feasibility more accurately to further reduce

erroneous predictions. HBFourier’s approach does not fully utilize the power of fourier learning on

sparse functions because it learns from a fixed set of samples and uses first degree coefficients in

its race predictions. Adaptive sampling strategies can be used to learn sparse fourier functions with

higher degrees more efficiently [60], which will result in more accurate feasibility predictions. We

believe this is a promising direction for future work.

Another limitation of HBFourier’s feasiblity modeling is that it is based purely on inputs and

order-of-operations. However, many other events in the kernel can potentially be used to predict

whether a hypothetical execution trace is feasible, such as RCU callbacks, worker thread events,

etc. Therefore improving the kernel representation used in the feasibility model is another direction

that could facilitate more accurate race predictions.

3.9 Related Work

Dynamic Race Prediction. Dynamic race prediction methods predict races based on a single

observed execution trace. Most dynamic race predictors use Lamport’s happens-before partial

order to make sound predictions [14, 39, 26]. Recent work has focused on efficient variations of

partial orders [41, 42, 43, 44, 45, 27], SMT reductions [47, 48, 49], as well as well as sampling
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accesses from a single trace [61]. In contrast, HBFourier focuses on accurately predicting races

across multiple traces, and allows false positives in its predictions that are ruled out during a final

race checking step.

Kernel Race Testing. Kernel race testing approaches either use interleaving fuzzing in conjunction

with dynamic race prediction [9, 18], or alias analysis over a set of seed traces [17, 7]. Probabilistic

Lockset Analysis extends alias analysis by checking lock synchronization on accesses to common

addresses and estimating the probability aliases may race through execution sampling. HBFourier

also checks lock synchronization on shared memory accesses, but in addition uses sparse fourier

learning to model the feasibility of its predictions.

Sparse Fourier Learning. Sparse fourier learning on boolean-valued functions has been applied

to many applications such as reliability analysis [59], and approximating expensive objective func-

tions in machine learning [62]. In the area of software engineering, sparse fourier learning has

been used for efficiently optimizing the parameters of complex software systems from few sam-

ples [58]. HBFourier applies sparse fourier learning to modeling race prediction feasibility, based

on an encoding of partial orders in traces to boolean domain functions.

3.10 Conclusion

This thesis proposes HBFourier, a novel approach for detecting data races in modern operating

system kernels. By efficiently learning and leveraging factored trace feasibility functions through

sparse Fourier learning, HBFourier makes 15.7% more accurate data race predictions relative to

prior work and identifies 44 additional races by taking into account inter-thread communications

and avoiding both false negatives and false positives. We believe sparse fourier learning in con-

current program analysis is promising direction for future work and can be applied to both further

improvements in OS Kernel race prediction as well as other testing other concurrent systems.
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Conclusion

This thesis introduces a new approach to data race prediction for OS Kernels based on

learning a model concurrent memory accesses feasibility by exploiting the natural sparsity of in-

terthread communications through sparse fourier learning. First, PLA learns interactions between

inputs and memory accesses to efficiently predict races with a conservative lockset analysis. HB-

Fourier generalizes the approach developed in PLA by applying sparse learning to interthread

memory communications. These approaches are both theoretically novel and highly effective:

HBFourier finds hundreds of races in a recent Linux development, and security analysis on the

races found by PLA demonstrated that it found 102 harmful races, including one data race with

severe security impact that has been overlooked by existing methods for nearly 10 years.

Future Work. The new techniques for data race prediction developed in this thesis point to-

wards a new general class of approaches for program analysis that exploit the intrinsic sparsity in

program execution semantics. PLA and HBFourier work because input dependencies and inter-

thread communications dependencies are sparse and can therefore be approximated with sufficient

accuracy to make effective predictions based on a relatively small number of observed samples.

However, many other interactions in programs exhibit similar patterns of sparsity–for example, de-

pendencies between individual instructions in a program will tend to be sparse since each individ-

ual executed instruction only directly depends on few other instructions. In addition, functions can

be defined on more complex groups than the boolean domain and still learned efficiently through

their fourier expansions.

Dataflow Analysis. Dataflow analysis is usually performed using boolean indicators of whether
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dataflow from a given source is present for a given instruction and therefore naturally lends itself

to encoding through boolean indicator functions. These functions share the property with the

memory access feasibility functions defined in this thesis that they will tend to be sparse in the

fourier domain, since program instructions will receive dataflows from a few instructions on any

given execution. This means that boolean dataflow indicator functions can be efficiently learned in

their fourier domain. These models could then be applied to challenging open problems in dataflow

analysis, such as predicting when dataflows will be present between pointer operations for a given

set of program inputs.

Beyond Boolean Groups. Although the model functions learned in this thesis all operate on

boolean groups and boolean output, sparse fourier learning can be applied to functions with many

other possible group structures on their domains. Learning accurate and efficient models of func-

tions with more general group structures could be useful in many domains. For example, learning

functions on the integer groups could be used to model program branches and guide input gener-

ation for fuzzers and other software testing tools, while learning functions on permutation groups

could be used to further refine data race predictions based on the ordering of operations in a con-

current trace. Finally, the selection of groups that define a function’s fourier expansion can also

be formulated as a learning problem instead of being manually. Learning an optimal basis for the

fourier expansion could then resolved through application of other learning methods, for example

by using the embedding space learned by an auto-encoding neural network.
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Appendix A: PLA Appendices

A.1 Dynamic Race Prediction

Dynamic race prediction seeks to predict data races based on a concurrent execution trace.

A concurrent program 𝑃 is composed of a set of threads 𝑃 = {𝑝1, 𝑝2, ...} that can be executed

concurrently according to a schedule 𝑠 to generate a trace 𝑇 :

trace(𝑃; 𝑠) = 𝑇

A trace 𝑇 is composed of events (denoted 𝑒) that are totally ordered by the schedule 𝑠:

𝑇 = [𝑒1, 𝑒2, ...]

Each trace event 𝑒 is a tuple composed of an executing thread 𝑝, relevant memory or lock address

𝑚, and operation type 𝑜𝑝 (read, write, lock acquire, or lock release):

𝑒 = (𝑝, 𝑚, 𝑜𝑝) 𝑜𝑝 = 𝑟 |𝑤 |𝑎𝑐𝑞 |𝑟𝑒𝑙
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Figure A.1: ROC curves for access lockset prediction using varying numbers of samples evaluated on 5
sets of 50 randomly selected seeds with shown std. deviation. For each curve, the classification threshold
parameter 𝛽 giving the best performance is annotated based on F1 score.
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Figure A.2: Distribution of access locksets probabilities shown with log scale, where access locksets with
probability exceeding 𝛽 are marked orange. The vast majority of access locksets (> 99.9%) occur with
very low probability (< 0.05%), therefore identifying high probability access locksets is critical to making
accurate race predictions.

We use 𝑎 ∈ 𝑇 and 𝑙 ∈ 𝑇 as shorthand for the memory accesses or locks operations in a trace. Other

synchronization operations such as forks, joins, and barriers may also be included in a trace. We

avoid them here for the sake of clarity.

Feasible Schedules. For a schedule to be feasible on a program it must satisfy two ordering

constraints: (i) thread order, the instructions in each thread must be executed in order and (ii)

synchronization order, it must not violate the order imposed by synchronization primitives in each

thread (e.g., a lock cannot be acquired twice without first being released). We denote a feasible

schedule for a program 𝑃 as feas𝑃 (𝑠).

Concurrent Events. Two events are considered concurrent in a schedule if their positions in the

schedule are interchangeable: either can be executed at a given location without violating either

thread order or synchronization order. We define two events as concurrent for a program 𝑃 and

schedule 𝑠 if exchanging their positions does not make the schedule infeasible:

concurrent𝑃 (𝑒𝑖, 𝑒 𝑗 , 𝑠) := feas𝑃 (exchange(𝑒𝑖, 𝑒 𝑗 , 𝑠)),

𝑒𝑖, 𝑒 𝑗 ∈ trace(𝑃; 𝑠)

where exchange indicates swapping two events in the schedule.
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Data Races. Two memory accesses are considered a conflict if they are both memory accesses to

the same address and at least one is a write:

conflicting(𝑎𝑖, 𝑎 𝑗 ) := 𝑎𝑖 .𝑚 = 𝑎 𝑗 .𝑚 ∧

(𝑎𝑖 .𝑜𝑝 = 𝑤 ∨ 𝑎 𝑗 .𝑜𝑝 = 𝑤)

A pair of conflicting memory accesses in a trace is then considered a data race for a program 𝑃 if

they are concurrent in the trace schedule:

race𝑃 (𝑎𝑖, 𝑎 𝑗 , 𝑠) := concurrent𝑃 (𝑎𝑖, 𝑎 𝑗 , 𝑠)

∧ conflicting(𝑎𝑖, 𝑎 𝑗 )

Predicted Races. We denote the set of synchronization primitives that guard two memory accesses

by sync, where two accesses are considered unsynchronized if 𝑠𝑦𝑛𝑐(𝑎𝑖, 𝑎 𝑗 ) = ∅. Any predicted

race will always be on two unsynchronized events:

pred_race(𝑎𝑖, 𝑎 𝑗 ) =⇒ sync(𝑎𝑖, 𝑎 𝑗 , 𝑠) = ∅

However, null synchronization is a necessary but not sufficient condition for a race. If any schedule

that triggers the race would cause the program not to execute the relevant memory accesses, then

the race prediction is a false positive.

Feasible Races. For a predicted race to be feasible there must be a feasible schedule under which

the two events still appear (i.e., 𝑃 still executes the conflicting memory accesses) and race with

each other:

feas_race𝑃 (𝑎𝑖, 𝑎 𝑗 ) := ∃𝑠∗ : race𝑃 (𝑎𝑖, 𝑎 𝑗 , 𝑠
∗) ∧ feas(𝑠∗, 𝑃)

Task Definition. Dynamic race prediction seeks to predict all feasible racing pairs of memory
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accesses in a trace from program 𝑃 executing a given schedule 𝑠:

input: program 𝑃, trace 𝑇

output: race prediction 𝑎𝑖, 𝑎 𝑗 , 𝑠
∗ (A.1)

A.2 Dynamic Race Prediction Approaches

Happens Before Analysis. Happens before analysis uses partial orders defined on memory ac-

cesses and synchronization events to perform sound dynamic data race prediction (i.e., predict

only feasible races). When a race is predicted between a pair of events a schedule and trace 𝑠∗, 𝑇∗

must also be found that preserves the read/write happens-before relation in the observed trace 𝑇 :

∀𝑟 ∈ 𝑇∗ : 𝑙𝑎𝑠𝑡_𝑤𝑟𝑖𝑡𝑒(𝑟, 𝑇∗) = 𝑙𝑎𝑠𝑡_𝑤𝑟𝑖𝑡𝑒(𝑟, 𝑇)

where 𝑙𝑎𝑠𝑡_𝑤𝑟𝑖𝑡𝑒 indicates the most recent write to a read address of 𝑟 in a trace.

Preserving the read-write partial order ensures that the program will follow the same execution

path for 𝑠∗ as the original schedule 𝑠. This guarantees that predicted races will be feasible, and has

the additional benefit that 𝑠∗ can be used as a witness schedule to reproduce the race. However,

happens-before analysis requires a reference trace 𝑇 in order to define a sound partial order.

Lockset Analysis. Lockset analysis ignores the order in the observed trace and instead checks

exclusively for commonly held locks on each shared memory access. Ignoring ordering makes

lockset analysis complete but unsound. Any observed memory accesses that can race will be

predicted as races, but the predicted races are not guaranteed to be feasible.

The lockset algorithm checks for commonly held locks by performing an intersection over the

held locks for each memory access to a given address. It marks a memory access 𝑎 as potentially

racing if the the following condition is met:

lockset_violation(𝑎) :=
⋂̂
𝑎∈𝑇

lockset(�̂�) = ∅ : �̂�.𝑚 = 𝑎.𝑚
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where lockset indicates the set held locks by a thread when a memory access was performed:

lockset(𝑎) := {𝑙 : 𝑙𝑎𝑠𝑡_𝑎𝑐𝑞𝑙 (𝑎, 𝑇) > 𝑙𝑎𝑠𝑡_𝑟𝑒𝑙𝑙 (𝑎, 𝑇)}

and 𝑙𝑎𝑠𝑡_𝑎𝑐𝑞𝑙 and 𝑙𝑎𝑠𝑡_𝑟𝑒𝑙𝑙 indicate the most recent 𝑎𝑐𝑞 or 𝑟𝑒𝑙 operation for a lock 𝑙 and memory

access 𝑎 in trace 𝑇 .

Lockset analysis is fast and scalable because it uses cheap set intersections to perform its analy-

sis. However, it is also prone to extremely high false positive rates, and the races it predicts cannot

be checked automatically because it does not generate a witness schedule 𝑠∗.

Hybrid Happens-Before Lockset Therefore, lockset analysis is usually used in conjunction with

happens-before analysis [28, 51, 9], which prevents false positives and generates witness schedules

for each predicted race.

A.3 Theorem 1 Proof

Theorem 1 statement: For a threshold 𝛽, relative error bound 0 < 𝛿 < 1, and two access locksets

𝛼1 and 𝛼2 with non-intersecting locksets and random variables 𝐴𝛼1 and 𝐴𝛼2 sampled 𝑁 times such

that 𝛼1, 𝛼2, 𝛽 satisfy Eq. 2.2 and P
[
𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1

]
≥ 𝛽, then with probability 𝑒−𝛿

2𝑁𝛽/(2−𝛿) ,

the probability of a false positive is bounded by:

P[𝐴𝛼1 = 0 ∪ 𝐴𝛼2 = 0] < 1 − 𝛽(1 + 𝛿)

Proof. Let A be a random variable such that

A =


1 if 𝐴𝛼1 = 𝐴𝛼2 = 1

0 otherwise

and ` = E[A] < 𝛽 and let 𝛿 =
𝛽(1+𝛿)−`

`
. LetA𝑖 be sample ofA that is obtained by independently

sampling 𝐴𝛼1 and 𝐴𝛼2 . Then probability of the false positive rate exceeding 1 − 𝛽(1 + 𝛿) for 𝐴𝛼1
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and 𝐴𝛼2 is given by:

P
[∑𝑁

𝑖 A𝑖 ≥ 𝑁𝛽(1 + 𝛿)
]
= P

[∑𝑁
𝑖 A𝑖 ≥ 𝑁`(1 + 𝛿)

]
We apply the Chernoff bound [63] on ` and 𝛿:

P
[∑𝑁

𝑖 A𝑖 ≥ 𝑁`(1 + 𝛿)
]
≤ 𝑒−𝛿

2𝑁`/(2−𝛿)

From this we obtain a bound in terms of 𝛽 and 𝛿:

𝑒−𝛿
2𝑁`/(2−𝛿) < 𝑒−𝛿

2𝑁𝛽/(2−𝛿)

□

A.4 Theorem 2 Proof

Theorem 2 statement: For a threshold 𝛽, relative error bound 0 < 𝛿 < 1, and two access locksets

𝛼1 and 𝛼2 with non-intersecting locksets and random variables 𝐴𝛼1 and 𝐴𝛼2 sampled 𝑁 times such

that 𝛼1 and 𝛼2 do not satisfy equation 2.2 and P
[
𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1

]
< 𝛽, then with probability

𝑒−𝛿
2𝑁𝛽/2, the probability of a false negative is bounded by:

P[𝐴𝛼1 = 1 ∩ 𝐴𝛼2 = 1] < 𝛽(1 − 𝛿)

Proof. Let A be a random variable such that

A =


1 if 𝐴𝛼1 = 𝐴𝛼2 = 1

0 otherwise

and ` = E[A] > 𝛽 and let 𝛿 = − 𝛽(1−𝛿)−`
`

. LetA𝑖 be sample ofA that is obtained by independently

sampling 𝐴𝛼1 and 𝐴𝛼2 . Then probability of the false negative rate exceeding 𝛽(1 − 𝛿) for 𝐴𝛼1 and
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𝐴𝛼2 is given by:

P
[∑𝑁

𝑖 A𝑖 ≤ 𝑁𝛽(1 − 𝛿)
]
= P

[∑𝑁
𝑖 A𝑖 ≤ 𝑁`(1 − 𝛿)

]
We apply the Chernoff bound on ` and 𝛿:

P
[∑𝑁

𝑖 A𝑖 ≤ 𝑁`(1 − 𝛿)
]
≤ 𝑒−𝛿

2𝑁`/2

From this we obtain a bound in terms of 𝛽 and 𝛿:

𝑒−𝛿
2𝑁`/2 < 𝑒−𝛿

2𝑁𝛽/2

□

A.5 Data Races Found by PLA

Table A.1 lists all of the races found by PLA in our evaluation.

A.6 Impact of Parameter Choices

We evaluate PLA’s access lockset classification accuracy on seeds drawn from the benchmark

corpus used in Section 2.5.2. For each seed, we vary the threshold parameter 𝛽 used to classify

consistent access locksets and number of samples used to estimate access lockset probabilities. We

then measure on a set of test samples whether the predicted stable access locksets are present in

each sample.

Figure A.1 shows ROC curves that illustrate the tradeoff in True Positive Rate (ratio of pre-

dicted access locksets present in each test sample) and False Positive Rate (ratio of predicted

access locksets not present each test sample) when varying the threshold parameter 𝛽 for differ-

ent numbers of samples, based on 5 randomly selected seed benchmarks used in 2.5.4. Standard

deviations over the 5 seed benchmarks are also shown. Increasing the number of samples allows
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PLA to learn a better classifier with more consistent performance (i.e., lower std. deviation), but

at a cost of increased sampling time, which we show in Section 2.5.6 is the most time consuming

stage of PLA. In practice when running PLA we use 4 samples with 𝛽 = 0.5, which provides a

good tradeoff between accuracy and runtime.

Access Lockset Distribution. Figure A.2 shows PLA’s sampling classification on the distribution

of access locksets probabilities, where access locksets with probability exceeding 𝛽 are marked

orange. PLA is effective because the vast majority of access locksets (> 99.9%) occur with very

low probability (< 1.0%), therefore only predicting races when the relevant access locksets have

high probability is critical to making accurate race predictions without overwhelming numbers of

false positives.
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Table A.1: Full Listing of Races found by PLA. Note that, for the variable column, we list the macro when
LLVM instrumentation failed to identify the corresponding source code variable.

ID subsystem variable number of instruction pairs category

0 kernel variable: ns->pid_allocated 1 harmful
1 kernel variable: nr_threads 1 harmful
2 kernel variable: lowest_to_date 1 harmful
3 kernel macro: pr_info_once 8 benign
4 kernel/time macro: printk_once 4 benign
5 kernel/cgroup variable: cgrp_dfl_visible 2 harmful
6 kernel variable: audit_cmd_mutex.owner 2 harmful
7 kernel/events variable: sysctl_perf_event_sample_rate 1 harmful
8 mm variable: pcpu_nr_populated 1 harmful
9 mm macro: pr_warn_once 21 benign

10 mm variable: h->resv_huge_pages 4 benign
11 mm variable: h->free_huge_pages 3 benign
12 mm variable: h->nr_huge_pages 2 harmful
13 mm variable: h->surplus_huge_pages 1 benign
14 mm variable: ksm_run 1 harmful
15 fs variable: loop_check_gen 2 harmful
16 security/keys variable: key_gc_next_run 2 harmful
17 security/keys variable: user->qnkeys 3 benign
18 security/keys variable: user->qnbytes 4 benign
19 security/keys variable: ns->persistent_keyring_register 1 harmful
20 arch/x86 macro: alternative_call_2 1 benign
21 drivers/pci variable: vga_arbiter_used 4 harmful
22 drivers/tty variable: vt_dont_switch 2 harmful
23 drivers/tty variable: shift_state 1 harmful
24 drivers/tty variable: kbd->ledflagstate 4 harmful
25 drivers/tty variable: kbd->kbdmode 6 benign
26 drivers/tty variable: kbd->default_ledflagstate 4 benign
27 drivers/tty variable: kbd->modeflags 2 benign
28 drivers/tty variable: do_poke_blanked_console 1 harmful
29 drivers/tty variable: want_console 1 harmful
30 drivers/char variable: last_value 2 benign
31 drivers/base variable: fw_fallback_config.loading_timeout 4 harmful
32 drivers/misc variable: context->notify 1 harmful
33 drivers/scsi macro: pr_err_once 6 benign
34 drivers/net variable: crc_force 3 harmful
35 drivers/input variable: input_devices_state 1 harmful
36 sound/core variable: card_requested[card] 2 harmful
37 sound/core variable: client_usage.cur 2 benign
38 sound/core variable: client_usage.peak 1 benign
39 sound/core variable: num_queues 2 harmful
40 sound/core variable: max_midi_devs 1 harmful
41 net/core variable: warned 3 harmful
42 net/llc variable: llc_ui_sap_last_autoport 2 benign
43 net/netfilter variable: table->handle 2 harmful
44 net/ipv4 variable: tcp_md5sig_pool_populated 1 harmful
45 net/ipv4 variable: challenge_timestamp 2 harmful
46 net/ipv4 variable: ca->flags 5 harmful
47 net/xfrm variable: idx_generator 3 harmful
48 net/xfrm variable: aalg_list[i].available 22 harmful
49 net/xfrm variable: ealg_list[i].available 21 harmful
50 net/xfrm variable: calg_list[i].available 4 harmful
51 net/unix variable: user->unix_inflight 2 harmful88
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