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Report

In this thesis, we develop and investigate numerical methods for solving nonsmooth convex
optimization problems in real Hilbert spaces. We construct algorithms, such that they handle
the terms in the objective function and constraints of the minimization problems separately,
which makes these methods simpler to compute. In the first part of the thesis, we extend the
well known AMA method from Tseng to the Proximal AMA algorithm by introducing variable
metrics in the subproblems of the primal-dual algorithm. For a special choice of metrics, the
subproblems become proximal steps. Thus, for objectives in a lot of important applications,
such as signal and image processing, machine learning or statistics, the iteration process con-
sists of expressions in closed form that are easy to calculate. In the further course of the thesis,
we intensify the investigation on this algorithm by considering and studying a dynamical sys-
tem. Through explicit time discretization of this system, we obtain Proximal AMA. We show
the existence and uniqueness of strong global solutions of the dynamical system and prove
that its trajectories converge to the primal-dual solution of the considered optimization prob-
lem. In the last part of this thesis, we minimize a sum of finitely many nonsmooth convex
functions (each can be composed by a linear operator) over a nonempty, closed and convex set
by smoothing these functions. We consider a stochastic algorithm in which we take gradient
steps of the smoothed functions (which are proximal steps if we smooth by Moreau envelope),
and use a mirror map to “mirror” the iterates onto the feasible set. In applications, we com-
pare them to similar methods and discuss the advantages and practical usability of these new
algorithms.
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Chapter 1

Introduction

Nonsmooth convex optimization problems appear in a variety of different applications, such as
in signal and image processing, machine learning or statistics. A lot of problems are structured
in such a way that they contain smooth and nonsmooth terms, which are possibly composed
by linear and continuous operators. Such problems arise, for example, in the following image
deblurring and denoising problem:

inf
x∈Rn

{ f (Ax) + g(Lx)} ,

where f : Rn → R is defined as f (x) = 1
2∥x − b∥2, g : Rn × Rn → R is given by g(y, z) =

λ∥(y, z)∥1, with a specific linear operator L, and λ > 0 is the regularization parameter. The
function g ◦ L represents the anisotropic total variation functional, where | · |1 denotes the ℓ1-
norm. Furthermore, A ∈ Rn×n is a blur operator and b ∈ Rn is the given blurred and noisy
image.

To solve such problems, proximal methods of full splitting type have gained particular im-
portance in the last years, which treat the nonsmooth terms of the objective function via proxi-
mal operators, the smooth terms via gradients and handle the linear and continuous operators
separately. In a lot of applications, proximal operators have a simple and closed form such that
in these cases, these algorithms are easy to implement and show good numerical performance.
For an overview of more recent development of gradient-based optimization methods, proxi-
mal gradient methods and their acceleration, and proximal versions of primal-dual schemes,
see [89], [21] and [60].

In this thesis we develop and extend algorithms that can be formulated as proximal split-
ting methods.

After giving some basic notations, definitions, and results of convex analysis in Chapter 2,
we propose in Chapter 3, which is based on paper [28], a proximal version of the Alternating
Minimization Algorithm of Tseng (see [110]) for solving convex optimization problems with
two-block separable linear constraints and objectives, whereby one of the components of the
latter is assumed to be strongly convex. For example, the Fenchel dual problem of the problem
above can be written as such a structured optimization problem:

inf
p∈Rn,q∈Rn×Rn

{ f ∗(p) + g∗(q)} , s.t. A∗p + L∗q = 0,

where f ∗ and g∗ are the convex conjugate of f and g, respectively. Due to the differentiability
of f , we have that f ∗ is strongly convex and since f and g have full domains, strong duality
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holds. In the algorithm of Tseng, which is a primal-dual algorithm, the subproblems to be
solved within an iteration do not usually correspond to the calculation of a proximal operator
through a closed formula. This can make it computationally expensive and hard to implement,
as it would be the case for the optimization problem above. In our algorithm, called Proximal
AMA, we consider the same optimization problem, but we allow in each block of the objective
a further smooth convex function. In the iteration process, we add variable metrics to the sub-
problems, as it was done in [19], where the authors created a proximal version of ADMM. If we
choose these metrics in a suitable way, the iterative scheme can be reduced to the computation
of proximal operators. In many applications (as in the optimization problem above), this means
that each iteration can be carried out without solving an optimization subproblem in each step.
This increases the attractiveness for implementation. We investigate the convergence of this
algorithm in a real Hilbert space setting, and we illustrate its numerical performances on two
applications: the first one in an image deblurring and denoising problem, introduced above,
and the second one in machine learning.

In Chapter 4, based on paper [29], we propose a dynamical system related to the same op-
timization problem mentioned above. By time discretization, its trajectories can be seen as
a continuous version of the Proximal AMA algorithm and the AMA numerical method. We
show the existence and uniqueness of strong global solutions of the dynamical system, and
prove that its trajectories asymptotically converge to a saddle point of the Lagrangian of the
convex optimization problem. Our methods are based on [38], where a dynamical system re-
lated to the Proximal ADMM algorithm was studied.

In Chapter 5, based on paper [30] and the preprint [31], we develop incremental stochastic mir-
ror descent algorithms to minimize a sum of finitely many nonsmooth convex functions over a
nonempty, closed and convex set in the Euclidean space. Thus, we investigate the incremental
mirror descent subgradient algorithm with random sweeping and proximal step, which can
be found in the work of Boţ and Böhm in [35] and is based on the mirror descents algorithms
of Beck and Teboulle (see [23]). Instead of evaluating the functions over their subgradients,
which requires Lipschitz continuity of the functions, as in the work of Beck and Teboulle, we
approximate the component functions using Nesterov’s smoothing technique and use the gra-
dients of the smoothed functions. For this, we require the weaker condition of closedness of
the domains of their conjugates. Since the number of summands of the objective function can
be very large, the gradient of a single component smoothed function is evaluated in each it-
eration step and is mirrored back to the feasible domain. This makes the computation of the
iterations very cheap. Boţ and Böhm proposed this approach in their algorithms too, but they
used subgradients of the nonsmooth component functions. The Moreau envelope is a special
case of Nesterov’s smoothing technique. As a result, our algorithms can also be formulated
with proximal steps and can be seen as an extension of a proximal algorithm. We prove con-
vergence order of O(1/

√
k) in expectation for the kth best objective function value and compare

the numerical performance to the algorithms in [35] in three applications, the first in logistics,
the second in medical imaging and the third in machine learning.
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In the final chapter of this thesis, we provide conclusions and discuss potential future re-
search directions. Additionally, we include an appendix that offers a brief overview and expla-
nation of the SVM classification models, which were considered in applications in Chapter 3
and Chapter 5.





Chapter 2

Preliminaries

In this chapter, we give some basic notation and definitions from convex analysis and provide
important results and properties which are used throughout this thesis. Our main source for
these notions is [20], which we refer to for further information.

In the following, let H be a real Hilbert space with the corresponding inner product ⟨·, ·⟩ and
the associated norm ∥ · ∥ =

√
⟨·, ·⟩. The identity operator is defined as Id : H → H, Id(x) = x

for all x ∈ H. Further, we denote R as the set of real numbers and define R := R ∪ {±∞} as
the extended real line. We write N := {1, 2, . . . } for the set of natural numbers.

A subset C ⊆ H is convex , if for all λ ∈ [0, 1] and all x, y ∈ C it holds that λx + (1− λ)y ∈ C.
Let C ⊆ H be a convex and closed set. The strong quasi-relative interior of C is given by

sqri(C) =

{
x ∈ C :

⋃
λ>0

λ(C − x) is a closed linear subspace of H
}

.

We have the inclusion int(C) ⊆ sqri(C), meaning that the interior of a set C is always contained
in its strong quasi-relative interior. If H is finite-dimensional, then sqri(C) = ri(C), where
ri(C) denotes the relative interior of C and represents the interior of C relative to its affine hull.
Furthermore, we denote cl(C) as the closure of the set C.

Let X be a metric space with distance d. The metric topology of X is the topology which
admits the family of all open balls B(x, ρ) = {y ∈ X : d(x, y) < ρ} for all ρ > 0 as a base.
Let d be the canonical metric induced by the inner product of a Hilbert space H. We call the
metric topology of (H, d) the strong topology. We say that a sequence (xn)n∈N in H converges
strongly to x ∈ H if it converges in the strong topology. Thus, a sequence converges strongly to
x ∈ H if and only if it holds that lim

n→+∞
∥xn − x∥ = 0. Then, we write xn → x. The weak topology

of H is the family of all finite intersections of open half-spaces of H. We say that a sequence
(xn)n∈N in H converges weakly to x ∈ H if it converges in the weak topology. Thus, a sequence
converges weakly to x ∈ H if and only if it holds that lim

n→+∞
⟨xn, u⟩ = ⟨x, u⟩ ∀u ∈ H. Then, we

write xn ⇀ x.
If a sequence (xn)n∈N in H has a subsequence that converges weakly to a point x ∈ H, then

x is called a weak sequential cluster point of (xn)n∈N.
In the following, we give two important propositions concerning convergent sequences.

Proposition 2.1. (Banach-Alaoglu-Theorem) Every bounded sequence in a Hilbert space has a weakly
convergent subsequence.

Proof. See [[20], Lemma 2.45].
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Proposition 2.2. Let (xn)n∈N and (un)n∈N be sequences in H and let x, u ∈ H. Assume that xn ⇀ x
and un → u. Then, ⟨xn, un⟩ → ⟨x, u⟩.

Proof. See [[20], Lemma 2.51 (iii)].

2.1 Convex functions

Now we define some essential properties of functions that are required in this thesis, and pro-
vide some important results.

Definition 2.3. We say that the function f : H → R is

• proper, if dom( f ) := {x ∈ H : f (x) < +∞} ̸= ∅ and f (x) > −∞ for all x ∈ H,

• convex, if for all x, y ∈ dom( f ) and for all λ ∈ [0, 1] it follows that

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y),

• σ-strongly convex for a σ > 0, if f − (σ/2)∥ · ∥2 is convex,

• lower semicontinuous, if epi( f ) := {(x, ξ) ∈ H× R : f (x) ≤ ξ} is closed in H× R.

For a function f : H → R we denote the image of a function as

Im( f ) = { f (x) : x ∈ H}

and the graph as
graph( f ) = {(x, ξ) ∈ H× R : f (x) = ξ}.

Definition 2.4. The (convex) subdifferential of a proper function f : H → R at a point x ∈ H is
defined as

∂ f (x) = {u ∈ H : f (y) ≥ f (x) + ⟨u, y − x⟩∀y ∈ H},

if f (x) ∈ R and as ∂ f (x) = ∅, otherwise.

The global minimizers of a proper function f , which we denote by
argmin f := {x∗ ∈ H : minx∈H f (x) = f (x∗)}, can be characterized using the subdifferen-
tial by Fermat’s rule:

Theorem 2.5 (Fermat’s rule). Let f : H → R be proper. Then, it holds

argmin f = {x ∈ H : 0 ∈ ∂ f (x)}.

Proof. See [[20], Theorem 16.3].
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Proposition 2.6. Let f , g : H → R be proper.

(i) For all x ∈ dom( f ) ∩ dom(g) it holds

∂ f (x) + ∂g(x) ⊆ ∂( f + g)(x).

(ii) If f , g are convex and lower semicontinuous, and one of the following conditions is fulfilled

(i) 0 ∈ sqri(dom( f )− dom(g)),

(ii) dom( f ) ∩ int(dom(g)) ̸= ∅,

(iii) dom(g) = H,

(iv) H is finite-dimensional and ri(dom( f )) ∩ ri(dom(g)) ̸= ∅,

then it holds for all x ∈ H that

∂ f (x) + ∂g(x) = ∂( f + g)(x).

Proof. For the first part, see [[20] Proposition 16.6] and for the second part, see [[20], Corollary
16.48].

Note that the subdifferential of a function f , defined as

∂ f : H → 2H, x → ∂ f (x),

is a set-valued operator. For a set-valued operator A : H → 2H, we denote the graph as

graph(A) = {(x, u) ∈ H×H : u ∈ Ax}.

The inverse of A is denoted by A−1 : H → 2H which is the mapping such that for all x, u ∈ H
it holds that x ∈ A−1u if and only if u ∈ Ax.

Proposition 2.7. Let Hstrong be the strong topology of H, Hweak the weak topology of H, and f : H →
R be proper, convex and lower semicontinuous. Then, the following holds:

(i) graph(∂ f ) is sequentially closed in Hstrong ×Hweak, i.e., for every sequence (xn, un)n∈N in graph(∂ f )
and every (x, u) ∈ H×H, if xn → x and un ⇀ u, then (x, u) ∈ graph(∂ f ).

(ii) graph(∂ f ) is sequentially closed in Hweak ×Hstrong, i.e., for every sequence (xn, un)n∈N in graph(∂ f )
and every (x, u) ∈ H×H, if xn ⇀ x and un → u, then (x, u) ∈ graph(∂ f )

Proof. See [[20], Proposition 16.36].

Definition 2.8. Let f : H → R be a function. The (Fenchel) conjugate function f ∗ : H → R of f is
defined as

f ∗(u) = supx∈H{⟨u, x⟩ − f (x)} ∀u ∈ H.
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Proposition 2.9. Let f : H → R be a proper function.

(i) (Fenchel–Young inequality) For all x, u ∈ H it holds

f (x) + f ∗(u) ≥ ⟨x, u⟩.

Furthermore, this inequality becomes an equality if and only if u ∈ ∂ f (x). In this case, it follows
that x ∈ ∂ f ∗(u).

(ii) (Fenchel-Moreau-Theorem) The function f is convex and lower semicontinuous if and only if
f ∗∗ = f , where f ∗∗ is the conjugate function of f ∗. In this case, f ∗ is also a proper function.

Proof. For the first part, see [[20], Proposition 13.15 and Proposition 16.10] and for the second
part, see [[20], Theorem 13.37].

Proposition 2.10. Let f be proper, convex and lower semicontinuous.

(i) Let u ∈ H. Then, (x, u) ∈ graph(∂ f ) ⇔ (u, x) ∈ graph(∂ f ∗).

(ii) It holds ∂ f ∗ = (∂ f )−1.

Proof. For both parts, see[[20], Theorem 16.29 and Corollary 16.30].

Definition 2.11. Let B be a Banach space, let x ∈ H, let C be a open subset of H such that
x ∈ C, and let T : C → B. Then, T is called Fréchet differentiable at x, if there exists a linear and
continuous operator DT(x) : H → B, called the Fréchet derivative of T at x such that

lim
∥y∥→0

∥T(x + y)− T(x)− DT(x)y∥
∥y∥ = 0.

The Fréchet gradient of a Fréchet differentiable function f : C → R at x is the unique vector
∇ f (x) ∈ H such that for all y ∈ H it holds

D f (x)y = ⟨y,∇ f (x)⟩.

Note, that it follows from [[20], (iii) and (vi) from Theorem 18.15], that if f : H → R is Fréchet
differentiable, then f is σ-strongly convex if and only if for all x, y ∈ H it holds

σ

2
∥x − y∥2 ≤ f (x)− f (y)− ⟨∇ f (y), x − y⟩. (2. 1)

Definition 2.12. The infimal convolution of two proper functions f , g : H → R is the function
f□g : H → R, defined by

( f□g)(x) = inf
y∈H

{ f (y) + g(x − y)}.

Proposition 2.13. Let f , g : H → R. Then, it holds

(i) ( f□g)∗ = f ∗ + g∗.

(ii) If f and g are proper, convex and lower semicontinuous and dom g = H, then

( f + g)∗ = f ∗□g∗.
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Proof. For the first part, see [[20], Proposition 13.24 (i)] and for the second part, see [[20], Propo-
sition 15.2].

Definition 2.14. The Moreau envelope of a proper, convex and lower semicontinuous function
f : H → R with coefficient γ > 0 is defined as

f γ(x) = inf
y∈H

{
f (y) +

1
2γ

∥y − x∥2
}

, ∀x ∈ H (2. 2)

and the proximal point of coefficient γ of the function f at the point x ∈ H is the unique optimal
solution of the minimization problem above (the solution is unique, due to the strong convexity
of the problem):

Proxγ f (x) = argmin
y∈H

{
γ f (y) +

1
2
∥y − x∥2

}
.

Proposition 2.15. Let f : H → R proper, convex and lower semicontinuous and γ > 0.

(i) (Moreau’s decomposition formula). It holds

Proxγ f (x) + γ Prox(1/γ) f ∗(γ
−1x) = x, ∀x ∈ H. (2. 3)

(ii) Let x, p ∈ H. Then,
p = Prox f (x) ⇔ x − p ∈ ∂ f (p).

So Prox f = (Id+∂ f )−1.

(iii) The Moreau envelope f γ : H → R is Fréchet differentiable on H. Furthermore, its gradient

∇ f γ =
1
γ
(Id−Proxγ f )

is (1/γ)-Lipschitz continuous.

Proof. For (i), see [[20], Theorem 14.3 (ii)], for (ii), see [[20], Proposition 16.44] and for (iii), see
[[20], Proposition 12.30].

Definition 2.16. The indicator function ιC : H → R of a nonempty, closed and convex set C ⊂ H
is defined as

ιC(x) =

{
0, if x ∈ C
+∞, otherwise

and the projection operator PC : H → H onto C as

PC(x) = argmin
y∈C

∥y − x∥.

Note, that the projection operator at the point x is the proximal point of the indicator func-
tion at x.

We set

S+(H) = {M : H → H : M is linear, continuous, self-adjoint and positive semidefinite}.

For M ∈ S+(H), we define the seminorm ∥ · ∥M : H → [0,+∞), ∥x∥M =
√
⟨x, Mx⟩. We

consider the Loewner partial ordering on S+(H), defined for M1, M2 ∈ S+(H) by

M1 ≽ M2 ⇔ ∥x∥2
M1

≥ ∥x∥2
M2

∀x ∈ H. (2. 4)
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Definition 2.17. An operator sequence (Mk)k∈N ∈ S+(H) is said to be

• monotonically decreasing, if for all k ∈ N it holds Mk ≽ Mk+1 and

• monotonically increasing, if for all k ∈ N it holds Mk+1 ≽ Mk.

Furthermore, we define for α > 0

Pα(H) := {M ∈ S+(H) : M ≽ α Id}.

Let G be a Hilbert space and let A : H → G be a linear continuous operator. The operator
A∗ : G → H, fulfilling ⟨A∗y, x⟩ = ⟨y, Ax⟩ for all x ∈ H and y ∈ G, denotes the adjoint operator
of A, while ∥A∥ := sup{∥Ax∥ : ∥x∥ ≤ 1} denotes its operator norm .

Proposition 2.18. Let α > 0, let (ηk)k∈N such that ∑∞
k=1 ηk < +∞ and let (Mk)k∈N be a sequence in

Pα(H) such that supk∈N ∥Mk∥ < +∞. Assume, that one of the following holds true:

(i) for all k ∈ N it holds (1 + ηk)Mk ≽ Mk+1,

(ii) for all k ∈ N it holds (1 + ηk)Mk+1 ≽ Mk,

then there exists M ∈ Pα(H) such that Mk converges pointwise to M.

Proof. See [[51], Lemma 2.3].

Definition 2.19. We say, that the mapping A : H → H is

• Lipschitz continuous with Lipschitz constant L > 0 (or L-Lipschitz continuous), if for every
x, y ∈ H

∥Ax − Ay∥ ≤ L∥x − y∥,

• nonexpansive, if it is Lipschitz continuous with constant 1,

• β-cocoercive for a β > 0, if for every x, y ∈ H

⟨x − y, Ax − Ay⟩ ≥ β∥Ax − Ay∥2.

Theorem 2.20. (Baillon–Haddad) Let f : H → R be Fréchet differentiable and convex and let β > 0.
Then, ∇ f is β-Lipschitz continuous if and only if ∇ f is (1/β)-cocoercive.

Proof. See [[17], Corollaire 10].

2.2 Monotone operators

In the following, we will look at some definitions and results concerning set-valued operators.

Definition 2.21. A set-valued operator A : H → 2H is said to be

• monotone , if for all (x, u), (y, v) ∈ graph(A) it holds that

⟨x − y, u − v⟩ ≥ 0,

• maximally monotone , if A is monotone and there exists no monotone operator B : H → 2H

such that graph(A) ⊊ graph(B), i.e. for every (x, u) ∈ H×H it holds that

(x, u) ∈ graph(A) ⇔ ⟨x − y, u − v⟩ ≥ 0 for all (y, v) ∈ graph(A),
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• α-strongly monotone, if for an α > 0 and all (x, u), (y, v) ∈ graph(A) it holds that

⟨x − y, u − v⟩ ≥ α∥x − y∥2.

Proposition 2.22. Let f : H → R be a proper, convex and lower semicontinuous function.

(i) The subdifferential ∂ f is a maximally monotone operator.

(ii) If f is α-strongly convex with α > 0, then ∂ f is α-strongly monotone.

Proof. For the first part, see [[84], Proposition 12.b.] and for the second part, see [[84], Example
22.4 (iv)].





Chapter 3

The Proximal Alternating Minimization
Algorithm (Proximal AMA)

This chapter is based on the paper [28].
Tseng introduced in [110] the so-called Alternating Minimization Algorithm (AMA) to solve

optimization problems with two-block separable linear constraints and two nonsmooth convex
objective functions, one of them assumed to be strongly convex. The numerical scheme consists
in each iteration of two minimization subproblems, each involving one of the two objective
functions, and of an update of the dual sequence which approaches asymptotically a Lagrange
multiplier of the dual problem.

The strong convexity of one of the objective functions allows to reduce the corresponding
minimization subproblem to the calculation of the proximal operator of a proper, convex and
lower semicontinuous function. This is for the second minimization problem in general not the
case, thus, with the exception of some very particular cases, one has to use a subroutine in order
to compute the corresponding iterate. This may have a negative influence on the convergence
behavior of the algorithm and affects its computational tractability. One possibility to avoid
this is to properly modify this subproblem with the aim of transforming it into a proximal
step, and, of course, without losing the convergence properties of the algorithm. The papers
[24] and [50] provide convincing evidences for the efficiency and versatility of proximal point
algorithms for solving nonsmooth convex optimization problems; we also refer to [49] for a
block coordinate variable metric forward-backward method.

We address in a real Hilbert space setting a more involved two-block separable optimization
problem, which is obtained by adding in each block of the objective a further smooth convex
function. To solve this problem, we propose a so-called Proximal Alternating Minimization
Algorithm (Proximal AMA), which is obtained by inducing in each of the minimization sub-
problems additional proximal terms defined by means of positively semidefinite operators.
The two smooth convex functions in the objective are evaluated via gradient steps. For ap-
propriate choices of these operators, we show that the minimization subproblems turn into
proximal steps and the algorithm becomes an iterative scheme formulated in the spirit of the
full splitting paradigm. We show that the generated sequence converges weakly to a saddle
point of the Lagrangian associated with the optimization problem under investigation. The
numerical performances of Proximal AMA are illustrated in particular in comparison to AMA
for two applications in image processing and machine learning.

A similarity of AMA to the classical Alternating Direction Method of Multipliers (ADMM)
algorithm, introduced by Gabay and Mercier in [63], is obvious. In [14], [61] and [102] (see
also [19] and [39]) proximal versions of the ADMM algorithm have been proposed and proved
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to provide a unifying framework for primal-dual algorithms for convex optimization. Parts
of the convergence analysis for the Proximal AMA are carried out in a similar spirit to the
convergence proofs in these papers.

3.1 The Alternating Minimization Algorithm

The convex optimization problems addressed in [110] is of the form

inf
x∈Rn,z∈Rm

f (x) + g(z) s.t. Ax + Bz = b, (3. 1)

where f : Rn → R is a proper, γ-strongly convex with γ > 0 and lower semicontinuous
function, g : Rm → R is a proper, convex and lower semicontinuous function, A ∈ Rr×n, B ∈
Rr×m and b ∈ Rr.

The Lagrangian associated with problem (3. 1) is

L : Rn × Rm × Rr → R, L(x, z, y) = f (x) + g(z) + ⟨y, b − Ax − Bz⟩.

For c > 0, the augmented Lagrangian associated with problem (3. 1), Lc : Rn × Rm × Rr → R

reads
Lc(x, z, y) = f (x) + g(z) + ⟨y, b − Ax − Bz⟩+ c

2
∥Ax + Bz − b∥2.

Tseng proposed in [110] the following so-called Alternating Minimization Algorithm (AMA)
for solving (3. 1):

Algorithm 3.1 Alternating Minimization Algorithm (AMA)

Choose y0 ∈ Rr and a sequence of strictly positive stepsizes (ck)k≥0. For all k ≥ 0 set:

xk = argmin
x∈Rn

{
f (x)− ⟨yk, Ax⟩

}
(3. 2)

zk ∈ argmin
z∈Rm

{
g(z)− ⟨yk, Bz⟩+ ck

2
∥Axk + Bz − b∥2

}
(3. 3)

yk+1 = yk + ck(b − Axk − Bzk). (3. 4)

The main convergence properties of this numerical algorithm are summarized in the theo-
rem below (see [110]).

Theorem 3.2. Let A ̸= 0 and (x, z) ∈ ri(dom f )× ri(dom g) be such that the equality Ax + Bz = b
holds. Assume that the sequence of stepsizes (ck)k≥0 satisfies

ϵ ≤ ck ≤
2γ

∥A∥2 − ϵ ∀k ≥ 0,

where 0 < ϵ < γ
∥A∥2 . Let (xk, zk, yk)k≥0 be the sequence generated by Algorithm 3.1. Then, there exist

x∗ ∈ Rn and an optimal Lagrange multiplier y∗ ∈ Rr associated with the constraint Ax + Bz = b such
that

xk → x∗, Bzk → b − Ax∗, yk → y∗(k → +∞).

If the function z 7→ g(z) + ∥Bz∥2 has bounded level sets, then (zk)k≥0 is bounded and any of its cluster
points z∗ provides with (x∗, z∗) an optimal solution of (3. 1).

It is the aim of this chapter to propose a proximal variant of this algorithm, called Proximal
AMA, which overcomes its drawbacks, and to investigate its convergence properties.
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3.2 Problem formulation

The two-block separable optimization problem we are going to investigate in this and the next
chapter has the following formulation.

Problem 3.3. Let H, G and K be real Hilbert spaces, f : H → R a proper, lower semicontiuous and γ-
strongly convex function with γ > 0, g : G → R a proper, convex and lower semicontinuous function,
h1 : H → R a convex and Fréchet differentiable function with L1-Lipschitz continuous gradient with
L1 ≥ 0, h2 : G → R a convex and Fréchet differentiable functions with L2-Lipschitz continuous
gradient with L2 ≥ 0, A : H → K and B : G → K linear continuous operators such that A ̸= 0 and
b ∈ K. Consider the following optimization problem with two-block separable objective function and
linear constraints

min
x∈H,z∈G

f (x) + h1(x) + g(z) + h2(z) s.t. Ax + Bz = b. (3. 5)

We allow the Lipschitz constants of the gradients of the functions h1 and h2 to be zero. In this
case, the functions are affine.

We can write the optimization problem (3. 5) as

min
(x,z)∈H×G

F(x, z) + G(L(x, z)), (3. 6)

where F(x, z) = f (x) + h1(x) + g(z) + h2(z), G : K → R is defined as G(x) = ι{b}(x) and
L : H×G → K is a linear continuous operator such that L(x, z) = Ax + Bz.

The Fenchel dual problem of the optimization problem (3. 6) is defined as

sup
y∈K

{−F∗(−L∗y − G∗(y)} (3. 7)

(see [[34], chapter 2]), which can be written for the optimization problem (3. 5) as (note Propo-
sition 2.13)

sup
y∈K

{−( f ∗□h∗1)(−A∗y)− (g∗□h∗2)(−B∗y)− ⟨y, b⟩}. (3. 8)

The Lagrangian associated with the optimization problem (3. 5) is defined by

L : H×G ×K → R,

which can be written as

L(x, z, y) = f (x) + h1(x) + g(z) + h2(z) + ⟨y, b − Ax − Bz⟩.

Definition 3.4. We say that (x∗, z∗, y∗) ∈ H× G ×K is a saddle point of the Lagrangian L, if

L(x∗, z∗, y) ≤ L(x∗, z∗, y∗) ≤ L(x, z, y∗) ∀(x, z, y) ∈ H× G ×K.

In the following, we assume that a qualification condition, like for instance the Attouch-Brézis-
type condition (other qualification conditions can be found in [40], page 76f.)

b ∈ sqri(A(dom f ) + B(dom g)), (3. 9)

holds. In the finite-dimensional setting, this asks for the existence of x ∈ ri(dom f ) and
z ∈ ri(dom g) satisfying Ax + Bz = b and coincides with the assumption used by Tseng in
[110]. It follows that the dual problem (3. 8) has an optimal solution (see [[40], Theorem 3.2.11]).
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Moreover, it holds according to [40] (Theorem 3.3.4. and Remark 3.3.3) that if (3. 9) is fulfilled,
then for any optimal solution (x∗, z∗) of (3. 5) there exists an optimal solution y∗ of the dual
problem (3. 8) such that the optimality conditions

A∗y∗ −∇h1(x∗) ∈ ∂ f (x∗), B∗y∗ −∇h2(z∗) ∈ ∂g(z∗) and Ax∗ + Bz∗ = b (3. 10)

are fulfilled. Conversely, if the optimality conditions (3. 10) are fulfilled for (x∗, z∗, y∗), then
(x∗, z∗) is an optimal solution for the primal problem (3. 5), y∗ is an optimal solution for the
dual problem (3. 8) and the objective values of (3. 5) and (3. 8) coincide. However, the valid-
ity of (3. 10) doesn’t necessarily imply that (3. 9) holds. Furthermore, we have that the point
(x∗, z∗, y∗) is a saddle point of the Lagrangian L if and only if (x∗, z∗) is an optimal solution
of (3. 5), y∗ is an optimal solution of its Fenchel dual problem (3. 8) and the optimal objective
values of (3. 5) and (3. 8) coincide (see [[40], Theorem 3.3.5.]).

As a consequence, it follows that (x∗, z∗, y∗) ∈ H×G×K is a saddle point of the Lagrangian
L if and only if (3. 10) holds.

Remark 3.5. If (x∗1 , z∗1 , y∗1) and (x∗2 , z∗2 , y∗2) are two saddle points of the Lagrangian L, then
x∗1 = x∗2 .

This follows from (3. 10) and the strong convexity of f with γ > 0. So we have for two
saddle points (x∗1 , z∗1 , y∗1) and (x∗2 , z∗2 , y∗2), that (x∗1 , A∗y∗1), (x∗2 , A∗y∗2) ∈ graph(∂( f + h1)) and
(z∗1 , B∗y∗1), (z

∗
2 , B∗y∗2) ∈ graph(∂(g + h2)) and by using the γ-strong monotonicity of ∂ f and the

monotonicity of ∂g from Proposition 2.22 we have

⟨x∗1 − x∗2 , A∗y∗1 − A∗y∗2⟩ ≥ γ∥x∗1 − x∗2∥2 and ⟨z∗1 − z∗2 , B∗y∗1 − B∗y∗2⟩ ≥ 0,

which is equivalent to

⟨Ax∗1 − Ax∗2 , y∗1 − y∗2⟩ ≥ γ∥x∗1 − x∗2∥2 and ⟨Bz∗1 − Bz∗2 , y∗1 − y∗2⟩ ≥ 0.

Adding this two inequalities and using Ax∗1 + Bz∗1 = Ax∗2 + Bz∗2 from (3. 10), we obtain

0 ≥ γ∥x∗1 − x∗2∥2,

which implies that x∗1 = x∗2 .

For more on the AMA algorithm introduced by Tseng and motivation for considering this
setting, we refer the reader to [110, 65].

3.3 The Proximal Alternating Minimization Algorithm

In the following, we formulate the Proximal Alternating Minimization Algorithm to solve the
optimization problem (3. 5). To this end, we modify Tseng’s AMA by evaluating in each of the
two subproblems the functions h1 and h2 via gradient steps, respectively, and by introducing
proximal terms defined through two sequences of positively semidefinite operators (Mk

1)k≥0
and (Mk

2)k≥0.
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Algorithm 3.6 Proximal Alternating Minimization Algorithm (Proximal AMA)

Let (Mk
1)k≥0 ⊆ S+(H) and (Mk

2)k≥0 ⊆ S+(G). Choose (x0, z0, y0)∈ H× G ×K and a sequence
of stepsizes (ck)k≥0 ⊆ (0,+∞). For all k ≥ 0 set:

xk+1 = argmin
x∈H

{
f (x)− ⟨yk, Ax⟩+ ⟨x − xk,∇h1(xk)⟩+ 1

2
∥x − xk∥2

Mk
1

}
(3. 11)

zk+1 ∈ argmin
z∈G

{
g(z)− ⟨yk, Bz⟩+ ck

2
∥Axk+1 + Bz − b∥2

+⟨z − zk,∇h2(zk)⟩+ 1
2
∥z − zk∥2

Mk
2

}
(3. 12)

yk+1 = yk + ck(b − Axk+1 − Bzk+1). (3. 13)

Remark 3.7. The sequence (zk)k≥0 is uniquely determined if there exists αk > 0 such that
ckB∗B + Mk

2 ∈ Pαk(G) for all k ≥ 0. This actually ensures that the objective function in the
subproblem (3. 12) is strongly convex.

Remark 3.8. Let k ≥ 0 be fixed and Mk
2 := 1

σk
Id−ckB∗B, where σk > 0 and σkck∥B∥2 ≤ 1. Then,

Mk
2 is positive semidefinite and the update of zk+1 in the Proximal AMA method becomes a

proximal step. Indeed, (3. 12) holds according to Fermat’s rule 2.5 and Proposition 2.6 (ii) if
and only if

0 ∈ ∂g(zk+1) + (ckB∗B + Mk
2)z

k+1 + ckB∗(Axk+1 − b)− Mk
2zk +∇h2(zk)− B∗yk

or, equivalently,

0 ∈ ∂g(zk+1) +
1
σk

zk+1 −
(

1
σk

Id−ckB∗B
)

zk +∇h2(zk) + ckB∗(Axk+1 − b)− B∗yk.

But this is nothing else than

zk+1 = argmin
z∈G

{
g(z) +

1
2σk

∥∥∥z −
(

zk − σk∇h2(zk) + σkckB∗(b − Axk+1 − Bzk) + σkB∗yk
)∥∥∥2

}
= Proxσk g

(
zk − σk∇h2(zk) + σkckB∗(b − Axk+1 − Bzk) + σkB∗yk

)
.

The convergence of the Proximal AMA method is addressed in the next theorem.

Theorem 3.9. In the setting of Problem 3.3, let the set of the saddle points of the Lagrangian L be
nonempty. We assume that Mk

1 −
L1
2 Id ∈ S+(H), Mk

1 ≽ Mk+1
1 , Mk

2 −
L2
2 Id ∈ S+(G), Mk

2 ≽ Mk+1
2

for all k ≥ 0 and that (ck)k≥0 is a monotonically decreasing sequence satisfying

ϵ ≤ ck ≤
2γ

∥A∥2 − ϵ ∀k ≥ 0, (3. 14)

where 0 < ϵ < γ
∥A∥2 . If one of the following assumptions:

(i) there exists α > 0 such that Mk
2 −

L2
2 Id ∈ Pα(G) for all k ≥ 0;

(ii) there exists β > 0 such that B∗B ∈ Pβ(G);
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holds true, then the sequence (xk, zk, yk)k≥0 generated by Algorithm 3.1 converges weakly to a saddle
point of the Lagrangian L.

Proof. Let (x∗, z∗, y∗) be a fixed saddle point of the Lagrangian L. This means that it fulfills the
system of optimality conditions

A∗y∗ −∇h1(x∗) ∈ ∂ f (x∗) (3. 15)
B∗y∗ −∇h2(z∗) ∈ ∂g(z∗) (3. 16)
Ax∗ + Bz∗ = b. (3. 17)

We start by proving that

∑
k≥0

∥xk+1 − x∗∥2 < +∞, ∑
k≥0

∥Bzk+1 − Bz∗∥2 < +∞, ∑
k≥0

∥zk+1 − zk∥2
Mk

2−
L2
2 Id

< +∞

and that the sequences (zk)k≥0 and (yk)k≥0 are bounded.
Assume that L1 > 0 and L2 > 0. Let k ≥ 0 be fixed. Writing the optimality conditions for

the subproblems (3. 11) and (3. 12), we obtain

A∗yk −∇h1(xk) + Mk
1(xk − xk+1) ∈ ∂ f (xk+1) (3. 18)

and

B∗yk −∇h2(zk) + ckB∗(−Axk+1 − Bzk+1 + b) + Mk
2(z

k − zk+1) ∈ ∂g(zk+1), (3. 19)

respectively. Combining (3. 15) - (3. 19) with the strong monotonicity of ∂ f and the monotonic-
ity of ∂g (see Proposition 2.22), it yields

⟨A∗(yk − y∗)−∇h1(xk) +∇h1(x∗) + Mk
1(xk − xk+1), xk+1 − x∗⟩ ≥ γ∥xk+1 − x∗∥2

and

⟨B∗(yk − y∗)−∇h2(zk) +∇h2(z∗) + ckB∗(−Axk+1 − Bzk+1 + b)

+Mk
2(z

k − zk+1), zk+1 − z∗⟩ ≥ 0,

which after summation leads to

⟨yk − y∗, Axk+1 − Ax∗⟩+ ⟨yk − y∗, Bzk+1 − Bz∗⟩
+⟨ck(−Axk+1 − Bzk+1 + b), Bzk+1 − Bz∗⟩

−⟨∇h1(xk)−∇h1(x∗), xk+1 − x∗⟩ − ⟨∇h2(zk)−∇h2(z∗), zk+1 − z∗⟩
+⟨Mk

1(xk − xk+1), xk+1 − x∗⟩+ ⟨Mk
2(z

k − zk+1), zk+1 − z∗⟩ ≥ γ∥xk+1 − x∗∥2. (3. 20)

According to the Baillon-Haddad-Theorem 2.20, the gradients of h1 and h2 are 1
L1

and 1
L2

-
cocoercive, respectively, thus

⟨∇h1(x∗)−∇h1(xk), x∗ − xk⟩ ≥ 1
L1

∥∇h1(x∗)−∇h1(xk)∥2

⟨∇h2(z∗)−∇h2(zk), z∗ − zk⟩ ≥ 1
L2

∥∇h2(z∗)−∇h2(zk)∥2.



3.3. The Proximal Alternating Minimization Algorithm 25

On the other hand, by taking into account (3. 13) and (3. 17), it holds

⟨yk − y∗, Axk+1 − Ax∗⟩+ ⟨yk − y∗, Bzk+1 − Bz∗⟩ = ⟨yk − y∗, Axk+1 + Bzk+1 − b⟩

=
1
ck
⟨yk − y∗, yk − yk+1⟩.

By employing the last three relations in (3. 20), it yields

1
ck
⟨yk − y∗, yk − yk+1⟩+ ck⟨−Axk+1 − Bzk+1 + b, Bzk+1 − Bz∗⟩

+⟨Mk
1(xk − xk+1), xk+1 − x∗⟩+ ⟨Mk

2(z
k − zk+1), zk+1 − z∗⟩

+⟨∇h1(x∗)−∇h1(xk), xk+1 − x∗⟩+ ⟨∇h1(x∗)−∇h1(xk), x∗ − xk⟩

− 1
L1

∥∇h1(x∗)−∇h1(xk)∥2 + ⟨∇h2(z∗)−∇h2(zk), zk+1 − z∗⟩

+⟨∇h2(z∗)−∇h2(zk), z∗ − zk⟩ − 1
L2

∥∇h2(z∗)−∇h2(zk)∥2 ≥ γ∥xk+1 − x∗∥2,

which, after expressing the inner products by means of norms, becomes

1
2ck

(
∥yk − y∗∥2 + ∥yk − yk+1∥2 − ∥yk+1 − y∗∥2

)
+

ck

2

(
∥Ax∗ − Axk+1∥2 − ∥b − Axk+1 − Bzk+1∥2 − ∥Ax∗ + Bzk+1 − b∥2

)
+

1
2

(
∥xk − x∗∥2

Mk
1
− ∥xk − xk+1∥2

Mk
1
− ∥xk+1 − x∗∥2

Mk
1

)
+

1
2

(
∥zk − z∗∥2

Mk
2
− ∥zk − zk+1∥2

Mk
2
− ∥zk+1 − z∗∥2

Mk
2

)
+⟨∇h1(x∗)−∇h1(xk), xk+1 − xk⟩ − 1

L1
∥∇h1(x∗)−∇h1(xk)∥2

+⟨∇h2(z∗)−∇h2(zk), zk+1 − zk⟩ − 1
L2

∥∇h2(z∗)−∇h2(zk)∥2 ≥ γ∥xk+1 − x∗∥2.

Using again (3. 13), the inequality ∥Ax∗ − Axk+1∥2 ≤ ∥A∥2∥x∗ − xk+1∥2 and the following
expressions

⟨∇h1(x∗)−∇h1(xk), xk+1 − xk⟩ − 1
L1

∥∇h1(x∗)−∇h1(xk)∥2

= −L1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2

+
L1

4
∥xk − xk+1∥2,

and

⟨∇h2(x∗)−∇h2(zk), zk+1 − zk⟩ − 1
L2

∥∇h2(z∗)−∇h2(zk)∥2

= −L2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2

+
L2

4
∥zk − zk+1∥2,
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it yields

1
2
∥xk+1−x∗∥2

Mk
1
+

1
2ck

∥yk+1 − y∗∥2 +
1
2
∥zk+1 − z∗∥2

Mk
2

≤ 1
2
∥xk − x∗∥2

Mk
1
+

1
2ck

∥yk − y∗∥2 +
1
2
∥zk − z∗∥2

Mk
2
− ck

2
∥Ax∗ + Bzk+1 − b∥2

− 1
2
∥zk − zk+1∥2

Mk
2
−
(

γ − ck

2
∥A∥2

)
∥xk+1 − x∗∥2 − 1

2
∥xk − xk+1∥2

Mk
1

− L1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2

+
L1

4
∥xk − xk+1∥2

− L2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2

+
L2

4
∥zk − zk+1∥2.

Finally, by using the monotonicity of (Mk
1)k≥0, (Mk

2)k≥0 and of (ck)k≥0, we obtain

ck+1∥xk+1−x∗∥2
Mk+1

1
+ ∥yk+1 − y∗∥2 + ck+1∥zk+1 − z∗∥2

Mk+1
2

≤ ck∥xk − x∗∥2
Mk

1
+ ∥yk − y∗∥2 + ck∥zk − z∗∥2

Mk
2
− Rk, (3. 21)

where

Rk := ck
(
2γ − ck∥A∥2) ∥xk+1 − x∗∥2 + c2

k∥Bzk+1 − Bz∗∥2

+ ck∥zk − zk+1∥2
Mk

2−
L2
2 Id

+ ck∥xk − xk+1∥2
Mk

1−
L1
2 Id

+ 2ckL1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2

+ 2ckL2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2

.

If L1 = 0 (and, consequently, ∇h1 is constant) and L2 > 0, then, by using the same arguments,
we obtain again (3. 21), but with

Rk := ck
(
2γ − ck∥A∥2) ∥xk+1 − x∗∥2 + c2

k∥Bzk+1 − Bz∗∥2

+ ck∥zk − zk+1∥2
Mk

2−
L2
2 Id

+ ck∥xk − xk+1∥2
Mk

1

+ 2ckL2

∥∥∥∥ 1
L2

(∇h2(z∗)−∇h2(zk)) +
1
2
(zk − zk+1)

∥∥∥∥2

and analogously, if L2 = 0 and L1 > 0

Rk := ck
(
2γ − ck∥A∥2) ∥xk+1 − x∗∥2 + c2

k∥Bzk+1 − Bz∗∥2

+ ck∥zk − zk+1∥2
Mk

2
+ ck∥xk − xk+1∥2

Mk
1−

L1
2 Id

+ 2ckL1

∥∥∥∥ 1
L1

(∇h1(x∗)−∇h1(xk)) +
1
2
(xk − xk+1)

∥∥∥∥2

.

Relation (3. 21) follows even if L1 = L2 = 0, but with

Rk := ck
(
2γ − ck∥A∥2) ∥xk+1 − x∗∥2 + c2

k∥Bzk+1 − Bz∗∥2 + ck∥zk − zk+1∥2
Mk

2
+ ck∥xk − xk+1∥2

Mk
1
.
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Notice that, due to Mk
1 −

L1
2 Id ∈ S+(H) and Mk

2 −
L2
2 Id ∈ S+(G), all summands in Rk are

nonnegative.
Let N ≥ 0 be fixed. By summing the inequality in (3. 21) for k = 0, ..., N and using telescop-

ing arguments, we obtain

cN+1∥xN+1−x∗∥2
MN+1

1
+ ∥yN+1 − y∗∥2 + cN+1∥zN+1 − z∗∥2

MN+1
2

≤ c0∥x0 − x∗∥2
M0

1
+ ∥y0 − y∗∥2 + c0∥z0 − z∗∥M0

2
−

N

∑
k=0

Rk.

On the other hand, from (3. 21), we derive

∃ lim
k→∞

(
ck∥xk − x∗∥2

Mk
1
+ ∥yk − y∗∥2 + ck∥zk − z∗∥2

Mk
2

)
. (3. 22)

Thus, (yk)k≥0 is bounded and ∑k≥0 Rk < +∞.
Taking (3. 14) into account, we have ck(2γ − ck∥A∥2) ≥ ε2∥A∥2 for all k ≥ 0. It follows that

∑
k≥0

∥xk+1 − x∗∥2 < +∞, ∑
k≥0

∥Bzk+1 − Bz∗∥2 < +∞ (3. 23)

and
∑
k≥0

∥zk+1 − zk∥2
Mk

2−
L2
2 Id

< +∞. (3. 24)

From here we obtain

xk → x∗, Bzk → Bz∗ (k → +∞), (3. 25)

which, by using (3. 13) and (3. 17), leads to

yk − yk+1 → 0 (k → +∞). (3. 26)

Taking into account the monotonicity properties of (ck)k≥0 and (Mk
1)k≥0, a direct implication of

(3. 22) and (3. 25) is
∃ lim

k→∞

(
∥yk − y∗∥2 + ck∥zk − z∗∥2

Mk
2

)
. (3. 27)

Suppose that assumption (i) holds true, namely, that there exists α > 0 such that Mk
2 −

L2
2 Id ∈ Pα(G) for all k ≥ 0. From (3. 27), we can conclude that (zk)k≥0 is bounded, while (3. 24)

ensures that
zk+1 − zk → 0 (k → +∞). (3. 28)

In the following, let us prove that each weak sequential cluster point of (xk, zk, yk)k≥0 (notice
that the sequence is bounded) is a saddle point of L. Let be (z̄, ȳ) ∈ G × K such that the
subsequence (xk j , zk j , yk j)j≥0 converges weakly to (x∗, z̄, ȳ) as j → +∞, according to Proposition
2.1 (Notice that xk converges strongly to x∗). From (3. 18), we have

A∗yk j −∇h1(xk j) + M
k j
1 (xk j − xk j+1) ∈ ∂ f (xk j+1) ∀j ≥ 1.

Due to the fact that xk j converges strongly to x∗ and yk j converges weakly to a ȳ as j → +∞,
using the continuity of ∇h1 and the fact that the graph of the convex subdifferential of f is
sequentially closed in the strong-weak topology according to Proposition 2.7, it follows

A∗ȳ −∇h1(x∗) ∈ ∂ f (x∗).



28 Chapter 3. The Proximal Alternating Minimization Algorithm (Proximal AMA)

From (3. 19), we have for all j ≥ 0

B∗yk j −∇h2(zk j) + ck j B
∗(−Axk j+1 − Bzk j+1 + b) + M

k j
2 (z

k j − zk j+1) ∈ ∂g(zk j+1),

which is equivalent to

B∗yk j +∇h2(zk j+1)−∇h2(zk j) + ck j B
∗(−Axk j+1 − Bzk j+1 + b) + M

k j
2 (z

k j − zk j+1) ∈ ∂(g + h2)(zk j+1)

and further, due to Proposition (2.10), to

zk j+1 ∈ ∂(g + h2)
∗
(

B∗yk j +∇h2(zk j+1)−∇h2(zk j) + ck j B
∗(−Axk j+1 − Bzk j+1 + b)

+M
k j
2 (z

k j − zk j+1)
)

. (3. 29)

By denoting for all j ≥ 0

vj := zk j+1, uj := yk j ,

wj := ∇h2(zk j+1)−∇h2(zk j) + ck j B
∗(−Axk j+1 − Bzk j+1 + b) + M

k j
2 (z

k j − zk j+1),

(3. 29) reads
vj ∈ ∂(g + h2)

∗(B∗uj + wj) ∀j ≥ 0.

According to (3. 28), we have vj ⇀ z̄, uj ⇀ ȳ as j → +∞ thus, by taking into account (3. 25),
Bvj → Bz̄ = Bz∗ as j → +∞. Considering the Lipschitz continuity of ∇h2, (3. 26), (3. 28) and
(3. 13), one can easily see that wj → 0 as j → +∞. Due to the monotonicity of the subdifferen-
tial, we have that for all (u, v) in the graph of ∂(g + h2)∗ and for all j ≥ 0

⟨vj − v, B∗uj + wj − u⟩ ≥ 0,

which is equivalent to
⟨Bvj − Bv, uj⟩+ ⟨vj − v, wj − u⟩ ≥ 0.

For j → +∞ we obtain according to Proposition 2.2

⟨Bz̄ − Bv, ȳ⟩+ ⟨z̄ − v,−u⟩ ≥ 0 ∀(u, v) in the graph of ∂(g + h2)
∗,

which is the same as

⟨z̄ − v, B∗ȳ − u⟩ ≥ 0 ∀(u, v) in the graph of ∂(g + h2)
∗.

The maximal monotonicity of the convex subdifferential of (g + h2)∗ ensures that z̄ ∈ ∂(g +
h2)∗(B∗ȳ), which is the same as B∗ȳ ∈ ∂(g + h2)(z̄). In other words, B∗ȳ −∇h2(z̄) ∈ ∂g(z̄).
Finally, by combining (3. 13) and (3. 26), the equality Ax∗ + Bz̄ = b follows. In conclusion,
(x∗, z, ȳ) is a saddle point of the Lagrangian L.

In the following, we show that sequence (xk, zk, yk)k≥0 converges weakly. To this end,
we consider two sequential cluster points (x∗, z1, y1) and (x∗, z2, y2). Consequently, accord-
ing to Proposition 2.1, there exists (ks)s≥0, ks → +∞ as s → +∞ such that the subsequence
(xks , zks , yks)s≥0 converges weakly to (x∗, z1, y1) as s → +∞. Furthermore, there exists (kt)t≥0,
kt → +∞ as t → +∞ such that a subsequence (xkt , zkt , ykt)t≥0 converges weakly to (x∗, z2, y2)
as t → +∞. As seen before, (x∗, z1, y1) and (x∗, z2, y2) are both saddle points of the Lagrangian
L.
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From (3. 27), which is fulfilled for every saddle point of the Lagrangian L, we obtain

∃ lim
k→+∞

(∥yk − y1∥2 − ∥yk − y2∥2 + ck∥zk − z1∥2
Mk

2
− ck∥zk − z2∥2

Mk
2
) =: T. (3. 30)

For all k ≥ 0 we have

∥yk − y1∥2−∥yk − y2∥2 + ck∥zk − z1∥2
Mk

2
− ck∥zk − z2∥2

Mk
2

= ∥y2 − y1∥2 + 2⟨yk − y2, y2 − y1⟩+ ck∥z2 − z1∥2
Mk

2
+ 2ck⟨zk − z2, z2 − z1⟩Mk

2
.

Since Mk
2 ≥

(
α + L2

2

)
Id, for all k ≥ 0, and (Mk

2)k≥0 is a nonincreasing sequence of symmetric
operators in the sense of the Loewner partial ordering, there exists a symmetric operator M ≥(

α + L2
2

)
Id such that (Mk

2)k≥0 converges pointwise to M with respect to the strong topology of
G as k → +∞ (see Proposition 2.18). Furthermore, let c := limk→+∞ ck > 0. Taking the limits in
(3. 30) along the subsequences (ks)s≥0 and (kt)t≥0, it yields

T = −∥y2 − y1∥2 − c∥z2 − z1∥2
M = ∥y2 − y1∥2 + c∥z2 − z1∥2

M,

thus
∥y2 − y1∥2 + c∥z2 − z1∥2

M = 0.

It follows that y1 = y2 and z1 = z2, thus (xk, zk, yk)k≥0 converges weakly to a saddle point of
the Lagrangian L.

Assume now that condition (ii) holds, namely, that there exists β > 0 such that B∗B ∈
Pβ(H). Then, it holds that β∥zk − z∗∥2 ≤ ∥Bzk − Bz∗∥2 for k ≥ 0 and it follows from (3. 25) and
(3. 26) that

xk → x∗, zk → z∗, yk − yk+1 → 0 (k → +∞). (3. 31)

The remainder of the proof follows in analogy to the one given under assumption (i). The only
difference is when we show that the sequence (xk, zk, yk)k≥0 converges weakly. For this, we
have the two sequential cluster point (x∗, z∗, y1) and (x∗, z∗, y2), so that (3. 30) reduces to

∃ lim
k→+∞

(∥yk − y1∥2 − ∥yk − y2∥2) := T. (3. 32)

Then, we can use the same argumentation as above, concerning y1 and y2.

Remark 3.10. If h1 = 0 and h2 = 0, and Mk
1 = 0 and Mk

2 = 0 for all k ≥ 0, then the Proximal
AMA method becomes the AMA method, as it has been proposed by Tseng in [110]. According
to Theorem 3.9 (for L1 = L2 = 0), the generated sequence converges weakly to a saddle point
of the Lagrangian, if there exists β > 0 such that B∗B ∈ Pβ(G). In finite-dimensional spaces,
this condition reduces to the assumption that B is injective.

3.4 Numerical experiments

In this section, we compare the numerical performances of AMA and Proximal AMA on two
applications in image processing and machine learning. The numerical experiments were per-
formed on a computer with an Intel Core i5-3470 CPU and 8 GB DDR3 RAM. The first appli-
cation is an extension of the approach considered in [[69], section 4.1.1] but without the blur
operator A, the application to machine learning was also observed in [[69], section 4.4]. We
used the source codes as a basis for our own programs to compare the performance of Proxi-
mal AMA with that of AMA.
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3.4.1 Image denoising and deblurring

We addressed an image denoising and deblurring problem formulated as a nonsmooth convex
optimization problem (see [41], [69] and [100]).

inf
x∈Rn

{
1
2
∥Ax − b∥2 + λTV(x)

}
, (3. 33)

where A ∈ Rn×n represents a blur operator, b ∈ Rn is a given blurred and noisy image, λ > 0
is a regularization parameter and TV : Rn → R is a discrete total variation functional. The
vector x ∈ Rn is the vectorized image X ∈ RM×N , where n = MN and xi,j := Xi,j stands for the
normalized value of the pixel in the i-th row and the j-th column, for 1 ≤ i ≤ M, 1 ≤ j ≤ N.

Two choices have been considered for the discrete total variation, namely, the isotropic total
variation TViso : Rn → R,

TViso(x) =
M−1

∑
i=1

N−1

∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 +

M−1

∑
i=1

|xi+1,N − xi,j|+
N−1

∑
j=1

|xM,j+1 − xM,j|,

and the anisotropic total variation TVaniso : Rn → R,

TVaniso(x) =
M−1

∑
i=1

N−1

∑
j=1

|xi+1,j − xi,j|+ |xi,j+1 − xi,j|+
M−1

∑
i=1

|xi+1,N − xi,j|+
N−1

∑
j=1

|xM,j+1 − xM,j|.

Consider the linear operator L : Rn → Rn × Rn, xi,j 7→
(

L1xi,j, L2xi,j
)
, where

L1xi,j =

{
xi+1,j − xi,j, if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j, if j < N
0, if j = N

One can easily see that ∥L∥2 ≤ 8. The optimization problem (3. 33) can be written as

inf
x∈Rn

{ f (Ax) + g(Lx)} , (3. 34)

where f : Rn → R, f (x) = 1
2∥x − b∥2, and g : Rn × Rn → R is defined by g(y, z) = λ∥(y, z)∥1

for the anisotropic total variation, and by
g(y, z) = λ∥(y, z)∥× := λ ∑M

i=1 ∑N
j=1

√
y2

i,j + z2
i,j for the isotropic total variation.

We solved the Fenchel dual problem of (3. 34) by AMA and Proximal AMA and determined
in this way an optimal solution of the primal problem, too. The reason for this strategy was that
the Fenchel dual problem of (3. 34) is a convex optimization problem with two-block separable
linear constraints and objective function.

Indeed, the Fenchel dual problem of (3. 34) reads (see [20] and [34])

inf
p∈Rn,q∈Rn×Rn

{ f ∗(p) + g∗(q)} , s.t. A∗p + L∗q = 0. (3. 35)

Since f and g have full domains, strong duality for (3. 34)-(3. 35) holds.
As f ∗(p) = 1

2∥p∥2 + ⟨p, b⟩ for all p ∈ Rn, f ∗ is 1-strongly convex. We chose Mk
1 = 0 and

Mk
2 = 1

σk
I− ckL∗L (see Remark 3.8) and obtained for Proximal AMA the iterative scheme which

reads for every k ≥ 0 :

pk+1 = Axk − b

qk+1 = Proxσk g∗
(

qk + σkckL(−A∗pk+1 − L∗qk) + σkL(xk)
)

xk+1 = xk + ck(−A∗pk+1 − L∗qk+1).
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In the case of the anisotropic total variation, the conjugate of g is the indicator function of
the set [−λ, λ]n × [−λ, λ]n, thus Proxσk g∗ is the projection operator P[−λ,λ]n×[−λ,λ]n on the set
[−λ, λ]n × [−λ, λ]n. The iterative scheme reads for all k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = P[−λ,λ]n×[−λ,λ]n

(
(qk

1, qk
2) + ckσk(−LA∗pk+1 − LL∗(qk

1, qk
2)) + σkLxk

)
xk+1 = xk + ck

(
−A∗pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

In the case of the isotropic total variation, the conjugate of g is the indicator function of the

set S :=
{
(v, w) ∈ Rn × Rn : max1≤i≤n

√
v2

i + w2
i ≤ λ

}
, thus Proxσk g∗ is the projection operator

PS : Rn × Rn → S on S, defined as

(vi, wi) 7→ λ
(vi, wi)

max
{

λ,
√

v2
i + w2

i

} , i = 1, ..., n.

The iterative scheme reads for all k ≥ 0:

pk+1 = Axk − b

(qk+1
1 , qk+1

2 ) = PS

(
(qk

1, qk
2) + ckσk(−LA∗pk+1 − LL∗(qk

1, qk
2)) + σkLxk

)
xk+1 = xk + ck

(
−A∗pk+1 − L∗(qk+1

1 , qk+1
2 )

)
.

(a) Original image "office_4" (b) Blurred and noisy image (c) Reconstructed image

Figure 3.1: The original image, the blurred and noisy image and the reconstructed image after
50 seconds cpu time.

We compared the Proximal AMA method with Tseng’s AMA method. While in Proximal
AMA a closed formula is available for the computation of (qk+1

1 , qk+1
2 )k≥0, in AMA we solved

the resulting optimization subproblem

(qk+1
1 , qk+1

2 ) = argmin
q1,q2

{
g∗(q1, q2)− ⟨xk+1, L∗(q1, q2)⟩+

1
2

ck∥A∗pk+1 + L∗(q1, q2)∥2
}

in every iteration k ≥ 0 by making some steps of the FISTA method [24].
We used in our experiments a Gaussian blur of size 9 × 9 and standard deviation 4, which

led to an operator A with ∥A∥2 = 1 and A∗ = A. Furthermore, we added Gaussian white noise
with standard deviation 10−3. We used for both algorithms a constant sequence of stepsizes
ck = 2 − 10−7 for all k ≥ 0. One can notice that (ck)k≥0 fulfills (3. 14). For Proximal AMA we
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Figure 3.2: The objective function values and the ISNR values for the anisotropic TV and
λ = 5 · 10−5.

Figure 3.3: The objective function values and the ISNR values for the anisotropic TV and
λ = 10−5.

considered σk = 1
8.00001·ck

for all k ≥ 0, which ensured that every matrix Mk
2 = 1

σk
I − ckL∗L is

positively definite for all k ≥ 0. This is actually the case, if σkck∥L∥2 < 1 for all k ≥ 0. In other
words, assumption (i) in Theorem 3.9 was verified.

In the Figures 3.2 - 3.5, we show how Proximal AMA and AMA perform when reconstruct-
ing the blurred and noisy colored MATLAB test image "office_ 4" of 600 × 903 pixels for dif-
ferent choices for the regularization parameter λ and by considering both the anisotropic and
isotropic total variation as regularization functionals. In all considered instances that Proximal
AMA outperformed AMA from the point of view of both the convergence behavior of the se-
quence of the function values and of the sequence of ISNR (Improvement in Signal-to-Noise
Ratio) values, which is defined at the iteration k ∈ N as

ISNRk = 10 log10
∥x − b∥2

∥x − xk∥2 ,

where x is the original, b the observed blurred and noisy image, and xk is reconstructed image
(see [47]).

An explanation could be that the number of iterations Proximal AMA makes in a certain
amount of time is more than double the number of outer iterations performed by AMA.
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Figure 3.4: The objective function values and the ISNR values for the isotropic TV and
λ = 5 · 10−5.

Figure 3.5: The objective function values and the ISNR values for the isotropic TV and
λ = 10−4.

3.4.2 Kernel based machine learning

In this subsection we will describe the numerical experiments we carried out in the context of
classifying images via support vector machines. For more information regarding this nonlinear
SVM model we refer the reader to Appendix A.2.

The given data set consisting of 5570 training images and 1850 test images of size 28 × 28
was taken from http://www.cs.nyu.edu/~roweis/data.html. The problem we con-
sidered was to determine a decision function based on a pool of handwritten digits showing
either the number five or the number six, labeled by +1 and −1, respectively (see Figure 3.6).
To evaluate the quality of the decision function we computed the percentage of misclassified
images of the test data set.

In order to describe the approach we used, we denote by

Z = {(X1, Y1), . . . , (Xn, Yn)} ⊆ Rd × {+1,−1},

the given training data set. The decision functional f was assumed to be an element of the
Reproducing Kernel Hilbert Space (RHKS) Hκ, induced by the symmetric and finitely positive

http://www.cs.nyu.edu/~roweis/data.html
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Figure 3.6: A sample of images belonging to the classes +1 and −1, respectively.

definite Gaussian kernel function

κ : Rd × Rd → R, κ(x, y) = exp

(
−∥x − y∥2

2σ2

)
.

By K ∈ Rn×n we denoted the Gram matrix with respect to the training data set Z , namely,
the symmetric and positive definite matrix with entries Kij = κ(Xi, Xj) for i, j = 1, . . . , n. To
penalize the deviation between the predicted value f(x) and the true value y ∈ {+1,−1} we
used the hinge loss functional (x, y) 7→ max{1 − xy, 0}. The decision function f, which we
want to obtain, is the optimal solution of

min
f∈Hκ

1
2
∥f∥2

Hκ
+ C

n

∑
i=1

max{1 − Yif(Xi), 0}. (3. 36)

Here, C > 0 denotes the regularization parameter controlling the tradeoff between the loss
function and the regularization term.

According to the Representer Theorem, the decision function f can be expressed as a ker-
nel expansion in terms of the training data, in other words f(·) = ∑n

i=1 xiκ(·, Xi), where
x = (x1, . . . , xn) ∈ Rn is the optimal solution of the optimization problem

min
x∈Rn

{
1
2

xTKx + C
n

∑
i=1

max{1 − (Kx)iYi, 0}
}

. (3. 37)

Hence, in order to determine the decision function we solved the convex optimization prob-
lem (3. 37), which can be written as

min
x∈Rn

{ f (x) + g(Kx)}

or, equivalently,

min
x∈Rn,z∈Rn

{ f (x) + g(z)} , s.t. Kx − z = 0

where f : Rn → R, f (x) = 1
2 xTKx, and g : Rn → R is defined by g(z) = C ∑n

i=1 max{1 −
ziYi, 0}.

Since the Gram matrix K is positively definite, the function f is λmin(K)-strongly convex,
where λmin(K) denotes the minimal eigenvalue of K, and differentiable, and it holds ∇ f (x) =
Kx for all x ∈ Rn. For an element of the form p = (p1, ..., pn) ∈ Rn, it holds

g∗(p) =

{
∑n

i=1 piYi, if piYi ∈ [−C, 0], i = 1, . . . , n,
+∞, otherwise.
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Consequently, for every µ > 0 and p = (p1, ..., pn) ∈ Rn, it holds

Proxµg∗(x) =
(
PY1[−C,0](p1 − σY1), . . . ,PYn[−C,0](pn − σYn)

)
,

where PYi [−C,0] denotes the projection operator on the set Yi[−C, 0], i = 1, ..., n.
We implemented Proximal AMA for Mk

2 = 0 for all k ≥ 0 and different choices for the
sequence (Mk

1)k≥0. This resulted in an iterative scheme which reads for all k ≥ 0:

xk+1 = argmin
x∈Rn

{
f (x)− ⟨pk, Kx⟩+ 1

2
∥x − xk∥2

Mk
1

}
= (K + Mk

1)
−1(Kpk + Mk

1xk) (3. 38)

zk+1 = Prox 1
ck

g

(
Kxk+1 − 1

ck pk
)
=

(
Kxk+1 − 1

ck pk
)
− 1

ck
Proxck g∗

(
ckKxk+1 − pk

)
(3. 39)

pk+1 = pk + ck(−Kxk+1 + zk+1).

We would like to emphasize that the AMA method updates the sequence (zk+1)k≥0 also via
(3. 39), while the sequence (xk+1)k≥0, as Mk

1 = 0, is updated via xk+1 = pk for all k ≥ 0.
However, it turned out that the Proximal AMA where Mk

1 = τkK, for τk > 0 and all k ≥ 0,
performs better than the version with Mk

1 = 0 for all k ≥ 0, which actually corresponds to the
AMA method. In this case (3. 38) becomes xk+1 = 1

1+τk
(pk + τkxk) for all k ≥ 0.

We used for both algorithms a constant sequence of stepsizes given by ck = 2 · λmin(K)
∥K∥2 − 10−8

for all k ≥ 0. The tables below show for C = 1 and different values of the kernel parameter σ
that Proximal AMA outperforms AMA in what concerns the time and the number of iterates
needed to achieve a certain value for a given fixed misclassification rate (which proved to be the
best one among several obtained by varying C and σ) and for the RMSE (Root-Mean-Square-
Error) for the sequence of primal iterates. The RMSE is defined at the iteration k ∈ N as

RMSEk =
∥xk − x∗∥√

n
,

where xk ∈ Rn is the iterate at iteration k and x∗ is the unique optimizer.

Table 3.1: Performance evaluation of Proximal AMA (with τk = 10 for all k ≥ 0) and AMA for
the classification problem with C = 1 and σ = 0.2. The entries refer to the CPU times
in seconds and the number of iterations.

Algorithm misclassification rate at 0.7027 % RMSE ≤ 10−3

Proximal AMA 8.18s (145) 23.44s (416)
AMA 8.65s (153) 26.64s (474)

Table 3.2: Performance evaluation of Proximal AMA (with τk = 102 for all k ≥ 0) and AMA
for the classification problem with C = 1 and σ = 0.25. The entries refer to the CPU
times in seconds and the number of iterations.

Algorithm misclassification rate at 0.7027 % RMSE ≤ 10−3

Proximal AMA 141.78s (2448) 629.52s (10940)
AMA 147.99s (2574) 652.61s (11368)





Chapter 4

Dynamical system of Proximal AMA

In this chapter, we investigate a dynamical system which concerns the same optimization prob-
lem as in section 3.2 of the previous chapter. This chapter is based on the paper [29]. In addition,
we have included some further exposition on certain concepts employed therein, in particular
some background on Lyapunov analysis.

Since the seventies of the last century, the investigation of dynamical systems approaching
monotone inclusions and optimization problems gained a lot of attention (see Brézis, Baillon
and Bruck, Crandall and Pazy [44, 16, 45, 53]). This is due to their intrinsic importance in areas
like differential equations and applied functional analysis, and also since they have been re-
cognized as a valuable tool for deriving and investigating numerical schemes for optimization
problems obtained by time discretization of the continuous dynamics. The dynamic approach
to iterative methods in optimization can furnish deep insights into the expected behavior of
the method and the techniques used in the continuous case can be adapted to obtain results for
the discrete algorithm. We invite the reader to consult [97] and [54] for more insights into the
relations between the continuous and discrete dynamics.

This research area continuously attracts the attention of the community. There are several
works in the last years concerning dynamical systems, which have a connection to numerical
algorithms. Motivated by the applications in optimization where nonsmooth functions are in-
volved, many authors consider dynamical systems defined via proximal evaluations. Through
explicit time discretization they transform into relaxed versions of proximal point algorithms.
For example, in [1] Abbas and Attouch proposed a dynamical system which is a continuous
version of the forward backward algorithm (we mention here also the works of Bolte [32] and
Antipin [6]), in [18] an implicit forward-backward-forward dynamical system was introduced,
and in [55] a dynamical system of Douglas-Rachford type was proposed. In [42] Tikhonov regu-
larized dynamical systems of Krasnoselskiǐ-Mann type were investigated and even strong con-
vergence of the trajectories towards the minimum norm solution of the underlying monotone
inclusion problem were shown. Acceleration of the dynamics in terms of function values along
the trajectories can be achieved by considering second order differential equations/inclusions
where again resolvents and proximal operators are involved in the description of the systems
(see for example [37] and the works of Attouch and his co-authors [10, 11, 13, 9], see also [12]
for the discrete counterpart of [11]). This is a flourishing area in the continuous setting since
the work of Su-Boyd-Candès [107], where a second-order ordinary differential equation was
proposed as the limit of Nesterov’s accelerated gradient method which involves inertial type
schemes.

Let us underline that approaching optimization problems where compositions with linear
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operators are involved by means of differential equations/inclusions is relatively new in the
literature (and this is the focus also in this chapter). We mention here [38] (which is related
to continuous counterparts of primal-dual algorithms, Proximal ADMM and the linearized
proximal method of multipliers) and also the contribution of Attouch [8] (related to some fast
inertial Proximal ADMM schemes).

4.1 Dynamical system

The dynamical system we propose and investigate in this chapter is:



ẋ(t) + x(t) ∈ (∂ f + M1(t))
−1 [M1(t)x(t) + A∗y(t)−∇h1(x(t))]

ż(t) + z(t) ∈ (∂g + c(t)B∗B + M2(t))
−1 [M2(t)z(t) + B∗y(t)− c(t)B∗A(ẋ(t) + x(t))

+c(t)B∗b −∇h2(z(t))]

ẏ(t) = c(t) (b − A(x(t) + ẋ(t))− B(z(t) + ż(t)))

x(0) = x0 ∈ H, z(0) = z0 ∈ G, y(0) = y0 ∈ K,
(4. 1)

where c : [0 + ∞) → (0 + ∞), M1 : [0,+∞) → S+(H) and M2 : [0,+∞) → S+(G).
In the next section, we will see that the dynamical system leads through explicit time dis-

cretization to the proximal AMA algorithm 3.6 and the AMA numerical scheme [110]. Further-
more, we underline the role of the operators M1 and M2, namely for a special choice of the
linear maps M1 and M2 we obtain a dynamical system of primal-dual type which is a full split-
ting scheme. For this, we consider a numerical example in order to show how the parameters
for these particular linear maps can be chosen and influence the convergence of the trajectories.

We continue with the existence and uniqueness of strong global solutions of the dynamical
system proposed above. The study relies on classical semigroup theory, showing that the sys-
tem corresponds in fact to a Cauchy-Lipschitz system in a product space. This is far from being
trivial and requires several technical prerequisites which are described in detail.

The last section is devoted to the asymptotic analysis of the trajectories and the connection
to the optimization problems (3. 5) and (3. 8). The analysis relies on Lyapunov theory where
the derivation of an appropriate energy functional plays a central role. The way the Lyapunov
functional is obtained is quite involved and technical issues have to be investigated in order
to achieve this goal (see the proof of Theorem 4.22 and (4. 33)). Finally, we prove that the
trajectories converge weakly to a saddle point of the Lagrangian L.

The analysis used in this chapter relies on similar tools considered in [38]. Let us under-
line some differences in comparison to [38]. First of all, our optimization problem (3. 5) has
a different structure, with two linear operators involved in the constrained set. Secondly, our
dynamical system is related to the Proximal AMA algorithm [28], the AMA numerical scheme
[110] and primal dual-type algorithms obtained in [28]. The one in [38] is related to the Proxi-
mal ADMM [19],the classical ADMM and primal-dual type algorithms. Moreover, notice that
in our case f is strongly convex which has an influence in the investigations performed here
(and in particular the inclusion corresponding to f has a more tractable form). Additionally, in
our analysis we have an additional parameter c(t), which is time varying, and this makes the
investigation more involved (taking variable c(t) is motivated by [110], where the numerical
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scheme AMA also involves a variable parameter).

4.2 Solution concept, discretizations

We need the following definition before we specify what we mean by a solution of (4. 1). Let B
be a Banach space. The real vector space

L(H) := {A : H → H : A is linear and continuous}

is endowed with the norm ∥A∥ = sup∥x∥≤1 ∥Ax∥.

Definition 4.1. The map M : [0,+∞) → B is said to be differentiable at t0 ∈ [0,+∞) if the limit

lim
h→0

M(t0 + h)− M(t0)

h
, (4. 2)

taken with respect to the norm topology of B, exists. When this is the case, we denote by
Ṁ(t0) ∈ B the value of the limit.

Definition 4.2. A map u : [0,+∞) → B is called absolutely continuous on a bounded interval
[0, T], T > 0 if for every ε > 0 there exists η > 0 such that for any N ∈ N and any finite family
of intervals Ik = (ak, bk)

N
k=1 such that Ik ⊆ [0, T] the following property holds:

for any subfamily of disjoint intervals Ij with ∑
j
|bj − aj| < η it holds

∑
j
∥u(bj)− u(aj)∥ < ε.

If u is absolutely continuous on every interval [0, T], then u is called locally absolutely continuous.

Remark 4.3. 1. The integral in the following proposition is the Bochner integral, which is the
vector-valued extension of the Lebesgue integral. For deeper insight in the theory of the
Bochner integral, see [[73], page 13 ff].

2. Let I ⊆ [0,+∞) be a (bounded or unbounded) interval and let 1 ≤ p < +∞. We define
Lp(I ,B) as the linear space of all strongly measurable functions u : I → B such that∫

I
∥u∥pdt < +∞.

Furthermore, we define L∞(I ,B) as the linear space of all strongly measurable functions
u : I → B for which there exists a r ≥ 0 such that λ({t ∈ I : f (t) > r}) = 0. Here, λ
denotes the Lebesgue measure. Endowed with the norms, for 1 ≤ p < +∞

∥u∥Lp(I ,B) :=
(∫

I
∥u∥pdt

) 1
p

and
∥u∥L∞(I ,B) := ess supt≥0(∥u∥) := inf {r ≥ 0 : λ({t ∈ I : f (t) > r}) = 0}

the spaces Lp(I ,B), 1 ≤ p ≤ +∞ are Banach spaces. We denote ess sup ∥u∥ as the
essential supremum of u.
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3. In the following, L1
loc([0,+∞),B) denotes the space of f : [0,+∞) → B which are locally

integrable . If B = R we write L1
loc([0,+∞)). A function f is locally integrable on [0,+∞)

if its Bochner integrable on every compact subset of [0,+∞).

Proposition 4.4. Let T > 0, H be a Hilbert space and u : [0, T] → H. Then, the following statements
are equivalent:

(i) The function u is absolutely continuous.

(ii) There exists an integrable function v : [0, T] → H such that

u(t) = u(0) +
∫ t

0
v(r)dr ∀t ∈ [0, T].

Proof. This follows from Propositions 2.5.9 and Theorem 2.5.12 in [73].

Any function u : [0, T] → H satisfying the statement (ii) in the preceding Proposition is
differentiable almost everywhere and it holds that u̇ = v almost everywhere where v is as in
statement (ii).

Remark 4.5. Let B be a Banach space and u : [0, T] → B be absolutely continuous. For arbitrary
Banach spaces, this does no longer imply that statement (ii) from Proposition 4.4 holds for u.
In particular, it may no longer be the case that u is differentiable almost everywhere. While it
is true that an analogue of Proposition 4.4 continues to hold if B posesses the Radon-Nikodym
property, this property is not guaranteed to hold for the Banach space L(H) which we shall
consider in this section regarding the operators M1 and M2.

We are now ready to consider the following solution concept.

Definition 4.6. Let u0 ∈ H and f : [0,+∞)×H → 2H. The function u : [0,+∞) → H is called
a strong global solution of the dynamical system

u̇(t) ∈ f (t, u(t))

u(0) = u0,

if u(t) is locally absolutely continuous and verifies this system for almost every t ∈ [0,+∞)
with initial value u0.

Remark 4.7. Let us consider a discretization of the considered dynamical system. The first two
inclusions in (4. 1) can be written in an equivalent way as

0 ∈ ∂ f (ẋ(t) + x(t)) + M1(t)ẋ(t)− (A∗y(t)−∇h1(x(t))), (4. 3)
0 ∈ ∂g(ż(t) + z(t)) + c(t)B∗B(ż(t) + z(t)) + M2(t)ż(t)

− (B∗y(t)− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b −∇h2(z(t))), (4. 4)

where t ∈ [0,+∞). Through explicit discretization with respect to the time variable t and
constant step size hk = 1 (i.e. x(t) ≈ xk and ẋ(t) ≈ xk+1 − xk), we obtain for all k ≥ 0 the
inclusions:

0 ∈ ∂ f (xk+1) + Mk
1(xk+1 − xk)− A∗yk +∇h1(xk),

0 ∈ ∂g(zk+1) + ckB∗B(zk+1) + Mk
2(z

k+1 − zk)− B∗yk + ckB∗A(xk+1)− ckB∗b +∇h2(zk).
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Furthermore, using convex subdifferential calculus this can be written equivalently for all k ≥ 0
as

0 ∈ ∂

(
f + ⟨· − xk,∇h1(xk)⟩ − ⟨yk, A·⟩+ 1

2
∥ · −xk∥2

Mk
1

)
(xk+1)

0 ∈ ∂

(
g + ⟨· − zk,∇h2(zk)⟩ − ⟨yk, B·⟩+ ck

2
∥Axk+1 + B · −b∥2 +

1
2
∥ · −zk∥2

Mk
2

)
(zk+1)

Hence, the dynamical system (4. 1) provides through explicit time discretization the Proximal
AMA algorithm 3.6:

Let Mk
1 ∈ S+(H) and Mk

2 ∈ S+(G). Choose (x0, z0, y0) ∈ H × G ×K and (ck)k≥0 > 0. For
all k ≥ 0 generate the sequence (xk, zk, yk)k≥0 as follows:

xk+1 = argminx∈H

{
f (x)− ⟨yk, Ax⟩+ ⟨x − xk,∇h1(xk)⟩+ 1

2∥x − xk∥2
Mk

1

}
zk+1 ∈ argminz∈G

{
g(z)− ⟨yk, Bz⟩+ 1

2 ck∥Axk+1 + Bz − b∥2 + ⟨z − zk,∇h2(zk)⟩+ 1
2∥z − zk∥2

Mk
2

}
,

yk+1 = yk + ck(b − Axk+1 − Bzk+1).

In the particular case Mk
1 = Mk

2 = 0 and h1 = h2 = 0, the numerical scheme is the AMA
algorithm introduced by Tseng in [110].

Remark 4.8. Let us show now that an appropriate choice of M2 leads (both in continuous and
discrete case) to an implementable proximal step in the second inclusion. This is crucial for
numerical results in applications, see also [19]. For every t ∈ [0,+∞), we define

M2(t) =
1

τ(t)
Id−c(t)B∗B,

where τ(t) > 0 and τ(t)c(t)∥B∥2 ≤ 1.
Let t ∈ [0,+∞) be fixed. Then, M2(t) is positive semidefinite, and the second relation in the

dynamical system (4. 1) becomes a proximal step. Indeed, under the given conditions, one can
see that (4. 4) is equivalent to(

1
τ(t)

Id−c(t)B∗B
)

z(t) + B∗y(t)− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b −∇h2(z(t)) ∈

1
τ(t)

ż(t) +
1

τ(t)
z(t) + ∂g(ż(t) + z(t)).

It follows that

ż(t) + z(t) = (Id+τ(t)∂g)−1((Id−τ(t)c(t)B∗B)z(t) + τ(t)B∗y(t)− c(t)τ(t)B∗A(ẋ(t) + x(t))
+ c(t)τ(t)B∗b − τ(t)∇h2(z(t))),

which is the same as

ż(t) + z(t) = Proxτ(t)g((Id−τ(t)c(t)B∗B)z(t) + τ(t)B∗y(t)− c(t)τ(t)B∗A(ẋ(t) + x(t))

+ c(t)τ(t)B∗b − τ(t)∇h2(z(t))).
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If we choose furthermore M1(t) = 0, our dynamical system (4. 1) can be written in this partic-
ular setting equivalently as

ẋ(t) + x(t) ∈ (∂ f )−1 [A∗y(t)−∇h1(x(t))]

ż(t) + z(t) = Proxτ(t)g((Id−τ(t)c(t)B∗B)z(t) + τ(t)B∗y(t)− c(t)τ(t)B∗A(ẋ(t) + x(t))
+c(t)τ(t)B∗b − τ(t)∇h2(z(t))).

ẏ(t) = c(t) (b − A(x(t) + ẋ(t))− B(z(t) + ż(t)))

x(0) = x0 ∈ H, z(0) = z0 ∈ G, y(0) = y0 ∈ K,
(4. 5)

where c : [0 + ∞) → (0 + ∞). This can be seen as the continuous counterpart with proximal
step of the Proximal AMA scheme.

Remark 4.9. In this chapter, we will often use the following equivalent formulation of the dy-
namical system (4. 1). For U(t) = (x(t), z(t), y(t)), (4. 1) can be written as{

U̇(t) = Γ(t, U(t)),
U(0) = (x0, z0, y0),

where
Γ : [0,+∞)×H× G ×K −→ H×G ×K, Γ(t, x, z, y) = (u, v, w),

is defined as



u = u(t, x, z, y) = argmin
p∈H

{
F(t, p) +

1
2
∥p − (M1(t)x + A∗y −∇h1(x))∥2

}
− x

v = v(t, x, z, y) ∈ argmin
q∈G

{
G(t, q) +

c(t)
2

∥∥∥∥q −
(

1
c(t)

M2(t)z +
1

c(t)
B∗y

−B∗A(u + x) + B∗b − 1
c(t)

∇h2(z))
)∥∥∥∥2

}
− z

w = w(t, x, z, y) =c(t)(b − A(x + u)− B(z + v))

(4. 6)

with

F : [0,+∞)×H → R, F(t, p) = f (p)− 1
2
∥p∥2 +

1
2
∥p∥2

M1(t)

and

G : [0,+∞)× G → R, G(t, q) = g(q) +
c(t)

2
(
∥Bq∥2 − ∥q∥2)+ 1

2
∥q∥2

M2(t).

In the following, we will make the assumption that for every (x, z, y) ∈ H×G ×K, the function
Γ(·, x, z, y) is strongly measurable. Giving precise conditions on when this occurs is a non-
trivial problem since the component functions u, v are obtained as the solutions of optimization
problems.
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For a fixed t ∈ [0,+∞), the functions F(t, ·) and G(t, ·) are proper and lower semicontinu-
ous. Since M1(t) ∈ S+(H), f is strongly convex and

F(t, p) +
1
2
∥p − u∥2 = f (p) +

1
2
∥p∥2

M1(t) − ⟨p, u⟩+ 1
2
∥u∥2,

the function
p 7→ F(t, p) +

1
2
∥p − u∥2

is proper, strongly convex, and lower semicontinuous for every u ∈ H. Further, we have

G(t, q) +
1
2
∥q − v∥2 = g(q) +

1
2
∥q∥2

M2(t)+c(t)B∗B − ⟨q, v⟩+ 1
2
∥v∥2,

so if the assumption

(P) there exists β > 0 such that c(t)B∗B + M2(t) ∈ Pβ(G) ∀t ∈ [0,+∞)

holds, then, additionally,

q 7→ G(t, q) +
1
2
∥q − v∥2

is proper, strongly convex and lower semicontinuous for every v ∈ G. Therefore, we have that
in (4. 6) u and v are uniquely defined.

Example 4.10. We consider the following optimization problem

inf
x∈R2,z∈R2

1
2
∥x − d∥2 + ∥z∥1, (4. 7)

s.t. Ax + Bz = 0

with

A =
1√
8

(
2 1

−2 1

)
, B =

1
5

(
−3 0

4 0

)
and d =

(
1
0

)
,

which is problem (3. 5) with H = G = R2 and

f , g, h1, h2 : R2 → R,

f (x) =
1
2
∥x − d∥2,

g(z) = ∥z∥1,
h1(x) = h2(z) = 0,

for every x ∈ R2 and z ∈ R2. One can verify that (4. 7) has a unique optimal solution, which is
x∗ = (0, 0) and z∗ = (0, 0). The Fenchel-Rockafellar dual problem of (4. 7) is

sup
y∈R2

{− f ∗(A∗y)− g∗(B∗y)},

which is equivalent to
− inf

y∈R2
{ f ∗(A∗y) + g∗(B∗y)}.

and
− inf

∥B∗y∥∞≤1
{1

2
∥A∗y∥2 + ⟨A∗y, d⟩}, (4. 8)
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where the unique optimal solution is y∗ = (−0.7071, 0.7071).
For

U(t) = (x(t), z(t), y(t)),
M1(t) = 0,

M2(t) =
1

τ(t)
Id−c(t)B∗B,

we can write the dynamical system for this problem (4. 1) similarly as in Remark 4.9 (see also
(4. 5)) {

U̇(t) = Γ(t, U(t))
U(0) = (x0, z0, y0),

where
Γ : [0,+∞)×H× G ×K −→ H×G ×K, Γ(t, x, z, y) = (u, v, w),

is defined as

u = argmin
p∈H

{
f (p)− 1

2
∥p∥2 +

1
2
∥p − A∗y∥2

}
− x

=A∗y + d − x
v =Proxτ(t)g ((Id−τ(t)c(t)B∗B)z + τ(t)B∗y − c(t)τ(t)B∗A(x + u))− z

w =c(t)(−A(x + u)− B(z + v)).

We solved the dynamical system with the initial values x0 = (−8, 8), z0 = (−8, 8) and y0 =
(−8, 8) in the case when c(t) > 0 and τ(t) > 0 and used the Matlab function ode15s. The
source code is based on the code used in [38].
Note, that

Proxτ(t)g(x) = x − τ(t)P[−1,1]2

(
1

τ(t)
x
)

,

where PC is the projection operator on a convex and closed set C ⊆ H. To assure the conver-
gence of the algorithm, we will prove later in Theorem 4.22 that it has to be fulfilled for an ϵ > 0
that

c(t) <
σ

∥A∥2 − ϵ

for all t, where σ is the strong convexity parameter of f (x) (here σ = 1), and that c(t) is mono-
tonically decreasing and Lipschitz continuous. For c(t) = c constant, we can choose c such
that

c <
2σ

∥A∥2 − ϵ.

Besides, it has to be fulfilled that M2(t) is monotonically decreasing, locally absolutely contin-
uous, positive definite, and supt≥0 ∥Ṁ2(t)∥ < +∞ (we are in setting 1. of Theorem 4.22, see
also Corollary 4.24 and Remark 4.25).

To guarantee that M2(t) is positive definite, we have to choose τ(t) such that
τ(t)c(t)∥B∥2 < 1. Since ∥A∥2 = 1 and ∥B∥2 = 1, we can choose c(t) ∈ (ϵ, 1 − ϵ) and for c
constant c ∈ (ϵ, 2 − ϵ) and τ(t)c(t) < 1. In Figure 4.1, we chose

c(t) = c3(t) =
1√

t + 1.1
+ 0.01
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and considered for τ(t)c(t) three different choices, namely, 0.25, 0.5 and 0.99. In Figure 4.2 and
4.3, we chose τ(t)c(t) = 0.99 and varied the parameter c(t) with the three constant choices,
namely, c(t) = 0.25, c(t) = 0.5 and c(t) = 1.0 (Figure 4.2) and three variable choices (Figure
4.3)

c1(t) =
1

t2 + 1.1
+ 0.01,

c2(t) =
1

t + 1.1
+ 0.01,

c3(t) =
1√

t + 1.1
+ 0.01.

These parameters fulfill the conditions above.

For c(t) = c3(t), all three trajectories converge faster for a greater value for τ(t)c(t) (see
Figure 4.1). We could observe this fact as well for the other choices of c(t). In Figure 4.2,
we can see for the convergence of the z-trajectory that the convergence against the first co-
ordinate of the optimal solution (blue curve) is faster for greater constant values of c(t) and
the convergence against the second coordinate of the optimal solution (red curve) is faster for
smaller constant values. There are no big differences concerning the convergence of the x- and
y-trajectories, but we can observe that the convergence of the y-trajectory is for both coordi-
nates faster for greater constant values. For the three constant values in Figure 4.2, we have
for c(t) = 0.5 the best convergence result as a compromise of these facts. In Figure 4.3, we can
observe the same facts, but for variable choices for c(t). So, the convergence of the z-trajectory
against the first coordinate of the optimal solution (blue curve) is faster for those variable c(t)
that are slower monotonically decreasing and the convergence against the second coordinate
of the optimal solution (red curve) is faster for those variable c(t) that are faster monotonically
decreasing. The convergence of the x- and y-trajectories is for both coordinates faster for those
variable c(t) that are slower monotonically decreasing. For the three variable choices for c(t)
in Figure 4.3, we have for c3(t) the best convergence result as a compromise of these facts.
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Figure 4.1: First and second column: the primal trajectories x(t) and z(t) converge to the primal
optimal solution (0, 0) for c3(t) and initial value (−8, 8). Third column: the dual
trajectory y(t) converges to the dual optimal solution (−0.7071, 0.7071) for c3(t) and
initial value (−8, 8).
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Figure 4.2: First and second column: the primal trajectories x(t) and z(t) converge to the primal
optimal solution (0, 0) for constant c(t) and initial value (−8, 8). Third column:
the dual trajectory y(t) converges to the dual optimal solution (−0.7071, 0.7071) for
constant c(t) and initial value (−8, 8).
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Figure 4.3: First and second column: the primal trajectories x(t) and z(t) converge to the primal
optimal solution (0, 0) for variable c(t) and initial value (−8, 8). Third column:
the dual trajectory y(t) converges to the dual optimal solution (−0.7071, 0.7071) for
variable c(t) and initial value (−8, 8).

4.3 Existence and uniqueness of the trajectories

In this section, we will investigate the existence and uniqueness of the trajectories generated by
the dynamical system (4. 1). For showing this, we will apply the following Theorem:

Theorem 4.11. (Cauchy-Lipschitz-Picard Theorem) Let H be a Hilbert space and let the function
f : [0,+∞)×H → H fulfill the following properties:

(i) for all x ∈ H it holds f (·, x) ∈ L1
loc([0,+∞),H),

(ii) for almost all t ≥ 0, f (t, ·) : H → H is continuous and there exists a function
L : [0,+∞)× [0,+∞) → [0,+∞) such that it holds for all x, y ∈ H:

∥ f (t, x)− f (t, y)∥ ≤ L(t, ∥x∥+ ∥y∥)∥x − y∥
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with L(·, r) ∈ L1
loc([0,+∞)), ∀r ∈ [0,+∞).

(iii) there exists a P ∈ L1
loc([0,+∞)) such that for almost all t ≥ 0 it holds for all x ∈ H:

∥ f (t, x)∥ ≤ P(t)(1 + ∥x∥).

Then for all u0 ∈ H, there exists a unique strong global solution u : [0,+∞) → H for the following
dynamical system:

u̇(t) = f (t, u(t))

u(0) = u0.

Proof. See [68, Proposition 6.2.1].

Remark 4.12. If in the property (ii) of the Theorem above the constant L depends only on t, then
it follows

∥ f (t, x)∥ ≤ ∥ f (t, x)− f (t, 0)∥+ ∥ f (t, 0)∥ ≤ L(t)∥x∥+ ∥ f (t, 0)∥
≤ (L(t) + ∥ f (t, 0)∥)∥x∥+ L(t) + ∥ f (t, 0)∥
= (L(t) + ∥ f (t, 0)∥)(1 + ∥x∥)

and we can define P(t) := (L(t) + ∥ f (t, 0)∥) ∈ L1
loc([0,+∞)). So, we have that (iii) follows from

(ii).

First, we need several preparatory results in order to show that we are in the setting of the
Cauchy-Lipschitz-Picard Theorem.

Lemma 4.13. Let assumption (P) hold true and t ∈ [0,+∞). Then, the operator

Kt : H → H, Kt(u) = argmin
x∈H

(
F(t, x) +

1
2
∥x − u∥2

)
is 1

σ -Lipschitz continuous and the operator

Jt : G → G, Jt(v) = argmin
z∈G

(
G(t, z) +

c(t)
2

∥z − v∥2
)

is c(t)
β -Lipschitz continuous.

Proof. Let t ∈ [0,+∞) be fixed. Then, we have, due to Fermat’s rule 2.5,

0 ∈ ∂

(
f (·) + 1

2
(∥ · ∥2

M1(t) − ∥ · ∥2) +
1
2
∥ · −u∥2

)
(Kt(u)),

which is equivalent to

0 ∈ ∂

(
f (·) + 1

2
∥ · ∥2

M1(t) − ⟨ · , u⟩+ 1
2
∥u∥2

)
(Kt(u)).

Using Proposition 2.6 (ii), we obtain for all u, v ∈ H

u ∈ ∂ f (Kt(u)) + M1(t)(Kt(u))
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and
v ∈ ∂ f (Kt(v)) + M1(t)(Kt(v)).

Due to the σ-strong convexity of f and M1(t) ∈ S+(H), it follows from Proposition 2.22 (ii)
that ∂ f + M1(t) is σ-strongly monotone and we get

σ∥Ktu − Ktv∥2 ≤ ⟨u − v, Kt(u)− Kt(v)⟩.

Using the Cauchy-Schwarz inequality, it follows

∥Ktu − Ktv∥ ≤ 1
σ
∥u − v∥,

which means that Kt is 1
σ -Lipschitz continuous.

For t ∈ [0,+∞) fixed, we have, due to Fermat’s rule 2.5,

0 ∈ ∂

(
g(·) + c(t)

2
(∥B · ∥2 − ∥ · ∥2) +

1
2
∥ · ∥2

M2(t) +
c(t)

2
∥ · −u∥2

)
(Jt(u)),

which is equivalent to

0 ∈ ∂

(
g(·) + c(t)

2
∥B · ∥2 +

1
2
∥ · ∥2

M2(t) − c(t)⟨ · , u⟩+ c(t)
2

∥u∥2
)
(Jt(u)).

Using Proposition 2.6 (ii), we obtain for all u, v ∈ G

c(t)u ∈ ∂g(Jt(u)) + (c(t)B∗B + M2(t))(Jt(u))

and
c(t)v ∈ ∂g(Jt(v)) + (c(t)B∗B + M2(t))(Jt(v)).

Because of assumption (P) and from Proposition 2.22 (ii), we have that ∂g + c(t)B∗B + M2(t)
is β-strongly monotone and we get

β∥Jtu − Jtv∥2 ≤ c(t)⟨u − v, Jt(u)− Jt(v)⟩.

Using the Cauchy-Schwarz inequality, it follows

∥Jtu − Jtv∥ ≤ c(t)
β

∥u − v∥,

which means that Jt is c(t)
β -Lipschitz continuous.

Lemma 4.14. Let assumption (P) hold true, (x, z, y) ∈ H× G ×K and consider the maps
R(x,z,y) : [0,+∞) → H,

R(x,z,y)(t) = argmin
u∈H

{
F(t, u) +

1
2
∥u − (M1(t)x + A∗y −∇h1(x))∥2

}
− x,

Q(x,z,y) : [0,+∞) → G,

Q(x,z,y)(t) = argmin
v∈G

{
G(t, v) +

c(t)
2

∥∥∥∥v −
(

1
c(t)

M2(t)z +
1

c(t)
B∗y − B∗A(R(x,z,y)(t) + x)

+B∗b − 1
c(t)

∇h2(z))
)∥∥∥∥2

}
− z,
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and P(x,z,y) : [0,+∞) → K,

P(x,z,y)(t) = c(t)(b − A(R(x,z,y)(t) + x)− B(Q(x,z,y)(t) + z)).

Then, the following holds for every t, r ∈ [0,+∞) :

(i) ∥R(x,z,y)(t)− R(x,z,y)(r)∥ ≤
∥R(x,z,y)(r)∥

σ
∥M1(t)− M1(r)∥

(ii) ∥Q(x,z,y)(t)− Q(x,z,y)(r)∥ ≤
c(t)∥A∥∥B∥∥R(x,z,y)(r)∥

σβ
∥M1(t)− M1(r)∥

+
∥Q(x,z,y)(r)∥

β
∥M2(t)− M2(r)∥+

∥P(x,z,y)(r)∥ · ∥B∥
βc(r)

|c(t)− c(r)|.

Proof. Let t, r ∈ [0,+∞) be fixed.
(i) From the definition of R(x,z,y), Fermat’s rule 2.5, and Proposition 2.6 (ii), we have

M1(t)x + A∗y −∇h1(x) ∈ ∂ f (R(x,z,y)(t) + x) + M1(t)(R(x,z,y)(t) + x) (4. 9)

and
M1(r)x + A∗y −∇h1(x) ∈ ∂ f (R(x,z,y)(r) + x) + M1(r)(R(x,z,y)(r) + x).

If we add M1(t)(R(x,z,y)(r) + x) on both sides of the relation above, we obtain

M1(t)(R(x,z,y)(r) + x)− M1(r)(R(x,z,y)(r)) + A∗y −∇h1(x) ∈
∂ f (R(x,z,y)(r) + x) + M1(t)(R(x,z,y)(r) + x). (4. 10)

From (4. 9) and (4. 10), and using that ∂ f + M1(t) is σ-strongly monotone according to Propo-
sition 2.22 (ii), we have

⟨M1(t)R(x,z,y)(r)− M1(r)R(x,z,y)(r), R(x,z,y)(r)− R(x,z,y)(t)⟩ ≥ σ∥R(x,z,y)(r)− R(x,z,y)(t)∥2.

The result follows from the Cauchy-Schwarz inequality.
(ii) Using the definition of Q(x,z,y), Fermat’s rule 2.5, and Proposition 2.6 (ii) we have

M2(t)z + B∗y − c(t)B∗A(R(x,z,y)(t) + x) + c(t)B∗b −∇h2(z) ∈
∂g(Q(x,z,y)(t) + z) + (c(t)B∗B + M2(t))(Q(x,z,y)(t) + z) (4. 11)

and

M2(r)z + B∗y − c(r)B∗A(R(x,z,y)(r) + x) + c(r)B∗b −∇h2(z) ∈
∂g(Q(x,z,y)(r) + z) + (c(r)B∗B + M2(r))(Q(x,z,y)(r) + z).

If we add (c(t)− c(r))B∗B(Q(x,z,y)(r) + z) + M2(t)(Q(x,z,y)(r) + z) on both sides of the relation
above, we obtain

(c(t)− c(r))B∗B(Q(x,z,y)(r) + z)− M2(r)Q(x,z,y)(r) + M2(t)(Q(x,z,y)(r) + z) + B∗y

−c(r)B∗A(R(x,z,y)(r) + x) + c(r)B∗b −∇h2(z) ∈
∂g(Q(x,z,y)(r) + z) + (c(t)B∗B + M2(t))(Q(x,z,y)(r) + z). (4. 12)
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From (4. 11) and (4. 12), and using that ∂g + c(t)B∗B + M2(t) is β-strongly monotone, we have

⟨(c(t)− c(r))B∗B(Q(x,z,y)(r) + z) + (M2(t)− M2(r))Q(x,z,y)(r) + c(t)B∗AR(x,z,y)(t)

−c(r)B∗AR(x,z,y)(r) + (c(t)− c(r))B∗Ax − (c(t)− c(r))B∗b, Q(x,z,y)(r)− Q(x,z,y)(t)⟩
≥ β∥Q(x,z,y)(r)− Q(x,z,y)(t)∥2.

Using the Cauchy-Schwarz inequality, we have

∥Q(x,z,y)(r)− Q(x,z,y)(t)∥

≤ 1
β
∥(c(t)− c(r))B∗B(Q(x,z,y)(r) + z) + (M2(t)− M2(r))Q(x,z,y)(r)

+ c(t)B∗AR(x,z,y)(t)− c(r)B∗AR(x,z,y)(r) + (c(t)− c(r))B∗Ax − (c(t)− c(r))B∗b∥

=
1
β
∥(c(t)− c(r))B∗BQ(x,z,y)(r) + c(t)B∗AR(x,z,y)(t)− c(r)B∗AR(x,z,y)(r)

+ (c(t)− c(r))B∗(Ax + Bz − b) + (M2(t)− M2(r))Q(x,z,y)(r)∥

and because of the definition of P(x,z,y) and (i), it follows from the inequality above

∥Q(x,z,y)(r)− Q(x,z,y)(t)∥

≤ 1
β
∥(c(t)− c(r))B∗BQ(x,z,y)(r) + c(t)B∗AR(x,z,y)(t)− c(r)B∗AR(x,z,y)(r)

+ (c(t)− c(r))B∗(−BQ(x,z,y)(r)− AR(x,z,y)(r)−
1

c(r)
P(x,z,y)(r))

+ (M2(t)− M2(r))Q(x,z,y)(r)∥

=
1
β

∥∥∥∥c(t)B∗AR(x,z,y)(t)− c(t)B∗AR(x,z,y)(r)−
(c(t)− c(r))

c(r)
B∗P(x,z,y)(r)

+(M2(t)− M2(r))Q(x,z,y)(r)
∥∥∥

≤ 1
β

(
c(t)∥A∥∥B∥∥R(x,z,y)(t)− R(x,z,y)(r)∥+

|c(t)− c(r)|
c(r)

∥B∥∥P(x,z,y)(r)∥

+∥M2(t)− M2(r)∥∥Q(x,z,y)(r)∥
)

.

Finally, considering (i), we obtain from the inequality above

∥Q(x,z,y)(r)− Q(x,z,y)(t)∥

≤ 1
β

(
c(t)∥A∥∥B∥∥R(x,z,y)(r)∥

σ
∥M1(t)− M1(r)∥+

|c(t)− c(r)|
c(r)

∥B∥∥P(x,z,y)(r)∥

+∥M2(t)− M2(r)∥∥Q(x,z,y)(r)∥
)

.

Having now all these estimations at our disposal, we are now ready to prove the existence
and uniqueness of the trajectories.

Theorem 4.15. Let assumption (P) hold true and let ∥M1∥, ∥M2∥ ∈ L1
loc([0,+∞)). Furthermore,

we assume that 0 < inft≥0 c(t) ≤ supt≥0 c(t) < +∞ and that for every (x, z, y) ∈ H × G × K, the
function Γ(·, x, z, y) is strongly measurable. Then for every initial value (x0, z0, y0) → H× G × K,
the dynamical system (4. 1) has a unique strong global solution (x, z, y) : [0,+∞) → H×G ×K.
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Proof. In the following, we use the equivalent formulation of the dynamical system described
in Remark 4.9. We show the existence and uniqueness of a strong global solution, using the
Cauchy-Lipschitz-Picard Theorem 4.11 to this end.

In the first part, we have to show that Γ(t, ·, ·, ·) is L(t)-Lipschitz continuous for every
t ∈ [0,+∞) and that the Lipschitz constant as a function of time fulfills L(·) ∈ L1

loc([0,+∞)). In
the second part, we will prove that Γ(·, x, z, y) ∈ L1

loc([0,+∞),H× G ×K) for every (x, z, y) ∈
H× G ×K.

(1) For a fixed t ∈ [0,+∞) and for (x, z, y), (x, z, y) ∈ H× G ×K, we have

∥Γ(t, x, z, y)− Γ(t, x, z, y)∥ =
√
∥u − u∥2 + ∥v − v∥2 + ∥w − w∥2,

where (taking into account the definition of Kt in Lemma 4.13)

u − u = argmin
p∈H

{
F(t, p) +

1
2
∥p − (M1(t)x + A∗y −∇h1(x))∥2

}
− argmin

p∈H

{
F(t, p) +

1
2
∥p − (M1(t)x + A∗y −∇h1(x))∥2

}
+ x − x

= Kt(M1(t)x + A∗y −∇h1(x))− Kt(M1(t)x + A∗y −∇h1(x)) + x − x.

Therefore,

∥u − u∥2 ≤ 2∥Kt(M1(t)x + A∗y −∇h1(x))− Kt(M1(t)x + A∗y −∇h1(x))∥2 + 2∥x − x∥2.

From Lemma 4.13, we know that Kt is 1
σ -Lipschitz-continuous. Using this, the fact that

∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2 ∀x, y ∈ H and the Lh1-Lipschitz continuity of h1 we have:

∥u − u∥2 ≤ 2
σ2 ∥M1(t)(x − x) + A∗(y − y)− (∇h1(x)−∇h1(x))∥2 + 2∥x − x∥2

≤ 2
σ2 (2∥M1(t)(x − x) + A∗(y − y)∥2 + 2∥∇h1(x)−∇h1(x)∥2) + 2∥x − x∥2

≤ 2
σ2 (4∥M1(t)∥2∥x − x∥2 + 4∥A∥2∥y − y∥2 + 2∥∇h1(x)−∇h1(x)∥2) + 2∥x − x∥2

≤ 2

(
4∥M1(t)∥2 + 2L2

h1

σ2 + 1

)
∥x − x∥2 +

8∥A∥2

σ2 ∥y − y∥2.

Furthermore, by taking into account the definition of Jt in Lemma 4.13, we have

v − v

= argmin
q∈G

{
G(t, q) +

c(t)
2

∥∥∥∥q −
(

1
c(t)

M2(t)z +
1

c(t)
B∗y − B∗A(u + x) + B∗b − 1

c(t)
∇h2(z))

)∥∥∥∥2
}

− argmin
q∈G

{
G(t, q) +

c(t)
2

∥∥∥∥q −
(

1
c(t)

M2(t)z +
1

c(t)
B∗y − B∗A(u + x) + B∗b − 1

c(t)
∇h2(z))

)∥∥∥∥2
}

+ z − z

= Jt

(
1

c(t)
M2(t)z +

1
c(t)

B∗y − B∗A(u + x) + B∗b − 1
c(t)

∇h2(z))
)

− Jt

(
1

c(t)
M2(t)z +

1
c(t)

B∗y − B∗A(u + x) + B∗b − 1
c(t)

∇h2(z))
)
+ z − z.
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According to Lemma 4.13 and assumption (P), we have that Jt is c(t)
β -Lipschitz-continuous and

so it follows

∥v − v∥2 ≤ 2
∥∥∥∥Jt

(
1

c(t)
M2(t)z +

1
c(t)

B∗y − B∗A(u + x) + B∗b − 1
c(t)

∇h2(z))
)
−

Jt

(
1

c(t)
M2(t)z +

1
c(t)

B∗y − B∗A(u + x) + B∗b − 1
c(t)

∇h2(z))
)∥∥∥∥2

+ 2∥z − z∥2

≤ 2c2(t)
β2

∥∥∥∥ 1
c(t)

M2(t)(z − z) +
1

c(t)
B∗(y − y)− B∗A(u − u + x − x)

− 1
c(t)

(∇h2(z)−∇h2(z))
∥∥∥∥2

+ 2∥z − z∥2

≤ 2c2(t)
β2

(
4

c2(t)
∥M2(t)∥2∥z − z∥2 +

4
c2(t)

∥B∥2∥y − y∥2

+4∥B∥2∥A∥2∥u − u + x − x∥2 +
4

c2(t)
∥∇h2(z)−∇h2(z)∥2

)
+ 2∥z − z∥2

≤ 8
β2 ∥M2(t)∥2∥z − z∥2 +

8
β2 ∥B∥2∥y − y∥2 +

16c2(t)
β2 ∥B∥2∥A∥2∥u − u∥2

+
16c2(t)

β2 ∥B∥2∥A∥2∥x − x∥2 +
8
β2 ∥∇h2(z)−∇h2(z)∥2 + 2∥z − z∥2.

Using the Lh2-Lipschitz continuity of h2, we derive from the inequality above:

∥v − v∥2 ≤
(

8∥M2(t)∥2 + 8L2
h2

β2 + 2

)
∥z − z∥2 +

8
β2 ∥B∥2∥y − y∥2 +

16c2(t)
β2 ∥B∥2∥A∥2∥u − u∥2

+
16c2(t)

β2 ∥B∥2∥A∥2∥x − x∥2

≤
(

8∥M2(t)∥2 + 8L2
h2

β2 + 2

)
∥z − z∥2 +

8
β2 ∥B∥2∥y − y∥2

+
16c2(t)

β2 ∥B∥2∥A∥2

((
8∥M1(t)∥2 + 4L2

h1

σ2 + 3

)
∥x − x∥2 +

8∥A∥2

σ2 ∥y − y∥2

)
.

So, we have

∥v − v∥2 ≤ 16c2(t)
β2 ∥A∥2∥B∥2

(
8∥M1(t)∥2 + 4L2

h1

σ2 + 3

)
∥x − x∥2

+
8
β2 ∥B∥2

(
1 +

16c2(t)
σ2 ∥A∥4

)
∥y − y∥2 +

(
8∥M2(t)∥2 + 8L2

h2

β2 + 2

)
∥z − z∥2.
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Finally, using the inequalities from above, we get

∥w−w∥2

= ∥ − c(t)(A(u − u + x − x) + B(v − v + z − z))∥2

≤ 4c2(t)∥A∥2∥u − u∥2 + 4c2(t)∥A∥2∥x − x∥2 + 4c2(t)∥B∥2∥v − v∥2 + 4c2(t)∥B∥2∥z − z∥2

≤ 4c2(t)∥A∥2

(
3 +

8∥M1(t)∥2 + 4L2
h1

σ2 +
16c2(t)

β2 ∥B∥4

(
8∥M1(t)∥2 + 4L2

h1

σ2 + 3

))
∥x − x∥2

+ 4c2(t)∥B∥2

(
8∥M2(t)∥2 + 8L2

h2

β2 + 3

)
∥z − z∥2

+ 32c2(t)
(
∥B∥4

β2 +
16c2(t)

σ2β2 ∥A∥4∥B∥4 +
∥A∥4

σ2

)
∥y − y∥2.

Then, we have

∥Γ(t, x, z, y)− Γ(t, x, z, y)∥ ≤
√

L1(t)∥x − x∥2 + L2(t)∥z − z∥2 + L3(t)∥y − y∥2

≤
√

L1(t) + L2(t) + L3(t)
√
∥x − x∥2 + ∥z − z∥2 + ∥y − y∥2

= L(t)∥(x, z, y)− (x, z, y)∥,

with
L(t) =

√
L1(t) + L2(t) + L3(t)

and

L1(t) =
(

2 +
32
β2 ∥A∥2∥B∥2 + 8c2(t)∥A∥2

(
1 +

16c2(t)
β2 ∥B∥4

))(4∥M1(t)∥2 + 2L2
h1

σ2 + 1

)

L2(t) =2 +
8∥M2(t)∥2 + 8L2

h2

β2 + 4c2(t)∥B∥2

(
8∥M2(t)∥2 + 8L2

h2

β2 + 3

)

L3(t) =
8∥A∥2

σ2 +
8
β2 ∥B∥2

(
1 +

16c2(t)
σ2 ∥A∥4

)
+ 32c2(t)

(
∥B∥4

β2 +
16c2(t)

σ2β2 ∥A∥4∥B∥4 +
∥A∥4

σ2

)
.

So, it follows that Γ(t, ·, ·, ·) is L(t)-Lipschitz continuous. Since ∥M1∥, ∥M2∥ ∈ L1
loc([0,+∞))

and c(t) is bounded, it follows that L(·) ∈ L1
loc([0,+∞)).

(2) In this second part, we will prove that Γ(·, x, z, y) ∈ L1
loc([0,+∞),H× G ×K) for every

(x, z, y) ∈ H× G ×K. For a fixed (x, z, y) ∈ H× G ×K and T > 0, we have

∫ T

0
∥Γ(t, x, z, y)∥dt =

∫ T

0

√
∥u(t, x, z, y)∥2 + ∥v(t, x, z, y)∥2 + ∥w(t, x, z, y)∥2dt.

From Lemma 4.14 and the fact that σ > 0, for all t ∈ [0,+∞), we have

∥u(t, x, z, y)∥2 = ∥u(t, x, z, y)− u(0, x, z, y) + u(0, x, z, y)∥2

≤ 2∥u(t, x, z, y)− u(0, x, z, y)∥2 + 2∥u(0, x, z, y)∥2

≤ 2∥u(0, x, z, y)∥2

σ2 ∥M1(t)− M1(0)∥2 + 2∥u(0, x, z, y)∥2.
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From Lemma 4.14, the facts that σ > 0 and β > 0, and (x + y + z)2 ≤ 3x2 + 3y2 + 3z2

∀x, z, y ∈ R, for all t ∈ [0,+∞), we have

∥v(t, x, z, y)∥2 ≤ 2∥v(t, x, z, y)− v(0, x, z, y)∥2 + 2∥v(0, x, z, y)∥2

≤ 2
(

c(t)∥A∥∥B∥∥u(0, x, z, y)∥
σβ

∥M1(t)− M1(0)∥

+
∥v(0, x, z, y)∥

β
∥M2(t)− M2(0)∥+

∥w(0, x, z, y)∥ · ∥B∥
c0β

|c(t)− c0|
)2

+ 2∥v(0, x, z, y)∥2

≤ 6c2(t)∥A∥2∥B∥2∥u(0, x, z, y)∥2

σ2β2 ∥M1(t)− M1(0)∥2

+
6∥v(0, x, z, y)∥2

β2 ∥M2(t)− M2(0)∥2 +
6∥w(0, x, z, y)∥2 · ∥B∥2

c2
0β2

|c(t)− c0|2

+ 2∥v(0, x, z, y)∥2,

(where c0 = c(0)). Again using Lemma 4.14 and the inequalities above, we obtain

∥w(t, x, z, y)∥2 ≤ c2(t)∥b − A(u(t, x, z, y) + x)− B(v(t, x, z, y) + z))∥2

≤ 4c2(t)(∥b∥2 + ∥A∥2∥u(t, x, z, y)∥2 + ∥B∥2∥v(t, x, z, y)∥2 + ∥Ax − Bz∥2).

≤ 4c2(t)
(
∥b∥2 +

2∥A∥2∥u(0, x, z, y)∥2

σ2 ∥M1(t)− M1(0)∥2

+2∥A∥2∥u(0, x, z, y)∥2 +
6c2(t)∥A∥2∥B∥4∥u(0, x, z, y)∥2

σ2β2 ∥M1(t)− M1(0)∥2

+
6∥B∥2∥v(0, x, z, y)∥2

β2 ∥M2(t)− M2(0)∥2 +
6∥B∥4∥w(0, x, z, y)∥2

c2
0β2

|c(t)− c0|2

+2∥B∥2∥v(0, x, z, y)∥2 + ∥Ax − Bz∥2) .

Because ∥M1∥, ∥M2∥ ∈ L1
loc([0,+∞)) and c(t) is bounded, the integral∫ T

0
∥Γ(t, x, z, y)∥dt

exists and it is finite. So, we have, according to Proposition 1.2.2. in [73], that Γ(·, x, z, y) ∈
L1

loc([0,+∞),H×G ×K). The conclusion follows.

4.4 Convergence of the trajectories

In the beginning of this section, we will give some results, which we will use then to prove the
convergence of the trajectories of the dynamical system (4. 1).

Lemma 4.16. Let M : [0,+∞) → L(H), t → M(t), be differentiable at t0 ∈ [0,+∞) and x, y :
[0,+∞) → H be also differentiable at t0. Then, the real function t → ⟨M(t)x(t), y(t)⟩ is differentiable
at t0 and it yields

d
dt
⟨M(t)x(t), y(t)⟩|t=t0 = ⟨Ṁ(t0)x(t0), y(t0)⟩+ ⟨M(t0)ẋ(t0), y(t0)⟩+ ⟨M(t0)x(t0), ẏ(t0)⟩.

(4. 13)
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Proof. See [38, Lemma 4].

We start with a result where we show that under appropriate conditions the second deriva-
tives of the trajectories exist almost everywhere and give also an upper bound on their norms.
This will be used in the proof of the main result Theorem 4.22. Notice two differences with re-
spect to [38, Lemma 5]: in our case we do not evaluate ∥ÿ∥ on the left hand side of the inequality
and secondly, we have to take into account the time varying parameter c.

Lemma 4.17. Let assumption (P) hold true and the maps M1 : [0,+∞) → L(H) and M2 : [0,+∞) →
L(G) be locally absolutely continuous and differentiable almost everywhere. Furthermore, we assume
that c is locally absolutely continuous and

0 < inf
t≥0

c(t) ≤ sup
t≥0

c(t) < +∞.

For a given initial value (x0, z0, y0) ∈ H×G ×K, let (x, z, y) : [0,+∞) → H×G ×K be the unique
strong global solution of the dynamical system (4. 1). Then, (ẍ(t), z̈(t), ÿ(t)) exists for almost every
t ∈ [0,+∞). If we assume additionally that

sup
t≥0

∥M1(t)∥ < +∞ and sup
t≥0

∥M2(t)∥ < +∞,

then there exists L > 0 such that

∥ẍ(t)∥+ ∥z̈(t)∥ ≤ L(∥ẋ(t)∥+ ∥ż(t)∥+ ∥ẏ(t)∥+ ∥Ṁ1(t)∥∥ẋ(t)∥+ ∥Ṁ2(t)∥∥ż(t)∥+ |ċ(t)|∥ẏ(t)∥)

for almost every t ∈ [0,+∞).

Proof. In the following, we use the notation (4. 6) again. Let T > 0 and t, r ∈ [0, T] be fixed. So

∥Γ(t, U(t))− Γ(r, U(r))∥ ≤ ∥Γ(t, U(t))− Γ(t, U(r))∥+ ∥Γ(t, U(r)) + Γ(r, U(r))∥
≤ ∥u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r))∥+ ∥v(t, x(t), z(t), y(t))− v(t, x(r), z(r), y(r))∥
+ ∥w(t, x(t), z(t), y(t))− w(t, x(r), z(r), y(r))∥+ ∥u(t, x(r), z(r), y(r)− u(r, x(r), z(r), y(r))∥
+ ∥v(t, x(r), z(r), y(r))− v(r, x(r), z(r), y(r))∥+ ∥w(t, x(r), z(r), y(r))− w(r, x(r), z(r), y(r))∥.

We have

u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r)) =Kt(M1(t)x(t) + A∗y(t)−∇h1(x(t)))
− Kt(M1(t)x(r) + A∗y(r)−∇h1(x(r)))− x(t) + x(r)

and, due to Lemma 4.13 and the Lh1]-Lipschitz continuity of ∇h1, we get

∥u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r))∥

≤ 1
σ
∥M1(t)(x(t)− x(r)) + A∗(y(t)− y(r))− (∇h1(x(t))−∇h1(x(r)))∥+ ∥x(t)− x(r)∥

≤
(
∥M1(t)∥

σ
+

Lh1

σ
+ 1
)
∥x(t)− x(r)∥+ ∥A∥

σ
∥y(t)− y(r)∥.

Because t → ∥M1(t)∥ is bounded on [0, T], there exists L1 := L1(T) > 0 such that

∥u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r))∥ ≤ L1(∥x(t)− x(r)∥+ ∥y(t)− y(r)∥). (4. 14)
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Analogously, we have

v(t,x(t), z(t), y(t))− v(t, x(r), z(r), y(r))

=Jt

(
1

c(t)
M2(t)z(t) +

1
c(t)

B∗y(t)− B∗A(u(t, x(t), z(t), y(t)) + x(t)) + B∗b − 1
c(t)

∇h2(z(t))
)

− Jt

(
1

c(t)
M2(t)z(r) +

1
c(t)

B∗y(r)− B∗A(u(t, x(r), z(r), y(r)) + x(r)) + B∗b − 1
c(t)

∇h2(z(r))
)

− z(t) + z(r),

and again, according to Lemma 4.13 , the Lh2-Lipschitz continuity of ∇h2 and (4. 14), we get

∥v(t, x(t), z(t), y(t))− v(t, x(r), z(r), y(r))∥

≤ c(t)
β

∥∥∥∥ 1
c(t)

M2(t)(z(t)− z(r)) +
1

c(t)
B∗(y(t)− y(r))− B∗A(u(t, x(t), z(t), y(t))

−u(t, x(r), z(r), y(r)) + x(t)− x(r))− 1
c(t)

(∇h2(z(t))−∇h2(z(r)))
∥∥∥∥+ ∥z(t)− z(r)∥

≤ c(t)
β

∥A∥∥B∥(L1 + 1)∥x(t)− x(r)∥+
(
∥M2(t)∥

β
+

Lh2

β
+ 1
)
∥z(t)− z(r)∥

+
∥B∥

β
(1 + c(t)∥A∥L1)∥y(t)− y(r)∥.

Because t → ∥M2(t)∥ is bounded on [0, T], there exists L2 := L2(T) > 0 such that

∥v(t, x(t), z(t), y(t))− v(t, x(r), z(r), y(r))∥ ≤ L2(∥x(t)− x(r)∥+ ∥z(t)− z(r)∥+ ∥y(t)− y(r)∥).
(4. 15)

Using (4. 14) and (4. 15), we obtain

∥w(t, x(t), z(t), y(t))− w(t, x(r), z(r), y(r))∥
≤ c(t)∥A∥∥u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r) + x(t)− x(r))∥
+ c(t)∥B∥∥v(t, x(t), z(t), y(t))− v(t, x(r), z(r), y(r)) + z(t)− z(r)∥

≤ c(t)(∥A∥L1 + ∥B∥L2 + ∥A∥)∥x(t)− x(r)∥+ c(t)(∥B∥L2 + ∥B∥)∥z(t)− z(r)∥
+ c(t)(∥A∥L1 + ∥B∥L2)∥y(t)− y(r)∥.

So, there exists L3(T) := L3 := supt∈[0,T] c(t)(∥A∥L1 + ∥B∥L2 + ∥A∥+ ∥B∥) > 0 such that

∥w(t, x(t), z(t), y(t))−w(t, x(r), z(r), y(r))∥ ≤ L3(∥x(t)− x(r)∥+ ∥z(t)− z(r)∥+ ∥y(t)− y(r)∥).
(4. 16)

Using Lemma 4.14(i), we obtain

∥u(t, x(r), z(r), y(r))− u(r, x(r), z(r), y(r))∥ = ∥R(x(r),z(r),y(r))(t)− R(x(r),z(r),y(r))(r)∥

≤
∥R(x(r),z(r),y(r))(r)∥

σ
∥M1(t)− M1(r)∥. (4. 17)

Due to the Lipschitz continuity of Kr and ∇h1 (see Lemma 4.13) and the fact that x, z, y and M1
are absolutely continuous on [0, T], the map

r 7→ R(x(r),z(r),y(r))(r) = Kr(M1(r)x(r) + A∗y(r)−∇h1(x(r)))− x(r)
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is bounded in [0, T]. Therefore, there exists L4 := L4(T) > 0 such that

∥u(t, x(r), z(r), y(r))− u(r, x(r), z(r), y(r))∥ ≤ L4∥M1(t)− M1(r)∥. (4. 18)

In an analog way, using Lemma 4.14 (ii), we get

∥v(t, x(r), z(r), y(r))− v(r, x(r), z(r), y(r))∥ = ∥Q(x(r),z(r),y(r))(t)− Q(x(r),z(r),y(r))(r)∥

≤
c(t)∥A∥∥B∥∥R(x(r),z(r),y(r))(r)∥

σβ
∥M1(t)− M1(r)∥+

∥Q(x(r),z(r),y(r))(r)∥
β

∥M2(t)− M2(r)∥

+
∥P(x(r),z(r),y(r))(r)∥ · ∥B∥

c(r)β
|c(t)− c(r)|. (4. 19)

Using the same arguments about the Lipschitz continuity of Jr and ∇h2 as above (see again
Lemma 4.13) and the fact that x, z, y and M2 are absolutely continuous on [0, T] and c is bounded,
the maps

r 7→ Q(x(r),z(r),y(r))(r) =Jr

(
M2(r)
c(r)

z(r) +
B∗

c(r)
y(r)− B∗A(u(r, x(r), z(r), y(r) + x(r))

+B∗b − 1
c(r)

∇h2(z(r))
)
− z(r)

and

r 7→ P(x(r),z(r),y(r))(r) = c(r)
(

b − A(R(x(r),z(r),y(r))(r) + x(r))− B(Q(x(r),z(r),y(r))(r) + z(r)
)

are bounded in [0, T]. Therefore, there exists L5 := L5(T) > 0 such that

∥v(t, x(r), z(r), y(r))− v(r, x(r), z(r), y(r))∥ ≤ L5(∥M1(t)− M1(r)∥+ ∥M2(t)− M2(r)∥
+ |c(t)− c(r)|). (4. 20)

Furthermore, we have

∥w(t, x(r), z(r), y(r))− w(r, x(r), z(r), y(r))∥
≤ ∥(c(t)− c(r))b − (c(t)− c(r))Ax(r)− (c(t)− c(r))Bz(r)− A(c(t)(u(t, x(r), z(r), y(r))
− c(r)(u(r, x(r), z(r), y(r))))− B(c(t)(v(t, x(r), z(r), y(r))− c(r)(v(r, x(r), z(r), y(r))))∥

≤ ∥b∥|c(t)− c(r)|+ ∥A∥∥x(r)∥|c(t)− c(r)|+ ∥B∥∥z(r)∥|c(t)− c(r)|
+ ∥A(c(t)u(t, x(r), z(r), y(r)− c(r)u(r, x(r), z(r), y(r)))∥
+ ∥B(c(t)v(t, x(r), z(r), y(r)− c(r)v(r, x(r), z(r), y(r)))∥

and futher

∥w(t, x(r), z(r), y(r))− w(r, x(r), z(r), y(r))∥
≤ (∥b∥+ ∥A∥∥x(r)∥+ ∥B∥∥z(r)∥)|c(t)− c(r)|
+ ∥A∥(∥c(t)u(t, x(r), z(r), y(r)− c(r)u(t, x(r), z(r), y(r))∥
+ ∥A∥∥c(r)u(t, x(r), z(r), y(r)− c(r)u(r, x(r), z(r), y(r))∥)
+ ∥B∥∥c(t)v(t, x(r), z(r), y(r)− c(r)v(t, x(r), z(r), y(r))∥
+ ∥B∥∥c(r)v(t, x(r), z(r), y(r)− c(r)v(r, x(r), z(r), y(r))∥

≤ (∥b∥+ ∥A∥∥x(r)∥+ ∥B∥∥z(r)∥+ ∥A∥∥(u(t, x(r), z(r), y(r))∥
+ ∥B∥∥v(t, x(r), z(r), y(r))∥)|c(t)− c(r)|
+ c(r)∥A∥∥u(t, x(r), z(r), y(r)− u(r, x(r), z(r), y(r))∥
+ c(r)∥B∥∥v(t, x(r), z(r), y(r)− v(r, x(r), z(r), y(r))∥.
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Using (4. 17) and (4. 19), we obtain

∥w(t, x(r), z(r), y(r))− w(r, x(r), z(r), y(r))∥
≤ (∥b∥+ ∥A∥∥x(r)∥+ ∥B∥∥z(r)∥+ ∥A∥∥(u(t, x(r), z(r), y(r))∥
+ ∥B∥∥v(t, x(r), z(r), y(r))∥+ c(r)∥B∥L5)|c(t)− c(r)|
+ c(r)(∥A∥L4 + ∥B∥L5)∥M1(t)− M1(r)∥+ c(r)∥B∥L5∥M2(t)− M2(r)∥.

So, there exists L6 := L6(T) = supr∈[0,T](∥b∥+ ∥A∥∥x(r)∥+ ∥B∥∥z(r)∥+ ∥A∥∥(u(t, x(r), z(r), y(r))∥+
∥B∥∥v(t, x(r), z(r), y(r))∥+ c(r)∥A∥L4 + c(r)∥B∥L5) > 0 such that

∥w(t, x(r), z(r), y(r))− w(r, x(r), z(r), y(r))∥
≤ L6(∥M1(t)− M1(r)∥+ ∥M2(t)− M2(r)∥+ |c(t)− c(r)|). (4. 21)

When we sum the relations (4. 14), (4. 15), (4. 16), (4. 18), (4. 20), and (4. 21), we get that
there exists L7 := L7(T) > 0 such that

∥Γ(t, U(t))− Γ(r, U(r))∥ ≤ L7(∥x(t)− x(r)∥+ ∥z(t)− z(r)∥+ ∥y(t)− y(r)∥
+ ∥M1(t)− M1(r)∥+ ∥M2(t)− M2(r)∥+ |c(t)− c(r)|).

Let ϵ > 0. Due to the absolute continuity of the maps x, z, y, M1, M2 and c on [0, T], there exists
η > 0 such that for any finite family of intervals Ik = (ak, bk) ⊆ [0, T] and for any subfamily of
disjoint intervals Ij with ∑j |bj − aj| < η holds

∑
j
∥x(bj)− x(aj)∥ <

ϵ

6L7
, ∑

j
∥z(bj)− z(aj)∥ <

ϵ

6L7
, ∑

j
∥y(bj)− y(aj)∥ <

ϵ

6L7
,

∑
j
∥M1(bj)− M1(aj)∥ <

ϵ

6L7
, ∑

j
∥M2(bj)− M2(aj)∥ <

ϵ

6L7
and ∑

j
|c(bj)− c(aj)| <

ϵ

6L7
.

So, we have

∑
j
∥Γ(bj, U(bj))− Γ(aj, U(aj))∥ < ϵ,

and therefore t → Γ(t, U(t)) is absolutely continuous on [0, T]. Since U̇(t) = Γ(U(t), t) for
almost every t ∈ [0,+∞), we can extend U̇(t) to a locally absolutely continuous function on
[0,+∞) by setting U̇(t) = Γ(U(t), t) for t ∈ [0,+∞). It follows that the second order derivatives
ẍ, z̈, ÿ exist almost everywhere on [0,+∞).
To prove the second statement, we assume that

sup
t≥0

∥M1(t)∥ < +∞ and sup
t≥0

∥M2(t)∥ < +∞.

Note that c(t) is bounded for all t ∈ [0,+∞). Then, L1, L2, and L3 can be taken as being global
constants, so that (4. 14), (4. 15) and (4. 16) hold for every t, r ∈ [0,+∞).

Because R(x(r),z(r),y(r)(r) = ẋ(r), Q(x(r),z(r),y(r)(r) = ż(r), and P(x(r),z(r),y(r)(r) = ẏ(r) for every
r ∈ [0,+∞) and taking into account (4. 17) and (4. 19), we get

∥u(t, x(r), z(r), y(r))− u(r, x(r), z(r), y(r))∥ ≤ ∥ẋ(r)∥
σ

∥M1(t)− M1(r)∥. (4. 22)
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and

∥v(t, x(r), z(r), y(r))− v(r, x(r),z(r), y(r))∥

≤ c(t)∥A∥∥B∥∥ẋ(r)∥
σβ

∥M1(t)− M1(r)∥

+
∥ż(r)∥

β
∥M2(t)− M2(r)∥+

∥ẏ(r)∥ · ∥B∥
βc(r)

|c(t)− c(r)|

(4. 23)

for every t, r ∈ [0,+∞). It holds

∥ẋ(t)− ẋ(r)∥+ ∥ż(t)− ż(r)∥
= ∥u(t, x(t), z(t), y(t))− u(r, x(r), z(r), y(r))∥+ ∥v(t, x(t), z(t), y(t))− v(r, x(r), z(r), y(r))∥
≤ ∥u(t, x(t), z(t), y(t))− u(t, x(r), z(r), y(r))∥+ ∥u(t, x(r), z(r), y(r))− u(r, x(r), z(r), y(r))∥
+ ∥v(t, x(t), z(t), y(t))− v(t, x(r), z(r), y(r))∥+ ∥v(t, x(r), z(r), y(r))− v(r, x(r), z(r), y(r))∥.

So, it follows from (4. 14), (4. 15), (4. 22) and (4. 23) that there exists L > 0 such that

∥ẋ(t)− ẋ(r)∥+ ∥ż(t)− ż(r)∥ ≤L(∥x(t)− x(r)∥+ ∥z(t)− z(r)∥+ ∥y(t)− y(r)∥
+ ∥ẋ(r)∥∥M1(t)− M1(r)∥+ ∥ż(r)∥∥M2(t)− M2(r)∥
+ ∥ẏ(r)∥|c(t)− c(r)|)

for every t, r ∈ [0,+∞). Now, we fix r ∈ [0,+∞) such that ẍ(r), z̈(r), Ṁ1(r), Ṁ2(r) exist and
consider the above inequality for t = r + h for some h > 0 and obtain

∥ẋ(r + h)− ẋ(r)∥+ ∥ż(r + h)− ż(r)∥
≤ L(∥x(r + h)− x(r)∥+ ∥z(r + h)− z(r)∥+ ∥y(r + h)− y(r)∥)
+ L(∥ẋ(r)∥∥M1(r + h)− M1(r)∥+ ∥ż(r)∥∥M2(r + h)− M2(r)∥
+ ∥ẏ(r)∥|c(r + h)− c(r)|).

Finally, we divide the inequality above by h and let h → 0. We get

∥ẍ(r)∥+ ∥z̈(r)∥ ≤ L(∥ẋ(r)∥+ ∥ż(r)∥+ ∥ẏ(r)∥+ ∥ẋ(r)∥∥Ṁ1(r)∥+ ∥ż(r)∥∥Ṁ2(r)∥+ ∥ẏ(r)∥|ċ(r)|)

and the proof is complete.

In the following, we recall two results which we need for the asymptotic analysis (see [2,
Lemma 5.1] and [2, Lemma 5.2]).

Lemma 4.18. Assume that u : [0,+∞) → R is locally absolutely continuous and bounded from below
and that there exists v ∈ L1([0,+∞), R) with the property that for almost every t ∈ [0,+∞)

d
dt

u(t) ≤ v(t).

Then, there exists lim
t→+∞

u(t) ∈ R.

Lemma 4.19. Assume that 1 ≤ p < ∞, 1 ≤ r ≤ ∞, u : [0,+∞) → [0,+∞) is locally absolutely
continuous, u ∈ Lp([0,+∞), R), v : [0,+∞) → R, v ∈ Lr([0,+∞), R) and for almost every
t ∈ [0,+∞)

d
dt

u(t) ≤ v(t).

Then, lim
t→+∞

u(t) = 0.
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Definition 4.20. The map M : [0,+∞) → S+(H) is said to be monotonically decreasing if it
satisfies M(t1) ≽ M(t2) for every t1, t2 ∈ [0,+∞) with t1 ≤ t2.

Lemma 4.21. For a α > 0 let the map M : [0,+∞) → Pα(H) be monotonically decreasing. Then,
there exists M ∈ Pα(H) such that for every z ∈ H it holds that

lim
t→+∞

M(t)z = Mz.

Proof. See [[38], proof of Lemma 8].

Theorem 4.22. In the context of optimization problem (3. 5), suppose that the set of saddle points of the
Lagrangian L is nonempty. Let the maps maps M1 : [0,+∞) → L(H) and M2 : [0,+∞) → L(G)
be locally absolutely continuous, differentiable almost everywhere and monotonically decreasing in the
sense of the Loewner partial ordering defined in (2. 4),

M1(t)−
Lh1

4
I ∈ S+(H),

M2(t)−
Lh2

4
I ∈ S+(G) ∀t ∈ [0,+∞),

and
ess supt≥0 ∥Ṁ1(t)∥ < +∞ and ess supt≥0 ∥Ṁ2(t)∥ < +∞.

Furthermore, we assume that for 0 < ϵ < σ
2∥A∥2 , the function

c : [0,+∞) →
[

ϵ,
σ

∥A∥2 − ϵ

]
is monotonically decreasing and Lipschitz continuous. If c(t) is a constant function, namely c(t) = c
for all t ∈ [0,+∞), then it is enough to assume that ϵ ≤ c ≤ 2σ

∥A∥2 − ϵ. For an arbitrary initial value
(x0, z0, y0) ∈ H× G ×K, let (x, z, y) : [0,+∞) → H× G ×K be the unique strong global solution
of the dynamical system (4. 1). If one of the following assumptions is satisfied:

1. there exists α > 0 such that M2(t)−
Lh2
4 I ∈ Pα(G) for every t ∈ [0,+∞)

2. there exists β > 0 such that B∗B ∈ Pβ(G);
then for t → +∞, the trajectory (x(t), z(t), y(t)) converges weakly to a saddle point of L.

In the proof of the theorem, we will construct a Lyapunov function to show the conver-
gence of the trajectories. Lyapunov functions are used to gain knowledge about the stability of
dynamical systems. For deeper insight in the Lyapunov analysis, we refer the reader to [94]. In
the following, we will give the definition of the Lyapunov function. For this, we consider the
dynamical system of the form

u̇(t) ∈ Γ(t, u(t))
u(s) = us ∈ X

(4. 24)

with X = H×G ×K, s ∈ [0,+∞), u : [s,+∞) → X and Γ defined as in Remark 4.9. Given s, us

and u(t) such that (4. 24) holds, we write

S(t, s, us) = u(t).

It is clear by Theorem 4.15 that S(t, s, us) is uniquely determined. We call

S : {(t, s) ∈ [0, ∞)2 : t ≥ s} × X → X

the propagator associated to (4. 24).
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Definition 4.23. Let v0 : [0,+∞) → [0,+∞) and v1 : [0,+∞) → [0,+∞) be continuous, strictly
increasing functions such that v0(0) = 0 and v1(0) = 0, respectively. Let u∗ ∈ X . A strict Lya-
punov function of the dynamical system (4. 24) is a continuous function V : X × R → [0,+∞),
which is

• strictly positive definite , i.e. it holds that V(u, t) ≥ v0(∥u − u∗∥) ≥ 0 for all (u, t) ∈
H× R,

• decrescent , i.e. it holds that V(u, t) ≤ v1(∥u − u∗∥) for all (u, t) ∈ H× R,

and, furthermore, it holds that

V̇(u, t) := lim sup
τ→0+

V(S(t + τ, t, u), t + τ)− V(u, t)
τ

is negative definite, i.e.,
− V̇(u, t) ≥ v(∥u − u∗∥) ≥ 0, (4. 25)

where v : [0,+∞) → [0,+∞) is a continuous and positive definite function, i.e., v(0) = 0, and
v(s) > 0 for all s > 0. If v : [0,+∞) → [0,+∞) is only continuous and positive semi-definite,
i.e., v(s) ≥ 0 for all s ≥ 0 the Lyapunov function V(u, t) is said to be non-strict.

In the theorem above, we have a result which states the asymptotic convergence of the
trajectories generated by the dynamical system (4. 1) to a saddle point of the Lagrangian of the
problem (3. 5). To show this convergence, we will use a Lyapunov function V(x, z, y, t), which
is given by

V(x, z, y, t) =(2σc(t)− c2(t)∥A∥2)∥x − x∗∥2 + ∥x − x∗∥2
c(t)M1(t)

+ ∥z − z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y − y∗∥2,

which fulfills Definition 4.23: If c(t) is not constant, we have that

ϵ(σ + ϵ∥A∥2) ≤ c(t)(2σ − c(t)∥A∥2) ≤ (σ/∥A∥2 − ϵ)(2σ − ϵ∥A∥2) ∀t ∈ [0,+∞).

So, we can choose, if c(t) is not constant,

v1(r) = ((σ/∥A∥2 − ϵ)(2σ − ϵ∥A∥2) + c(0)∥M1(0)∥+ c(0)∥M2(0)∥+ c2(0)∥B∥2 + 1)r2

and, if c(t) is a constant function c(t) = c for all t ∈ [0,+∞), we choose

v1(r) = (2σc − c2∥A∥2 + c∥M1(0)∥+ c∥M2(0)∥+ c∥B∥2 + 1)r2

Further, if assumption 1 of Theorem 4.22 is not fulfilled, we set α = 0, if assumption 2 is not
fulfilled, we set β = 0. Then, we can choose, if c(t) is not constant

v0(r) = (ϵ(σ + ϵ∥A∥2) + α + β + 1)r2

and, if c(t) is a constant function c(t) = c for all t ∈ [0,+∞), we choose

v0(r) = ((2σc − c2∥A∥2) + α + β + 1)r2.
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We have from inequality (4. 33), if Lh1 > 0 and Lh2 > 0, from inequality (4. 39), if Lh1 = 0 and
Lh2 > 0, from inequality (4. 40), if Lh1 > 0 and Lh2 = 0, and from inequality (4. 41), if Lh1 = 0
and Lh2 = 0, that

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
≤ 0,

which means that V̇(x, t) is negative semi-definite. So, we have that V(x, z, y, t) is a non-strict
Lyapunov function. Now, we proof Theorem 4.22.

Proof of Theorem 4.22. We need an appropriate energy functional in order to conclude. This
will be accomplished in (4. 33) below. Let (x∗, z∗, y∗) ∈ H × G × K be a saddle point of the
Lagrangian L. Then, it fulfills the system of the optimality conditions

A∗y∗ −∇h1(x∗) ∈ ∂ f (x∗)
B∗y∗ −∇h2(z∗) ∈ ∂g(z∗)
Ax∗ + Bz∗ = b.

From (4. 3), we have for almost every t ∈ [0,+∞)

−M1(t)ẋ(t) + A∗y(t)−∇h1(x(t)) ∈ ∂ f (ẋ(t) + x(t)),

and, due to the strong monotonicity of ∂ f , which follows from Proposition 2.22 (ii), we have

⟨−M1(t)ẋ(t)+ A∗(y(t)− y∗)− (∇h1(x(t))−∇h1(x∗)), ẋ(t)+ x(t)− x∗⟩ ≥ σ∥ẋ(t)+ x(t)− x∗∥2.
(4. 26)

In an analog way, according to (4. 4), we have for almost every t ∈ [0,+∞)

− c(t)B∗B(ż(t) + z(t))− M2(t)(ż(t)) + B∗y(t)− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b −∇h2(z(t))
∈ ∂g(ż(t) + z(t)),

and, by taking into account the monotonicity of ∂g, we have

⟨−c(t)B∗B(ż(t) + z(t))− M2(t)(ż(t)) + B∗(y(t)− y∗)− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b
− (∇h2(z(t))−∇h2(z∗)), ż(t) + z(t)− z∗⟩ ≥ 0. (4. 27)

We use the optimality condition Ax∗ + Bz∗ = b and the last equation of (4. 1) to obtain for
almost every t ∈ [0,+∞)

⟨A∗(y(t)− y∗), ẋ(t) + x(t)− x∗⟩+ ⟨B∗(y(t)− y∗), ż(t) + z(t)− z∗⟩
= −⟨y(t)− y∗,−A(ẋ(t) + x(t)) + Ax∗ − B(ż(t) + z(t)) + Bz∗⟩
= −⟨y(t)− y∗,−A(ẋ(t) + x(t))− B(ż(t) + z(t)) + b⟩

= − 1
c(t)

⟨y(t)− y∗, ẏ(t)⟩ = − 1
2c(t)

d
dt

∥y(t)− y∗∥2. (4. 28)

Suppose that Lh1 > 0 and Lh2 > 0. Due to the Baillon-Haddad Theorem 2.20, we know that
the gradients of h1 and h2 are L−1

1 - and L−1
2 -cocoercive, respectively, we have for almost every
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t ∈ [0,+∞)

⟨−(∇h1(x(t))−∇h1(x∗)), ẋ(t) + x(t)− x∗⟩
= −⟨∇h1(x(t))−∇h1(x∗), x(t)− x∗⟩ − ⟨∇h1(x(t))−∇h1(x∗), ẋ(t)⟩

≤ − 1
Lh1

∥∇h1(x(t))−∇h1(x∗)∥2 − ⟨∇h1(x(t))−∇h1(x∗), ẋ(t)⟩

= − 1
Lh1

(∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

−
L2

h1

4
∥ẋ(t)∥2

)
(4. 29)

and, respectively

⟨−(∇h2(z(t))−∇h2(z∗)), ż(t) + z(t)− z∗⟩

= − 1
Lh2

(∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

−
L2

h2

4
∥ż(t)∥2

)
. (4. 30)

If we sum (4. 26) and (4. 27) and take into account (4. 28), (4. 29), and (4. 30), we get for almost
every t ∈ [0,+∞)

0 ≤⟨−M1(t)ẋ(t), ẋ(t) + x(t)− x∗⟩+ ⟨−c(t)B∗B(ż(t) + z(t))− M2(t)(ż(t))

− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b, ż(t) + z(t)− z∗⟩ − 1
2c(t)

d
dt

∥y(t)− y∗∥2

− 1
Lh1

(∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

−
L2

h1

4
∥ẋ(t)∥2

)

− 1
Lh2

(∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

−
L2

h2

4
∥ż(t)∥2

)
− σ∥ẋ(t) + x(t)− x∗∥2.

(4. 31)

Furthermore, we have for almost every t ∈ [0,+∞) (use also the last equality for ẏ in (4. 1)):

⟨−c(t)B∗B(ż(t) + z(t))− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b, ż(t) + z(t)− z∗⟩

= − 1
c(t)

⟨ẏ(t),−c(t)B(ż(t) + z(t)− z∗)⟩

= − 1
c(t)

[
1
2
∥ẏ(t)∥2 +

1
2
∥c(t)B(ż(t) + z(t)− z∗)∥2 − 1

2
∥ẏ(t) + c(t)B(ż(t) + z(t)− z∗)∥2

]
= − 1

c(t)

[
1
2
∥ẏ(t)∥2 +

1
2

c2(t)
[
∥B(z(t)− z∗)∥2 + ∥Bż(t)∥2 + 2⟨ż(t), B∗B(z(t)− z∗)⟩

]
−1

2
∥c(t)(b − A(x(t) + ẋ(t))− Bz∗)∥2

]
= − 1

c(t)

[
1
2
∥ẏ(t)∥2 +

1
2

c2(t)
[
∥Bz(t)− Bz∗∥2 + ∥Bż(t)∥2 +

d
dt

∥Bz(t)− Bz∗∥2
]

−1
2
∥c(t)(−A(x(t) + ẋ(t)) + Ax∗)∥2

]
,
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Using the last equation, we obtain for almost every t ∈ [0,+∞)

⟨−c(t)B∗B(ż(t) + z(t))− c(t)B∗A(ẋ(t) + x(t)) + c(t)B∗b, ż(t) + z(t)− z∗⟩ − σ∥ẋ(t) + x(t)− x∗∥2

≤ − 1
c(t)

[
1
2
∥ẏ(t)∥2 +

1
2

c2(t)
[
∥Bz(t)− Bz∗∥2 + ∥Bż(t)∥2 +

d
dt

∥Bz(t)− Bz∗∥2
]]

+

(
1
2

c(t)∥A∥2 − σ

)
∥ẋ(t) + x(t)− x∗∥2

≤ − 1
2c(t)

∥ẏ(t)∥2 − c(t)
2

∥Bz(t)− Bz∗∥2 − c(t)
2

∥Bż(t)∥2 − c(t)
2

d
dt

∥Bz(t)− Bz∗∥2

+

(
1
2

c(t)∥A∥2 − σ

)(
∥x(t)− x∗∥2 + ∥ẋ(t)∥2 +

d
dt

∥x(t)− x∗∥2
)

. (4. 32)

We use Lemma 4.16 to observe that for almost every t ∈ [0,+∞), it holds

⟨−M1(t)ẋ(t),ẋ(t) + x(t)− x∗⟩
= −∥ẋ(t)∥2

M1(t) − ⟨M1(t)ẋ(t), x(t)− x∗⟩

= −∥ẋ(t)∥2
M1(t) −

1
2
⟨M1(t)ẋ(t), x(t)− x∗⟩ − 1

2
⟨ẋ(t), M1(t)(x(t)− x∗)⟩

= −∥ẋ(t)∥2
M1(t) +

1
2
⟨Ṁ1(t)(x(t)− x∗), x(t)− x∗⟩ − 1

2
d
dt

∥x(t)− x∗∥2
M1(t)

and

⟨−M2(t)ż(t),ż(t) + z(t)− z∗⟩
= −∥ż(t)∥2

M2(t) − ⟨M2(t)ż(t), z(t)− z∗⟩

= −∥ż(t)∥2
M2(t) −

1
2
⟨M2(t)ż(t), z(t)− z∗⟩ − 1

2
⟨ż(t), M2(t)(z(t)− z∗)⟩

= −∥ż(t)∥2
M2(t) +

1
2
⟨Ṁ2(t)(z(t)− z∗), z(t)− z∗ − 1

2
d
dt

∥z(t)− z∗∥2
M2(t).

By inserting the last two identities and (4. 32) to (4. 31), we get for almost every t ∈ [0,+∞)

0 ≤ − 1
2c(t)

∥ẏ(t)∥2 − c(t)
2

∥Bż(t)∥2 −
(

σ − 1
2

c(t)∥A∥2
)
(∥x(t)− x∗∥2 + ∥ẋ(t)∥2)

− c(t)
2

∥Bz(t)− Bz∗∥2 − 1
2

(
(2σ − c(t)∥A∥2)

d
dt

∥x(t)− x∗∥2 +
d
dt

∥x(t)− x∗∥2
M1(t)

+c(t)
d
dt

∥Bz(t)− Bz∗∥2 +
d
dt

∥z(t)− z∗∥2
M2(t) +

1
c(t)

d
dt

∥y(t)− y∗∥2
)
− ∥ẋ(t)∥2

M1(t)

+
1
2
⟨Ṁ1(t)(x(t)− x∗), x(t)− x∗⟩ − ∥ż(t)∥2

M2(t) +
1
2
⟨Ṁ2(t)(z(t)− z∗), z(t)− z∗⟩

− 1
Lh1

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

+
Lh1

4
∥ẋ(t)∥2

− 1
Lh2

∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

+
Lh2

4
∥ż(t)∥2.



4.4. Convergence of the trajectories 67

Taking into account that

− 1
2

(
(2σ − c(t)∥A∥2)

d
dt

∥x(t)− x∗∥2 +
d
dt

∥x(t)− x∗∥2
M1(t) + c(t)

d
dt

∥Bz(t)− Bz∗∥2

+
d
dt

∥z(t)− z∗∥2
M2(t) +

1
c(t)

d
dt

∥y(t)− y∗∥2
)

=− 1
2c(t)

(
d
dt

((2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2)− (2ċ(t)σ − 2c(t)ċ(t)∥A∥2)∥x(t)− x∗∥2

+
d
dt

(c(t)∥x(t)− x∗∥2
M1(t))− ċ(t)∥x(t)− x∗∥2

M1(t) +
d
dt

(c2(t)∥Bz(t)− Bz∗∥2)

−2c(t)ċ(t)∥Bz(t)− Bz∗∥2 +
d
dt

(c(t)∥z(t)− z∗∥2
M2(t))− ċ(t)∥z(t)− z∗∥2

M2(t) +
d
dt

∥y(t)− y∗∥2
)

=− 1
2c(t)

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+

ċ(t)
2c(t)

(
2(σ − c(t)∥A∥2)∥x(t)− x∗∥2

+∥x(t)− x∗∥2
M1(t) + 2c(t)∥Bz(t)− Bz∗∥2 + ∥z(t)− z∗∥2

M2(t)

)
,

we obtain for almost every t ∈ [0,+∞) that

0 ≤ − 1
2c(t)

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+

ċ(t)
2c(t)

(
2(σ − c(t)∥A∥2)∥x(t)− x∗∥2

+∥x(t)− x∗∥2
M1(t) + 2c(t)∥Bz(t)− Bz∗∥2 + ∥z(t)− z∗∥2

M2(t)

)
− 1

2c(t)
∥ẏ(t)∥2 − c(t)

2
∥Bż(t)∥2 −

(
σ − 1

2
c(t)∥A∥2

)
(∥x(t)− x∗∥2 + ∥ẋ(t)∥2)

− c(t)
2

∥Bz(t)− Bz∗∥2 − ∥ẋ(t)∥2
M1(t) +

1
2
⟨Ṁ1(t)(x(t)− x∗), x(t)− x∗⟩

− ∥ż(t)∥2
M2(t) +

1
2
⟨Ṁ2(t)(z(t)− z∗), z(t)− z∗⟩ − 1

Lh1

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

+
Lh1

4
∥ẋ(t)∥2 − 1

Lh2

∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

+
Lh2

4
∥ż(t)∥2.

Since ċ(t) ≤ 0, 0 < c(t) ≤ σ
∥A∥2 , if c(t) is not constant (if c(t) is constant we have ċ(t) = 0) and

⟨Ṁ1(t)(x(t)− x∗), x(t)− x∗⟩ ≤ 0 and ⟨Ṁ2(t)(z(t)− z∗), z(t)− z∗⟩ ≤ 0 (which follows easily
from Definition 4.1 and the decreasing property of M1 and M2), we have for almost every
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t ∈ [0,+∞)

0 ≥ 1
2

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+ c(t)∥ẋ(t)∥2

M1(t)−
Lh1

4 I
+ c(t)

(
σ − 1

2
c(t)∥A∥2

)
∥ẋ(t)∥2 + c(t)∥ż(t)∥2

M2(t)+
c(t)

2 B∗B−
Lh2

4 I

+
1
2
∥ẏ(t)∥2 + c(t)

(
σ − 1

2
c(t)∥A∥2

)
∥x(t)− x∗∥2 +

c2(t)
2

∥Bz(t)− Bz∗∥2

+
c(t)
Lh1

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

+
c(t)
Lh2

∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

.

For c := ϵ and c := 2σ
∥A∥2 − ϵ, we have

0 ≥ 1
2

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+ c∥ẋ(t)∥2

M1(t)−
Lh1

4 I
+ c

(
σ − 1

2
c∥A∥2

)
∥ẋ(t)∥2 + c∥ż(t)∥2

M2(t)+
c(t)

2 B∗B−
Lh2

4 I
+

1
2
∥ẏ(t)∥2

+ c
(

σ − 1
2

c∥A∥2
)
∥x(t)− x∗∥2 +

c2

2
∥Bz(t)− Bz∗∥2

+
c

Lh1

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

+
c

Lh2

∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

.

(4. 33)

From Lemma 4.18, we have

∃ lim
t→+∞

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
∈ R. (4. 34)

Let T > 0. If we integrate (4. 33) on the interval [0, T], we get

1
2

(
(2σc(T)− c2(T)∥A∥2)∥x(T)− x∗∥2 + ∥x(T)− x∗∥2

c(T)M1(T)

+∥z(T)− z∗∥2
c(T)M2(T)+c2(T)B∗B + ∥y(T)− y∗∥2

)
+ c

∫ T

0
∥ẋ(t)∥2

M1(t)−
Lh1

4 I
dt + c

(
σ − 1

2
c∥A∥2

) ∫ T

0
∥ẋ(t)∥2dt + c

∫ T

0
∥ż(t)∥2

M2(t)+
c(t)

2 B∗B−
Lh2

4 I
dt

+
1
2

∫ T

0
∥ẏ(t)∥2dt + c

(
σ − 1

2
c∥A∥2

) ∫ T

0
∥x(t)− x∗∥2dt +

c2

2

∫ T

0
∥Bz(t)− Bz∗∥2dt

+
c

Lh1

∫ T

0

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

dt +
c

Lh2

∫ T

0

∥∥∥∥∇h2(z(t)) +∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

dt

≤ 1
2

(
(2σc(0)− c2(0)∥A∥2)∥x0 − x∗∥2 + ∥x0 − x∗∥2

c(0)M1(0)

+∥z0 − z∗∥2
c(0)M2(0)+c2(0)B∗B + ∥y0 − y∗∥2

)
.



4.4. Convergence of the trajectories 69

Letting T converge to +∞, we have

∥ẋ(·)∥2

M1(·)−
Lh1

4 I
∈ L1([0,+∞), R), ∥ẋ(·)∥2 ∈ L1([0,+∞), R), (4. 35)

∥ż(·)∥2

M2(·)+ c(·)
2 B∗B−

Lh2
4 I

∈ L1([0,+∞), R), (4. 36)

ẏ(·) ∈ L2([0,+∞),K), (4. 37)

x(·)− x∗ ∈ L2([0,+∞),H), Bz(·)− Bz∗ ∈ L2([0,+∞),H). (4. 38)

In the case, when Lh1 = 0 and Lh2 > 0, we have that ∇h1 is constant and, instead of (4. 33), we
have for almost every t ∈ [0,+∞)

0 ≥ 1
2

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+ c∥ẋ(t)∥2

M1(t) + c
(

σ − 1
2

c∥A∥2
)
∥ẋ(t)∥2 + c∥ż(t)∥2

M2(t)+
c(t)

2 B∗B−
Lh2

4 I
+

1
2
∥ẏ(t)∥2

+ c
(

σ − 1
2

c∥A∥2
)
∥x(t)− x∗∥2 +

c2

2
∥Bz(t)− Bz∗∥2

+
c

Lh2

∥∥∥∥∇h2(z(t))−∇h2(z∗) +
Lh2

2
ż(t)

∥∥∥∥2

. (4. 39)

Similarly, in the case, when Lh1 > 0 and Lh2 = 0, we get for almost every t ∈ [0,+∞)

0 ≥ 1
2

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+ c∥ẋ(t)∥2

M1(t)−
Lh1

4 I
+ c

(
σ − 1

2
c∥A∥2

)
∥ẋ(t)∥2 + c∥ż(t)∥2

M2(t)+
c(t)

2 B∗B
+

1
2
∥ẏ(t)∥2

+ c
(

σ − 1
2

c∥A∥2
)
∥x(t)− x∗∥2 +

c2

2
∥Bz(t)− Bz∗∥2

+
c

Lh1

∥∥∥∥∇h1(x(t))−∇h1(x∗) +
Lh1

2
ẋ(t)

∥∥∥∥2

(4. 40)

and in the case, when Lh1 = 0 and Lh2 = 0, we obtain for almost every t ∈ [0,+∞)

0 ≥ 1
2

d
dt

(
(2σc(t)− c2(t)∥A∥2)∥x(t)− x∗∥2 + ∥x(t)− x∗∥2

c(t)M1(t)

+∥z(t)− z∗∥2
c(t)M2(t)+c2(t)B∗B + ∥y(t)− y∗∥2

)
+ c∥ẋ(t)∥2

M1(t) + c
(

σ − 1
2

c∥A∥2
)
∥ẋ(t)∥2 + c∥ż(t)∥2

M2(t)+
c(t)

2 B∗B
+

1
2
∥ẏ(t)∥2

+ c
(

σ − 1
2

c∥A∥2
)
∥x(t)− x∗∥2 +

c2

2
∥Bz(t)− Bz∗∥2. (4. 41)

By arguing as above, we obtain also in these three cases that (4. 34) and (4. 35)-(4. 38) hold.
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We can easily see that, if assumptions 1. or 2. from the theorem hold true, then we have
ż(·) ∈ L2([0,+∞),G). Further, taking into account the hypotheses concerning Ṁ1, Ṁ2 and c,
we can easily derive from Lemma 4.17 that

ẍ(·) ∈ L2([0,+∞),H) and z̈(·) ∈ L2([0,+∞),G).

It follows, for almost every t ∈ [0,+∞)

d
dt

∥ẋ(t)∥2 = 2⟨ẍ(t), ẋ(t)⟩ ≤ (∥ẍ(t)∥2 + ∥ẋ(t)∥2)

and the right-hand side is a function in L1([0,+∞), R). By Lemma 4.19, we have

lim
t→+∞

ẋ(t) = 0. (4. 42)

Analogously, we get that

lim
t→+∞

ż(t) = 0 lim
t→+∞

(x(t)− x∗) = 0 and lim
t→+∞

(Bz(t)− Bz∗) = 0. (4. 43)

Because of

lim
t→+∞

1
c(t)

ẏ(t) = lim
t→+∞

(b − A(x(t) + ẋ(t))− B(z(t) + ż(t))) = b − Ax∗ − Bz∗

and the optimality condition Ax∗ + Bz∗ = b, we have

lim
t→+∞

ẏ(t) = 0. (4. 44)

In the following, let us prove that each weak sequential cluster point of (x(t), z(t), y(t)),
t ∈ [0,+∞) is a saddle point of L (notice that the trajectories are bounded according to (4. 34)).
Let (x∗, z, y) be such a weak sequential cluster point. So according to Proposition 2.1 there
exists a sequence (sn)n≥0 with sn → +∞ such that (x(sn), z(sn), y(sn)) converges to (x∗, z, y) as
n → +∞ in the weak topology of H × G × K (notice that the trajectory x(t) converges to x∗

strongly).
From (4. 3), we have for all n ∈ [0,+∞)

−M1(sn)ẋ(sn) + A∗y(sn)−∇h1(x(sn)) ∈ ∂ f (ẋ(sn) + x(sn)).

Since (M1(sn))n≥0 is bounded, ∇h1 is continuous, (y(sn))n≥0 converges weakly to y,
lim

t→+∞
ẋ(t) = 0 and lim

t→+∞
x(t) = x∗, it follows from Proposition 2.7(i)

A∗y −∇h1(x∗) ∈ ∂ f (x∗).

From (4. 4), we obtain for every n ≥ 0

B∗ẏ(sn)− M2(sn)ż(sn)+ B∗y(sn)−∇h2(z(sn))+∇h2(ż(sn)+ z(sn)) ∈ ∂(g+ h2)(ż(sn)+ z(sn)),

which is equivalent to

ż(sn)+ z(sn) ∈ ∂(g+ h2)
∗(B∗(ẏ(sn)+ y(sn))− M2(sn)ż(sn)−∇h2(z(sn))+∇h2(ż(sn)+ z(sn))).
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By denoting for all n ≥ 0

vn := ż(sn) + z(sn), un := ẏ(sn) + y(sn)

wn := −M2(sn)ż(sn)−∇h2(z(sn)) +∇h2(ż(sn) + z(sn)),

we obtain
vn ∈ ∂(g + h2)

∗(B∗un + wn).

Since ∇h2 is Lipschitz continuous, we get

∇h2(ż(sn) + z(sn))−∇h2(z(sn)) → 0 (n → +∞).

According to this fact, (4. 42), (4. 43), and (4. 44), we have vn ⇀ z, un ⇀ y, Bvn → Bz = Bz∗

and wn → 0 as n → +∞. Due to the monotonicity of the subdifferential, we have for all (u, v)
in the graph of ∂(g + h2)∗ and for all n ≥ 0

⟨vn − v, B∗un + wn − u⟩ ≥ 0,

which is the same according to Proposition 2.2 as

⟨Bvn − Bv, un⟩+ ⟨vn − v, wn − u⟩ ≥ 0.

We let n → +∞ and obtain
⟨Bz − Bv, ȳ⟩+ ⟨z − v,−u⟩ ≥ 0,

which is equivalent to

⟨z − v, B∗y − u⟩ ≥ 0 ∀(u, v) in the graph of ∂(g + h2)
∗.

The maximal monotonicity of the convex subdifferential of ∂(g + h2)∗ ensures that
z ∈ ∂(g + h2)∗(B∗y), which is equivalent to B∗y ∈ ∂(g + h2)(z). So we have B∗y −∇h2(z) ∈
∂g(z). From (4. 1) and (4. 44) we have

b − A(ẋ(sn) + x(sn))− B(ż(sn) + z(sn)) =
1

c(sn)
ẏ(sn) → 0 (n → ∞)

and so it follows that Ax + Bz = b. In conclusion, (x∗, z, y) is a saddle point of the Lagrangian
L.

In the following, we show that (x(t), z(t), y(t)), t ∈ [0,+∞) converges weakly. So, we con-
sider two sequential cluster points (x∗, z1, y1) and (x∗, z2, y2). Consequently, there exists (kn)n≥0
and (ln)n≥0 such that the subsequence (x(kn), z(kn), y(kn)) converges weakly to (x∗, z1, y1) as
n → +∞ and (x(ln), z(ln), y(ln)) converges weakly to (x∗, z2, y2) as n → +∞, respectively. As
seen before, (x∗, z1, y1) and (x∗, z2, y2) are both saddle points of the Lagrangian L. From (4. 34),
which is fulfilled for every saddle point of the Lagrangian L, we obtain

∃ lim
t→+∞

(
∥z(t)− z1∥2

c(t)M2(t)+c2(t)B∗B − ∥z(t)− z2∥2
c(t)M2(t)+c2(t)B∗B

+∥y(t)− y1∥2 − ∥y(t)− y2∥2) =: T. (4. 45)

For t ∈ [0,+∞), we have

∥z(t)− z1∥2
c(t)M2(t)+c2(t)B∗B − ∥z(t)− z2∥2

c(t)M2(t)+c2(t)B∗B + ∥y(t)− y1∥2 − ∥y(t)− y2∥2

= ∥z2 − z1∥2
c(t)M2(t)+c2(t)B∗B + 2⟨z(t)− z2, z2 − z1⟩c(t)M2(t)+c2(t)B∗B + ∥y2 − y1∥2

+ ⟨y(t)− y2, y2 − y1⟩.



72 Chapter 4. Dynamical system of Proximal AMA

Since c(t)M2(t) + c2(t)B∗B is monotonically decreasing and positive definite, there exists, ac-
cording to Lemma 4.21, a positive definite operator M such that c(t)M2(t)+ c2(t)B∗B converges
to M in the strong topology as t → +∞. Furthermore, let c := lim

t→+∞
c(t) > 0. Taking the limits

in (4. 45) along the subsequences (kn)n≥0 and (ln)n≥0, it yields

T = −∥z2 − z1∥2
M − ∥y2 − y1∥2 = ∥z2 − z1∥2

M + ∥y2 − y1∥2,

so that
∥z2 − z1∥2

M + ∥y2 − y1∥2 = 0.

It follows that z1 = z2 and y1 = y2. In consequence, (x(t), z(t), y(t)) converges weakly to a
saddle point of the Lagrangian L.

In the following corollary, we set for every t ∈ [0,+∞)

M1(t) = 0 and M2(t) =
1

τ(t)
Id−c(t)B∗B,

where τ(t) > 0 and τ(t)c(t)∥B∥2 ≤ 1, like in Remark 4.8. Then, we get the following conver-
gence result for the trajectory (x(t), z(t), y(t)) of the dynamical system (4. 5) as a special case of
Theorem 4.22:

Corollary 4.24. In the context of optimization problem (3. 5), suppose that the set of saddle points
of the Lagrangian L is nonempty, the map τ : [0,+∞) → (0,+∞) is locally absolutely continuous,
monotonically increasing, and fulfills supt≥0

τ̇(t)
τ(t)2 < ∞. Furthermore, we assume that for an ϵ > 0 the

map

c : [0,+∞) →
[

ϵ,
σ

∥A∥2 − ϵ

]
is monotonically decreasing and Lipschitz continuous. If c(t) is a constant function, namely c(t) = c
for all t ∈ [0,+∞), then its enough to assume that ϵ ≤ c ≤ 2σ

∥A∥2 − ϵ. Let

c(t)τ(t)∥B∥2 ≤ 1 − τ(t)
4

Lh2 , − ċ(t)∥B∥2 ≤ τ̇(t)
τ(t)2 (4. 46)

for almost all t ∈ [0,+∞). For an arbitrary initial value (x0, z0, y0) ∈ H × G × K, let
(x, z, y) : [0,+∞) → H×G ×K be the unique strong global solution of the dynamical system (4. 5).
If one of the following assumptions is satisfied:

1. c(t)τ(t)∥B∥2 < 1 − τ(t)
4 Lh2 for all t ∈ [0,+∞)

2. there exists β > 0 such that B∗B ∈ Pβ(G);

then for t → +∞ the trajectory (x(t), z(t), y(t)) converges weakly to a saddle point of L.

Remark 4.25. An appropriate choice for τ(t) to fulfill the assumptions (4. 46) is, for example,
τ(t) = a

c(t) , where 0 < a ≤ 1
∥B∥2 . That’s how we set it in Example 4.10.

If h1 = 0 and h2 = 0, and M1(t) = 0 and M2(t) = 0 for all t ≥ 0, then the dynamical system
(4. 1) becomes a continuous version of the AMA method proposed by Tseng in [110] which can
be written as
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ẋ(t) + x(t) = argminx∈H { f (x)− ⟨y(t), Ax(t)⟩}

ż(t) + z(t) ∈ argminz∈G{g(z)− ⟨y(t), Bz⟩+ c(t)
2 ∥A(x(t) + ẋ(t)) + Bz − b∥2}

ẏ(t) = c(t) (b − A(x(t) + ẋ(t))− B(z(t) + ż(t)))

x(0) = x0 ∈ H, z(0) = z0 ∈ G, y(0) = y0 ∈ K,

where c(t) > 0 for all t ∈ [0,+∞).
According to Theorem 4.22 (for Lh1 = Lh2 = 0), the generated trajectories converge weakly

to a saddle point of the Lagrangian, if we choose the map c(t) as in this theorem and if there
exists β > 0 such that B∗B ∈ Pβ(G).





Chapter 5

Stochastic incremental mirror descent
algorithms with Nesterov smoothing

This chapter is based on the paper [30] and the preprint [31].
The original mirror descent method was introduced by Nemirovski in [90] (see also [91])

as a non-Euclidean extension of the subgradient method for solving unconstrained convex op-
timization problems. Since then, it has been subject to various developments and employ-
ment in different areas (such as machine learning [80, 78, 101, 71], signal and image processing
[5, 72, 22, 26], location research [104, 108, 105], network optimization [74], system identification
[33, 58], optimal control [85]), enjoying an increasing popularity. Over these four decades, it
was noticed that it is strongly connected to other iterative methods for solving various classes
of optimization problems, such as FTRL (follow the regularized leader) [82], proximal gradient
[118], conditional gradient [15, 96], AdaBoost [62], or dual averaging (also called lazy mirror
descent) [75], being seen as a generalization of the proximal point algorithm with a nonlinear
distance function (that could be a Bregman type one or, for instance, the Fenchel coupling
[116, 117]) and an optimal stepsize (see [79]) and as a dual approach to gradient descent (see
[4]). Due to their convergence properties, mirror descent algorithms proved to be especially
suitable for large-scale optimization problems. In [67], two main streams of current work on
mirror descent methods are identified, namely accelerating deterministic mirror descent (see,
for instance, [104, 70, 4, 72]) and stochastic mirror descent with access to noised gradient oracle
(like in [5, 58, 108, 80, 83, 67, 116, 117, 86, 33]).

Mirror descent type algorithms are usually employed for minimizing a single function.
However, in works such as [35, 15, 96, 72, 78, 59, 58, 57, 108, 67, 70, 81, 114, 26], these methods
were used for minimizing sums of (convex) functions by considering splitting techniques. This
approach is used to solve problems arising in various applications from fields like machine
learning or imaging. A specific feature of mirror descent type algorithms is that the conver-
gence statements are provided in terms of values of objective functions. However, in papers
like [57, 104, 106, 86, 114], the convergence of the generated iterative sequence is also investi-
gated.

In this chapter, we propose a stochastic incremental mirror descent algorithm with Nes-
terov smoothing to minimize a sum of finitely many proper, convex and lower semicontinuous
functions over a given nonempty closed convex set in an Euclidean space. We employ smooth
approximations (via the Nesterov smoothing from [87]) of the involved functions. To the best
of our knowledge, smoothing methods for the involved functions have been considered in
connection to mirror descent algorithms only in [71, 72] (see also [62] for objective functions
somewhat similar to the ones considered in our work), in contexts only vaguely related to
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our study. Then, we show that the algorithm can be modified in order to minimize over a
given nonempty closed convex set in an Euclidean space a sum of finitely many proper, con-
vex and lower semicontinuous functions composed with linear operators mapping between
two Euclidean spaces. Adding to the sum a further proper, convex and lower semicontinu-
ous function that is prox-friendly requires modifications to the previously mentioned method.
The resulting algorithm becomes a stochastic incremental mirror descent Bregman-proximal
scheme with Nesterov smoothing, which is further modified in order to minimize the sum
over a given nonempty closed convex set in an Euclidean space of finitely many proper, con-
vex and lower semicontinuous functions composed with linear operators, and the mentioned
prox-friendly proper, convex and lower semicontinuous function. Different to the previous
contributions from the literature on designing mirror descent methods for minimizing sums of
functions mentioned above (in particular [35, 72, 78, 59, 57, 67, 70]), the functions we consider
need not be (Lipschitz) continuous or differentiable. Moreover, our approach does not require
knowledge of the Lipschitz constants or the subgradients of the involved functions, which can
sometimes be computationally expensive to determine. Additionally, we show that our meth-
ods can be easily combined with the ones proposed in [35], on which we base our study. In
[36], one can find a variable smoothing approach to minimize convex optimization problems
with stochastic gradients, so that large scale problems can be addressed, where, different to our
work, the Moreau-envelope, a special case of Nesterov smoothing, is used. In order to illus-
trate our theoretical achievements, we consider applications in logistics (location optimization),
medical imaging (tomography), and machine learning (Support Vector Machines) modeled as
optimization problems that are iteratively solved via the algorithms we propose in this work.

The mirror descent algorithm , on which we build our study, was considered in [88], called
dual averaging. It addresses the problem of minimizing a proper and convex function f : Rn →
R over a nonempty, convex and closed set C ⊆ Rn, involving a proper, lower semicontinuous
and σ-strongly convex function (where σ > 0) H : Rn → R such that C = cl(dom H) and
Im∇H∗ is a subset of the interior of the domain of f . The iterative scheme is as follows (where
x0 lies in the interior of the domain of f , y0 ∈ Rn and tk > 0, k ≥ 0, are positive stepsizes)

(∀k ≥ 0)
{

yk+1 = yk − tk f ′(xk),
xk+1 = ∇H∗(yk+1),

where f ′(xk) is a subgradient of f at xk. As noted in [35], this scheme generalizes the classical
subgradient method and is close to the subgradient projection algorithm.

5.1 A stochastic incremental mirror descent algorithm with Nesterov
smoothing

Problem 5.1. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(x)

}
, (5. 1)

where C ⊆ Rn is a nonempty, convex and closed set and for all i = 1, . . . , m, (m ∈ N) fi : Rn → R

fulfills
fi(x) = max

u∈Ui
{⟨Aix, u⟩ − ϕi(u)}, x ∈ dom fi, (5. 2)

where Ui ⊆ Rp is compact and convex, Ai : Rn → Rp is linear and ϕi : Rp → R a proper, lower
semicontinuous and convex function. We assume that C ∩ (∩m

i=1 dom fi) ̸= ∅.
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Furthermore, let H : Rn → R be a proper, lower semicontinuous and σ-strongly convex function (for
σ > 0) such that C = cl(dom H) and Im∇H∗ ⊆ ∩m

i=1 dom fi.

Due to the fact that H is a proper, lower semicontinuous and σ-strongly convex function,
its conjugate function H∗ is Fréchet differentiable and its gradient ∇H∗ is σ-cocoercive and ∇H∗

is (1/σ)-Lipschitz continuous. In the algorithms we propose in this chapter, we have the map
∇H∗ as mirror map , which is induced by the function H. This map mirrors each iterate onto
the feasible set C. So we can choose H(x) = 1

2∥x∥2, for x ∈ C and H(x) = +∞, otherwise, to
obtain for the mirror map ∇H∗ the orthogonal projection onto C. When C = Rn, the map ∇H∗

reduces to the identity operator. However, one can choose other mirror maps depending and
taking advantage on the structure of C and the considered optimization problem. For further
examples of mirror maps for corresponding sets C, please refer to the applications presented in
section 5.4.

Remark 5.2. The construction (5. 2) guarantees that the functions fi, i = 1, . . . , m, are proper,
convex and lower semicontinuous. From the Fenchel-Moreau-Theorem (see Proposition 2.9
(ii)), it follows that for every proper, lower semicontinuous and convex function f : Rp → R,
one has

f ◦ A(·) = sup
u∈dom f ∗

{⟨A·, u⟩ − f ∗(u)},

where A : Rn → Rp is a linear operator. A maximum, as in (5. 2), can be guaranteed, for in-
stance, when dom f ∗ is bounded. This is fulfilled, for example, when f is Lipschitz continuous,
while the opposite implication is not known to hold. For deeper insights and examples of this
construction, we refer the reader to [87, 89]. Moreover, in works such as [7, 115, 25], this ap-
proach is employed to design algorithms for solving various classes of optimization problems,
some of which stemming from concrete applications.

To minimize the sum of the nonsmooth convex functions fi (i = 1, . . . , m) in Problem 5.1,
at first we approximate them by smooth functions. For this, we use the Nesterov smoothing
technique (see [87], also employed in works like [109, 7, 99, 115]). We choose to employ a
mirror descent type technique due to the known qualities of these methods, the suitability of
the considered functions to our approach, and the fact that in many applications only certain
convergence properties of the values of the objective function, best obtained via mirror descent,
are relevant.

Definition 5.3. For i = 1, . . . , m, a function bUi : Rp → R is called prox-function of the compact
set Ui ⊆ Rp, if Ui ⊂ dom(bUi) and if bUi is continuous and β-strongly convex over the set Ui
(β > 0). Its prox-center is denoted by uc

i = argminu∈Ui
bUi(u) and its prox-diameter by

DUi = supu∈Ui
bUi(u).

Without loss of generality, we set in the following β = 1 and assume that for all i = 1, . . . , m,
bUi(u

c
i ) = 0 and therefore bUi(u) ≥ 0 for all u ∈ Ui.

Next, we approximate the functions fi (i = 1, . . . , m) by the smooth functions f γ
i : Rn → R

f γ
i (x) = max

u∈Ui
{⟨Aix, u⟩ − ϕi(u)− γbUi(u)}, (5. 3)

where γ > 0 is the smoothing parameter. This procedure originates from [87] (see also [89]) and
is called Nesterov smoothing. We define

uγ
i (x) = argmax

u∈Ui

{⟨Aix, u⟩ − ϕi(u)− γbUi(u)}.
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Furthermore, it holds

f γ
i (x) ≤ fi(x) ≤ f γ

i (x) + γDUi ∀x ∈ dom fi. (5. 4)

Lemma 5.4. The functions f γ
i , i = 1, . . . , m, defined as above, are well defined, convex and continuously

differentiable at every x ∈ Ui. Furthermore, ∇ f γ
i = A∗

i uγ
i which is ∥Ai∥2/γ-Lipschitz continuous,

and it holds
∥∇ f γ

i (x)∥2 ≤ 2∥Ai∥2(2DUi + ∥uc
i ∥2) ∀x ∈ Rn.

Proof. For the first part of the proof see [87, Theorem 1], where the continuity and finiteness of
fi, i = 1, . . . , m, imposed in the hypothesis, were not employed. It remains only the inequality
to be shown.
For i ∈ {1, . . . , m}, and x ∈ Rn it holds

∥∇ f γ
i (x)∥2 ≤ ∥Ai∥2∥uγ

i (x)∥2 ≤ ∥Ai∥2 (2∥uγ
i (x)− uc

i ∥2 + 2∥uc
i ∥2) .

Due to the 1-strong convexity of bUi and the inequality (2. 1), we have

∥uγ
i (x)− uc

i ∥2 ≤ 2bUi(u
γ
i (x))− 2bUi(u

c
i )− 2∇bUi(u

c
i )(u

γ
i (x)− uc

i )

and, taking into consideration, that bUi(u
c
i ) = 0 and that ∇bUi(u

c
i ) = 0, it follows from this

inequality that
∥uγ

i (x)− uc
i ∥2 ≤ 2bUi(u

γ
i (x)) ≤ 2DUi .

Hence
∥∇ f γ

i (x)∥2 ≤ 2∥Ai∥2(2DUi + ∥uc
i ∥2).

Remark 5.5. Notice that for i = 1, . . . , m, gi : Rp → R, ϕi = g∗i , bUi = (1/2)∥ · ∥2 and Ui =
dom g∗i is compact and convex for a γ > 0, the function

f γ
i (x) = (gi□(1/(2γ))∥ · ∥2)(Aix)

is the Moreau-envelope of gi ◦ Ai and

∇ f γ
i (x) = (1/γ)A∗

i
(

Aix − Proxγgi (Aix)
)

,

∀x ∈ Rn. In this case uc
i = 0.

Remark 5.6. Other smoothing methods, such as the general one presented in [25], could also
be employed in the framework we consider in this chapter, as long as they guarantee the last
result from Lemma 5.4. This lemma states that the norms of the gradients of the smooth ap-
proximations of the considered functions are bounded.

For the convergence analysis of the following algorithms, we use two measures of distance
in the sense of Bregman.

Definition 5.7. Let H : Rn → R be a proper and convex function. The Bregman-distance-like
function of H is denoted as

dH : Rn × dom H × Rn → R, dH(x, y, z) := H(x)− H(y)− ⟨z, x − y⟩.

Due to the subgradient inequality, it holds that dH(x, y, z) ≥ 0 for every
(x, y) ∈ Rn × dom H and all z ∈ ∂H(y).
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Definition 5.8. The Bregman distance associated to a proper and convex function H : Rn → R

fulfilling dom∇H := {x ∈ Rn : H is differentiable at x} ̸= ∅ is defined as

DH : Rn × dom∇H → R, DH(x, y) := H(x)− H(y)− ⟨∇H(y), x − y⟩,

which was introduced by Bregman in 1967 (see [43]). The following algorithm relies on
the stochastic incremental mirror descent approach of [35, Algorithm 3.2], but instead of using
subgradients of the functions fi, we smooth them by the Nesterov smoothing approach (5. 3)
and employ the gradients of the smooth functions, provided by Lemma 5.4. We choose the
smoothing parameters γk =

δ
σ tk, where tk is the step size, σ is the strongly convex parameter of

H, and δ > 0 is a constant parameter .

Algorithm 5.9

Choose x0 ∈
m⋂

i=1
dom fi ∩ C, ym,−1 ∈ Rn, the parameter δ > 0 and the stepsizes tk > 0, k ≥ 0:

for all k ≥ 0 do
ψ0,k := xk
y0,k := ym,k−1
for all i := 1, . . . , m do

yi,k := yi−1,k − ϵi,k
tk
pi
∇ f tkδ/σ

i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ψm,k

end for,
where ϵi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m and k ≥ 0.

Remark 5.10. The hypothesis Im∇H∗ ⊆ ∩m
i=1 dom fi guarantees that the sequence {xk}k gener-

ated by Algorithm 5.9 contains only elements that lie in the intersection of the domains of the
functions fi, i = 1, . . . , m.

Theorem 5.11. For Problem 5.1, let the sequence {xk}k generated by Algorithm 5.9. Then for all N ≥ 1
and y ∈ Rn, it holds

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)

≤
dH(y, x0, y0,0) +

1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
∥Ai∥

√
2DUi + ∥uc

i ∥2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

Proof. Arguing as in in the proof of [35, Theorem 3.3] and replacing the estimates
∥ f ′i (ψi−1,k)∥2 ≤ L2

fi
with ∥∇ f tkδ/σ

i ∥2 ≤ 2∥Ai∥2(2DUi + ∥uc
i ∥2), we arrive at

E(dH(y, ψm,k, ym,k)) ≤ E(dH(y, xk, y0,k)) + tkE

(
m

∑
i=1

f tkδ/σ
i (y)−

m

∑
i=1

f tkδ/σ
i (xk)

)
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+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2)

)2( m

∑
i=1

1
p2

i

) 1
2

− E

(
m

∑
i=1

1
2

dH(ψi,k, ψi−1,k, yi−1,k)

)

+ E

(
tk

m

∑
i=1

( f tkδ/σ
i (xk)− f tkδ/σ

i (ψi−1,k))

)
, (5. 5)

which is a modification of [(6),[35]].
We have for every k ≥ 0

m

∑
i=1

( f tkδ/σ
i (xk)− f tkδ/σ

i (ψi−1,k)) ≤
m

∑
i=2

i−1

∑
j=1

( f tkδ/σ
i (ψj−1,k)− f tkδ/σ

i (ψj,k))

≤
m

∑
i=2

i−1

∑
j=1

⟨∇ f tkδ/σ
i (ψj−1,k), ψj−1,k − ψj,k⟩

≤
m

∑
i=2

i−1

∑
j=1

∥∇ f tkδ/σ
i (ψj−1,k)∥∥ψj−1,k − ψj,k∥.

Using Lemma 5.4, we obtain from the inequality above for every k ≥ 0

m

∑
i=1

( f tkδ/σ
i (xk)− f tkδ/σ

i (ψi−1,k)) ≤
m

∑
i=2

i−1

∑
j=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2∥ψj−1,k − ψj,k∥

≤
m

∑
l=1

∥Al∥
√

4DUl + 2∥uc
l ∥2

m

∑
i=2

∥ψi−1,k − ψi,k∥.

Furthermore, using the Lipschitz continuity of ∇H∗, it yields for every 2 ≤ i ≤ m and for every
k ≥ 0

∥ψi−1,k − ψi,k∥ = ∥∇H∗(yi−1,k)−∇H∗(yi,k)∥ ≤ 1
σ
∥yi−1,k − yi,k∥ =

1
σ

∥∥∥∥ϵi,k
tk

pi
∇ f tkδ/σ

i (ψi−1,k)

∥∥∥∥ .

Inserting the last inequality in the inequality above, we obtain for every k ≥ 0

m

∑
i=1

( f tkδ/σ
i (xk)− f tkδ/σ

i (ψi−1,k)) ≤
1
σ

m

∑
l=1

∥Al∥
√

4DUl + 2∥uc
l ∥2

m

∑
i=2

∥∥∥∥ϵi,k
tk

pi
∇ f tkδ/σ

i (ψi−1,k)

∥∥∥∥
≤ 1

σ
tk

m

∑
l=1

∥Al∥
√

4DUl + 2∥uc
l ∥2

m

∑
i=1

ϵi,k

pi
∥Ai∥

√
4DUi + 2∥uc

i ∥2.

So, for every k ≥ 0 it holds

E

(
tk

m

∑
i=1

( f tkδ/σ
i (xk)− f tkδ/σ

i (ψi−1,k))

)

≤ 1
σ

t2
k

(
m

∑
l=1

∥Al∥
√

4DUl + 2∥uc
l ∥2)

)
E

(
m

∑
i=1

ϵi,k

pi
∥Ai∥

√
4DUi + 2∥uc

i ∥2

)

≤ 1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

. (5. 6)
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Inequality (5. 4) yields for every k ≥ 0

tkE

(
m

∑
i=1

f tkδ/σ
i (y)−

m

∑
i=1

f tkδ/σ
i (xk)

)
≤ tk

(
E

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+

tkδ

σ

m

∑
i=1

DUi

)
. (5. 7)

Combining (5. 5) with (5. 6) and (5. 7) gives for every k ≥ 0

E(dH(y, ψm,k, ym,k))

≤ E(dH(y, xk, y0,k)) + tk

(
E

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+

tkδ

σ

m

∑
i=1

DUi

)

+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2( m

∑
i=1

1
p2

i

) 1
2

− E

(
m

∑
i=1

1
2

dH(ψi,k, ψi−1,k, yi−1,k)

)

+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

.

Because ψm,k = xk+1, ym,k = y0,k+1 and dH(ψi,k, ψi−1,k, yi−1,k) ≥ 0 as yi−1,k ∈ ∂H(ψi−1,k), it holds
for every k ≥ 0

E(dH(y, xk+1, y0,k+1)) ≤E(dH(y, xk, y0,k)) + tkE

(
m

∑
i=1

fi(y)−
m

∑
i=1

fi(xk)

)
+

δ

σ
t2
k

m

∑
i=1

DUi

+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

 . (5. 8)

Summing up the inequality from k = 0 to N − 1, where N ≥ 1, we obtain

N−1

∑
k=0

tkE

(
m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)
+ E(dH(y, xN , y0,N))

≤ E(dH(y, x0, y0,0)) +
δ

σ

m

∑
i=1

DUi

N−1

∑
k=0

t2
k

+
1
σ

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

 N−1

∑
k=0

t2
k .

Since dH(y, xN , y0,N) ≥ 0, as y0,N ∈ ∂H(xN), we get

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)

≤
dH(y, x0, y0,0) +

1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
∥Ai∥

√
2DUi + ∥uc

i ∥2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.
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In the following corollary, we give the optimal stepsize choice for Algorithm 5.9, which
follows from [23, Proposition 4.1].

Corollary 5.12. Let x∗ ∈ dom H be an optimal solution to (5. 1) and a constant δ > 0. Then, the
optimal stepsize for the algorithm above is given by

tk :=

√√√√√√
σdH(x∗, x0, y0,0)

δ
m
∑

i=1
DUi + 2

(
m
∑

i=1
∥Ai∥

√
2DUi + ∥uc

i ∥2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

) · 1√
k

∀k ≥ 0,

which yields for every N ≥ 1

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(x∗)

)

≤

√√√√√√dH(x∗, x0, y0,0)

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
∥Ai∥

√
2DUi + ∥uc

i ∥2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
σ

· 2√
N

.

Let us consider now the following optimization problem consisting in minimizing a sum
of functions fulfilling (5. 2) composed with linear operators. Such problems can be seen both
as special cases and generalizations of Problem 5.1, as mentioned in remark 5.2. Taking this
remark into consideration, the maximum in the construction (5. 2) only needs to be attained in
the case of such compositions when the involved functions are proper, convex and semicon-
tinuous, and the operators are linear. In this case, we say that they fulfill the property (5.2′).
Unlike the construction proposed in [35], our approach is flexible enough to allow modifying
Algorithm 5.9 in order to solve such problems as well.

Problem 5.13. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(Aix)

}
, (5. 9)

where C ⊆ Rn is a nonempty, convex and closed set, fi : Rp → R, i = 1, . . . , m, are proper, convex
and semicontiuous functions, and Ai : Rn → Rp are linear operators such that (5.2′) holds for them,
and C ∩ (∩m

i=1 dom( fi ◦ Ai)) ̸= ∅.

For i = 1, . . . , m, we smooth the functions fi ◦ Ai via the Moreau envelope, which is a special
case of Nesterov smoothing as mentioned above. This results in

( f γ
i ◦ Ai)(x) = ( fi□(1/2γ)∥ · ∥2)(Aix)

with the gradients
∇( f γ

i ◦ Ai)(x) = (1/γ)A∗
i (Aix − Proxγ fi(Aix))

for all x ∈ Rn, where γ > 0.
Then, we obtain the following mirror descent proximal point algorithm.
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Algorithm 5.14

Choose x0 ∈
m⋂

i=1
dom( fi ◦ Ai) ∩ C, ym,−1 ∈ Rn, the parameter δ > 0, and the stepsizes tk > 0,

k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym,k−1
for all i := 1, . . . , m do

yi,k := yi−1,k − ϵi,k
σ

δpi
A∗

i

(
Aiψi−1,k − Proxtk

δ
σ fi

(Aiψi−1,k)
)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ψm,k

end for,
where ϵi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m and k ≥ 0.

Because this algorithm is derived from Algorithm 5.9, the convergence result of Theorem
5.11 is also valid, where DUi = Ddom f ∗i = supu∈dom f ∗i

1
2∥u∥2 and ∥uc

i ∥ = 0:

Theorem 5.15. For Problem 5.13, let the sequence {xk}k generated by Algorithm 5.14 and a constant
δ > 0, k ≥ 0. Then for all N ≥ 1 and y ∈ Rn, it holds

E

(
min

0≤k≤N−1

m

∑
i=1

fi(xk)−
m

∑
i=1

fi(y)

)

≤
dH(y, x0, y0,0) +

1
σ

(
δ

m
∑

i=1
Ddom f ∗i + 4

(
m
∑

i=1
∥Ai∥

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

So, the optimal stepsize choice for Algorithm 5.14 is given by the following corollary:

Corollary 5.16. Let x∗ ∈ dom H be an optimal solution to (5. 9) and a constant δ > 0, k ≥ 0. Then,
the optimal stepsize for Algorithm 5.14 above is given by

tk :=

√√√√√√
σdH(x∗, x0, y0,0)

δ
m
∑

i=1
Ddom f ∗i + 4

(
m
∑

i=1
∥Ai∥

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

) · 1√
k

∀k ≥ 0,

which yields for every N ≥ 1

E

(
min

0≤k≤N−1

m

∑
i=1

fi(Aixk)−
m

∑
i=1

fi(Aix∗)

)

≤ 2

√√√√√√dH(x∗, x0, y0,0)

(
δ

m
∑

i=1
Ddom f ∗i + 4

(
m
∑

i=1
∥Ai∥

√
Ddom f ∗i

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 1

))
σ

· 1√
N

.
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Remark 5.17. The difference between Algorithm 5.9 and its counterpart in [35, Algorithm 2.2] is
that we do not need to know the Lipschitz constants or the subgradients of the functions fi (i =
1, . . . , m), which sometimes can be computationally expensive to determine (cf. [3, 46, 64, 95]).
Instead, our approach relies on their proximal point mappings (in particular for its special case
Algorithm 5.14). For many functions, including those commonly encountered in applications
in fields like image deblurring and denoising or machine learning, these mappings are already
known. A further advantage of our method is that we do not need to impose the Lipschitz
continuity of the gradients of the objective functions, as the gradients of their Nesterov smooth
approximations satisfy this hypothesis by construction. Instead, we ask the weaker condition
of closedness of the domains of their conjugates. Note also that, by employing the parameter
δ > 0, k ≥ 0, Algorithm 5.9 presents additional flexibility in comparison to its mentioned
counterpart.

Remark 5.18. Moreover, assuming Lipschitz continuity for the functions fi, i = 1, . . . , m, does
not make Algorithm 5.9 collapse to [35, Algorithm 3.2]. Similarly, the assertion of Theorem 5.11
does not rediscover its counterpart [35, Theorem 3.3] due to the distinct constructions. This has
motivated us to include in our study the results in Section 5.3, where we present combinations
of these algorithms.

5.2 Incremental mirror descent Bregman-prox-scheme with Nesterov
smoothing

In this section, we consider an extension of the optimization problem (5. 1) by adding another
nonsmooth function to its objective function. The iterative scheme we propose for solving is an
extension of Algorithm 5.9. But instead of smoothing the new function, we evaluate it using
a proximal step of Bregman type. For this, we require additional differentiability assumptions
on the function that induces the mirror map.

Problem 5.19. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(x) + g(x)

}
, (5. 10)

where C ⊆ Rn is a nonempty, convex and closed set. For i = 1, . . . , m, the functions fi : Rn → R are
defined like in Problem 5.1 and g : Rn → R is a proper, convex and lower semicontinuous function such
that C ∩ (∩m

i=1 dom fi ∩ dom g) ̸= ∅. Furthermore, let H : Rn → R be a proper, lower semicontinu-
ous and σ-strongly convex function (for σ > 0) such that C = cl(dom H), let H be continuously dif-
ferentiable on int(dom H), Im∇H∗ ⊆ (∩m

i=1 dom fi)∩ int(dom H) and int(dom H)∩dom g ̸= ∅.

Definition 5.20. Let h : Rn → R be a proper, convex and lower semicontinuous function. The
Bregman-proximal operator of h with respect to the proper, lower semicontinuous and σ-strongly
convex function H is defined as

ProxH
h : dom∇H → Rn, ProxH

h (x) := argmin
u∈Rn

{h(u) + DH(u, x)}.

Because H is σ-strongly convex, the Bregman-proximal operator is well defined. For
H = (1/2)∥ · ∥2 the Bregman-proximal operator is the classical proximity operator.
We propose the following algorithm for solving the optimization problem (5. 10).
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Algorithm 5.21

Choose x0 ∈ Im∇H∗ ∩ C, the parameter δ > 0 and the stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
for all i := 1, . . . , m do

ψi,k := ∇H∗(∇H(ψi−1,k)− ϵi,k
tk
pi
∇ f tkδ/σ

i (ψi−1,k))

end for
xk+1 := ProxH

tk g(ψm,k)
end for,
where ϵi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m and k ≥ 0.

Remark 5.22. Note that when g = 0, Algorithm 5.21 corresponds essentialy to Algorithm 5.9.
But even for this case, the constants obtained in the convergence result given below and in
Theorem 5.11 are not the same, due to the construction of the algorithms (note, for instance,
that Algorithm 5.9 requires an additional starting point) and therefore there are some main
differences in the proofs.

Theorem 5.23. Let the sequence {xk}k generated by Algorithm 5.21 and a constant δ > 0. Then for all
N ≥ 1 and all y ∈ Rn, one has

E

(
min

0≤k≤N−1

(
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)

≤
DH(y, x0) +

1
σ

(
δ

m
∑

i=1
DUi + 2

(
m
∑

i=1
∥Ai∥

√
2DUi + ∥uc

i ∥2

)2
((

m
∑

i=1

1
p2

i

) 1
2

+ 3
2 + m

))
N−1
∑

k=0
t2
k

N−1
∑

k=0
tk

.

Proof. When y /∈ ∩m
i=1 dom fi ∩ dom g, the assertion follows automatically, so we will now

consider the case when y ∈ ∩m
i=1 dom fi ∩ dom g. We start the proof with inequalities (5. 5) and

(5. 6) from Theorem 5.11 and use instead of the Bregman distance like functions the Bregman
distance to obtain

E(DH(y, ψm,k)) ≤ E(DH(y, xk)) + tkE

(
m

∑
i=1

f δ/σtk
i (y)−

m

∑
i=1

f δ/σtk
i (xk)

)

+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1

− E

(
m

∑
i=1

1
2

DH(ψi,k, ψi−1,k)

)
. (5. 11)

Like in [(12),[35]] we get for every k ≥ 0

tkE((g(xk+1)− g(y))) + E(DH(y, xk+1)) ≤ E(DH(y, ψm,k))− E(DH(xk+1, ψm,k)). (5. 12)
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By combining (5. 11) and (5. 12), we obtain for every k ≥ 0,

tkE((g(xk+1)− g(y))) + tkE

(
m

∑
i=1

f δ/σtk
i (xk)−

m

∑
i=1

f δ/σtk
i (y)

)
+ E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


− E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)).

We add and subtract tkE(∑m
i=1 f δ/σtk

i (xk+1)) to get

tkE

((
m

∑
i=1

f δ/σtk
i + g

)
(xk+1)−

(
m

∑
i=1

f δ/σtk
i + g

)
(y)

)

+ tkE

(
m

∑
i=1

f δ/σtk
i (xk)−

m

∑
i=1

f δ/σtk
i (xk+1)

)
+ E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


− E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)).

Due to the differentiability and convexity of f δ/σtk
i for i = 1, . . . , m and for all k ≥ 0, along with

Lemma 5.4, it follows that

−tkE

(
m

∑
i=1

f δ/σtk
i (xk+1)−

m

∑
i=1

f δ/σtk
i (xk)

)
≥ −tkE

(∥∥∥∥∥ m

∑
i=1

∇ f δ/σtk
i (xk+1)

∥∥∥∥∥ ∥xk − xk+1∥
)

≥ −tkE

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2∥xk − xk+1∥

)

≥ −tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − xk+1∥)

(5. 13)

and from (5. 4), we have that

tk

(
E

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
− δ

σ
tk

m

∑
i=1

DUi

)

− tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − xk+1∥) + E(DH(y, xk+1))

≤ E(DH(y, xk)) +
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+ 1


− E(DH(xk+1, ψm,k))−

m

∑
i=1

1
2

E(DH(ψi,k, ψi−1,k)). (5. 14)
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By the triangle inequality, we get for every k ≥ 0

tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − xk+1∥)

≤ tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − ψm,k∥) + tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥ψm,k − xk+1∥) .

(5. 15)

Using Young’s inequality and the strong convexity of H, we have

tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥ψm,k − xk+1∥)

≤ 1
2σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

+
σ

2
E (∥ψm,k − xk+1∥)2

≤ 1
2σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

+ E(H(xk+1)− H(ψm,k)− ⟨∇H(xk+1), xk+1 − ψm,k⟩)

=
1

2σ
t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

+ E(DH(xk+1, ψm,k)),

and since

∥xk − ψm,k∥ =

∥∥∥∥∥ m

∑
i=1

(ψi−1,k − ψi,k)

∥∥∥∥∥ ≤
m

∑
i=1

∥ψi−1,k − ψi,k∥ ,

the inequality (5. 15) becomes

tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − xk+1∥) ≤

1
2σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2

+E(DH(xk+1, ψm,k)) + tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E

(
m

∑
i=1

∥ψi−1,k − ψi,k∥
)

.

Using again Young’s inequality and the strong convexity of H, we get for every
i = 1, . . . , m, and every k ≥ 0

tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2∥ψi−1,k − ψi,k∥ ≤ 1

σ
t2
k

(
m

∑
j=1

∥Aj∥
√

4DUj + 2∥uc
j∥2

)2

+
σ

4
∥ψi−1,k − ψi,k∥ ≤ 1

σ
t2
k

(
m

∑
j=1

∥Aj∥
√

4DUj + 2∥uc
j∥2

)2

+
1
2

DH(ψi,k, ψi−1,k).

So, we have

tk

m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2E (∥xk − xk+1∥) ≤

1
2σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
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+ E(DH(xk+1, ψm,k)) +
1
σ

mt2
k

(
m

∑
j=1

∥Aj∥
√

4DUj + 2∥uc
j∥2

)2

+
m

∑
i=1

1
2

DH(ψi,k, ψi−1,k). (5. 16)

Combining (5. 16) and (5. 14), we obtain

tkE

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
i=1

fi + g

)
(y)

)
+ E(DH(y, xk+1)) ≤ E(DH(y, xk))

+
1
σ

t2
k

(
m

∑
i=1

∥Ai∥
√

4DUi + 2∥uc
i ∥2

)2
( m

∑
i=1

1
p2

i

) 1
2

+
3
2
+ m

+ t2
k

δ

σ

m

∑
i=1

DUi .

Summing up this inequality from k = 0 to N − 1, for N ≥ 1, we get

N−1

∑
k=0

tkE

((
m

∑
i=1

fi + g

)
(xk+1)−

(
m

∑
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fi + g

)
(y)

)
+ E(DH(y, xN)) ≤ E(DH(y, x0))

+
1
σ

(
m
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∥Ai∥
√
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i ∥2

)2
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∑
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1
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+
3
2
+ m

 N−1

∑
k=0

t2
k +

m

∑
i=1

DUi

N−1

∑
k=0

t2
k

δ

σ
.

Since E(DH(y, xN)) ≥ 0, we obtain

E

(
min

0≤k≤N−1

(
m

∑
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fi + g

)
(xk+1)−

(
m

∑
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fi + g

)
(y)

)

≤
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1
σ

(
δ
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DUi + 2

(
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1
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i
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k

N−1
∑
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tk

.

In the following corollary, we give the optimal stepsize choice for Algorithm 5.21, which
follows from [23, Proposition 4.1].

Corollary 5.24. Let x∗ ∈ dom H be an optimal solution to (5. 10) and a constant δ > 0. Then, the
optimal stepsize for Algorithm 5.21 is given by

tk :=

√√√√√√
σDH(x∗, x0)

δ
m
∑

i=1
DUi + 2

(
m
∑
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∥Ai∥

√
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i ∥2

)2
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m
∑
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1
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i

) 1
2
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2 + m

) · 1√
k

∀k ≥ 0,

which yields for every N ≥ 1

E

(
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0≤k≤N−1

(
m

∑
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fi + g

)
(xk)−

(
m

∑
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)
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)
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Similar to the previous section, we modify the considered problem by composing the smoothed
functions with the linear operators used in their construction.

Problem 5.25. We consider the convex optimization problem

min
x∈C

{
m

∑
i=1

fi(Aix) + g(x)

}
,

where C ⊆ Rn is a nonempty, convex and closed set, fi : Rp → R, for i = 1, . . . , m, are proper, convex
and lower semicontinuous functions, Ai : Rn → Rp linear operators such that (5.2′) holds for them
and
g : Rn → R is a proper, convex and lower semicontinuous function such that
C ∩ (∩m

i=1 dom( fi ◦ Ai)) ∩ dom g ̸= ∅. Furthermore, let the function H defined as in Problem 5.19.

By smoothing the functions fi (i = 1, . . . , m) via the Moreau envelope, we obtain

( f γ
i ◦ Ai)(x) = ( fi□(1/2γ)∥ · ∥2)(Aix) ∀x ∈ Rn

with the gradients

∇( f γ
i ◦ Ai)(x) = (1/γ)A∗

i (Aix − Proxγ fi(Aix)) ∀x ∈ Rn,

as in the previous section. Then, we obtain from Algorithm 5.21 the following mirror descent
proximal point algorithm for solving Problem 5.25.

Algorithm 5.26

Choose x0 ∈ Im∇H∗ ∩ C, the parameter δ > 0 and the stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
for all i := 1, . . . , m do

ψi,k := ∇H∗(∇H(ψi−1,k)− ϵi,k
σ

δpi
A∗

i

(
Aiψi−1,k − Proxtk

δ
σ fi

(Aiψi−1,k)
)

end for
xk+1 := ProxH

tk g(ψm,k),
end for
where ϵi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m and k ≥ 0.

Because this algorithm is derived from Algorithm 5.21, the convergence result follows di-
rectly from Theorem 5.23, where DUi = Ddom f ∗i = supu∈dom f ∗i

1
2∥u∥2 and ∥uc

i ∥ = 0:

Theorem 5.27. Let the sequence {xk}k generated by Algorithm 5.26 and a constant δ > 0. Then for all
N ≥ 1 and all y ∈ Rn, one has
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(
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(
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∑
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(
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)
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)

≤
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(
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2 + m
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So, the optimal stepsize choice for Algorithm 5.26 is given by the following corollary:

Corollary 5.28. Let x∗ ∈ dom H be an optimal solution to Problem 5.25 and a constant δ > 0. Then,
the optimal stepsize for Algorithm 5.26 is given by

tk :=

√√√√√√
σDH(y, x0)

δ
m
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Ddom f ∗i + 4

(
m
∑

i=1
∥Ai∥
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)2
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m
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) · 1√
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∀k ≥ 0,

which yields for every N ≥ 1

E

(
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(
m
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fi ◦ Ai + g

)
(xk)−

(
m

∑
i=1

fi ◦ Ai + g

)
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)

≤ 2
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.

Remark 5.29. Analogous to [35, Remark 3.7 and Remark 4.7], one can establish correspond-
ing statements within the framework presented in this work. We leave them to the interested
reader.

5.3 Stochastic incremental mirror descent algorithms with subgradi-
ent and Nesterov smoothing

In the following, we combine the mirror descent algorithms proposed above, which use the
Nesterov smoothing approach, and the mirror descent algorithms proposed in [35], which rely
on the subgradients of the objective functions for minimization.

Problem 5.30. We consider the convex optimization problem

min
x∈C

{
m1

∑
i=1

fi(x) +
m2

∑
i=m1+1

fi(x)

}
, (5. 17)

where C ⊆ Rn is a nonempty, convex and closed set such that C ∩ (∩m2
i=1 dom fi) ̸= ∅, for all i =

1, . . . , m1 (m1 ∈ N), the functions fi : Rn → R are proper, convex and L fi -Lipschitz continuous on
Im∇H∗, where H is defined as in Problem 5.19, and for all i = m1 + 1, . . . , m2 (m1 ≤ m2 ∈ N), the
functions fi : Rn → R fulfill fi(x) = maxu∈Ui{⟨Aix, u⟩ − ϕi(u)} for x ∈ dom fi, where Ui ⊆ Rp

is a compact and convex set, Ai : Rn → Rp are linear operators and ϕi : Rp → R are proper, lower
semicontinuous and convex functions.

For the following algorithm, we use the subgradients of the first m1 functions fi and the
gradients of the smooth functions f tkδ/σ

i for i = m1 + 1, . . . , m2.
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Algorithm 5.31

Choose x0 ∈
m2⋂
i=1

dom fi ∩ C, ym2,−1 ∈ Rn, the parameter δ > 0 and the stepsizes tk > 0, k ≥ 0:

for all k ≥ 0 do
ψ0,k := xk
y0,k := ym2,k−1
for all i := 1, . . . , m1 do

yi,k := yi−1,k − ϵi,k
tk
pi

f ′i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
for all i := m1 + 1, . . . , m2 do

yi,k := yi−1,k − ϵi,k
tk
pi
∇ f tkδ/σ

i (ψi−1,k)

ψi,k := ∇H∗(yi,k)
end for
xk+1 := ψm2,k

end for,
where ϵi,k ∈ {0, 1} is a random variable independent of ψi−1,k and P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m2 and k ≥ 0.

In the following statement, we give the convergence result for this algorithm. The proof is
basically a combination of the ones of Theorem 5.11 and [35, Theorem 3.3].

Theorem 5.32. For Problem 5.30, let the sequence {xk}k generated by the algorithm above and δ > 0.
Then for all N ≥ 1 and y ∈ Rn, it holds

E

(
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)
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,

where

C = δ
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∑
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(
m1

∑
i=1

L fi

)2
(m1

∑
i=1

1
p2

i

) 1
2

+ 1


+2

(
m2

∑
i=m1+1

∥Ai∥
√

2DUi + ∥uc
i ∥2

)2
( m2

∑
i=m1+1

1
p2

i

) 1
2

+ 1

 .



92 Chapter 5. Stochastic incremental mirror descent algorithms with Nesterov smoothing

Proof. For the functions fi for i = 1, . . . m1, we have from the proof of [[35], Theorem 3.3] the
inequality (8)

E(dH(y, ψm1,k, ym1,k))

≤ E(dH(y, xk, y0,k)) + tkE
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∑
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∑
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+
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and obtain
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(5. 18)

Furthermore, we have from equation (5. 8) in the proof of Theorem 5.11 for the functions fi for
i = m1 + 1, . . . m2 (note that that ψm2,k = xk+1, ym2,k = y0,k+1)
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 . (5. 19)

Inserting (5. 18) in (5. 19), we obtain
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Summing up this inequality from k = 0 to N − 1, where N ≥ 1, we obtain
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∑
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Since dH(y, xN , y0,N) ≥ 0, as y0,N ∈ ∂H(xN), we obtain

E

(
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where
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The optimal stepsize choice for Algorithm 5.31 can be deduced from [23, Proposition 4.1].

Corollary 5.33. Let x∗ ∈ dom H be an optimal solution to (5. 20), δ > 0, k ≥ 0, and
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Then, the optimal stepsize for the algorithm above is given by

tk :=

√
σdH(x∗, x0, y0,0)

P
· 1√

k
,

for all k ≥ 0, which yields for every N ≥ 1

E

(
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∑
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fi(xk)−
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fi(x∗)

)
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√
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σ
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N
.

Adding another nonsmooth function to the objective function of Problem 5.30 brings into
attention the following problem, which can be solved by the algorithm below it.
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Problem 5.34. We consider the convex optimization problem

min
x∈C

{
m1

∑
i=1

fi(x) +
m2

∑
i=m1+1

fi(x) + g(x)

}
, (5. 20)

where (m1 + 1 < m2 ∈ N), C ⊆ Rn is a nonempty, convex and closed set, the functions fi : Rn → R

(for i = 1, . . . m1) and fi : Rn → R (for i = m1 + 1, . . . m2) are defined like in Problem 5.30 and
g : Rn → R is a proper, convex and lower semicontinuous function such that
C ∩ (∩m2

i=1 dom fi ∩ dom g) ̸= ∅. Let H : Rn → R be defined like in Problem 5.19.

Algorithm 5.35

Choose x0 ∈ Im∇H∗ ∩ C, ym2,−1 ∈ Rn, the parameter δ > 0, the stepsizes tk > 0, k ≥ 0:
for all k ≥ 0 do

ψ0,k := xk
y0,k := ym2,k−1
for all i := 1, . . . , m1 do

ψi,k := ∇H∗
(
∇H(ψi−1,k)− ϵi,k

tk
pi

f ′i (ψi−1,k)
)

end for
for all i := m1 + 1, . . . , m2 do

ψi,k := ∇H∗
(
∇H(ψi−1,k)− ϵi,k

tk
pi
∇ f tkδ/σ

i (ψi−1,k)
)

end for
xk+1 := ProxH

tk g(ψm2,k).
end for,
where ϵi,k ∈ {0, 1} is random variable independent of ψi−1,k and let P(ϵi,k = 1) = pi for all
1 ≤ i ≤ m2 and k ≥ 0.

The convergence result and the optimal stepsize tk, k ≥ 0, for this algorithm are derivable
via Theorem 5.23 and [35, Theorem 4.5], and [23, Proposition 4.1], respectively.

Theorem 5.36. Let the sequence {xk}k generated by Algorithm 5.35 and δ > 0. Then for all N ≥ 1,
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Proof. Combining (5. 18), (5. 5), (5. 6) and (5. 12) (for ψm2,k instead of ψm,k), we get
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By adding and subtracting tkE(∑m1
i=1 fi(xk+1)) and tkE(∑m2

i=m1+1 f tkδ/σ
i (xk+1)), and considering

(5. 13), the Lipschitz continuity of ∑m1
i=1 fi, and (5. 4), we get
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(5. 21)

Due to the triangle inequality, we get for every k ≥ 0
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(5. 22)

Because of the Young’s inequality and the strong convexity of H, we have
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and similarly, using the same arguments as above and additionally (5.2), we have
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So we get for (5. 22)
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Inserting this inequality to (5. 21), we obtain
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Summing up this inequality from k = 0 to N − 1, for N ≥ 1, we get
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Since E(DH(y, xN)) ≥ 0, we obtain
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Corollary 5.37. Let x∗ ∈ dom H be an optimal solution to (5. 20), δ > 0 and
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Then, the optimal stepsize for Algorithm 5.35 is given by

tk :=

√
σDH(x∗, x0)

P
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k
,

for all k ≥ 0, which yields for every N ≥ 1
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5.4 Applications

We consider three applications that can be modeled as optimization problems of the format
considered in this work. The first of them stems from logistics and was modeled in [87] as
a continuous location optimization problem. We compare the performance of our algorithm
with those of three versions of the method proposed in [35]. The other two applications, one in
medical imaging (more precisely in tomography) and one in machine learning (Support Vector
Machines), were discussed in [35], too. We compare the performance of our algorithm to the
stochastic version of the method introduced there. We use the proximal points of the smoothed
objective functions instead of their subgradients, motivated also by the fact (noted, for instance,
in [66]) that proximal point algorithms tend to solve certain optimization problems faster and
cheaper than subgradient methods. To this end, we smooth the involved functions in the sec-
ond and third application with the Moreau envelope, in the first application with Nesterov’s
smoothing approach. The experiments were carried out for one run of the algorithms and then
averaged over 10 runs (and 100 runs for the first application) of the algorithms, as the stochas-
tic methods perform slightly differently on each run due to the stochastic component. For the
applications in tomography and SVM, our source code is built upon the code utilized in [38].
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5.4.1 Continuous location problem

We consider the following location problem: given m locations placed at points ci ∈ R2, each of
them weighted with a parameter wi > 0, i = 1, . . . , m, find a position x ∈ R2 for a service center
so that the sum of the distances from it to the m locations is minimized under the restriction
that the distance from the service center to the origin is less than or equal to a given radius
r > 0. We can formulate this problem as

min
x∈S

m

∑
i=1

wi∥x − ci∥,

where S = {x ∈ R2 : ∥x∥ ≤ r}.

We can write [92, Example 2.22]

fi(x) = wi∥x − ci∥ = sup
y∈B

{⟨wix, y⟩ − ⟨wici, y⟩}

and according to [92, Corollary 2.20] (note, that for our setting, we have A = wi, b = wici,
y0 = 0, µ = γk and Q = B) with bB(y) = 1

2∥y∥2, using Nesterov’s smoothing approach, we
obtain the smooth approximations

f γk
i (x) = w2

i
∥x − ci∥2

2γk
− γk

2

[
d
(

wi(x − ci)

γk
, B

)]2

,

where B is the closed unit ball of R and d(x, B) is the Euclidean distance from x to B. Then,
the gradients ∇ f γk

i can be written in terms of the projection operator PB on B as

∇ f γk
i = wiPB

(
γ−1

k wi(x − ci)
)

.

We choose H(x) = 1
2∥x∥2 for x ∈ S and H(x) = +∞ otherwise, so that we obtain for the

mirror map the orthogonal projection onto the set S. We have for our smoothing parameters
γk = 2rδtk for a δ > 0.

In our numerical experiments, we chose m = 1000000, r = 0.3 and the m locations such
that ci ∈ [−1, 1] × [−1, 1]. The weights wi ∈ (0, 1) are beta randomly distributed. A his-
togram for the the number of locations for the different weights is presented in the left picture
of Figure 5.1. The positions of the m locations are indicated by blue dots in the right image
of Figure 5.1. The greater the weight of the respective location, the greater the point. The red
circle with radius r represents the permissible set for the position of the service center. The
calculated position of the service center is shown as the red dot.
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Figure 5.1: The left picture shows the histogram for the number of locations (y-axis) for the
different weights (x-axis). The right image displays the positions of 1000 locations
randomly selected from the set of the m locations as blue dots, along with the ser-
vice center calculated using Algorithm 5.14 represented as a red dot. The red circle
denotes the restricted set.

Figure 5.2: The plots show ( fN − f (xbest)/( f (x0) − f (xbest), where fN := min0≤k≤N f (xk), as
a function of time, so xk is the last iterate before a given point in time. In the first
row, we see the results after 17.5s for a single run left and for 100 runs right. In the
second row, the left image displays the results after 1 second for a single run, while
the right image shows the results after 100 runs.
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We compared our algorithm 5.9 (stochastic incremental smooth) to three versions of the al-
gorithms described in [35]. The stochastic incremental version is the algorithm, which is exactly
given in [35]. The non-incremental version takes a full subgradient step of the objective func-
tion f (x) in each iteration instead of the single components fi(x), so basically its the stochastic
incremental version with m = 1 and ϵ1,k = 1 for every k ≥ 0. The incremental version is the
same as stochastic incremental version, if we choose ϵi,k = 1 for every i = 1, . . . , m and every
k ≥ 0, so that we use the subgradient of all single components instead of a random choice. We
chose pi = 0.000001 for every i = 1, . . . , m for the stochastic algorithms. In Figure 5.2 in the
first row we can see the comparison of all four algorithms after one run in the left and 100 runs
in the right respectively and see that the stochastic algorithms outperform the non-stochastic
versions clearly. In the second row we compared only the stochastic algorithms to have a better
look after 1s CPU time for one run and 100 runs. Here we can see that our algorithm is slightly
better than the stochastic incremental.

5.4.2 Tomography

We consider the following optimization problem, which was proposed in [26]

min
x∈∆

{
−

m

∑
i=1

yi log

(
n

∑
j=1

rijxj

)}
,

where ∆ := {x ∈ Rn : ∑n
j=1 xj = 1, x ≥ 0} and rij > 0 is for i = 1, . . . , m, and j = 1, . . . , n, the

entry of the i-th row and the j-th column of the matrix R ∈ Rm×n. Furthermore, yi represents
the positive number of photons measured in the i-th bin, where i = 1, . . . , m. As mirror map
we choose

H(x) =

{
∑n

i=1 xi log(xi), for x ∈ ∆
+∞ otherwise.

The function

fi(x) := −yi log

(
n

∑
j=1

rijxj

)

is Lipschitz continuous for all i = 1, . . . , m, and so it follows that dom f ∗i is bounded. So, we
can apply Algorithm 5.14. The proximal point mapping of the function fi can be deduced from
Lemma 6.5 and Theorem 6.15 in [21] and is given by

Proxγk fi(v) = v +
1
α

R⊤
i

√
(Riv)2 + 4γkαyi − Riv

2
,

where

Ri = (ri1 ri2 . . . rin), α =
n

∑
j=1

r2
ij,

R⊤
i is the transposed vector of Ri and the smoothing parameters γk = δtk for a δ > 0.

We can see in Figure 5.3, that both algorithms have similar numerical performances, with
the one proposed in this work reaching slightly lower objective function values.
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Figure 5.3: The plots show ( fN − f (xbest)/( f (x0)− f (xbest), where fN := min0≤k≤N f (xk), as a
function of time, so xk is the last iterate before a given point in time. In the first row,
we see the results for n = 1000 and m = 6000 for a single run in the left plot and
the average values of 10 runs in the right plot (with pi = 0.01667 ∀i). In the second
row, we see the results for n = 5000 and m = 15000 for a single run and the average
values of 10 runs , respectively (with pi = 0, 0066 ∀i).

5.4.3 Linear SVM

In this subsection, we consider an optimization problem of classifying images via binary lin-
ear support vector machines with 1-norm. For an introduction to the linear SVM model, see
Appendix A.1.

The given data set for classification consists of 11339 training images and 1850 test images
of size 28 × 28 of handwritten digits on a gray-scale pixel map. The data set was taken from
[93]. In the following optimization problem, we search a weight w for a decision function
f (·) = ⟨w, ·⟩ to classify the numbers 5 and 6 to the class with label +1 and −1, respectively

min
w∈Rd

{
m

∑
i=1

max{1 − yi⟨w, xi⟩, 0}+ λ∥w∥1

}
, (5. 23)

{(x1, y1), . . . , (xm, ym)} ⊆ Rd ×{+1,−1} is the given training data set with the training images
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xi and the labels yi (here d = 28 · 28 = 784 and m = 11339). The 1-norm is a regularization term
with the regularization parameter λ > 0.

We set H = 1
2∥ · ∥2, as done in [35], to obtain the identity as mirror map, considering that

this problem is unconstrained. We can write the optimization problem above as

min
w∈Rd

{
m

∑
i=1

fi(w) + g(w)

}
,

where

fi(w) = max{1 − Yi⟨w, xi⟩, 0} and g(w) = λ∥w∥1.

The function fi is Lipschitz continuous for all i = 1, . . . , m, and so it follows that dom f ∗i is
bounded. It follows that we can apply our algorithm. The proximal point mapping of the
function fi can be found in [56, Appendix A] and is given by

Proxγk fi(v) = v +


γkyixi, si ∈ [γk∥xi∥2,+∞)

siyi
∥xi∥2 xi, si ∈ (0, γk∥xi∥2)

0 otherwise,

where

si = 1 − yi⟨v, xi⟩

and γk = 2δtk for a δ > 0.
The algorithms show also for this application similar numerical performance, with a slightly

improved classification by the method proposed in this work, see Figure 5.4 for the correspond-
ing plots.

Figure 5.4: The plots show f := min0≤k≤N f (wk) as a function of time, so wk is the last iterate
before a given point in time. We see the results for λ = 0.001 and pi = 0, 0082 ∀i
for a single run in the left plot and the average values of 10 experiments in the right
plot.
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Table 5.1: Numerical results for the SVM problem for stochastic incremental algorithm (Algo-
rithm 4.2 [35]) (SI) and stochastic incremental smoothing algorithm (Algorithm 5.26)
(SIS). The results are shown for a single run, with the values in brackets representing
the results over 10 runs for pi = 0, 0082 for all i.

regularization parameter algorithm decrease obj.function value misclassified in %
λ = 0.01 SI 99.928 (99.923) 2.595 (2.595)

SIS 99.929 (99.924) 2.324 (2.654)
λ = 0.001 SI 99.923 (99.927) 3.027 (2.605)

SIS 99.922 (99.923) 2.432 (2.568)





Chapter 6

Conclusion and perspective

In this thesis, we used proximal splitting and smoothing techniques to solve nonsmooth, con-
vex optimization problems. We showed the convergence of these schemes to an optimal so-
lution of the respective minimization problem being considered . Furthermore, we discussed
the importance of these methods and compared them to other numerical schemes in various
applications.

In Chapter 3, we solved structured convex optimization problems with linear constraints
by developing the Proximal AMA method as an extension of the AMA algorithm. We added
variable metrics to the subproblems in the iteration process. As a result, the advantage over
the classical AMA method is that, as long as the sequence of variable metrics is chosen appro-
priately, we can perform proximal steps to calculate new iterates. In this way, Proximal AMA
avoids the need to use minimization subroutines in every iteration. In addition, it handles
properly smooth and convex functions which might appear in the objective. The sequences of
generated iterates converge to a primal–dual solution in the same setting as for the classical
AMA method. The fact that instead of solving of minimization subproblems one has only to
make proximal steps may lead to better numerical performances, as we showed in the experi-
ments on image processing and support vector machines classification.

In Chapter 4, we introduced and investigated a dynamical system which generates three
trajectories in order to approach the set of saddle points of the Lagrangian associated with the
same structured convex optimization problem discussed in the previous chapter. After proving
the existence and uniqueness of a solution of this system, we showed in the framework of Lya-
punov analysis the convergence of the trajectories to the optimal solution of the optimization
problem. In a numerical example, we demonstrated the impact of various parameter choices
on the convergence behavior of the trajectories. The discretization of the considered dynamical
system is related to the Proximal AMA method, introduced in the previous chapter, and the
AMA scheme [110].

For Chapter 3 and Chapter 4, we would like to present some open questions regarding
further research. It might be interesting to investigate convergence rates for the iterates and
objective function values of Proximal AMA as well as for the trajectories and for the function
values along the orbits regarding the dynamical system. For the AMA algorithm in [110], there
are some results related to rates. Another suggestion is to consider second order dynamical
systems in order to accelerate the convergence of the trajectories. This would induce inertial
terms in the discretized counterparts of the dynamics. For an accelerated AMA numerical
scheme, we refer to [65]. Further research could also involve embedding the investigations
regarding Proximal AMA in the more general framework of monotone inclusion problems,
similar to the approach taken in [39] starting from the Proximal ADMM algorithm.
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In Chapter 5, we presented incremental stochastic mirror descent algorithms with Nesterov
smoothing meant to minimize a sum of finitely many nonsmooth convex functions over a con-
vex set. In contrast to the related algorithm from [35], we use the gradients of the smoothed
summands of the objective function of the problem instead of their subgradients. To achieve
this, we used the Nesterov smoothing technique, but since the Moreau envelope is a special
case of this smoothing technique, these algorithms can also be formulated with proximal steps,
too. We managed to obtain the same convergence order O(1/

√
k) in expectation for the kth

best objective function value and could show in three applications similar numerical perfor-
mance as in [35], with slight improvements. Due to the fact that we do not need to calculate
subgradients, we have more variations of the proposed algorithms. This allows us to choose
the most suitable smoothing method depending on the structure of the considered optimiza-
tion problem. If we use the Moreau envelope, we have uniquely defined proximal points,
which have closed formulae for a variety of commonly used functions, instead of subgradients
which one would have to pick from the subdifferentials of the involved functions at the given
points. Moreover, the involved functions are not required to be (Lipschitz) continuous or dif-
ferentiable, as they are usually taken in the literature on mirror descent methods. To improve
convergence order, we are interested in accelerating the proposed algorithms as in [77], where
the authors combined Nesterov’s accelerated method and Nemirivski’s mirror descent method
both in continuous and discrete time.



Appendix A

Support Vector Machines

In this appendix, we give a brief overview on SVM, mainly to understand the SVM models
considered in applications in section 5.4.3 and section 3.4.2. Support Vector Machine (SVM) for
binary classification problems is a machine learning model that separates two given classified
data sets through a decision boundary. The decision boundary in the linear model (linear SVM)
is a hyperplane, chosen in such a way that the margin, defined as the distance between the
decision boundary and the closest of the data points, is maximized. Data, for which the class
is still unknown, is now classified by the decision boundary, depending on whether they are
in the positive or negative half space of the hyperplane. Because the decision boundary is
uniquely determined by only a few vectors closest to it (support vectors), this model is called
Support Vector Machine.

Data sets cannot always be separated by a hyperplane. In this case, one can consider SVM
with soft margin, which softens a hard separation through slack variables and thus allows
outliers.

For some data sets, a separation by a hypersurface may be more suitable than by a hyper-
plane. In this case, the vectors are mapped into another (often higher dimensional) space, in
which they can be separated by a hyperplane. Through a so-called kernel trick, the vectors
of the other space only appear in a inner product of a chosen kernel function, which means
that the optimization problem itself remains in the original dimension. This method is called
nonlinear Support Vector Machine.

For further information on linear SVM, we refer the reader to [27], which is the basis for
section A.1. The section on nonlinear SVM is based on [48, Section 2.3] and [103, Chapter 4].

A.1 Linear SVM

Fix an input set X ⊂ Rn, which includes data points, and an output set Y = {−1, 1}, which
contains class labels. For N ≥ 1, we denote by

Z = {(x1, y1), . . . , (xN , yN)} ⊆ (X × Y)N

the given training data set, where xk is called a training vector and yk is called the corresponding
class (k = 1, . . . , N).

Our objective is to find a hyperplane in Rn, which separates the training data such that
the data points with label −1 lie in the negative half space and those with label +1 lie in the
positive half space. At first, we present the method for separating training data without errors
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maximized margin

f (x) = −1

f (x) = 0

f (x) = 1

Figure A.1: In the figure, one can see a hyperplane, which is chosen such that the margin, de-
fined as the orthogonal distance between the hyperplane and the closest of the
data points, is maximized. The hyperplane is determined solely by a subset of data
points, referred to as support vectors, which are circled in this illustration.

proposed by Vapnik in 1982 [111]. Therefore, we assume that our data set is linearly separable,
which means that there exists such a separating hyperplane.

We search w ∈ Rn\{0}, a so called weight vector, and b ∈ R, denoted as bias, for an affine
function

f : X → R,
x 7→ ⟨w, x⟩+ b ,

such that yk f (xk) > 0 for all 1 ≤ k ≤ N. In this section, ⟨·, ·⟩ denotes the Euclidean inner
product on Rn and ∥ · ∥ the associated norm.

In the context of linear SVM, the aim is to choose w and b associated to the hyperplane
Hw,b := {x ∈ Rn : ⟨w, x⟩+ b = 0} in such a way that the smallest distance between the training
vectors from the training data set to the hyperplane is as large as possible. This means that we
have to maximize the so called margin

Mw,b = min{∥xk − x∥ : k = 1, . . . , N, x ∈ Hw,b}

with respect to w and b. Due to the fact that yk f (xk) > 0 for all 1 ≤ k ≤ N, the orthogonal
distance of xk to the hyperplane Hw,b is given by | f (xk)|

∥w∥ = yk(⟨w,xk⟩+b)
∥w∥ , where w ∈ Rn\{0} and

b ∈ R. To maximize the margin Mw,b, we can write

max Mw,b = max
w,b

{
1

∥w∥ min
k

yk(⟨w, xk⟩+ b)
}

. (A. 1)

Let us assume that this optimization problem has a solution. If w and b is such a solution,
then hw and hb for h > 0 solves this problem as well. Thus, w.l.o.g, we set
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f (x) = −1

ξ = 0

f (x) = 0

f (x) = 1

ξ > 1

ξ < 1
ξ = 0

Figure A.2: Illustration of slack variables ξ ≥ 0 corresponding to several data points. Data
points with circles around them represent support vectors.

mink yk(⟨w, xk⟩+ b) = 1. Then, it follows for all 1 ≤ k ≤ N

yk(⟨w, xk⟩+ b) ≥ 1.

Since minimizing |w|2 is equivalent to maximizing |w|−1, we are led to consider the problem

min
w,b

1
2
∥w∥2

s.t. yk(⟨w, xk⟩+ b) ≥ 1 k = 1, . . . , N.
(A. 2)

It is clear that this optimization problem has a unique solution. With the above normalization,
it is also a solution of (A. 1).

Often, the data sets are distributed in such a way that no linear separation is possible and
the optimization problem above has no solution. This can be the case if some training vectors
contain measurement errors or "outliers" are present in the data. Even in the case, where a hard
linear separation is possible, it may sometimes be more suitable to have a decision function
that misclassifies some training data points in order to achieve a larger margin. Therefore, we
use slack variables ξk ≥ 0 that describe the violation of the constraints of (A. 2). More precisely,
we define

ξk = max{1 − yk f (xk), 0}.

Thus, ξk > 0 is fulfilled if and only if the constraints of (A. 2) are not fulfilled for xk. If 0 < ξk ≤
1, then the corresponding data point is correctly classified but lies within the margin. If ξk > 1,
then the data point xk is on the wrong side of the hyperplane and is misclassified. For correctly
classified data that are located outside or on the margin, we have ξk = 0 (see Figure A.2). This
violation of the constraints is penalized by augmenting the objective function with the sum of
the ξk multiplied by a constant C ≥ 0, which allows us to control the level of penalization.
Thus, for C > 0, we achieve a "softer" separation compared to the previous model described.



110 Appendix A. Support Vector Machines

This approach, known as soft margin SVM, was introduced by Cortes and Vapnik in 1995 (see
[52]).

We obtain the new unconstrained optimization problem

min
w,b

1
2
∥w∥2 + C

N

∑
k=1

max{1 − yk (⟨w, xk⟩+ b) , 0}, (A. 3)

where the function C
N
∑

k=1
max{1− yk⟨w, xk⟩+ b, 0} is called loss function . We can also choose the

1-norm of w instead of ∥ · ∥2, resulting in the following optimization problem as an alternative
to the previous one:

min
w,b

1
2
∥w∥1 + C

N

∑
k=1

max{1 − yk (⟨w, xk⟩+ b) , 0}, (A. 4)

where ∥w∥1 := |w1|+ · · ·+ |wn|.
Depending on the input data and our chosen algorithm to solve the problem, we can select

either the 2-norm SVM (A. 3) or the 1-norm SVM (A. 4) as the appropriate model.

Remark A.1. In section 5.4.3, we considered the 1-norm SVM (A. 4) for the given application. In
this context, we introduce a regularization parameter λ = 1

C for this particular problem. Note
that in this model, the bias term b has been chosen to be 0 for the sake of simplicity. As a result,
the model slightly differs from the SVM model original introduced by Cortes and Vapnik in
this appendix. For more information and a detailed comparison between these two models,
please refer to [98].

One can show that the vector w can be expressed as a linear combination of the training
vectors {x1, . . . , xN} as follows

w =
N

∑
k=1

akxk, (A. 5)

where ak ∈ R (see [52] appendix A.2.). We call xk support vector, if the corresponding ak ̸= 0.
Thus, the optimal hyperplane is determined by only a few data points.

An affine function f̂ (x) = ⟨ŵ, x⟩+ b̂, where (ŵ, b̂) is an optimal solution of SVM, is called
decision function. We can classify data points with unknown labels using the function

g : X → Y,

x 7→
{
+1, if f̂ (x) ≥ 0,
−1, if f̂ (x) < 0.

In order to evaluate the quality of our optimal hyperplane Hŵ,b̂, resulting from the opti-
mization problem of SVM, we classify data from a test dataset using the function g. Since the
correct classification for the test data is already known, we can determine the misclassification
rate, which serves as a quality measure for our hyperplane and model.

A.2 Nonlinear SVM

Not all data sets can be linearly separated, and a linear separation using soft margin is not
always suitable. In this case, we map the data points into another space (in general into a
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higher dimensional space) by a non-linear feature function ϕ : X → H, where X ⊂ Rn is the
original space of our data points, referred to as the input space, and H denotes a Hilbert space
and is known as the feature space. In this Hilbert space, we search for a separating hyperplane as
the decision boundary according to the principles of linear SVM. Due to the non-linearity of the
feature function, this model is referred to as a non-linear SVM. In the following, for the sake of
simplicity, we assume that the bias b is set to 0. However, it is worth noting that the following
calculations can also be applied for b ̸= 0 (see [48], Appendix 2.B). The decision function is
then given by

f : X → R,
x 7→ ⟨u, ϕ(x)⟩.

The corresponding hypersurface is defined as

Hu := {x ∈ X : 0 = ⟨u, ϕ(x)⟩},

where u ∈ H is determined by solving the optimization problem

min
u∈H

1
2
∥u∥2 + C

N

∑
i=1

max{1 − yi⟨u, ϕ(xi)⟩, 0} (A. 6)

with C > 0. In this section, ⟨·, ·⟩ denotes the inner product on H, while ∥ · ∥ represents the
norm associated with this inner product. Mapping the problem into the feature space using
the feature function ϕ can make the problem challenging to solve. Additionally, in certain
cases, it may even be impossible due to the possibility of mapping into an infinite dimensional
space. Therefore, we have to avoid the direct computation of ϕ(x). This can be done using
the technique known as the “kernel trick”. For this we need some definitions and properties,
which can be found in chapter 4 in [103]:

In the following, let X ⊆ Rn.

Definition A.2. Let X ̸= ∅. Then, the function κ : X × X → R is called kernel function (or
kernel) if and only if there exists a Hilbert space H and a map ϕ : X → H such that for all
x, y ∈ X, it holds that

κ(x, y) = ⟨ϕ(x), ϕ(y)⟩.

The Hilbert space H is called feature space of the feature function ϕ.

Kernels can be constructed by utilizing a feature function ϕ : X → H and applying the
definition mentioned above. It is also possible to determine whether a function κ is a kernel
function without knowing the corresponding feature function ϕ by employing the following
definition and theorem:

Definition A.3. The function κ : X × X → R is called positive definite, if for all N ≥ 1, for all
(a1, . . . , aN) ∈ RN , and for all (x1, . . . , xN) ∈ Xn, it holds

N

∑
i=1

N

∑
j=1

aiajκ(xi, xj) ≥ 0. (A. 7)

Furthermore, κ is said to be symmetric, if κ(x, y) = κ(y, x) ∀x, y ∈ X.

Definition A.4. For fixed x1, . . . , xn ∈ X and a function κ : X × X → R, we define the Gram
matrix (also called kernel matrix) as K = (κ(xi, xj))

N
i,j=1.
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Note that the Gram matrix is for all (x1, . . . , xN) ∈ Xn positive semi-definite if and only if
its underlying kernel is positive definite.

Theorem A.5. A function κ : X × X → R is a kernel if and only if the function κ is symmetric and
positive definite.

Proof. See [103, Theorem 4.16].

Note that for a given kernel, neither the feature function ϕ nor the feature space H are
uniquely determined. The following definition is about a canonical feature space consisting
of functions, referred to as the reproducing kernel Hilbert space, which is uniquely associated
with a kernel, and vice versa:

Definition A.6. Let X ̸= ∅ and H be a Hilbert function space over X, i.e., a Hilbert space that
consists of functions mapping from X to R.

• A function κ : X ×X → R is said to be a reproducing kernel of H, if it satisfies the following
properties: κ(·, x) ∈ H for all x ∈ X, and for all f ∈ H and x ∈ X, the reproducing
property

f (x) = ⟨ f , κ(·, x)⟩

holds.

• The space H is called a reproducing kernel Hilbert space (RKHS) over X, if for all x ∈ X, the
Dirac functional δx : H → R defined by

δx( f ) := f (x), f ∈ H,

is continuous.

According to the following lemma, reproducing kernels are indeed kernels:

Lemma A.7. Let H be a Hilbert function space over X which has a reproducing kernel κ. Then, H is
an RKHS and H is also a feature space of ϕ, where the feature map ϕ : X → H is given by

ϕ(x) = κ(·, x), x ∈ X.

We call ϕ the canonical feature map.

Proof. See [103, Lemma 4.19].

Theorem A.8. Every RKHS has a unique reproducing kernel and every kernel has a unique RKHS.

Proof. See [103, Theorem 4.20 and Theorem 4.21].

The RKHS H is often denoted as Hκ, where κ represents the associated reproducing kernel.
Then, the inner product on Hκ is written as ⟨·, ·⟩Hκ

and the associated norm is denoted as
∥ · ∥Hκ

.
Having these definitions and properties at our disposal, we consider in the following a

kernel function κ : X × X → R and its associated RKHS Hκ. For f ∈ Hκ, according to to
Lemma A.7 and the reproducing property, we have ⟨ f , ϕ(xi)⟩ = ⟨ f , κ(·, xi)⟩ = f (xi). Then, we
can write the optimization problem (A. 6) as:

min
f∈Hκ

1
2
∥ f ∥2

Hκ
+ C

N

∑
i=1

max{1 − yi f (xi), 0}. (A. 8)
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Kernels, their RKHS, and the reproducing property play a crucial role in proving the fol-
lowing important theorem, originally introduced by Kimeldorf and Wahba in 1970 (see [76])
in the setting of Chebyshev splines and generalized to RKHS by Wahba in 1990 (see [112] and
also [113]). We require this theorem for the "kernel trick" and the derivation of our nonlinear
SVM model:

Theorem A.9 (Representer Theorem). The solution of the optimization problem (A. 8), f̂ , can be
expressed as a linear combination of kernel functions evaluated at the training data {x1, . . . , xN} in the
following form:

f̂ (x) =
N

∑
i=1

βiκ(xi, x),

where βi ∈ R for all 1 ≤ i ≤ N.

Proof. See [48, section 2.3].

Now, we can apply the “kernel trick” and express the optimization problem (A. 8) in terms
of βi using the Representer Theorem:

min
β1,...βN∈R

1
2

N

∑
i,j=1

βiβ jκ(xi, xj) + C
N

∑
i=1

max{1 − yi

N

∑
j=1

β jκ(xi, xj), 0}, (A. 9)

where we utilized the kernel reproducing property for

∥ f ∥2
Hκ

=
N

∑
i,j=1

βiβ j⟨κ(xi, ·), κ(·, xj)⟩ =
N

∑
i,j=1

βiβ jκ(xi, xj).

Using the kernel matrix K with Kij = κ(xi, xj) and Ki as the i-th column of K, we can write
this problem as follows:

min
β:=(β1,...,βN)∈RN

1
2

βTKβ + C
N

∑
i=1

max{1 − yiKiβ, 0}. (A. 10)

Remark A.10. The simplest example of a kernel function is the linear kernel, where ϕ(x) = x and
κ(x, y) = ⟨x, y⟩. In section 3.4.2, we considered the nonlinear SVM (A. 10) with the symmetric
and finitely positive definite Gaussian kernel (for σ > 0)

κ : Rn × Rn → R, κ(x, y) = exp

(
−∥x − y∥2

2σ2

)
,

where ∥·∥ is the Euclidean norm on Rn.





Index of notation

H a real Hilbert space H
H×G the Cartesian product of two Hilbert spaces H and G
Hstrong the strong topology of the Hilbert space H
Hweak the weak topology of the Hilbert space H
⟨·, ·⟩ a inner product
∥ · ∥ a norm
∥ · ∥1 the 1-norm

R the set of real numbers
+∞ plus infinity
R the extended set of real numbers, R := R ∪ {±∞}
N the set of natural numbers, N := {1, 2, . . . }
Id the identity operator

C ⊆ D C is a subset of D
C + D the Minkowski sum of two sets C and D

αC the scaled set C by a constant α
x + C the translation of a set C by a vector x
int(C) the interior of a set C
ri(C) the relative interior of a set C

sqri(C) the strong quasi-relative interior of a set C
cl(C) the closure of the set C

∅ the empty set
(xn)n∈N a sequence of vectors starting with x1

⇀ weak convergence
→ strong convergence

dom( f ) the domain of a function f
Im f the image of a function f

epi( f ) the epigraph of a function f
graph( f ) the graph of a function f

∂ f the subdifferential of a function f
∇ f the gradient of a function f
f ′ a subgradient of a function f

argmin f the set of minimizers of a function f
ḟ the derivative of a function f
f ∗ conjugate of a function f
f ∗∗ biconjugate of a function f

inf, min the infimum and minimum, respectively
sup, max the supremum and maximum, respectively
ess sup the essential supremum
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f□g the infimal convolution of two functions f and g
Proxγ f the proximal point of a coefficient γ of a function f

ιC the indicator function of a set C
δx the Dirac functional for a point x
PC the projection onto a nonempty closed convex set C
B the closed unit ball of R

d(x, C) the Euclidean distance from a point x to a closed and con-
vex set C

S+(H) the set of linear, continuous, self-adjoint and positive
semidefinite operators M : H → H

∥ · ∥M the seminorm induced by an operator M
≽ the Loewner partial ordering

(Mk)k∈N a sequence of operators starting with M1
Pα(H) the set of linear, continuous, self-adjoint and α-positive

definite operators M : H → H
A−1 the inverse of a operator A
A∗ the adjoint of a linear operator A
∥A∥ the norm of a linear operator A
2H the power set of H

graph(A) the graph of an operator A
X∗ the topological dual space of the topological

vector space X
ISNR improvement in signal-to-noise ratio
RMSE root-mean-square error

Lp([0,+∞),B) the space of p-integrable functions f : [0, ∞) → B where
B is a Banach space

L1
loc the space of functions which are locally integrable

L(H) the set containing all linear and continuous operators
A : H → H

Hw,b hyperplane or hypersurface respectively for a weight
vector w and a bias b

SVM support vector machine
RKHS reproducing kernel Hilbert space
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