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Abstract

Interpretable Machine Learning Architectures for Efficient Signal Detection

with Applications to Gravitational Wave Astronomy

Jingkai Yan

Deep learning has seen rapid evolution in the past decade, accomplishing tasks that were

previously unimaginable. At the same time, researchers strive to better understand and interpret

the underlying mechanisms of the deep models, which are often justifiably regarded as “black

boxes”. Overcoming this deficiency will not only serve to suggest better learning architectures

and training methods, but also extend deep learning to scenarios where interpretability is key to

the application. One such scenario is signal detection and estimation, with gravitational wave

detection as a specific example, where classic methods are often preferred for their

interpretability. Nonetheless, while classic statistical detection methods such as matched filtering

excel in their simplicity and intuitiveness, they can be suboptimal in terms of both accuracy and

computational efficiency. Therefore, it is appealing to have methods that achieve “the best of both

worlds”, namely enjoying simultaneously excellent performance and interpretability.

In this thesis, we aim to bridge this gap between modern deep learning and classic

statistical detection, by revisiting the signal detection problem from a new perspective. First, to

address the perceived distinction in interpretability between classic matched filtering and deep

learning, we state the intrinsic connections between the two families of methods, and identify how

trainable networks can address the structural limitations of matched filtering. Based on these

ideas, we propose two trainable architectures that are constructed based on matched filtering, but



with learnable templates and adaptivity to unknown noise distributions, and therefore higher

detection accuracy. We next turn our attention toward improving the computational efficiency of

detection, where we aim to design architectures that leverage structures within the problem for

efficiency gains. By leveraging the statistical structure of class imbalance, we integrate

hierarchical detection into trainable networks, and use a novel loss function which explicitly

encodes both detection accuracy and efficiency. Furthermore, by leveraging the geometric

structure of the signal set, we consider using signal space optimization as an alternative

computational primitive for detection, which is intuitively more efficient than covering with a

template bank. We theoretical prove the efficiency gain by analyzing Riemannian gradient

descent on the signal manifold, which reveals an exponential improvement in efficiency over

matched filtering. We also propose a practical trainable architecture for template optimization,

which makes use of signal embedding and kernel interpolation.

We demonstrate the performance of all proposed architectures on the task of gravitational

wave detection in astrophysics, where matched filtering is the current method of choice. The

architectures are also widely applicable to general signal or pattern detection tasks, which we

exemplify with the handwritten digit recognition task using the template optimization

architecture. Together, we hope the this work useful to scientists and engineers seeking machine

learning architectures with high performance and interpretability, and contribute to our

understanding of deep learning as a whole.
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Chapter 1: Introduction

1.1 Deep Learning and Interpretable Architectures

Deep learning has been evolving at exceptional speed in the recent years. With the advent

of new deep learning architectures, from convolutional networks [1, 2] and LSTMs [3] to trans-

formers [4, 5] and diffusion models [6], deep learning is capable of accomplishing tasks that were

unimaginable to people decades ago, such as image recognition [2, 5], language synthesis [4, 7],

game playing [8, 9], and so on. These methods are often empowered by over-parameterized archi-

tectures and enormous training datasets. For example, the GPT-3 model [7] released in 2020 has

175 billion parameters which require 800GB to store.

Such impressive scaling is undoubtedly a major factor for the success of modern deep learning.

At the same time, along with constructing ever-expanding modern architectures, researchers have

been striving to better understand the underlying mechanisms, for both recent transformers and

diffusion models [10, 11] and the more basic fully-connected networks alike [12, 13]. Although

plenty of insight has been obtained in the literature, there remain far more questions than answers,

and it is not surprising that deep learning methods are often regarded as “black boxes” [14]. De-

mystifying these black box models will not only help to better interpret the learned features and

outputs, but also point toward better architectural designs, and potentially expand the scope of ap-

plicability of these models. Many existing works aim to address this interpretability issue of black

box models from various angles, such as finding alternative transparent-box models that mimic the

behavior of the black box [15, 16], or obtaining explanations for specific decision-making of the

black box [17, 18, 19]. A more in-depth summary of the different approaches can be found in the

survey paper [14].

Another approach to the interpretability of learning architectures is to instead use interpretable
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methods as a starting point. Powerful as modern black box architectures are, they are still far

from being almighty and there are places where traditional methods shine. For example, linear

regression and its variants are still the predominant methods in economics [20, 21], largely due

to their statistical explanatory power which is critical to economic applications. Medical imaging

also depends heavily on traditional processing techniques, due to often limited dataset sizes and

vaguely-defined problems [22]. These traditional methods are often well-motivated and intuitive,

enjoying desirable efficiency and interpretability, but sometimes lacking in performance compared

with modern deep learning methods which takes advantage of massive amounts of training data,

provided that is available. This suggests a possibility of equipping traditional methods with train-

able components, enabling it to leverage the power of data-driven methods while maintaining the

strengths of model-based methods, effectively achieving “the best of both worlds”. As a spe-

cific example, unrolled optimization [23, 24, 25] is a technique where an iterative optimization

algorithm is reconfigured to become trainable, thereby improving the model performance over the

original optimization method. Granted, such model-based interpretable architectures are not de-

signed to replace modern transformers altogether, but rather suggesting an alternative approach to

well-defined problem setups where computational efficiency and model interpretability are a key

concern. One such scenario is the classic statistical problem of signal detection and estimation,

which we introduce in the following section.

1.2 The Signal Detection Problem

The detection and estimation of signals from noise is a classic problem in statistical signal

processing with well-founded theory [26], and has wide applications ranging from radar and geo-

physics to image processing and biomedical engineering. In this section, we will first state the

problem formulation, and then briefly describe some classic and deep learning approaches to it.

Assume our signals of interest form a certain set 𝑆 ⊂ R𝐷 , which is typically a 𝑑-dimensional

submanifold of R𝐷 . Often the set 𝑆 can be indexed by a parameterization, in which case we also

refer to the problem as “parametric signal detection”. Given a noisy observation 𝒙 ∈ R𝐷 , the dual
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tasks of detection and estimation are to determine whether 𝒙 contains some signal of interest or

not, and find the corresponding signal if it exists. More formally, we model tuples of observations

and labels (𝒙, 𝑦) ∈ R𝐷 × {0, 1} as:

𝒙 =


𝑎 𝒔♮ + 𝒛 if 𝑦 = 1

𝒛, if 𝑦 = 0
(1.1)

where 𝑎 ∈ R+ is the signal amplitude, 𝒔♮ ∈ 𝑆 is the ground truth signal contained in 𝒙, and 𝒛

is additive noise. We assume the signals are normalized to have unit power, namely ∥𝒔∥2 = 1

for all 𝒔 ∈ 𝑆. For the simplicity of illustration, we assume the noise is white Gaussian, namely

𝒛 ∼ N(0, 𝜎2𝑰), and implications of non-Gaussian noise will be discussed later in the thesis. Given

an input 𝒙, we want to predict the corresponding label 𝑦, as well as the signal 𝒔♮ if 𝑦 = 1.

An aspect of the data model that remains unspecified is how the signal 𝒔♮ is drawn from the

signal set 𝑆. For the majority of the discussion, we will adopt the perspective that 𝒔♮ is drawn

from a certain signal distribution, and that the evaluation of model performance follows the same

distribution. At the same time, we will also briefly discuss implications of a minimax perspective,

where model performance is evaluated based on the worst performance over all possible 𝒔♮ from

the signal set.

When detecting a single target signal in additive noise, it is known that matched filtering (MF)

gives the optimal linear filter for maximizing the signal-to-noise ratio (SNR). When detecting a

family of signals, however, matched filtering is in general no longer optimal, but its simplicity

and intuitiveness still have a strong appeal. The multi-signal variant of matched filtering uses the

conceptual decision statistic max𝒔∈𝑆 ⟨𝒔, 𝒙⟩.1 In other words, it implements

𝑦̂(𝒙) = 1 ⇐⇒ max
𝒔∈𝑆
⟨𝒔, 𝒙⟩ ≥ 𝜏 (1.2)

where 𝜏 is a given threshold, and the estimated signal can be obtained as arg max𝒔∈𝑆 ⟨𝒔, 𝒙⟩.
1The general suboptimality of this statistic will be discussed later in the thesis.
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Matched filtering, or template matching, approximates the above decision statistic with the

maximum over a finite bank of templates 𝒔1, . . . , 𝒔𝐾 of size 𝐾:

𝑦̂MF(𝒙) = 1 ⇐⇒ max
𝑖=1,...,𝐾

⟨𝒔𝑖, 𝒙⟩ ≥ 𝜏. (1.3)

The estimated signal is then the template 𝒔𝑖 that contributes to the highest correlation. If the tem-

plate bank densely covers 𝑆, (1.3) will accurately approximate (1.2). However, dense covering

can be very inefficient — the number of templates required to cover 𝑆 with some target radius

𝑟 grows as 𝑛 ∝ 1/𝑟𝑑 , making this approach impractical for all but the smallest 𝑑. This ineffi-

ciency has motivated significant efforts in applied communities to optimize the placement of the

templates 𝒔𝑖, maximizing the statistical performance for a given fixed 𝐾 [27]. Nevertheless, the

curse of dimensionality remains in force. Note that our model is simplified in that the location of

signal occurrence is assumed to be known, as indicated by the fixed input dimension. However,

the distinction between unknown versus known location can be resolved by replacing the inner

product operation with the correlation (or convolution) operation, and there is no loss assuming

fixed location for matched filtering.

This conceptual idea of using large template banks for detection is widely present in appli-

cations such as neuroscience [28], geophysics [29, 30], image pose recognition [31], radar signal

processing [32, 33], and aerospace engineering [34], amongst many others. In the meantime, many

modern learning architectures employ similar ideas of matching inputs with template banks, such

as transformation-invariant neural networks which create a large number of templates by applying

transformations to a smaller family of filters [35, 36, 37].

Alongside matched filtering and other statistical signal methods, deep learning suggests a dif-

ferent approach to the problem. In the above problem setup (1.1) where the input has fixed dimen-

sion, a fully-connected feedforward neural network can output binary labels for signal detection, or

output signal parameters for signal estimation. Again, the fully-connected network naturally takes

the form of a convolutional network when the signal location is unknown, where the convolution
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kernels are identical to the weights in the fully-connected network.

As previously discussed, both families of methods are viable and have different strengths. The

classic statistical methods excel in their intuitiveness and interpretability, while the deep learning

methods often enjoy better performance. Although deep learning methods are gaining popularity

in many tasks, there remain scenarios where the interpretability is highly valued and therefore more

traditional approach is preferred. In the following section, we introduce the task of gravitational

wave detection from astrophysics, where despite plenty of deep learning architectures having been

proposed in the literature, matched filtering remains the current method of choice.

1.3 A Specific Application: Gravitational Wave Detection

The discovery of cosmic gravitational waves [38], the windfall of binary black-hole merger

detections [39, 40], and the spectacular insights that multimessenger astrophysics provided [41,

42] revolutionized how we understand the universe. This leap was due to multiple factors, from

instrumental advances to computing breakthroughs. Emerging interferometric gravitational wave

detectors, KAGRA [43], GEO600 [44], Virgo [45], and LIGO [46, 47], played a critical role as

they provided the technology [48, 49, 50] enabling signals to be extracted from ripples in Einstein’s

space-time [51, 52]. Of course, as it is not sufficient to have data with faint cosmic signals buried

in the noise, the community had to rely on exquisitely sensitive data analysis algorithms to extract

transient signals from the noisy data. The problem of identifying gravitational waves [53] in a

single gravitational-wave detector data stream 2 can be formulated as follows: we observe detector

strain data 𝒙 ∈ R𝐷 , and wish to determine whether 𝒙 consists of astrophysical signal plus noise,

or noise alone. Furthermore, the physical parameters associated with gravitational wave signals

serve as natural parameters for the signals, and hence this aligns well with the parametric signal

detection and estimation problem stated in the previous section.

The bulk of the discoveries were made by two classes of powerful data analysis approaches,

2In general, a global Earth and Space based gravitational-wave detector network can be treated as a composite
data stream [54, 55]. However, that added complexity is unnecessary when discussing the principles of this work.
Therefore, we constrain ourselves to a single datastream in this proof of principle analysis.
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excess power [56, 57, 58] and matched filtering [59, 60, 61, 62, 63, 64, 65]. The flagship matched

filtering methods [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78] reached unprecedented so-

phistication and became the workhorse of the field [39, 40]. Insightful work also exist on the

extent of optimality, role of intrinsic parameters, and effect of non-Gaussian backgrounds [79, 80,

81]. There is more than historical evidence on their algorithmic power [54], and they are also

considered optimal [62] when searching for chirps of known shape [82, 60, 83, 84] embedded

in well-behaved Gaussian noise. Within the optimality and success lie limitations, as the data is

significantly more complex [85, 86] than Gaussian noise and many cosmic signals are not as well

known as the binary black-hole models that are being used in searches [87]. Therefore, it is critical

that we both seek data analysis methods beyond the horizon of current techniques and rigorously

understand the place of current techniques in the broader field of possible methods.

At the same time, an abundance of prior works has been using deep learning methods for

gravitational wave detection. Convolutional neural networks have been shown to be capable of

identifying gravitational waves and their parameters from binary black holes and binary neutron

stars, with performance approaching the matched filtering search currently used by LIGO [88, 89,

90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. In addition,

these machine learning methods can also be applied to glitches and noise transients identification

[110, 111, 112, 113, 92, 114, 115], signal classification and parameter estimation [116, 117, 118,

119, 120], data denoising [121, 122], etc. While these works exhibit neural networks that could

approach the performance of matched filtering, they are still often applied as or considered “black

box” models. This makes it challenging to evaluate the statistical evidence provided by neural

networks, and to incorporate that evidence in downstream analyses [123].

As we deepen our search for gravitational wave signals, the issue of computational efficiency

(namely, the number of basic operations required by a computer) is becoming increasingly promi-

nent. Detection methods that excel in both statistical performance and computational efficiency can

significantly boost our capacities for exploring wider and higher-dimensional parameter spaces,

and even other families of eccentric waveforms [124]. This in turn will help with uncovering more
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astrophysical events, potentially unveiling novel astrophysical phenomena, as well as reducing the

carbon footprint associated with searching for these events.

1.4 Objectives and Structure of the Thesis

Based on the existing body of literature, we aim to bridge the gap between traditional statisti-

cal methods and novel deep learning methods for signal detection, with particular applications to

gravitational wave detection. In Chapter 2 [125], we first establish the intrinsic equivalence and

connections between matched filtering and neural networks, and illustrate the structural limitations

of matched filtering. We then propose two network architectures, shallow and deep respectively,

which are specifically constructed to replicate matched filtering at initialization and then trainable

on data, and are able to achieve better statistical accuracy than the baseline matched filtering. In

Chapter 3 [126], we pivot around the computational efficiency of detection, and propose a hierar-

chical trainable architecture that uses multi-layer decision rules to take advantage of the detection

problem structure. The model is trained using a loss function designed to explicitly encode both

accuracy and efficiency, which are the two desiderata for the task. In Chapter 4, we utilize a differ-

ent type of structure in the problem, namely the geometric structure of the signal set, and propose

to use optimization to replace covering (as done in matched filtering) as the computational prim-

itive. We show theoretically that optimization is exponentially more efficient than covering for

signal detection. Furthermore, we apply unrolled optimization and kernel interpolation to the iter-

ative method, and propose a trainable architecture that excels in both efficiency and interpretability.

Finally, we provide discussions and concluding remarks in Chapter 5.
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Chapter 2: Generalized Approach to Matched Filtering Using Neural

Networks

2.1 Introduction

This work is motivated by a critical observation, which we substantiate below: matched fil-

tering with a collection of templates is formally equivalent to a particular neural network, whose

architecture and parameters are dictated by the templates. This observation has precedents in the

machine learning literature, where deep neural networks are sometimes viewed as hierarchical

template matching methods, with signal-dependent, class-specific templates [127, 128, 129, 130,

131, 132, 133]. Here, we delineate a simple and explicit equivalence between matched filtering

and particular neural networks, which can be constructed analytically from a set of templates. This

equivalence lies in the algorithmic level, and does not depend on specific problem formulations.

In order to study the potential performance gains of using neural networks, we formulate the

gravitational wave detection problem abstractly as the detection of a parametric family of signals.

Under this framework, we show that the analytically constructed networks can also be used as a

principled starting point for learning from data, yielding signal classifiers with better performance

than their initialization, namely “standing on the shoulder of giants”. Such learning can be applied

to scenarios both with or without a prior distribution on the parameters. In particular, when a

prior distribution is given, we show that the learned neural network can (empirically) approach the

statistically optimal performance.

We propose and investigate two different neural network architectures for implementing matched

filtering, respectively MNet-Shallow and MNet-Deep. The former has simpler structure, while

the latter is more flexible and can deal with a wider range of distributions. These learned classifiers

have a number of additional advantages: they do not require prior knowledge of the noise distribu-
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tion, can be adapted to cope with time-varying noise distributions, and suggest new approaches to

computationally efficient signal detection. We conducted experiments using real LIGO data [134]

in order to demonstrate the feasibility and power of neural networks in comparison to matched fil-

tering, where we validate our findings empirically that neural networks via training can reach better

performance. Finally, interpreting matched filtering and neural networks in a common framework

also allows a clear comparison of their computational/storage complexities and statistical strengths,

consequently making deep-learning less of a mystery.

The rest of the chapter is organized as follows. Section 2.2 discusses two possible formulations

of the objective. Section 2.3 discusses matched filtering as an approach to solving the parametric

detection problem, as well as its limitations. Section 2.4 illustrates how neural network models

can be applied in this problem, in a way that exactly implements matched filtering at initialization.

Section 2.5 discusses the training process of neural network models, and in particular how it is

aligned with the parametric signal detection problem. In Section 2.6 we present experimental

results on real LIGO data and synthetic injections. We discuss some further implications of this

work in Section 2.7, and conclude in Section 2.8.

2.2 Two Possible Objectives for Parametric Signal Detection

As discussed in the introductory chapter, the problem of detecting a parametric family of grav-

itational wave signals can be modeled as the following hypothesis test:

𝐻0 : 𝒙 = 𝒛, (2.1)

or 𝐻1 : 𝒙 = 𝒔♮ + 𝒛 for some 𝒔♮ ∈ 𝑆. (2.2)

Our broad goal is to identify decision rules 𝛿 : R𝐷 → {0, 1} that (i) have good statistical

performance and (ii) can be implemented efficiently. Our approach will start with analytically

defined neural networks, which precisely replicate matched filtering, and then train these networks

to optimize their statistical performance. We will give training approaches that are compatible with
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two classical frameworks for formalizing the performance decision rules 𝛿: the Neyman-Pearson

framework, in which the ground truth signal 𝒔♮ is drawn from 𝑆 with some known distribution 𝜈,

and the minimax framework, in which we control the worst performance over all possible cases of

the ground truth signal 𝒔♮.

2.2.1 Neyman-Pearson Framework

In this setting, one assumes a known probability distribution 𝜈 for the ground truth signal,

which enables us to view 𝐻1 as a simple hypothesis. The false positive rate (FPR) associated with

the rule 𝛿 is

FPR = P𝒛 [𝛿(𝒛) = 1] (2.3)

The false negative rate (FNR) associated with a specific signal 𝒔 is

FNR(𝒔) = P𝒛 [𝛿 (𝒔 + 𝒛) = 0] . (2.4)

The overall false negative rate is

FNR =

∫
FNR(𝒔) d𝜈(𝒔). (2.5)

The Neyman-Pearson criterion seeks the optimal tradeoff between FNR and FPR:

min
𝛿

FNR subject to FPR ≤ 𝛼, (2.6)

where 𝛼 is a user-specified significance level.

There is a classical closed form expression for the optimal test under the Neyman-Pearson

criterion: if 𝜌0 and 𝜌1 are the probability densities of the signal 𝒙 under hypotheses 𝐻0 and 𝐻1,
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Figure 2.1: An example of the parametric signal detection problem with signal space 𝑆. Densities
𝜌0 and 𝜌1 are shown in red and blue respectively.

respectively, then the optimal test is given by comparing the likelihood ratio

𝜆(𝒙) = 𝜌1(𝒙)
𝜌0(𝒙)

(2.7)

to a threshold 𝜏, which depends on the significance level 𝛼. An illustration of an example problem

is shown in FIG 2.1.

2.2.2 Minimax Framework

When a good prior 𝜈 is not available or cannot be assumed, we can instead seek a decision rule

that solves

min WFNR subject to FPR ≤ 𝛼. (2.8)

at a given false positive rate, where WFNR is the worst false negative rate defined as

WFNR = max
𝒔∈𝑆

FNR(𝒔). (2.9)
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In contrast to the Neyman-Pearson criterion, there is in general no simple expression for the mini-

max optimal rule 𝛿 [135]. In the next section, we will review matched filtering, a simple, popular

approach to detection which is compatible with the minimax framework (albeit suboptimal in terms

of (2.8)), in the sense that it does not require a prior on the signal distribution.

2.3 Matched Filtering for Parametric Detection

Matched filtering is a powerful classical approach to signal detection, which applies a linear

filter which is chosen to maximize the signal-to-noise ratio (SNR).

2.3.1 Optimality for Single Signal Detection

In the simplest possible setting, in which (i) there is only one target signal 𝒔, (ii) the observation

𝒙 has the same length as 𝒔, and (iii) the noise is uncorrelated (i.e., E [𝒛𝒛∗] = 𝜎2𝑰), matched filtering

simply computes the inner product between the target 𝒔 and the observation:

𝛿(𝒙) = 1 iff ⟨𝒔, 𝒙⟩ ≥ 𝜏. (2.10)

When detecting a single signal 𝒔 in iid Gaussian noise, this decision rule is optimal in both the

Neyman-Pearson and minimax senses: for example, if 𝒛 ∼ N(0, 𝜎2𝑰), the likelihood ratio

𝜆(𝒙) = 𝜌0(𝒙 − 𝒔)
𝜌0(𝒙)

= exp
(
⟨𝒔, 𝒙⟩ − ∥𝒔∥2/2

𝜎2

)
(2.11)

is a monotone function of ⟨𝒔, 𝒙⟩, and so matched filtering implements the (optimal) likelihood ratio

test. FIG 2.2 illustrates this optimality geometrically.

The simplicity and optimality in this setting make matched filtering a principled choice for

signal detection, and have inspired its application in settings that go far beyond the scope of this

rigorous guarantee. In particular, the simplest and most practical extension of this rule to detecting

parametric families of signals is suboptimal in both the Neyman-Pearson and minimax settings.

Moreover, there are a number of additional factors which contribute to its suboptimality. These in-
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clude unknown, non-Gaussian, and possibly time-varying noise distributions as well as density and

coverage issues in the template bank, which for complexity reasons may cover only a small por-

tion of the phase space [62]. Nevertheless, we will see how matched filtering can inspire principled

approaches to deriving more flexible decision rules which can address many of these challenges.

2.3.2 Extensions to Parametric Detection

The simplest extension of the decision rule (2.10) to parametric detection problems, in which

there are multiple potential targets signals, involves taking the maximum over the parameter space:

𝛿(𝒙) = 1 iff max
𝒔∈𝑆
⟨𝒔, 𝒙⟩ ≥ 𝜏. (2.12)

Here we used the assumption that all templates have unit norm, namely ∥𝒔∥22 = 1, ∀𝒔 ∈ 𝑆. When

this rule (2.12) is hard to implement in exact form, it can typically be approximated by taking

samples 𝒔1, . . . , 𝒔𝐾 and setting

𝛿(𝒙) = 1 iff max
𝑖=1,...,𝐾

⟨𝒔𝑖, 𝒙⟩ ≥ 𝜏. (2.13)

When the sampling is sufficiently dense, the sampled matched filter rule (2.13) accurately approx-

imates the ideal matched filter rule (2.12) [62]. This rule, while simple, is an important compo-

nent of many sophisticated data analysis pipelines, including LIGO, Virgo and KARGA’s template

based searches for compact binary coalescence signals.

Note that the matched filtering decision rule (2.12) has connections to the (generalized) like-

lihood ratio test, where 𝐻1 is the composite hypothesis 𝒔 ∈ 𝑆. While this test has nice statistical

properties, it is not guaranteed to be the uniformly most powerful test when the hypotheses are

composite. For the rest of this chapter, the term “likelihood ratio test” will be reserved for the test

with a given prior and simple hypotheses, which satisfies the Neyman-Pearson criterion.

In contrast to the single signal setting, the simple extensions (2.12)-(2.13) of matched filtering

to detecting parametric families of signals are not optimal: in the Neyman-Pearson setting, they do
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not achieve the minimal FNR for a given FPR, while in the minimax setting, they do not achieve

the minimal WFNR for a given FPR.

The suboptimality of (2.12)-(2.13) under Neyman-Pearson can be observed by noting that the

decision statistic max𝒔∈𝑆 ⟨𝒔, 𝒙⟩ is not a monotone function of the likelihood ratio, which in i.i.d.

Gaussian noise for example, takes the form

𝜆(𝒙) =
∫

exp
(
⟨𝒔, 𝒙⟩ − ∥𝒔∥2/2

𝜎2

)
d𝜈(𝒔). (2.14)

FIG 2.3 and 2.4 illustrate such suboptimality for a particular problem configuration in R2. Note

that throughout this and the following chapter, we will slightly abuse the term of receiver operating

characteristic (ROC) curves by plotting FNR against FPR, instead of the convention of plotting

FPR against the true positive rate TPR ≡ 1 − FNR. This highlights the connection to the notion of

error rates in machine learning, and also facilitates demonstration of the curves and axis ranges at

very low error rates.

It is somewhat unsurprising that matched filtering is suboptimal in this setting, since the deci-

sion rules (2.12)-(2.13) do not make use of the prior 𝜈, while the likelihood ratio test assumes (and

uses) this prior. However, the matched filtering rule (2.12)-(2.13) is also in general suboptimal in

the “prior-free” minimax setting. Consider the scenario in FIG 2.5 as an example, where the signal

space 𝑆 ⊂ R2 consists of only two signals 𝒔1 = [1, 0]𝑇 and 𝒔2 = [0, 1]𝑇 . Comparing the prior-free

matched filtering decision rule 𝛿MF with the optimal decision rule 𝛿∗ under the Neyman-Pearson

framework with uniform prior over the two signals, we see that 𝛿MF is suboptimal under Neyman-

Pearson criterion with uniform prior. Moreover, from symmetry it follows that for symmetric

decision rules such as 𝛿MF and 𝛿∗ the worst FNR and the overall FNR are equal. This implies that

𝛿MF is also worse than 𝛿∗ under the minimax criterion.

We also note that this suboptimality is, in some sense, not because we don’t have sufficient

templates. In the example shown in FIG 2.5, the matched filtering model already covers the entire

signal set which consists of two signals. Furthermore, we will see in the later discussions that
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Figure 2.2: Optimality of matched filtering in single signal detection.

matched filtering has other structural limitations when working with non-Gaussian noise distribu-

tions.

2.4 From Matched Filtering to Neural Networks

Since the matched filtering rule (2.13) is suboptimal for parametric detection, we will show

that (i) the form of this rule suggests approaches to learning optimal rules for parametric detection,

and (ii) the resulting classifiers have additional advantages, including greater flexibility and lower

computational/storage complexity or cost. Our approach is driven by the observation: the matched

filtering rule (2.13) is equivalent to a feedforward neural network.

2.4.1 Neural Networks: Notation and Basics

A neural network implements a mapping from the signal space R𝐷in to an output space R𝐷out:

𝑓𝜽 : R𝐷in → R𝐷out . (2.15)
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Figure 2.3: Suboptimality of matched filtering under the Neyman-Pearson framework.
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dimensional concept as illustrated in FIG 2.3.

16



0

ρ0

s1

s2

ρ1

MF
Optimal
(Neyman-Pearson
& minimax)

Figure 2.5: Suboptimality of matched filtering under the minimax framework.

Here, 𝜽 represents the parameters of the network. Specifically, a fully connected neural network

can be written as a composition of layers, each of which applies an affine mapping

𝒙 ↦→ 𝑾𝒙 + 𝒃 (2.16)

followed by an element-wise activation function 𝜙:

𝑓𝜽 (𝒙) = 𝑾𝐿𝜙

(
𝑾𝐿−1𝜙

(
. . . 𝜙

(
𝑾1𝒙 + 𝒃1

)
. . .

)
+ 𝒃𝐿−1

)
+ 𝒃𝐿 . (2.17)

With slight abuse of notation, the activation function 𝜙 : R → R acts element-wise when applied

to a vector:

𝜙( [𝑣1, . . . , 𝑣𝑛]𝑇 ) = [𝜙(𝑣1), . . . , 𝜙(𝑣𝑛)]𝑇 . (2.18)

The intermediate products

𝜶ℓ (𝒙) = 𝜙
(
𝑾ℓ𝜙

(
. . . 𝜙

(
𝑾1𝒙 + 𝒃1

)
· · · + 𝒃ℓ

))
(2.19)

17



are sometimes referred to as features [136]. In many situations, it is useful to “pool” features –

this is especially useful for data with spatial or temporal structure; combining spatially adjacent

features in a nonlinear fashion renders the decision more stable with respect to deformations of

the input [137]. For example, maximum pooling takes the maximum of adjacent features. In our

notation, we can denote this operation by 𝜌ℓ and write

𝜶ℓ (𝒙) = 𝜌ℓ𝜙
(
𝑾ℓ𝜶ℓ−1(𝒙) + 𝒃ℓ

)
, (2.20)

where the concise notation 𝜌ℓ suppresses certain details about which features are combined. For

clarity, we summarize this discussion in the following mathematical definition:

Definition 1 (Fully connected neural network). A fully connected neural network (FCNN) with

feature dimensions 𝑛0, . . . , 𝑛𝐿 , pre-activation dimensions 𝑚1, . . . , 𝑚𝐿 , parameters

𝜽 =

(
𝑾𝐿 ∈ R𝑚𝐿×𝑛𝐿−1

, . . . ,𝑾1 ∈ R𝑚1×𝑛0
,

𝒃𝐿 ∈ R𝑚𝐿

, . . . , 𝒃1 ∈ R𝑚1
)
, (2.21)

activation function 𝜙 : R→ R (extended to vector inputs by applying it elementwise), and pooling

operations 𝜌ℓ : R𝑚ℓ→𝑛ℓ given by

[𝜌ℓ]𝑖 (𝒗) = max
𝑗∈𝐼ℓ

𝑖

𝒗 𝑗 , (2.22)

with 𝐼ℓ1, . . . , 𝐼
ℓ

𝑛ℓ
being disjoint subsets of [𝑚ℓ], is a mapping 𝑓𝜽 : R𝐷in → R𝐷out defined inductively

as 𝑓𝜽 (𝒙) = 𝛼𝐿 (𝒙) by setting 𝜶0(𝒙) = 𝒙, and

𝜶ℓ (𝒙) = 𝜌ℓ𝜙(𝑾ℓ𝜶ℓ−1(𝒙) + 𝒃ℓ), ℓ = 1, . . . , 𝐿. (2.23)

When discussing neural networks, it is conventional to distinguish between the network ar-

chitecture, which consists of the choices of feature dimensions 𝑛ℓ, 𝑚ℓ, activation function 𝜙, and

pooling operators 𝜌ℓ, and the network parameters 𝜽 . Although we have stated a general definition,

18



in specific architectures, the activation function 𝜙 and/or the pooling operators 𝜌ℓ can be chosen to

be trivial (𝜙(𝑡) = 𝑡 and/or 𝜌ℓ (𝒗) = 𝒗).

Architectures. Neural networks are flexible function approximators [138]: universal approx-

imation theorems indicate that nonlinear neural networks (with non-polynomial activation 𝜙) can

accurately approximate any continuous function, as long as the network is sufficiently deep and/or

wide [139, 140, 141]. There is a growing body of empirical and theoretical evidence showing

that (relatively small) neural networks can learn relatively smooth functions over low-dimensional

submanifolds of R𝑛 with a complexity that is proportional to the manifold dimension, which in our

problem corresponds to the dimension of the signal manifold 𝑆 [12].

Beyond these general considerations, there are scenarios in which the nature of the task dictates

specific architectural choices. For example, in the field of inverse problems, neural network archi-

tectures can be generated by interpreting various optimization methods as taking on the structure

in Definition 1 [23]. Our proposals will have a similar spirit, since they will interpret an existing

method (matched filtering) as a particular instance of Definition 1.

Finally, a major architectural choice is whether to enforce additional structure on the matrices

𝑾ℓ. When the input 𝒙 is a time series, it is natural to structure the linear maps 𝜶 ↦→ 𝑾𝜶 to be time-

invariant, i.e., to be convolution operators. To exhibit the equivalence between matched filtering

and neural networks in the simplest possible setting, here we train our networks on injections whose

starting time is fixed, and focus on fully connected neural networks (not enforcing convolutional

structure).

In deployment, the input data is a time series, and astrophysical signals can occur at any time.

In this setting, the matched filtering rule is applied in a sliding fashion. Similarly, the neural net-

works proposed here can be also deployed in a sliding fashion, which effectively converts them to

particular convolutional networks. Both the equivalence between matched filtering and particular

neural networks and the potential advantages of neural networks carry over to this setting.

Parameters. There are various approaches to choosing the network parameters 𝜽 . The domi-

nant approach is to learn these parameters by optimization on data: one chooses initial parameters
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at random (with appropriate variance to ensure stability), and then iteratively adjusts them to best

fit a given set of “training data”. However, it is also possible in some scenarios to either (i) simply

choose the weights at random, or (ii) to generate the weights analytically, either by connecting

the network architecture to existing structures/algorithms [23] or from harmonic analysis consid-

erations [142]. There are approaches that lie in between purely data-driven and purely analytical

approaches to choosing 𝜽 . For example, it is possible generate initial weights analytically, and then

tune them on training data. This hybrid approach achieves excellent performance on a number of

inverse problems in imaging (super-resolution [143], magnetic resonance image reconstruction

[144] etc.).

In the following sections, we will follow this approach: we will give two ways of interpreting

the matched filtering decision rule (2.13) as a fully connected neural network, by making specific

(analytical) choices of the architecture and parameters. These analytically chosen parameters can

then be used as an initialization for learning on data. We will also see that in addition to this

closed-form construction for equivalence, neural network models can be further trained on data to

achieve improved performance.

2.4.2 Matched Filtering as a Shallow Neural Network

In the language of the previous section, it is not hard to express the decision statistic (2.13) of

matched filtering as a specific fully connected neural network with one layer (𝐿 = 1). Writing

𝜌1(𝒛) = max
𝑖
𝑧𝑖, (2.24)

𝜙(𝑡) = 𝑡, (2.25)

𝑾1 =



𝒔∗1

𝒔∗2
...

𝒔∗
𝐾


∈ R𝐾×𝐷 , (2.26)

𝒃1 = 0, (2.27)
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We note that the representation is not unique, and can be subject to shift and scale to produce es-

sentially the same decision rule. Specifically, 𝒃1 can be identity vector times a constant (including

zero) and 𝑾1 can be scaled by an arbitrary positive constant. However we choose the form given

here for simplicity. we have

max
𝑖
⟨𝒔𝑖, 𝒙⟩ = 𝜌1𝜙

(
𝑾1𝒙 + 𝒃1

)
. (2.28)

In words, the features produced by this neural network correspond to the correlations of the in-

put with the templates 𝒔1, . . . , 𝒔𝐾 . FIG 2.6 illustrates this (simple) architecture, which we label

MNet-Shallow.

...

s1

s2

s3

sK

max

input output

Figure 2.6: Illustration of MNet-Shallow. Bias terms are omitted in the illustration. (We note
that for more complex networks arbitrary pooling operations can replace the “max” box.)

Where needed below, we refer to the input-output relationship implemented by this architecture

as

𝑓MNet-Shallow,𝜽 (𝒙), (2.29)

where 𝜽 = (𝑾1, 𝒃1) represent the weights and biases. When these are chosen as in (2.26)-(2.27),

MNet-Shallow implements the matched filtering decision rule. We note that these weights can

be constructed analytically based on the given templates.

By learning the weights 𝑾1 and biases 𝒃1 from examples, we can further adapt this network to
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implement a more general family of decision rules, beyond matched filtering (2.13) with templates

𝒔𝑖. Nevertheless, there are limitations to this architecture. Notice that in MNet-Shallow there

is only one layer of affine operations, and so this architecture does not satisfy the dictates of the

universal approximation theorem [140, 145].

More geometrically, we can notice that the decision rule associated with MNet-Shallow is a

maximum of affine functions. This means that for any choice of 𝑾0 and 𝒃0, the decision boundary

is the boundary of a convex set. This property is also true for matched filtering, which shares

exactly the same form. An illustration of this property is shown in FIG 2.7.

0

s1

s2 s3
s4

Figure 2.7: The set of points classified as noise by matched filtering and MNet-Shallow is
always a convex set.

How restrictive is this limitation? In the context of parametric detection, this depends largely

on the noise distribution. If the noise is Gaussian, the optimal decision boundary is itself the

boundary of a convex set:

Proposition 1. Suppose that the noise 𝒛 ∼ N(0, 𝜎2𝑰). Then for any significance level 𝛼, the

optimal (Neyman-Pearson) decision region

{𝒙 | 𝜆(𝒙) ≤ 𝜏} (2.30)

is a convex subset of R𝐷 , where 𝜏 is a constant determined by the significance level 𝛼.

However, for general non-Gaussian distributions, the optimal decision region is often noncon-

vex. We illustrate this result in FIG 2.8. In fact, this suggests an intrinsic structural limitation of
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matched filtering and similar architectures. Since in reality the noise distribution is not perfectly

Gaussian, we cannot expect the optimal decision region to be convex, and hence the matched fil-

tering structure is unable to approach the performance of the likelihood ratio test with arbitrary

precision, even if any number of templates (including ones outside the original signal space) are

allowed. In such cases, we can benefit from using a more flexible architecture, which we now

introduce.

0

S

0

S

0

S

Gaussian, convex Sub-Gaussian, nonconvex Laplace, nonconvex

Figure 2.8: Contours of log likelihood ratio with various noise distributions, and whether the op-
timal decision regions with 𝛿 = 0 is always convex. Yellow represents larger values and blue
represents lower values. From left to right: (1) Gaussian distribution, convex; (2) Sub-Gaussian
distribution 𝜌noise(𝒙) ∝ exp(−𝐶∥𝒙∥3), not necessarily convex; (3) Laplace distribution, not neces-
sarily convex.

2.4.3 Matched Filtering as a Deep Neural Network

We describe an alternative way of expressing template matching as a neural network, which

leads to deep, nonlinear architectures that are more flexible than MNet-Shallow. We label this

structure MNet-Deep. In this architecture, we do not compute the maximum in a straightforward

way using pooling. Instead, we propose an alternative architecture which is more flexible, and can

approximate a wider class of functions. In particular, we will no longer be restricted to implement-

ing decision boundaries that are boundaries of convex sets, allowing us to handle scenarios with

non-Gaussian noise. An illustration of this MNet-Deep is shown in FIG 2.9.
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deep network

Figure 2.9: Illustration of MNet-Deep. Bias terms are omitted in the illustration. This network
structure is obtained by replacing the max module in matched filtering (as in FIG 2.6) with a deep
network.

Our construction is based on the rectified linear unit (ReLU) nonlinearity:

𝜙(𝑡) = max(𝑡, 0). (2.31)

This is arguably the most commonly used nonlinearity function in modern deep learning.

The matched filtering decision rule takes the maximum of a family of linear functions ⟨𝒔𝑖, 𝒙⟩.

Instead of simply “pooling” these functions as in the previous section, we implement the maxi-

mum operation using compositions of ReLUs and linear operations. In particular, observe that the

maximum of two numbers can be written as a linear combination of 3 ReLU units:

max(𝑎, 𝑏) = 𝑏 + 𝜙(𝑎 − 𝑏) = 𝜙(𝑏) − 𝜙(−𝑏) + 𝜙(𝑎 − 𝑏). (2.32)

The basic idea is to create a hierarchical structure of such 3-ReLU-units, each of which takes a

pairwise maximum of its inputs. Our MNet-Deep construction will perform convolutions with

the templates 𝒔𝑖, followed by this hierarchical structure for computing the maximum.
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max(x1, . . . , x4)

input

output

Figure 2.10: Illustration of implementing max with a ReLU network. The dashed boxes in the
middle are not actual nodes in the network, but “imaginary” nodes to facilitate construction.

FIG 2.10 illustrates this hierarchical structure for the particular example of four inputs. The

network in FIG 2.10 can be expressed as a ReLU network, with sparse weight matrices 𝑾ℓ (ℓ =

0, 1, 2) for the layers respectively:

𝑾0 =


0 1

0 −1

1 −1


, 𝑾2 =

[
1 −1 1

]
, (2.33)

𝑾1 = 𝑾0 ⊗𝑾2 =


0 0 0 1 −1 1

0 0 0 −1 1 −1

1 −1 1 −1 1 −1


. (2.34)

Generalizing this construction, we obtain a network that takes the maximum of 𝑘 numbers, using

⌈log2 𝑘⌉ + 1 layers.

While the example above delineates a precise form of the ReLU network, this approach can in

fact be made flexible. To ensure that the network output is indeed the maximum of the 𝑘 inputs,

we must ensure that at each layer, each feature participates in at least one of the pairwise max
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operations. This means that at layer ℓ, we must have at least 𝑘/2ℓ features. However, we are

free to add more intermediate features, with additional (redundant) max operations. This does

not change the output of the network, but it affords additional flexibility when we attempt to train

the network on data. In particular, this allows the construction of arbitrarily wide or deep ReLU

networks, and can therefore approximate any regular continuous function [140, 145].

There is also a degree of freedom in choosing which features participate in each pairwise

maximum operation, which could be chosen in various ways. In our implementation we use the

following way to pair up the nodes in layer 𝑙 for pairwise maximum operations that get to layer

𝑙 + 1. Assume layer 𝑙 contains 2𝑝 nodes. First pair up the nodes with consecutive indices, namely

pair up node 2𝑖 − 1 with node 2𝑖 for 𝑖 = 1, . . . , 𝑝. This ensures that each node is covered by

at least one maximum operation. After that, for each leftover node in layer 𝑙 + 1, we establish

the corresponding pair in layer 𝑙 by choosing the nodes at random in layer 𝑙. In the following,

we label this network MNet-Deep. We emphasize for clarity that the nodes between consecutive

layers are fully connected in the neural network; however, the weights not associated with pairwise

maximum operations are all initialized to zero. Below, where needed we refer to the decision rule

associated with this network as

𝑓MNet−Deep,𝜽 (𝒙), (2.35)

where 𝜽 represent the collection of all weights and biases. The above discussion again gives a

recipe for choosing these weights analytically such that the decision rule for MNet-Deep coin-

cides with the matched filtering rule.

In contrast to MNet-Shallow, MNet-Deep is a more flexible architecture. In particular,

this architecture satisfies the dictates of the universal approximation theorem. Geometrically, it is

not restricted to convex decision regions, which makes it capable of achieving optimal decision

boundaries even when the noise is heavy-tailed or has other non-ideal properties.

2.4.4 Equivalence of Matched Filtering and Neural Networks

We have demonstrated by construction the following claim:
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Given any collection of templates 𝒔1, . . . , 𝒔𝐾 (for any 𝑘 ≥ 1), one can analytically

determine weights 𝜽 𝑠, 𝜽𝑑 such that

𝑓MNet-Shallow,𝜽𝑠 (𝒙) = max
𝑖=1...𝐾

⟨𝒔𝑖, 𝒙⟩ (2.36)

𝑓MNet-Deep,𝜽𝑑 (𝒙) = max
𝑖=1...𝐾

⟨𝒔𝑖, 𝒙⟩ (2.37)

for all 𝒙 ∈ R𝐷 .

We emphasize the complete generality of this claim: it holds for any number and choice of tem-

plates. Moreover, it does not depend on training: the networks can be constructed analytically to

implement the matched filtering rule. Nevertheless, we will see in the next section that they can

be further adapted based on observed data to strictly outperform matched filtering, in terms of the

Neyman-Pearson criterion.

The equivalence between matched filtering and particular neural networks has an additional

conceptual advantage: it allows for a clear comparison of the resource complexity of different

search methods, in terms of storage and computation. This is valuable because different meth-

ods may cut out very different tradeoffs between complexity and accuracy/performance. Neural

network implementations of matched filtering can be viewed as “complexity standard candles”

against which the performance of more sophisticated networks can be measured. In particular, the

complexity of a neural network model may be quantified by the total number of nodes (neurons) in

the network, which approximately characterizes the number of elementary operations performed

for evaluating an input instance [146, 147]. We will look for the most appropriate measure of

complexity for this problem, and provide detailed analysis in future studies.

2.5 Training to Approach Statistical Optimality

In the previous section, we gave two ways of analytically constructing neural networks that

reproduce the matched filtering decision rule, and hence exhibit exactly the same performance

as matched filtering. The major advantage of this interpretation of matched filtering is that the
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resulting model can be further trained on sample data to improve its statistical performance or

adapt it to handle non-Gaussian noise distributions, or in other words “standing on the shoulder of

giants”. In a typical neural network training problem, we have access to labelled samples

(𝒙1, 𝑦1), . . . , (𝒙𝑁 , 𝑦𝑁 ), (2.38)

each of which consists of an observation 𝒙𝑖 ∈ R𝐷 and a corresponding label 𝑦𝑖 ∈ {0, 1}, which

indicates whether 𝒙𝑖 contains a noisy signal (𝑦𝑖 = 1) or noise only (𝑦𝑖 = 0). To date, we have

only a moderate number of confirmed gravitational wave detections, and hence have far more

negative examples than positive examples. We address this issue by generating our positive training

examples by injecting synthetic waveforms into (real) LIGO noise strains. Below, we describe

two different training schemes, motivated by the Neyman-Pearson and minimax criteria, which

leverage this data to perform training of the neural networks.

Training for Neyman-Pearson. In this setting, we assume that the prior 𝜈 is known, and

generate positive examples by first sampling 𝒔𝑖 ∼ 𝜈, and setting 𝒙𝑖 = 𝒔𝑖 + 𝒛𝑖, where 𝒛𝑖 is observed

LIGO noise strain. We solve the following optimization problem:

min
𝜽
R𝑁 ( 𝑓𝜽) :=

1
𝑁

𝑁∑︁
𝑖=1

ℓ

(
𝑓𝜽 (𝒙𝑖), 𝑦𝑖

)
. (2.39)

Here, the loss function ℓ( 𝑦̂, 𝑦) measures the misfit between the predicted label 𝑦̂ and the true label

𝑦. Typical choices include the square loss ( 𝑦̂ − 𝑦)2 and the logistic loss

𝑦 log( 𝑓sigmoid( 𝑦̂)) + (1 − 𝑦) log(1 − 𝑓sigmoid( 𝑦̂)). (2.40)

where 𝑓sigmoid(·) denotes the logistic/sigmoid function:

𝑓sigmoid(𝑥) =
1

1 + exp(−𝑥) (2.41)
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Is this training strategy compatible with the Neyman-Pearson criterion? The following propo-

sition answers this question in the affirmative. Consider the following setup: training data (𝒙𝑖, 𝑦𝑖)

are generated independently at random, by setting 𝑦𝑖 = 1 with probability 𝑝 ∈ (0, 1) and choosing

𝒙𝑖 = 𝒔𝑖 + 𝒛𝑖 when 𝑦𝑖 = 1 and 𝒙𝑖 = 𝒛𝑖 when 𝒚𝑖 = 0, with 𝒔𝑖 ∼ 𝜈, and 𝒛𝑖 ∼ 𝜌noise. Let

R∞( 𝑓 ) = E(𝒙,𝑦)ℓ( 𝑓 (𝒙), 𝑦). (2.42)

This represents the large-sample limit of R𝑁 : as 𝑁 →∞, R𝑁 ( 𝑓 ) → R∞( 𝑓 ). The following propo-

sition shows that the population risk R∞ is minimized by (a monotone function of) the likelihood

ratio 𝜆:

Proposition 2. Suppose that for any 𝑦 = 0, 1, the loss ℓ( 𝑦̂, 𝑦) is a strictly convex differentiable

function of 𝑦̂ that is minimized at 𝑦̂ = 𝑦. 1 Then the unique optimal solution 𝑓★ to the (functional)

optimization problem

min
𝑓
R∞( 𝑓 ) (2.43)

is a strictly increasing function of the likelihood ratio 𝜆:

𝑓★(𝒙) = 𝑔(𝜆(𝒙)), (2.44)

where 𝑔 is a strictly increasing function that depends on ℓ.

This result can be interpreted as saying: “a sufficiently flexible classifier, trained on a suf-

ficiently large dataset will produce the optimal decision rule.” Hence, training to minimize the

empirical risk R𝑁 ( 𝑓𝜽) is compatible with the Neyman-Pearson criterion.

While this is a promising observation, we should keep in mind a number of remaining issues:

How much data is required? What are effective approaches to minimizing the empirical risk R𝑁?

In the next section we investigate these questions experimentally.

1In fact it is straightforward to show that the conclusion of Proposition 2 holds for more general classes of loss
functions, including the logistic loss.
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Training for Minimax. In this setting, we do not assume any prior, and aim to minimize the

worst false negative rate using the formulation in (2.8). We convert the constrained problem (2.8)

to an equivalent unconstrained problem,

min
𝛿

max
𝒔∈𝑆

FNR(𝒔) + 𝑐 · FPR, (2.45)

where 𝑐 is a constant that depends on 𝛼. For tractability, we will fix 𝑐 at a constant value to obtain

a concrete optimization objective, and here we fix 𝑐 = 1. In actual deployment where a target

significance level 𝛼 is specified, we can also choose 𝑐 at the level that corresponds to the specified

𝛼. Also, we sample the signal space 𝑆 at points {𝒔𝑖}𝑁𝑖=1. Since FPR does not depend on 𝒔, it can be

moved inside the maximization. Therefore, the minimax optimization problem can be transformed

into

min
𝛿

max
𝑖=1,...,𝑁

FNR(𝒔𝑖) + FPR. (2.46)

This suggests a natural approach to training under the minimax criterion using first-order op-

timization methods. At each iteration, we estimate FPR and FNR(𝑠𝑖) for each 𝑖 = 1, . . . , 𝑁 , and

choose the index 𝑖∗ with the highest FNR(𝑠𝑖). We then aim to reduce FNR(𝒔𝑖) + FPR, which can

be estimated by using a sample dataset {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 as

1
𝑁

𝑁∑︁
𝑖=1

1
[
𝑓𝜽 (𝒙𝑖) ≠ 𝑦𝑖

]
, (2.47)

where in the dataset all 𝒙𝑖 with corresponding 𝑦𝑖 = 1 correspond to the ground truth signal 𝒔𝑖∗ ,

and half of data pairs in the dataset have 𝑦𝑖 = 0. Finally, it is customary in optimization to replace

the non-differentiable 0-1 loss with a smooth loss function ℓ, and hence we get the following risk

minimization objective:
1
𝑁

𝑁∑︁
𝑖=1

ℓ

(
𝑓𝜽 (𝒙𝑖), 𝑦𝑖

)
. (2.48)

This expression is similar to (2.39), but the difference is that all positive data in the dataset here

are associated with ground truth 𝒔𝑖∗ .

30



2.6 Simulations and Experiments

2.6.1 Data Generation

Data-driven methods such as neural networks typically require a large amount of data for train-

ing. The question of data sufficiency is especially acute in gravitational wave astronomy: we have

only a moderate number of confirmed detections to date. We address this issue by generating our

positive training examples by injecting synthetic waveforms into LIGO noise strains [134], which

we elaborate below.

For LIGO noise data, we use the L1 strain from LIGO O2 run between August 1 and August 25,

2017, with ANALYSIS_READY segments only. The announced confident detections GW170809,

GW170814, GW170817, GW170818 and GW170823 are removed from the strain, such that the

data is at least 300 seconds away from these events. We used a total of 338 frame files each of

4096 seconds long, namely a total of 384.57 hours. The strain data is downsampled from the

original 4096Hz to 2048Hz for processing efficiency. The downsampled L1 strain data is divided

into segments of length 0.6 second, with each successive segment overlapping 50% of the previous

segment.

We generate synthetic gravitational wave signals using PyCBC [66, 72, 71, 70, 69, 68, 67], with

the following parameters. Approximant: IMRPhenomD. Mass range: 40 to 50 𝑀⊙, uniformly

distributed. Spin: 0. Sampling rate: 2048Hz. Low frequency cutoff: 30Hz. Coalescence phase: 0.

Polarization: plus [148]. With this specified mass range, at least 99.5% of the energy of the signal

lies in an interval of length 0.3 second after preprocessing. We note that although the templates

are not chosen uniformly in actual LIGO deployment [82, 149, 54, 150, 151], we make this choice

here due to simplicity, and also the fact that the large number of templates make up for the possibly

suboptimal choice of templates.

The above data is used to generate training and test datasets of positive and negative labelled

data as follows. We divide the collection of downsampled strain segments randomly into training

and test sets, ensuring that no training segment overlaps a test segment. Within the training and
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test sets, we generate both positive and negative examples. The negative examples contain only the

strain data. For the positive examples, we inject waveforms into the noise segments by aligning

the peak of the waveforms at the 90% location of the center 0.3s, namely at the location of 0.42s

within the entire segment of 0.6s. This choice was made as it safely covers the injected waveforms.

The amplitude of the injection is set such that after filtering and whitening (to be described below),

the resulting signal-to-noise ratio (SNR) is constant. For the experiment, the size of the training

and test datasets are respectively 2.62 million and 2 million segments.

We preprocess all training and test data, by applying an FIR bandpass filter with cutoff fre-

quencies 30Hz and 400Hz, whitening using a power spectral density estimated from the L1 strain

data, and finally truncating to keep only the center 0.3 second (614 samples).

2.6.2 Matched Filtering Configuration

We first need to determine the necessary number of templates to use in matched filtering, given

the space of parameters. We set 10, 100, 1000 and 10000 as the candidate numbers of templates.

For each candidate number, we independently repeat the following process 30 times: randomly

choose the specified number of pairs of parameters uniformly from [40, 50] × [40, 50], generate

waveforms according to these parameters, preprocess (bandpass, whiten and truncate) as described

above, and then normalize to equal power. This produces the templates for a matched filtering

model. We evaluate the model on the test dataset to obtain an ROC curve. For each candidate

number of templates and for each value of FPR, we take the lowest FNR outcome among the 30

independent runs. This is used to approximately represent the best performance achievable with a

given number of templates.

The result is shown in FIG 2.11. We see that the best performance of matched filtering in

this setting starts to saturate at approximately 1000 templates, and the best performance with 1000

templates is almost identical to the that with 10000 templates. Therefore, we choose the best

performance of matched filtering with 10000 templates, namely the bright blue curve, as the per-

formance curve of the matched filtering method in this setting, against which we will be comparing
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our neural network method.
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Figure 2.11: The best performance of matched filtering with given number of templates across 30
independent runs. The performance starts to saturate above 1000 templates.

2.6.3 Neural Network Configuration

To initialize the templates of the neural network models for both MNet-Shallow and MNet-Deep,

we generate 1000 random waveforms from a uniform distribution over the same parameter range,

subject to the same preprocessing and normalization process as done in matched filtering.

For the MNet-Deep architecture, in addition to the 1000 initialized templates, we also need to

specify the number of layers and the feature dimension of each layer. In the experiment we choose

𝐿 = 17 and

(𝑛1, 𝑛2, . . . , 𝑛𝐿) = (1000, 1800, 1200, 720, 480, 300, 180,

120, 90, 60, 36, 24, 18, 12, 6, 3, 1).

Here these feature dimensions 𝑛𝑙 are chosen arbitrarily so long as they satisfy 𝑛2 ≥ 3
2𝑛1, 𝑛ℓ ≥ 1

2𝑛𝑙−1

for all 3 ≤ ℓ ≤ 𝐿−1, 𝑛𝐿−1 = 3, 𝑛𝐿 = 1, and that 𝑛2, . . . , 𝑛𝐿−2 are all divisible by 6 (which facilitates

construction using our proposed initialization scheme).
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For minimax training, in order to search the parameter space for the worst performance, we

sample the parameter space [40, 50]×[40, 50] of (𝑚1, 𝑚2) using a square grid sampler with interval

0.5. After discarding equivalent samples due to the symmetry between𝑚1 and𝑚2, there are in total

231 samples in the parameter space.

For the optimization parameters of the neural network, we train the network using logistic loss,

the Adam optimizer [152], and a constant learning rate of 10−5.

2.6.4 Simulation Results

Performance under minimax. In this experiment we perform injections such that SNR is

5, and only for the MNet-Shallow model. While this SNR value is smaller than the range of

meaningful observed events, we choose this value for the simplicity of exposition and reduction of

training time, since the training procedure for minimax criterion is rather computationally heavy.

Similar results should hold at higher SNR values. FIG 2.12 plots the ROC curves for both matched

filtering and MNet-Shallow trained for minimax, measured in terms of both worst performance

and the average performance over a uniform prior. We see that the trained neural network achieves

better performance than matched filtering under minimax, while achieving approximately identical

performance as matched filtering under Neyman-Pearson with a uniform prior. This is not surpris-

ing since the training process is designed to only optimize for the minimax criterion, and not the

Neyman-Pearson criterion with uniform prior.

Performance under a uniform prior. In this experiment we perform injections such that SNR

is 9. Figure 2.13 plots the ROC curves for both formulations MNet-Shallow and MNet-Deep

trained for Neyman-Pearson, as well as that of matched filtering. As expected, the neural net-

work models strictly improves over matched filtering. Moreover, the MNet-Deep architecture

has a slight performance advantage over MNet-Shallow. The performance improvement of the

trained models over matched filtering is especially remarkable with low FNR values, which is ar-

guably the more important scenario for gravitational wave detection, since we can hardly afford to

miss actual astrophysical events which are quite scarce.
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Figure 2.12: ROC curves of the trained shallow neural network and matched filtering. The solid
curves correspond to the vertical axis on the left, and the dotted curves correspond to the vertical
axis on the right. For both models we show both the worst (minimax) performance and the average
performance under Neyman-Pearson (NP) setting with a uniform prior. The neural network with
minimax training outperforms matched filtering in terms of the minimax criterion. The perfor-
mance of the two models under NP is similar, which is reasonable since our optimization for the
neural network was aimed for the minimax criterion only.

2.7 Discussion

Our experiments demonstrate the potential of neural networks to outperform matched filter-

ing, especially at low false negative rates. The flexibility of neural networks also enables this

architecture to implement more general variations of matched filtering, such as with weights or

aggregation functions different from the maximum. Neural networks have additional potential

advantages: deep networks can adapt to unknown and/or non-Gaussian noise distributions. In ad-

dition, architectural ideas in deep networks such as pooling help to convey invariances that may

be helpful in detecting some “unknown unknowns” that lie outside of the span of a pre-specified

family of templates. This should be investigated in the future.

The proposed architectures can be adapted to time-varying noise distributions, by pre-training

on very large collections of (synthetic) Gaussian noise and then adapting the pre-trained network

using a smaller number of online examples. This kind of pre-training may also be helpful in
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Figure 2.13: ROC curves of the trained MNet-Shallow and MNet-Deep models compared
with matched filtering. Left and right panels plot the same curves, but have different axis ranges to
better show the contrast between the curves.

deploying our methods across larger mass ranges, which require more training data.

We note that it is, in some sense, unsurprising that deep networks can exhibit advantages over

matched filtering, since the former can be made arbitrarily complex, and can approximate essen-

tially arbitrary functions. An important direction for future work is to study architectures that not

only approach optimal statistical performance, but exhibit good complexity-performance tradeoffs.

There are a number of concrete directions for achieving this – in particular, the weight matrices

learned by our Neyman-Pearson networks exhibit particular types of low-dimensional (low-rank

and sparse) structure, which can be leveraged to reduce complexity. Interpreting matched filter-

ing as a particular neural network facilitates the study of complexity-performance tradeoffs, since

it allows these distinct methods to be studied in a unified framework. Another avenue for com-

plexity reduction is to define and train very large (overparameterized) networks and then prune

them to produce much smaller subnetworks with good performance. MNet-Deep is particularly

promising in this regard, since this construction yields networks of arbitrary depth.

One future possibility of the approach is to go beyond the fixed template banks that constrain

the limited set of parameters taken into account. For example, to limit the size of the template

bank, BH spins that are misaligned from the orbital angular momentum are not widely used yet.

Also, due to the lack of available template banks, some astrophysically feasible scenarios receive

36



relatively little attention, including eccentric binary merger template banks where every new tem-

plate requires a computationally very expensive general-relativity simulation. Therefore general-

ized matched filtering needs to be investigated in this context, to measure its performance on signal

classes that current templates don’t cover. Additionally, training it with a sample of eccentric wave-

forms could enable the detection of other eccentric BBHs even with properties not covered by the

limited simulation used for training. Exploring these scenarios are very important experiments for

the future.

Another desirable goal is to allow matched filtering algorithms to run "coherently", treating

the gravitational wave detectors worldwide as a single detector and analyzing data from multiple

gravitational wave detectors together as a single data stream. The main difficulty is that the sky

direction of the cosmic source is unknown, therefore there are many unknown time shifts among

the detectors’ data. Searching a large number of different combinations can be cost prohibitive with

current approaches. It is important to experimentally investigate the ML extensions to matched

filtering to measure the increased sensitivity due to the coherent framework.

Furthermore, experiments on the natural generalization of the approach where one does not

aim to find the best matching waveform, but instead aims to estimate the parameters of the BBH

system are needed. For example, instead of having the maximum reported, one could report the

probability distribution over parameters. The difficulty here is that searches usually have much

fewer parameters than what is used for parameter estimation. The performance of the ML frame-

work in parameter estimation should be quantified in the future, even if it comes at the price of

precision and is therefore only used as a first estimate.

2.8 Conclusion

In this work, we highlighted the idea that matched filtering currently applied by LIGO is for-

mally equivalent to a particular neural network, which can be defined analytically in closed form.

We also modeled the LIGO gravitational wave search as the parametric signal detection problem,

and illustrated the suboptimality of matched filtering regardless of whether a prior distribution
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on the parameter space is given. On the other hand, we proposed neural network architectures

MNet-Shallow and MNet-Deep, which are initialized to implement matched filtering exactly,

and then trained on data for improved performance. In particular, we showed that when the prior

distribution is known, the training process is aligned with the statistically optimal decision rule.

Between the two proposed architectures, the former more closely resembles the architecture of

matched filtering, while the latter has a more flexible architecture capable of dealing with a wider

range of distributions. We conducted experiments using LIGO strain data from O2 and synthetic

waveform injections, and showed that our trained network can achieve uniformly better perfor-

mance than matched filtering both with or without a known prior, especially in scenarios where

false negative rate is low.

Through this work, we seek to bridge the gap between data-driven methods such as deep learn-

ing and those detection methods currently in use in LIGO, and explore the possibility of incor-

porating them into the gravitational wave search of LIGO, as well as broader areas of scientific

discovery. In future work, we aim to explore the potentials of efficiency gains of neural networks

over matched filtering, and also establish an end-to-end guarantee for the performance of the pro-

posed framework.
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Chapter 3: Boosting the Detection Efficiency with Hierarchical Neural

Networks

3.1 Introduction

In this chapter, we turn our focus to reducing the computational complexity of the detection

methods, and show that by utilizing structures within the detection problem, we can construct

trainable architectures with significantly higher computational efficiency.

As we discussed in the introductory chapter of this thesis, the computational complexity of a

gravitational wave search method is closely related to its online processing capacity, and directly

affects the possible scope of the search. In the literature, a promising approach to reducing the

complexity of matched filtering searches has been to apply a two-step hierarchical search, which

seeks to rapidly reject most negative samples [153]. Later, [154] expands the hierarchy to involve

temporal multi-scale approach. Some other meritorious extensions include using geometric tem-

plate placing [27] and hierarchy based on chirp times [155]. The work of [156] applies two-step

detection within the PyCBC framework, and compares the performance on simulated data. A re-

cent work of [157] further combines the two-step method with dimensionality reduction in the

template space using principal component analysis (PCA). All the above examples demonstrate

improvements relative to basic matched filtering in various settings for gravitational wave detec-

tion.

Similar ideas have also been widely explored and applied in machine learning contexts. For

example, [158, 159] consider hierarchical matching of image features in both spatial domain and

feature domain for image classification. [160] considers image classification using hierarchical

matching in the spatial domain. In natural language processing, hierarchical model have also been

used in sentiment classification [161]. More specific applications of this idea include medical

39



imaging [162], human detection and segmentation [163], and crime classification [164].

In the meantime, with the growing literature of applying deep learning and neural networks

on gravitational wave detection, it is tempting to leverage deep learning’s power to reduce com-

plexity. Indeed, various neural network architectures have been shown to perform tasks such as

gravitational wave detection, parameter estimation, noise transients identification and data denois-

ing [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111, 112, 113, 92, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], at performance

levels comparable to that of matched filtering. Furthermore, it has been shown that matched filter-

ing is generally suboptimal for parametric signal detection [165, 125], and the performance can be

improved by optimizing the templates using deep learning techniques [125]. This can be achieved

by setting up a neural network that is formally equivalent to matched filtering, and then training on

data. Inspired by the flexibility of deep learning models, it is conceptually appealing to explicitly

incorporate computational efficiency into the neural network objectives, aim to achieve “the best

of both worlds.”

Recall the MNet architectures proposed in the previous chapter, where the weights of the net-

work 𝒔𝑖 are initialized as templates and then trained over data, creating an advantage over classic

matched filtering. If we compare its computational efficiency against matched filtering (measured

in terms of the number of operations required to achieve a target error rate), the strict performance

improvement with identical architecture suggests that one can expect a strict efficiency improve-

ment as well. However, the structural similarity between MNet-Shallow and matched filtering im-

plies that such efficiency gains may typically be very limited. In order to achieve efficiency gains

on higher orders of magnitude, we may need to reconsider the parametric detection problem, and

innovate on the basic matched filtering rule. As we present in the next section, one solution is to

arrange the templates in a multi-layer hierarchy, so that significant proportions of negative-labeled

data are subject to early rejections.

In this work, we propose a novel neural network architecture, named Hierarchical Detection

Network (HDN), which takes the form of a multi-layer matched filtering with trainable parameters.
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In order to achieve the dual goal of accuracy and efficiency, we constructed a novel loss function

that explicitly incorporates computational complexity. We demonstrate the efficiency gains on data

with open LIGO noise data and synthetic gravitational wave signal injections. As a quick glance

at the performance gains, when tested on data with synthetically injected signals at signal-to-noise

ratio (SNR) 9, compared with matched filtering, two-layer HDN can achieve false positive and

false negative rates 0.2% with 79% lower complexity, and reduces error rates by 88% when at

equal complexity equivalent to 100 templates, for instance. Experimental details are described in

Section 3.4.

Yet, the two-layer networks do not reveal the full power of the proposed model. We further

show that by training a three-layer model with careful initialization, it is capable of achieving even

better accuracy at lower complexity. We also provide some intuitive insights into the mechanism

behind multi-layer hierarchical models and their construction.

The rest of the chapter is organized as follows. Section 3.2 introduces Hierarchical Detection

Networks, including the setup, complexity and training process. Section 3.3 further discusses the

complexity reduction from HDN. Section 3.4 presents experimental results of applying HDN on

real LIGO data and synthetic injections. We discuss some further implications and future steps of

this work in Section 3.5.

3.2 Hierarchical Detection Networks

In this section, we present the Hierarchical Detection Network (HDN), which improves over

matched filtering and MNet-Shallow to simultaneously maximize statistical performance and com-

putational efficiency.

The main idea behind HDN is intuitive. If an input segment clearly contains no gravitational

wave signals, we may not need to subject it to millions of templates to tell that. A small number

of “gatekeeper” templates may be sufficient for confidently rejecting these “obviously wrong”

instances. Once these inputs have been ruled out, we can apply a more refined test using possibly

more templates, and reject a larger portion of the input space. This procedure can be repeated,
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until in the very last step, we employ our full template bank for a full diagnosis on the remaining

instances which all previous tests failed to reject. Since the overwhelming majority part of the

gravitational wave strain data contains noise only, most instances will likely be addressed by the

initial simple layers of the model, saving the need for the full template bank. In addition, different

layers of the HDN may be designed to specialize in different parts of the input space, such that the

available parameter space of the potentially allowed waveforms are successively restricted as the

hierarchical process progresses from later to layer, allowing for further efficiency gains.

3.2.1 Architecture of HDN

We first formally define a hierarchical detection network (HDN). Generally speaking, a HDN

is a hierarchical template matching model trained as a neural network, as illustrated in Fig 3.1. Let

𝐿 be the number of layers in the hierarchical structure, and let {𝒔𝑖}𝐾𝑖=1 be the set of 𝐾 templates

used by the model. For each layer ℓ = 1, . . . , 𝐿, only the first 𝑛ℓ of these templates are used in

that layer, where 0 < 𝑛1 < · · · < 𝑛𝐿 = 𝐾 . Let the threshold associated with template 𝑖 at layer

ℓ be 𝑡𝑖,ℓ, 𝑖 = 1, . . . , 𝑛ℓ. Here we let layer 𝑙 reuse all templates from the previous layer(s), but

assign independent threshold values to the reused templates at different layers, in order to reduce

computation complexity.

Following conventions of the machine learning literature on binary classification, we call an

input 𝒙 positive if it contains a gravitational wave signal, and negative if it only contains noise. For

a given input 𝒙, the model processes it using the following procedure:
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Figure 3.1: Illustration of a hierarchical detection network.

Algorithm 1 The HDN algorithm
Parameters: 𝐿, 𝐾, {𝑛ℓ}, {𝒔𝑖}, {𝑡𝑖,ℓ}

Input: 𝒙
ℓ ← 1

while ℓ ≤ 𝐿 do

𝑦ℓ ← max𝑖≤𝑛ℓ ⟨𝒙, 𝒔𝑖⟩ − 𝑡𝑖,ℓ

if 𝑦ℓ < 0 then

return 0

end if

ℓ ← ℓ + 1

end while

return 1
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More formally, for a given input 𝒙, let

𝑦ℓ = max
𝑖≤𝑛ℓ
⟨𝒙, 𝒔𝑖⟩ − 𝑡𝑖,ℓ (3.1)

be the matching output at layer ℓ, ℓ = 1, . . . , 𝐿. Let

𝐼ℓ =


1[𝑦ℓ > 0], if 𝐼ℓ−1 = 1

0, if 𝐼ℓ−1 = 0
(3.2)

be the indicator of whether the input passes layer ℓ of the model on to the later layer(s), ℓ =

1, . . . , 𝐿 − 1, and define 𝐼𝐿 ≡ 0. With these notations, the overall output of the model can be

written as

𝑦(𝒙) =
𝐿∑︁
ℓ=1

𝑦ℓ (1 − 𝐼ℓ)
ℓ−1∏
𝑘=1

𝐼𝑘 . (3.3)

Note that both matched filtering and MNet-Shallow can be unified under the framework of

HDN, viewed as a model with a single layer. In the meantime, some of the existing two-step

MF methods [153, 27, 156] can also be interpreted under this framework. Furthermore, the HDN

architecture is not restricted to the typical two-layer hierarchy of coarse and fine searches, but can

utilize multiple layers which specialize in different parts of the signal space. The use of multiple

layers and their setup is further discussed in Section 3.3.

3.2.2 Measure of Computational Complexity

With matched filtering and HDN unified under the same framework, we can provide a formal

definition of computational complexity to facilitate our discussion. We are often most concerned

about the execution efficiency of the model in deployment rather than in training, since it deter-

mines the real-time processing abilities. In the meantime, any computational cost of setting up

the parameters of the model, including template selection for matched filtering and training for

neural networks, is a one-time cost and can be conducted offline. Therefore it is natural to define
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complexity based on test time.

Also, since for the vast majority of time the input strain does not contain gravitational wave

events, we can capture the computational complexity solely by its performance on negative data.

This leads to the following definition of complexity:

Definition 2 (Complexity). The (computational) complexity of a HDN model is defined as the

expected number of template matching (inner product) operations conducted to evaluate a negative

input.

Formally, we can write the complexity as

𝑍 = E𝒙∼𝐹− [𝑧(𝒙)], (3.4)

where

𝑧(𝒙) =
𝐿∑︁
ℓ=1

𝑛ℓ (1 − 𝐼ℓ)
ℓ−1∏
𝑘=1

𝐼𝑘 (3.5)

is the number of matching operations required for evaluating an input 𝒙.

To illustrate this measure of complexity, note that for matched filtering and MNet-Shallow

models, the complexity simply equals the number of templates used in the model. For a two-layer

HDN, assuming only a proportion 𝑝 of negative data enters the second layer, the complexity for the

model will be 𝑛1 + 𝑝 · 𝑛2. Intuitively, if the initial layer contains fewer templates while being able

to reject a significant portion of negative inputs, these inputs will not need to undergo the entire

model, hence reducing the complexity of the model. This straightforward idea forms the basis of

HDN, upon which we further leverage the power of data through training for an additional boost

in performance.

3.2.3 Training of HDN

So far, we have described the behavior of HDN at test/deployment time, and now we turn our

attention to the training process. Conceptually, we want to set up a loss function as an appropri-

ate combination of classification error and model complexity, so that minimizing the loss would
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achieve simultaneously accuracy and efficiency. However, a loss function directly based on the

above expressions (3.3) and (3.5) is undesirable because of non-differentiability. Instead, we use

soft surrogates for the indicators 𝐼ℓ. Define

𝐼ℓ = 𝜙(𝑦ℓ) (3.6)

for ℓ = 1, . . . , 𝐿 − 1 where 𝜙(𝑥) := 1
1+𝑒−𝑥 is the sigmoid function, serving as a soft surrogate of the

step function. Also let 𝐼𝐿 ≡ 0. Note that during training we can simply compute 𝑦ℓ for all layers

regardless of whether previous layers were passed, since this will only be a one-time offline cost.

Define the soft surrogates for 𝑦(𝒙) and 𝑧(𝒙) accordingly:

𝑦̂(𝒙) =
𝐿∑︁
ℓ=1

𝑦ℓ (1 − 𝐼ℓ)
ℓ−1∏
𝑘=1

𝐼𝑘 , (3.7)

𝑧(𝒙) =
𝐿∑︁
ℓ=1

𝑛ℓ (1 − 𝐼ℓ)
ℓ−1∏
𝑘=1

𝐼𝑘 . (3.8)

Assume the training dataset is {(𝒙𝑖, 𝑦★𝑖 )}𝑁𝑖=1, with 𝑁+ positive entries and 𝑁− negative entries.

The loss function can be formulated as

L =
1
𝑁

∑︁
𝑖

ℓaccu
𝑖 + 𝜆 · 1

𝑁−

∑︁
𝑖:𝑦★

𝑖
=0

ℓ
cplx
𝑖

, (3.9)

where

ℓaccu
𝑖 = 𝑦★𝑖 log 𝑝𝑖 + (1 − 𝑦★𝑖 ) log(1 − 𝑝𝑖) (3.10)

with 𝑝𝑖 = 1
1+𝑒− 𝑦̂𝑖 is equivalent to the cross-entropy loss for binary classification, and

ℓ
cplx
𝑖

= 𝑧𝑖 (3.11)

is the soft approximate for the complexity of evaluate the negative inputs. With the loss func-

tion (3.9) defined above, we can then train the model parameters {𝒔𝑖} and {𝑡𝑖,ℓ} using first order
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optimization methods.

Experimental results of the HDN architecture will be shown in Section 3.4.

3.3 Complexity Reduction from Multiple Layers

Here we provide some heuristic insights into why the hierarchical model achieves reduced

complexity at similar target performance levels, particularly with more layers.

Consider as an example a two-layer hierarchical model with 𝑛1, 𝑛2 templates respectively on

the layers. Let 𝛼ℓ and 𝛽ℓ denote respectively the false positive rate (FPR) and false negative rate

(FNR) of layer ℓ conditioned on data that reaches the corresponding layer. Recall that FPR denotes

the proportion of negative samples that are falsely classified as positive, and FNR the proportion

of positive samples falsely classified as negative. The overall FPR, FNR and the complexity 𝑧 can

then be represented as:

𝛼all = 𝛼1𝛼2 (3.12)

𝛽all = 𝛽1 + (1 − 𝛽1)𝛽2 (3.13)

𝑧all = 𝑛1 + 𝛼1(𝑛2 − 𝑛1) (3.14)

To understand why an improvement in complexity can be expected, we consider the following

example setup of parametric detection as shown in FIG. 3.2. The probability density of the two

labeled classes are 𝜌0 and 𝜌1 respectively. Note that the density for the negative class 𝜌0 is pre-

cisely the noise density defined previously, and 𝜌1 is the convolution of 𝜌0 and the signal density.

Imagine a baseline MF model with decision boundary as shown by the green curve, at the cost of 𝑛

templates, where 𝑛 has to be relatively large to approximate the smoothly curved boundary. Then

we can construct the following hierarchical model to achieve a significantly lower complexity with

identical statistical accuracy. To do this, we construct a simple two-layer hierarchical model, with

the first layer decision boundary as shown by the dotted blue line, and the second layer decision

boundary coinciding with that of the MF model. Notice that the first layer features a very low
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Figure 3.2: An example of the complexity advantage of hierarchical detection models.

complexity 𝑛1 (with 𝑛1 = 2 in this example), and in the meantime has a fairly high true negative

rate 1 − 𝛼. Since the second layer reproduces the MF decision boundary, the overall decision rule

of the hierarchical model is identical to that of the MF model, and hence they share exactly the

same ROC (receiver operating characteristic) curves. However, the complexity of the HDN model

is 𝑛1 + 𝛼1(𝑛2 − 𝑛1), which is significantly smaller than 𝑛2 provided 𝑛1 is small compared with 𝑛2

and 𝛼1 is not too close to 1.

This example provides inspirations for a general recipe for designing hierarchical models with

reduced complexity. For any decision rule given by a MF model, we can construct a sequence of

preceding layers whose negative decision regions all lie inside the negative decision region of the

MF, and finally let the very last layer be equivalent to the original MF. The resulting hierarchical

model will again have exactly the same overall decision rule and hence ROC curve, but with

significantly reduced complexity. An illustrating example is shown in FIG. 3.3.

More generally, such constructions of hierarchical models can serve as good initializations for

a HDN. One practical initialization scheme for an 𝐿-layer HDNs is the following: first train a

separate 𝐿 − 1-layer model that only consists of the latter 𝐿 − 1 layers of the desired model. Then

we initialize the latter 𝐿−1 layers of the original model with the trained network, and initialize the

first layer with small 𝑡𝑖,1 values such that almost all inputs pass. This gives an initialization of the

𝐿-layer model which at initialization essentially replicates the 𝐿 − 1-layer model. From there, we

train the initialized 𝐿-layer model on data, which will leverage the higher architectural capacity
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Figure 3.3: A hierarchical model with more simple layers that lie inside the overall negative deci-
sion region.

for further improved performance and complexity. An experiment that illustrates this approach is

shown in Section 3.4.

3.4 Simulation and Experiments

3.4.1 Data Generation

In the experiments, we use open L1 strain data from LIGO Livingston’s O2 run between August

1 and August 25, 2017 with ANALYSIS_READY flag [166]. The total duration of the frame files is

389.12 hours. We downsample the strain data from the original 4096Hz to 2048Hz for processing

efficiency. The downsampled data is then divided into segments of 2 seconds, with each segment

overlapping with 50% of its preceding segment.

To evaluate the accuracy of detection models, we need both positive and negative datasets.

For the negative datasets, the strain data itself is used. For the positive datasets, due to the very

limited number of confirmed detections of gravitational wave events, we generate positive data by

injecting synthetic waveforms into the noise strains, at a preset SNR value.

The entire L1 strain dataset is first divided into two sets to be used in training and test respec-

tively, such that any segment in the training set does not overlap with any segment in the test set.

For training and test respectively, a positive and a negative dataset are generated. For the positive

datasets, synthetic waveforms are generated with masses 𝑚1, 𝑚2 uniformly drawn from [20, 50]
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(times solar mass 𝑀⊙) and 3-dimensional spins drawn from an isotropic distribution and with spin

dimensionless magnitudes drawn from a uniform distribution within [0,1]. One waveform is in-

jected to each 2-second segment of data, and the injected waveforms are aligned such that the peak

is located at 0.95 second, and the injection amplitude is chosen such that the signal-to-noise ratio

(SNR) after preprocessing is constant at 9. The preprocessing is applied to all data (after injec-

tion if applicable) by using a finite-impulse-response (FIR) bandpass filter with cutoff frequency

30Hz and 400Hz, whitening with power spectral density estimated from the L1 strain data, and

truncating to only keep the center 1 second.

3.4.2 Two-Layer Networks

In this experiment, we limit our HDN models to two layers and 𝑛2 = 10𝑛1. At initialization, the

templates 𝒔𝑖 are chosen as random gravitational waveforms from the same parameter space, and the

thresholds 𝑡𝑖,ℓ are set to the same within each of the two layers. The parameter 𝜆 is the loss function

is fixed at 𝜆 = 10−4. For the optimization procedure of the network, we use the Adam optimizer

[152] which is common in modern deep learning, and a constant learning rate (i.e. scaling of the

update at each iteration) of 10−4.

FIG. 3.4 shows the comparison of the complexity-performance trade-offs of MF and HDN

models, where the HDN models are two-layer architectures structured as described above. The

horizontal axis plots the logarithm of the complexity measure defined in this chapter, and the

vertical axis plots the logarithm of error rates at the point on the ROC curve where FPR = FNR.

This choice of measure eliminates the arbitrariness of choosing FNR at a fixed FPR level. For

each architecture, 10 independent runs are conducted, and the one with lowest accuracy measure

is shown. The blue curve for HDN is cut off early due to memory limitations of training the

model. FIG. 3.5 visualizes the proportion of error rate reduced by HDN as compared with MF at

equal complexities. We see that HDN consistently achieves a lower complexity than MF at equal

accuracy, with higher advantages at lower complexities.
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Figure 3.4: Complexity-performance trade-off of matched filtering and the hierarchical neural
network.

3.4.3 Three-Layer Networks

We further demonstrate the power of the proposed model with a deeper three-layer network.

Conceptually, since adding more layers strictly improves model expressability, it should never hurt

performance provided that the parameters are initialized or trained appropriately.

In this experiment, we construct a 3-layer HDN with layer sizes (𝑛1, 𝑛2, 𝑛3) = (30, 100, 1000)

in the following way. First, a shallower 2-layer model with layer sizes (100, 1000) is trained, and

we use these trained parameters to initialize the latter two layers of the 3-layer model. We then

initialize the first layer of the 3-layer model, setting the per-template thresholds 𝑡𝑖,1 as the same

value for all 𝑖, such that all training data passes this first layer at initialization. This scheme ensures

that at initialization, the 3-layer model essentially replicates the performance of the trained 2-layer

model, giving it a head start before entering the training phase. The training is done in the same

way as described before. FIG. 3.6 illustrates the architecture of this 3-layer model, along with the

histograms of layer outputs of test data that reaches that layer, where the 𝑥-axis denotes the layer
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Figure 3.5: Proportion of error rate reduced by using HDN over MF.

output and the 𝑦-axis denotes the frequency of occurrence. The histograms are divided into positive

and negative according to the true class labels. Specifically, the densities of layer 1 involves all

input data, and the densities of layers 2 and 3 involve only the data that pass the previous layers.

We see that most of the negative data are successfully intercepted by the initial layers, with very

few of them reaches the final layer, which corroborates our intuition.

Here when evaluating the ROC curve, we adopt a slightly different approach that is more

consistent with deep hierarchical models. Notice from equation (3.2) that the model uses a built-in

threshold 0 to control the passing of each layer. When generating the ROC curve using a varying

threshold, such a threshold should be applied at all layers instead of only the last layer. Therefore,

at test time only, we replace the threshold 0 in equation (3.2) with a variable threshold 𝑡 ∈ R

which is constant for all layers, and compute the test outputs using (3.3) as before for each 𝑡 value.

Varying this threshold 𝑡 produces the ROC curve. Also note that 𝑡 determines which test entries

would pass the layers, hence it also affects the model complexity evaluated on the negative test

dataset. In actual deployment, the threshold 𝑡 should be fixed at some level that gives the desired

trade-off between FPR and FNR, so this is only for demonstration purpose.

FIG. 3.7 shows the comparison of ROC curves between a matched filtering model with 100

templates, a 2-layer HDN model with complexity 100.5 (used for initializing the 3-layer model),

and a 3-layer HDN model with complexity 37.1 at the point of equal FPR and FNR. While the

complexity of the 3-layer model depends on the specific point chosen on the ROC curve, it does
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Figure 3.6: Illustration of the 3-layer architecture, and the output densities on the test data from
each layer. Only data entries that reach a given layer is shown. We see that each layer successfully
rejects the vast majority of incoming negative data, and barely any negative data reaches the last
layer.

not exceed 65 for the entire segment of ROC curve shown in the figure, and is thus always lower

than the 2-layer model. We see that the deeper 3-layer model excels at both accuracy and efficiency

compared with the 2-layer model, and significantly more so if compared with the matched filtering

model. This further showcases the power of depth in hierarchical models, and corroborates our

discussion in Section 3.3.
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3.5 Discussion

In this work, we showed that by leveraging ideas from classical matched filtering and modern

machine learning, we are able to design systems for gravitational wave detection that simulta-

neously optimize statistical accuracy and efficiency. This general conceptual idea of trainable

hierarchical matched filtering can be applied upon a wide range of existing proposals for efficient

detection pipelines.

While the proposed HDN model conducts hierarchical rejection on the data, an alternative can

be proposed to conduct hierarchical acceptance, namely to progressively label parts of the data as

positive rather than negative. This has the advantage of aligning better with the matched filtering

routine, since it suffices to use one matching template to confirm a signal. In the specific prob-

lem of gravitational wave signal detection, due to the class imbalance from the scarcity of actual

gravitational wave events, the majority of computational complexity hinges on the classification
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of negative data, and therefore a hierarchical rejection model will have much more significant ef-

ficiency gains. In more general signal detection problems, hierarchical acceptance constructions

can also be deployed in similar fashions as HDN.

The proposed HDN can potentially have wider applications within the field of gravitational

wave science. For example, in the task of glitch detection and identification [110, 167, 168,

169, 170, 171], one can combine existing constructions of machine learning based models with

hierarchical models, to improve on both efficiency and accuracy.

One aspect to be further explored is how to select the number of layers in the hierarchy. While

having more layers can boost model expressability and further leverage the efficiency gains, ex-

cessive hierarchy may offer diminishing returns, and also make training increasingly difficult. In

the work we demonstrated how a 3-layer model excels over a 2-layer one, and there may be a

“sweet spot” number of layers for a given signal detection setups. Another promising direction

would be to incorporate prior knowledge about the signal domain such as low-dimensionality and

representative features into the detection model, which may be able to further outperform these

current models agnostic of the signal space properties.
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Chapter 4: TpopT: Efficient Trainable Template Optimization on

Low-Dimensional Manifolds

4.1 Introduction

Low-dimensional structure is ubiquitous in data arising from physical systems: these systems

often involve relatively few intrinsic degrees of freedom, leading to low-rank [172, 173], sparse

[174], or manifold structure [175, 176, 177]. In this work, we study the fundamental problem of

detecting and estimating signals which belong to a low-dimensional manifold, from noisy obser-

vations [178, 179, 180].

Perhaps the most classical and intuitive approach to detecting families of signals is matched

filtering (MF), which constructs a bank of templates, and compares them individually with the

observation. Due to its simplicity and interpretability, MF remains the core method of choice in the

gravitational wave detection of the scientific collaborations LIGO [46, 47], Virgo [45] and KARGA

[181], where massive template banks are constructed to search for traces of gravitational waves

produced by pairs of merging black holes in space [27, 182, 183, 126]. The conceptual idea of large

template banks for detection is also widely present in other scenarios such as neuroscience [28],

geophysics [29, 30], image pose recognition [31], radar signal processing [32, 33], and aerospace

engineering [34]. In the meantime, many modern learning architectures employ similar ideas

of matching inputs with template banks, such as transformation-invariant neural networks which

create a large number of templates by applying transformations to a smaller family of filters [35,

36, 37].

One major limitation of this approach is its unfavorable scaling with respect to the signal man-

ifold dimension. For gravitational wave detection, this leads to massive template banks in de-

ployment, and presents a fundamental barrier to searching broader and higher dimensional signal
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manifolds. For transformation-invariant neural networks, the dimension scaling limits their appli-

cations to relatively low-dimensional transformation groups such as rotations.

This work is motivated by a simple observation: instead of using sample templates to cover

the search space, we can search for a best-matching template via optimization over the search

space with higher efficiency. In other words, while MF searches for the best-matching template

by enumeration, a first-order optimization method can leverage the geometric properties of the

signal set, and avoid the majority of unnecessary templates. We refer to this approach as template

optimization (TpopT).

In many practical scenarios, we lack an analytical characterization of the signal manifold. We

propose a nonparametric extension of TpopT, based on signal embedding and kernel interpolation,

which retains the test-time efficiency of TpopT.1 The components of this method can be trained on

sample data, reducing the need for parameter tuning and improving the performance in Gaussian

noise. Our training approach draws inspiration from unrolled optimization [189], which treats the

iterations of an optimization method as layers of a neural network. This approach has been widely

used for estimating low-dimensional (sparse) signals [190, 191] with promising results on a range

of applications [192, 193, 194, 195]. The main contributions of this work are as follows:

• Propose trainable TpopT as an efficient approach to detecting and estimating signals from

low-dimensional families, with nonparametric extensions when an analytical data model is

unavailable.

• Prove that Riemannian gradient descent for TpopT is exponentially more efficient than MF.

• Demonstrate significantly improved complexity-accuracy trade-offs for gravitational wave

detection, where MF is currently a method of choice.
1In contrast to conventional manifold learning, where the goal is to learn a representation of the data manifold

[184, 185, 186, 187, 188], our goal is to learn an optimization algorithm on the signal manifold.
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4.2 Problem Formulation and Methods

In this section, we describe the problem of detecting and recovering signals from a low-

dimensional family, and provide a high-level overview of two approaches — matched filtering

and template optimization (TpopT). The problem setup is simple: assume the signals of interest

form a 𝑑-dimensional manifold 𝑆 ⊂ R𝐷 , where 𝑑 ≪ 𝐷, and that they are normalized such that

𝑆 ⊂ S𝐷−1. For a given observation 𝒙 ∈ R𝐷 , we want to determine whether 𝒙 consists of a noisy

copy of some signal of interest, and recover the signal if it exists. More formally, we model the

observation and label as:

𝒙 =


𝑎 𝒔♮ + 𝒛 if 𝑦 = 1

𝒛, if 𝑦 = 0
. (4.1)

where 𝑎 ∈ R+ is the signal amplitude, 𝒔♮ ∈ 𝑆 is the ground truth signal, and 𝒛 ∼ N(0, 𝜎2𝑰). Our

goal is to solve this detection and estimation problem with simultaneously high statistical accuracy

and computational efficiency.

Matched Filtering. A natural decision statistic for this detection problem is max𝒔∈𝑆 ⟨𝒔, 𝒙⟩, i.e.

𝑦̂(𝒙) = 1 ⇐⇒ max
𝒔∈𝑆
⟨𝒔, 𝒙⟩ ≥ 𝜏 (4.2)

where 𝜏 is some threshold, and the recovered signal can be obtained as arg max𝒔∈𝑆 ⟨𝒔, 𝒙⟩. 2

Matched filtering, or template matching, approximates the above decision statistic with the maxi-

mum over a finite bank of templates 𝒔1, . . . , 𝒔𝑛templates:

𝑦̂MF(𝒙) = 1 ⇐⇒ max
𝑖=1,...,𝑛templates

⟨𝒔𝑖, 𝒙⟩ ≥ 𝜏. (4.3)

The template 𝒔𝑖 contributing to the highest correlation is thus the recovered signal. This matched

filtering method is a fundamental technique in signal detection (simultaneously obtaining the esti-

2This statistic is optimal for detecting a single signal 𝒔 in iid Gaussian noise; this is the classical motivation for
matched filtering [196]. For detecting a family of signals 𝒔 ∈ 𝑆, it is no longer statistically optimal [197]. However, it
remains appealing due to its simplicity.
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mated signals), playing an especially significant role in scientific applications [27, 30, 28].

If the template bank densely covers 𝑆, (4.3) will accurately approximate (4.2). However, dense

covering is inefficient — the number 𝑛 of templates required to cover 𝑆 up to some target radius 𝑟

grows as 𝑛 ∝ 1/𝑟𝑑 , making this approach impractical for all but the smallest 𝑑.3

Template Optimization. Rather than densely covering the signal space, template optimization

(TpopT) searches for a best matching template 𝒔̂, by numerically solving

𝒔̂(𝒙) = arg min
𝒔∈𝑆

𝑓 (𝒔) ≡ − ⟨𝒔, 𝒙⟩ . (4.4)

The decision statistic is then 𝑦̂TpopT(𝒙) = 1 ⇐⇒ ⟨𝒔̂(𝒙), 𝒙⟩ ≥ 𝜏. Since the domain of optimization

𝑆 is a Riemannian manifold, in principle, the optimization problem (4.4) can be solved by the

Riemannian gradient iteration [198]

𝒔𝑘+1 = exp𝒔𝑘

(
−𝛼𝑘 grad[ 𝑓 ] (𝒔𝑘 )

)
. (4.5)

Here, 𝑘 is the iteration index, exp𝒔 (𝒗) is the exponential map at point 𝒔, grad[ 𝑓 ] (𝒔) is the Rieman-

nian gradient4 of the objective 𝑓 at point 𝒔, and 𝛼𝑘 is the step size.

Alternatively, if the signal manifold 𝑆 admits a global parameterization 𝒔 = 𝒔(𝝃), we can

optimize over the parameters 𝝃, solving 𝝃̂ (𝒙) = arg min𝝃 − ⟨𝒔(𝝃), 𝒙⟩ using the (Euclidean) gradient

method:

𝝃 𝑘+1 = 𝝃 𝑘 + 𝛼𝑘 ·
(
∇𝒔(𝝃 𝑘 )

)T
𝒙, (4.6)

where ∇𝒔(𝝃 𝑘 ) ∈ R𝐷×𝑑 is the Jacobian matrix of 𝒔(𝝃) at point 𝝃 𝑘 . Finally, the estimated signal

𝒔̂(𝒙) = 𝒔(𝝃̂ (𝒙)) and decision statistic 𝑦̂TpopT can be obtained from the estimated parameters 𝝃̂.

Of course, the optimization problem (4.4) is in general nonconvex, and methods (4.5)-(4.6)

3This inefficiency has motivated significant efforts in applied communities to optimize the placement of the tem-
plates 𝒔𝑖 , maximizing the statistical performance for a given fixed 𝑛templates [27]. It is also possible to learn these
templates from data, leveraging connections to neural networks [197]. Nevertheless, the curse of dimensionality re-
mains in force.

4The Riemannian gradient is the projection of the Euclidean gradient ∇𝒔 𝑓 onto the tangent space 𝑇𝒔𝑆.
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Figure 4.1: Relationship between curvature and convergence basins of gradient descent. Gradient
descent has larger convergence basins under lower curvature (larger radius of osculating circle).
Points within the convergence basin have gradient descent direction pointing “toward” 𝒔★, while
points outside the basin may have gradient descent pointing “away from” 𝒔★.

only converge to global optima when they are initialized sufficiently close to the solution of (4.4).

We can guarantee global optimality by employing multiple initializations 𝒔0
1, . . . , 𝒔

0
𝑛init

, which cover

the manifold 𝑆 at some radius Δ where at least one initialization is guaranteed to produce a global

optimizer.

In the next section, we will corroborate these intuitions with rigorous analysis. In subsequent

sections, we will further develop more practical counterparts to (4.5)-(4.6) which (i) do not require

an analytical representation of the signal manifold 𝑆 [Section 4.4], and (ii) can be trained on sample

data to improve statistical performance [Section 4.5].

4.3 Theory: Efficiency Gains over Matched Filtering

The efficiency advantage of optimization comes from its ability to use gradient information to

rapidly converge to 𝒔̂ ≈ 𝒔♮, within a basin of initializations 𝒔0 satisfying 𝑑 (𝒔0, 𝒔♮) ≤ Δ: the larger

the basin, the fewer initializations are needed to guarantee global optimality. The basin size Δ in

turn depends on the geometry of the signal set 𝑆, through its curvature. Figure 4.1 illustrates the

key intuition: if the curvature is small, there exists a relatively large region in which the gradient

of the objective function points towards the global optimizer 𝒔★. On the other hand, if the signal

manifold is very curvy, there may only exist a relatively small region in which the gradient points

in the correct direction.

We can formalize this intuition through the curvature of geodesics on the manifold 𝑆. For

a smooth curve 𝛾 : [0, 𝑇] → 𝑆 ⊂ R𝑛, with unit speed parameterization 𝜸(𝑡), 𝑡 ∈ [0, 𝑇], the
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maximum curvature is

𝜅(𝜸) = sup
𝑡∈𝑇
∥ ¥𝜸(𝑡)∥2. (4.7)

Geometrically, 𝜅−1 is the minimum, over all points 𝜸(𝑡), of the radius of the osculating circle

whose velocity and acceleration match those of 𝜸 at 𝑡. We extend this definition to 𝑆, a Riemannian

submanifold of R𝑛, by taking 𝜅 to be the maximum curvature of any geodesic on 𝑆:

𝜅(𝑆) = sup
𝜸⊂𝑆 : unit-speed geodesic

𝜅(𝜸). (4.8)

We call this quantity the extrinsic geodesic curvature of 𝑆.5 Our main theoretical result shows that,

as suggested by Figure 4.1 there is a Δ = 1/𝜅 neighborhood within which gradient descent rapidly

converges to a close approximation of 𝒔♮:

Theorem 3. Suppose the extrinsic geodesic curvature of 𝑆 is bounded by 𝜅. Consider the Rieman-

nian gradient method (4.5), with initialization satisfying 𝑑 (𝒔0, 𝒔♮) < 1/𝜅, and step size 𝜏 = 1
64 .

Then when 𝜎 ≤ 𝑐/(𝜅
√
𝑑), with high probability, we have for all 𝑘

𝑑 (𝒔𝑘+1, 𝒔♮) ≤ (1 − 𝜖) 𝑑 (𝒔𝑘 , 𝒔♮) + 𝐶𝜎
√
𝑑. (4.9)

Moreover, when 𝜎 ≤ 𝑐/(𝜅
√
𝐷), with high probability, we have for all 𝑘

𝑑 (𝒔𝑘 , 𝒔★) ≤ 𝐶 (1 − 𝜖)𝑘
√︃
𝑓 (𝒔0) − 𝑓 (𝒔★), (4.10)

where 𝒔★ is the unique minimizer of 𝑓 over 𝐵(𝒔♮, 1/𝜅). Here, 𝐶, 𝑐, 𝜖 are positive numerical con-

stants.

Interpretation: Convergence to Optimal Statistical Precision In (4.9), we show that under

a relatively mild condition on the noise, gradient descent exhibits linear convergence to a 𝜎
√
𝑑-

5Notice that 𝜅(𝑆) measures how 𝑆 curves in the ambient space R𝑛; this is in contrast to traditional intrinsic curva-
ture notions in Riemannian geometry, such as the sectional and Ricci curvatures. An extrinsic notion of curvature is
relevant here because our objective function 𝑓 (𝒔) = − ⟨𝒔, 𝒙⟩ is defined extrinsically. Intrinsic curvature also plays an
important role in our arguments — in particular, in controlling the effect of noise.
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neighborhood of 𝒔♮. This accuracy is the best achievable up to constants: for small 𝜎, with high

probability any minimizer 𝒔★ satisfies 𝑑 (𝒔★, 𝒔♮) > 𝑐𝜎
√
𝑑, and so the accuracy guaranteed by (4.9)

is optimal up to constants. Also noteworthy is that both the accuracy and the required bound on

the noise level 𝜎 are dictated solely by the intrinsic dimension 𝑑. The restriction 𝜎 ≤ 𝑐/(𝜅
√
𝐷)

has a natural interpretation in terms of Figure 4.1 — at this scale, the noise “acts locally”, ensuring

that 𝒔★ is close enough to 𝒔♮ so that for any initialization in 𝐵(𝒔♮,Δ), the gradient points toward

𝒔★. In (4.10) we also show that under a stronger condition on 𝜎, gradient descent enjoys linear

convergence for all iterations 𝑘 .

Implications on Complexity. Here we compare the complexity required for MF and TpopT

to achieve a target estimation accuracy 𝑑 ( 𝒔̂, 𝒔♮) ≤ 𝑟. The complexity of MF is simply 𝑁𝑟 , the

covering number of 𝑆 with radius 𝑟. On the other hand, the complexity of TpopT is dictated by

𝑛init × 𝑛gradient-step. We have 𝑛init = 𝑁1/𝜅 since TpopT requires initialization within radius 1/𝜅 of 𝒔♮,

and 𝑛gradient-step ∝ log 1/𝜅𝑟 because gradient descent enjoys a linear convergence rate. Note that

the above argument applies when 𝐶𝜎𝑑1/2/𝜖 ≤ 𝑟 ≤ 1/𝜅, where the upper bound on 𝑟 prescribes the

regime where gradient descent is in action (otherwise TpopT and MF are identical), and the lower

bound on 𝑟 reflects the statistical limitation due to noise. Since the covering number 𝑁radius ∝

(1/radius)𝑑 , the complexities of the two methods 𝑇MF and 𝑇TpopT are given by

𝑇MF ∝ 1/𝑟𝑑 , 𝑇TpopT ∝ 𝜅𝑑 log(1/𝜅𝑟). (4.11)

Combining this with the range of 𝑟, it follows that TpopT always has superior dimensional scaling

than MF whenever the allowable estimation error 𝑟 is below 1/𝜅 (and identical to MF above that).

The advantage is more significant at lower noise and higher estimation accuracy.

Proof Ideas. The proof of Theorem 3 follows the intuition in Figure 4.1, by (i) considering a

noiseless version of the problem and showing that in a 1/𝜅 ball, the gradient points towards 𝒔♮,

and (ii) controlling the effect of noise, by bounding the maximum component 𝑇max of the noise
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𝒛 along any tangent vector 𝒗 ∈ 𝑇𝒔𝑆 at any point 𝒔 ∈ 𝐵(𝒔♮,Δ). By carefully controlling 𝑇max, we

are able to achieve rates driven by intrinsic dimension, not ambient dimension. Intuitively, this is

because the collection of tangent vectors, i.e., the tangent bundle, has dimension 2𝑑. Our proof

involves a discretization argument, which uses elements of Riemannian geometry (Toponogov’s

theorem on geodesic triangles, control of parallel transport via the second fundamental form [199,

200]). To show convergence of iterates (4.10), we show that in a 1/𝜅 region, the objective 𝑓 enjoys

Riemannian strong convexity and Lipschitz gradients [198]. Please see the supplementary material

for complete proofs.

4.4 Nonparametric TpopT via Embedding and Kernel Interpolation

The theoretical results in Section 4.3 rigorously quantify the advantages of TpopT in detecting

and estimating signals from low-dimensional families. A straightforward application of TpopT

requires a precise analytical characterization of the signal manifold. In this section, we develop

more practical, nonparametric extension of TpopT, which is applicable in scenarios in which we

only have examples 𝒔1, . . . , 𝒔𝑁 from 𝑆. This extension will maintain the test-time efficiency ad-

vantages of TpopT.

Embedding. We begin by embedding the example points 𝒔1, . . . , 𝒔𝑁 ∈ R𝑛 into a lower-dimensional

space R𝑑 , producing data points 𝝃1, . . . , 𝝃𝑁 ∈ R𝑑 . The mapping 𝜑 should preserve pairwise dis-

tances and can be chosen in a variety of ways; Because the classical Multidimensional Scaling

(MDS) setup on Euclidean distances is equivalent to Principal Component Analysis (PCA), we

simply use PCA in our experiments. Assuming that 𝜑 is bijective over 𝑆, we can take 𝒔 = 𝒔(𝝃) as

an approximate parameterization of 𝑆, and develop an optimization method which, given an input

𝒙, searches for a parameter 𝝃 ∈ R𝑑 that minimizes 𝑓 (𝒔(𝝃)) = − ⟨𝒔(𝝃), 𝒙⟩.

Kernel Interpolated Jacobian Estimates. In the nonparameteric setting, we only know the val-

ues of 𝒔(𝝃) at the finite point set 𝝃1, . . . , 𝝃𝑁 , and we do not have any direct knowledge of the

functional form of the mapping 𝒔(·) or its derivatives. To extend TpopT to this setting, we can
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estimate the Jacobian ∇𝒔(𝝃) at point 𝝃𝑖 by solving a weighted least squares problem

∇̂𝒔(𝝃𝑖) = arg min
𝑱∈R𝐷×𝑑

𝑁∑︁
𝑗=1
𝑤 𝑗 ,𝑖



𝒔 𝑗 − 𝒔𝑖 − 𝑱(𝝃 𝑗 − 𝝃𝑖)


2

2, (4.12)

where the weights 𝑤 𝑗 ,𝑖 = Θ(𝝃𝑖, 𝝃 𝑗 ) are generated by an appropriately chosen kernel Θ. The least

squares problem (4.12) is solvable in closed form. In practice, we prefer compactly supported

kernels, so that the sum in (4.12) involves only a small subset of the points 𝝃 𝑗 ;
6 in experiment,

we choose Θ to be a truncated radial basis function kernel Θ𝜆,𝛿 (𝒙1, 𝒙2) = exp(−𝜆∥𝒙1 − 𝒙2∥22) ·

1∥𝒙1−𝒙2∥2<𝛿. When example points 𝒔𝑖 are sufficiently dense and the kernel Θ is sufficiently local-

ized, ∇̂𝒔(𝝃) will accurately approximate the true Jacobian ∇𝒔(𝝃).

Expanding the Basin of Attraction using Smoothing. In actual applications such as computer

vision and astronomy, the signal manifold 𝑆 often exhibits large curvature 𝜅, leading to a small

basin of attraction. One classical heuristic for increasing the basin size is to smooth the objec-

tive function 𝑓 . We can incorporate smoothing by taking gradient steps with a kernel smoothed

Jacobian,

∇̃𝒔(𝝃𝑖) = 𝑍−1
∑︁
𝑗

𝑤 𝑗 ,𝑖 ∇̂𝒔(𝝃 𝑗 ), (4.13)

where 𝑤 𝑗 ,𝑖 = Θ𝜆𝑠 ,𝛿𝑠 (𝝃𝑖, 𝝃 𝑗 ) and 𝑍 =
∑
𝑗 𝑤 𝑗 ,𝑖. The gradient iteration becomes

𝝃 𝑘+1 = 𝝃 𝑘 + 𝛼𝑘 ∇̃𝒔(𝝃 𝑘 )T𝒙. (4.14)

When the Jacobian estimate ∇̂𝒔(𝝃) accurately approximates ∇𝒔(𝝃), we have

∇̃𝒔(𝝃𝑖)T𝒙 ≈ 𝑍−1
∑︁
𝑗

𝑤 𝑗 ,𝑖∇𝒔(𝝃 𝑗 )T𝒙 = ∇
[
𝑍−1

∑︁
𝑗

𝑤 𝑗 ,𝑖 𝑓 (𝒔(𝝃 𝑗 ))
]
. (4.15)

i.e., ∇̃𝒔 T is an approximate gradient for a smoothed version 𝑓̃ of the objective 𝑓 . Figure 4.2

illustrates smoothed optimization landscapes 𝑓̃ for different levels of smoothing, i.e., different

6In our experiments on gravitational wave astronomy, we introduce an additional quantization step, computing
approximate Jacobians on a regular grid 𝜉1, . . . , 𝜉𝑁 ′ of points in the parameter space Ξ.
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Figure 4.2: Illustration of 2-dim signal embeddings and the parameter optimization procedure for
gravitational wave signals.

choices of 𝜆𝑠. In general, the more smoothing is applied, the broader the basin of attraction. We

employ a coarse-to-fine approach, which starts with a highly smoothed landscape (small 𝜆𝑠) in the

first iteration and decreases the level of smoothing from iteration to iteration — see Figure 4.2.

These observations are in line with theory: because our embedding approximately preserves

Euclidean distances, ∥𝝃𝑖 − 𝝃 𝑗 ∥2 ≈ ∥𝒔𝑖 − 𝒔 𝑗 ∥2, we have

𝑓̃ (𝒔(𝝃𝑖)) = 𝑍−1
∑︁
𝑗

Θ(𝝃𝑖, 𝝃 𝑗 )
〈
𝒔 𝑗 , 𝒙

〉
≈ ⟨𝑍−1

∑︁
𝑗

Θ(𝒔𝑖, 𝒔 𝑗 )𝒔 𝑗 , 𝒙⟩, (4.16)

i.e., applying kernel smoothing in the parameter space is nearly equivalent to applying kernel

smoothing to the signal manifold 𝑆. This smoothing operation expands the basin of attraction

Δ = 1/𝜅, by reducing the manifold curvature 𝜅. Empirically, we find that with appropriate smooth-

ing often a single initialization suffices for convergence to global optimality, suggesting this as a

potential key to breaking the curse of dimensionality.

4.5 Training Nonparametric TpopT

In the section above, we described nonparametric TpopT for finding the matching template by

the iterative gradient solver (4.5). Note that this framework requires pre-computing the Jacobians

∇𝒔(𝝃) and determining optimization hyperparameters, including the step sizes 𝛼𝑘 and kernel width

parameters 𝜆𝑘 at each layer. In this section, we adapt TpopT into a trainable architecture, which

essentially learns all the above quantities from data to further improve performance.

Recall the gradient descent iteration (4.14) in TpopT. Notice that if we define a collection of
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matrices 𝑾 (𝝃𝑖, 𝑘) = 𝛼𝑘 ∇̃𝒔(𝝃𝑖)T ∈ R𝑑×𝐷 indexed by 𝝃𝑖 ∈ {𝝃1, . . . , 𝝃𝑁 } and 𝑘 ∈ {1, . . . , 𝐾} where

𝐾 is the total number of iterations, then the iteration can be rewritten as

𝝃 𝑘+1 = 𝐶−1
𝑁∑︁
𝑖=1

𝑤𝑘,𝑖
(
𝝃𝑖 +𝑾 (𝝃𝑖, 𝑘) 𝒙

)
, (4.17)

where 𝑤𝑘,𝑖 = Θ𝜆𝑘 ,𝛿𝑘 (𝝃 𝑘 , 𝝃𝑖), and 𝐶 =
∑
𝑖 𝑤𝑘,𝑖. Equation (4.17) can be interpreted as a kernel

interpolated gradient step, where the 𝑾 matrices summarize the Jacobian and step size information.

Because Θ is compactly supported, this sum involves only a small subset of the sample points 𝝃𝑖.

Now, if we “unroll’ the optimization by viewing each gradient descent iteration as one layer of a

trainable network, we arrive at a trainable TpopT architecture, as illustrated in Figure 4.3. Here the

trainable parameters in the network are the 𝑾 (𝝃𝑖, 𝑘) matrices and the kernel width parameters 𝜆𝑘 .

ξ0
Kernel

interpolation

λk

{
ξi
wk,i

}

W (ξi, k)
⊗

input x

⊕
ξK

Look-up W

K loops

Figure 4.3: Architecture of trainable TpopT. The model takes 𝒙 as input and starts with a fixed
initialization 𝝃0, and outputs 𝝃𝐾 after going through 𝐾 layers. The trainable parameters are the
collection of 𝑾 (𝝃𝑖, 𝑘) matrices and kernel width parameters 𝜆𝑘 .

Following our heuristic that the 𝑾 (𝝃𝑖, 𝑘) matrices were originally the combination of Jacobian

and step size, we can initialize these matrices as 𝛼𝑘 ∇̃𝒔(𝝃𝑖)T. For the loss function during train-

ing, we use the square loss between the network output 𝝃𝐾 (𝒙) and the optimal quantization point

𝝃∗(𝒙) = arg max𝑖=1,...,𝑁
〈
𝒔(𝝃𝑖), 𝒙

〉
, namely

𝐿 =
1

𝑁train

𝑁train∑︁
𝑗=1
∥𝝃𝐾 (𝒙 𝑗 ) − 𝝃∗(𝒙 𝑗 )∥22 (4.18)

for a training set {𝒙 𝑗 }𝑁train
𝑗=1 with positively-labeled data only. This loss function is well-aligned with

the signal estimation task, and is also applicable to detection.
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In summary, the trainable TpopT architecture consists of the following steps:

• Create embeddings 𝒔𝑖 ↦→ 𝝃𝑖.

• Estimate Jacobians ∇𝒔(𝝃) at points 𝝃𝑖 by weighted least squares.

• Estimate smoothed Jacobians ∇̃𝒔(𝝃) at any 𝝃 by kernel smoothing.

• Select a multi-level smoothing scheme.

• Train the model with unrolled optimization.

4.6 Experiments

We apply the trainable TpopT to gravitational wave detection, where MF is the current method

of choice, and show a significant improvement in efficiency-accuracy tradeoffs. We further demon-

strate its wide applicability on low-dimensional data with experiments on handwritten digit data.

To compare the efficiency-accuracy tradeoffs of MF and TpopT models, we note that (i) for MF,

the computation cost of the statistic max𝑖=1,...,𝑛 ⟨𝒔𝑖, 𝒙⟩ is dominated by the cost of 𝑛 length 𝐷 inner

products, requiring 𝑛𝐷 multiplication operations. For TpopT, with 𝑀 parallel initializations, 𝐾

iterations of the gradient descent (4.17), 𝑚 neighbors in the truncated kernel, and a final evaluation

of the statistic, we require 𝑀𝐷 (𝐾𝑑𝑚 + 1) multiplications; other operations including the kernel

interpolation and look-up of pre-computed gradients have negligible test-time cost.

4.6.1 Gravitational Wave Detection

We aim to detect a family of gravitational wave signals in Gaussian noise. Each gravitational

wave signal is a one-dimensional chirp-like signal – see Figure 4.4 (left).7 Please refer to section

B.5 in the appendix for data generation details.

Based on their physical modeling, gravitational wave signals are equipped with a set of physical

parameters, such as the masses and three-dimensional spins of the binary black holes that generate

them, etc. While it is tempting to directly optimize on this native parameter space, unfortunately
7The raw data of gravitational wave detection is a noisy one-dimensional time series, where gravitational wave

signals can occur at arbitrary locations. We simplify the problem by considering input segments of fixed time duration.
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Figure 4.4: Left: Example of a gravitational wave signal. Right: Optimization landscape in the
physical parameter space (mass-spin-𝑧), shown as the heatmap of signal correlations.

the optimization landscape on this space turns out to be rather unfavorable, as shown in Figure 4.4

(right). We see that the objective function has many spurious local optimizers and is poorly con-

ditioned. Therefore, we still resort to signal embedding to create an alternative set of approximate

“parameters” that are better suited for optimization.

For the signal embedding, we apply PCA with dimension 2 on a separate set of 30,000 noiseless

waveforms drawn from the same distribution. Because the embedding dimension is relatively low,

here we quantize the embedding parameter space with an evenly-spaced grid, with the range of

each dimension evenly divided into 30 intervals. The value 𝝃0 at the initial layer of TpopT is

fixed at the center of this quantization grid. Prior to training, we first determine the optimization

hyperparameters (step sizes and smoothing levels) using a layer-wise greedy grid search, where we

sequentially choose the step size and smoothing level at each layer as if it were the final layer. This

greedy approach significantly reduces the cost of the search. From there, we use these optimization

hyperparameters to initialize the trainable TpopT network, and train the parameters on the training

set. We use the Adam [152] optimizer with batch size 1000 and constant learning rate 10−2.

Regarding the computational cost of TpopT, we have 𝑀 = 1, 𝑑 = 2, 𝑚 = 4 during training and

𝑚 = 1 during testing. The test time complexity of 𝐾-layer TpopT is 𝐷 (2𝐾 + 1).To evaluate the performance of matched filtering at any given complexity 𝑚, we randomly

generate 1,000 independent sets of 𝑚 templates drawn from the above distribution, evaluate the

ROC curves of each set of templates on the validation set, and select the set with the highest area-

under-curve (AUC) score. This selected template bank is then compared with TpopT on the shared
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Figure 4.5: This figure compares the performance of four methods: (1) matched filtering (MF),
(2) Template optimization (TpopT) without training, (3) TpopT with training, and (4) multi-layer
perceptron (MLP) with one hidden layer. All methods are compared at three noise levels. We see
that TpopT performs well in low to moderate noise, which matches theoretical results.

test set.

Figure 4.6.1 shows the comparison of efficiency-accuracy trade-offs for this task between

matched filtering and TpopT after training. We see that TpopT achieves significantly higher detec-

tion accuracy compared with MF at equal complexity. At low to moderate noise levels, Trained-

TpopT performs the best, followed by MLP, and matched filtering performs the worst. As noise

level increases, MLP’s performance worsens most significantly, becoming the worst at 𝜎 = 0.3.

4.6.2 Handwritten Digit Recognition

In this second experiment, we apply TpopT to the classic task of handwritten digit recognition

using the MNIST [201] dataset, in particular detecting the digit 3 from all other digits. We apply

random Euclidean transformations to all images, with translation uniformly between ±0.1 image

size on both dimensions and rotation angle uniformly between ±30◦.

Since the signal space here is nonparametric, we first create a 3-dimensional PCA embedding

from the training set, and Figure 4.6 (left) shows a slice of the embedding projected onto the first

two embedding dimensions. See supplementary for experiment details. Regarding the computa-
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tional cost of TpopT, we have 𝑀 = 1, 𝑑 = 3, 𝑚 = 5 during training and 𝑚 = 1 during testing.

Since the complexity is measured at test time, the complexity with 𝐾-layer TpopT is 𝐷 (3𝐾 + 1).

Additional experimental details can be found in B.5.
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Figure 4.6: Left: A slice of the 3-d embeddings projected onto the first two dimensions. Right:
Classification scores of MF and TpopT at different complexity levels, for handwritten digit recog-
nition.

Matched filtering is also evaluated similarly as in the previous experiment. We first set aside a

random subset of 500 images of digit 3 from the MNIST training set and construct the validation

set from it. The remaining images are used to randomly generate 1,000 independent sets of trans-

formed digits 3, and the best-performing set of templates on the validation set is selected as the

MF template bank, and compared with TpopT on the shared test set. Figure 4.6 (right) shows the

comparison of efficiency-accuracy tradeoffs between the two methods, and we see a consistently

higher detection accuracy of trained TpopT over MF at equal complexities.

4.7 Discussion and Limitations

In this section, we studied TpopT as an approach to efficient detection of low-dimensional sig-

nals. We provided a proof of convergence of Riemannian gradient descent on the signal manifold,

and demonstrated its superior dimension scaling compared to MF. We also proposed the trainable

TpopT architecture that can handle general nonparametric families of signals. Experimental re-

sults show that trained TpopT achieves significantly improved efficiency-accuracy tradeoffs than

MF, especially in the gravitational wave detection task where MF is the method of choice.
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The principal limitation of nonparametric TpopT is its storage complexity: it represents the

manifold using a dense collection of points and Jacobians, with cost exponential in intrinsic di-

mension 𝑑. At the same time, we note that the same exponential storage complexity is encountered

by matched filtering with a pre-designed template bank. In some sense, this exponential resource

requirement reflects an intrinsic constraint of the signal detection problem, unless more structures

within the signal space can be exploited. Both TpopT and its nonparametric extension achieve

exponential improvements in test-time efficiency compared to MF; nevertheless, our theoretical

results retain an exponential dependence on intrinsic dimension 𝑑, due to the need for multiple

initializations. In experiments, the proposed smoothing allows convergence to global optimality

from a single initialization. Our current theory does not fully explain this observation; this is an

important direction for future work.

An advantage of MF not highlighted in the discussion is its efficiency in handling noisy time

series, using the fast Fourier transform. This enables MF to rapidly locate signals that occur at

a-priori unknown spatial/temporal locations. Developing a convolutional version of TpopT with

similar advantages is another important direction.

Finally, our gravitational wave experiments use synthetic data with known ground truth, in

order to corroborate the key messages of this work. Future experiments that explore broader and

more realistic setups will be an important empirical validation of the proposed method.
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Chapter 5: Conclusion

As the fields of machine learning and signal processing continue to advance, their methodolo-

gies will be deployed to increasingly more sophisticated and large-scale tasks. This in turn poses

increasingly high demands for model efficiency and interpretability, which are critical to process-

ing enormous volumes of data and extracting meaningful insights from it. In this thesis, we have

focused on the problem of detecting and estimating parametric families of signals, a fundamental

problem in classic and modern applications alike, and proposed a series of interpretable trainable

architectures for both statistical accuracy and computational efficiency. Although plenty of works

exist on applying deep learning models to gravitational wave detection, we take the different ap-

proach of bridging classic statistics and modern learning, achieving “the best of both worlds”.

In Chapter 1, we motivated the need for interpretable learning architectures, and presented an

overview of the classic problem of detecting a parametric family of signals, as well as the matched

filtering method and its limitations in computational efficiency. We also introduced the application

of gravitational wave detection, where accuracy, efficiency and interpretability are three prominent

desiderata.

In Chapter 2, we first illustrated the intrinsic suboptimality of matched filtering for parametric

signal detection, and then proposed the MNet architectures as possible remedies. MNet-Shallow

incorporates trainable templates, leading to a strict performance gain. MNet-Deep further gets

rid of the convex boundary constraint of the matched filtering architecture by using a deep ReLU

network, thereby able to better handle non-Gaussian noise distributions, as is the case in many

realistic applications.

In Chapter 3, we turned our focus to computational efficiency of the models, and proposed

to combine the MNet-Shallow architecture with hierarchical decision rules, leading to a train-

able hierarchical architecture. Taking advantage of the class imbalance structure in tasks such
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as gravitational wave detection, the progressive rejection scheme is able to significantly reduce

computational cost while maintaining similar accuracy.

In Chapter 4, we continued our focus on computational efficiency, but utilizing a different type

of structure in the problem — the geometric structure of the signal set, and centered on the core

idea that optimization over the signal space is more efficiency than covering. This leads to the

template optimization (TpopT) method for detection and estimation, which we show theoretically

to be exponentially more efficient than template covering. To unlock the full power of the TpopT

model, we reconfigure the architecture to be trainable through unrolled optimization and kernel

interpolation. Combined, the proposed trainable TpopT enjoys a significant performance-accuracy

trade-off improvement over matched filtering, and remains highly interpretable compared with

many other deep learning architectures.

While the majority of our empirical evaluations focus on the task of gravitational wave detec-

tion, our proposed methods are broadly applicable to any task with a signal family of interest, as

shown by the handwritten digit experiment for TpopT. Indeed, in virtually any scenario where the

conceptual idea of template matching is present, from geophysics and radar to modern learning

architecture that utilize template banks, it is possible to incorporate training and unrolled opti-

mization for an interpretable architecture with improved in statistical accuracy and computational

efficiency.

5.1 Limitations and Future Work

Despite the work present in this thesis, there remain many limitations and possibilities for

further improvements. We will outline a few in this section.

Throughout the discussion, we have approached the signal detection problem such that the sig-

nal appearance location is determined in advance, and that the only uncertainty lies in the signal

itself. We first note that this is actually not as unrealistic as it may sound. When the temporal

or spatial uncertainty is taken into account, one possible solution is to simply apply the fixed-

location model in a sliding-window fashion over all possible locations. This can well be feasible
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on relatively small scales, similar to what is done for small convolutional kernels in convolutional

networks. At larger scales, the efficiency of frequency domain processing through fast Fourier

transforms begins to appear, and matched filtering is naturally compatible with such processing,

giving it an advantage that is not present in fixed-location scenarios. Nonetheless, both MNet

architectures and the hierarchical network architecture share the same frequency domain compati-

bility, so the accuracy-efficiency comparison is still valid. The only genuine concern lies with the

TpopT architecture, where the optimization configuration removes the affinity with frequency do-

main processing. One promising solution is to include the temporal/spatial dimension as part of a

joint optimization, which can also expand the model to accommodate multiple different signals at

various locations. Such extensions of the model also has strong connections to the deconvolution

literature [202], and will be an important direction for future work.

Another natural question is whether one can combine the two types of structures leveraged

in Chapters 3 and 4 — the problem structure and the geometric structure, and produce a unified

framework. For instance, one can conceive an architecture that applies a rejection threshold af-

ter each iteration of the unrolled optimization. In addition to these aforementioned structures,

in practical applications there can exist more problem-specific structures on the dataset, such as

time-frequency domain concentration for gravitational wave signals. Due to their problem-specific

nature, it might be potentially more challenging to design general-purpose architectures for them,

but studying ways to incorporate such information are promising in further boosting detection

accuracy and efficiency.

Regarding the applicability of the proposed architectures, as previously discussed, they are by

no means restricted to the gravitational wave application. Nonetheless, showcasing concrete im-

provements over current methods in some other realistic problem setups, such as neuroscience,

geophysics or radar, will further demonstrate their applicability. At the same time, the proposed

ideas can potentially find applications in modern learning pipelines as well, serving as a plug-in

module whenever a similarity search is conducted. The unrolled architecture enables uninterrupted

gradient flow, and allows end-to-end training with other learning modules. Exploring such poten-
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tial in modern deep learning will also be an important future direction. Furthermore, while our

focus has been on signal detection and estimation, similar ideas can potentially be applicable to

signal sensing too. For example, there exist sensing methods in electrochemical microscopy that

utilize compressed sensing techniques and can be used for detection of different template shapes

[203, 204]. In such circumstances, an unrolled optimization solver with trainable templates will be

able to further improve the model efficiency.

There are many other aspects of the problem not covered by the thesis, such as better un-

derstanding the sample complexity required for detection, and online learning with time-varying

families of signals. Answering these questions will provide a more holistic understanding for this

fundamental problem.

Finally, we sincerely hope that the ideas, methods and results presented in this thesis can serve

the scientific and engineering community in developing more efficient data processing pipelines,

deepening our understanding of trainable models in this era of big data, and revealing more secrets

of the universe.
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Appendix A: Proofs for Generalized Approach to Matched Filtering Using

Neural Networks

A.1 Proof of Proposition 1

Combining the definitions of the likelihood ratio 𝜆(𝒙) and the probability densities 𝜌0(𝒙) and

𝜌1(𝒙), we have

𝜆(𝒙) =
∫
𝜌noise(𝒙 − 𝒔𝜸) d𝜈(𝜸)

𝜌noise(𝒙)
(A.1)

=

∫
𝜌noise(𝒙 − 𝒔𝜸)
𝜌noise(𝒙)

d𝜈(𝜸). (A.2)

When the noise is Gaussian N(0, 𝜎2𝑰), the integrand equals

𝜌noise(𝒙 − 𝒔𝜸)
𝜌noise(𝒙)

= exp

( 〈
𝒙, 𝒔𝜸

〉
− ∥𝒔𝜸∥2/2
𝜎2

)
, (A.3)

which is a convex function of 𝒙. Hence after integrating over 𝜸, the resulting function 𝜆(𝒙) is still

a convex function of 𝒙. The optimal decision region is a sublevel set of 𝜆(𝒙), and is hence a convex

set.

A.2 Proof of Proposition 2

Assume the training data is drawn iid from some distribution on (𝒙, 𝑦) ∈ R𝑛 × {0, 1}. In this

setting, the previous defined densities 𝑝0(𝒙) and 𝑝1(𝒙) can be expressed as 𝑝0(𝒙) = 𝑝(𝒙 |𝑦 = 0)
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and 𝑝1(𝒙) = 𝑝(𝒙 |𝑦 = 1). If the predictor function is 𝑓 : R𝑛 → R, then the risk is

R( 𝑓 ) = E(𝒙,𝑦) [ℓ( 𝑓 (𝒙), 𝑦)] (A.4)

= P[𝑦 = 0] · E𝒙 |𝑦=0 [ℓ( 𝑓 (𝒙), 0)] +

P[𝑦 = 1] · E𝒙 |𝑦=1 [ℓ( 𝑓 (𝒙), 1)] (A.5)

= P[𝑦 = 0]
∫
R𝑛
ℓ( 𝑓 (𝒙), 0)𝑝0(𝒙)d𝒙 +

P[𝑦 = 1]
∫
R𝑛
ℓ( 𝑓 (𝒙), 1)𝑝1(𝒙)d𝒙 (A.6)

=

∫
R𝑛

(
(1 − 𝑐)ℓ( 𝑓 (𝒙), 0)𝑝0(𝒙)+

𝑐ℓ( 𝑓 (𝒙), 1)𝑝1(𝒙)
)
d𝒙, (A.7)

where 𝑐 := P[𝑦 = 1] ∈ (0, 1) is an exogenous constant that only depends on the data distribution.

The function that minimizes the above risk is

𝑓★(𝒙) = arg min
𝑦̂
(1 − 𝑐)ℓ( 𝑦̂, 0)𝑝0(𝒙) + 𝑐ℓ( 𝑦̂, 1)𝑝1(𝒙) (A.8)

for all 𝒙 ∈ R𝑛, or equivalently

𝑓★(𝒙) = arg min
𝑦̂

ℓ( 𝑦̂, 0) + 𝑐𝜆(𝒙)
1 − 𝑐 ℓ( 𝑦̂, 1). (A.9)

Therefore, the optimal predicted value at a point is the solution to an optimization problem that

only depends on the likelihood ratio 𝜆(𝒙).

Take an arbitrary fixed 𝒙. From the assumption that ℓ( 𝑦̂, 𝑦) is strictly convex and minimized at

𝑦̂ = 𝑦, it follows that ℓ( 𝑦̂, 0) + 𝑐𝜆(𝒙)
1−𝑐 ℓ( 𝑦̂, 1) is strictly convex in 𝑦̂, strictly decreasing on (−∞, 0]

and strictly increasing on [1,∞). Hence for any 𝒙 the risk minimization problem of equation (A.9)

has a unique solution in [0, 1]. The optimal solution can be found from the first-order-condition
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(FOC). Noticing that 𝑦̂ cannot be 0 or 1 under the FOC, we can rewrite the FOC as

ℓ′( 𝑦̂, 0)
−ℓ′( 𝑦̂, 1) =

𝑐𝜆(𝒙)
1 − 𝑐 . (A.10)

From the assumption of strong convexity, we know that on the interval (0, 1) we have ℓ′( 𝑦̂, 0) > 0

and ℓ′( 𝑦̂, 1) < 0, where in ℓ′ the derivative is taken with respect to the first argument. Hence the

left-hand-side of (A.10) is strictly increasing in 𝑦̂.

This concludes that the optimal decision function 𝑓★(𝒙) is strictly increasing in 𝜆(𝑥).
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Appendix B: Proofs for TpopT: Efficient Trainable Template Optimization

on Low-Dimensional Manifolds

B.1 Overview

In the appendices, we will prove Theorem 3 from the main paper.

For the rest of the supplementary materials, Section B.2 proves result (4.10) under the stricter

constraint on the noise level 𝜎, Section B.3 bounds the effect of noise on the tangent bundle, and

Section B.4 uses this bound to prove result (4.9) under the looser constraint on the noise level.

B.2 Proof of Result (4.10)

In this section, we state and prove one of the two parts of our main claims about gradient

descent:

Theorem 4. Let 𝑆 be a complete manifold. Suppose the extrinsic geodesic curvature of 𝑆

is bounded by 𝜅. Consider the Riemannian gradient method, with initialization satisfying

𝑑 (𝒔0, 𝒔♮) < Δ = 1/𝜅, and step size 𝜏 = 1
64 . Then when 𝜎 ≤ 1/(60𝜅

√
𝐷), with probability at

least 1 − 𝑒−𝐷/2, we have for all 𝑘

𝑑 (𝒔𝑘 , 𝒔★) ≤
(
1 − 𝜖

) 𝑘
𝑑 (𝒔0, 𝒔★), (B.1)

where 𝒔★ is the unique minimizer of 𝑓 over 𝐵(𝒔♮, 1/𝜅). Here, 𝑐, 𝜖 are positive numerical

constants.

Proof. Since the closed neighborhood 𝐵(𝒔♮, 1/𝜅) is a compact set and 𝑓 is continuous, there must

exist a minimizer of 𝑓 on 𝐵(𝒔♮, 1/𝜅), which we denote as 𝒔★. We will show that with high proba-
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bility 𝒔★ does not lie on the boundary 𝜕𝐵(𝒔♮, 1/𝜅). It suffices to show that ∀𝒔 ∈ 𝜕𝐵(𝒔♮, 1/𝜅) :

〈
− grad[ 𝑓 ] (𝒔),

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
> 0, (B.2)

namely that the gradient descent direction points inward the neighborhood for all points on the

boundary. Here log𝒔 : 𝑆 → 𝑇𝒔𝑆 denotes the logarithmic map at point 𝒔 ∈ 𝑆. To show this, we have

〈
− grad[ 𝑓 ] (𝒔),

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
=

〈
𝑃𝑇𝒔𝑆 [𝒔♮ + 𝒛],

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
=

〈
𝒔♮ + 𝒛,

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
≥

〈
𝒔♮,

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
− ∥𝒛∥2, (B.3)

where the operator 𝑃𝑇𝒔𝑆 [·] denotes projection onto the tangent space at 𝒔, and we used the fact that

log𝒔 𝒔♮ ∈ 𝑇𝒔𝑆. Let 𝜸 be a unit-speed geodesic of 𝑆 with 𝜸(0) = 𝒔♮ and 𝜸(Δ) = 𝒔, the existence of

which is ensured by the completeness of 𝑆. Hence ¤𝜸(Δ) = − log𝒔 𝒔♮
∥ log𝒔 𝒔♮ ∥2

. Using Lemma 5, it follows

that

〈
𝒔♮,

log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
= ⟨𝜸(0),− ¤𝜸(Δ)⟩ ≥ Δ − 1

6
𝜅2Δ3 =

5
6𝜅
. (B.4)

Throughout this proof, we will use the result from measure concentration that ∥𝒛∥2 ≤ 2𝜎
√
𝐷 with

probability at least 1−𝑒−𝐷/2 [205]. Hence with high probability we have
〈
− grad[ 𝑓 ] (𝒔), log𝒔 𝒔♮

∥ log𝒔 𝒔♮ ∥2

〉
≥

5
6𝜅 −

1
30𝜅 > 0. Therefore, with high probability 𝒔★ lies in the interior of 𝐵(𝒔♮, 1/𝜅), and hence the

gradient vanishes at 𝒔★, i.e. grad[ 𝑓 ] (𝒔★) = 0.

Suppose we are currently at the 𝑘-th iteration with iterate 𝒔𝑘 . Define 𝒔𝑡 = exp𝒔𝑘
(
−𝑡 grad[ 𝑓 ] (𝒔𝑘 )

)
with variable 𝑡 ∈ [0, 𝜏], and the next iterate can be represented as 𝒔𝑘+1 = 𝒔𝜏. The global definition
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of the exponential map is ensured by the completeness of 𝑆. We have that

𝑑 (𝒔𝑘+1, 𝒔★) − 𝑑 (𝒔𝑘 , 𝒔★) =
∫ 𝜏

0

𝑑

𝑑𝑟
𝑑 (𝒔𝑟 , 𝒔★)

���
𝑡
𝑑𝑡

=

∫ 𝜏

0

〈
𝑑

𝑑𝑟
𝒔𝑟

���
𝑡
,
− log𝒔𝑡 𝒔

★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

=

∫ 𝜏

0

〈
Π𝒔𝑡 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )},

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

=

∫ 𝜏

0

〈
− grad[ 𝑓 ] (𝒔𝑡),

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

+
∫ 𝜏

0

〈
grad[ 𝑓 ] (𝒔𝑡) + Π𝒔𝑡 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )},

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

=

∫ 𝜏

0

〈
𝑃𝑇𝒔𝑡 𝑆 [𝒔

★],
− log𝒔𝑡 𝒔

★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

+
∫ 𝜏

0

〈
𝑃𝑇𝒔𝑡 𝑆 [𝒙 − 𝒔★],

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡

+
∫ 𝜏

0

〈
grad[ 𝑓 ] (𝒔𝑡) + Π𝒔𝑡 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )},

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
𝑑𝑡.

(B.5)

The third equation holds because the velocity at the new point 𝒔𝑡 is the same velocity vector at 𝒔𝑘

but transported along the curve since there is no acceleration along the curve. The last equation

follows from the fact that grad[ 𝑓 ] (𝒔𝑡) = −𝑃𝑇𝒔𝑡 𝑆 [𝒙]. In the following, we will bound the three

terms in (B.5) separately.

For convenience, write

𝑑 (𝑡) = 𝑑 (𝒔𝑡 , 𝒔★) (B.6)

so that 𝑑 (0) = 𝑑 (𝒔𝑘 , 𝒔★) and 𝑑 (𝜏) = 𝑑 (𝒔𝑘+1, 𝒔★).

For the integrand of the first term in (B.5), let 𝜸 be a unit-speed geodesic between 𝒔𝑡 and 𝒔★,
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where 𝜸(0) = 𝒔★ and 𝜸(𝑑 (𝑡)) = 𝒔𝑡 . We have

〈
𝑃𝑇𝒔𝑡 𝑆 [𝒔

★],
− log𝒔𝑡 𝒔

★

∥ log𝒔𝑡 𝒔
★∥2

〉
=

〈
𝒔★,
− log𝒔𝑡 (𝒔

★)
∥ log𝒔𝑡 (𝒔★)∥2

〉
= ⟨𝜸(0), ¤𝜸(𝑑 (𝑡))⟩

≤ −𝑑 (𝑡) + 1
6
𝜅2𝑑3(𝑡), (B.7)

where we used the fact that ¤𝜸(𝑑 (𝑡)) = − log𝒔𝑡 (𝒔
★)

∥ log𝒔𝑡 (𝒔★)∥2
∈ 𝑇𝒔𝑡𝑆, and the inequality is given by Lemma 5.

For the integrand of the second term in (B.5), we have

〈
𝑃𝑇𝒔𝑡 𝑆 [𝒙 − 𝒔★],

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
≤ ∥𝑃𝑇𝒔𝑡 𝑆 [𝒙 − 𝒔★] ∥2

= ∥𝑃𝑇𝒔𝑡 𝑆 𝑃(𝑇𝒔★𝑆)⊥ [𝒙 − 𝒔★] ∥2

≤ ∥𝑃𝑇𝒔𝑡 𝑆 𝑃(𝑇𝒔★𝑆)⊥ ∥ ∥𝒙 − 𝒔★∥2

≤ ∥𝑃(𝑇𝒔★𝑆)⊥ 𝑃𝑇𝒔𝑡 𝑆∥ ∥𝒛∥2, (B.8)

where we used the optimality of 𝒔★ and the symmetry of projection operators. The operator norm

∥𝑃(𝑇𝒔★𝑆)⊥ 𝑃𝑇𝒔𝑡 𝑆∥ can be rewritten as

∥𝑃(𝑇𝒔★𝑆)⊥ 𝑃𝑇𝒔𝑡 𝑆∥ = sup
𝒗∈𝑇𝒔𝑡 𝑆, ∥𝒗∥2=1

𝑑 (𝒗, 𝑇𝒔★𝑆). (B.9)

For any unit vector 𝒗 ∈ 𝑇𝒔𝑡𝑆, we will construct a vector in 𝑇𝒔★𝑆 and use its distance from 𝒗

to upper bound 𝑑 (𝒗, 𝑇𝒔★𝑆). We again use the unit-speed geodesic 𝜸 joining 𝒔★ and 𝒔𝑡 , where

𝜸(0) = 𝒔★ and 𝜸(𝑑 (𝑡)) = 𝒔𝑡 . Let 𝒗𝑟 = P𝑟,𝑑 (𝑡)𝒗 for 𝑟 ∈ [0, 𝑑 (𝑡)], where P𝑟,𝑑 (𝑡) denotes the parallel

transport backward along 𝜸. The derivative of 𝒗𝑟 can be expressed by the second fundamental

form 𝑑
𝑑𝑟
𝒗𝑟 = II( ¤𝜸(𝑟), 𝒗𝑟), which can further be bounded by Lemma 6 to get ∥ 𝑑

𝑑𝑟
𝒗𝑟 ∥2 ≤ 3𝜅. Hence

𝒗𝑑 (𝑡) − 𝒗0




2 ≤ 3𝜅𝑑 (𝑡). Since 𝒗𝑑 (𝑡) = 𝒗 and 𝒗0 ∈ 𝑇𝒔★𝑆, it follows that 𝑑 (𝒗, 𝑇𝒔★𝑆) ≤ 3𝜅𝑑 (𝑡) for any

unit vector 𝒗 ∈ 𝑇𝒔𝑡𝑆. Hence

∥𝑃(𝑇𝒔★𝑆)⊥ 𝑃𝑇𝒔𝑡 𝑆∥ ≤ 3𝜅 · 𝑑 (𝑡). (B.10)
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Since ∥𝒛∥2 ≤ 2𝜎
√
𝐷 with high probability, plugging these into (B.8), we have with high probabil-

ity 〈
𝑃𝑇𝒔𝑡 𝑆 [𝒙 − 𝒔★],

− log𝒔𝑡 𝒔
★

∥ log𝒔𝑡 𝒔
★∥2

〉
≤ 6𝜎𝜅

√
𝐷 · 𝑑 (𝑡). (B.11)

The integrand of the third term in (B.5) can be bounded using the Riemannian Hessian. We

have

grad[ 𝑓 ] (𝒔𝑡) = Π𝒔𝑡 ,𝒔𝑘 {grad[ 𝑓 ] (𝒔𝑘 )} +
∫ 𝑡

𝑟=0
Π𝒔𝑡 ,𝒔𝑟 Hess[ 𝑓 ] (𝒔𝑟) Π𝒔𝑟 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )} 𝑑𝑟. (B.12)

Using the 𝐿-Lipschitz gradient property of the function 𝑓 from Lemma 7, we have

〈
grad[ 𝑓 ] (𝒔𝑡) + Π𝒔𝑡 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )},

− log𝒔𝑟 𝑠
★

∥ log𝒔𝑟 𝑠
★∥2

〉
≤ ∥ grad[ 𝑓 ] (𝒔𝑡) − Π𝒔𝑡 ,𝒔𝑘 {grad[ 𝑓 ] (𝒔𝑘 )}∥2

≤ 𝑡max
𝑠
∥ Hess[ 𝑓 ] (𝑠)∥ ∥ grad[ 𝑓 ] (𝒔𝑘 )∥2

≤ 𝑡𝐿2𝑑 (𝒔𝑘 , 𝒔★). (B.13)

Hence

∫ 𝜏

0

〈
grad[ 𝑓 ] (𝒔𝑡) + Π𝒔𝑡 ,𝒔𝑘 {− grad[ 𝑓 ] (𝒔𝑘 )},

− log𝒔𝑟 𝒔
★

∥ log𝒔𝑟 𝒔
★∥2

〉
𝑑𝑡 ≤ 1

2
𝜏2𝐿2𝑑 (𝒔𝑘 , 𝒔★). (B.14)

Gathering the separate bounds of the three terms in (B.5), we have

𝑑 (𝜏) ≤ 𝑑 (0) +
∫ 𝜏

0

(
−𝑑 (𝑡) + 1

6
𝜅2𝑑3(𝑡) + 6𝜎𝜅

√
𝐷𝑑 (𝑡)

)
𝑑𝑡 + 1

2
𝐿2𝜏2𝑑 (0)

= (1 + 1
2
𝐿2𝜏2)𝑑 (0) +

∫ 𝜏

0

(
−(1 − 𝑐1)𝑑 (𝑡) +

1
6
𝜅2𝑑3(𝑡)

)
𝑑𝑡, (B.15)

where 𝑐1 = 6𝜎𝜅
√
𝐷 ≤ 1

10 . By triangle inequality we have

𝑑 (𝒔𝑘 , 𝒔★) − 𝑑 (𝒔𝑘 , 𝒔𝑡) ≤ 𝑑 (𝒔𝑡 , 𝒔★) ≤ 𝑑 (𝒔𝑘 , 𝒔★) + 𝑑 (𝒔𝑘 , 𝒔𝑡). (B.16)
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Since 𝒔𝑡 = exp𝒔𝑘
(
− 𝑡 grad[ 𝑓 ] (𝒔𝑘 )

)
, we have

𝑑 (𝒔𝑘 , 𝒔𝑡) ≤ 𝑡∥ grad[ 𝑓 ] (𝒔𝑘 )∥2 ≤ 𝑡𝐿 · 𝑑 (𝒔𝑘 , 𝒔∗), (B.17)

and thus

(1 − 𝑡𝐿)𝑑 (0) ≤ 𝑑 (𝑡) ≤ (1 + 𝑡𝐿)𝑑 (0). (B.18)

Hence for the integrand in (B.15), we have

−(1 − 𝑐1)𝑑 (𝑡) +
1
6
𝜅2𝑑3(𝑡) ≤ −(1 − 𝑐1)𝑑 (𝑡) +

1
6
𝜅2(1 + 𝑡𝐿)2𝑑2(0)𝑑 (𝑡)

≤ −(1 − 𝑐1)𝑑 (𝑡) +
1
6
𝜅2(1 + 𝜏𝐿)2(2Δ)2𝑑 (𝑡)

= (−1 + 𝑐2)𝑑 (𝑡)

≤ (−1 + 𝑐2) (1 − 𝑡𝐿)𝑑 (0) (B.19)

where 𝑐2 = 𝑐1 + 2
3 (1 + 𝜏𝐿)

2.

Plugging this back, we get

𝑑 (𝜏) ≤ (1 + 1
2
𝐿2𝜏2)𝑑 (0) + (−1 + 𝑐2)𝑑 (0)

∫ 𝜏

0
(1 − 𝑡𝐿)𝑑𝑡

=

(
1 − (1 − 𝑐2)𝜏 +

(
1
2
𝐿2 + 1

2
𝐿 (1 − 𝑐2)

)
𝜏2

)
𝑑 (0). (B.20)

Substituting in 𝐿 = 121
30 from Lemma 7 and 𝜏 = 1

64 , we get

𝑑 (𝒔𝑘+1, 𝒔★) ≤ (1 − 𝜖)𝑑 (𝒔𝑘 , 𝒔★) (B.21)

where 𝜖 ≈ 2.3 × 10−4, which proves result (4.10). Note that this also implies the uniqueness of the

minimizer 𝒔★.

□
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B.2.1 Supporting Lemmas

Lemma 5. Let 𝜸 be a regular unit-speed curve on the manifold 𝑆 ⊂ S𝑑−1 with extrinsic curvature

𝜅. Then,

⟨ ¤𝜸(𝑡), 𝜸(0)⟩ ≤ −𝑡 + 𝜅
2𝑡3

6
(B.22)

Proof. Since 𝜸 ⊂ S𝑑−1, by differentiating both sides of ∥𝜸(𝑡)∥22 = 1 we get ⟨ ¤𝜸(𝑡), 𝜸(𝑡)⟩ = 0.

Further, since 𝜸 is unit-speed, we have ∥ ¤𝜸(𝑡)∥22 = 1 and by differentiating it ⟨ ¥𝜸(𝑡), ¤𝜸(𝑡)⟩ = 0.

Therefore,

⟨ ¤𝜸(𝑡), 𝜸(0)⟩ =
〈
¤𝜸(𝑡), 𝜸(𝑡) −

∫ 𝑡

0
¤𝜸(𝑡1) 𝑑𝑡1

〉
= −

〈
¤𝜸(𝑡),

∫ 𝑡

0
¤𝜸(𝑡1) 𝑑𝑡1

〉
= −

∫ 𝑡

𝑡1=0

〈
¤𝜸(𝑡), ¤𝜸(𝑡) −

∫ 𝑡

𝑡2=𝑡1

¥𝜸(𝑡2) 𝑑𝑡2
〉
𝑑𝑡1

= −𝑡 +
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

⟨ ¤𝜸(𝑡), ¥𝜸(𝑡2)⟩ 𝑑𝑡2 𝑑𝑡1

= −𝑡 +
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

〈
¤𝜸(𝑡2) +

∫ 𝑡

𝑡3=𝑡2

¥𝜸(𝑡3) 𝑑𝑡3, ¥𝜸(𝑡2)
〉
𝑑𝑡2 𝑑𝑡1

= −𝑡 +
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

∫ 𝑡

𝑡3=𝑡2

⟨ ¥𝜸(𝑡3), ¥𝜸(𝑡2)⟩ 𝑑𝑡3 𝑑𝑡2 𝑑𝑡1

≤ −𝑡 + 𝜅2
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

∫ 𝑡

𝑡3=𝑡2

𝑑𝑡3 𝑑𝑡2 𝑑𝑡1

= −𝑡 + 𝜅
2𝑡3

6
. (B.23)

□

Lemma 6. Let II(𝒖, 𝒗) denote the second fundamental form at some point 𝒔 ∈ 𝑆, and let 𝜅 denote

the extrinsic (R𝐷) geodesic curvature of 𝑆. Then

sup
∥𝒖∥2=1,∥𝒗∥2=1

∥II(𝒖, 𝒗)∥2 ≤ 3𝜅. (B.24)
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Proof. Set

𝜅II = max
∥𝒖∥2=1,∥𝒗∥2=1

∥II(𝒖, 𝒗)∥22. (B.25)

Choose unit vectors 𝒖, 𝒗 which realize this maximum value (these must exist, by continuity of

II and compactness of the constraint set). Because II is bilinear, ∥II(𝒖, 𝒗)∥22 = ∥II(𝒖,−𝒗)∥22, and

without loss of generality, we can assume ⟨𝒖, 𝒗⟩ ≤ 0.

Since II(𝒖, 𝒗) is a symmetric bilinear form, each coordinate of the vector II(𝒖, 𝒗) has the form

II𝑖 (𝒖, 𝒗) = 𝒖𝑇𝚽𝑖𝒗 for some symmetric 𝑑 × 𝑑 matrix 𝚽𝑖. Now,

𝒖𝑇𝚽𝑖𝒗 = 1
2 (𝒖 + 𝒗)

𝑇𝚽𝑖 (𝒖 + 𝒗) − 1
2𝒖

𝑇𝚽𝑖𝒖 − 1
2𝒗
𝑇𝚽𝑖𝒗, (B.26)

so

| 12𝒖
𝑇𝚽𝑖𝒖 | + | 12𝒗

𝑇𝚽𝑖𝒗 | + | 12 (𝒖 + 𝒗)
𝑇𝚽𝑖 (𝒖 + 𝒗) | ≥ |𝒖𝑇𝚽𝑖𝒗 | (B.27)

and

3| 12𝒖
𝑇𝚽𝑖𝒖 |2 + 3| 12𝒗

𝑇𝚽𝑖𝒗 |2 + 3| 12 (𝒖 + 𝒗)
𝑇𝚽𝑖 (𝒖 + 𝒗) |2 ≥ |𝒖𝑇𝚽𝑖𝒗 |2 (B.28)

where we have used the inequality (𝑎 + 𝑏 + 𝑐)2 ≤ 3𝑎2 + 3𝑏2 + 3𝑐2 which follows from convexity

of the square. Summing over 𝑖, we obtain that

3
4 ∥II(𝒖, 𝒖)∥

2
2 + 3

4 ∥II(𝒗, 𝒗)∥
2
2 + 3

4 ∥II(𝒖 + 𝒗, 𝒖 + 𝒗)∥
2
2 ≥ ∥II(𝒖, 𝒗)∥

2
2 (B.29)

this implies that

9
4 max

{
∥II(𝒖, 𝒖)∥22, ∥II(𝒗, 𝒗)∥

2
2, ∥II(𝒖 + 𝒗, 𝒖 + 𝒗)∥

2
2

}
≥ ∥II(𝒖, 𝒗)∥22 (B.30)

Because 𝒖, 𝒗 are unit vectors with ⟨𝒖, 𝒗⟩ ≤ 0, we have ∥𝒖 + 𝒗∥2 ≤
√

2, and so

4𝜅2 ≥ max
{
∥II(𝒖, 𝒖)∥22, ∥II(𝒗, 𝒗)∥

2
2, ∥II(𝒖 + 𝒗, 𝒖 + 𝒗)∥

2
2

}
, (B.31)

103



whence

9𝜅2 ≥ ∥II(𝒖, 𝒗)∥22 = (𝜅II)2, (B.32)

which is the claimed inequality. □

Lemma 7. Assume 𝜎 ≤ 1/(60𝜅
√
𝐷). The objective function 𝑓 (𝒔) = − ⟨𝒔, 𝒙⟩ has 𝐿−Lipschitz

gradient in a 1/𝜅-neighborhood of 𝒔♮ with probability at least 1 − 𝑒−𝐷/2, where 𝐿 = 121
30 .

Proof. On a Riemannian manifold 𝑆, the conditions for 𝐿-Lipschitz gradient in a subset can be

expressed as 𝑑2

𝑑𝑡2
( 𝑓 ◦ 𝜸) (𝑡) ≤ 𝐿 for all unit-speed geodesics 𝜸(𝑡) in the subset [198].

Let Δ = 1/𝜅, and let 𝜸(𝑡) be a unit-speed geodesic of 𝑆 in the neighborhood 𝐵(𝒔♮,Δ), 𝑡 ∈ [0, 𝑇].

The neighborhood constraint implies that 𝑇 = 𝑑 (𝜸(0), 𝜸(𝑇)) ≤ 𝑑 (𝜸(0), 𝒔♮) + 𝑑 (𝜸(𝑇), 𝒔♮) ≤ 2Δ.

To bound the second derivative 𝑑2

𝑑𝑡2
( 𝑓 ◦ 𝜸) (𝑡), we have

𝑑2

𝑑𝑡2
( 𝑓 ◦ 𝜸) (𝑡) = − ⟨ ¥𝜸(𝑡), 𝒙⟩

= − ⟨ ¥𝜸(𝑡), 𝜸(0)⟩ −
〈
¥𝜸(𝑡), 𝒔♮ − 𝜸(0)

〉
− ⟨ ¥𝜸(𝑡), 𝒛⟩ . (B.33)

The first term can be bounded as

− ⟨ ¥𝜸(𝑡), 𝜸(0)⟩ = −
〈
¥𝜸(𝑡), 𝜸(𝑡) −

∫ 𝑡

𝑡1=0
¤𝜸(𝑡1)𝑑𝑡1

〉
= − ⟨ ¥𝜸(𝑡), 𝜸(𝑡)⟩ +

∫ 𝑡

𝑡1=0
⟨ ¥𝜸(𝑡), ¤𝜸(𝑡1)⟩ 𝑑𝑡1

= 1 +
∫ 𝑡

𝑡1=0

〈
¥𝜸(𝑡), ¤𝜸(𝑡) −

∫ 𝑡

𝑡2=𝑡1

¥𝜸(𝑡2)𝑑𝑡2
〉
𝑑𝑡1

= 1 −
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

⟨ ¥𝜸(𝑡), ¥𝜸(𝑡2)⟩ 𝑑𝑡2𝑑𝑡1

≤ 1 + 𝜅2
∫ 𝑡

𝑡1=0

∫ 𝑡

𝑡2=𝑡1

𝑑𝑡2𝑑𝑡1

≤ 1 + 1
2
𝜅2𝑇2

≤ 1 + 2𝜅2Δ2, (B.34)

where we used ⟨ ¥𝜸(𝑡), 𝜸(𝑡)⟩ = −1 (by differentiating both sides of ⟨ ¤𝜸(𝑡), 𝜸(𝑡)⟩ = 0) and ⟨ ¥𝜸(𝑡), ¤𝜸(𝑡)⟩ =
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0.

Hence
𝑑2

𝑑𝑡2
( 𝑓 ◦ 𝜸) (𝑡) ≤ 1 + 2𝜅2Δ2 + 𝜅Δ + 𝜅∥𝒛∥. (B.35)

Since ∥𝒛∥2 ≤ 2𝜎
√
𝐷 with probability at least 1 − 𝑒−𝐷/2, combining this with Δ = 1/𝜅 and 𝜎 ≤

1
60𝜅
√
𝐷

, we get with high probability 𝑑2

𝑑𝑡2
( 𝑓 ◦ 𝜸) (𝑡) ≤ 121

30 . □

B.3 Chaining Bounds for the Tangent Bundle Process

In this section, we prove the following lemma, which bounds a crucial Gaussian process that

arises in the analysis of gradient descent.

Main Bound for Tangent Bundle Process

Theorem 8. Suppose that Δ ≤ 1/𝜅, and set

𝑇max = sup
{
⟨𝒗, 𝒛⟩ | 𝑑𝑆 (𝒔, 𝒔♮) ≤ Δ, 𝒗 ∈ 𝑇𝒔𝑆, ∥𝒗∥2 = 1

}
. (B.36)

Then with probability at least 1 − 1.6𝑒−
𝑥2

2𝜎2 , we have

𝑇max ≤ 12𝜎(𝜅
√︁

2𝜋(𝑑 + 1) +
√︁

log 12𝜅) + 30𝑥. (B.37)

We prove Theorem 8 below. We directly follow the proof of Theorem 5.29 from [206], establishing

a chaining argument while accounting for slight discrepancies and establishing exact constants.

The main geometric content of this argument is in Lemma 11, which bounds the size of 𝜀-nets for

the tangent bundle.

Proof. Set

V =

{
𝒗 | 𝒗 ∈ 𝑇𝒔𝑆, ∥𝒗∥2 = 1, 𝑑𝑆 (𝒔, 𝒔♮) ≤ Δ

}
, (B.38)

We first prove that T = {⟨𝒗, 𝒛⟩}𝑣∈V defines a separable, sub-gaussian process. Take any 𝑣, 𝑣′ ∈
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V.

Then

⟨𝒗, 𝒛⟩ − ⟨𝒗′, 𝒛⟩ = ⟨𝒗 − 𝒗′, 𝒛⟩ ∼ N (0, 𝜎2𝑑 (𝒗, 𝒗′)2), (B.39)

immediately satisfying sub-gaussianity. By Lemma 11, there exists an 𝜀-netN(V, 𝑑, 𝜖) forV

of size at most 𝑁 = (12𝜅/𝜀)2𝑑+1. To see separability, let N𝑘 = N(V, 𝑑, 2−𝑘 ) be the epsilon net

corresponding to 𝜖 =
1
2𝑘

. We can construct a countable dense subset ofV by letting

N∞ =

∞⋃
𝑘=1
N(V, 𝑑, 2−𝑘 ). (B.40)

Therefore, the existence of a countable dense subset implies separability of V immediately

implying separability of T . Using these facts, we first prove the result in the finite case |V| < ∞,

after which we use separability to extend to the infinite case.

Let |V| < ∞ and 𝑘0 be the largest integer such that 2−𝑘0 ≥ diam(V). Define N𝑘0 =

N(V, 𝑑, 2−𝑘0) to be a 2−𝑘0 net of V with respect to the metric 𝑑. Then for all 𝒗 ∈ V, there

exists 𝜋0(𝒗) ∈ N𝑘0 such that 𝑑 (𝒗, 𝜋0(𝒗)) < 2−𝑘0 .

For 𝑘 > 𝑘0, letN𝑘 = N(V, 𝑑, 2−𝑘 ) be a 2−𝑘 net ofV. Subsequently for all 𝒗 ∈ V, there exists

𝜋𝑘 (𝒗) ∈ N𝑘0 such that 𝑑 (𝒗, 𝜋𝑘 (𝒗)) < 2−𝑘 .

Now fix any 𝒗0 ∈ V. For any 𝒗 ∈ V, sufficiently large 𝑛 yields 𝜋𝑛 (𝒗) = 𝒗. Thus,

⟨𝒗, 𝒛⟩ − ⟨𝒗0, 𝒛⟩ =
∑︁
𝑘>𝑘0

{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩} (B.41)

by the telescoping property, implying

sup
𝒗∈T
{⟨𝒗, 𝒛⟩ − ⟨𝒗0, 𝒛⟩} ≤

∑︁
𝑘>𝑘0

sup
𝒗∈V
{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩}. (B.42)

Using the fact that T is a sub-gaussian process and Lemma 5.2 of [206], we can bound each

106



individual sum as

P(sup
𝒗∈V
{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩} ≥ 6 × 2−𝑘𝜎

√︁
log |N𝑘 | + 3 × 2−𝑘𝑥𝑘 ) ≤ 𝑒−

𝑥2
𝑘

2𝜎2 . (B.43)

By ensuring that all of the sums are simultaneously controlled, we can arrive at the desired

bound. We first derive the complement (i.e. there exists one sum which exceeds the desired value)

P(𝐴𝑐) := P(∃𝑘 > 𝑘0 s.t. sup
𝒗∈V
{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩} ≥ 6 × 2−𝑘𝜎

√︁
log |𝑁𝑘 | + 3 × 2−𝑘𝑥𝑘 )

(B.44)

≤
∑︁
𝑘>𝑘0

P(sup
𝒗∈V
{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩} ≥ 6 × 2−𝑘𝜎

√︁
log |𝑁𝑘 | + 3 × 2−𝑘𝑥𝑘 ) (B.45)

≤
∑︁
𝑘>𝑘0

𝑒
−

𝑥2
𝑘

2𝜎2 (B.46)

≤ 𝑒−
𝑥2

2𝜎2
∑︁
𝑘>0

𝑒−𝑘/2 ≤ 1.6𝑒−
𝑥2

2𝜎2 (B.47)

Now, using corollary 5.25 of [206] and |N | ≤ (12𝜅
𝜖
)2𝑑+1, we have

sup
𝒗∈𝑉
{⟨𝒗, 𝒛⟩ − ⟨𝒗0, 𝒛⟩} ≤

∑︁
𝑘>𝑘0

sup
𝒗∈V
{⟨𝜋𝑘 (𝒗), 𝒛⟩ − ⟨𝜋𝑘−1(𝒗), 𝒛⟩} (B.48)

≤ 6
∑︁
𝑘>𝑘0

2−𝑘𝜎
√︁

log |N𝑘 | + 3 × 2−𝑘0
∑︁
𝑘>0

2−𝑘
√
𝑘 + 3 × 2−𝑘0

∑︁
𝑘>0

2−𝑘𝑥 (B.49)

≤ 12
∫ ∞

0
𝜎
√︁

logN(V, 𝑑, 𝜖) 𝑑𝜖 + 15diam(V)𝑥 (B.50)

≤ 12𝜎
√

2𝑑 + 1
∫ ∞

0

√︂
(log(12𝜅

𝜖
) 𝑑𝜖 + 15diam(V)𝑥 (B.51)

= 12𝜎
√

2𝑑 + 1(𝜅
√
𝜋 erf (log 12𝜅) +

√︁
log 12𝜅) + 15diam(V)𝑥 (B.52)

≤ 12𝜎(𝜅
√︁

2𝜋(𝑑 + 1) +
√︁

log 12𝜅) + 15diam(V)𝑥, (B.53)

where we have used 2−𝑘0 ≤ 2diam(V), ∑𝑘>0 2−𝑘
√
𝑘 ≤ 1.35 and

∑
𝑘>0 2−𝑘 ≤ 1 in (B.49), and
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erf 𝑧 =
2
√
𝜋

∫ 𝑧

0 𝑒
−𝑡2/2𝑑𝑡 ≤ 1 in (B.53).

Thus, if 𝐴 occurs the above equation holds, implying

P[sup
𝒗∈V
{⟨𝒗, 𝒛⟩ − ⟨𝒗0, 𝒛⟩} ≥ 12𝜎(𝜅

√︁
2𝜋(𝑑 + 1) +

√︁
log 12𝜅) + 15diam(V)𝑥] ≤ P(𝐴𝑐) ≤ 1.6𝑒−

𝑥2
2𝜎2

(B.54)

Since T is a separable process, Theorem 5.24 of [206] directly extends the result to infinite/uncountable

T . Letting ⟨𝒗0, 𝒛⟩ = 0 and noting diam(V) = sup𝒗,𝒗′∈V | |𝒗 − 𝒗′| |2 ≤ 2 yields the claim. □

Nets for 𝐵(𝒔♮,Δ)

Lemma 9. Suppose that Δ < 1/𝜅. For any 𝜀 ∈ (0, ...], there exists an 𝜀-net 𝑆 for 𝐵(𝒔♮,Δ) of size

#𝑆 < (12/𝜀)𝑑+1.

At a high level, the proof of this lemma proceeds as follows: we form an 𝜀0 net 𝑁0 for 𝑇𝒔♮𝑆, and

then set 𝑆 = {exp𝒔♮
(𝒗) | 𝒗 ∈ 𝑁0}. We will argue that 𝑆 is a 𝐶𝜀0-net for 𝐵(𝒔♮,Δ), by arguing that

at length scales Δ < 1/𝜅, the distortion induced by the exponential map is bounded. Crucial to this

argument is the following lemma on geodesic triangles:

Lemma 10. Consider 𝒗, 𝒗′ ∈ 𝑇𝒔♮𝑆, with ∥𝒗∥2 = ∥𝒗′∥2 < Δ. Then if ∠(𝒗, 𝒗′) < 1√
3
,

𝑑𝑆

(
exp𝒔♮

(𝒗), exp𝒔♮
(𝒗′)

)
≤
√

6Δ ∠(𝒗, 𝒗′). (B.55)

This lemma says that the third side of the triangle with vertices 𝒔♮, exp𝒔♮
(𝒗), exp𝒔♮

(𝒗′) is at most a

constant longer than the third side of an analogous triangle in Euclidean space. The proof of this is

a direct application of Toponogov’s theorem, a fundamental result in Riemannian geometry which

allows one to compare triangles in an arbitrary Riemannian manifold whose sectional curvature

is lower bounded to triangles in a constant curvature model space, where one can apply concrete

trigonometric reasoning.

Proof of Lemma 10. By Lemma 12, the sectional curvatures 𝜅𝑠 of 𝑆 are uniformly bounded in
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terms of the extrinsic geodesic curvature 𝜅:

𝜅𝑠 ≥ −𝜅2. (B.56)

By Toponogov’s theorem [199], the length 𝑑𝑆
(
exp𝒔♮

(𝒗), exp𝒔♮
(𝒗′)

)
, of the third side of the geodesic

triangle 𝒔♮, exp𝒔♮
(𝒗), exp𝒔♮

(𝒗′) is bounded by the length of the third side of a geodesic triangles with

two sides of length 𝑟 = ∥𝒗∥ = ∥𝒗′∥ and angle 𝜃 = ∠(𝒗, 𝒗′) in the constant curvature model space

𝑀−𝜅2 . We can rescale, so that this third length is bounded by 𝐿/𝜅, where 𝐿 is the length of the third

side of a geodesic triangle with two sides of length 𝑟𝜅 and an angle of ∠(𝒗, 𝒗′), in the hyperbolic

space 𝑀−1. Using hyperbolic trigonometry (cf Fact 13 and the identity cosh2 𝑡 − sinh2 𝑡 = 1), we

have

cosh 𝐿 = 1 + sinh2(𝜅𝑟) ×
(
1 − cos 𝜃

)
. (B.57)

By convexity of sinh over [0,∞), for 𝑡 ∈ [0, 1], we have sinh(𝑡) ≤ 𝑡 sinh(1), and sinh2(𝑡) ≤

𝑡2 sinh2(1) < 3
2 𝑡

2; since 𝜅𝑟 < 1, sinh2(𝜅𝑟) < 3
2𝜅

2𝑟2. Since cos(𝑡) ≥ 1 − 𝑡2 for all 𝑡, we have

cosh 𝐿 ≤ 1 + 3
2𝜅

2𝑟2𝜃2. (B.58)

Using 𝜅𝑟 < 1, for 𝜃 < 1√
3

we have cosh(𝐿) ≤ 3
2 < cosh(1). Noting that for 𝑡 ∈ [0, 1],

cosh(𝑡) ≥ 𝑔(𝑡) = 1 + 1
4 𝑡

2, (B.59)

on 𝑠 ∈ [0, cosh(1)], we have cosh−1(𝑠) ≤ 𝑔−1(𝑠) = 2
√
𝑠 − 1, giving

𝐿 ≤
√

6 · 𝜅𝑟𝜃. (B.60)

Dividing by 𝜅 gives the claimed bound. □
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Proof of Lemma 9. Form an (angular) 𝜀0-net 𝑁0 for {𝒗 ∈ 𝑇𝒔♮𝑆 | ∥𝒗∥2 = 1} satisfying

∀ 𝒗 ∈ 𝑇𝒔♮𝑆, ∃𝒗̂ ∈ 𝑁0 with ∠(𝒗, 𝒗̂) ≤ 𝜀, (B.61)

and an 𝜀0-net

𝑁𝑟 = {0, 𝜀0, 2𝜀0, . . . , ⌊Δ/𝜀0⌋} (B.62)

for the interval [0,Δ]. We can take #𝑁0 ≤ (3/𝜀0)𝑑 and #𝑁𝑟 ≤ Δ/𝜀0 ≤ 1/𝜀0. Combine these two

to form a net 𝑁 for {𝒗 ∈ 𝑇𝒔0𝑆 | ∥𝒗∥2 ≤ Δ} by setting

𝑁 =
⋃
𝑟∈𝑁𝑟

𝑟𝑁0. (B.63)

Note that #𝑁 ≤ (3/𝜀0)𝑑+1. Let 𝑆 = {exp𝒔♮
(𝒗) | 𝒗 ∈ 𝑁}. Consider an arbitrary element 𝒔 of

𝐵(𝒔♮,Δ). There exists 𝒗 ∈ 𝑇𝒔♮𝑆 such that exp𝒔♮
(𝒗) = 𝒔. Set

𝒗̄ = 𝜀0

⌊
∥𝒗∥2
𝜀0

⌋
𝒗. (B.64)

There exists 𝒗̂ ∈ 𝑁 with ∥ 𝒗̂∥2 = ∥ 𝒗̄∥2 and ∠(𝒗̂, 𝒗̄) ≤ 𝜀0. Note that

𝒔̂ = exp𝒔♮
(𝒗̂) ∈ 𝑆. (B.65)

By Lemma 10, we have

𝑑𝑆

(
𝒔, 𝒔̂

)
≤ 𝑑𝑆

(
𝒔, exp𝒔♮

(𝒗̄)
)
+ 𝑑𝑆

(
exp𝒔♮

(𝒗̄), 𝒔̂
)

≤ 𝜀0 + 3Δ𝜀0

< 4𝜀0. (B.66)

Setting 𝜀0 = 𝜀/4, we obtain that 𝑆 is an 𝜀-net for 𝐵(𝒔♮,Δ). □
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Nets for the Tangent Bundle

Lemma 11. Set

𝑇 =

{
𝒗 | 𝒗 ∈ 𝑇𝒔𝑆, ∥𝒗∥2 = 1, 𝑑𝑆 (𝒔, 𝒔♮) ≤ Δ

}
, (B.67)

Then there exists an 𝜀-net 𝑇 for 𝑇 of size

#𝑇 ≤
(
12𝜅
𝜀

)2𝑑+1
. (B.68)

Proof. Let 𝑆 be the 𝜀0-net for 𝐵(𝒔♮,Δ). By Lemma 9, there exists such a net of size at most

(12/𝜀0)𝑑+1. For each 𝒔̂ ∈ 𝑆, form an 𝜀1-net 𝑁 𝒔̂ for

{
𝒗 ∈ 𝑇𝒔𝑆 | ∥𝒗∥2 = 1

}
. (B.69)

We set

𝑇 =
⋃
𝒔̂∈𝑺̂

𝑁 𝒔̂ . (B.70)

By [207] Lemma 5.2, we can take #𝑁 𝒔̂ ≤ (3/𝜀1)𝑑 , and so

#𝑇 ≤
(

3
𝜀1

)𝑑 (
12
𝜀0

)𝑑+1
. (B.71)

Consider an arbitrary element 𝒗 ∈ 𝑇 . The vector 𝒗 belongs to the tangent space 𝑇𝒔𝑆 for some 𝒔. By

construction, there exists 𝒔̂ ∈ 𝑆 with 𝑑𝑆 (𝒔, 𝒔̂) ≤ 𝜀. Consider a minimal geodesic 𝛾 joining 𝒔 and 𝒔̂.

We generate 𝒗̄ ∈ 𝑇𝑠𝑆 by parallel transporting 𝒗 along 𝛾. Let P𝑡,0 denote this parallel transport. By

[208] Lemma 8.5, the vector field 𝒗𝑡 = P𝑡,0𝒗 satisfies

𝑑

𝑑𝑡
𝒗𝑡 = II

(
¤𝛾(𝑠), 𝒗𝑡

)
, (B.72)
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where II(·, ·) is the second fundamental form. So,

P𝑡,0𝒗 = 𝒗 +
∫ 𝑡

0
II
(
¤𝛾(𝑠), 𝒗𝑠

)
𝑑𝑠. (B.73)

By Lemma 6, for every 𝑠 


II
(
¤𝛾(𝑠), 𝒗𝑠

)


 ≤ 3𝜅 (B.74)

and

∥ 𝒗̄ − 𝒗∥ ≤ 3𝜀0𝜅. (B.75)

By construction, there is an element 𝒗̂ of 𝑁 𝒔̂ with

∥ 𝒗̂ − 𝒗̄∥ ≤ 𝜀1, (B.76)

and so 𝑇 is an 𝜀1 + 3𝜅𝜀0-net for 𝑇 . Setting 𝜀1 = 𝜀/4 and 𝜀0 = 𝜀/4𝜅 completes the proof. □

Supporting Results on Geometry

Lemma 12. For a Riemannian submanifold 𝑆 ofR𝐷 , the sectional curvatures 𝜅𝑠 (𝒗, 𝒗′) are bounded

by the extrinsic geodesic curvature 𝜅, as

𝜅𝑠 (𝒗, 𝒗′) ≥ −𝜅2. (B.77)

Proof. Using the Gauss formula (Theorem 8.4 of [208]), the Riemann curvature tensor 𝑅𝑆 of 𝑆 is

related to the Riemann curvature tensor 𝑅R𝑛 of the ambient space via

⟨𝑅𝑆 (𝒖, 𝒗)𝒗, 𝒖⟩ = ⟨𝑅R𝐷 (𝒖, 𝒗)𝒗, 𝒖⟩ + ⟨II(𝒖, 𝒗), II(𝒖, 𝒗)⟩ − ⟨II(𝒖, 𝒖), II(𝒗, 𝒗)⟩

= ⟨II(𝒖, 𝒗), II(𝒖, 𝒗)⟩ − ⟨II(𝒖, 𝒖), II(𝒗, 𝒗)⟩

≥ − ⟨II(𝒖, 𝒖), II(𝒗, 𝒗)⟩ , (B.78)
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where we have used that 𝑅R𝐷 = 0 and ⟨II(𝒖, 𝒗), II(𝒖, 𝒗)⟩ ≥ 0. Take any 𝒗, 𝒗′ ∈ 𝑇𝒔𝑆. The sectional

curvature 𝜅𝑠 (𝒗, 𝒗′) satisfies

𝜅𝑠 (𝒗, 𝒗′) = 𝜅𝑠 (𝒖, 𝒖′) = ⟨𝑅𝑆 (𝒖, 𝒖′)𝒖′, 𝒖⟩ , (B.79)

for any orthonormal basis 𝒖, 𝒖′ for span(𝒗, 𝒗′). So

𝜅𝑠 (𝒗, 𝒗′) = ⟨𝑅𝑆 (𝒖, 𝒖′)𝒖′, 𝒖⟩ ≥ − ⟨II(𝒖, 𝒖), II(𝒖′, 𝒖′)⟩ ≥ −𝜅2, (B.80)

as claimed. □

Fact 13. For a hyperbolic triangle with side lengths 𝑎, 𝑏, 𝑐 and corresponding (opposite) angles

𝐴, 𝐵, 𝐶, we have

cosh 𝑐 = cosh 𝑎 cosh 𝑏 − sinh 𝑎 sinh 𝑏 cos𝐶. (B.81)

B.4 Proof of Result (4.9)

In this section, we state and prove the other part of our main claims about gradient descent:

Theorem 14. Suppose that 𝒙 = 𝒔♮ + 𝒛, with 𝑇max(𝒛) < 1/𝜅. Consider the constant-stepping

Riemannian gradient method, with initial point 𝒔0 satisfying 𝑑 (𝒔0, 𝒔♮) < 1/𝜅, and step size

𝜏 = 1
64 .

𝑑

(
𝒔𝑘+1, 𝒔♮

)
≤

(
1 − 𝜀

)
· 𝑑

(
𝒔𝑘 , 𝒔♮

)
+ 𝐶𝑇max. (B.82)

Here, 𝐶 and 𝜀 are positive numerical constants.

Together with Theorem 8, this result shows that gradient descent rapidly converges to a neighbor-

hood of the truth of radius 𝐶𝜎
√
𝑑.

113



Proof. Let

𝒔̄𝑡 = exp
(
−𝑡 · grad[ 𝑓 ] (𝒔𝑘 )

)
(B.83)

be a geodesic joining 𝒔𝑘 and 𝒔𝑘+1, with 𝒔̄0 = 𝒔𝑘 and 𝒔̄𝜏 = 𝒔𝑘+1. Let 𝑓♮ denote a noise-free version

of the objective function, i.e.,

𝑓♮(𝒔) = −
〈
𝒔, 𝒔♮

〉
, (B.84)

and notice that for all 𝑠,

grad[ 𝑓♮] (𝒔) = grad[ 𝑓 ] (𝒔) + 𝑃𝑇𝒔𝑆𝒛. (B.85)

Furthermore, following calculations in Lemma 7, on 𝐵(𝒔♮, 1/𝜅), the Riemannian hessian of 𝑓♮ is

bounded as 

Hess[ 𝑓♮] (𝒔)


 ≤ 4. (B.86)

Using the relationship

grad[ 𝑓♮] ( 𝒔̄𝑡) = P𝒔̄𝑡 ,𝒔̄0grad[ 𝑓♮] ( 𝒔̄0) +
∫ 𝑡

𝑟=0
P𝒔̄𝑡 ,𝒔̄𝑟 Hess[ 𝑓♮] ( 𝒔̄𝑟)P𝒔̄𝑟 ,𝒔̄0grad[ 𝑓 ] ( 𝒔̄0) 𝑑𝑟, (B.87)

where P𝒔̄𝑡 ,𝒔̄0 to denote parallel transport along the curve 𝒔̄𝑡 , we obtain that




grad[ 𝑓♮] ( 𝒔̄𝑡) − P𝒔̄𝑡 ,𝒔̄0grad[ 𝑓♮] ( 𝒔̄0)



 ≤ 4𝑡∥grad[ 𝑓 ] ( 𝒔̄0)∥2. (B.88)
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Along the curve 𝒔̄𝑡 , the distance to 𝒔♮ evolves as

𝑑

𝑑𝑡
𝑑

(
𝒔̄𝑡 , 𝒔♮

)
= −

〈
P𝑡,0 grad[ 𝑓 ] ( 𝒔̄0),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
=

〈
−grad[ 𝑓 ] ( 𝒔̄𝑡),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
+

〈
grad[ 𝑓 ] ( 𝒔̄𝑡) − P𝑡,0 grad[ 𝑓 ] ( 𝒔̄0),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
≤

〈
−grad[ 𝑓 ] ( 𝒔̄𝑡),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
+

〈
grad[ 𝑓♮] ( 𝒔̄𝑡) − P𝑡,0 grad[ 𝑓♮] ( 𝒔̄0),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
+ 2𝑇max

≤
〈
−grad[ 𝑓 ] ( 𝒔̄𝑡),

− log𝒔̄𝑡 𝒔♮

∥ log𝒔̄𝑡 𝒔♮∥2

〉
+ 4𝑡∥grad[ 𝑓 ] ( 𝒔̄0)∥ + 2𝑇max

≤ −1
2𝑑

(
𝒔̄𝑡 , 𝒔♮

)
+ 4𝑡𝑑

(
𝒔̄0, 𝒔♮

)
+ (3 + 4𝑡)𝑇max

≤ −1
2𝑑

(
𝒔̄𝑡 , 𝒔♮

)
+ 1

16𝑑
(
𝒔̄0, 𝒔♮

)
+ 4𝑇max (B.89)

where we have used Lemma 15. Setting 𝑋𝑡 = 𝑑 ( 𝒔̄𝑡 , 𝒔♮), we have

¤𝑋𝑡 ≤ −1
4𝑋𝑡 (B.90)

whenever 𝑋𝑡 ≥ 1
4𝑋0 + 16𝑇max. Hence,

𝑋𝜏 ≤ max
{
𝑒
− 𝜏4 𝑋0,

1
4𝑋0 + 16𝑇max

}
, (B.91)

and so

𝑑

(
𝒔𝑘+1, 𝒔♮

)
≤ exp

(
− 1

256
)
· 𝑑

(
𝒔𝑘 , 𝒔♮

)
+ 16𝑇max, (B.92)

as claimed.

□
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B.4.1 Supporting Lemmas

Lemma 15. Suppose that Δ < 1/𝜅. For all 𝒔 ∈ 𝐵(𝒔♮,Δ), we have

〈
−grad[ 𝑓 ] (𝒔),

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
≤ −1

2𝑑 (𝒔, 𝒔♮) + 𝑇
max. (B.93)

Proof. Notice that

〈
−grad[ 𝑓 ] (𝒔),

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
=

〈
𝑃𝑇𝒔𝑆 (𝒔♮ + 𝒛),

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
≤

〈
𝑃𝑇𝒔𝑆𝒔♮,

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
+ 𝑇max. (B.94)

Consider a unit speed geodesic 𝛾 joining 𝒔♮ and 𝒔, with 𝛾(0) = 𝒔♮ and 𝛾(𝑡) = 𝒔♮. Then

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2
= ¤𝛾(𝑡), (B.95)

and

〈
𝑃𝑇𝒔𝑆𝒔♮,

− log𝒔 𝒔♮

∥ log𝒔 𝒔♮∥2

〉
= ⟨𝛾(0), ¤𝛾(𝑡)⟩

= ⟨𝛾(𝑡), ¤𝛾(𝑡)⟩
this term = 0

−
∫ 𝑡

0
⟨ ¤𝛾(𝑠), ¤𝛾(𝑡)⟩ 𝑑𝑠

= −𝑡∥ ¤𝛾(𝑡)∥22 −
∫ 𝑡

0

∫ 𝑠

𝑡

⟨ ¥𝛾(𝑟), ¤𝛾(𝑡)⟩ 𝑑𝑟 𝑑𝑠

≤ −𝑑 (𝒔, 𝒔♮) + 1
2𝜅𝑑

2(𝒔, 𝒔♮). (B.96)

In particular, this term is bounded by −1
2𝑑 (𝒔, 𝒔♮) when Δ < 1/𝜅. □

Lemma 16. For 𝒔 ∈ 𝐵(𝒔♮,Δ), we have




grad[ 𝑓 ] (𝒔)



 ≤ 𝑑 (𝒔, 𝒔♮) + 𝑇max (B.97)
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Proof. Notice that




grad[ 𝑓 ] (𝒔)



 =




𝑃𝑇𝒔𝑆 (𝒔♮ + 𝒛)



≤




𝑃𝑇𝒔𝑆𝒔♮


 + 𝑇max

≤



𝑃𝑇𝒔S𝐷−1 𝒔♮




 + 𝑇max

= sin ∠(𝒔, 𝒔♮) + 𝑇max

≤ 𝑑S𝐷−1 (𝒔, 𝒔♮) + 𝑇max,

≤ 𝑑𝑆 (𝒔, 𝒔♮) + 𝑇max, (B.98)

as claimed. □

B.5 Additional Experimental Details

B.5.1 Gravitational Wave Generation

Below we introduce some details on Gravitational Wave data generation. Synthetic gravi-

tational waveforms are generated with the PyCBC package [209] with masses uniformly drawn

from [20, 50] (times solar mass 𝑀⊙) and 3-dimensional spins drawn from a uniform distribution

over the unit ball, at sampling rate 2048Hz. Each waveform is padded or truncated to 1 second

long such that the peak is aligned at the 0.9 second location, and then normalized to have unit ℓ2

norm. Noise is simulated as iid Gaussian with standard deviation 𝜎 = 0.1. The signal amplitude

is constant 𝑎 = 1. The training set contains 100,000 noisy waveforms, the test set contains 10,000

noisy waveforms and pure noise each, and a separate validation set constructed iid as the test set is

used to select optimal template banks for MF.

B.5.2 Handwritten Digit Recognition Experiment Setup

The MNIST training set contains 6,131 images of the digit 3. In particular, we create a training

set containing 10,000 images of randomly transformed digit 3 from the MNIST training set, and a
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test set containing 10,000 images each of randomly transformed digit 3 and other digits from the

MNIST test set. We select a random subset of 1,000 embedded points as the quantization Ξ̂ of the

parameter space, and construct a 𝑘-d tree from it to perform efficient nearest neighbor search for

kernel interpolation. Parameters of the trainable TpopT are initialized using heuristics based on the

Jacobians, step sizes and smoothing levels from the unrolled optimization, similar to the previous

experiment. 𝝃0 is initialized at the center of the embedding space. We use the Adam optimizer

with batch size 100 and constant learning rate 10−3.
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